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Chapter 1

Introduction

The object of research presented here is Vessiot’s theory of partial differential equations.
During the first half of the twentieth century, Ernest Vessiot [43] developed an approach
for the treatment of general systems of partial differential equations which is dual to the
theory of exterior systems, the Cartan-Kéahler theory [4, 18, 21], in so far as it takes vector
fields as its main object of consideration and which uses the Lie bracket instead of the
exterior derivative. For a given system of differential equations one seeks a distribution of
vector fields that is both tangent to the differential equation and appropriate with respect
to the contact structure used to describe the relation between independent and dependent
coordinates. Among the subdistributions in it one special kind can be interpreted as
tangential approximations for the solutions to the equation. These subdistributions of
vector fields then allow to regard solutions to the differential equation as their integral
manifolds.

The modern presentation [25, 31, 35, 37| of the formal theory of differential equations
considers differential equations as fibred submanifolds within an appropriate jet bundle
with a base space of dimension, say, n and explores formal integrability and the stronger
concept of involutivity of differential equations to analyze if the equations are solvable.

The modern formulation of Vessiots approach is then to construct for a given differ-
ential equation the Vessiot distribution, tangent to it such that it is also contained within
the contact distribution of the jet bundle. Then the aim is to find n-dimensional subdis-
tributions in it which are fibred over that base space; they are called integral distributions
and consist of integral elements, which are to be glued in such a way that they define a
subdistribution that is closed under the Lie bracket. This notion is called a flat Vessiot
connection.

Vessiot’s approach has not become popular. Modern treatments of his theory are re-
stricted to special systems (like ordinary differential equations [3] or hyperbolic equations
[42]), and general considerations [15, 40] lack the precision of treatment which has been
developed in the more widespread Cartan-Kéhler theory; in particular, the necessary pre-
requisites and assumptions for the solvability of an equation and for the construction of
the distributions mentioned above have not been explored yet and are neglected even in
Vessiot’s own work.

One main result of this thesis is to have closed this gap and to provide a foundation for
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Vessiot’s theory which is equally rigorous. Another result is to make clear the interrelation
of Vessiot’s approach and the pivotal notions of formal theory (like formal integrability
and involutivity of differential equations). A major point of this thesis is the formulation
of conditions which are necessary and sufficient for Vessiot’s approach to succeed. This
proves the equivalence of Vessiot’s theory and formal theory.

We show that Vessiot’s step-by-step approach to the construction of the wanted dis-
tributions succeeds if, and only if, the given system is involutive. To this end, we first
prove an existence theorem for integral distributions (Theorem 3.3.9). Our definition
of integral elements is new (but natural as it is based on the contact map, which any
jet bundle brings along), its equivalence to the classical notion is then proven (Propo-
sition 2.4.22). Furthermore, an existence theorem for flat Vessiot connections is proven
(Theorem 3.3.28). The geometrical structure of the basic theory is being analyzed and
simplified as compared to other approaches (in particular the structure equations needed
for the proofs of the existence theorems). The obstructions to involution of a differential
equation are deduced explicitly (Lemma 2.5.8). (The representation refers to first-order
systems, which does not weaken the generality but improves clarity.)

Analyzing the structure equations not only yields theoretical insight, but also renders
an algorithm for the explicit determination of the coefficients of the vector fields which
span the sought integral distributions. Now an implementation of Vessiot’s approach
in the computer algebra system MuPAD is possible, and is being coded by the method
developed here.

Though not an aim of this thesis but now within reach through the results of this thesis
(in particular now that the integral elements in the formal theory are identified and their
construction is clear), is the proof of the equivalence of the formal theory and Cartan-
Kahler theory, which are linked by Vessiot theory. Though generally acknowledged, it
seems an explicit proof has not been published in the literature yet.

The text is organized as follows. The second chapter summarizes the main concepts
of formal theory, most of them widely known, to introduce the notation. The exposition
here follows Seiler [37, 38]. We introduce jet bundles and their contact structure in
Section 2.1 and differential equations as fibred submanifolds within them in Section 2.2.
In this thesis we consider general systems of partial differential equations; these include
arbitrarily non-linear systems. But the structure of such systems, as described by the
Vessiot distribution, can be represented easily or can be reduced to the one of systems
with a less complicated representation: the geometric symbol, introduced in Section 2.3,
is a helpful brute-force linearization of an equation; if the given system is not involutive,
it can be completed to an equivalent involutive system by a finite series of operations
according to the Cartan-Kuranishi theorem in Section 2.4, and a system of arbitrary
order can be rewritten as a first-order system leaving the involutivity of the given system
undisturbed, in a way which is outlined in Section 2.5. (The number of variables is not
in general kept constant through these transformations, but what is kept constant is the
Cartan characters, which are pivotal in our theory.) When a differential equation is given
as a first-order system or rewritten as such, it allows a local representation in reduced
Cartan normal form. This local representation is not usual in the literature, but it helps
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us to clarify the argumentation because it classifies the variables of a local representation
in a natural way. It is particularly convenient when, as a new result, we deduce the
obstructions to involution.

In the third chapter, we give a modern presentation of Vessiot theory. We define the
Vessiot distribution for a differential equation in Section 3.1—though not in the usual
way, but in a way analogous to the introduction of the geometrical symbol and thus more
natural in our approach—and therefore arrive at a description of the geometric symbol
as a subdistribution within the Vessiot distribution. As such, it is a decisive help in the
construction of flat Vessiot connections: now the Vessiot distribution can be written as
a direct sum of the symbol and a horizontal complement (which is not unique). The
n-dimensional, involutive subdistributions which are fibred over the base space are the
linear approximations for the solutions to a differential equation of Vessiot’s approach. To
show their existence is now possible by analyzing the structure equations of the Vessiot
distribution. (In Subsection 3.1.2 we analyze the assumptions under which n-dimensional
complements, in other words Vessiot connections, exist. Then in Subsection 3.1.3 we
analyze under what conditions flat Vessiot connections exist.) The ansatz that is used
here is so handy that the structure equations have a simple form—at least when compared
to other recent approaches. We summarize these in Section 3.2 for easier comparison.

In Section 3.3 we give the two existence theorems and the accompanying proofs. The
theory of distributions and exterior systems has the advantage that many of the usual
methods are linear-algebraic. The approach developed here simplifies them even further.
One amendment is that the classical quadratic Equations (3.24) are replaced by linear
Equations (3.29); these linear Equations can explicitly be linked with the obstructions to
involution and integrability conditions. On the other hand, considering general, arbitrary
systems of differential equations means that their representations and the calculations in
local coordinates may appear somewhat tedious, even for linear systems, and obscured by
index clouds. For the calculations here we have to develop a special notation regarding
block matrices which comprehend the structure equations of the Vessiot distribution. In
order not to complicate the main relations, which are of a simple nature, by unwonted
notation, we sketch the core algorithm by a series a figures and give some elaborate
examples, and collect the technical details in several subsections. The downside is that
the length of the text grows such that it fills more than a hundred pages.

The last chapter shows possible further developments. We hint at applications of Ves-
siot’s approach for involutive systems concerning the equivalence of formal theory and
Cartan-Kéhler theory (as Vessiot theory is a link between them); qualitative classifica-
tion of differential equations based on the Vessiot distribution; possible developments of
differential Galois theory for systems of non-finite type (which are regarded as covered by
systems of finite type which correspond to involutive subdistributions within the Vessiot
distribution); and the study of symmetries of a differential equation based on the equation
and its Vessiot distribution alone. These hints are entirely speculative and meant to show
that studying the topic of this thesis is not just an end in itself but may be connected
with several interesting fields.
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Chapter 2

Formal Theory

The formal theory of differential equations is an approach to describe differential equations
by way of using methods from differential geometry based on the formalism of jet bundles.
The overview in this chapter is mainly in local coordinates with additional hints at an
intrinsic approach. A more extensive presentation is given by Seiler [37, 38].

Let n € N. A multi-index p is an n-tuple of non-zero integers (p;: 1 <i <n) € Nf.
Multi-indices may be added componentwise. If for all 1 < ¢ < n and for two multi-indices p
and v we have p; > v;, then y—v is defined componentwise as well. Let k be some integer.
Then, for 1 < ¢ < n and any multi-index g, set p+k; := (1, -+, i1, i + Ky i1y - -+ 5 fn)
if p; +k > 0. We call |u| := D1 | p; the order of the multi-index pu. It is often convenient
to write a multi-index pu = (u;) as a list, consisting of numbers 4 (or terms like z*) each
of which is written u; times. The Einstein convention is used where it seems appropriate
and the domain of summation is obvious from the context.

2.1 The Jet Bundle and its Contact Structure

Jet bundles were introduced by Ehresmann [9, 10, 11, 12, 13]. A standard textbook on
the subject is by Saunders [36]. They are considered for fibred manifolds, which provides
a distinction of the variables into independent and dependent ones, but in a such way
that the derivatives of the dependent variables are regarded as algebraically independent
coordinates for the jet bundle.

2.1.1 Jet Bundles

All manifolds which we consider are assumed to be second-countable and Hausdorff. For
any such manifold M, denote the ring of smooth functions C*°(M,R) by F(M).

For two manifolds £ and X and a map 7: £ — X, the triple (€, 7, X) is called a fibred
manifold with the base space X, if 7 is a surjective submersion; it is called the projection.
(For two manifolds M and N a submersion is a smooth map f: M — N such that for
dim M > dim N its rank is maximal, where the rank of f is (pointwise) defined by the
rank of its tangent map T'f: TM — TN.) For any x € X the subset 771(x) is called the
fibre over x. We consider finite dimensional manifolds and denote the dimension of X by

9



10 2 Formal Theory

n and that of £ by n+m where m is the dimension of the fibre /. A submanifold R C £
is called fibred (over X ), if the restriction 7|g: R — X is a surjective submersion, too.

Let m: & — X be a fibred manifold. For local coordinates on X, we write x = (z": 1 <
i < n) and for local coordinates on the typical fibre u = (u®*: 1 < a < m). Instead of
2!, 2% and so on we often write z, y, z, s, t or something similar, and in the same way
u, v, w for u', u?, u®. A local section for the fibration 7 is a smooth map o: O — &
for some open set O C X with moo = idp. If O = X, o is called a global section.
In local coordinates, any local section defines a smooth function s: O — U such that
o(x) = (x,s(x)). We want to keep the notation simple and therefore suppress mentioning
local charts explicitly. Let I'ym denote the set of all local sections where x € O for some
open neighborhood O C X, and [, 7 the sheaf of all local sections for 7. Let I'm denote
the set of all global sections. Let S (T:X)®T¢E be the vector space of symmetric ¢-linear
mappings from (7xX)? to T¢€.

Definition 2.1.1. A g-jet can be regarded as an equivalence class [o] ,(fo) of local sections
where two local sections o7 and o, are considered equivalent, if they define two functions
S1,89: & — & with the Taylor-expansions of s; and s, in adapted local coordinates being
equal up to order g at the expansion point xo € X (that is, they have a contact of order ¢
there). Thus we interpret a g-jet as a truncated Taylor series. Now the jet-space of order
q is the set of all ¢-jets

J = {[a];qg: xg € X and 0 € [} .

As fibre coordinates for the point [0’];(10) we may use (p denoting a multi-index) ul® :=

(ug: 1 <o <m,0 < || < ¢) and interpret u$ as the value of 95 /0x* at the expansion
point xg € X for s: X — U with s = (s*: 1 < a <m) and a fibre U.

Consider two points [01]53) and [02],(3) in Jym from the same fibre with regard to the
fibration over !

1, that is, (0197 = [05]¢Y. Then [01]¢ and [05]\? correspond to
two Taylor-series which are truncated at order ¢ and are equal up to order ¢ — 1. Thus
their difference yields for each u® a homogeneous polynomial of degree ¢q. The fibre
(m? )_1([01],(371)) has therefore as its underlying vector space

q—1
ST X) @ Ver =V, gy

where again { = o(x) € £ and Ve C T¢€ is the vertical space at £ of the fibration over
m—it is defined as the kernel of the tangent map Tem: T¢£ — Tk X—and V[Uﬂ(qmgfl is the
(g q

vertical space at [0‘1])(_1) of the fibration over m,_, defined as the kernel of the tangent

map T[Jﬂ;qmg_l: T[m]i‘” J T — T[o_l};q—l)t]q_lﬂ-.

Proposition 2.1.2. For any p € J,_17, the jet-fibre at p of order q, (Jym),, is an affine
space with underlying vector space V,é(q) = S,(TiX) @ Vem. The jet-space of order q is an
affine bundle

ﬂ_q

g1 Jqgm — Jgam

with underlying vector bundle Sq(T*X) ®;,_,» VT — Jy_im. Its dimension is

dim J,m =n+m (") .
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Proof. The proof is by checking how coordinate changes in the total space £ which map
fibres into fibres influence the derivatives, which are the coordinates in the jet bundle J,7.
Let x «— X(x) and u « 0(x,u) be such a coordinate change. Then the chain rule implies
that for the derivatives of highest order the induced change of coordinates yields as the

new coordinates
ou® Oxh Ox'a
us ( .- ) u? + R .

e =\ Quf 0 Qe ) e
where summation over repeated indices is understood, (g—;) means the inverse of the
Jacobian matrix (g—i) and R denotes the terms of lower order; these do not depend on
derivatives of order ¢ (they depend on the z* and ufj where 1 <i<n, 1 <a<m and
0 < |u| < q). This is an affine function of the derivatives ufl iy of order ¢q. Therefore
J,m is affine over J,_ym. See Saunders [36], Theorem 6.2.9, for details, or Pommaret [35],
Propositions 1.9.7 and 1.9.9.

For the dimension, we have dim J,7 — dim J,_1m = m ("”L‘q]_l), from which follows

dim Jym =n+m (™). O

Remark 2.1.3. Let 7: £ — X be a fibred manifold. The jet-space of order g for ¢ = 0
and ¢ = 1 may be interpreted in a sense which is especially suitable for our oncoming
analysis. For ¢ = 0 we have Jor = £ and 7§ = idg and 7? := 7. For ¢ = 1 consider a
point £ € £ where 7: £ — X yields w(£) = x. Then the jet-fibre at p of order 1 is

(J17T)§ = {)\ € T;X X ngi Tgﬂ' o\N= ide/y} , (21)

the jet-space of order 1 is

D= o} x (im)e

£e&

and a point in it is a 1-jet. Now the first-order jet bundle over £ is the affine bundle
mo: Jym — € with its fibre at the point £ given by the affine space given in Equation (2.1)
and the underlying vector space

T X @ Ver .

Now we have two ways to look at the first-order jet bundle; therefore we have to show
their equivalence.

First let be 0 € I'yw. Setting m o 7y =: 7': Jim — X, we see that Jim is fibred
over X. Then define jio: X — Jim by j1o(x) := (0(x),Tx0) for its first prolongation.
As 0: X — &, pointwise for o(x) = £ we have Txo: Ty X — T¢& for its linearization.
Therefore Txo € Ty X ®T:E. Furthermore, the definition of a section, moo = idx, implies
Tem o Tyo = idr, x, which is the motive for the definition in Equation (2.1).

Conversely, for any A € Ty X ® T¢£, for each x € X there is a section o € I
such that o(x) = ¢ and T,0 = A. Therefore, A corresponds to the equivalence class
[a]g) ={oelm: o(x)=¢ and Tyo = \}.

The jet bundle of order ¢ > 1 may be introduced by iteration as a subspace of the
first order jet bundle of the previous jet bundle of order ¢ — 1.
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Any jet bundle of order ¢ has the property 7%(N) = X and therefore is a fibred
manifold 7¢: J,m — X. For r > 1, J,4,m can be regarded as a fibred submanifold of
J.(J,m) by the imbedding ¢y, : Jyipm — Jpw? = J.(J,7), defined through

Lq,r © .qurr(U) = jr(jqa) (2'2>
for all ¢ € I'yw. In local coordinates on J,.(J,7), it is given by setting uf , = uf, , for all
1<a<m,0<|u,|gl <qgand 0 < |v|,|7| <rif p+ v = p+ v. This means that one
does not distinct derivatives which are equal except for the order of their independent
coordinates any more; in J,(J,m), the derivatives u,, and u,, are regarded as different
while in J,,, 7 there is only u,,, which equals wu,,,.

Let x € X and 0 € I'xm Let 1 <r < ¢q. Then the mappings

0 Jm— X, [0)9 - x,
& Jm— &, o]

il Jym — Jom, o]

T

[e=]

) [g])

X

are called source-, target- and jet-projection of order ¢ (and, in the last case, order r).

2.1.2 The Contact Structure

For a total space & with typical fibre U over the base space X, each section o: X — U
can be prolonged to a section j,o: X — J,(X,U) by

x +— [0]@ .

Now the question arises, which sections of 7? are prolongations of sections of 77 The
answer is given by the contact structure, which each jet bundle brings along and which
can be formulated by way of the contact map, the contact distribution or the contact
codistribution. All of them characterize certain n-dimensional submanifolds N' C J,,
which are fibred (over X') because they have the property 7¢(N) = X. The description
here follows Modugno [23, 32].

Definition 2.1.4. The mapping I'y: Jim X3 TX — TE, defined by
(&, Aes vx) = (€ Ae(v))

1s called the contact map of order 1; more generally, the contact map of order ¢ is

Ly: Jym xx TX — T(J,_qm), defined by
Fq = Fl Olg—1,1 -

Remark 2.1.5. By definition the contact map can be regarded as an evaluation map
for ¢ = 1; it corresponds to (£, A¢) — (vx — A¢(vx)). The contact map of order ¢ is a
linear fibred morphism over m}_,. Because of the linearity (in the argument vy), it can be
regarded as a map [';: J;m — T"X ®;,_ r T(J4—1m), in local coordinates given by

Fq(X7 u(q)) = (X, u(qfl)’ dzt ® (a$z + Z Z u;‘jﬂi@ug)) . (2.3)

a=11<u|<q
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The following proposition uses the contact map to show which sections v € I'w9 are
the prolongation of sections o € ;7.

Proposition 2.1.6. A section v € I'y7? is a prolongation v = j,0 of a section o € I'w
if, and only if, for all points x € X where v is defined, we have
im [, (y(z)) = Tv(m)ﬂgq(Tv(m) im~) .

Proof. Let ¢ = 1. Let v € I'yw'. Then o := mj oy € I'tm. We have Ty m) (T o) imy) =
T,@imo = imT,0. Since y(x) = (0(2),Yo(z)), it follows imI'y(y(z)) = im7y(). For
v = o1(x), we have Y, (z)—1,, Which proves the first direction.

For the other direction, let 74,y = imT,0. Then there is a local section ¢ € I, such

that 6(x) = o(z) and T,6 = 7y() wWhere y(z) = [6)%. Thus y(z) = [0]". Since z is
arbitrary, the claim follows for ¢ = 1. For an arbitrary order ¢ the argument is analogous
but more tedious. O

Remark 2.1.7. Now we see that for any section o € ' w, we have
im Ty (Jy10/(50)) = im T (G,0) :

in particular, for ¢ = 1, this means that for any o € I',7, we have imI'y (j10(x)) = im Tyo.
This may be interpreted as that the jet of order ¢ + 1 of ¢ € I'ym holds the same
information as the jet of order ¢ and its tangent space.

Let p € J,m and consider im(I',(p)), the image of the contact map of order ¢ at p:

Definition 2.1.8. Let p € Jym with n?™(p) = p for points p from its fibre. Then the
vector fields in T,J,m defined by

(Cq)p :=1mTg11(p)
are called the contact vector fields of order q at p. The vector distribution
Cq = U {p} x(Cy)p
pEJgm
is called the contact distribution of order gq.

Proposition 2.1.9. Locally, the contact distribution is generated by two types of vector
fields, namely, for 1 <i <n,

O =0, + Y > ulty,Oug - (2.4a)
a=10<|u|<q
and, for 1 <a <m and |p| = q,
Ch =0y . (2.4b)

We have dim C; = dim 77 —dim ' + dim X = n+m ("7¢1). A map : X — J,(X,U)
is a prolongation ¢ = j,¢ if, and only if, T(im ) C Cylimy. (Which means if, and only
if, im 1) is an integral manifold of the contact distribution, C,.)
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Corollary 2.1.10. The contact distribution C, can be split into
Co=Vrl | OH

where the complement H has the dimension of the base space, dim X = n, and is not
unique. Such a complement defines a connection on 9.

Proof. The possibility to split in such a way is obvious from the generating vector fields
(2.4). Only the vertical bundle, generated by the vector fields (2.4b), is independent of
local coordinates. 0

Remark 2.1.11. The contact distribution is not closed under Lie brackets: for all |v| =
g — 1, we have [C% C@] = 8,4. The derived contact distribution C, = Cy +[Cy, Cf
satisfies C;/C, = V(WZ:;). If a distribution is closed under Lie brackets, it is called
inmvolutive or completely integrable. The Frobenius theorem states that an involutive D-
dimensional distribution V of vector fields X4, 1 < d < D, on a manifold R of dimension
E defines a local foliation of R with D-dimensional leaves which are integral manifolds
of the distribution; this means, there are £ — D functions #7: R — R such that for all
1<d<Dand1<7<FE—D we have

X 0" =0, (2.5)

and a set of real constants ¢” = &7 defines a family of integral manifolds for V. (In
Chapter 3, R denotes a differential equation and V a distribution at once tangential to
R and included in the contact distribution of a jet bundle containing R.)

Definition 2.1.12. The distribution of one-forms annihilating the contact distribution of
order q is called the contact codistribution of order ¢ and is denoted by Cg.

Proposition 2.1.13. The contact codistribution Cg s spanned by the one-forms
wﬁ:dui‘—ZugHidwi, 0<|pul<g,1<a<m. (2.6)
i=1

They are called the contact forms.

Proof. 1t is obvious from the expressions in local coordinates (2.6) of the contact forms
and those of the contact vector fields (2.4) that the spaces they generate are dual. O

2.2 Differential Equations

We now introduce differential equations as fibred submanifolds of suitably sized jet bundles
and then consider their representations in local coordinates. This geometric description
of a system of differential equations enables us to regard it as a set of algebraic equations
for the coordinates of the jet bundle that contains the differential equation.
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2.2.1 Differential Equations as Fibred Submanifolds

To describe a differential equation, there are two kinds of variables needed: the inde-
pendent variables, for which we use the local coordinates of the base space X, and the
dependent ones, for which we use the local coordinates of the typical fibre. Though
independent of coordinates, the following definition fulfills this end.

Definition 2.2.1. Let m: & — X be a fibred manifold. A submanifold R, C Jym fibred
over the base space X s called a system of partial differential equations of order ¢ or
simply a differential equation or a system. If the dimension of the base space is one, the
differential equation is called ordinary.

Here we regard R, as a regular submanifold; that is, as a subset of J,m such that for
any point p € R, there is a chart (U, ¢yy) of the jet bundle which satisfies ¢py/(R, NU) =
RY x {0} C RP—that is, R,NU = (x € R? x {0}: 2! = ... = 2P = 0)—where d and
D denote the Dimensions of R, and J,m. A differential equation in this sense is also an
immersed submanifold, if we use the canonical imbedding ¢: R, — J,m, as this defines
an injective immersion. (An immersion for two manifolds M and N is a smooth map
f: M — N such that for dim M < dim N its rank is maximal, where the rank of f is
(pointwise) defined by the rank of its tangent map T f: TM — TN.)

To give a local representation for a differential equation R, let p € R,. On a neigh-
borhood U for p, the differential equation is the set of solutions to a system of equations

Ry {P"(x,u?)=0, 1<7<t. (2.7)

The local representation of a system of differential equations may consist of a single
equation; in this case, the term scalar equation is usual. It may also consist of several
equations; in that case, the word “equation” has two different meanings, denoting the
whole system and any single equation within it. But the meaning should always be clear
from the context.

Example 2.2.2. The one-dimensional wave equation is a second-order system (of one
equation) which in classical notation is written azgf;’”) — 82“(2’”6) = 0. It can be regarded
as defining a submanifold R, in the following second-order jet bundle. For the trivial
bundle (R? x R, pry, R?) let (z,t;u) be global coordinates. Then the coordinates of the
corresponding first-order jet bundle Jypry are (x,t;u; Uy, Us; Ugy, Ugs, Uy ). Let the map

@ : Jopr; — R be given by

P(Jo () = (Ut — taa) (J2V] (@) =0 -

The corresponding differential equation is

Ro = {J27@p € Jopri: P(j2| (@) = 0}

or
RQI { Utt—u$$:0

for short.
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- 3 3 aQU(xvyvt) aQU(xvyvt) aQU(xvyvt) —
Analogously, the two-dimensional wave equation 2 — —am — a2 =0

may be regarded as a submanifold R, in the second-order jet bundle of the trivial bundle
(R3 x R, pry, R?), defined by the map @: Jopr; — R which is given by

(p(j2'7|(r7y,t)) = (Ut — Ugz — uyy)(j27|($,y7t)) =0.
In our short-hand notation this is
Ra: { Ut — Ugg — Uyy = 0 .

The local representation (2.7) of a differential equation R,, according to which in a
neighborhood U of a point p € U C R, the differential equation can be described as the
solution space of the function @7, naturally leads to the following consideration.

Definition 2.2.3. Let (09" /0uj;) denote the Jacobian matriz of the representation (2.7)
with its rank constant on U. Then its rank is called the codimension of R,. The dimension
of the typical fibre of R, regarded as a fibred over X, is called the dimension of R,.

The rank is the number of functionally independent mappings ¢7. Note that the
dimension of a differential equation refers to the fibre dimension only and neglects the
dimension n of the base space X.

Lemma 2.2.4. We have dimR, = m (7};™) — codimR,.
Proof. The fibre dimension of J 7 is m (95" ). O

Definition 2.2.5. A (local) solution is a smooth section o € I'ym such that its prolonga-
tion satisfies im j,o C R,.

A word of warning is in place: The description of a differential equation as a sub-
manifold in a jet bundle J,7 for ¢ < oo is not equivalent to a description of its solution
space—there are cases where a differential equation contains another fibred submanifold
of J,m as a proper submanifold and shares with this other differential equation the so-
lution space. The reason is then that the larger differential equation contains a point
which does not lie on any solution. (A differential equation is called locally solvable if it
does not behave that way.) If a section o is defined on some neighborhood O of a point

Xp € X and is a local solution of R, too, then for its equivalence class [a]gﬁ), the g-jet at

Xy, it follows [0];‘1) € R, for all x € O. On the other hand, two sections are regarded as

equivalent (according to Remark 2.1.1) if their corresponding functions have a contact of
order ¢ at a single point x. Therefore, [o] @ ¢ R, only means that the section o solves the

differential equation R, at x up to order ¢ without further information on higher orders
or other points. So an equivalence class [o] @ may contain sections that are not solutions

of R,4. This phenomenon is analyzed in Subsection 2.3.1.

Remark 2.2.6. In local coordinates, this coincides with the classical notion of a solution:
if the local section ¢ is a solution, then there is an open subset O C & and a smooth
function s: O — U such that for all 1 < 7 <t and any x € O we have o(x) = (x, s(x)),
and the equalities ¢7(x, j,s(x)) = 0 hold. The image of the g-prolongation of such a
solution is {(x, j,s(x)): x € O} and is contained in the subvariety {®7(x,ul?) = 0: x €
O} C J,m, which we identify with the differential equation.
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Example 2.2.7. We continue with Example 2.2.2, the one-dimensional wave equation.
Here, the function s: R? — R, defined by s(z,t) = z* + 3xt?, is a smooth solution
(actually, a global one) since

{(x,745(x)) : x € O} = {(=, t; 2° + 3xt?; 32° + 3t*, 6xt; 6z, 6, 62) : (,t) € R*}

2
is because of Z5 — g? = 0 a subset of

{tge — uy = 0: x € R?} = {(¢'(x,u?)) = 0: x € R?}
= {d(x,u?)=0:x€ 0O},

which in turn is contained in J;pr;. Note that here we have a scalar equation, so ¢! = .

Remark 2.2.8. If an ordinary differential equation of first order R; is locally represented
in the form 4* = ¢%(x,u), then there is a local section v: & — Jym such that R; can
be written (locally) as Ry = im+y. Thus, a differential equation of this kind defines a
connection on &. If equations of order zero are present as well, they define a constraint
manifold C C &, and the differential equation (locally) defined as the image of the section
~v: C — Jym corresponds to a connection on C. For ¢ > 1, an ordinary differential equation
corresponds to a connection on .J,_;7 or on a constraint submanifold in it in an analogous
way.

2.2.2 Prolongation and Projection of a Differential Equation

Since a differential equation R, is a fibred submanifold in a jet bundle, there are two
operations on it which appear natural: prolongation means to transform R, into a subset
of a higher order jet bundle, whereas projection means to transform it into a subset in a
jet bundle of lower order.

Definition 2.2.9. Let @ € F(J,(X,U)) be a smooth function. Then for all 1 < i <n the
mapping D;: F(J, (X, U)) — F(J1(X,U)), defined by

09(x,u'?) u(q) 0D (x, ul?) O
(ngp)(x7 u(q+1)) Z Z aua ;H—li ) (28)

0<|/J|<qoz 1

is called the formal or the total derivative of @ with regard to .
For a multi-index 1 = (p1, pa, - . ., i) € NG the |pu|-fold application of total derivatives
yields a mapping D, : F(J (X, U)) — F(Jgp (X, U)), defined by

(D,®)(x,u' "Dy = Dt (DL (DI (D(x,ul?)))...).

Equation (2.8) amounts to applying the chain rule from calculus to derive the function
& with regard to z¢. Note that the formal derivative is linear in the derivatives of highest
order (that is, quasilinear). Since for smooth functions @ cross-derivatives are equal,
D;D;® = D;D;®, the formal derivative D, is well-defined for |p| > 1.
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We use the notations (D,®)(x,u'%"") =: D, (&(x,u?)) =: D,d(x,u'?).

By definition, R, is fibred over X. Let 79: R, — X denote the corresponding projec-
tion. (Then 79 = 79|, .) Consider the jet bundle of order r over the differential equation,
Jym. It can be imbedded naturally into the jet bundle of order r over the base space J,m
by the map z,,: J, 79 — J.m%.

Definition 2.2.10. The inverse image under the imbedding tq,: Jopom — Jpmd, defined
by
Rarr 1= Ly (Lgr (J7T) N g (Jgrrm))

is called the rth prolongation of R,.

In local coordinates, a representation of the rth prolongation of R, is computed by
repeatedly applying the formal derivative (2.8) to the equations of the representation
7 (x,u?) = 0 (where 1 < 7 < t) of R,. A local representation for the rth prolongation
is then given by

. PT(x,u?)=0, 1<7<H,
Ruert { (a0, 12 i<r 29
Example 2.2.11. Consider the first-order system given by
u—v =20
Ri: v —w, =0 .
U, —w =10
Then its first prolongation is represented by
ug—v =0, Uzt — Vg = 0, uy — vy =0,
Ra: vy — wg =0, Vgt — Weg = 0, Uy — Wy = 0, (210)
Uy, —w = 0, Ugy — Wy = 0, Uge — Wy = 0.

Note that there are two different equations which hold the term wu,; in the representation
of Ry. From them follows an additional equation, namely v, = w;. We discuss this feature
in Subsection 2.3.1.

While prolonging a differential equation raises its order, there is another kind of op-
eration that lowers it.

Definition 2.2.12. For a differential equation R, C J,m and for r < q, the subset in
Jg—rm, defined by
RO =71 (R,),

q—r q—r
is called the rth projection of R,.
In local coordinates, a representation of the rth projection can, in principle, be com-

puted from a local representation &7 (x,u?) = 0 of R, by using algebraic operations to
eliminate all derivatives of order greater than ¢ —r. In practice this may be hard, though.
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Example 2.2.13. Reconsider the second-order system given by the representation (2.10).
Then from u,; — v, = 0 and u,; —w; = 0 follows that w; = v, by elimination of the second-
order derivative u,;. Thus, its first projection is represented by

u—v =20
v —w, =0
wy — v, =0 °
U, —w =10

1
Ri):

Note that projecting a differential equation may lead to singularities, and the result
of a prolongation need not be a submanifold either. Those differential equations where
prolongations and projections always yield submanifolds are called regular. For conve-
nience we assume from now on that we deal with regular differential equations. In effect
this means we retreat to suitable submanifolds within the images of these operations.

2.3 Formal Integrability

The notion of formal integrability is one of two main concepts in the formal theory (the
other one being involutivity). It means that any point of the differential equation lies on at
least one solution to the equation. A local representation of the differential equation then
does not conceal any information about the space of formal solutions to the differential
equation; but in general the equations in the representation of a differential equation may
imply differential relations between them (as opposed to algebraic relations).

2.3.1 Formally Integrable Systems and Formal Solutions

Example 2.2.13 shows that prolongation and projection are not inverse operations: actu-
ally, in this example Rgl) is a proper subset of R since the prolongation and following
projection returned for its representation the additional equation w; = v,. It arose from
the equality of the mixed second-order derivatives u, = v, and u, = w;. Another pos-
sible source for additional conditions for a representation are equations of an order lower
than ¢ in the representation of R,.

Example 2.3.1. Prolonging the second-order system

. U = 0
Ra: { u, =0
and then projecting R yields
U = 0
Rél)l Ugpt = 0 s
u, =0

where the condition u,; = 0 arises from prolonging the first-order equation u, = 0 to
Dyu, = 0 which is of second order and thus remains when projecting R3 to Jom.
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Such additional equations represent integrability conditions. Differential equations
for which at no order of prolongation and projection integrability conditions arise are of
special interest. While the expressions for such additional equations of the representation
of a differential equation are dependent on the coordinates, it is an intrinsic property of
the differential equation, considered as a geometric object, if local representations of it
admit such additional equations or not.

Definition 2.3.2. A differential equation R, is called formally integrable if for all r > 0
the equality Rysr = 72((127, is satisfied.

This definition is independent of local coordinates. It means that at no order prolonga-
tion and projection yield a proper submanifold. If they did, the given differential equation
R, Would contain at least one point which would not lie on a solution to R, since Ry,
and Rq +» have the same spaces of formal solutions. This means, if a differential equation
is formally integrable, a formal solution to it can be constructed by a power series ansatz
which at each order yields a correct truncation of the solution as follows. Let the system
(2.7) be a local representation of R,. Set u! =[]\, p;! and (x — xo)* = [\, (z" — af)*
as usual. A formal solution to R, is locally given by its Taylor series

ttQ

ut(x) = Z C—'<X — xo)"

l|=0

with coefficient functions ¢ which cannot be calculated uniquely without initial or bound-
ary conditions but which have to satisfy the equations of the system which represents R,
and all its prolongations. (The tilde above u® indicates that we do not assume convergence
of the Taylor series, and in particular we do not assume that its limit be u®.) To show
these interrelations explicitly, we enter the power series ansatz into the representation of
R, and then evaluate the equations at the point x = x(. Here we use

9= 2

for all 1 <7 < n and its analogues for higher order derivatives. Thus, we obtain a set of
algebraic equations

X—XO

P (x0,c D) =0, 1<7<Ht, (2.11)

for the coefficient functions c(@ := (ch:1<a<m,0<|u|l <q)up to order g. To obtain
the interrelations for the ¢t where r > 1, we proceed order by order. If for r — 1 the
interrelations between the coefficient function up to order ¢ + r — 1 are given by a set
of equations (see Equation (2.11) for » = 1), the interrelations between them and the
coefficient functions of order ¢ + r are given by that set of equations and the additional
set of equations

(D7) (0, €y =0, || =1, (2.12)
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for all 1 < 7 <'t, as follows from the local representation (2.9) of the prolonged equation
Rytr-

As the formal derivative (2.8) is quasilinear, for » > 1 the systems (2.12) consist of
inhomogeneous linear equations for the coefficients of order g 4+ r. If these systems are
taken into account for all » > 1, this leads to a potentially infinitely large system for
potentially infinitely many coefficients. Each solution to this system is a formal solution
to the original differential equation R, (and, conversely, any formal solution to R, may
be expressed in such a way). So long as we consider only formal solutions, there is
no difference between formal integrability and local solvability. But if the solutions are
supposed to be analytic, local solvability is the stronger concept of the two.

The space of formal solutions can be described using parametric coefficients. They can
be considered as the remaining coefficients after solving each (independent) equation of the
system for one of the coefficients ¢j;, which then are called principal. They are determined
by the differential equation and its prolongations. Their choice may be arbitrary or a
matter of additional information like initial conditions.

Such a classification of the coefficients ¢, in each step up to some order g + r yields
a truncation of a formal solution. But this order by order power series ansatz is only
satisfying for a differential equation which is formally integrable, since otherwise the
interrelations which hold between the coefficients of an order greater than g + r concern
the coefficients of an order up to ¢ + r, too, by means of the integrability conditions.

Example 2.3.3. The representation for the differential equation Rgl) in Example 2.2.13
contained the integrability condition w; = v,, which we found in Example 2.2.11. Sub-
stituting the power series ansatz into this representation and evaluating at xq yields the
equations

Clon) = Co0)r o) = 1oy S = Loy o) = o)

for the coefficients up to first order. This system is under-determined, and there is no
obligatory choice of coefficients for which to solve these equations. (The one given here
stems from the special form of the local representation.) But without the integrability
condition w; = v, in the representation of Rgl), the equation o) = S would be
missing, and thus the power series ansatz would not result in an adequafe first-order
truncation of a formal solution. In this example, this could be noted already in the next
step, when the terms of second order are considered as well. The four equations for the
coefficients up to first order are then augmented by eight additional equations

()

0.2 = S0y C02) (©

02 = Cy Sy = o)

)
)

ct o,
U v U l(l:}L’l w v U w (213)
1) = €00 o TS0 S0 T %200 o) T Caop

which arise by calculating D;®” for 1 < 7 < 4 and ¢ € {z,t} and again evaluating
in xo. Gaussian elimination would now yield the ignored condition o,y = 0 for two
coefficients of first order, showing that our truncation after the first-order terms contained
too many degrees of freedom for the first-order coefficients. Note that the combined system
of twelve equations for the coefficients up to second order is under-determined, too, and
there is no distinguished classification into principal and parametric coefficients. At any
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step in the order-by-order construction of a formal solution the principal coefficients can
be chosen arbitrarily.

Remark 2.3.4. Note that a differential equation which is not formally integrable may
still have formal solutions. For such a differential equation, these formal solutions just
cannot be constructed by way a the formal power series ansatz.

2.3.2 The Geometric Symbol

The jet-space J,m is according to Proposition 2.1.2 an affine bundle over J,_ym. The
corresponding vertical bundle V7T371 helps us to analyze properties of a given differential
equation R, which follow from the equations of highest order in a local representation
of R,. We therefore introduce the following brute-force linearization of a differential
equation.

Definition 2.3.5. Let R, C J,m be a differential equation and p € R,. Let v: Ry — Jym
be the inclusion map, given by 1(p) = p. The vector space (Ny),, implicitly defined by

Tu(Ng)p) ==TUT,Re) N Vg4

is called the (geometric) symbol of the differential equation R, at the point p.
The family of vector spaces

Ny = U {r} x (N,

PERq
is called the (geometric) symbol of the differential equation R,.
Remark 2.3.6. Explicitly, we have (N,), = V,(7]_,|z,) and (N,), = T,R,N(V,mi_1)|r,-

This family of vector spaces may not be a bundle since the dimension of the symbol
may be different for different points p € R,. From now on, we assume the dimension to
be equal for all p. This amounts to restrictions onto proper subsets of R, where each
dimension is constant and thus each symbol N is a vector-bundle over this restriction of
R,

Proposition 2.3.7. If a differential equation R, C J,m is locally represented by a system
(2.7), then the corresponding symbol at the point p € R, is the solution space of the
following system of t linear equations:

¢ oP"
Z Z ous:

o=l |ul=q

“:

v® =0 (2.14)
p

where 1 < 7 < ¢.
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Proof. Let p € Ry, and for a neighborhood of p choose local coordinates (x,u'?) for J,.
Let be (x,u'?;x,u?) the induced coordinates for the tangent space 7T pJgm. Then any
vector X € T J 7 has the form X = #'0, + 4 Oua. I 16 is to be tangent to R, at p, it
has to satisfy the condition X@7|, = 0 for the local representation (2.7) of R,. Written
out, this is the system of linear equations

>y ¥ o

=1 a=1 1<|/J|<q ,LL

W =0 (2.15)
p

in the unknowns 4’ and uu Uu of which there are n+m (anl 1 ) since the sum runs over

all 7, o and p. By definition the symbol is the vertical part of the tangent space T,.J,m
and thus the solution space for those equations in the system (2.15) where x = u(¢~1) = 0.
This yields the system (2.14). O

The equations (2.14) are called symbol equations, the corresponding matrix of coeffi-
cients symbol matriz; the latter is denoted by M,(p) or simply M, when it is clear from
the context which point p is meant or p does not matter. We assume anyway the rank of
the symbol matrix to be constant over all of R,.

Example 2.3.8. The symbol matrix for the representation of the differential equation
Rgl) in Example 2.2.13, which was derived from turning the one-dimensional wave equa-
tion of Example 2.2.2 into a first-order system and then making that first-order system
formally integrable, is:

100 0 0 O
010 0 0 -1
001 0 -1 0
000 1 0 O

The columns are indexed from left to right by wu, v, wy, u., v, and w,. The rows are
ordered according to 7, like the equations in the representation of Rgl). A basis for the
symbol space at each point of the differential equation is given by the two vector fields
Oy, + O, and 0y, + Oy, .

In principle, it is a matter of taste how to order the rows and columns in the symbol
matrix. Since we describe row transformations in our oncoming analysis, we have to decide
on an order to fix the notation. We choose an order which yields the symbol matrices of
the systems which we are going to study in row echelon form. For m dependent variables
u®, there are dim So(T*X) ®;,_, Vm = m (q+"*1) derivatives of order q. We label the
m (q”q“l) columns of the symbol matrix M, by the derivatives v, which appear in
Equation (2.14) or simply by their indices (a, ,u) to order them; the order of the v}y and
of the index pairs («, p) is defined as follows.

Definition 2.3.9. For a multi-index = (1, pi2, - - -, fn) the non-negative integer cl u =
min{i: u' # 0} is called the class of u. (It is the leftmost entry different from zero in
= (1, oy - - - fn).) The multi-index containing zeros exclusively is not said to have a
class.



24 2 Formal Theory

«

o, rows or columns) indexed with

The class of anything (for example jet coordinates u
W 1s the class of its multi-index p.
For a multi-index j1 = (p1, fi, - - -, ftn) @ variable * with i < clu is called multiplica-

tive, otherwise it is called non-multiplicative.

For a ring R, each multi-index u defines naturally a set of up to n monomials X/ in
the ring of polynomials R[Xi,...,X,]. For any » € R\ {0}, a polynomial of the form
r X! is called a term.

Remark 2.3.10. The following convention defines a total order < on the set of jet-co-
ordinates (see Adams and Loustaunau [1] and Calmet, Hausdorf and Seiler [5]): let «
and 3 denote indices for the dependant coordinates, and let y and v denote multi-indices
for marking derivatives. Derivatives of higher order are greater than derivatives of lower
order: if [u] < |v|, then uf < uf. If derivatives have the same order |u| = |v|, then we
distinct two cases: if the leftmost non-vanishing entry in u — v is positive, then uj; < u?;
and if 4 = v and o < 3, then uj; < ub.

This is a class-respecting order: if || = [v| and class u < classv, then u% < uj). Any
set of objects indexed with pairs (o, 1) can be ordered in an analogous way. This order
of the multi-indices p and v is called the degree reverse lexicographic ranking, and we
generalize it in such a way that it places more weight on the multi-indices p and v than
on the numbers a and (3 of the dependent variables. In the literature [1, 5], this is called
the term-over-position lift of the degree reverse lexicographic ranking on the following
grounds. If we identify u® for 1 < a < m with the unit vector e, = (dap: 1 < 5 < m),
and if for terms r X! =: t we consider the vectors te,, then the order defined above defines
an order for such vectors which ranks the comparison of the terms over the comparison
of their positions in the vector. For terms of the same degree, the only class respecting
term order is the degree reverse lexicographic ranking. For details, see Seiler [37].

Definition 2.3.11. In the representation (2.7) of a differential equation R, for any T the
class of &7(x,ul®) = 0 is the class of that variable uy, which is mazimal among all u? in
that equation with respect to the degree reverse lexicographic ranking. (This includes the
possibility that there are 1 < o < 8 < m such that both uj; and uﬁ appear in &7 (x,u®) =0
and their common multi-index is mazimal.)

Example 2.3.12. This example is taken from Seiler [38], Example 1.3.4. For the differ-
ential equation represented by

Y

(pl(x) Y, z, U, Ug, uya uz) = U, + YUgz= 0
Rli 2 o .
D (2, Y, 2, Uy Uy, Uy, Uy) = Uy =0

equation @' is of class 3, and equation @? is of class 2. The coordinates for Jym are
in ascending order: w00y < U(1,00) < U0,1,0) < U©,0,1) < U200 < U110 < U1,0,1) <
U(0,2,0) < U(0,1,1) < U(0,0,2), OF alternatively v < u, < uy < Uy < Upp < Ugy < Uzy < Uyy <
Uy, < U,,. The first prolongation of R; is represented by

(2.16)

R, Uy + Yty =0, Ups + YUge = 0, Uy, + YUyy + Uy =0, Uzy + YUy, =0,
2 - uy — O7 U'xy frnd O7 U,yy == O7 uyz =
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Here the two equations D@ and D,®? are of class 1, the four equations #?, Dy®', Dyd?
and D3®? are of class 2, and the two equations &' and D3;®! are of class 3.

Remark 2.3.13. From now on, we use the following convention: the columns within the
symbol matrix M, are ordered descendingly according to the degree reverse lexicographic
ranking for the multi-indices 1 of the variables v} in Equation (2.14) and labelled by the
pairs (a, ). (It follows that, if v} and v are such that cly > clv, then the column
corresponding to vy is left of the column corresponding to v5.) If derivatives have the
same order || = |v|, then we distinct two cases again: if the leftmost non-vanishing entry
in p — v is positive, then uj; < u? like in the term-over-position lift of the degree reverse
lexicographic ranking; and if 4 = v and a > (3, then uj; < u? which is the opposite of
what the term-over-position lift of the degree reverse lexicographic ranking does. The
rows are ordered in the same way with regard to the pairs (a, u1) of the variables ug, which
define the classes of the equations @7 (x,u(®) = 0. If two rows are labelled by the same
pair (o, p), it does not matter which one comes first. This order of rows and columns
guarantees that the symbol matrices for the systems we are going to consider are in row
echelon form.

Lemma 2.3.14. The dimension of the symbol is
dim N, = dim(S,T"X ®,,_,» V1) — rank M,. (2.17)

Proof. We have S,T*X ®;,_,-Vm =2 V] |, and Equation (2.17) is the dimension formula

for systems of linear equations. O

The dimension of the symbol may be zero. Differential equations with this property
are called of finite type (because their formal solutions space is of finite dimension) or maz-
imally over-determined (because for any derivative of highest order, a local representation
contains an equation solved for this derivative).

Remark 2.3.15. For differential equations of finite type which do not constrain J,_;m we
can generalize Remark 2.2.8 since they represent images of global sections v: J,_1m — Jym
and therefore define a connection on J,_;m. Thus, they can locally be represented by
equations Uy = ¢(x,ul%" V) where the vector u(, contains exactly the derivatives of
order q. (Hence the name mazimally over-determined.) In case the system contains
equations of lower order, these again define a constraint manifold C C J,_y7 and the
differential equation represents a connection on C.

If the differential equation is not maximally over-determined, it may by regarded as
covered by infinitely many such systems, where the symbol gives the degrees of freedom,
defining the parametrization.

For s > 1 the prolonged symbols N5 C ST+ X ®J,4sn VT can be derived from
N,, without first calculating a local representation of the prolonged system R, s. More
precisely, to each row within the symbol matrix M, there correspond n rows within the
symbol matrix M,;;; and to each column within the symbol matrix M, there correspond

m - ( ng) columns within the symbol matrix M,,;. The next lemma gives the details.
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Lemma 2.3.16. Let the differential equation R, be locally represented by (2.7). Then for
the prolonged symbol Ny there are the following symbol equations:

Zzaf; v, =0, 1<7<t, [v|=5s.

a=1 |u|=q

For the special case s = 1 regarding N1, the t - n symbol equations are:

= 9PT
vy =0, 1<7<t, 1<i<n. (2.18)
8ufj '

a=1
lul=q

Proof. First let s = 1. Then the equations for the prolonged equation are

P (x,u?) =0, 1 <7<t

Raoi | (pariia o) 0, 15150

Thus, according to Equation (2.14), the equations for the prolonged symbol are

9(D;®7)(x, ulet)
353 8" W) e — o, (2.19)
uOé

o=l [u|=g+1

According to the chain rule in Equation (2.8) for the formal derivative

aq'ST (@) n 3@7 (@)
(D@7 e = PPOCUE)  §n g HVOOUT)

J L T
a=10<|u|<q

It follows for |u| = ¢+ 1 that

O(D;97)(x,ul?™)) 997 (x,u?)
ous, o oue,,
Using this equality in (2.19) yields (2.18). The claim for s > 1 follows by an induction
from applying D; repeatedly. O

Example 2.3.17. The matrix M, for the prolonged symbol A5 of the representation of
Rgl) in Example 2.3.8 is:

100 0 0 O 0 0 0
6010 OO0 -1 0 0 O
001 0 -1 0 0 0 O
000 1 0 O 0 0 0
000 1 0 O 0 0 0
000 0 1 O0 0 0 -1
000 O 0 1 0 -1 0
000 O O O 1 0 O
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The columns are indexed from left to right by w, vy, Wi, Uz, Vity Wat, Upe, Vpr aNd Wy
The rows are indexed by w, Vg, Wiy, Ugr, Uz (AgAIN), Vyp, Wep, Uge, in accordance with
Remark 2.3.13.

In Example 2.3.3, we used the matrix of the prolonged symbol given here in the
construction of a formal solution order by order using a power series ansatz. If we collect
the coefficients of second order into the vector cq, which then has the entries c};, ¢}, i, ¢,
ey, e, el and ¢, we can write the additional Equations (2.13) for the second-order

xt) “xt) “xxd “xI xx)
coeflicients in the form

" OPT

oo™
M2 Co = D0

X0 - axz }X()

o

according to the definition of the total derivative (2.8). In general, when constructing a
formal solution to a differential equation R, order by order as explained in Subsection
2.3.1, for r > 0 according to the definition of the total derivatives of order ¢ + r, the
Equations (2.12) for the coefficients of order ¢ + r can be written in the form

Mq+7"’x0cq+7" = —M(Xo, c(Q+r—1))
where the vector ¢, contains the coefficients i, ,, forall1 < o <m, |u| = gand |v| =,
in the order which is also used for the columns of the symbol matrix M,,, and where
the vector M(xg,cl@"~V) contains the remaining summands of the formal derivatives

D,+,®" up to order ¢ +r —1 and has entries which depend on the coefficients up to order
q +r — 1 (here, they are collected into the vector ¢ 1),

Within M, the matrix for the prolonged symbol N, the columns are ordered
as described in Remark 2.3.13: the variables vj;;, which appear in Equation (2.18), are
ordered descendingly with regard to the degree reverse lexicographic ranking applied to
the multi-indices p + 1; and labelled by the pairs (a, u + 1;). If p = v for v5; and vii
where o > (3, then Ui < ng Now the columns are ordered descendingly with regard
to the order of their labels (o, 1t + 1;). The rows within M, stem from the prolonged
equations D;®” and are also ordered as described in Remark 2.3.13: if the variable which
defines the class of D;®" is uj,,, then the rows are ordered descendingly with regard to
the order of the labels («, u+1;); if for i < j two different rows corresponding to D;$” and
D;®" share the variable which defines their class, the one corresponding to D;P? comes

first, as we did in Example 2.3.17.

Remark 2.3.18. Let the differential equation R, be locally represented by @7 (x, ul?) =
0. Then the Jacobian matrix of R,41 C Jg417 can be split into four blocks like this:

O™ | D e
8uf; v M =4 auz ) > M >4
(2.20)
oD
0 0< <
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The lower block matrix stems from the equations of the original system R,. The block
above on the left is M, ;, the symbol matrix of the prolonged system R,;. If this block

has full rank, then Rgl) = R,. If it has not, then through elementary row transformations
a row within the upper block can be created which has only zero entries in its left part. If
the right part of this row is independent of the rows within the block below on the right
side, then this means there is an integrability condition: it can be constructed from the
representation @7 (x, u®, u$) = 0 through applying the same row transformations on this
representation. If the right part of the row is dependent on the rows within the block
below on the right side, the representation of the system is redundant. For an inhomogenic
system such equations represent compatibility conditions.

Proposition 2.3.19. For the vector bundle N1 we have:
rank Rél) =rank Rgy1 — rank M .

Proof. Transform the Jacobian matrix (2.20) into row echelon form. Obviously, its rank
is rank R,y1. The equations in R,4; which correspond to rows with pivots in the upper

left block do not enter into Rgl), the projection of the prolonged system. O
As a corollary, the dual equation holds, too:
Corollary 2.3.20. For the vector bundle N1 we have:
dimRY = dim Ryy1 — dim Ny

Proof. By definition of the rank, we have

dim Rél) = dim Jym — rank Rél).
According to the preceding Proposition 2.3.19, this equals

dim J,m — (rank R4 — rank M, ;).

Proposition (2.1.2) implies that this is

dim Jyq 7 — dim(ST™T*X ®;,, V) — (rank Ryy1 — rank My 1)
= dim J,;m —rank Ry4q — dim (ST T* X ®g,x V) + rank M.

Now again from the definiton of the rank and from Lemma 2.3.14, it follows that this
equals

dim Rq+1 — dim Nq-i-l .

(Equation (2.17) is applied to the case ¢ + 1 instead of q.) O
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Example 2.3.21. For the differential equation in Example 2.3.12 the Jacobian matrix
for the prolonged system Ro, with its entries ordered as in Equation (2.20) and according
to Remark 2.3.13, is

D3Pt 9Dzl 9D3P!  9D3Pl  9D3Pl D3Pl | 9D3Pt  9D3dl  9D3Pl  9D3Pt
Ouz» Ouy Ouyy Ougzz Ouzy Ouzz Ou Ouy Oug ou
OD3P%  9D3P?  9D3P%2  9D3P?2  9D3P%2  9D3P? | OD3P?2  9D3P?  9D3P%2 9Dz P2
Ouz» Ouy Ouyy Ougz: Ouzy Ouzs Ou Ouy Oug ou
OD2P  9Do®l Do d!  9DoPl  ODadl 9Dy dl | ADydl 9D dl Dy dl 9Dt
Ouz» Ouy Ouyy Ougzz Ouzy Ouzs Ou Ouy Oug ou
OD2P%2  9DoP?  ODo®P? 9D P2 9DaP% 9Dy P2 | 9D2d?2 9D P? D22 9D
Ouz» Ouy Ouyy Ougzz Ouzy Ouzs Ou Ouy Oug ou
OD1 Pt 9D P! 9D P! 9Dt D1 P! 9D dt | OD1Pt 9Dl D1 Pt 9D Pt
Ouz» Ouy Ouyy Ougz: Ouzy Ouzz Ou Ouy Oug ou
OD1 9%  9D1P2 9D 9% 9D P2 OD1 P2 9D P2 | OD1P?2  9D1P2  HD1P%2 9D P2
Ouz» Ouy Ouyy Ougz: Ouzy Ouzz Ou Ouy Oug ou
o' 991 oo! 901
0 0 0 0 0 0 ou, 8ug Ouy ou
Jolind o Jolind oP?
0 0 0 0 0 0 Ou, duy Oy Ou

100y 00O0/00O0O

01 0O0O0O0]0O0O0@PO0

01 00y 0[]0 010

B 001 0O0O0|0O0O00 O

- 00010 w|0O0O0O

0000 1O0(00O00O0

00 0O0O0OO0O|1T O0wyO

0 00O0O0O0|01O00O0

The block-matrix below on the right with its rightmost column (containing two zero
entries) left out is M7, the symbol matrix of the original system R. The upper left block
is My, the symbol matrix of the prolonged system R,. It does not have full rank since
its third row is the sum of the second row and of the y-fold of the sixth row. For the
corresponding rows in the representation of the prolonged system (2.16), analogously we
have Do®! = D3P? + y D d?, resulting in the integrability condition u, = 0. The symbol
matrix Mj has rank 5, and here dim SoT* X ® 5, V1 = 6, thus according to Equation (2.17)
it follows that dim A, = 1. Since dim R, = 2, from Corollary 2.3.20 we conclude that the
number of independent integrability conditions is dim Rgl) =dim Ry—dim N, =2—-1 = 1.

2.4 Involutivity

The second main concept of formal theory is involutivity, a property concerning the symbol
of a differential equation. Though, as we shall see, it is the involutivity of a differential
equation which is essential for the existence of solutions, and in particular for the approach
using Vessiot’s techniques we have in mind, it is not always treated with due care in the
literature on the subject. For example, Vessiot [43] himself does not consider it. Some
modern textbooks (Stormark [40]) still neglect it.
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2.4.1 Involutive Symbols

If the columns within a symbol matrix M, are ordered according to the class respecting
term order given in Remark 2.3.13, and if M, has row echelon form, then we say the
symbol (or its matrix) is given in solved form. The class of a row is then the class of the
leftmost non-vanishing entry in that row. The corresponding derivative vy} is called the
leader of that row. It is convenient to introduce a name for the leaders of class k.

Definition 2.4.1. Let the number of rows of class k in the row echelon form of a symbol
matriz M, be denoted by ﬁék). Then the numbers ﬁék) are called the indices of M, or R,.

Note that the indices ﬂ(gk) depend on the coordinates of the base space X and thus
may be different for different representations of an equation.

Example 2.4.2. The one-dimensional wave equation (see Example 2.2.2) may be repre-
sented both by
Ra: { Ut = Uy

and, using characteristic coordinates, by
RQI { Uyt = 0

For the first representation we have 551) =0 and 552) = 1 while for the second represen-
tation ﬁél) =1 and ﬁéZ) =0.

Remark 2.4.3. To achieve intrinsic results, we have to use appropriate coordinates. Since
the class of a row is defined using independent coordinates (x': 1 < i < n) on the base
space X, we consider an arbitrary change of coordinates x «— x(x). When analyzing the
symbol matrix M,, we only use the derivatives of order ¢, the transformation of which is
described by the Jacobian matrix; therefore there is no loss of generality in assuming that
the change of coordinates is linear: x «— X(x) = (a;;)x where (a;;) is the corresponding
(n x n)-matrix with real entries a;;. We do not specify these entries but consider a generic
transformation. The symbol equations are changed in that now the new coordinates *
appear in homogenous polynomials of order g. If we order the columns of the symbol
matrix according to class, now given by the generic coordinate system X, and transform
the symbol matrix into row echelon form, the number of rows of class n is the maximum
among all values for ﬁé") which are admitted by the differential equation R, and therefore

intrinsic. Denote this maximum by Bén). Now we define B(S’“) for 1 < k < n by choosing
the a;; such that the sum ﬁq") + Bén_l) takes the maximal value admitted by R, as well,
and so does Y ,_ i ~(§k) for all 1 < j < n, without changing the previous Bék) any more.
This yields indices Bék) for R, for which )", _ k- B(S’“) is maximal.

Definition 2.4.4. For a given local representation of a differential equation the local
coordinates (x*: 1 < i < n) are called d-regular (for the symbol M,) with indices B if

ﬁék) = Bék) for all 1 < k <n. Otherwise the coordinates are called j-singular.
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Remark 2.4.5. Those matrices (a;;) which lead to d-singular coordinate systems define
a subvariety in the space of all (n X n)-matrices because a coordinate system becomes
0-singular if the a;; satisfy certain algebraic equations which make entries in the symbol
matrix vanish, thus reducing the class of the corresponding row. This subvariety has a
dimension less than n? and therefore is a set of measure zero. This means, a random choice
of local coordinates on X" yields d-regular coordinates with probability one—though not
in all cases, as Example 2.4.2 shows. (On the other hand, using characteristic coordinates
is usually not a random choice.)

An intrinsic definition of -regularity may be based on Spencer cohomology, after the
exterior derivative of which it is named; see Pommaret [35], Chapter 3, and Seiler [37, 39].

In Example 2.3.21, we have rank M, ; = 5; the symbol matrix M, contains one row

of class 2 and one row of class 3, therefore 26?) + Bﬁfg) = 5. In cases like this where such
an equality holds, the symbol is of special interest.

Definition 2.4.6. The symbol N, of a differential equation is called involutive if

rank M, = Z kﬁék) . (2.21)
k=1
For a row of class k the variables z', 22, ..., z¥ are called multiplicative and the remaining

k+1

variables from " up to 2" non-multiplicative.

If the indices of a differential equation (or, equivalently, its Cartan characters, which
are introduced below in Definition 2.4.23) are defined by way of the Spencer cohomology
(see Seiler [39]), Equation (2.21) is used as a criterion to examine if a symbolic system (a
sequence of vector spaces which are linked to the notion of the geometric symbol and its
prolongations) is involutive at a certain order. This check up on involutivity is usually
called the Cartan test, and we use this name for Equation (2.21) from now on.

The involutivity of the symbol in the sense of Definition 2.4.6 should not be confused
with the fact that the symbol, considered as a distribution of vector fields, is always
involutive, being defined as the intersection of two involutive distributions.

The next proposition characterizes the involutivity of a symbol in the sense of Defini-
tion 2.4.6.

Proposition 2.4.7. Let (2.7) be a local representation of a differential equation in solved
form where the coordinates are §-reqular. Then the symbol N is involutive if, and only if,
all independent equations of order q + 1 in a local representation of the prolonged system
Ry+1 are algebraically dependent on those formal derivatives of the equations of order q in
(2.7) where each equation of order q is derived with respect to its multiplicative variables
only.

Proof. When calculating the prolongations of each equation in the representation of a
differential equation only with respect to the multiplicative variables of each equation,
the new equations derived this way are independent because they have different pivots
within the symbol matrix M,.
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Since there are ﬁ,gk) equations of class k and each of them has k multiplicative variables,
there are at least ) kﬁék) independent equations of order ¢ + 1 in Rg;.
If the symbol N is involutive, then all independent equations of order g+1 are derived

this way. All other equations derived from prolonging R, are thus dependent, of lower
order or both. O

The following lemma is needed to prove the proposition that follows it. This propo-
sition is then used in the analysis of matrices which describe the structure of the vector
field distributions in the Vessiot theory.

Lemma 2.4.8. Let M, be the matriz of an involutive symbol N, in solved form, where the
columns are ordered according to a class-respecting ranking (for instance, the one given in
Remark 2.3.13). If v§; is a leader of class k, then V1,41, 15 a leader for all 3 >k, too.

Proof. As v{ is a leader of class k and j > k, the variable 2/ is non-multiplicative for
the corresponding equation 7. For the ranking which we use to order the columns in

My, we have for any multi-index v that if uf; < wuj, then ug ., < wug, .. Therefore the

equation ¢} 1, the prolongation of @ with respect to 27, has the leader Vpy1,- According

to Proposition 2.4.7, for an involutive symbol, all independent equations can be derived as
combinations of prolongations with respect to multiplicative variables only. This means
that v 1,0 being of class k, can be derived using an equation @¢ of higher or equal class

prolonged with respect to x*. It follows that v+ 1, = u+1;, that is, v = p+1; — 1. O

The announced proposition states the monotony of the indices for a system of order
qg=1.

Proposition 2.4.9. Let Ry be a first-order differential equation, where the fibre-dimen-
ston is m and the dimension of the base-space is n. If its symbol N, is involutive, then
the indices satisfy the following chain of inequalities:

0<pl<p? << <m,
There is no such analogue for systems of an order greater than 1.

Proof. Let vy be a leader of class k. Then uy = 0 for 1 < i < n because |u| = ¢ = 1.
According to Lemma 2.4.8, v& with v = pu — 13 + 1x41 is a leader of the symbol matrix
My; it is of class k + 1 with v; = d; 541 for 1 < ¢ < n. It follows that ﬁfk) < ﬁYCH).
As there are are at most m pairwise different derivatives of class n even for arbitrary
q € N, the fibre dimension m is an upper bound. A counterexample for ¢ > 1 is given by
Uyy = Ugy = Ugy = 0 Where 2 = ﬁél) > 652) =1. O

Some special cases arise when the symbol matrix has full rank.
Proposition 2.4.10. A vanishing symbol is involutive.

Corollary 2.4.11. The symbol of a maximally over-determined system is involutive.
In particular, the symbol of an ordinary differential equation is involutive.
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Proof. By definition, a maximally over-determined system is a system with a vanishing
symbol, and a vanishing symbol is involutive according to Proposition 2.4.10. An ordinary
differential equation is by definition a differential equation with a one-dimensional base
space X and a special kind of a maximally over-determined system. O

Even if a symbol is not involutive, a finite number of prolongations suffices to reach an
involutive symbol. This non-trivial fact is a cornerstone of the formal theory of differential
equations:

Theorem 2.4.12. Let N, be the symbol of some differential equation. Then there is a
non-negative integer s such that Ny is involutive.

Proof. The proof is due to Sweeney [41], Corollary 7.7, assumes that we use d-regular
coordinates and even gives an upper bound which depends on the base-space dimension,
n, the dimension of the typical fibre, m, and the order of the system, q. O

It turns out that the prolongation of an involutive symbol is itself involutive.

Proposition 2.4.13. Let R, be a differential equation with an involutive symbol N,.
1. Then for all s > 0 the symbol Ny is involutive.

2. We have (Rgl))+s = R((IIJZS.

Proof. The proofs for both parts contains the distinction of several cases. For the first
part, consider the row echelon form of the symbol matrix M,. Its columns are ordered
according to a class respecting ranking and may be labelled by the unknowns vg. Accord-
ing to Proposition 2.4.7 the leaders of My, (also given in row echelon form) are v,
where 1 < ¢ < clu. To prove the first part, one must show that the prolongation of
a row in Mg,y with regard to a non-multiplicative variable is linearly dependent on the
prolongations with regard to multiplicative variables. The necessary case distinction with
regard to the class can be found in Seiler [38], pages 91/92, and shows that in fact all
linearly independent rows in the matrix M, o can be derived by prolonging those in M,
with respect to their multiplicative variables only. The involutivity of N1 now follows
from Proposition 2.4.7. For s > 1 the claim follows by a simple induction.

For the second part, let s = 1. One must show that all integrability conditions
which arise from the projection from order ¢ 4+ 2 to order ¢ + 1 (referring to Réﬁzl) are
prolongations of integrability conditions which arise from the projection from order ¢ + 1
to order ¢ (referring to (R\)41). To this end, let @ = 0 be an equation of class k in a
local representation of R, and consider D,D;®™ = 0. Assuming without loss of generality
¢ < j, there are two cases, j < k and k£ < 7, in both of which the claim follows. Again,
see [38], pages 91/92, for the details. O

The second part of Proposition 2.4.13 means that for a differential equation with
an involutive symbol a prolongation p and a projection m commute, if they follow a

prolongation: o p? = pom o p. For the calculation of R((;le, the twice prolonged space

R4+2 is needed while for the calculation of (Rf}))“ it is enough to use Rg41.
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Example 2.4.14. For the differential equation represented by

RQI { Uttzo

Ugy = 0

we have ﬁfl) =1 and 5%2) = 1. The first prolongation is represented by

Rs: { Uy = 0 Ugagt = 0

Ugtt = 0 Ugge = 0

Since the symbol matrix of R3 is the unit matrix 14, we have rank M3 = 4 # 3 =
Zizl kﬁyg). Though the system R is formally integrable as all its right sides vanish, it is
not involutive. The reason is this: The equation u,, = 0 has a non-multiplicative prolon-
gation, u,,; = 0, which is not algebraically dependent on the multiplicative prolongations
Ugze = 0, Ugzyy = 0 and uyy = 0 of the system. Thus the criterion for the involutivity of
the symbol given in Proposition 2.4.7 is not met. But the system Rj is involutive. So the
original system R, becomes involutive after two prolongations.

Definition 2.4.15. We call such an additional condition of an order greater than q which
destroys the involutivity of the symbol an obstruction to involution.

2.4.2 Involutive Systems

For a formally integrable differential equation there are formal power series solutions,
which explains the name. For an analytic equation with suitable initial conditions,
these series even converge. This is the Cartan-Kahler theorem, generalizing the clas-
sical Cauchy-Kovalevskaya theorem. The Cauchy-Kovalevskaya theorem states that an
analytic normal (meaning there are as many equations as there are dependent coordinates)
differential equation with analytic initial conditions, represented in non-characteristic co-
ordinates, has a unique analytic solution. (For a modern formulation and accompanying
proof, see Seiler [37].) The Cartan-Kéahler theorem (which we formulate below as Theo-
rem 2.4.31) extends the Cauchy-Kovalevskaya theorem to arbitrary involutive (but still
analytic) systems, defined below. Thus, it is of advantage to work with an involutive
system, and the question arises when this is possible?

To check a differential equation on formal integrability, according to the Definition
2.3.2 a countably infinite number of conditions have to be checked. The Cartan-Kuranishi
theorem 2.4.19, given below, offers a procedure which only requires a finite number of
steps for the subset of the formally integrable differential equations which comprises the
involutive systems.

Definition 2.4.16. A differential equation is called involutive, if it is formally integrable
and its symbol is involutive.

Note that involutivity both of the symbol and the differential equation is a local
property depending on p € R,. We assume from now on that the ﬁék) do not vary for
different points of the differential equation by restricting to a proper subset if necessary.
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The criterion of Proposition 2.4.7 fails at checking a differential equation for involu-
tivity because it refers only to the equations of highest order ¢ in R, while integrability
conditions may arise by prolonging equations of order less than ¢. If a differential equa-
tion is formally integrable, its symbol may or may not be involutive, and conversely, if the
symbol of a differential equation is involutive, the equation may or may not be formally
integrable.

Example 2.4.17. The system R, in Example 2.4.14 is formally integrable, but its symbol
is not involutive. The system

Ut =0
RQI Ugo =0
Uy =

is neither formally integrable (there is the integrability condition u,; = 0) nor has it an
involutive symbol. (It has the same symbol as the system in Example 2.4.14, from which
it is derived by adding the equation u, = 0.) The system R; in Example 2.2.11 is not
formally integrable, but it has an involutive symbol. The system R3 in Example 2.4.14
is formally integrable and has an involutive symbol, and thus it is involutive. So is the
one-dimensional wave equation in Example 2.2.2.

According to Corollary 2.4.11, for ordinary differential equations, there is no difference
between formal integrability and involutivity as long as there are only equations of order
q.

For a differential equation with an involutive symbol, the next proposition yields
a means suitable to check the equation for involutivity using only a finite number of
operations.

Proposition 2.4.18. A differential equation R, is involutive if, and only if, its symbol
is involutive and R, = Rgl).

Proof. Let the equation’s symbol be involutive, and let R, = R((Il). Thus, according to
Proposition 2.4.13, we have Réﬁs = (Rél))+s for all non-negative integers s. Since we

assume Rél) = Ry, it follows that (Rél))+s = Ry+s. Thus, the differential equation is
formally integrable, too. The reverse implication is trivial. O

Involutive differential equations are remarkable in that it is possible to decide in a
finite number of steps when a system is involutive, and furthermore that for an arbitrary
system in a finite number of steps an involutive system can be constructed which has the
same space of formal solutions. This procedure is called completion to involution. That
it succeeds for involutive systems says the Cartan-Kuranishi theorem.

Theorem 2.4.19 (Cartan, Kuranishi [28]). For any differential equation R, there

are two non-negative numbers r and s such that 72((;28, the r-th projection of the r + s-th
prolongation of R, is involutive and has the same space of formal solutions as R,.
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Proof. The proof is constructive and may be sketched as follows: first consider the symbol
of Ry; if it is not involutive, prolong R, to Ry41. If the symbol of R,y is not involutive,
prolong R,4+1 to Ry42 and so on until an equation R, 4, with an involutive symbol is
reached. Such a s; > 0 exists according to Proposition 2.4.12. Then check this system

Ry+s, with the involutive symbol for integrability conditions: if R((;stl = Ry+s,, then
1 1
gjsl C Rgyts,, then prolong 72((14281

system (RQQSI)HQ with an involutive symbol. Then check if (Réﬁsl)gQ - (RQQSI)HQ. If

Ry+s, is involutive, and we are through. If R to a

equality holds, then (R(l) )+s, 18 involutive and we are through. If the inclusion is proper,

g+s1
then prolong (R2231)$32 to a system with an involutive symbol and so forth. This way
the algorithm eventually yields an involutive system (...(((((Ryis;)™)16) M) ) 1)@,
The termination follows from a Noetherian argument. Since during the procedure only
differential equations with an involutive symbol are being projected, Proposition 2.4.13

can be applied from which follows

(o (((((Rara) ™) 452) ) )46) ™ = R s -
For details, see Seiler [38]. O

Remark 2.4.20. Since any ordinary differential equation R, has an involutive symbol,
the algorithm simplifies for such an equation: the prolongations for the construction of a
system with an involutive symbol are not needed. Furthermore, the order of the operations
in the algorithm can be reversed. In the general case we always first prolong and then
project; for ordinary differential equations it suffices to first project, because in a system
of ordinary differential equations only one mechanism for the generation of integrability
conditions exists: the system contains equations of differing orders and the prolongation
of the lower order ones leads to new equations. These equations of lower order describe a
constraint manifold in R,, and one has to prolong just this manifold. As a consequence,
the algorithm in this case yields a system of the same order q.

As mentioned in the beginning of Section 2.3, in a system of partial differential equa-
tions with dim X > 1 a second mechanism exists, caused by the appearance of cross-
derivatives: if a linear combination of prolonged equations is such that all derivatives of
maximal order cancel, this gives an integrability condition of lower order. It is crucial
here to first prolong and then project; otherwise one might overlook integrability condi-
tions. Examples like u., + yu,, = 0 = uy, (this Example is from Janet [22]) demonstrate
that several prolongations may be needed to reach suitable cross-derivatives, and the in-
tegrability conditions (here ugy, = 0 and uyu,, = 0) may be of higher order than the
original system. Involution of the symbol N, is concerned with the maximal number of
prolongations needed.

According to Definition 2.2.5, a solution is a section o : X — & such that its pro-
longation satisfies im j,o € R,. For formally integrable equations it is straightforward
to construct order by order formal power series solutions. Otherwise it is hard to find
solutions. A constitutive insight of Cartan [6] was to introduce infinitesimal solutions or
integral elements at a point p € R, as subspaces U, C T, R, which are potentially part of
the tangent space of a prolonged solution.
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Definition 2.4.21. Let R, C J,m be a differential equation. A linear subspaceU, C T, R,
is called an integral element at the point p € R, if a point p € R,y ewxists such that
T (p) = p and Tu(U,) CimTqr1(p).

This definition of an integral element is not the customary one. Usually [15, 40, 42|, one
considers the pull-back L*Cg of the contact codistribution or more precisely the differential
ideal Z[R,] := span{:*Cy }aiz generated by it. Algebraically, Z[R,] is therefore spanned
by a basis of L*Cg and the exterior derivatives of the one-forms in this basis. An integral
element is then a subspace on which this ideal vanishes.

Proposition 2.4.22. Let R, be a differential equation such that Rgl) =R, A linear
subspace U, C TR, is an integral element at p € Ry if, and only if, T(U,) is transversal
to the fibration 7} _, and every differential form w € I[R,] vanishes on U,.

Proof. First let p € R, such that Tw(U,) is transversal to the fibration 77 ; and every
differential form w € Z[R,] vanishes on U,. Because Tt(U,) is transversal there is a

generating set of vectors v; for it with Tw(vy) = Ci(q)\ p +05,Chl, for real numbers b ;
(for now, p,7 is a just double index). The exterior derivative of a contact form w$ =
dug — ul,, da’ of order |v| = ¢ — 1 is dw? = da* A dul,, . Tt satisfies o*(dw?)|,(vs, v;) =
dwS(T(v;), Te(v;)) = 0 for all v;,v; € U, according to assumption. The skewness of dwg
now implies by, ; = by, ;. This means, for p:= v +1;, that bj; = bj (now we can
interpret ., as a multi-index of order ¢ 4+ 1). Hence, there is a local section o € I'ym
such that p = [a],(cq) and the vectors T't(v;) where 1 < i < n span T,(im j,o). It follows,
since U, is spanned by a set of linear combinations of the vectors v;, that it is an integral
element.

Now for the reverse implication let U/, be an integral element for some point p € R,.
Then by definition, there is an element p € Ry in the fibre such that 77 ,(p) = p and
TuU,) =imI'y11(p). This means that Tt(U,) is transversal with regard to the fibration
me_y and Tu(U,) € imTq11(p), so all one-forms w € ¢*C) annihilate U,. Now consider
the pull-backs of the exterior derivatives, /,*dCf;. We have to show that they, too, vanish
on U,. We do this by constructing a distribution which for all p € R, contains U;
and is annihilated by L*dcg. The restricted projection ﬁg“: Rqe+1 — R, is surjective;
hence there is a local section v : R, — R,+1 such that y(p) = p. Now define an n-
dimensional distribution D on R, by setting Tu(D;) = imT 41 (y(p)) for all p € R,.
Then by construction U, C D,. From the representation in local coordinates (2.3) of the
contact map it follows that locally the distribution D is spanned by n vector fields X;

such that
K=Y

a=1|ul=q

The coefficients 7, are the highest-order components of the section v, and Ci(q) and C*
are the contact vector fields (2.4). Thus the commutator of two such vector fields satisfies

X X = (C(08,1) = O3 (40,0,)) Ch 4 [OF O] — A5, O )

(2
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For all [v| = ¢ — 1, we have [C\? C¥1] = —,q (see Remark 2.1.11); therefore a com-
mutator on the right side vanishes when p; = 0 or p; = 0. Otherwise they equal —81‘5_1,

or —&Lg_l . Anyway the two sums of commutators on the right side cancel and it follows
J

that ¢, ([X;, X;]) € C, as all the C* are contact vector fields. Now for any contact form
w € C we have

C(dw) (X, X;) = dw (X5, 1 X;)
= 0.X; (w(t X)) — X (w(X;)) +w(w (X, X))

All vector fields which appear in the second line are contact vector fields; therefore all sum-
mands vanish. It follows that any two-form w € L*(dCf;) vanishes on D and in particular
onU, CD,. O

For an involutive differential equation, ﬁék) is the number of the principal derivatives of
order ¢ and class k. In the Taylor series of the formal solution there are only finitely many
of them. The size of the formal solution spaces of several equations may be compared by
comparing these indices for every order.

Definition 2.4.23. For an involutive differential equation let oz((lk) denote the number of
the remaining derivatives of order q and class k, that is, the number of the parametric
derivatives. These are called the Cartan characters of the differential equation.

Remark 2.4.24. The Cartan characters tell the numbers of derivatives which have to
be given by initial or boundary conditions to determine a unique solution; in this sense,
the Cartan characters measure the degrees of freedom for a formal solution to R,. For a
differential equation of finite type, all Cartan characters vanish. This means there are no
free Taylor coefficients of orders g and greater than ¢, and therefore their space of formal
solutions can be parameterized by dim R, parameters.

For 1 < k <n the Cartan characters are

o) = m (#7271 - g

q+2:1f_1) is the number of derivatives of order ¢ and class k. Note that for ¢ =1

since (
we have agk) + ﬁfk) = m, the fibre dimension of the total space of w. Unlike the indices

ﬁék), the Cartan characters of an involutive differential equation are intrinsic values of R,
in that they do not change if R, is rewritten as a first-order system (see Subsection 2.5.1).
They may vary over R,, though.

Proposition 2.4.25. For a first-order differential equation Ry where the fibre-dimension
is m, the Cartan characters satisfy the following chain of inequalities:

m>a">a?>...>a">0. (2.22)

There actually is analogue for systems of an order greater than 1.
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Proof. For ¢ = 1, according to Proposition 2.4.9, we have 0 < 5%1) < 5%2) <0< 5111) <
m, which is equivalent to the chain of inequalities (2.22) because of m — aﬁ’) = ﬁll). For
q > 1 see Corollary 2.5.3. O

Definition 2.4.26. For a first-order differential equation Ry the following local represen-
tation, a special kind of solved form,

1<a<p
ugy = ¢ (x,u”, uf, uy) 1<j<n (2.23a)
B <5 <m
Up_1 = Pp_1(X, Uﬁau;‘yauiq) I<j<n—-1 (2.23b)
%nil) <d<m
1<a<p?
o _ o B .90 > >~ M1
uy = X, u”,u ) 2.23c
= o ) {@9><5gm (2:230)
1<a<pf
a B >~ >~ ro
u® = ¢f(x,u”) {ﬁ0<ﬁ§m . (2.23d)

is called its Cartan normal form. The equations of zeroth order, u® = ¢(x,u”), are called
algebraic. The functions ¢f are called the right sides of R;.

If, for some 1 < k < n, the number of equations is ﬁfk) = m, then the condition
fk) < & < m is meaningless and there are mo terms ul on the right sides of those

equations.

Here, each equation is solved for a principal derivative of maximal class k in such a way
that the corresponding right side of the equation may depend on an arbitrary subset of the
independent variables, an arbitrary subset of the dependent variables u” with 1 < 3 < 3,
those derivatives uz for all 1 < v < m which are of a class j < k and those derivatives
which are of the same class k but are not principal derivatives. Note that a principle
derivative u{ may dependent on another principle derivative u; as long as I < k. The
equations are grouped according to their class in descending order as described in Remark
2.3.13.

Example 2.4.27. The representation of the differential equation Rgl) in Example 2.2.13
is in Cartan normal form. There are no algebraic equations. Multiplicative variables for
each of the first three rows are ¢t and = and for the last row z. The symbol matrix, given
in Example 2.3.8, is already in reduced row echelon form, and each row is solved for its
principal derivative.

Remark 2.4.28. The Cartan normal form at once yields the symbol matrix in row echelon

form. For 1 < k < n in the Cartan normal form of Definition 2.4.26, we set

O (x,u’,uf, wp) = uil — ¢ (x, 07, u], )
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m m m m

(n)
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ty

A
(1) o 1
1*

Figure 2.1: The symbol matrix for a first-order system in Cartan normal form, given
in Definition 2.4.26. The columns are ordered descendingly with regard to the degree
reverse lexicographic ranking. The rows are ordered descendingly according to class and
within each class descendingly with respect to . Zero entries are marked by white areas;
potentially non-trivial entries are marked by light or dark shades; blocks with diagonals
mark unit blocks.

When calculating the symbol matrix of this representation, for any class k and for any
1 < j <n we get a block of the form

oDk oD} P}
Aul oz T Bum
J
845%f ﬁ 0?2 .
Ou; du? oull L a@k (2 24)
: : : 8uf
5k (k) (k)
b, ! oD, oD,
8u; 81@ o 8u;-"

Since according to Remark 2.3.13 the columns in the symbol matrix are ordered decreas-
ingly with regard to their classes (defined by the multi-indices u in the pairs (o, 1) which
label the columns) and within a class according to the indices « (such that a column with
label (o, p) is left to the column with label (5, i) if @ < 3), the rows in the symbol matrix
which correspond to the 6@ rows of class k consist of the n blocks of the form (2.24)
ordered decreasingly with regard to j. As any equation solved for a derivative u§ depends
only on first-order derivatives of a class lower than k and on the u{ where ﬂgk) <0 <m,
in the special cases where k£ < 7 we have

oY

a—ug =0 *)

J

xm ’
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and for k = j follows

ol 0 0
10 ...00 ——%%_ %0 = _0
8u51 +1 u 51 +2 g
k
0?2 8 0
OPe 0 1 00 — 5£I§+1 - BE%JrQ _afffm O
k — 8uk1 Ouy, 1 k — (1 0y, — (bk
ou] S : : : : o oul
o671 azzf’ : azzf’ v
00 ..01 —f— - T e
8uk1 8uk

For each 1 < k < n, there is a row of n blocks g%. The symbol matrix consists of

these n rows stacked on one another according to decreasing k. As a consequence, the
rows in the symbol matrix which correspond to the ﬂfk) rows of class k are

oD | 0Dy | 023 <]l _%)’ 0oy ' o\
oul | ou’_, oul) T Cal oul ou) oul
tolors O D¢
Rl ) )

Thus the symbol of a representation in Cartan normal form is automatically given in
row echelon form. See Figure 2.1 for a sketch of the complete symbol matrix. Now the
rank of the symbol matrix is obviously rank My = > 7| kﬁl

For a system given in Cartan normal form, there is the following criterion for involu-
tivity.

Lemma 2.4.29. Let the differential equation Ry be given in Cartan normal form (2.23).
Then R is involutive if, and only if, all non-multiplicative prolongations of the equations
(2.23a-2.23¢c) and all formal derivatives with respect to all the x* of the algebraic equa-
tions (2.23d) are dependent on the equations of the system (2.23) and its multiplicative
prolongations only.

Proof. Let the differential equation R be represented by the system (2.23) in Cartan
normal form. Assume that it is involutive. Then its symbol is involutive. According to
Proposition 2.4.7, any second-order derivative obtained by a non-multiplicative prolon-
gation can be linearly combined from second-order derivatives obtained by multiplicative

prolongations only. Thus, there are coefficient functions Aiﬁj such that for 1 </ < k <mn,

k

when 2" is non-multiplicative for the equation uj = ¢¢, we have

Oy (ug — L0 ¢5)
D o) _ S5 00

i=1 B=1 j=1 ZJ

Now we take into account that the formal derivative Dy applied to uy — ¢§ is by definition
the chain rule yielding the total derivative of u$ — ¢% = 0 with respect to z*. This means
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there are additional coeflicient functions Bé and Cj such that the formal derivative of

wg — ¢ is

B9
Di(ug —¢3) = > ) > AID;(u) - ¢7)

i=1 p=1 j=1

k ﬁii) Bo
S B o)+ 3 Culad — ).

i—1 =1 B=1

Without the functions Bé and Cp, from the terms of the first part an integrability con-
dition could arise. Nor arise integrability conditions from prolonging the algebraic con-
ditions (2.23d), since an involutive system is formally integrable. This means, there are
coefficient functions Dg such that for 1 < k < n the formal derivative of uy — ¢ with

respect to a* is

m Bo
o O00° 0Pp*
U — 5% — —ﬁ¢£ = ZDﬁ(Uﬁ—¢ﬁ) :
Ox ou
B=pBo+1 8=1
Thus, any non-multiplicative prolongation of an equation in the system (2.23a-2.23c) and
any formal derivative with respect to an z° of an algebraic equation in (2.23d) is dependent
on the equations of the system (2.23) and its multiplicative prolongations only.
The argument is also true if followed through backwards, thus showing the equivalence
in the claim. O

Corollary 2.4.30. Let R, be a differential equation in one dependent coordinate w. Then
its symbol N is involutive.

Proof. By numbering the 2 adequately, we can arrange the Cartan normal form for R;
in such a way that it is exactly the equations of the lowest classes which are missing, if
any. Let the system be represented by the equations solved for u,» to u,n-s. Its Cartan

normal form is )

Ugn = G (X5 Uy Ugt, Ug2, « .oy Ugn—1)
Ugn-1 = Pp_1(X; U, Ugt, Ug2, . .., Ugn—2)
Rli .
Ugn—s = Pp—s(X; Uy Ugt, Ug2, .o o, Ugn—s—1)
\ u = ¢go(X; u)

(If n—s = 1 then the system is maximally over-determined.) We have to show rank My =
oy kﬁyc). First consider the right side of this equality. For the above representation we
have for all £ where n—s < k < n the indices ﬁfk) = land for all £k where1 <k <n-—s—1
the indices 8\*) = 0. Tt follows that py- kAR = Y re_. k. Now consider the left side.
Since the differential equation R, is represented by a system in row echelon form, the
prolongation of any equation u, = ¢ with respect to its multiplicative variables x?,
1 < i < k, has a different leader u,i,» than any other prolonged equation and thus its
corresponding row in the symbol matrix M is independent of the others. Therefore each
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u,r leads to k independent leaders u,i,+ in the representation of Ry and thus rank My >
Yope k. For k < £ < n, the leader u e leads to an entry in M, which is in the
same column as the pivot of the multiplicative prolongation w,e,~. Therefore it does not
change the rank of M. The prolongations of the algebraic equations render first-order
equations which do not influence the matrix M, of the second-order symbol. Neither do
the equations in the representation of the original system, as they are of first order. Thus
we also have rank My < >~/ k. O

For easier reference later, we now formulate the Cartan-Kahler theorem for an invo-
lutive first-order system in Cartan normal form without algebraic equations.

Theorem 2.4.31 (Cartan-Kahler). Let the differential equation Ry be locally repre-
sented by the system (2.23a, 2.23b, 2.23c). Assume that the following initial condition
are given:

u(xt, .. 2" = f (. 2" ﬁf") <a<m; (2.25a)
u(xt, . 2" 0) = foat L a2 ﬁf"il) <a< ﬁ%n) ; (2.25b)
u®(z',0,...,0) = f(z") , Y <a<p? (2.25¢)
u®(0,...,0) = f* | 1<a<plV. (2.25d)

Let the functions ¢ and f be real-analytic at the origin and let the system (2.23a, 2.23b,
2.23¢) be involutive. Then this system has one and only one solution that is analytic at
the origin and satisfies the initial conditions (2.25).

Proof. For the proof, see Pommaret [35] or Seiler [37]. The strategy is to split the system
into subsystems according to the classes of the equations in it. The solution is constructed
step by step; each step renders a normal system to which the Cauchy-Kovalevskaya the-
orem is applied. O

Using a transformation proposed by Drach [8], any differential Equation R, may be
turned into an equivalent one with only one dependent variable. If R, is transformed into a
first-order system before, Drach’s transformation yields a differential equation of order one
or two. In this sense, all partial differential equations belong to one of these two classes.
The last corollary shows that for the one class, first-order equations in one dependent
variable, the symbol is always involutive. See also Stormark [40], Chapter 5, for details
with regard to Drach’s classification. Since many kinds of differential equations (ordinary
differential equations and, more generally, systems of finite type; all differential equations
of first order in one dependent variable, which is one of only two classes according to
Drach’s classification) have an involutive symbol, for a great many differential equations
there is no difference between involutivity and formal integrability. This is why the
difference is sometimes overlooked.
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2.5 Useful Properties of First Order Systems

It simplifies the notation in our subsequent proofs of two of the main results (Theorems
3.3.9 and 3.3.28) if we consider first-order equations Ry C Jim. Furthermore, we will
assume that any present algebraic (i. e. zeroth-order) equation has been explicitly solved
and substituted into the equations @7, reducing thus the number of dependent variables.
From a theoretical point of view this does not represent a restriction, as any differential
equation R, can be transformed into an equivalent first-order one and under some mild
regularity assumptions the algebraic equations can always be solved locally. In this section
we show that the crucial properties of a differential equation remain unchanged through
this process.

2.5.1 Reduction to First Order

First we consider the transformation of a system of order ¢ > 1 into a first-order system.
There are several approaches; we follow the one demonstrated by Seiler [37] and summarize
it here for the sake of completeness. Let the differential equation R, C J,m be locally
represented by @7(x,u?) = 0. Consider the first-order jet bundle J;77~! with local
coordinates (x, (u@D)1): its total space is J,_ ;7. We identify J,7 with a submanifold
in J;7% ! by the immersion

Lg1: Jgm — Jymi L

which is given in Equation (2.2). Then it is natural to set
7@1 = Lq71(Rq) Q J17Tq_1 .

From the local representation of R, we can derive a local representation for R1: equations
which define ¢, 1(J,7) as a submanifold in Jy7%! are
Ui

=uj,, 0<|ul<g—-1, 1<i<n,

It remains to derive equations @7 (x, (u@1)M) = 0 to describe Ry within Jy7?! from
the equations @7 (x,ul?) = 0. We do so by expressing each derivative ug, of the original
representation through one of the new coordinates like this:

a . < g _—
ugH{ Cup lulse-1,
u,uflk,k: : ‘:u| =q, Cl/,L =k .

The following proposition again is from Seiler [37] and says that this transformation does
not change those properties of the system which are important assumptions for the results
which we want to prove later.

Proposition 2.5.1. Let the differential equation R, be transformed into a first-order
differential equation Ry by the procedure given above. Then

1. the differential equation Ry is involutive if, and only if, the differential equation R,
18 1nvolutive;
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2. for all1 < k <n the Cartan characters a((f) of R, and the Cartan characters &Yf’
of Ry satisfy oz((lk) = dgk); and
3. there is a one-to-one correspondence between the formal solutions of R, and those
Of Rl.
Proof. For a straightforward proof, see Seiler [37], Appendix A. U
Example 2.5.2. The one-dimensional wave equation u; = u,,, given in Example 2.2.2
has an involutive symbol and is formally integrable; therefore it is involutive. It may be

represented as a first-order system Ry C Jy7', where we use z, t, u, Uz, Uz, Uy, Uy, Up g,
Uy ¢, Uty and u,, for coordinates on Jimt, by

utt_u:v,:vzoa

)

~ Uy = Uy

Rli ’ ’
Uy = Uyt ,
Ugt = Ugt -

For Rs, only the first-class derivatives u,, and u,; are parametric, therefore we have

agl) = 2 and a§2) = 0, and since for 7~21 only the first-class derivatives u,, and u, , are

parametric while u ,, u¢, u,; and u., are principal derivatives, we have &gl) = 2 and

df) = 0. So indeed oz((]k) = &Y” for £ € {1,2}. Note that ﬁél) =0#1= B{l) and
2 —1£3=75Y.

To simplify the notation, set u; =: v and u, =: w. Then the coordinates of J;7! turn
into x, t, u, w, v, Uy, U, Wy, Wy, v, and v, and may be regarded as the coordinates of the
first-order jet bundle Jypr, over the trivial bundle (R? x R?, pry, R?) where (¢, 2;u, v, w)
are global coordinates for the total space R? x R?. The resulting system of four equations
is the representation for Rgl) in Example 2.2.13, defining a submanifold in .J;pr; by the
map ¢ : Jipr; — R* with

P(17@n) = (D" (V]@n) 1 1 <7< 4)
where the maps @7 : Jipr; — R are given by
Pl=u—v, P=u,—w, P=v—w, P =v,—w.
We then have
R = {117l € Jipry - O (1Y) = 0} -

Note that Rgl) contains the integrability condition w; = v,, which corresponds to u,; =
Uz of Ry and was automatically produced through the transformation described above.
So the system is indeed involutive, as opposed to the system of three equations in Example
2.2.11.

The section v : R? — R?x R3, defined by v(z,t) = (z,t; 23 +3xt?), is a global solution
of the differential equation R, since from

v:ut:3x2+3t2, w=u; = 6xt, v,=w, =6t and v, =w; = 6x

it follows for all (z,t) € R? that j17v|@ € R{". This is the same solution as the one in
Example 2.2.7 for Rs.
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We can now prove that, unlike the indices ﬁék) of a differential equation, the Cartan
characters of R, form a monotonous series for all ¢ > 1.

Corollary 2.5.3. For a differential equation R,, for which the dimension of the base
space is n, the Cartan characters satisfy the following chain of inequalities:

o) > a® > ... >0l >0, (2.26)

Proof. According to Proposition 2.5.1, the differential equation R, can be transformed

into a first-order system which has the same Cartan characters &i” = a((f). The claim now

follows from Proposition 2.4.25. O

2.5.2 Obstructions to Involution for Equations in Cartan Nor-
mal Form

For later use, we modify the Cartan normal form of a differential equation as given in
Definition 2.4.26 into the reduced Cartan normal form. It arises by solving each equation
for a derivative uf, the principal derivative, and eliminating this derivative from all other
equations. Again, the principal derivatives are chosen in such a manner that their classes
are as great as possible. Now none of the principal derivatives appears on a right side
of an equation whereas this was possible with the (non-reduced) Cartan normal form
of Definition 2.4.26. All the remaining, non-principal, derivatives are called parametric.
Ordering the obtained equations by their class, we can decompose them into subsystems:

1<a< g™

Uy = Qﬁz(X’ u, u;{) I1<j<n ) (2.27&)
B <y <m
1<a<p™

Up_y = Pp_i(X, 0, u)) 1<j<n—-1 |, (2.27b)
Y <y <m

1<a<pl
uy = ¢f(x,u,u;) 1= : (2.27c)
B <y <m

A more compact notation for the Cartan normal form is

1<j<h<n
ug = ¢ (x, u ) 1<a<pl
B <y <m

Note that the values ﬁfk) are exactly those appearing in the Cartan test (2.21), as the
symbol matrix of a differential equation in Cartan normal form is automatically triangular
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with the principal derivatives as pivots. A sketch for the symbol matrix of a system in
this reduced Cartan normal form is shown in Figure 2.1: there, the areas shaded gray in
the sketch now contain only zero entries (the matrix is in reduced row echelon form then,
or in GauB-Jordan form). According to Remark 2.4.24 the Cartan characters of R, are
agk) =m — ﬁfk) and thus equal the number of parametric derivatives of class k.
Example 2.5.4. For n = 3 and m = 5 with x = (7,9, 2) and u = (u', v? u3, u*, u’), the
following system is in the reduced Cartan normal form:

1 5,4 .5

ul = oL(xws ud, uy, ud, uy, ul, ul)
u? = o (x;uyud, ut, ul ug,uz,ui)
ul = @(xwud, uy, ud, uy, o ul)
ut = ¢ (x;upud, ut, ul ug,uz,ui)
uézqﬁ;(xuu Uy, ud, Uy, U )
ufj = ngZ(X w;ud, ut vl ug,uz )
up = o) (x;wyul, uy, uy, uy, ud )
Uy = G (X5 W 1y, U, )
= O (% W, g, g )
Here the dimension of the symbol is 6, the Cartan characters are al =3, a =2, and

53) = 1, and the indices of the equation are ﬁl =2, 51 =3, 51

For a differential equation R; in Cartan normal form, it is possible to perform an
involution analysis in closed form. According to Lemma 2.4.29 an effective test of invo-
lution proceeds as follows. Each equation in (2.27) is prolonged with respect to each of
its non-multiplicative variables. The arising second-order equations are simplified modulo
the original system and the prolongations with respect to the multiplicative variables.
The symbol N is involutive if, and only if, after the simplification none of the equations
is of second order any more. The differential equation R, is involutive if, and only if,
all new equations simplify to zero, as any remaining first-order equation would be an
integrability condition. In order to apply this test, we now prove some helpful lemmata.
We set B := {(a,i) € N™ x N": uf is a principal derivative }, and for each («,i) € B we
define & = uf — ¢§. Now any prolongation of some &¢ has the following explicit form.

Lemma 2.5.5. Let the differential equation R, be represented in the reduced Cartan
normal form given by Equation (2.27). Then for any (a,i) € B and 1 < j < n, we have

D¢ =ug — O Z Z ul C” (2.28)

y=B{" +1

Proof. By straightforward calculation: according to the definition of the total derivative
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in Equation (2.8), which is nothing but the chain rule, and since here ¢ = 1, we have

8@0‘ oo
DJ@?_ Z Z w Ui,

0< <1 v=1
Oug —¢8) N~ —¢8) o S\~ 0w — )
a orJ + Zl ou Uyt P Zl ou) g -
= — ’Y:

Since the system is in reduced Cartan normal form, any right side ¢$* depends at most on
parametric derivatives u;] where (v, h) € B and 1 < h <. For the special case h = i, we
have C’g(@?) = 0p; - 0oy because the equation is in solved form. Therefore the double sum

simplifies considerably: for h = i and v = ﬁf), we obtain ug; (and then move it to the

leftmost position in the formula), while otherwise only for 1 < h < and ﬁfh) +1<~v<m
summands may be non-trivial. It follows that the prolongation may be expressed as

m

D;®5 = ug — 0 (65) — Zam (¢0)u) —Z Z 0 (8)u); -

Now the claim follows from the definition of the contact vector fields in Equation (2.4). O

For j > 4, the prolongation D;®$ is non-multiplicative, otherwise it is multiplicative.
Now let j > i, so that (2.28) is a non-multiplicative prolongation. According to our crite-
rion in Lemma 2.4.29, the symbol N is involutive if, and only if, it is possible to eliminate
on the right hand side of (2.28) all second-order derivatives by adding multiplicative pro-
longations, and the differential equation R; is involutive if, and only if, all new equations
simplify to zero, as any remaining first-order equation would be an integrability condition.
The following proposition shows the explicit linear combination.

Proposition 2.5.6. Let the differential equation R be represented in the reduced Cartan
normal form given by Equation (2.27), and let Ry be involutive. Then for 1 < i <
J < n, any non-multiplicative prolongation D;P can be combined from multiplicative
prolongations like this:

5(]’)
D;®§ = D;®% — Z > CleM)DyD] (2.29)

y=p{"+1

Proof. We have to eliminate all second-order terms on the right side of Equation (2.28)
by subtracting multiples of multiplicative prolongations only. To reduce the term uf; to
zero, we subtract the multiplicative prolongation D;®$, which is available for the following

reason: we have ¢ < j and therefore ﬁli) < ﬁfj ), Thus, as @f is in the system, so is @Y.
The other second-order terms in D;®% are, according to Equation (2.28), for 1 < h <1

and th) +1 < v <m the summands —quCf;(qﬁf‘), and we have to eliminate them as well

by subtracting multiples of suitable multiplicative prolongations. For th) +1<y< Bfl)
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the equation @} is in the system. Thus, the multiplicative prolongation Dh¢;/ can be
multiplied by —C?(¢¢) and then subtracted to eliminate the term —u;.C7(¢¢"). Since for
ﬁfq) + 1 < v < m, there is no equation @} in the system, the summands —quCg(@?‘)
cannot be eliminated by subtracting a linear combination of multiplicative prolongations
and thus constitute the obstruction to involution

Yoo wChen =0.

h=1 g 41
The obstruction must vanish because R, is involutive according to our assumption. [J
Example 2.5.7. Consider the differential equation R, represented by

vy = &) (2, t; u,v;v,)
Ri: w = ¢z, tu,v;v,)
Ur= ¢;(ZL‘7 tv u, v; Ux)

where &) = vy — ¢}, D} = w — ¢ and P = u, — ¢%. The differential equation is in
reduced Cartan normal form. The only non-multiplicative prolongation is

D@ = uyy — CM(3Y) — v, CZ(BY)

To eliminate wu,;, we subtract the multiplicative prolongation D,®} = uy — C’él)(qﬁ}j) —
V22 CE(¢}), which contains u,; as well; to eliminate v,,C7(¢Y), we subtract the multi-
plicative prolongation D,®} = v, — C’;S;l)(gbf) — U C7 (7)), multiplied by —C¥ (%), which
contains the term —C¥(¢%)v,,. We then have

D, — D, P} + C2 (%) D,y
= CW(g") — CV(¢Y) — C2 ()OI (BF) = Vg [-C2(Y) + CZ(¢M)CE ()] -

If the differential equation R; is involutive, the term on the right side vanishes, since
the only non-multiplicative prolongation of the system is D;®* = D,®} — C¥(¢%) DD}, a
linear combination of multiplicative prolongations.

Note that if the equation for v; were missing from the system, this would leave only
the equations for u; and u,. Instead of one, there would be two parametric derivatives,
v, and v, and the only non-multiplicative prolongation of the system would be

D@ = uyy — CM(6Y) — 0, CZ(62) — vy CL(BY) |

where the second-order terms are not a linear combination of the system’s multiplica-
tive prolongations D,®}, D@} and D,®%. The obstruction to involution v, C¥(¢%) =
v CH (%) would arise.

If the differential equation is not involutive, Equation (2.29) is not satisfied. The
difference D;®¢ — D@3 + 37, 3" o C!(¢f) Dy®] then does not necessarily vanish
but yields an obstruction to involution for any (a,i) € B and 1 < i < j < n. The next
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lemma gives all these obstructions to involution for a first-order system in reduced Cartan
normal form. They appear in the proof of the existence theorem for integral distributions
in Subsection 3.3.6 where the important point is that they disappear for an involutive
differential equation R;.

Lemma 2.5.8. For an equation in Cartan normal form, i < j and « such that (o, 1) € B,
we have the equality

ng)
D;@} =D+ Y Cle)Dyd) (2.30)
h=1 7:th)_i_l
i 6%”
=) - Mo -3 ST ey (@) (2.31)
h=1 q/:Byb)_’_l
1—1 m ﬁij)
=30 Wl | DD ClenCh(e) (2.32)
h=15—p" 11 y=6" 41
Q [ @
= S | ST e (2.33)
1<h<k<i | 5=pM 11 y=3%) 11
m [ 5]) ﬁgl)
+ 3w | YD CenCEe) + Y CRenCHe)) (2.33D)
=g+ [y=8" =" +1
i1 (@ [ B
- S oul [ —CRHO) + D CHeMCH(e]) (2.34a)
h=1 | 5—g" 44 Y= 41
m [ (J’) (])
+ D uh | =GR +Z ClH(¢2)CE (87 +Z Ch ()N | b (2.34b)
§=p{"+1 I y=6+1 y=8M 41
i—1 gj)

- Yooum | Y CHeNCE9)) (2.35)

h=l_ o= 11 y=B"+1
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(J')

j—1 m
- > [-Cre) + Z Ci(¢2)CF(4)) (2.36)
F=ts=pP41 | y=p 41

i—1 m [ B(j)
- S oup [CHOM 4+ Y CMenCL(9)) (2.37)
h=15-p0) 11 I v=6{"+1

m 39

= N ul [Cie) = CleN + Y CLenCi@])] - (2.38)
s=p+1 y=8"+1

Proof. Line (2.31) holds all terms of lower than second order; it represents an integrability
condition. In Lines (2.32-2.38) for any u° (and for each i with 1 < h < i and each j with
1 < k < j) each of its second-order derivatives ug, appears exactly once. To prove the
lemma, we expand our ansatz, Line (2.30), and rearrange the second-order derivatives by
factoring out the ug,. As we shall see, for a fixed §, each coefficient (in Lines (2.32-2.38)
the terms in square brackets) belongs to one of seven classes depending on the values of
h and k. In Figure (2.2) these classes are represented by the seven areas denoted

(2.32) for ul, where 1 <h=k <i—1;

(2.33) for uf;, where 1 < h < k <i—1;

(2.34) for ug, where 1 < h <i—1and k = i

(2.35) for u, where 1 <h <i—landi+1<k<j—1;

(2.36) for ul, where h =i and i <k <j—1;

(2.37) for ug, where 1 <h <i—1and k = j; and

(2.38) for ug, where h =i and k = j.

| k |
1 2 1—1 1 141 jg—1 J
1] (2.32) |
2 [ (232)] (2:33) | (2.34) (2.35) (2.37)
h :
i—1 (2.32)
i (2.36) (2.38)

Figure 2.2: Each of the terms in square brackets in Lemma 2.5.8 belongs to one of these
seven classes, according to h and k in the term u¢, before the brackets.

The numbers in the blocks shown in Figure 2.2 correspond to the line numbers in
Lemma 2.5.8 where the ug, appear before the terms in square brackets. Expanding our



52 2 Formal Theory

ansatz in Line (2.30) yields:

ﬁ(j)
D% — D(PO‘+Z > o) Dy) (2.30)
ﬁ(h)+1

— M (g) Z Z e (2.39)

h=1 =g 11

i m
—ug O+ D u ) (2.40)
k=1 5= 11
7 ﬁﬁj) 7 m
o 1
+303 ey |ug; - @) =Y Z W CEeN| . (241)

The second-order derivatives uf; and —ug; cancel, and by dissolving the square bracket in
Line (2.41), we arrive at

P (g%) — OV (g2) (2.42)

D D ukCi(e)) (2.43)

k=1 5—p" 11
i m i By
=D > W e +Y > Clenu, (2.44)
h=1 =M 41 h=1 =g 11
i B
- Cl(62)C, () (2.45
Y\ h (b] . )
h=1y=p" +1
i pY
+ > o Z Z uh CE()) | (2.46)
h=1_gh k=1 5 4

We combine the terms in Line (2.42) with the double sum in Line (2.45). In Line (2.43),
we write two minus-signs instead of the plus-sign. Of the two double sums in Line (2.44),

only the summands for 8Y + 1 < v < m remain. This means, our ansatz (2.30) equals

i B(i)
D) - P =3 > e (o) (2.31)

h=1y=pM+1
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i m
YOS ke 249

=D > unCe) (2.44)

+ > e Z Z ub CE (o) | (2.46)

h=1 g k=1 550 4

In the first line we now recognize the integrability condition, (2.31). In Line (2.43") we
separate the summand for & = j from the rest of the sum. In Line (2.44"), we do the same
with the summand for A = 4. In Line (2.46) we rearrange the summands. We then have
that our ansatz is equal to

(2.31)
m j*l m
= DL G =Y D —uhCi(e)) (2.43")
5= 41 k=15_p*) 1
m i—1 m
-2 wWGen -2 Z e (2.44")
y=p+1 =1,_g0)
6(])
*ZZ Z —upe Y CHONCH(S)) - (2.46")
h=1 k= 15—5§k)+1 7—6§h)+1

Now we split (2.46") into four parts: one for 1 <h <i—1and 1 <k < j —1 giving Line
(2.48) below; one for h =i and 1 < k < j — 1 giving Line (2.49); one for 1 < h <i—1
and k = j, to which we add the summands of Line (2.44") for 1 < h < i — 1, giving Line
(2.37), and one for h = i and k = j, to which we add the last summand (where h = i)
of Line (2.44") and the last summand (where k& = j) of Line (2.43"), giving Line (2.38).
Thus our ansatz, Line (2.30), becomes

> > —upCe) (2.47)

- STl Y ChenCH9)) (2.48)
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i—1 m 65])

=33 W | D CrenCie) | + Gt (2.37)
h=1s=p") +1 [ [r=6"+1
Jj—1 m [ ,ng)

DI A DI eACH (2.49)
k=1 5:ﬁ§k)+1 ,yfﬁii)_’_l

m )

= > W =i+ Y ClenCien| + Cier) (2.38)

=B +1 =B +1

Note that now we have found Lines (2.37) and (2.38). We split the sum in Line (2.48)
in two, according to whether k < i or k > ¢, which yields Lines (2.50) and (2.35) below.
The sums in Lines (2.47) and (2.49) have the same summation range; we collect the
first summands (for 1 < k < i) of both sums into Line (2.52) below and the remaining
summands (for i + 1 < k < j — 1) of both sums into Line (2.51). Now our ansatz, Line

(2.30), equals

(2.31) + (2.37) +

- S o Y e

h=1 k=it1 5_gk) 4

j—1 m

-2 2 U

k=i+1 6:6§k)+1

7 m
1)
> D U

k=1 5_g(t) 4

Note that we have found Line (2.35).

summand (where k = 7).

rename it h, and split the other sum according to whether § < ﬁfi

(2.38)

)
1

up Y CHeNCE(¢))

y=6{" +1
6;])
CE(eY)
y=p"+1
[3(.7)
—CE@) + D CUeNCES))
7765 )1
59)
—CEeN+ Y CLeNCE(9))

y=p+1

(2.50)

(2.35)

(2.51)

(2.52)

From the sum in Line (2.50) we split its last
Since the summation index in Line (2.52) is 1 < k < i, we

Vor 6 > BY.

This



2.5 Useful Properties of First Order Systems

yields:

(2.31) + (2.35) + (2.37) + (2.38) + (2.51)
(j)

- > up, Z CH($2)CE ()

)
1—1 m 5
=D uwh Y CHeNCs))
h=15_g041  4—p® 11
i B [ Y
- Z U?h ~C3(¢ Z CZ (¢7)Cy (qﬁ)
h=1"| 5=p" 11 i y=p+1
i @
m
+ Z ug, | —C3(8 Z C(d5)C3(4))
5=B"+1 i y=6{"+1

95

(2.53)

(2.54)

(2.55)

(2.56)

The sum in Line (2.55) vanishes for h = 4. From the sum in Line (2.56) we split its last
summand (where h = i) which yields Line (2.57) below. The remaining sum and Line
(2.54) are combined: we can factor out ud, in Lines (2.54) and (2.56). Thus we get Lines

(2.34a-2.34b):

(2.31) + (2.35) + (2.37) + (2.38)

j—1 m B(j)
1 7 a Y
- § E Ui, C5 E C (o5 C(s (¢ )
k=i+1 5:5§k)+1 7755 )+1
i—1 i—1 m (j)

Z Y Z C(g0)CE (@)

h=1 k=1 5= 11 y=p" 41
i1 ® a9
5
- Z ug, | —Ci (¢ Z Cl o) Cy <Z5V)
h=1 6:6§h)+1 '\/76(2)—1—1
. a9 a9
5 h
o ud [CR@ Y CienICH@) + Y ChenICHe)
o=p"+1 y=6{"+1 y=8{"+1
89

Z Ufz —C5(¢ Z CZ (7 Cs(ﬂﬁ)
e

"/*612) +1

(2.51)

(2.53)

(2.34a)

(2.34D)

(2.57)
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The term in Line (2.57) looks like the summand for & = 4 in the sum in Line (2.51); we
combine them and thus get Line (2.36). We sort the terms in Line (2.53) according to
whether h = k which yields Line (2.32), h < k or h > k, and get:

(2.31) + (2.34a-2.34b) + (2.35) + (2.37) + (2.38)

j—1 m ,G(j)

- u)y, |—C5 (o Z Cl ) CE (¢]) (2.36)
k=i 5:551@)_’_1 vfﬁll)—l—l
, ©)
i—1 m 1

=X D Y CHENCHE) (2.32)
h=1 5:6§h)+1 A/Zﬁgh)ﬂ
o ©)
i—2 1—1 m 1

- doou D> CHeNCEHe) (2.58)
h=1 k=h

Hlo=p®i1 =11

[\

- Sooul Y CHeNCHEY) (2.59)

i—2 -1 m B
Th=htls gy gy

T

We swap the summation indices k& and A in Line (2.59), and combine the result with Line
(2.58):

(2.31) + (2.32) 4 (2.34) + (2.35) + (2.36) + (2.37) + (2.38)
(J)

i—2 -1 m
>, Z CH(¢2)CE(9)) (2.60a)
h=lk=h+1 | 5_g®) 1 g4y
6(])
+ Z upe Y CEeMCH(e)) ¢ (2.60b)

s=6"+1  y=p"+1

Now we split the double sum in the curly brackets in Line (2.60b) in two according to
whether ¢ < ﬁfk) or o > ﬁfk). This makes the term within the curly brackets into

(k) €]
1 1

Soouh Yo ChenCHe)  (261)
s=p{"+1  y=p"+1
(J) (])

+ Z U Z Cl (o) C5(0])+ Z Uy, Z CEo7)C3(9]) - (2.62)

=" +1  4=p" 41 s=pM+1 4= 11
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Finally we factor out the second-order derivatives ug, in Line (2.62):

m 5(]’) B(j)
Soow | Y crencien+ Y CRencke)| . (262)
5=5§k)+1 'y—th)Jrl A/_ﬁgh)Jrl

Substituting (2.61+2.62") for the term in curly brackets in Line (2.60) shows Line (2.60)
equals Lines (2.33a-2.33b), and thus we see that our ansatz, Line (2.30), equals

(2.31) + (2.32) + (2.33) + (2.34) + (2.35) + (2.36) + (2.37) + (2.38) ,

which was to be shown. O
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Chapter 3

Vessiot Theory

In Definition 2.4.21, integral elements were introduced; an integral element is a lineariza-
tion for a local solution o of a differential equation R, in that imj,oc C R, implies
T,(im j,0) € T,R,, and T,(im J,0) is an n-dimensional integral element. Since for an in-
tegral element U, C T, R, there need not exist a local solution o such that U, C T),(im j,0),
those which are tangent to a prolonged solution are of special interest: for an involutive
distribution of integral elements, the Frobenius theorem guarantees the existence of a so-
lution. Now we introduce a distribution on R, which is tangent to all prolonged solutions
and then analyze the assumptions needed to construct n-dimensional involutive subdis-
tributions within it. If they exist, their integral manifolds are of the form im j,o for local
solutions o. The basic idea was proposed by Vessiot [43]. We show that his approach for
the construction of such infinitesimal solutions step by step succeeds if, and only if, the
differential equation is involutive. This proves the equivalence of Vessiot’s approach to
the formal theory.

3.1 The Vessiot Distribution

We can consider a differential equation R, C J,m as a manifold in its own right with an
atlas of its own. Then we can pull back any one-form w € 2*(J,7) to the differential
equation through the inclusion map ¢: R, — J,m and obtain a one-form in 2'(R,) as
follows. Let T'v: TR, — T'J,m be the tangent map of the inclusion map. For a description
in local coordinates, let (U, ¢r/) be a chart for R, with local coordinates ¢y (p) =: x where
peUandx = (z?:1<d< D), and let (V,4y) be a chart for J;7 with local coordinates
Yy () =y where £ € Vandy = (y9: 1 < g < @) and such that «(U) C V and
y9 = 9(zt, 22, ..., 2P). The representation of ¢ in local coordinates is 7 := ¥y o ¢ o ¢,
given by i(x) = y. Let be (x,%) local coordinates on TR, and (y,y) on T.J,m. Then
Tv: TU — TV has in these coordinates the form

Ji(x) .
o X) .

X — (Z(x),
This means, 7't can locally be described by the Jacobian matrix of z. For any p € R, and

99
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for all vectors v € T, R, set

(7w)p(0) 7= @) (T,) () -

Then any one-form w € 2'(J,m) which is defined on V looks locally like w = w,dy? for
some coefficient functions wy: V' — R. The pull-back of w then is in local coordinates

o
o

w w,dz® .

Only in the trivial case the inclusion map ¢ is a diffeomorphism. If it is, we can push
forward a vector field X on the differential equation R, to make it into a vector field on
the jet bundle J,m by setting

1, X =TroX o1 %

(We consider the vector field X as a section and therefore a map.) Otherwise we use
that ¢ is always injective and generalize the concept by considering the diffeomorphism
t: Ry — im(s). Now the push-forward of a vector field on R, yields a vector field on
im(¢) C Jym, though not in general on all of J,7. Just the same we write ¢,.X for such a

vector field instead of the more cumbersome notation T(X).

3.1.1 Representations of the Vessiot Distribution

By Proposition 2.1.6, for any point x € X and any section o € [ satisfying p =
Jq0(x) € J,m, the tangent space T,(im j,0) to the image of the prolonged section at the
point p € J,7 is a subspace of the contact distribution C,|,. If the section ¢ is a solution
of R,, it furthermore satisfies by definition im j,oc C R,, and hence T'(im j,o) C TR,.
These considerations motivate the following construction.

Definition 3.1.1. The Vessiot distribution of a differential equation R, C Jym is the
distribution V[R,| C TR, defined by

T(V[Ry]) = T(TR,) NCylr, -

The Vessiot distribution is sometimes called the “Cartan distribution” in the literature
(Kuperschmidt [27], Vinogradov [44]). By naming it after Vessiot, we follow Fackerell [15]
and Vassiliou [42].

Example 3.1.2. We calculate the Vessiot distribution for the first-order system of Ex-
ample 2.2.13. For coordinates on Jim choose x,t;u, v, w; Uy, Vg, Wy, Uy, Vg, Wy. Since 7251)
is represented by a system in solved form, it is natural to choose appropriate local coor-
dinates for Rgl), which we bar to distinct them: 7, ¢;u, v, w; v,, w,. The contact codistri-
bution for Jy7 is generated by the one-forms w® = du® — > u®dz’. Written out these

are

w! =du — updr — wdt, w?=dv—vydr —vdt, w?=dw— wydr —wdt .
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The tangent space TR, is spanned by 0Oz, 05, Oz, Oy, Og, Os, Opz, and we have TW/TR, =
span(0y, Op, Oy, Oy + Ouyy O + Ouy s Op, + O,y Ow, + Oy, ), which is annihilated by
w* = du, — dw, w® = dv, — dw, (corresponding to the integrability condition),

W =dw, —dv, and W' = du; —dv .

These seven one-forms annihilate the Vessiot distribution of Rgl), which is spanned by
the four vector fields

X1 = 0p +ug0y + 0,0, + W04 + V.0, + W0,
Xo = 0 + w0y + 040, + w0y + 10y, + W0,
X3 =0,, + 0y, and

X4 =0y, + Oy,-

Again (like the definition of integral elements), Definition 3.1.1 is not the usual def-
inition found in the literature. The following proposition proves the equivalence to the
standard approach.

Proposition 3.1.3. The Vessiot distribution satisfies V[R,] = (:*C7)°.

Proof. Let w € Cf} be a contact form, and let X be a tangent vector field on R,. Then
from basic differential calculus with push-forwards and pull-backs, it follows that

Cw(X) =w(tX) .
This means that X € (.*C;)" if, and only if, ., X € Cy|r,. Therefore
Tu((t*CY)°) = Tu(TR,) NCqlw, -

As the tangent map Tv: TR, — T'J,m of the inclusion map ¢: R, — J,m is injective, the
claim follows. O

The Vessiot distribution is not necessarily of constant rank along R,; we will restrict
to the case where its rank does not vary over the differential equation.

For a differential equation which is given in explicitly solved form, the inclusion map
t: Ry — Jym is available in closed form and can be used to calculate the pull-back of the
contact forms. (The linearization of the inclusion map ¢ is represented by the Jacobian
matrix.) This has the advantage of keeping the calculations within a space of smaller
dimension.

Example 3.1.4. Reconsider Example 3.1.2: the four vector fields
X1 = 05+ W0s + 00y + WaOp = Op + WOy + U205 + WyO,

Xy = O+ wmbs + 005 + Wby = O + 00z + W05 + V0,
)53 - aﬁa
Xy = O

span V[Ri] C TR, and satisfy ¢,X; = X; (as a simple calculation using the Jacobian
matrix for T shows). The vector fields X; are annihilated by the pull-backs of the contact
forms, t*w! = du — UydxT — Tdt, 1*w? = dv — T,dT — Tydt and *w? = dw — WLdT — Wydt.
(The pullbacks of the other four one-forms w?* to w” vanish on R;.)
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Remark 3.1.5. In Example 3.1.4 the only notable difference between the coordinate
expressions of the seven pulled back one forms (*w’ € 2'(R;) and their counterparts
wl € N'(Jyr) in Example 3.1.2 is the bar, which was introduced to show that we are
using coordinates on Rgl). Without this mark, in local coordinates the forms would
look alike, and this is why in the literature the pull-back of those forms is sometimes
called “restriction.” This is lax. It works out fine, as long as all equations of the lo-
cal representation of the differential equation R, are solved for terms of order ¢, but
if equations of lower order are present, there is a notable difference. If we added the
algebraic equation u = ¢"(x,t) to the system Rgl) in Example 2.2.13, the one-form w*
would look the same in local coordinates on Jym, but its pull-back onto Rgl) would be
W' = (Uy + g + 1)du — updT — ugdt. We shall therefore always bar the local coordinates
of the differential equation under consideration to distinguish them.

Instead of regarding the Vessiot distribution as a homogeneous space, we use that
it can be naturally split into two subdistributions, one of which is the symbol. This
subtle difference combined with the structure of the jet bundle provides the means for our
approach to the construction of linear approximations to the solutions of a differential
equation and to proving the existence of solutions.

Proposition 3.1.6. For any differential equation R, its symbol is contained in the Ves-
siot distribution: Ny C V[R,]. The Vessiot distribution can therefore be decomposed into
a direct sum

VIR, =N, ®H

for some complement H (which is not unique).

Proof. Let the differential equation R, be locally represented by &7(x, u@) = 0 where
1 <7 <t Since TW(V[Ry]) is defined as TW(TRy) N Cylr,, we have TL(V[R,]) C Cylr,-
According to Proposition 2.1.6, the vector fields (2.4) form a basis for C,. It follows that
for any vector field X € V[R,], coordinate functions a’, by € F(R,), where 1 < i < n,
1 <a <mand |u| = g, exist such that

LX = a0 1 hecr.

Since the differential equation R, is locally represented by ™ = 0, where 1 < 7 < ¢, from

the tangency of the vector fields in V[R,] follows that d®7(:,X) = t.X(®7) = 0. This

means (aiC'Z-(q) +b5,Ch)(®7) = 0, which can be considered as a system of linear equations
for the unknown coefficient functions:

C(P)al + CH(PT)be = 0 (3.1)

where 1 < 7 <t. The zero vector is trivially a solution for Equation (3.1). The solutions
for the case where all a’ = 0 are those for

CH@ ) =0 . (3.2)

The vector fields C% span V! ;. Since by Equation (2.4b) C% = 0,:, we obtain

(007 [Ouk )b = 0, the symbol equations (2.14). It follows that the symbol N as the
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vertical part of TR, is always contained in V[R,]. The symbol contains all the vertical
vector fields of the Vessiot distribution since a vector field of the form in Equation (3.1)
with at least one non-vanishing coefficient a® is transversal to both the fibration 7% and
the fibration 7/ ;. Any completion of a basis for the symbol to a basis for all of V[R,]
defines a complement H. O

Lychagin [29] and Lychagin and Kruglikov [26] discuss such a splitting of the Vessiot
distribution into a direct sum of the symbol and a transversal complement, too. (They
call the Vessiot distribution “Cartan distribution.”) We are going to use such a splitting
and the structure of the jet bundle for the construction of convenient bases.

When the equation is not given in solved form or readily transformable explicitly into
solved form, a basis for V[R,] is not easily available and calculations have to be carried
out within the larger space T'J,m containing Tt(V[R,]). A basis for this subspace can
always be found by solving a system of linear equations. We use that we can decompose
TuV[R,]) = Tu(N,) ® T(H) for some complement H as noted in Proposition 3.1.6. The
next proposition and its proof describe this construction of bases for Tw(N,) and T(H)
and thus of a basis for T«(V[R,]). Before we formulate it, we give a technical lemma
concerning distributions of vector fields which form what is called Jacobian systems.

Lemma 3.1.7. Let for the sake of formulating this lemma n and J be arbitrary natural
numbers, and let for 1 <1 < n and1 < j < J an n-distribution of vector fields be spanned
by the fields X; := Oy + Zj:nﬂ d0y5. (The vector fields X; are then in triangular form
and form a Jacobian system.) Then the distribution spanned by the X; is involutive if,
and only if, for all 1 < h,i < n the Lie-brackets [ Xy, X;| vanish.

Proof. The proof is a straightforward calculation. To keep it simple, let—without loss of
generality—the distribution be spanned by the vector fields

X1 =0,+ f0, and X;=20,+ g0, .
Then their Lie-bracket [X7, X5] is

[a:r + fo., 83/ + gaz} = [a:vv ay] + [a:vvgaz] + [fazv ay] + [fazagaz]

This Lie-bracket is a linear combination of X; and X5 (namely the trivial one) if, and
only if, it vanishes. O

We now hit upon such distributions when proving the aforementioned proposition.

Proposition 3.1.8. Let the differential equation R, be locally represented by O™ (x, ul?) =
0 where 1 <7 <t. Let dim V] | —dim Tw(Ny) =: 7. Then there are coefficient functions
&0 € F(Ry) and vector fields W, € Vi | \ Tu(Ny) such that for 1 < i < n and



64 3 Vessiot Theory

1<k<r= diqu the vector fields

X =C 4+ &W, and (3.3)
a=1
Yir= > (fnCh (3.4)
Iulzzlq

form a basis for Te(V[R,]) and additionally [W,, W,] = 0 and [V},Y)] = 0 for all 1 <
kEd<randl<ab<r.

Proof. We use a splitting Vﬂ'gfl = Tu(N,) ® W with some complement W and construct
appropriate bases for the symbol Tt (N,) and for W. Then we construct a basis for the
complement T't(H) from the basis for YW and the contact vector fields which are transversal
to the fibration over X

In Equation (3.2), we have 1 < a < m and |u| = ¢. For the coefficient matrix
(CH(P7)), the pair («, p) indicates the column and 1 < 7 < ¢ the row. The solution
space is the symbol T't(N,); let its dimension be r. Let the vectors (blfa,u)) for1 <k<r
be a basis for it. Then transform the matrix with these r vectors as rows into reduced
row echelon form. Let (Cfm u)) be the r rows in this new matrix. Then the vectors Y,
defined by Equation (3.4), still form a basis for T(N,). We have [Y}, Y]] = 0 because the
vector fields Y} span the symbol, which by definition is the intersection of two involutive
distributions and therefore itself involutive, and because according to their construction
the vector fields Yj form a Jacobian system.

To construct a basis for a complement W, consider the matrix with the vectors (¢ (ka,u))
as its rows. Any basis vector of the symbol, as we have constructed that basis, has coor-
dinates (Cé“a #)) with respect to the vector fields C'* and therefore contains as a component
some C* where (a, ) is the column index of a pivot (which equals 1) in that matrix. It
follows that those contact fields C} where (3,v) is not the column index of any pivot in
that matrix span Vg, \ Te(N). Since Cj = 0, s, they are linearly independent, too.
We number these vector fields from 1 to dim Vg, \ T't(N,) and set them equal to W,
according to their numbers a. The Lie bracket of any two such vector fields vanishes
because obviously [0,s, Ous] = 0.

To construct the vector fields X; which are to span a complement T«(H) to Tw(N,) in
Tu(V[R,]), we use that to be tangent to R, they have to satisty

Xi(@7) = G (@7) + ) EWa(97) =0
a=1

for all 1 < ¢ < n. This condition is equivalent to the solvability of the system of ¢ linear
equations

D EW(PT) = —CP(97)
a=1

for the 7 unknown coefficient functions &'. Any solution yields a basis of the form (3.3). O
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Remark 3.1.9. Prolonging a differential equation R, and determining its Vessiot dis-
tribution V[R,] are related operations, as the similarity of the necessary computations
suggests. According to the definition of the total derivative (2.8), the prolongation of R,
adds for 1 < i < n the following equations for R 41 to the local representation ™ = 0:

09" oD
Di al‘z Z Z O‘

0<|u|<q a= 1

= C9(P7) + Cg(qv)ugﬂi =0 .

These are the Equations (2.12) for g = i from the computation of formal power series
solutions where they are considered as an inhomogeneous system of linear equations for
the Taylor coefficients of order ¢ + 1 in the formal power series ansatz.

They resemble Equations (3.1) for the determination of the Vessiot distribution be-
cause the Vessiot distribution contains the symbol and the symbol equations are used in
the construction of formal solutions order by order as remarked in Example 2.3.17.

In a manner congruent with Arnold’s [3] classification of the points of an ordinary
differential equation R, into three kinds, the symbol matrix (M;), characterizes the class
of p € Ry as is demonstrated in Seiler [37]: if, and only if, the symbol vanishes (that
is, if the matrix (M;), has full rank m), the Vessiot distribution is transversal and has
dimension n = 1 at p (such a point p € R, is called regular). If, and only if, (rank M;), <
m but the augmented matrix (M, aa% + aaq: u,), has full rank m, the Vessiot distribution
is not transversal any more at p but still has dimension n = 1 (such a point is called
reqular-singular). And if, and only if, the augmented matrix at p does not have full rank,
the Vessiot distribution there has a dimension greater than one (such a point is called
irreqular-singular).

This property of calculating the Vessiot distribution helps in the analysis of singular
solutions; these are solutions that escape the representation for a general solution of a
differential equation. They may appear as envelopes of general solutions even for ordinary
differential equations (see Seiler [38], Section 4.1, for an example).

For an ordinary differential equation, an integral curve of its Vessiot distribution is
called a generalized solution. That is, a generalized solution is a curve in J,m, not in
E. A generalized solution may stem from a solution as it is introduced in Definition
2.2.5; then this curve projects onto the image of a section o : X — &£, and the generalized
solution is just the prolongation of a this solution in the usual sense. Whenever the Vessiot
distribution is transversal along the generalized solution, this is the case. Otherwise, the
projection of a generalized solution to & may be more intricate.

With regard to this relation between them, Equations (3.1) may be interpreted as a
projective version of the Equations

Did" = C\(P7) + CH(P sy, = 0. (3.5)

From this standpoint, prolongation is the affine calculation which is comparable to deter-
mining the Vessiot distribution as the projective calculation.

Now what helps in the analysis of singular solutions is the fact that for n = 1, when we
consider ordinary differential equations, this comparison is exactly the classical relation
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between the affine and the projective formulations. For a more thorough treatment, see

Seiler [37].

In general, V[R,] is not involutive (an exception are formally integrable equations of
finite type since the symbol of such a system vanishes), but it may contain involutive
subdistributions; among these, those of dimension n which are transversal (with respect
to the fibration 79) are of special interest for us—if any exist at all.

Example 3.1.10. We take up Example 3.1.2 again. The Lie-brackets of the vector fields
which span the Vessiot distribution are

[XlaXZ] - Uxau - wtau - (Ua: - wt)au - (utm - utx)au = 07
(X1, X3] = =0, — Oy,

(X1, Xy = =04 — Ou,,

[X27X3] - —3w - auz - [Xl,X4],

[X27X4] - —(% - 81” - [Xl, Xg],

(X3, X4 = 0.

Note that the bracket [Xi, X5] produces the integrability condition w; — v, = 0. The
vector fields [ X7, X3] and [ X7, X4] do not belong to the Vessiot distribution, which means,
V[R4] is not involutive. But the subdistribution spanned by X; and X, is. Its dimension
is 2 =n, and it is transversal with respect to 79.

Setting X3 =: Y] and X4 =: Y5 we have Y} = 0,, + 0y, and Yy = 0,, + 0y,, which
are of the form shown in Equation (3.4): here C(lw) = C(lw,t) = C(QM) = C(me = 1. The
complement to Tw(N;) in Vr} is spanned by Wy = 9,,,, Wo = 8,,,, W3 = 0,, and Wy = 0,,,,.
As

Xl - 890 + uxau + Uazav + wxaw + Uaraut + wxauxa
X2 = 815 —+ utﬁu + vt&, + wtﬁw -+ vtﬁut + wtﬁuz,

here we have £l = v,, € = w, and & = ¢ =0, and & = vy, &2 = w; and & = & = 0,
and the vector fields are of the form given in Equation (3.3). Obviously [Y7,Y3] = 0 and
(W, W,] =0 for all 1 < a,b<4.

3.1.2 Vessiot Connections

The reason why n-dimensional involutive subdistribution of the Vessiot distribution which
are transversal with respect to w9 are interesting is that they can be regarded as lineariza-
tions of prolonged solutions to the differential equation and conversely.

Proposition 3.1.11. If the local section o € I'tm is a local solution of the equation R,
then the tangent bundle T'(im j,0) is an n-dimensional transversal involutive subdistribu-
tion of V[Ry|limj,o- Conversely, if U € V[R,] is an n-dimensional transversal involutive
subdistribution, then any integral manifold of U has locally the form im j,o where o € I'rm
is a local solution of R,.
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Proof. Let o € I'm be a local solution of the equation R,. Then it satisfies by Definition
2.2.5 im j,0 C R, and thus T'(im j,0) C T'R,. Besides, by Definition 2.1.8 of the contact
distribution, for x € X with j,0(x) = p € J,m, the tangent space T,(im j,0) is a subspace
of Cy|,. By definition of the Vessiot distribution, it follows T},(im j,o) C Tw(T,R,) N Cyl,-,
which proves the first claim.

Now let U C V[R,] be an n-dimensional transversal involutive subdistribution. Then
according to the Frobenius theorem U has n-dimensional integral manifolds. By definition,
T(V[Ry]) € Cq4|r,: thus according to Proposition 2.1.9 for any integral manifold of i/ there
is a local section o such that the integral manifold is of the form im j,o. Furthermore,
the integral manifold is a subset of R,. Thus it corresponds to a local solution of R,. O

Remark 3.1.12. As we noted in Remark 2.3.15, a maximally over-determined differential
equation of order ¢ is equivalent to a connection on J,_;m. The images of its prolonged
solutions are the integral manifolds of the corresponding horizontal bundle. If R, is not
maximally over-determined, it does not define one connection; but now any n-dimensional
transversal (with respect to the fibration 79 : R, — X') involutive subdistribution of V[R]
represents the horizontal bundle of a flat connection for 7¢. In this sense, R, is covered by
infinitely many flat connections. For each of these, the Frobenius theorem then guarantees
that there is an n-dimensional integral manifold; by definition of V[R,], they are of the
form im j,o for a solution o of R,.

This observation is the basis of Vessiot’s approach to the analysis of R,: he proposed
to search for all n-dimensional, transversal involutive subdistributions of V[R,]. Before
we do this, we show how integral elements appear in this program.

Proposition 3.1.13. Let U C V[R,] be a transversal subdistribution of the Vessiot dis-
tribution of constant rank k. Then the spaces U, are k-dimensional integral elements for
all points p € Ry if, and only if, U, U] C V[R,].

Proof. Let {w1,...,w.} be a basis of the codistribution L*Cg. Then an algebraic basis of
the ideal Z[R,] is {w1,...,wy, dwy, ..., dw,}. Any vector field X € U trivially satisfies
w;(X) = 0 by Proposition 3.1.3. For arbitrary fields X, Xy € U, we have dw;(X;, Xs) =
X, (wl-(XQ)) - X, (wi(Xl)) +w; ([Xl, XQ]). The first two summands on the right side vanish
trivially and the remaining equation implies our claim. U

Definition 3.1.14. A subdistribution U C V[R,] satisfying the conditions of Proposition
3.1.13 is called an integral distribution for the differential equation R,.

In the literature (Fackerell [15], Stormark [40], Vassiliou [42]) the term “involution”
is common for such a distribution which, however, may be confusing since it may not be
involutive. For the same reason an integral distribution may be not integrable; the name
only reflects the fact that it is composed of integral elements.

The construction of integral distributions is the first step in our program. The second
step is the construction of involutive subdistributions within them.

Since the symbol N, of the equation R, is contained in the Vessiot distribution, we
can split the Vessiot distribution into V[R,] = N, @ H where H is some complement,
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according to Proposition 3.1.6. The decomposition of the full contact distribution into
ng_l, spanned by the vector fields given in Equation (2.4b), and a complement defining
a connection on the fibration 7¢: J,m — X, for example the complement spanned by
the vector fields given in Equation (2.4a), admits an analogy, which leads naturally to
connections on the fibration 79: R, — X Provided dim’H = n, the complement H to
the symbol N, may be considered as the horizontal bundle of a connection of the fibred

manifold R, — &
Definition 3.1.15. We call any such connection a Vessiot connection for R,.

The involutive n-dimensional subdistributions within V[R,] which interest us are ex-
actly such complements H. Since they have to be closed under Lie-brackets, our aim is
to construct all flat Vessiot connections. The existence of n-dimensional complements
(which are not necessarily involutive) follows from the absence of integrability conditions.
Indeed, this assumption more than suffices; the following proposition characterizes the
existence of an n-dimensional complement.

Proposition 3.1.16. Let R, be a differential equation. Then its Vessiot distribution
possesses locally a decomposition with an n-dimensional complement H such that

V[R,) =N, &H

if, and only if, there are no integrability conditions which arise as the prolongations of
equations of lower order in the system.

Proof. Let denote u,) the set of all derivatives of order ¢ only, and let R, be locally

represented by
P7(x,u?) =0,
qu { yo (¢—1)y
(x,ul"" ") =0,
such that the equations &7 (x, u?) = 0 do not imply lower order equations which are inde-
pendent of the equations ¥7(x,ul?"Y) = 0. Then the Jacobi matrix (07 (x,u?)/du,))
has maximal rank.
The ansatz (3.1) for the determination of the Vessiot distribution yields for the above
representation:

O )al + CH(PT)He = 0 (3.6)
C(w7)a’ = 0. (3.7)

Here, the matrix C*(27) has maximal rank, too; therefore the equations CZ-(q) (P7)a' +
CH(®7)b;; = 0 can be solved for a subset of the unknowns bf. And since no terms of
order ¢ are present in ¥°(x,uldY) = 0, we have C’i(q) (W7) = D¥°. Because the Vessiot
distribution is tangential to R,, we have D;¥? = 0 on R,. It follows that C’i(q)(lﬁ")ai =0
vanishes if, and only if, no integrability conditions arise from the prolongation of lower
order equations. And if, and only if, this is the case, then (3.6) has for each 1 < j < n
a solution where a/ = 1 while all other a’ are zero. The existence of such a solution is
equivalent to the existence of an n-dimensional complement H. O
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From this proposition follows that for the determination of the Vessiot distribution
V[R,], equations of order less than ¢ in the local representation of R, can be ignored if
there are no integrability conditions which arise from equations of lower order.

This result softens the assumptions used in Fesser and Seiler [17], Proposition 3.5,
where the following sufficient condition for the existence of an n-dimensional complement
is shown.

Proposition 3.1.17. If the differential equation R, satisfies Rél) =Ry, then its Vessiot
distribution possesses locally a decomposition V[R,| = N, ® H with an n-dimensional
complement 'H.

Proof. The assumption R, = Rél) implies that to every point p € R, at least one point
p € Ry with 787 (p) = p exists. We choose such a p and consider imT'g11(p) C T,(Jym).
By definition of the contact map I',;4, this is an n-dimensional transversal subset of
Cylp- Thus there only remains to show that it is also tangent to R,, as then we can
define a complement by T'u(H,) = imI';11(p). But this tangency is a consequence of
p € Rgyq1; using for example the local coordinates expression (2.3) for I', and a local
representation @7 = 0 of R,, it follows that the vector v; = T'y1(p, 0ri) € T,(Jym)
satisfies d®7|,(v;) = D;®7(p) = 0 and thus is tangential to R,.

Hence we have proven that it is possible to construct for each point p € R, a comple-
ment H, such that V,[R,] = (V,),® H,. Now we must show that these complements can
be chosen in such a way that they form a distribution (which by definition is smooth).
Our assumption R, = Rgl) implies that the restricted projection ﬁg“ i Rgt1 — Ry is a
surjective submersion, which means it defines a fibred manifold. Thus if we choose a local
section v : R, — Ry+1 and then always take p = v(p), it follows immediately that the
corresponding complements H, define a smooth distribution as required. O

Compared to the necessary and sufficient condition for the existence of suitable com-
plements H given in Proposition 3.1.16, Proposition 3.1.17 only gives a sufficient condi-
tion; on the other hand its proof is based on a geometrical argument while the one for
Proposition 3.1.16 does not refer to the contact map.

As we see, in local coordinates, it is the integrability conditions which arise as pro-
longations of lower order equations which hinder the construction of n-dimensional com-
plements, while those which follow from the relations between cross derivatives do not
influence this approach.

Example 3.1.18. Consider the differential equation R; in Example 2.2.11. It is locally
represented by the same equations like 7351) in Example 2.2.13, except that the integrabil-
ity condition w; = v, is missing. The matrix of T for the system R, has eleven rows and
eight columns—one additional column as compared to the matrix for the system Rgl). The
symbol T't(N7) of Ry is 3-dimensional, spanned by 9,,, 0y, and d,,, +0,,, while the symbol
TN, 1(1)) of Rgl) has dimension 2 and is spanned by 0,, + 0, and 0,,, + 0,,. But the one-
forms w*, w” and w" (and their pull-backs (*w" = du—uydT —udt, 1*w" = dv—v,dT —v;dt
and (*w" = dw — W,dT — Widt) are the same, and therefore the coordinate expressions
for the vector fields X; and X5 (and their representations X, = 05 + 0,05 + 0,05 + WaOy
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and Xy = 0; + ;07 + 005 + w0y in TR, and TR&I)) look alike (see Examples 3.1.2 and
3.1.4 for their representations). The integrability condition w; = v, does not influence
the results as it stems from the equality of the cross derivatives, u;, = v, and u, = wy,
not from the prolongation of a lower order equation.

Now consider the differential equation which is locally represented by

U=V, Vg=Wg, W=7y,
Ri: Up= W ,
U =x.

It arises from the system in Example 2.2.13 by adding the algebraic equation v = x. The
matrix for 7't has eleven rows and six columns, and for the pull-backs of the contact forms
we have

Wt = du — udT — wdt = df—@df—@df,
Vw® = dv — U5dT — vdt = dv — TydT — wedl |

UwY = dW — WLdT — Widl = dw — W,dT — T,dl .
Solving the corresponding system of linear equations, we arrive at the Vessiot distribution
V[R1] = span{ 0y, O, 007 + (1 — W)0p + (W (1 — W) + 00;)05 + (Va(1 — W) + 0W,) O} -

The vector fields di- and Oy span the symbol Nj; any of its complements in V[R;] is
one-dimensional—as the dimension of the base space is two, none of them can be an n-
dimensional transversal subdistribution in V[R], and none of them can be the horizontal
space of a connection.

The reason for this is that R is not formally integrable, as the prolongation of the
algebraic equation u = x leads to the first order equation u; = 0. Projecting the prolonged
system gives:

" W=V = =W, = wy=v, = 0,
Ry’ Up=w = 1,
U =2.

Now the symbol vanishes, and so do the pull-backs of the contact forms: *w* = dT—dx =
0, *w’ = dv =0, *w" = dw = 0. Therefore we find V[R,] = N1&H = {0} P®span{ds, ;}.
As the Lie brackets of 0; and d; trivially vanish, TRy = V[R;] = H = span{0d;, 0;} is a

two-dimensional involutive distribution.

In Proposition 3.1.8 and its proof we described the construction of an n-dimensional
complement, H, for the symbol T¢(N,), if the differential equation is represented by a
system @7 (x,u'?) = 0 which may be fully implicit. But if the local representation is given
in solved form, the approach can be simplified. The construction of a complement H is
easily possible for the class of differential equations which are represented in the following
special form. For such differential equations, the representation of R, in local coordinates
suggests a certain choice of a basis for H.
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Proposition 3.1.19. For the differential equation Ry, let be uj; = ¢ (x, u, ) a repre-
sentation where each equation is solved for a different principal derwatwe ug, with lul = q,
and where 09 denotes the set of the remaining, thus parametric, derivatives of order q.
(There are no equations of order less than q; in particular, there are no algebraic condi-
tions.) Let B denote the set of pairs («, /L) where uy, s a principal derivative. Then the

vector fields X; = 05+ > n_| > 0<ul<q Yit1, 8u—a satzsfy

Db 3T c@ener, 1<i<n, (3.8)
(a,p)eB
and generate a complement Ho for the symbol N, such that V[R,] = N, ® H.

Proof. According to Proposition 3.1.3, we have V[R,| = (L*Cg)o. The contact codistribu-
tion Cg is spanned by the one-forms

n
:dufj—ZugHidﬂ, 0<|pl<qg,1<a<m,

as given in Equation (2.6). The pullbacks of these one-forms are, for all 1 < o < m,

Zu,uﬂrldl‘zv O§|,LL|<(]—]_,
Vwy = duf — Z D1, dat — Z ul‘jﬂid; ) lu|l=q—1.
(a,p+1i)€B (onpu+1;)¢B

The space which is annihilated in T'R, by these one-forms is spanned by two sorts of
vector fields:
%7 (a7u)€67 1§O{§m, |ILL|:q’

which are vertical, and, for all 1 <i < n,

=Ont 3 a3 Waow, 0<hlse-1,

(aut1;)€B (apt1)

which are transversal. Therefore these two sorts of vector fields span the Vessiot distribu-
tion (+*C;))°. The push-forwards of the vertical vector fields are, for all (o, 1) & B where
1 <a<mand |u| =q,

L*% aua + Z 8(25& Uu .

(Byv)eB Yp

(3.9)

As we assume that the system is given in solved form, calculating these push-forwards
is the essentially same as solving the symbol equations (2.14) because of the form of the
Jacobian matrix for the inclusion map ¢: R, — J,7 in these local coordinates. Thus, the
vector fields % form a basis of the symbol N, and the corresponding vector fields L*%
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a basis for the symbol Tu(N,). To calculate the push-forwards of the transversal fields
X, we first consider the respective push-forward of each type of their summands. For all

1 <1 < n, we have

WO =0u + Y 000 s

*Ypi — Yt al_,l uﬁ )

(a,p)EB
and for (o, p), where 1 < o« < m and 0 < |u| < g — 1, the formula for the vector fields
L Oy looks like the one in Equation (3.9)—but mind that now the order of the multi-index

1 is less than q. From the expressions for ¢,0; and L*au—a it follows that for all 1 <17 < n,
we have

= Opi + Z 8H8“a+ Z D1, (Oug + Z 3¢a 9,)

(o,u)eB a,u+1;)EB
8(#3
+ D U (O + Z s 0s2)
(a,u+1;)¢B

What follows now is a straightforward calculation. Rearranglng the summands makes

axi + Z ¢u+1 Z u+la + Z

(a,u+1;)EB (a pu+1;)¢B (a,pt) GB
Y Y gl Y Y w2
(B)EB (a,ut1:)€B (B)EB (a,u+1:)¢B

We factor out in the second line. This yields

O+ Y 00wt Y ul Ot > Ou(d

(a,u+1;)EB (a,u+1;)¢B (a,n)EB
+ )% D 0w (@) Y i (6])0,
(:871’)68 ( 7:u‘+1 ) ( 7,“'+1'L)€B

Now we use that on the differential equation R, we have uj; = ¢, for all (a, ) € B. This
enables us to collect parametric and principal derivatives with summation indices of the
same kind into one sum for each kind. We arrive at

aﬂ+z S outOug+ D> SO+ > D> Uy ,0, ¢ (60)0ug

a=10<|u|<q (o,u)EB B=10<|B|<q
RS e e/
(o,p)EB
The last equality follows from Equation (2.4a), applied twice. O

When proving the existence theorems for integral distributions and flat Vessiot connec-
tions (Theorems 3.3.9 and 3.3.28), we reduce technical nuisances by transforming differen-
tial equations into equivalent systems of first order. For these, the results of Proposition
3.1.19 take the following form.
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Remark 3.1.20. A differential equation R; represented in the reduced Cartan normal
form (2.27) satisfies the assumptions of Proposition 3.1.19. In this case, from Equation
(3.8) follows that a reference complement H is spanned by the n vector fields

Xi=0s5+ Y 0=+ ) o, (3.10)
(ayi)EB (a,i)gZB

for which the push-forwards are

wXi =04 > aenc, 1<i<n (3.11)
(a,5)EB

3.1.3 Flat Vessiot Connections

Now we return to the general case where the differential equation R, is represented in
the form (2.7) and the equations of the system may be fully implicit. Any n-dimensional
complement H is obviously a transversal subdistribution of V[R,]|, but not necessarily
involutive. Conversely, any n-dimensional subdistribution H of V[R,] is a possible choice
for a complement, and Vessiot’s goal is the construction of all flat Vessiot connections. If
we choose a reference complement H, with a basis (X;: 1 < i < n), then a basis for any
other complement H arises by adding some vertical fields to the vectors X;. We follow
this approach in Section 3.3. For the remainder of this section we turn our attention to
the choice of a convenient basis of V[R,] that facilitates our computations.

As we already noticed in Example 3.1.10, the Vessiot distribution V[R,] may not be
involutive. Therefore it is understandable that its structure equations are important.
Therefore we begin our considerations by examining the structure equations of V[R,].
For VIR,] = N, ® H, the complement H may be not involutive, causing the Vessiot
distribution to be not involutive. Let

[V[Rq]v V[Rq]] = V,[Rq]

be the derived Vessiot distribution. Then, because TR, is involutive and therefore
TW(TR,), too, we have Tu(V'[R,]) € Tu(TR,) NC;lr,. Since the only non-vanishing
Lie brackets of contact fields in C, are

(O O] = B, |=q—1, (3.12)

it follows that, in local coordinates, we may extend a basis of Tt(V[R,]) to a basis of
the derived Vessiot distribution Tt(V'[R,]) by adding vector fields Z. in T«(TR,) NC|r,,
1 <e<C=dimV[R,] —dimV[R,]. Using Equation (3.12), for each ¢ we may linearly
combine the vector fields Z. from the vector fields d,e where |v| = ¢ — 1, which means
there are coefficient functions k%, € F(R,) such that

Ze = Ky, Oyo lv|=q¢—1,
and the derived Vessiot distribution now is

T\V'R,]) =TuVIR,]) ®span{Z.: 1 <c < C}. (3.13)
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The vector fields Z, may span a proper subspace in span{d,.: 1 < a < m,|v| = ¢ — 1}.
(For a formally integrable system of finite type V[R,| is involutive and thus C' = 0.)
To analyze the construction of flat Vessiot connections, we have to examine the structure
equations for vector fields in Tw(V[R,]). We exploit that they can be represented uniquely
as linear combinations of vector fields from bases for Tt (N,) and T¢(H) and first consider
the structure equations for these.

Lemma 3.1.21. Let the vector fields (Yy,: 1 < k < r) be a basis for the symbol Ti(N),
let TU(V[R,]) = TuN,) ® Tu(H) with some complement Tv(H), and let (X;: 1 < i < n)
be a basis for Tu(H). Let Tu(V'[R,]) be given as in Equation (3.13). Then coefficient
functions A?j, ij, o5, Al BY  Z6 . BE € F(R,) exist such that the structure equations
for the generators of the Vessiot distribution are

[Xi, X;] = ALX), + BLY, + 05,2, 1<i,j<n, (3.14a)
(X, V] =AL X, + BYY, + 557, 1<i<n, 1<k<r, (3.14b)
Y., Y] = BYY, , 1<kil<r. (3.14c)

Proof. Since the symbol Tw(N;) is defined as the intersection Vg | N Ty(TR,) of two
involutive distributions and thus itself an involutive distribution, there exists a basis
(K,Yg, e ,Yr) for it which is closed under Lie brackets. Thus, there exist coefficient
functions BY, € F(R,) such that (3.14c) is satisfied. Since the vector fields [X;, X;] and
(X, Yi] are in Tu(V'[R,]), the equalities (3.14a) and (3.14b) follow from equalities (3.13)

and T (V[R,]) = Tu(N,) @ Tu(H). 0O

In principle, in a concrete application it suffices to analyze the structure equations in
this form. Approaches so far (Fackerell [15], Stormark [40], Vassiliou [42]) are based on
Vessiot’s classical procedure [43] in that they do not use the decomposition Tw(V[R,]) =
Tu(N,) @ Tu(H) and thus have to analyze nonlinear equations (Section 3.2 shows the
details). Our ansatz yields linear equations (see Section 3.3), and they can be simplified
even further by way of applying Proposition 3.1.8 whenever its assumptions are met. Even
if they are not, it is always possible to choose appropriate bases in triangular form by
transforming the given bases into Jacobian systems by way of Gaussian elimination. This
makes our considerations in what follows easier.

Lemma 3.1.22. Under the assumptions of Lemma 3.1.21, there is a basis (Yi: 1 < k <)
for the symbol Tu(N) and a basis (X;: 1 < i <n) for the complement Tu(H) such that

X, Y] =552, 1<i<n, l<k<r, (3.14b)
Y, V]=0, 1<k il<r. (3.14¢")

Proof. Define the vector fields Y, by Equation (3.4). Then they form a Jacobian system
as was shown in the proof of Proposition 3.1.8. Since the symbol is involutive (as a
distribution of vector fields), it follows that [Y%,Y;] =0 for all 1 < k,I < r. Transforming
the vector fields X; into a Jacobian system yields vector fields X; for which the coefficient
functions flf] = A?k = 0. (Note that the X; as they are given in Equation (3.3) already
form a Jacobian system.) O
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Remark 3.1.23. So far we have considered differential equations R, which are repre-
sented by a system of equations which may be given in fully implicit form &7 (x,u?) = 0.
Our approach simplifies further, if in some d-regular local coordinates (x,u(®) on J,x
each of the equations in the representation (2.7) of R, can be solved for another principal
derivative. This induces a coordinate chart (X, ) on R,, and these local coordinates on
R, simplify the representation of the vector fields and distributions under consideration,
since then a particularly convenient choice for the fields Y; and W, exists. We can choose
for any 1 < k <r a parametric derivative uf of order |u| = ¢, that is, (a, 1) ¢ B, and set

Vi =Y =0 . (3.15)
Then Equation (3.14c’) is satisfied, because trivially [0z, d;6] = 0. Additionally, for any
1 < a < s (where s is the dimension of a complement W for T L(Ng) in V] _}) we can
choose a principal derivative u?, that is, (3,v) € B, such that

Wo =W, =0, .

The vector fields ¢,Y; =Y}, and W, combined then yield a basis for (Vai_,)|r,. Therefore
the vertical bundle (V7/_,)|r,, as an involutive distribution, can be decomposed into

(Vg )|z, = Te(Ng) ®@W, (3.16)

and W is again an involutive distribution. The distribution W is spanned by vector fields
{W,:1<a<s}, where s =), ﬁ(gk) equals the number of principal derivatives in the
representation of R, (using d-regular coordinates). Since the vector fields W, are chosen
in triangular form (as in Proposition 3.1.8), we have [W,,W,] =0 for all 1 < a,b < s.
Now the reference complement H, for N, within V[R,] can be chosen as follows.
(It need not be involutive.) Any basis of it must consist of n vector fields which are
mapped into contact fields by ¢, and which are transversal with respect to the fibration
77: R, — X. Among the generating vector fields (2.4), only the vector fields C’Z-(q)
transversal. And since the vector fields C¥ are Vertical for any complement H we can
construct a basis (X;: 1 < i < n) of the form ¢, X C(q) + &, Ch with some coefficient

functions &7, € F(R,) chosen such that X, is tangent to Ry. The vector fields C* also
span the Vertlcal bundle V], and hence we may use the decomposition (3.16) to further
simplify the basis of the complement H. By subtracting from each X; a suitable linear
combination of the fields Y} spanning the symbol N, we arrive at a basis (X;: 1 <1i < n)

for a coordinate-dependent reference complement Hy where
= CY tew, . (3.17)

This construction of a basis (Xi,...,X,,Y,...,Y,) for the Vessiot distribution V[R,]
means, the non-vanishing structure equations of V[R,] now take the simple form (3.14a’)
and (3.14b) with smooth functions ©f; and =3 in F(R,).

Example 3.1.24. We contmue Example 3.1.4 and compare the system’s representation in
local coordinates on R there with the one in local coordinates on J,m given in Example
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3.1.2. The Lie-brackets for the vector fields X; and Y} are given in Example 3.1.10. Now
the Lie brackets for X; and Y}, are

(X1, Xs] = 0,07 — 1,07 =0,
(X1, Xzl = -0y,

(X1, Xa] = 0, o
[Xo, X3l = —0p = [X1, X4,
(X, Xu] = —0p = [ X1, X3],
[X37X4] — 0

We have 1,0; = 8, + 0, and 1,05 = 9,, + 0,,. This expresses the fact that ,[X;, X;] =
(1. X, L*)_(j] for arbitrary vector fields X; and )_(j in TR,

The dimension of the base space X is n = 2. The two fields X; and X, are transversal
(with regard to the fibration #7: R, — X). Setting X3 =: Y; and X, =: Y, we have
Y] = 0y, and Yy = Oy, as proposed in Equation (3.15). They form a basis for A and
satisfy 1,Y] = 8,, + Oy, and 1Y = 9,,, + 0,,, which form the basis for T¢(N;) in Example
3.1.10. For the four principal derivatives we have the vector fields W, = @,,, Ws = 0,,,
W3 = 0, and W, = 9,,, spanning WW. We saw in Example 3.1.4 that

L*Xl - Xl - ax + ua:au + Uxav + wmaw + Umaut + wxauxa
L*XQ - X2 - 8t + utau + Utav + wtaw + Utaut + wtauxa

which are indeed of the form given in Equation (3.17) and form the basis for the reference
complement Hy (the coefficients & are as in Example 3.1.10).

Remark 3.1.25. For a first-order equation R; in reduced Cartan normal form (2.27) there
are no integrability conditions which arise as prolongations of equations of lower order as
there are no algebraic conditions. Thus it satisfies the assumptions of Proposition 3.1.17,
and it is possible to exploit the above considerations for the construction of flat Vessiot
connections explicitly. We choose as a reference complement Hj the linear span of the
vector fields X; given in Equation (3.11). According to Proposition 3.1.19, this is a valid
choice. Furthermore, the ¢, X; have the form given in Equation (3.17). Using the vector
fields given in Equation (3.15) as a basis for the symbol, we can explicitly evaluate the
Lie brackets (3.14) in the simplified form (3.14") on R;. Since the vector fields Z., which
are given by Equation (3.13) and appear on the right sides of the structure equations
(3.14), for ¢ = 1 may span a proper subspace in span{Jd,.: 1 < a < m}, about the exact
size of which we know nothing, we write them as linear combinations Z. =: k¢0,«. The
structure equations (3.14a’, 3.14b") then become
[Xi, Xj] = Ofjg Oua =: Of0ya 1<4,5<n, (3.14a")

(X5, Yi] = 25K 000 = Z5.0y0 1<i<n, 1<k<r. (3.14b")

Knowing the larger sets of coefficients Of, =, we can reconstruct the true structure

coefficients ©f;, = by solving the over-determined systems of linear equations

Zj’ —

c o o —-c a __ —«
Ofke =0 and  Zhkd = S5
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This is always possible since the fields Z. are assumed to be part of a basis for the derived
Vessiot distribution V'[R;] and therefore linearly independent. Thus there exist some
coefficient functions &, such that

O = 05k, and =i = ZhkK
When we calculate in local coordinates on R,, we can use that for a system in reduced
Cartan normal form ¢,0; = Oye for all 1 < o < m and set 1,7, := Z,.

In Section 3.3 we have to analyze certain matrices with the coefficients ©F; and Z§ as
their entries. It turns out that this analysis becomes simpler, if we use the extended sets
of coefficients 67 and = instead.

Lemma 3.1.26. If i < j, then we obtain for the extended set of structure coefficients O}
in local coordinates on Ry the following results:

0% =1{ (e (o) & B and (o) € B, (3.18)
0 S (ayi) € B and (a,j) €85 .

CiM(5) = € (07): (1) € B and (o) € B,
)

Proof. According to Equation (3.10), the Lie-brackets of the vector fields X; and X; are

@ %)
1 m By m
(X X =054 0)0m+ > wom, 05+ > &os+ Y uldg.
7=l y=B{"+1 s=1 5= 11
We now use that for 1 < 4,7 < mnand 1 < v, < m the terms 61—2(u_§), ¢7817(u_§)817,
u_;y@m(ug)% and [0+, 05] all vanish. Therefore what remains of the Lie-brackets is

(

By gy m
(X0, X1 = 05+ 610w+ Y, 0w ¢ (6)0F
5:1 L 'y:1 ,\/:ﬁgz)+1
s ( B m
“D_ %t 0at D W (6D
=1 6=1 5=p9) 41

\

In the curly brackets, we recognize C’i(l) and C’]Q). Now let ¢+ < j. Then ﬁli) < ﬁ%j), and
we have

B o
S bt 1 1
XL X =S e — S ()0
i=1 y=1
e

=S e -cPentos + > Moz

=1 560" +1
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The coefficients of the first sum are those for which both (v,4) and (v, j) are in B, while
for the coefficients of the second sum (9,7) ¢ B and only (4, j) € B. Thus, the coefficients
are as given in Equation (3.18). O

We collect these coefficients into vectors ©;;which have m rows each where the entries
are ordered according to increasing .

Lemma 3.1.27. If we set Y}, = Yhﬁ, then the extended set of structure coefficients =, in
local coordinates on Ry are

_Cg<¢?> (Oé,i) eB )
Z5 =4 -1 : (a, 1) ¢ B and (a,i) = (5, h) (3.19)
0 (i) ¢ B and (i) # (B.h)

Proof. According to Equation (3.10) and Equation (3.15) for g = h and Y, = Y/, the
Lie-brackets of X; and Y}, are

(i)
X, Vi) = [0 ® O WOy , O3] .

Since for 1 < h,i < mn and 1 < o, < m the Lie-brackets [0y, 03] vanish, and because
_ Up
0—5(u$) Oy = 0pi0ap0ya, what remains of the Lie-brackets is
U,

(@)
X Vi = =D 05600 — D Owbaslar
a=1

a:,@ii)Jrl
(4)
1
== Ch(¢})m — 05 .
a=1

Since for 1 < a < ﬁfi) we have («,i) € B and of the coefficients for ﬁfi) +1<a<monly
the one for (o, i) = (3, h) remains and equals —1, the coefficients are as given in Equation
(3.19). 0

Remark 3.1.28. Some of the —C%(¢{") where («, 7) € B vanish, too: all of the parametric
derivatives on the right side of an equation @¢ in the reduced Cartan normal form (2.27)
are of a class lower than that of the equation’s left side as otherwise we would solve
this equation for the derivative of highest class. This means —C’g(gbf‘) = 0 whenever
i = class(u®) < class(u)) = h.

We collect the coefficients =7} into matrices =; using ¢ as the number of the matrix to
which the entry = belongs, a as the row index of the entry and k as its column index.
These matrices have m rows each, ordered according to increasing «, and which have
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r = dim N1 columns each of which can be labelled by pairs (3, h) ¢ B or the symbol fields
Y, = Y,f} . More precisely, for 1 < h < n, we set

~Cly (01 =Cllay (1) - —Ch(e))

—_Ch 2 —Ch 2 e O (2
C %h)_f_l((bz) Cﬁ§h)+2<¢z> Cm<¢z> . [:']h (3 20)
h | Y) h . 6@ ; h : 6§”

_th)ﬂ((bz‘ ) _Cﬁﬁhuz((bi ) o —Cn(et)

Such a matrix with an upper index h collects all those =% into a block where («, i) € B.
For any 1 < 7 < n, we have m — 59 = agi), so such a matrix has ﬁy) rows and agi)
Mi< B < m, we have —C’g(gbla) =0,
such matrices [Z;]" where i < h are zero. Furthermore, for 1 < h < n, we assemble
the remaining terms =9 (which are those where («,7) ¢ B) in a matrix. As above, let
Y, = Yhﬂ , and denote any entry =% accordingly, for the sake of introducing the following

matrix, by ZEZ‘“ Now set

columns. Since, for any h with ¢ < h and for all f

h —BI41 =841 h =641
ﬁgh)_’_l‘_’i Bih)_’_z‘_'i T om—g
h 642 p —6 42 h =B +2
(M) g i M 9~ T om—d - [Ez]h
h —m h —m [
) 4= () 49 =i S

Y') rows and

For any 1 < h < n, such a matrix with the index h written below has «
agh) columns. Let for any natural numbers a and b denote 0,4, the a X b zero matrix.

According to equation (3.19), we have

5] —ﬂagi) ch=u1,
Zilh = . .
Oagi)xagh) ch 75 7.

Using the matrices [Z;]" and [Z;];, as blocks we now build the matrix

s- () B B

Taking into account what we have noted on its entries this means

_ [52]1 [5@.]@'—1 [52]2 0---0
:i:( 0o .- 0 1@ 0---0) " (3.21)

A sketch is of such a matrix =; where the entries which may be different from zero are
marked as shaded areas and —1 ;) as a diagonal line is given in Figure (3.1).
1
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0---0
0---0
1 2 i—1 i n h
P ol Py ol

Figure 3.1: A sketch for =; in Equation (3.21).

For all h where 1 < h < n, we call the block [Z;]" in = stacked upon the block [Z];, in
=, the hth block of columns in =;. For those h with ﬁfh) = m the hth block of columns is
empty. Now the symbol fields Yhﬁ , or equivalently the pairs (3, h) & B, are used to order
the dim A; = 7 columns of =;, according to increasing h into n blocks (empty for those h
with agh) = 0) and within each block according to increasing 3 (with ﬁfj Jp1<p8< m).

Remark 3.1.29. This means, the columns in =; are ordered increasingly with respect
to the term-over-position lift of the degree reverse lexicographic ranking. Therefore, the
entry —C" a4 (¢ ) stands in the matrix =; in line «, in the Ath block of columns of which

it is the vth one from the left. Entries different from zero and from —1 may appear in =
only in a [Z;]" for h < i. To be exact, for any class i, the matrix =; has ozg) rows where

all entries are zero with only one exception: for each 1 < /¢; < ozgi) we have

—B+e;

S =
where / := Zh 1 a1 ) 4 ¢;. The entries in the remaining upper ﬁl rows are —C’B(gba)
The potentially non-trivial ones of them are marked as shaded areas in Figure (3.1).

Note that for a differential equation with constant coefficients all vectors @;; vanish
and for a maximally over determined equation there are no matrices =;.
The unit block of al rows, 1 o leads immediately to the estimate

ol < rank Z; < min{m, Z al
h=1

Considerations of the rank for such matrices =; are at the heart of the proof of the
existence theorem for Vessiot connections, Theorem 3.3.9.
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3.2 Constructing Flat Vessiot Connections I: Recent
Approaches

For easier comparison, we summarize in this subsection approaches from the modern
literature (Fackerell [15], Stormark [40], Vassiliou [42]) on the subject of constructing the
Vessiot distribution. Let R, C J,m be a differential equation of order ¢ and dimension
E, and let V[R,] denote its Vessiot distribution. Let V[R,| be D-dimensional, generated
by the vector fields Xy where 1 < d < D. If V[R,] is an involutive distribution, then as
mentioned in Remark 2.1.11, according to the Frobenius theorem it has D-dimensional
integral manifolds. Therefore there are £ — D functions ¢7: R, — R such that

X" =0, 1<d<D,1<7<E-D,

and the real constants ¢, = @ define a family of integral manifolds for the Vessiot
distribution. If, on the other hand, V[R,] is not an involutive distribution, the aim is
to construct involutive subdistributions U of greatest possible dimension n < D within

V[R,]. Let U be spanned by the vector fields
U =¢'X,, 1<d<D,1<i<n, (3.22)

where ¢! € F(R,). Let Z., 1 < ¢ < C, be vector fields such that V'[R,] = V[R,] ®
span{Z.: 1 < ¢ < C}. Then the structure equations for the vector fields X, generating
V[R,] are

(X4, X] = AL X+ O% Z, (3.23)

for certain functions A7 05, € F(R,). (Note that the conditions (3.23) are more com-
plicated than those given in Equations (3.14’) since here the generating vector fields Xy
do not form a Jacobian system. Stormark [40] does consider a system in triangular form
and therefore has [X4, X.| = ©5.Z..) It follows that the structure equations for the vector
fields U; generating U C V[R,] are

U, U)) = 56 — 0605, Z + {Uel) - Uy(e)) + €l AL, } X,

where 1 < f < D and 1 < 4,j < n. (We have %({f{j — §Jd§f) = fldfj) The vector
field [U;, U;] lies in the Vessiot distribution if, and only if, for 1 < ¢ < C the algebraic
constraints

(&l¢5 — &/enog. =0 (3.24)
are satisfied. It lies in U/ if, and only if, additionally there are functions l/ihj, 5,]: € F(Ry)

such that for [U;, U;] = viU), = VZ{,{X 7 the differential constraints

Uieh) — Uyl + glecAl, = vlie] (3.25)

are satisfied. (Turning the U; into triangular form makes the terms v/; and §Zd§jA§e vanish,
as is done in Stormark [40].)
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The algebraic constraints (3.24) are satisfied if there are functions 77?]» € F(R,) such
that [U;, U;] = 0, X4. Another way to write this is

U;,U;] =0 mod V[R,] .

In the literature [15, 40, 42], two vector fields U,V € V[R,] are said to be “in involution,”
if [U,V] =0 mod V[R,]. A set of linearly independent vector fields {U; € V[R,] : 1 <
i < I} which are pairwise in involution is called an “involution of degree I”. The most
general involution of degree [ is called an “involution of order I.” Vessiot’s approach to
construct the involution of order I in V[R,] is to consider the vector fields which are to
be pairwise in involution,

[U1,Us] =0 mod V[R,] ,
U1,Us) =0, [Us,Us] =0 mod V[R,] ,
[Ul,U[]EO, [UQ,U[]EO,...,[U[_l,U[] modV[Rq],
and solve this series of congruences successively. First set U; := £{X; with coefficient

functions & € F(R,) for the general representation of a vector field in the Vessiot distri-
bution (which means, the functions £¢ are not constrained). Then set U := £4X,; € V[R,]
for yet unknown coefficient functions ¢? € F(R,) which yield for

[U1,U] =0 mod V[R,]

the most general vector field U as a solution. If U = RU; is the only solution, then the
subdistribution of maximal dimension & C V[R,] is an involution of order 1. A one-
dimensional subdistribution is trivially involutive. In this case [U,U] C U, so there is no
need to consider the differential conditions (3.25). Otherwise set U =: U,y. Then U; and
U, make an involution of order 2. Next construct U = £9X,; as the most general solution
of the congruence

[U1,U] =0, [Uy,U]=0 mod V[R,].

There already are the two solutions: U = U; and U = Uy; if there is another, linearly
independent, solution, then set U =: Us, and V[R,] contains an involution of order at least
3. Proceeding this way, one constructs from an involution of order ¢ — 1 an involution of
order i by calculating U; as the most general vector field U to solve the congruence

[Ul,U] = 0, [UQ,U] = O,. PN [Ui_l,U] =0 mod V[Rq]

if there is such a U; which is not already an element of the involution of order ¢ — 1. If
there is no such U;, then V[R,] contains an involution of order i — 1 only.

For a subdistribution & of dimension at least 2 satisfying [U,U] C V[R,], the differ-
ential conditions (3.25) have to be satisfied, too, if U is to satisfy [U,U] C U as well.
Vessiot proves the existence of the necessary functions l/ihj and {,{ to solve this system
of differential equations using the Cauchy-Kovalevskaya theorem. It follows that, if the
algebraic conditions (3.24) are met, for analytic equations (3.25) there are i-dimensional
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subdistributions U which are closed under the Lie bracket. Then from the Frobenius theo-
rem follows that there are i-dimensional integral manifolds which correspond to solutions
of R,.

For all 1 <14 < I, the set of algebraic conditions

[U,U] =0, [Uy,U]=0,...,[U;,U =0 mod V[R,] (3.26)

forms a system of linear equations in the unknowns fd where 1 < d < D. Let r; denote
the rank of this system. As the system for determining U in step i is contained in the
system for determining U in step j if ¢ < j, we have the chain of inequalities

TlSTQS...<r.

— I

for all 1 < ¢ < I. For all 7, the difference r; — r;_; shows the increase in the rank of the
system combined from all systems (3.26) up to ¢ and are called “characters of V[R,]”.
We shall see in Section 3.3 that these differences are indeed the Cartan characters a((f) of
the differential equation R, if the symbol N, is involutive. The sum Z; a((}k) then gives
the rank of the combined system up to step ¢ and is called an “index of V[R,]|” in the

literature [15, 40, 42], but this does not correspond to our notion of an index introduced
in Definition 2.4.23.

3.3 Constructing Flat Vessiot Connections II: A New
Approach

In this section, we develop an approach for constructing flat Vessiot connections which
improves the recent approaches in so far as we exploit the splitting of V[R,] suggested
by Proposition 3.1.6 to introduce convenient bases for integral distributions which yield
structure equations that are simpler than those in Equation (3.25), which are derived by a
procedure where no such splitting is used. As a consequence, we know from the beginning
the maximally possible dimension of an integral distribution (it is dim X +dim N,) whereas
in recent approaches the dimension is assumed to be unknown at the outset. We give
necessary and sufficient conditions for Vessiot’s approach to succeed.

We discuss the general case when the system is not necessarily represented in solved
form (as is the case with recent approaches; Fackerell [15] and Vassiliou [42] consider
special kinds of systems, like hyperbolic equations, where such a solved form naturally
appears). In particular, we distinguish throughout whether the additional vector fields Z.
for the derived Vessiot distribution are in TR, or in Tt(TR,)NC; |r,; this distinction is not
necessary in these recent approaches since for a system given in solved form coordinates
on R, are used.

3.3.1 Structure Equations for the Vessiot Distribution

Let the differential equation R, locally be represented by the system &7 (x,u'?) = 0
for 1 < 7 < t. Our goal is the construction of all n-dimensional transversal involutive



84 3 Vessiot Theory

subdistributions ¢ within the Vessiot distribution V[R,]. Taking some basis (X;,Y}) for
TuV[R,]) = Tu(N,) ® Tu(H), such that the vector fields Y} are a basis for the symbol
T(N,) and the vector fields X; are a basis for some complement 7't(H), we make for the
basis (U;: 1 <i < n) of such a distribution ¢/ the ansatz

U= X, + CfYk (3.27)

with yet undetermined coefficient functions (¥ € F(R,). This ansatz follows naturally
from our considerations in Proposition 3.1.8 and Lemma 3.1.22, as the fields X; are
transversal to the fibration over X and in N, and all fields Y} are vertical.

Lemma 3.3.1. Let the functions A?j, fl?e, BP éfe: By, ©5; and =5, be given as in the

157 %

structure equations (3.14) for the Vessiot distribution. Set
A+ GG = GAf = T
Then for the n vector fields U; given by equation (3.27), the structure equations are:
[U:, U;] = ITU,

+ (BY + (Bl = G B — GG B + UG) = Uy (KD = Ty, (3.28)

+(05 + GE5 — GCER) Ze -
Proof. The proof is a straightforward calculation. We give it just because the result is
not obvious at first glance. Using U; = X; + (¥Y}, we have

(Ui, Uj] = [X3, X] + GIXa, Vil + Xa(GHYe = X, Ya] = X5(GF)Ya
= GGV Y] = GYACHYi + CFYa(G)Ye -

From the structure equations (3.14) follows that this equals

AL Xy, + BLY, + 65, Z.
+ CALX) + CEBYY, + (S E5Z + Xi(C)Y,
— (AL X, — CFBYY, — (P 55,2 — X;(CH)Ya
— GCEBRY, — GYe(CH)Ye + ¢FYR(G)Ye -

Factoring out, changing summation indices where necessary and using (3.27), we arrive
at

(A?j + Cf/i?z - Cz‘k;l?k)Xh
+ (B + (Bl — ¢ By, — (¢ B + Ui(¢)) = U ()Y,
+ (65, + (55 — CFE5) 2.

Now the claim follows from X, = U, — (Y, and the definition of F@]; O
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Now we can give a criterion for a distribution U to be an integral distribution or even
integrable.

Corollary 3.3.2. Let U € V[R,] be a subdistribution with a basis of the form (3.27).
Then U is an integral distribution if, and only if, the vector fields U; satisfy the algebraic
conditions

Gy =05 — C + ﬂkC =0,

<c<
{1—6—0’ (3.29)

1<i<j<n.

The subdistribution U is integrable if, and only if, it additionally satisfies the differential
conditions

;= Ui(¢7) = U5(¢7) {lépéh
P 14574 k pp 0k pP P h ; ; (3-30)
+ Bi; + (B, — ¢’ By, — (6’ By, — G 15 =0, I1<i<j<n.
Proof. If, and only if, the algebraic constraints (3.29) are satisfied, from the structure
equations (3.28) and N, C V[R,] follows that [U;,U;] € V[R,]. Now the claim for the
first part follows from Proposition 3.1.13.

And if, and only if, additionally the differential constraints (3.30) are satisfied, from
the structure equations (3.28) follows that even [U;,U;] € U. By definition of the Y,
and Z,, these fields are linearly independent, so their coefficients in Equation (3.28) must
vanish for ¢ to be involutive. O

Whenever the vector fields U; can be constructed in triangular form—which is the case
for a system given in the reduced Cartan normal form (2.27)—their structure equations
become especially simple. Then the criterion of Corollary 3.3.2 simplifies as well.

Corollary 3.3.3. Let U € V[R,] be a subdistribution with a basis of vector fields (3.27)
where the X; and Y}, are in triangular form—for example as they are given in Equations
(3.3, 3.4). Then U is an integral distribution if, and only if, the vector fields U; satisfy
the algebraic conditions (3.29), and integrable if, and only if, they additionally satisfy

1<p<r

. p — . p = - - ’ /

- =0, {EPET (3.30)

Proof. The first equivalence (for & being an integral distribution) has been shown in

Corollary 3.3.2. Now let the algebraic conditions (3.29) be met and let U be integrable.

Since the fields X; are in triangular form, so are the U;, and therefore the distribution U

is involutive if, and only if, all Lie brackets [U;, U;] vanish. What remains of Equation
(3.28) is

0= IU, + (B + (B, — ¢FBY, — CE¢EBY, + Ui(Ch) — Ui(¢D) — oIy,

Since the X; and Y} are in triangular form, the structure equations (3.147) can be applied.
This means that the functions I}, ij, BY, and B, in (3.28) vanish.

Conversely, if the algebraic conditions are met and all U;((}) — U;(¢}') = 0, then what
remains of Equation (3.28) contains only terms which vanish according to the structure

equations (3.14"), and it follows that all [U;, U;] = 0. O
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This form, (3.30"), of the differential conditions is simpler than those in some recent
approaches [15, 42], given in Equation (3.25), where the advantage of having a represen-
tation of the differential equation in solved form was not used to construct the generating
vector fields as a Jacobian system.

Example 3.3.4. We continue Example 3.1.10 which goes back to Example 2.2.2, the
wave equation, which was rewritten as an involutive system of first order. Here n = 2.
The two fields X; and X, are transversal (with regard to the fibration over X'). Setting

Uy =X+ Y+ Y and Uz = Xp + (Y + GYo
according to our ansatz in Equation (3.27), we have

[U1, UQ] = (Ua: - wt)au
+ (C12 - C21>(8v + &Lt) + (Cll - <22>(8w + 8uz)
+ (U1(G3) = Ua(¢))Ya + (U1(E) — Ua(¢D))Ya -

This yields the algebraic conditions (2 — ¢4 and ({ — (3 and the differential conditions
Ui(¢3) — Ua(¢)) and Uy (¢3) — Us(¢3). Tt also yields the integrability condition w; = v,.

In the algebraic conditions (3.29) the true structure coefficients Oy, =5, appear. For
our subsequent analysis we follow Remark 3.1.25 and replace them by the extended set
of coefficients OF;, =7 . This corresponds to replacing (3.29) by an equivalent but larger
linear system of equations which is simpler to analyze.

The vector fields Y} lie in the Vessiot distribution V[R4]. Thus, according to Propo-
sition 3.1.13, U is an integral distribution if, and only if, the coefficients ¢! satisfy the
algebraic conditions (3.29). This observation permits us immediately to reduce the num-

ber of unknowns ¢} in our ansatz.

Lemma 3.3.5. Let 1 <i < j <n, and let

WYiaw =0+ D E0M0s and WVian =0 + D E0N0, (3.31)
(B:m)EB (B,u)EB
lul=q lul=q

be vector fields from the symbol of the differential equation R, such that x +1; = A +1;.

Then the coefficients in the algebraic conditions (3.29) are interrelated by ¢ ;a’ﬁ) =( (:d)

)

Proof. Let o be a local section with ¢ = (x,s(x)) for some appropriate function s =
(s*:1 < a<m). Let the Taylor-expansion of s* at xg € X be s%(x) = ¢ (x —xo)"/u!l. If
o is a solution to R, then im j,o is an integral manifold of an n-dimensional transversal
involutive subdistribution &4 C V[R,]. This means, at xo € X with p := j,0(x¢), we
have T,(im j,0) = U,. Now we use the relation between the tangent space of the gth
prolongation of ¢ and the prolongation of order ¢ + 1 which is given by the contact map
(see Remark 2.1.7): let p := j,410(x¢). Then Tw(U,) =im ' 11(p).
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According to Remark 3.1.23 we can choose vector fields Y;, and X; which generate the
symbol and an n-dimensional reference complement and satisfy

L Xy = Cl,(q) + Z Si(ﬁw)aug and 1Y, = Yiau = (‘)ua + Z 5(6 ”)8 ¥

(B)eB (Br)eB
lvl=q lvl=q

for 1 <i<nand (o, ) ¢ B with || = ¢ such that the vector fields
Ui=C" +6Wat (Y (3:32)

are a basis for ¢. (We have again W, = 0,5 for all (3,v) € B where |v| = ¢.) This
means U;|, = I'y41(p, 0,:) according to the interpretation of I';1; as an evaluation map.
It follows from the coordinate form (2.3) of the contact map

+Z Z uy _C(q)‘P_'_ZZCqul ua‘p .

=1 0<|ul<q+1 o=l |u|=q

i prm— 11,‘7'

Here we use that u%,, = 9W"*ils*(x)/dx*! for the prolongation jei10: X — Joum,
which equals ¢, ;, when evaluated in xo. Using W, = Wia,) = Oug for (o, ) € B, the
comparison with U; as given in Equation (3.32) yields for the summands of order ¢

(6% (0%
z : Cu+1ia“ﬁ+ z: Cu+1ia“ﬁ

(e,p)eB () B
lul=q lul=q
(e, ) ,
Z & ap) t Z C ot) ( ug t Z §( W(ﬁ, )
(a,n)EB (a,n)EB (B,v)EB
lul=q lul=q lvl=q
(Bv) a B a
- X (4 T e Won+ T o,
(Bv)eB ()8 (o) B
lvl=¢ \u\ =q lul=q

It follows that if (3,v) € B, then
zx+1 _gﬁ’f + Z C(aﬂ (ﬁ:u)’

(a,p)ZB
lul=q
and if (o, p) € B, then
C(a )
u+1
We conclude that if L*Y(a x) and L*Y(a » are as in Equation (3.31) and if K + 1; = A + 1,
too, then the coefficients are interrelated by ((a ") = Chpr, =y, = ¢V, O
For the special case when ¢ = 1 and therefore |k| = |A\| = 1, this means the following.

Assume that we have values 1 <i < j <nand 1 < a < m such that both (a, ) and (a, 7)
are not contained in B, which means both uf and u§ are parametric derivatives (and thus
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the second-order derivative ug;, too). Then there exist two symbol fields ¢.(0;) = Y(a.)

and ¢,(04=) = Y(a,j)- In the notation of Lemma 3.3.5, we have i = x and j = X if, and only
J

if, Kk +1; = A+ 1; holds. If we set Y}, = Y(, ;) and ¥} = Y, ;) and assume x + 1; = A+ 1;,

then according to Lemma 3.3.5 their coefficients satisfy
C]k = ¢! or, equivalently, C](a’i) = Cl-(a’j) . (3.33)

Now it follows that U, spanned by the vector fields Uy, = X}, + (FY; for 1 < h < n, can
be an integral distribution if, and only if, (f =(foralll<i<j<nandl1<klIl<r.

Remark 3.3.6. The matrix for the system of linear equations which forms the algebraic
conditions (3.29) is

El 52 _@12
51 53 _@13
= =3 —6a3
51 54 _@14
:2 :4 _@24
=3 S —6Os1 | (3.34)
:1 En _@171
:2 En _@271
Enfl En _@nfln

(Empty spaces mark zero entries.) For all 1 < i < 7 < n, the columns of the matrices
Z; in Equation (3.29) can be labelled by the indices 1 < [ < r of the unknowns ¢!. We
use this to label the columns in the matrix (3.34), except for the first r columns, which
make up the stack of matrices from =7 to =,_1, and the last column, which contains the
entries of the vectors —@;;, as follows. If an entry X of a column which we want to label
is non-trivial, it appears in some matrix =; and has a label ¢} indicating its column in =
by (. This matrix =j is right to some =; in the matrix (3.34) with ¢ < j, and this ¢ is the
same for all non-trivial entries in the whole column in the matrix (3.34) which contains
the entry X. Therefore it is possible to label that column by ¢!. So far, the order ¢ has
been arbitrary. Now let ¢ = 1. Then the label ¢! is equivalent to a pair (a,ij) where
(o, j) corresponds to [ and ij is a multi-index of second order. Another way to write this
label is by using the symbol field Y;§ from the representation of the prolonged system R..

Now the identification shown in Equation (3.33) means that in the matrix (3.34)
several pairs of columns share their label and have to be combined into one (those which
are labelled by ¢ ](»a’i) and Ci(a’j ) or, equivalently, by Y;5 and Y}}). This leads to a contraction
of the matrix (3.34). We introduce now contracted matrices =, which arise as follows:
whenever C]k = (!, then the corresponding columns of the matrix (3.34) are added. If the
column labelled [ is left to the one labelled k, we enter the resulting column instead of the
one labelled ¢! and cancel the column labelled ¢ Jk The matrix which is made in this way

from a matrix 5, which appears as a block in the matrix (3.34) is denoted =),. Similarly,
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we introduce reduced vectors fh where the redundant components are left out. From now
on we always understand that in the equations above this reduction has been performed.
Mind that the notation =), just shows that the matrix =) has changed because we now
take the equalities (3.33) into account; it may denote different matrices, as =, may appear
as a block of the matrix (3.34) several times and therefore may be affected in different
ways by different contractions. We analyze this point in detail in Subsection 3.3.4.

According to these considerations, the existence of flat Vessiot connections is equivalent
to the solvability of the combined system of conditions (3.29, 3.30). The conditions
themselves are easily derived for a differential equation R,, and in our approach the
algebraic part (3.29) is an inhomogeneous linear system in the unknowns ¢ and therefore
poses no problem. The differential conditions (3.30) form a quasi-linear differential system
for the functions (¥, with an inhomogeneous term consisting of linear and mixed-quadratic
expressions for the functions (¥ which vanishes for our special ansatz of Lemma 3.1.22
when the differential conditions simplify to (3.307).

3.3.2 The Existence Theorem for Integral Distributions

Now the question arises, when the combined system (3.29, 3.30) has solutions. We begin
by analyzing the algebraic part (3.29). The solvability of the differential conditions is
discussed in Subsection 3.3.7. Given the linear system (3.29) for the vectors ¢; and (j,
we now seek to build a solution step by step with j increasing and 1 < i < 5 for each j;
this step-by-step approach is Vessiot’s [43] original proposal, and we are going to examine
the necessary and sufficient assumptions for it to succeed. According to Lemma 3.3.5, we
may replace (5 by 52 since for the entries (2(6 D Where 5%2) + 1 < g < m we know already
that CQ(B D — Cl(ﬁ 2 Thus we begin the construction of the integral distribution i by first
choosing an arbitrary vector field U; and then aiming for another vector field U, such
that [Uy, Us] € Tu(V[R,]). During the construction of U, we regard the components of
the vector (; = él as given parameters and the components of CAQ as the only unknowns
of the system

~

516 = 55ly — 613 . (3.35)

[1

Since the components of él are not considered as unknowns, the system (3.35) must not
lead to any restrictions for the coefficients (¥. Obviously, this is the case if, and only if,

rank =, = rank(é’l ég) ) (3.36)

Assuming that (3.36) holds, the system (3.35) is solvable if, and only if, it satisfies the
augmented rank condition

rank =, = rank(él =, —619) . (3.37)

Assuming we have succeeded in constructing Us, the next step is to seek yet another vector
field Us such that [Uy, Us] € Tu(V[R,]) and [Us, Us] € TW(V[R,]). Now the components of
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both vectors 61 and 62 are regarded as given, and the components of ég are regarded as

the unknowns of the system

Z1( = 53¢ — O3,

Zls = Zsly — Oys . (3.38)

Now this system is not to restrict the components of both él and 62 any further; again,
the conditions on the ¢; following from the condition (3.33) for the existence of integral
distributions, following from Lemma 3.3.5, is taken care of by contracting =5 into =j.

This implies that now the rank condition

rank (il) = rank (il =3 2 ) (3.39)
Z9 Z9 0 =3
has to be satisfied. If it is, then for 1 < ¢ < C' = dim V'[R,] — dim V[R,] the system

=c rk =c ~k __
+ =3 =0

—

=c ~k =c rk __ c
+‘—’1k3_07 23 7 —3k52

c p—
13— =3k61
is solvable if, and only if, the augmented rank condition
rank (i1> = rank <il =3 2 _813)
=2 Sy 0 Z3 —Oyp
sy Uj—l of the

holds. Now we proceed by iteration. Given 5 — 1 vector fields Uy, Us,
required form spanning an involutive subdistribution of Tw(V[R4]), we construct the next

vector field U; by solving the system
216 = E5¢G — Oy
: (3.40)
Ej-1G = ZiCi-1 = Ojj -
Again we consider only the components of the vector fj as unknowns, and the system
(3.40) must not imply any further restrictions on the components of the vectors ¢; for

1 < < j. The corresponding rank condition is

i} =

- . (3.41)

[
B
[en}

rank

Zi—1 =5

Assuming that it holds, the equations (3.40) are solvable and yield solutions for the
components of (; if, and only if, it satisfies the augmented rank condition

£, £ & —0,,
z, = Z; 0 —6y
rank | = rank ' . (3.42)
0 :
= Zj —0j-14
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Remark 3.3.7. Again, if each equation of the local representation of the differential
equation R, is solvable for some different principal derivative and satisfies the assump-
tions of Proposition 3.1.19, we can use the local coordinates on R, thus simplifying our
calculations. According to Proposition 3.1.8, for the vector fields W, we may choose the
contact vector fields C* where (o, u) € B. For the generators of the symbol N, we may
choose for (a, ) € B the vector fields Y, given in Equation (3.15). And for a basis for
the complement H C V[R,], we can take the vector fields X; given in Equation (3.8).
The further procedure, solving first the structure equations, which now take the simple
form (3.14"), to find the generators of V'(R,) and then solving Equation (3.29) for the
coefficient functions (j, is the same as in the case where the representation is not in solved
form.

Another prerequisite of any step-by-step approach for the construction of integral
distributions concerns the chosen local coordinates.

Remark 3.3.8. Whenever some kind of Cartan test is used, the notion of d-regularity
comes to the fore. Thus, to construct the respective generators U;, given in Equations
(3.22) or (3.27), through a step-by-step approach, we have to use d-regular coordinates.
A usual evasion maneuver in all approaches—using vector fields or, dually, an exterior
system (like Hartley and Tucker [18])—whenever the choice of coordinates turns out to
be d-singular and, as a consequence, the step-by-step construction does not work out, is
to introduce some linear combination of the generators which, in effect, means using some
random transformation of the coefficients.

Now within the formal theory, d-regularity is well understood in that a systematic
method to analyze if the problem of d-singular coordinates arises is available, and if it
does arise, to introduce d-regular coordinates using a deterministic procedure which avoids
expensive random transformations. See Hausdorf, Mehdi and Seiler [20] for details.

The following theorem links the satisfaction of the rank conditions (3.41) and (3.42),
and thus the solvability of the algebraic system (3.29) by the above described step-by-step
process, with intrinsic properties of the differential equation R, and its symbol N.

Theorem 3.3.9. Assume that d-reqular coordinates have been chosen for the differential
equation R,. Then the rank condition (3.41) is satisfied for all 1 < j <n if, and only if,
the symbol Ny is involutive. The augmented rank condition (3.42) holds for all1 < j <mn
if, and only if, the differential equation R, is involutive.

The proof of Theorem 3.3.9 requires some technical considerations concerning the
transformation of the matrices (3.41) and (3.42) into row echelon form, working out their
contractions and analyzing the interrelation between these operations. These considera-
tions are amplified in the following three subsections to keep the main argument clear.
Since any regular differential equation can be transformed into a first-order system with
a representation in the reduced Cartan normal form (2.27), there is no loss of generality if
we assume the differential equation is represented that way; the advantage of this assump-
tion is that the calculations in the oncoming considerations are simplified considerably.
The proof of Theorem 3.3.9 is then given in Subsection 3.3.6.
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E

Figure 3.2: The complete matrix at step j as given in Definition 3.3.10.

3.3.3 Technical Details I: Structure Matrices

For the proof of the rank conditions (3.41) and (3.42), we need some more notation. First
we introduce names for the matrices we need.

Definition 3.3.10. Let =} and OF; be given as in (5.19) and (3.18). Then the complete
matrix (at the step j) is defined as

—_—
—_
—

=1 j

=9 pa 0
0

S =

If we introduce the transpose of the vector (Og;: 1 <i < j — 1) as another column to the
right of the complete matriz, this yields the augmented complete matrix (at the step j).

See Figure (3.2) for a sketch which shows the distribution of the potentially non-
trivial entries. As we did in the sketch of the matrix =, Figure (3.1), in the sketch of
the complete matrix we mark those entries that possibly do not vanish as shaded areas,
while diagonal lines denote negative unit blocks. The matrix (3.34) shows all the complete
matrices stacked upon one another, augmented by an additional column for the entries of
the vectors —0O;;.

The complete matrix at the jth step is built from (j — 1) blocks: the stack of 7 — 1
matrices =, 1 <7 < j — 1, on the left, with each of the =; having another j — 1 blocks
to its right, the ¢th of which being =; and all the others being zero.
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For easier reference, let, for 1 < i,k < j — 1, be [i, k] the kth block right of =;. Then,
forall 1 <4,k < j—1, we have

. . EJZ:]{Z
[Z’k]_{ Opoxcr: @ # k

For convenience, we set [i,0] := =;. Matrix multiplication is denoted by a dot, while
writing two matrices A and B next to one another and putting brackets around them,
[AB], means the matrix made by combining the entries of A and B into one matrix in
the obvious way.

We call the block matrix [[z,0][¢, 1] - - - [i, 7 — 1]] within the complete matrix at step j
the ith shift (of the complete matriz at step j). The block matrix within the complete
matrix at step j which is made, for all 1 < ¢ < j, from the blocks [i, k] being stacked
upon one another is called the kth shaft (of the complete matriz at step j) and denoted
by [*, k].

Let, for 1 < g < h <n,

B (3.43)

:,]94‘17 SRR [El]h

denote the matrix that results from writing the block matrices [Z}]?, [=;
(from left to right) next to each other.

Any matrix [i,k], 1 < k < n, contains as m rows and r columns. As a first step,
we group the columns in all the [i, k] into blocks the way we did for the matrices =j,
labelling them, too, by the symbol fields Y,* (or u®, the corresponding derivatives, or by
the pairs (o, h) ¢ B), namely according to increasing h into n blocks (empty for those h
with ol = 0) and within each block according to increasing a (with 8% + 1 < o < m).
(This means, we order them ascendingly according to the term-over-position lift of the
degree reverse lexicographic ranking applied to their labels («, h) € B.) A second step is
required to distinguish columns within the complete matrix at step 7 which are labelled
by the same symbol field, say Y,*, but have entries in different blocks [i, k] # [i,¢]. For
this reason we label these columns of the complete matrix by the fields V)5 and Y, (or
their corresponding derivatives uf, and uf,, or by the pairs («, hk)). This is the analogue
of labelling the columns in the matrix (3.34) in Remark 3.3.6. As a consequence, two
columns within the complete matrix now may be labelled by, say, Y, and Y;j, which in
fact are equal since uf, = ug,. Exactly such pairs of columns are the ones to be added
when making the matrices =; into the = through contraction according to the identities
(3.33).

For second-order derivatives u9, where k is the number of [i, k], h denotes the number
of the block of columns in [z, k], and for § = ﬁfk) + ¢ the index ¢ is the number of the
column (its label being ) within the hth block of columns.

Let [i, k]" be the hth block of columns in [i, k], and let, for 1 < g < h < n, in analogy
to the shorthand (3.43),

i, k)"

denote the matrix that results from writing the matrices [i, k]%, [i,k]°™", ..., [i,k]" (from
left to right) next to each other.
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If M is any a x b-matrix, then let g[M | be the matrix made from the rows with indices
(that is, labels) ¢ to d, [M]g the matrix made from the columns with indices e to f and
g[M ]g the matrix made from the entries in the rows with indices ¢ to d and in the columns
with indices from e to f. If the columns of M are grouped into blocks and g denotes which
blocks are meant, then we write {[M]? (with g up right) to show that the first ¢ upper
rows are being selected, and we write Z[M ] , (with g below right) to show that the last
b — d + 1 lower rows are being selected. For the block matrix made from M by selecting
the rows indexed ¢ to d within the block of columns labelled g, we write ‘[M]g. This
notation is redundant in that the position of g does not give new information, but in the
calculations to come it increases readability:.

The block [i, k] stacked above the block [i, k], yields a matrix of m rows and ol
columns; let it be denoted by [i, k|h. Let [*, k]h denote all the [i, k]h stacked upon one

(h)
another for 1 <7 < j — 1; this block is made up of the columns labelled from ui}g o

uyy. in the complete matrix at step j.

3.3.4 Technical Details II: Contractions

The next lemma shows which of the columns are to be contracted in step j. For a sketch,
see Figure (3.3).

Lemma 3.3.11. In step j, the number of pairs to be contracted is ZZ;; (1 — 1)(1@. For
any column within a block

[, k]h, 1<k<h<y, (3.44)

there is exactly one column which is not within any of the blocks (3.44) and which is to
be contracted with the given column only. Any contraction concerns a pair of columns of
which one is in one of the blocks (3.44) while the other column is not.

Proof. For 1 < 5 <n fix j. We show that for any given column within one of the blocks
(3.44) there is a different unique column not within any of these blocks which is to be
added to the given column only. Then we show that for any column not within such a
block no contraction is possible.

In step j, for fixed h and k with 1 < k < h < j, consider the block [, k|h. The agh)
columns within [, k]h are labelled by

Upr S Upp ey Upp -

Since k < h according to assumption, we have ﬂ%k) < ﬁ%h), and so agh) < agk). There are
agk) columns in the block [«, hlk, labelled by

k k
A0 8 oy
kh » Ykh v Ykh o

Since ﬁ%k) < th), among them are those labelled by

(h) (h)
By +1 By H+2 m
Ukh ) ukh 900y ukh .
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Jj=2

No contraction yet.

j=3:
[, 1]2.

j=4

[%,1]2, [, 1]3, [x,2]3.

lll Il ]

| L

Figure 3.3: Contracting pairs of columns up to step j = 5: to each column in a block shown
green-framed and hatched another column from one of the areas hatched the other way
around is to be added. This is done blockwise: If [, h]k is green-framed and hatched, it is

to be contracted with [[*, k] h]’ﬁ”(,c )y shown red-framed and hatched the other way around
1

in the same hue. For each step the blocks both green-framed and hatched, concerned by
the contraction, are listed next to the matrix. There are Zf:_f ¢ of them in step j.
The contracted matrices arise through adding to the green-framed, hatched blocks their
corresponding differently hatched counterparts and then cancelling those. See Figure 3.11
for a sketch of the contracted complete matrix in row echelon form in step j = 5.
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N

Figure 3.4: Complete matrix for step j = 5 after contraction: blocks of columns concerned
by contraction are shown green-framed and hatched crosswise.

()
This means for any of the labels ug}C T with 1 <t < agh), there is one matching label

(h)
ug}1 ™ for a column in [*, h|k. This column is unique because any other column is labelled
(h) (h)
by a second-order derivative different from wu,;, = uf}L ™ But as the column labelled
B+t

wy;  isin [*, hlk and k < h, it cannot be in [, |k with A < k as it had to if it were to
be among the blocks in (3.44).

On the other hand, for a column which is not contained in one of the blocks (3.44) there
is no other column outside the blocks (3.44) which is to be added to it: any such column

(h)
is indexed by some ui}C ™. for h = k the column is not contracted at all (because hk and
kh do not yield two different labels), and for h # k we have either k& < h which means

Myt . ) ) Y N ) . B 14
uy;  is contained in (3.44) while w,; * is not, or we have h < k in which case u,,

is not contained in (3.44) while uiih)ﬂ is. For the same reason no two columns contained
in the blocks (3.44) are to be contracted. This means that contraction of columns can
be described blockwise: for 1 < k < h < j, the block [, h]k is to be contracted with the
block [[*, k’]h]g(kﬂ)+1 in such a way that the column in [[*, k]h]g(k“)ﬂ with index [ is to
be added to the column in [*, h]k with that same index (3. 1

The number of blocks like (3.44) which are concerned by contractions is 3277 for
step j. This is because for each u’ and each k,h with 1 < k < h < j, there are Zf;f i
second-order derivatives u9, so that Zz;lz i such derivatives u9, appear as labels in step j;
since for each k and h the derivative ug, appears exactly once a block of columns [x, k]h,
the number of such columns equals the number of these derivatives. O

Now we give an explicit expression for the terms affected by contraction.
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Lemma 3.3.12. Contraction changes the entries of the complete matrixz of step j for
1 <k <1<y by the substitutions
() () ()

I A0 A T (1 (2 e | (A

B 41 (3.45)

and by cancelling the columns [[*, h]k] for 1 < k < h < j. All other entries remain

m
p+1
unchanged.

Proof. We just have to consider the special structure of the complete matrix at step j
as given in Definition 3.3.10. Fix 1 < j < n. Let [ ] denote a column that is cancelled.
Then according to the proof of Lemma 3.3.11, for all 1 < k& < h < j contraction means
to transform the blocks of columns in the following way:

kb — %, Kb+ [, Rk (3.46a)

B 410
([, hK] < []. (3.46b)

m

B 1
(We assume k < h because we place two contracted blocks of columns in the complete
matrix where the left block was and cancel the right one.) For 1 < i < j — 1 fix 7 and
consider the effect of contraction on the row of block matrices

6,102+ i g — 1)) (3.47)
For these rows, contraction (3.46a) becomes

i klh —  [i, kb + [[i, hK] (3.48)

M1
Since k£ < h, for ¢« < k, according to the structure of the complete matrix, given in
Definition 3.3.10, [i, h] is a zero matrix. Thus for ¢ < k the contraction (3.48) leaves
[i, k]h unchanged, and the only changes in lines (3.47) may appear in blocks [i, k|h where
k < i. We now specify where exactly and thus assume k < i. Non-trivial entries in (3.47)

—
—

may only be found in [i,7] = =,. So contraction (3.48) reduces to

Kl [i, ki 4 [, k] (3.49)

m.
Bil)_’_l )

while for h # i the [i, k]h remain unchanged zero blocks.
According to (3.21), for k < i, the entries in the last aﬁ” rows of [i,i] are zero. So
(3.49) further simplifies to
©) (4) (J)
1 1

Lol ke — Y [ k] T ([ 4k

8941 - (3.50)

For fixed i, these are the only entries which are affected by contraction in that they may
become non-trivial. To sum up: for 1 < k& < 7, in the hth block of columns in the kth
shaft the rightmost columns (those with labels ﬁfk) + 1 < 8 < m) are to be deleted, if,
and only if, 1 < h < k, and the hth block of columns in the kth shaft receives added
columns if, and only if £ < h < j. U
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Corollary 3.3.13. For all 1 < i,k < j, let [ﬁ] be [i, k] after contraction. Then for
G0

k < 1 mon-vanishing entries may appear in the blocks 11 [i, kli, and for k =i in the block

59 1. o

] " and on the main diagonal of 5 ;i 1];, but nowhere else in the ith shift of the

contracted complete matriz (that is, right of =;).
Proof. According to Lemma 3.3.12, for all k£ < i, we have
) @)

Ll ki =10 [[i,i]k];ny)ﬂ :

)
and according to the structure of fl [i,i)k = [=;]F as shown in Equation (3.20), it follows

—ngi)ﬂ((p]l) _ng)_’_z((b]l') e =Ch(e)

(4) ) _ngi)_i_l((b?) _ngi)_’_Z((b?) te —CST((b?)
k]G : . . (3.51a)

3 8 8

—C;y)ﬂ(ﬁbj ) _C§£1)+2(¢j ) e _051(¢j )

For k = i we have to specify the possibly non-vanishing entries in m This block is
made through contraction from [i,i] according to substitution (3.46b) by cancelling for

all 1 < h < i the columns in the blocks [[, ] h];i)+1. This yields for all 1 < h <
_ —C 2 g P2 o O ()
@ (h) j (h) j () \¥j
iR = ’ _H ’ :+2 ’ ' (3.51b)
h | 8y h | 8y | h | '
-C ih)+1(¢j ) _Cﬁih)+2(¢j ) T _Cﬁii)(gbj )
while for ¢+ < h < j, we have
W — 2
v [kl =" ([i,dh] (3.51c)
Since m] = [i,1]j = [Z;]j, we have
ng)_i_l[’i,l']j = —ﬂagj) . (351d)
All other entries remain zero throughout the process. O

Remark 3.3.14. There is the following relation between the negative unit blocks in the
complete matrix and the blocks to be contracted: whenever the block [x, k]h in the step
j — 1 has a negative unit block as its last rows, in step j the columns of [, k]h join the
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blocks (3.44) of columns to be contracted. (See Figure 3.3 for a sketch.) Since in step
j, there are 7 — 1 negative unit blocks —1 (;, the number of pairs to be contracted is
sl

> (i—1)al.
The unit blocks —1 NG within the complete matrix at step j comprehend the informa-
tion about the cross relatlons among the entries of (; and those of (; for 1 < k < j—1 given

by Equation (3.33). The oncoming Corollary 3.3.23 gives the complete set of relations
between all the coefficients (.

Lemma 3.3.15. The columns of the complete matrix after contraction are ordered ascend-
ingly with respect to the term-over-position lift of the degree reverse lexicographic ranking
applied to their labels (a, hk) where (o, h) & B.

Proof. For 1 < k < j, the columns of the kth shaft of the complete matrix before con-
traction are labelled (from left to right)

a4 4o o
U Uy ey Ulps
1 §2)+2
Uy ' Ugp e ud),
a4t B2 m
R Vi A Vst R VI

- g1 g 4o .
Here, for 1 < h <n, the indices u,;, ~, u,. ..., uy} label the hth block of columns in

the kth shaft. (The columns of the kth shaft are ordered ascendingly with respect to the
term-over-position lift of the degree reverse lexicographic ranking applied to their labels
(a,h) & B.)

As mentioned at the end of the proof of Lemma 3.3.12, for 1 < k < j, theg:glumns of
the kth shaft of the complete matrix after contraction (made of the blocks [i, k] stacked
upon one another) are labelled (from left to right)

sV gV *)
Uip UYL Uy
RN ONP ()
Ugp 5 Usgp ey Uy
BV 41 gD o (k)
y U1 S Up_ a1k e U g
o1 e
Uk s Ugr - Ukp
SO ﬁ(’““)+2 m
Upii e >Upr1 e 5 Ytk
En)_’_l Bin)+2 m
W Uk e U

This order is according to the term-over-position lift of the degree reverse lexicographic

ranking applied to the labels (a, hk) € B where (o, h) & B. O

3.3.5 Technical Details I1I: Row Transformations

In order to prove the rank condition (3.41), we transform the matrices into row echelon
form. Since each matrix =; contains a unit block, there is an obvious way to do this. We
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describe the procedure using the notation for subblocks, [Z;]" and [Z],, introduced in
Remark 3.1.28. As we shall see in Subsection 3.3.6 where we prove the existence theorem
for integral distributions, the relevant entries in this row echelon form are the coefficients
of the second-order derivatives u, which appear in Lemma 2.5.8 and therefore their
vanishing is equivalent to involution of the symbol N.

Example 3.3.16. Before proving the general case in Subsection 3.3.6, we consider the
case i« = 1 and j = 2, that is, Equation (3.36), as an example to show the method
while the calculations involved are comparatively short. (The proof for the general case

is independent of this consideration.) Since = consists of a negative unit matrix of agl)

rows with a ﬁfl) X a%l)—matrix stacked upon it and only zeros for all other entries, we have
rank(=7) = a;y. Next, we transform the matrix (=) =5) into row echelon form using the
special structure of the matrices =; as given in Equation (3.21); the blocks are replaced

in this way:

(=)' = (B +[E] (5 (3.52a)
;1) =11 51) —~ 11 — 11 m —_
L [Ee] = 1 [E] +[E] 'BEI)H[:Q]l , (3.52b)
W W s a
T [:2] — ! [:2] + [:1] . 551)_’_1[:2]2 . (3.52C)

If, for the sake of simplicity, we use the same names for the changed blocks, then we have

[Z1]" = 04000 (3.53a)
ﬁ(2)
(1)
S = [ =G5+ Y CM(e)C5(4)) : (3.53b)
y=A{"+1 1<a<p;”
B +1<5<m
ﬁ(2)
(1)
DS = G - CGRes) + ) Ci(eN)CE(3) - (3:53¢)
y=A{"+1 1<a<p;!
B +1<5<m

According to Lemma 2.5.8 all these entries vanish for an involutive system, since for ¢ = 1,
J = 2 the formula yields for any 1 < o < ﬁf) and ﬁfl) +1, ﬁ?) +1<0<m
(2)
1
0= Dol — D105+ Y Ch(67) D193 (2.30)

y=p{"+1
)

=1V (g8) — OV (6F) — Z CLe)C (63) (2:31)

=841
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[ @
— > uly [—Ci(e5) + Z C(¢7)C3(43) (2.36)
s=pV+1 | y=p{+1
. [ @
— ) uly [CHeY) - CR(85) + Z CHPN)CF(B3) | - (2.38)
§=6{"+1 i y=p)+1

For i = 1 and j = 2 all other lines vanish. The coefficients in Line (2.36) are the new
entries of block matrix (3.53b) while those in Line (2.38) are the new entries of block
matrix (3.53c). It follows that now the first ﬁfl) rows of (5755) have become zero, leaving
only the last agl) rows non-trivial; these last rows begin with the block _lagl)’ thus
rank(=755) = agl) = rank =7. In this case (i = 1 and j = 2) contracting columns does
not change the matrices, and it follows that rank(élég) = agl) = rank =.

So whenever the symbol is involutive, we can use Lemma 2.5.8 to construct the pro-
longations needed for the transformation into row echelon form. And whenever we can
transform the matrix into row echelon form such that the rank condition is satisfied, we
have found the coefficients to write any non-multiplicative prolongation of the system as a
linear combination of multiplicative ones, which means the symbol is involutive. Thus we
may conclude that the rank condition (3.36) holds if, and only if, no non-multiplicative
prolongation Dy®{ leads to an obstruction of involution.

The claim for the augmented condition (3.37) follows from the explicit expression
(3.18) for the entries OF,. Performing the same computations as 3.52 with the augmented
system (having an additional column for the entries ©%;) yields as additional relevant
entries exactly the integrability conditions arising from Lemma 2.5.8 applied for ¢+ = 1
and j = 2. They are collected in Line (2.31). Hence (3.37) holds if, and only if, no

non-multiplicative prolongation D@ yields an integrability condition.
Remark 3.3.17. We could combine the three parts (3.52) of the substitution into

(1) (1)
VELY - P EL D E S (3.52)

This would shorten the notation, especially for greater j. Figure (3.6) shows a sketch
of this variant. Though both variants give the same result, in (3.52") all zero columns
of the complete matrix would, quite unnecessarily, be introduced into the calculation.
Thus, for implementation or the calculation with concrete examples, variant (3.52) is to
be preferred.

On the other hand, in the oncoming proof of the general case a concise notation
is of greater advantage, and the symbolic computations involved do not become more
complicated by these vanishing terms. Thus, variant (3.52') is preferred there; sketches
for the cases up to j = 4 are shown in Figures (3.6) to (3.9).

Another technical point concerns the order of the operations used: while transforming
the complete matrix into row echelon form we only use row transformations; contraction
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+
«—

[ *
h

+
<—

N

Eliminating the entries in [=]"

3 Vessiot Theory

(1)
by substitution of blocks in ;* [Z1[1, 1]], namely

(1)
Changing [5]" causes changes of ’fl [Z,]" and

Complete matrix afterwards.

Figure 3.5: Turning the complete matrix in Definition 3.3.10 into row echelon form, step
Jj =2, by applying (3.52). Critical changed entries as given in (3.53b-c) are shaded gray.
Complete matrix not contracted as no contraction is needed for i = 1 and j = 2.

Eliminating the entries in [=]"

by substitution of

N [ [T ] -

[Za[1,1]]:

—

Complete matrix afterwards.

Figure 3.6: Turning the complete matrix in Definition 3.3.10 into row echelon form, step
Jj =2, by applying (3.52’). Critical changed entries as given in (3.53b-c) are shaded gray.
Complete matrix not contracted as no contraction is needed for ¢ = 1 and j = 2.
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of columns involves adding pairs of columns. Both operations can be described by mul-
tiplying the complete matrix by elementary matrices, and the associative law guaranties
that the outcome does not depend on the order of these operations. (Contraction also
involves projections described by leaving out one column of each pair after adding it to the
other; as addition comes before projection it does not matter whether we first transform
into row echelon form and then add and project or the other way around.) For easier
reference, we formulate this as a lemma.

Lemma 3.3.18. Transforming the complete matriz into contracted row echelon form
yields the same result independent of the order of operations—uwhether the matrix is first
transformed into row echelon form and then contracted or the other way around.

Proof. The proof is elementary. Row transformations correspond to multiplicating the
complete matrix with elementary matrices from the left, while contracting columns cor-
responds to multiplications with elementary matrices (for the addition of two columns)
and the unit matrix with one column left out (for discarding a column) from the right,
and matrix multiplication is associative. O

As one might expect from the above considerations for ¢ = 1 and j = 2, the analysis
of the rank condition (3.41) for general 1 < i < j < n requires the non-multiplicative
prolongations D;®¢, D@y, ..., D;®% . It follows trivially from the block form (3.21) of
the matrices =, that the rank of the matrix on the left sides of (3.41) is 27—} ol

For the general case, we follow the same steps as in the case ¢ = 1 and 7 = 2. The
transformation of the matrix on the right hand side of (3.41) can be described using block
matrices, and the resulting matrix in row echelon form has as its entries in the rows
where no unit block appears the coefficients of the second-order derivatives in Lemma
2.5.8. Thus we may conclude again that satisfaction of (3.41) is equivalent to the fact
that in the non-multiplicative prolongations D;®¢, where 1 < ¢ < j, no obstructions to
involution arise. In the case of the augmented conditions (3.42), it follows again from
the explicit expression (3.18) for the entries OF; that the additional relevant entries are
identical with the potential integrability conditions produced by the non-multiplicative
prolongations D;®s.

At this point it becomes apparent why we had to introduce the contracted matrices
Z,. As all functions are assumed to be smooth, partial derivatives commute: ug; = uj;.
In Lemma 2.5.8 each obstruction to involution corresponding to these partial derivatives
actually consists of two parts: one arises as coefficient of u;, the other one as coefficient of
uf;. While this decomposition does not show in Lemma 2.5.8 because both derivatives are
collected into one term, the two parts appear in different columns of the matrices =; and
the rank condition (3.41) will not hold in general, if we replace the contracted matrices
=, by the original matrices =; (see Example 3.3.29). The effect of the contraction is to
combine the two parts in order to obtain the right rank.

Example 3.3.19. Consider the system in Cartan normal form as given in Example 2.5.4.
Then the dimension of the symbol is 6 and, using * as a shorthand for all terms of the
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Eliminating the entries in [Z;]",

EESs

0)
by substitution of fl (=3[0, 1][¢, 2]] for

mEi =1
eliminating block [=] 1
+ L= 27
9 . — 11
eliminating block [Z5];
+ =2,
9

eliminating block [52]2;

TN ]

Complete matrix afterwards.

Figure 3.7: Turning the complete matrix in Definition 3.3.10 into row echelon form, step
j = 3. Critical changed entries are shaded gray. Complete matrix not yet contracted.
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form C'th)ﬂ(gbZ ), we get for j = 2:

* xx 00 O x x x  x*x 0
* xx 00 O x x x  x%x 0
(5 L) =(5 S)=]-100 00 0  s%% xx 0
0—10 00 O 000 —=10 O
00—-1 00 O 000 0-—1 0
The first six columns are labelled from left to right by u‘z, ui, ui, uf/, ug and ui; the

following six columns are labelled u3,, uy,, u3,, uy,, u, and uJ,.

In order to transform the complete matrix for j = 2 into row echelon form, we trans-
form the upper 59) = 2 rows of the complete matrix. These are rows within =7 and next
to it, in the block matrix [1,1]. As the necessary substitutions for the entries in the block

matrix =7 we have

xTx? TT?

(=) — (B 4 [E]) 15, (3.54a)

according to Line (3.52a). According to Lines (3.52b, 3.52¢) the necessary substitutions
for the entries in the block matrix [1,1] = =5 are

(1) 1)
fl 1, 1]k — fl 1, 1]k + [51]1 _%)H[l, 1], , (3.54b)

where 1 < k < j, that is, k = 1 and k = 2. The substitution (3.54a) changes the entries
in those columns of the complete matrix which are labelled from u? to 3, while the
substitution (3.54b) changes the entries in the columns of the complete matrix which are
labelled from w3, to u),. All the other entries in the first ﬁfl) rows remain unchanged.
Note that for j = 2 there are no contractions, as we already saw in Example 3.3.16.
Therefore the transformed complete matrix for j = 2 looks like this:

000 00 O 2yEYO¥Y 0
000 00 O 2EY XYY 0
—100 00 O * ok % * % 0
0—10 00 O 000 —-10 0
00—1 00 O 000 0-—1 0

In the above sketch, unchanged entries of the form —C’%h)ﬂ(qﬁf‘) appear as stars again,

while changed entries in the blocks 151) [1,1]" and f v [1,1]? are represented by a summation
sign each as they equal the matrix entries in Equations (3.53b, 3.53c), which are sums.
See Example 3.3.16 for the exact calculations for the general case, where still j = 2 but
the numbers of rows and columns are arbitrary. The rank condition for j = 2 is satisfied if
all the entries denoted ¥ vanish. That they do so indeed for an involutive system follows
from Lemma 2.5.8 and was shown in Example 3.3.16, too. Figure 3.5 shows a sketch of
these operations and of the complete matrix for j = 2 before and after.
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Now for the next step, where j = 3. Since dim X = n = 3, too, the algorithm already
terminates with this step. The complete matrix now looks like this:

LY L) _ (1 S Osxe
= [2,1] [2,2] Z2 Osxe =3

X
*xx*x 00 0 * ok ok k kK 000 00 O
*xx*x 00 0 * ok ok ok kK 000 00 O
—-100 00 O * % ok ok x K 000 00 O
0—10 00 O * % ok ok ¥ X 000 00 O
00-1 00 O 000 00 —1 000 00 O
* % % % 0 000 00 O * ok ok ok kK
* % % % % 0 000 00 O k ok ok ok ok K
* % % % 0 000 00 O * ok ok ok kK
000 —-10 O 000 00 O * % ok ok x k
000 0-1 0 000 00 O 000 00 —1

The first six columns are labelled from left to right by w3, uj, ul, uy, u) and u?;
5
Yy

the next six columns are labelled um, Upyy Uy Uy, U and uzm,

and the rightmost six columns by umy, uiy, uiy, ugy, UZy and uzy

In order to transform the complete matrix for 7 = 3 into row echelon form, we use
the negative unit block [=}], to first transform the upper 5%1) = 2 rows of the complete
matrix (the first shift, ¢ = 1). These are rows within and next to =;. The necessary

substitutions are:
(=) = B+ 3] E), (3.55a)
and, for 1 < k < j:

W (1)

GO e Lt [E] -

s [y - (3.55b)

(Actually, as here j = n = 3, the indices k in substitution (3.55b) may as well be left
out. In fact, this may be done in general, simplifying the notation; but, since for j <
k < n the columns have only zero entries, this would increase the number of calculations
unnecessarily, see Remark 3.3.17.) The substitution (3. 55a) Changes the entries in those
columns of the complete matrix which are labelled from 3 to u3, while the substitution
(3.55b) Changes the entries in those columns of the complete matrlx which are labelled
from u3_ to u,. All other entries in the first ﬁl rows remain unchanged.

Next we Con81der the lower m = 5 rows in the complete matrix (the second shift,
i = 2). The first three of those are to be eliminated. They are rows within and next to
=9, labelled from 1 to (2) = 3. The necessary substitutions are:

(5] — [E]' + (5] [E),, (3.56a)
(S — [+ [Z] - (Sl (3.56b)
52) k /352) k =11 m
21 = 20+ [E) §1)+1[1,1]k, (3.56¢)
() ()
2,0 — [2,2]k+[52]2.22)+1[2,2]k, (3.56d)

where again 1 < k < j. The substitution (3. 56&) changes the entries in those columns of
the complete matrix which are labelled from u3 to u3, the substitution (3.56b) those in the



3.3 Constructing Flat Vessiot Connections II: A New Approach 107

columns which are labelled u?‘j and u;:’, the substitution (3.56¢) those in the columns which
are labelled from u?, to u2, and the substitution (3.56d) changes those in the columns
which are labelled from w3, to u2,. All the other entries in the last five rows remain
unchanged. The complete matrix in after these row transformations is:

000 00O D3DIDINDIDINDN 000 00 O
000 00O D3DIDINDIDINDN 000 00 O
-1 00 00 O * %k ok x K 000 00 O
0-1 0 00 O * % ok ok k% 000 00 O
0 0-1 00 O 000 00 —1 000 00 O
00O 00 O DIDIDIND IDIND I DIDIDINDID IS
00O 00 O DIDIDIND IDIEDI DIDIDINDID D
000 00O DIDIDINDID IS PIDIDINDID VDY
000 —-10 0 000 00 O * %k ok ok ok ok
000 0-10 000 00 O 000 00 —1

Again, unchanged entries of the form _ngu (¢%) appear as stars, while changed entries
1 Y

are represented by a summation sign each, on the ground that they equal the sums in
square brackets in Lemma 2.5.8 as we shall see when proving the existence theorem for
integral distributions in Subsection 3.3.6. See Figure 3.7 for a sketch of the complete
matrix before and after these operations.

Both operations, elementary row transformations and contraction as combining two
columns into one, commute as the elementary Lemma 3.3.18 says, so their order does not
change the result.

There are two occurrences where labels for columns appear twice, so two contractions
are in order: the columns marked with double arrows, labelled uy, (which is the tenth from
the left) and uﬁy (the fourteenth from the left), are to be added, and so are the columns
marked with single arrows, labelled u), (the eleventh column) and ), (the fifteenth one).
This gives the contracted complete matrix of 2m = 10 rows and 16 columns, that is:

N
AL
S~
Y
(s 1)
[\ —
\'l\')> [I]
—_w
[y 5O
c,o]> X
N
~

DIDIDN
DIDID
x k%
x k%

000

DIDIDN
DIDIDN
IDIDN

000
000

ox ¥ MM
MM

O*MMM\ ox ¥ MM

‘**

=

coococo ocoroco
coococo ?HOOO
coooco Roocoo —.
»looco ocoocoo
o000 ococooo
coococo ocococoo

ox MMM

coMMM

cxMMM ococococo
cxMMM ococococo
o*xMMM ococococo

l x MMM coococo

o |
—

We have again, for convenience, kept the notation for matrices which have only been
changed into row echelon form, while the hats above the blocks indicate that the complete
matrix has been changed through contraction. The entries which have changed through
contraction and which are of importance for the rank are primed. The rank condition
for j = 3 is satisfied if all the entries denoted ¥ or ¥’ vanish. That they do so indeed
for an involutive system follows from Lemma 2.5.8 as these terms appear there in the
square brackets. As an explicit example on how, we consider the new tenth column (of
the contracted matrix in row echelon form) which is labelled by uj,: its entries are, from
top to bottom:
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—Ci(03) + C5(01)CE(¢3) + Ci (1) Ci(d5),

—C3(93) + C5(67)CE(¢3) + Ci (1) Ci(d5),

*7

*7

07

—Ci(¢3) + C(05)C1(03) + C3(03) C3(3) + Ci(d3) Ci(03),
—Ci(¢3) + C3(03)Ci(03) + C3(03)C3(3) + C1(03)C3(05),
—Ci(¢3) + C3(03)C1(03) + C3(03)C3(05) + C1(63)C3(65),
*7

0

The first m = 5 entries belong to the first shift: they stand in the complete matrix
right of =;. For ¢+ = 1 and j = 3 the coefficient for the term uiy (in this example we
have § = 4) according to Lemma 2.5.8 is to be found in Line (2.34b) where for all o with

(cv, 1) € B (here these are a = 1,2) we have
—uny|(—Ci(85) + C3(67)Ci(¢3) + (Ca(7)C(05))] -

So the terms Y among the first five entries vanish. The last m = 5 entries belong to the
second shift: they stand in the complete matrix right of =5. For ¢ = 2 and 57 = 3 the
coefficient for the term ujy, (still, 6 = 4) according to Lemma 2.5.8, Line (2.33b), for all
a with («,4) € B (in this case a = 1,2, 3) is

—up,[(=C(65) + C5(65)C(5)) + (C5(65)C1(e5) + Ci(65)C(65))] -

So the terms Y’ among the last five entries vanish. The sums for the terms X are shorter
than those for the terms Y’ because contraction only adds zeros to them.

To prove the rank conditions (3.41) and (3.42) and thus the existence theorem for
integral distributions, we now turn these considerations into a general lemma concerning
the calculation with block matrices. Though it appears technical, it uses only linear
algebra and is very simple. We give it here for the sake of completeness and to clarify
notation used later in Subsection 3.3.6.

Lemma 3.3.20. Let A, R, S, T be natural numbers or zero. Let 1g denote the S x S
unit matriz. Consider the matrices

(i 1<a<AT<r<R), (basil<a<A1<s<S),
(Cr:1<a<A1<t<T),  (du:1<s<S1<t<T),
Osxr —1Is

and the matrix

( Qo bas Cat

) = (9;j: 1<i<A+S1<j<R+S+T) (3.57)
Osxr —Lls dau

built from these blocks. (Here the index r is just some index and not supposed to be the
dimension of any symbol.) Then the substitution

(aar bas Cozt)<_ (a'om" bas Cat)_'_(bas)'(OSXR _]lS dst) (358)
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transforms the matriz (g;;) into

Aqyr 0A><S Cat + Zsfl basdst)
5= . 3.99
(OSXR —1g dgt (3:59)

Proof. The simple matrix calculation

(bas) : (OSXR _ILS dst) = (OSXR _bas bozs : dst) = (OSXR _bas Zsszl basdst) (360)
yields the result. O

We are going to use this lemma to eliminate entries in matrices built from blocks of
the type (3.59) or, similarly, of the type

<05;R —bis iﬁ) = (gij: 1<i<A+S1<j<R+S5+T). (3.61)

The matrix calculation in the lemma emulates the following obvious way to eliminate
the entries b, for all 1 < o < A and 1 < s < §: Consider the entry b, . Then
gats s = —1, and adding by s times the row (gayyj: 1 < j < R+ S+ T) to the row
(gorj: 1 < j < R+ S+ T) eliminates b,y and changes, for all 1 <t < T, the entries
Cort INLO Corp + by srdgy. Doing this for all 1 < s < S eliminates all the b, in the row
(bors: 1 < s < S) and changes, for all 1 <t < T, the entries ¢y into coy + 23521 boy st
Doing this for all 1 < o/ < A makes the matrix (am bas cat) into the same matrix,

(aar OAXS Cat + Zsszl basdst) ’ (362)

as in the lemma. We give this wordy explanation because it is exactly this kind of row
transformations that we use in the proof of the existence theorem for integral distributions
and which we reduce to block matrix calculations of the kind described here.

3.3.6 The Proof of the Existence Theorem for Integral Distri-
butions

With the technical means which we collected in the last subsections now at hand, we
can tackle the proof of Theorem 3.3.9, the existence theorem for integral distributions.
It is in principle by straightforward matrix calculation and involves a tedious distinction
of several cases and subcases, since we have to compare the entries in the augmented
complete matrix for step j after turning it into row echelon form and contracting its
columns with the integrability conditions and the obstructions to involution as they are
given in Lemma 2.5.8 for an arbitrary shift ¢, where 1 < i < j, and all the shafts of the
complete matrix.

Since for a differential equation with an involutive symbol the obstructions to involu-
tion vanish and for an involutive differential equation the integrability conditions vanish,
too, it follows that the augmented rank condition, stated in Equation (3.42), is equivalent
to the differential equation being involutive, which in turn is the case if, and only if, the
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Eliminating the entries in

[Z5)', (S8, [5s)°
by substitution of

(4)
11 [El[l7 1] [Z7 2]] for

1=1

Y

+
(—l

eliminating block [=] L

1=2

Y

4

eliminating block [=5] L

+ 2227

eliminating block [52]2;

(to be continued in Figure 3.9)

Figure 3.8: Turning the complete matrix in Definition 3.3.10 into row echelon form, step
j =4 for 1 =1,2. Complete matrix not yet contracted.
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(continued from Figure 3.8)

i =3,

eliminating block [=3] L

i =3,

eliminating block [53]2;

i=3,

eliminating block [=3]°.

T [ —

Complete matrix afterwards.

Figure 3.9: Turning the complete matrix in Definition 3.3.10 into row echelon form, step
j = 4 for i = 3. Critical changed entries are shaded gray. Complete matrix not yet
contracted.
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algebraic conditions (3.29) are satisfied, which is necessary and sufficient for the existence
of integral distributions within the Vessiot distribution.

Figures 3.6, 3.7, 3.8 and 3.9 show sketches for the transformations used in the proof
for the steps up to j = 5.

Proof of Theorem 3.5.9. If the order of the differential equation is ¢ > 1, transform it
into a first-order equation by the procedure described in Subsection 2.5.1. According to
Proposition 2.5.1, if R, is involutive, then so is Ry. We assume this first-order equation
is represented in reduced Cartan normal form (2.27). We first prove the rank condition
(3.41) for the homogeneous system. (The proof for the augmented rank condition (3.42)
follows.) We proceed in two steps: We first turn the complete matrix, given in Definition
3.3.10, into row echelon form; then we contract columns and consider the effect.

For the transformation into row echelon form, let 1 < j < n be given. Choose
1 <i < j. Now we eliminate all the non-trivial entries in the rows

(%)

by using the block matrix calculation as described in Lemma 3.3.20 on the blocks of
columns from left to right. For sketches of the procedure up to j = 4, see Figures (3.6) to
(3.9). We turn to the block f t [=;] first. Non-trivial entries therein may appear according
to Equation (3.21) only for 1 < h < ¢ in the blocks 1?) [Zi]". So we fix 1 < h < i and
consider the block ?Y) [Z3]". To apply Lemma 3.3.20, set

(aar) - fl. [Ei]lmfhl’ (363&)
(bos) =1 (2" (3.63b)
(car) = 2 [[Z]7H 000, 17, 2] [5G — 1) (3.63¢)
(dst) = ;ngh)_f_l[[gh]thl...n[hv 1”h> 2]"'[h7] - 1]] ) (3 63d)
—ls=-1,m,

Osxr = 0, 51

N .
=1 ag)

Then it follows that the substitution (3.58) leaves (a,,) unchanged, turns (b,s) into zero
as required and makes (c,;) into (¢ + Zil basdst). According to (3.63d) the entries
Zle basds: here are of two types: from ;%h)H[Eh]hHmn, the left part of (dg), we have the
entries in (bys) -gh)H[E’h]hHmn, and from ;Eh)+1[[h, 1][h, 2]...[h, j — 1]], the right part of

(dst), we have those of (bas) .gb(h)ﬂ[h’ ] where 1 <1< j—1.
1

Consider the ¢, + Zle basds; where the factors dg are from the left part of (dg):
according to (3.21), ;I(h)Jrl[Eh]h—i—l...n =0, so
1

(bas) : gh)Jrl[Eh]h—l—l...n =0.
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]thl n

( )
It follows c.; + Zil bosdst = Car, SO that all entries in 1 (= , the left part of (cg),

remain unchanged through the elimination of (b,s) = f Al

For the rest of the proof, we consider the remaining entries cat—i-Zf:l basds; ,where the
factors dg; are from ;(mﬂ[[h 1][h, 2]...[h, j — 1]], the right part of (dg). Fix 1 <1<j—1
(h)+1 [h l]

There are two cases: h = [ and h # [. For h # [ we have [h,l] = 0 according to
Definition 3.3.10 of the complete matrix, thus h,l] =0 and so

and consider (bys) -

sl
(bas) - o, [P 1) = 0.

Again it follows cn; + Zle basdst = Cat, SO that for h #£ [ all entries in

5, 1000, 2] 07,5 — 1]

@
the right part of (¢4 ), remain unchanged through the elimination of (b,s) = f 115", too.

For h = [, we have [h, h] = =;. The structure of =}, which is (3.21) with ¢ replaced by j,

implies that non-vanishing entries are possible in the blocks ;h) le[h, h), where 1 <k < j.
1
In fact
gj)+1[h, hl, =0 forl1<k<j—1and (3.64a)
gbgj)—i—l[h’ h]] - _]lagj) . (364]3)
The entries E L basdst for those dg within 7 50 +1[h, h], are

m 6?) — m o
(bas) : ﬁgh)-i—l[h’ h]k =1 [‘:i]h ’ 5§h)+1[:j]k
> h a\ vk B +s
=X Com (90050 (650 ) | - (3.65)

This matrix has A = 6@ rows and 1" = a§k columns. We consider its entry in row o and

column ¢. Setting v := ﬁf +5,0 = ) + ¢ and using S = o () in (3.65), this entry is
ﬁih)_’_agh)
> @) (3.66)
y=6{" +1

for all 1 < k£ < 7. Some of the ﬁf + ozgh) = m summands vanish because of the special

entries (3.64). As a consequence, from ﬁl + 1 on, of all the summands C”(¢§)C5(¢]) in
(3.66) at most one remains: none for k # j, exactly one for k¥ = j, namely the one for

v = ﬁfj T Using the Kronecker-delta, for all ﬁ%j ) 41 <6 <m we have

CH(@)CL(02) = Ok; - CL(62).
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Now (3.66) becomes for all 1 < o < 8" and all B +1 <6< m
(j)

Z C(6)C5 (0]) + Oy - C5 () - (3.66')

7—61h)+1

These are the terms 23521 basds in the case h = [ when 1 < k < j. Now for the subcase

J+ 1<k <mn: these blocks gh)+1[h h), = h)H[H]]k, again on account of the structure
1

of =, which is (3.21) with ¢ replaced by j, are zero (if they exist at all; they do not for k

(k) _

with a;”’ = 0). So in this case we have

(bas) . ?%h)_‘_l[gj]j-',—l...n =0 )

which contains the terms E 1 basds = 0. As a consequence, here, in the case h = [, the
terms cq; + ZS 1 basd . are of the following form. The c.; of 1nterest in Line (3.63c) are
those in the block ﬁ ' [i,h]. For h # i, we have [i,h] = 0, thus 11 [z h] = 0. Non-trivial

@
entries ¢, are possible only for h = ¢; in that case [4,i] = =, thus 11 [z hl =115

According to the structure of =;, which is (3.21) with ¢ replaced by j, the only entries
cot Within the block ﬁ 1 [Z;] which rnay not vanish are, for 1 < k < j, those of the form

=7
—C”“((b“‘) They make up the block 61 [:]]1 J = fl [4, z]l J
So for any row index o and any column index § = 51 +t we have ¢y = —5th§(¢})‘)

as the most general form of an entry.
Since (3.66) is Ele basdst, it follows that oy + Zle bosds 1S

5(1’)
—5niCy (@) + Y CHO)CE($)) + 0k CR (o5 - (3.67)

y=B" 11

Since 1 < a < ﬁli) and ﬁ%k) +1 < 6 < m, any term in the row echelon form of the
complete matrix without a —1 in a negative unit block somewhere to its left has this

form or is a zero in 1@ (2]t for some i < j (in which case it remains zero throughout
the elementary row transformations and so does not influence the rank; the elementary
row transformations in step j for the shift ¢ do not change the transformed shifts a for
a < i any more). This means, if all these expressions vanish (when contracted), the rank
condition is satisfied. To show that they do vanish (when Contracted) for a system with

an involutive symbol, we consider them as the new entries in 1 [z h] with 1 < h < j.
Now with regard to the relation between h and i there are three cases: h > 1, h =4 and
h <'i. We consider them in that order.

1. Let h > 4. Then according to the structure of Z;, (3.21), all the C"(¢¢) and C}(¢7)
in (3.67) vanish. Since h # i, §5; = 0, thus all of (3.67) vanishes.
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| k |
1 2 =1 i i+1 ... j—1 4
1[3.(d2) |
2 | 3.(d2) 3.(d1) 3.(c) 3.(b) 3.(a)
h :
i—1 3.(d2)
i 2.(a) 2.(b)

Figure 3.10: Possible combinations of & and k in the terms u$, used as labels for columns
in the contracted matrix, each corresponding to one subcase in the consideration of cases
2. h=1tand 3. h <.

2.

(b)

Let h = i. We shall consider several subcases for h = i, and for h < i after that,
which may be labelled by second-order derivatives ug, according to Figure 3.10
(which is the analogue of Figure 2.2). For fixed §, any u$, belongs to exactly one of
these blocks, according to its indices h and k.

It turns out that (3.67) is the common form of all the sums that appear in the
squared brackets of Lemma 2.5.8 as the coefficients of second-order derivatives u?,.
Not only can the case distinctions of the following argument, which are sketched
above, be labelled by these u$,, but in fact the case labelled u$, is dealt with by using
the fact that according to Lemma 2.5.8 the coefficient of that same u9, vanishes for

an involutive system. This is why sketches (2.2) and (3.10) look alike.

The cases h = ¢ with subcase k£ < ¢ and h < ¢ with subcase £ < ¢ need not
be considered because the columns of the complete matrix are to be contracted
when proving the rank condition. This contraction concerns those columns of the
complete matrix which are labelled by the same second-order derivative, and each
second-order derivative is used exactly once in the argument.

For the first subcase of h =i let ¢ < k < j. Then (3.67) becomes
E]’)
—Cs(e5)+ > CL90)C5(@))

y=p{"+1

where ﬁfk) + 1 < 6 < m. This vanishes for a system with an involutive symbol
according to Lemma 2.5.8, Line (2.36).

For the second subcase of h =i choose k = j. Then (3.67) becomes

(4)
1

—CL(e2) + > CUNCLS]) + Ci(e2)

y=p{"+1
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where ﬁfj) + 1 = 9. According to Lemma 2.5.8, Line (2.38), this vanishes for a
system with an involutive symbol.

. Let h < i. We consider several subcases with regard to the relation between h < i,

7 and k.

First choose k = j. Then (3.67) becomes
E]’)
> CHENCi9]) + C@r)

y=6{"+1

where ﬁfj) +1 <6 < m. According to Lemma 2.5.8, line (10), this vanishes for a
system with an involutive symbol.

For the second subcase choose i < k < j. Then (3.67) becomes
)
> Chencie)

y=6{"+1

where 8" +1 < § < m. According to Lemma 2.5.8, line (8), this vanishes for a
system with an involutive symbol.

For the third subcase choose k = i. Then (3.67) becomes

59) ﬂii) 59)
Yo CHONCHe) = > CLHONCHE) + Y CheNCi(])  (3.68)
=" 11 v=8"M 41 =" +1

where ﬁ%k) +1 < < m. Since we have h < k = i, for any such J the cross derivative
u, = u?; labels two columns in the complete matrix: the one with label § in f " [i, h)'
and the one with label § in lgi) [4, z']h which according to (3.67) has the new entries
)
SuCHE + YD CHENCHE]) + 0, ChE) (3.69)

y=p"+1

where ﬁfh) <6 < m. In the current subcase, (3.69) becomes
(J')

—C3(65) + Z C2($7)C3(¢]) (3.70)

=8 +1
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(d1)

(d2)

where 8" < § < m. Since the columns of both (3.68) and (3.70) are labelled by
the same second-order derivatives, we have to contract them, which means adding
their new entries. For all ﬁfh) +1<6< ﬁfz) this yields

(J‘)
Z CL(¢2)CR(e])
v—ﬁf)ﬂ

which, for a system with an involutive symbol, vanishes according to Lemma 2.5.8,
Line (2.34a), and for all 512) +1<6<m

(J‘) (J‘)
—C}(65) + Z C(67)C3(0]) + Z CH (e9)C5(4))
y=p"+1 y=p{"+1

which, for a system with an involutive symbol, again vanishes according to Lemma
2.5.8, Line (2.34b).

For the fourth subcase choose k < 2. Under this assumption, we have to distinct
two further subcases: k = h and k < h. The subcase k > h need not be considered
since ug, = u), and any second-order derivative is used only once to label a column
in the contracted matrix.

First consider k < ¢ and k = h. Then still A < ¢, furthermore k < j, and (3.67)
becomes
2
> CUeENC9))
y=p{"+1
where ﬁyl) +1 < § <m. According to Lemma 2.5.8, Line (2.32), this vanishes for
a system with an involutive symbol.
At last consider h < k < i. Then k < j, and (3.67) becomes
@ ) @
Z Cl(¢)CH(8)) = Z CH ()T (¢]) + Z Cl )Ty (¢])  (3.71)
y=6" +1 y=p{" +1 y=6" +1
where ﬁ%k) +1 <6 < m. Since we have h < k < i, for any such § the cross
derivative ul, = u?, labels two columns in the complete matrix: the one with label
(%) (3)
§in " [i,h]" and the one with label 6 in | [i, k]" which according to (3.67) has the
new entries
2
—0C3(05) + Y CHONCH(6]) + 0 C3(@7) (372)

y="+1
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where 8\ < § < m. In the current subcase, (3.72) becomes
o)
> CEHNCHe)) (3.73)
y=6{" +1
where ﬁfh) < 0 < m. Since the columns of both (3.71) and (3.73) are labelled by

the same second-order derivatives, we have to contract them, which means adding
their new entries. This yields

(k) B(J‘) B(J‘)
Z CHeNCS (e + Y. CHeNCs (@) + Y. CEeMCH(e))
y=6{" +1 y=6{" +1 y=p{"+1

where, for a system with an involutive symbol, the right term vanishes according to
Lemma 2.5.8, Line (2.33a), and the sum of the left and the middle terms vanishes
according to the same lemma, Line (2.33b).

What we have shown is that in the contracted matrix all the entries without some entry —1
in a negative unit block to their left may be eliminated by elementary row transformations
if the equation has an involutive symbol. Thus under this assumption the rank condition
(3.41) is satisfied.

Now for the augmented rank condition, Equation (3.42). To transform the augmented
complete matrix into row echelon form, we use for each 7 and 7 the same procedure as for
the transformation of the non-augmented complete matrix, except that now the matrices
(cat) and (dg) are augmented by one more column each as follows. Fix 1 < j < n. Let
1 <4 < 7. Then, according to the structure of the augmented complete matrix given in
Definition 3.3.10, for its transformation into row echelon form we have to eliminate for
1 < h < i the entries in the blocks [:Z] , like we did for the non-augmented complete
matrix. We have to consider the effect of these transformations on the additional entries

which make up the rightmost column in the augmented complete matrix. These are —9}],

—67, ..., =0}, given in Equation (3.18). Of these entries, only @}J, 67, ..., —@Zl

are affected (since we eliminate the entries which are in rows 1 to 51 of the matrices
[Zi]"). We add them as the rightmost column in the augmented matrix (cq;). Now fix
1 < h <i. Then augment the matrix (dy), used in the process of eliminating the entries

. ik . : B 41 B 42 e .
in [5]", by adding the entries —©,; ", =0, "7, ..., —O}" as its rightmost column, in

accordance with the structure of the augmented complete matrix as given in Definition
3.3.10. Then the substitution (3.58) yields as the transformed entries c,; + Zle basdst
the same as for the transformation of the non-augmented matrix except, of course, for
the new last column. Now let denote ¢ the index of this last column. Fix some row index
1<a< 5?). Then the entry c,; = —@f‘j transforms as follows: For all 1 < h < 7 we have
to add to it

Z basdst - Z ba’yd'yt .

y=p" +1
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Since here the matrix (by,) = [Ei]h, this is the product of the row with index a in the
(h) (h)
matrix [Z;]" and the transpose of the vector (—@f} A —@f} A iy)- According

to the structure of [5;)" as defined in Equation (3.20), this equals
> CHene;
y=p"+1

The entries @Zj can be taken from Equation (3.18). Since ﬁfh) +1 < v < m, we have
0,; = C’,(Ll)(gb?‘) if ﬁfh) +1<~v< 59) and ©); = 0 if ﬁ%j) + 1 <~ < m. Therefore we get

ﬁgj)
> Chene (95)
y=p" +1
as the summand for each h to be added to coy = —67;. Since 1 < a < 5?), we have

-0 = —C’i(l)(gb?‘) + C](l)(gb?). Therefore the entry c,: transforms into

i 8"
SSRCHRCRCIED DEDDINeCSCA
h=1 y=pg" 11

which is the integrability condition in Line (2.31) of Lemma 2.5.8, except for the sign.
The difference in sign comes from the fact that the augmented complete matrix describes
the system of equations (3.40), where the entries from the row with index « in the matrix
Z; are on the opposite side from the entries from the row with index « in the matrix
Zj and the inhomogeneous term —©, while in Lemma 2.5.8 for each 7, j and « the
corresponding equation is set to zero, if the differential equation is involutiv.

This means that the augmented rank condition holds for all 1 < ¢ < 7 < n if, and

only if, the equation has an involutive symbol and is formally integrable. O

As a first corollary, we assert our announcement in Section 3.2 concerning Cartan
characters and the rank of the matrices used in the step-by-step construction of an integral
manifold.

Corollary 3.3.21. Let Ry be a differential equation with an involutive symbol Ni. Then
for a local representation in d-regular coordinates, for all 1 < 1 < j < n, the Cartan

characters ozgZ satisfy

=

-1 = =
Z oz%l) = rank ,2 !
i=1 : 0 .
-1 =5

For q > 1, the Cartan characters oz((f) may be used on the left side instead of the ozli) if
the complete matriz at step j on the right side is that of the first-order system which is

deduced from the representation of R, according to the procedure in Subsection 2.5.1.
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Figure 3.11: Complete matrix for step 7 = 5 after contraction (as shown in Figure 3.4),
now in row echelon form. Blocks of columns shown green-framed and hatched are those
which were concerned by contraction. Areas shaded gray contain the coefficients of Lemma
2.5.8 for j =5 and 1 <¢ < 4 as entries. Areas shaded violet are not changed through the
process but may have moved through contraction.

Proof. Under the above assumptions, the contracted complete matrix in row echelon
form has non-trivial entries only in the negative unit blocks —1 NG and rows which have

their leftmost entries in such a block. The assertion on systems ‘of order q follows from
Proposition 2.5.1, second item. O

Example 3.3.22. We take up Example 3.3.19, where n = 3, m = 5, ﬁfl) =2, ﬁ%z) =

and ﬁ ) — 4. For j = 2, only ¢ = 1 is possible, and the last column in the augmented
complete matrlx before transformmg it into row echelon form has the five entrles -01, =

_Cfl (¢2) + 02 (¢1)7 - 12 = C(l (¢2) + C(l (¢2) 12 = _C(l (¢2) 2 = 0 and

—67, = 0. Afterwards it contains

—0L, — —CW(8h) + OV (¢h) + Cheh M (4Y)

The first two substitutions produce the integrability conditions for 7 = 2 and ¢ = 1, while
the other three entries remain unchanged.
For j = 3, we have the ten entries: five for i = 1, Wthh are —0L, = —CM(4}) +

O (1), —02 = —CV(2) +CD(62), 6%, = —CD(g3), 6%, =~ (gd), 63, =0,
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and five for i = 2, which are —0J; = _02(1)@:15) + C’él)(@), —02%, = —C’él)@g) + C’?(,l)(qﬁg),
—03, = —CV(e3)+CP(48), —04, = —C{V(¢%) and —O3, = 0 before the transformation.
The substitutions are for the first shift, ¢ = 1:

~O35 — —C3 (¢
~635 — —Cy”
~03 — 0"
~635 — —Cy (¢
—05 0.

3)

@+@W@+@wxﬂw>cﬂ@d%w+qwxﬂw>
2) + O3 (63) + CH(3) L (03) + CL(@3) O (63) + CH(63) OV (63) |
3)

Five entries remain unchanged (three for ¢ = 1 and two for ¢ = 2), while the other five are
the integrability conditions which have to be satisfied in the step 7 = 3 for the system to
be formally integrable.

In the proof of the Theorem 3.3.9 we produced an explicit row echelon form of the sys-
tem matrix given in Definition 3.3.10, which we now exploit to solve that system of linear
equations: we express some of the unknowns ¢ as linear combinations of the remaining
ones and thus parametrize the solution space. Then we eliminate those unknowns ¢}
from the differential conditions (3.30) and analyze the arising differential equation. The
following lemma shows the exact relations between these unknowns.

Corollary 3.3.23. Let 1 <1 < j < n. Forall1 < { < n the entries of the vector
CG=(:1<p<r)= (Céa’h): (o, h) & B) are grouped into n blocks of which the hth one
1s the transpose of

BMy1n) (B 42, m.h
(¢TI BRI

Then the relations between the entries of (; and (; are for all (o, i) where ﬁfj)-kl <a<m:
G = (3.74)
and for all (o, i) where ﬁf) +1<a< 5%]’)_.

¢V = Z Z CEe) M + M (e2) . (3.75)

y=6{" +1
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Proof. Fix j. Let be ¢ < j. The ith block of (; is (C}a’i): ﬁli) +1 < a <m). According
to the structure of the complete contracted matrix in row echelon form, the entries of
(C](a’l): sz) + 1 < a < m) are related to those of the vectors (; for 1 < k < j according to

the rows

m — — —— —

0, [[6, 016, 1[5, 2] -+~ [i7 — 1] - (3.76)

There are two sorts of such rows: one for ﬁfi) +1<a< 5?) and one for ﬁfj) +1<a<m.

Let ﬁfﬂ )11 < a < m. Then according to Corollary 3.3.13, the following entries of
the row with index a in the block matrix (3.76) are of interest: in [7,0]; = —1_« the —1
1

which is the coefficient of ;a’i) and therefore appears in the column indexed by Y;§; and

the entries of the row with index « in Zj) H[i/,\i] ;- This row contains the coefficients of

() 14 ,
Ci(ﬁlj 9 ¢ Ci(m’] ), and according to Equation (3.51d), we have

G =T e = (3.77)

y=6 +1

which proves Equation (3.74).
Now let B +1 < a < Y. Again according to Corollary 3.3.13, in the row with
index o of the block matrix (3.76) the —1 in the block [i,0]; = —1_ is the coefficient

of ¢ ;a’i). The only further entries of that row with index « in the block matrix (3.76)

that possibly do not vanish are, according to Corollary 3.3.13, for k£ < ¢ the entries of the

)

row with index « in the block matrix 11 [i, k]i, and for k = ¢ the entries of the row with
@ __ 4

index « in the block matrix 11 [i,i] . (For i < k < j — 1 the entries vanish according
to the structure of the contracted complete matrix.) For k < i, they can be read off
from Equation (3.51a), which gives for all 1 < k < i the coefficients for the entries in the
vectors ék: they are

—_

—Crg), BV +1<y<m.

For k = i, Equation (3.51b) shows for all 1 < h < i the coefficients of the entries in Gii
they are

o h i
—Che9), AV +1<y<B
For k =i and all i < h < j, Equation (3.51c) gives as the coefficients of the entries in éz
o h

The rightmost column of the augmented complete matrix contains the entries of the
vectors —6;;, of which the one in row number « is —6f;. According to our considerations
at the end of the proof of Theorem 3.3.9 (on page 118) this entry remains unchanged
throughout contraction and transformation into row echelon form. Equation (3.18) gives
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it as —OF = —C’f”((b;?‘). Summing up, we arrive at
' i—1 m A
G =30 D0 e (3.78a)
F=1y=pi" 11
gy

*Z >l (3.78D)
h=1 =g 11
+ Z Z )M + 0P (¢9) | (3.78¢)

b= BY’)H

In Lines (3.78b) and (3.78¢) we change the summation index h to k. Since we have already
shown that Equation (3.77) holds for all i < j, it holds in particular for 1 < k < 4, so

we have ( () — ™" and thus can combine the right term in (3.78a) and (3.78b) into
Z ﬁ(mﬂ Ck(gba)c "% Adding (3.78¢) to it, we arrive at (3.75). O

Remark 3.3.24. This calculation shows that we would have obtained the same Equations
(3.74) and (3.75) for the interrelations between the entries of the vectors (; and (j, if we
had used the non-contracted complete matrices without transforming them into row ech-
elon form. Transformation into row echelon form does not influence these interrelations,
because the rows which are used to describe them are not changed by the row transforma-
tions at all. Contraction does not influence them, because of the two coefficients in such
a row being added through contraction, one is certainly zero. Therefore, contraction only
means to take into account that Cj(»a’z) = Ci(a’]) whenever ¢ < j and 69) + 1< a<m,as
Equation (3.74) shows it. In other words, it means to take into account that in Equation
(3.75) and sums like it the terms Qj(a’i) and Ci(a’j ) are interchangeable because both are
equal and in the non-contracted complete matrix one of them has a zero coefficient while
the other one has not.

Transforming the complete matrix and the augmented complete matrix is not necessary
to exhibit the interrelations between C *%) and C o3) , but to prove the rank conditions
(3.41) and (3.42) for an involutive system.

This remark and Corollary 3.3.23 before it imply another interrelation between the
entries of the vectors ¢; and ¢; which helps us prove the existence theorem for flat Vessiot
connections in Subsection 3.3.7.

Corollary 3.3.25. Let 1 < i < j <n. Then for all B with 1 < 3 < ﬁy), the entries of
the vector (; and those of vector the (; satisfy

i i C;l(gbiﬁ)cj(%a) _ Z Z C& ¢5 C(éb) C(l (¢ﬁ) Cj(l)(gbf) ' (3‘79)

4=l = +1 =1 5=p" +1
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Proof. Since i < j, we have ﬁli) < ij). Thus, for 1 < g < ﬁli) both (3,i) € B and
(8,7) € B. Now it follows from Equation (3.18) that —@fj = —C’l-(l)(<b£) + C’,gl)(qﬁf). If
contraction of columns could be ignored, the equality (3.79) would follow from Definition
3.3.10 of the augmented complete, non-contracted, matrix and the distribution of its
entries (3.18) and (3.19) in the row with index 3. But as noted in Remark 3.3.24, the
obtained interrelations between the entries Cj(»%a) and Ci(é’b) are the same, whether we use
the contracted complete matrix or the non-contracted one. O

Example 3.3.26. As a counterexample for Vessiot’s step-by-step approach consider the
differential equation of second order locally represented by

. U = al
Ra: { Ugy = DU’
where a and b are real constants. It is taken from Seiler [37]. For a = b = 0, we

arrive at the system considered in Example 2.4.14 where we saw that its symbol is not
involutive. The symbol remains the same for arbitrary real numbers a and b and hence
is not involutive in the general case, too. Transforming it into a first order equation
according to the procedure given in Subsection 2.5.1 would still yield a system with a
symbol that is not involutive. This is why this differential equation does not meet the
necessary requirements of Theorem 3.3.9. As with the special case of this system that is
treated in Example 2.4.14, this system is formally integrable.

The pull-backs of the three generating contact forms are

V'w = du — UydT — udt
= du — UydT — udt |
wy = dUy — Uy dT — Uggdt
= dty — budT — Ugdl |
V'wy = diy — U dT — Ugdit

= du; — UydT — audt .

They annihilate the subdistribution V[Rs] C TRy = span{0z, 0%, Og, Oz, Oz, Oz} Which
is spanned by the vector fields

X1 = O + Uz 0y + VU0 + Ui Oy
Xy = O + W0y + Upy O + a0
Y=o

Their non-trivial Lie brackets are

[XhXQ] = O,’U,_mam — bu_t&ﬂ y [Xl,Y] = _au_t and [XQ,Y] = _au_ .

xT

To construct U; := X; + (1Y, choose an arbitrary function ¢; € F (R2). Then the
next step in Vessiot’s approach is to choose a second function (, € F(R2) such that for
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U, := Xy + (Y we have a two-dimensional integral distribution U := Span{Ul, UQ}. To
achieve this, the Lie bracket

(U1, Us] = (atiy — (2)0 — (b — €1)0z  mod V[Ry]

has to satisfy the condition [Ul, UQ] =0 mod V[R,] as U, and U, are in triangular form.
It follows that the two conditions au, = (» and bu; = (; are to be met, fixing both
functions. The second of these conditions concerns (; though in a step-by-step process,
it should not be restricted by conditions arising during the second step.
Nevertheless, the combined system of algebraic equations is solvable, and therefore
the vector fields
Ul = Xl + bu_tY and UQ = X2 + CLU_;EY

span a two-dimensional subdistribution in V[Rs] which is also transversal. It is even
involutive:

[Ul, UQ] = [Xl —+ bu_tY, XQ -+ au_xY]
= (U0 — VU0 + aTig[ X1, Y] + X1 (atz)Y
— X (b)Y — bwg[ Xy, Y] + aug[bw Y, Y] + bwY (ati;)Y

= QU Oy — Vi 0y + iy (—0r) + X1 (aT07)Y
— Xo(bw)Y + b0y, — att,Y (b)Y + buwgY (at,)Y

= Xl(au_x))_/ — Xg(bu_t)i_/ — au_g;}_/(bu_t)i_/ + bu_tl_/(au_x)f/
= buaY — auby =0 .

This means, for Ry there is an n-dimensional transversal involutive subdistribution in
V[R,]—defining a flat Vessiot connection—which can not be constructed step by step
because the symbol of the system is not involutive.

In Remark 2.3.4 we ran into a similar problem concerning the step-by-step construction
of formal power series solutions to a differential equation that is not formally integrable:
there may be formal power series solutions for such a differential equation but they cannot
be constructed step by step.

3.3.7 The Existence Theorem for Flat Vessiot Connections

At this point, we have proven that integral distributions within the Vessiot distribution
exist if, and only if, the algebraic conditions (3.29) are solvable, and that this is equivalent
to the augmented rank condition (3.41) being satisfied. This in turn is the case exactly if
the differential equation is involutive. Now we have characterized the existence of Vessiot
connections for Vessiot’s [43] step-by-step approach.

There remains to analyze the solvability, if we add the differential system (3.30). Its
solvability is equivalent to the existence of flat Vessiot connections in that each flat Vessiot
connection of R corresponds to a solution of the combined system (3.29, 3.30). We first
note that the set of differential conditions (3.30) alone is again an involutive system.
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Proposition 3.3.27. The differential conditions (3.30) represent an involutive differen-
tial equation of first order.

Proof. For all 1 < ¢ < n and 1 < p < r, the independent variables of the functions
¢! € F(Ry) are the coordinates on Ry, which are x,u and all u$ such that (o, h) & B.
To apply a vector field U; = 0,5 + - -+ to a function ¢} includes a derivation with respect
to 27. We order the independent variables such that if j > 4, then 27 is greater than
z', and each z° is greater than all the variables u® and u$ where (o, h) ¢ B. For any
equation H}; within the system (3.30), the application of the vector field U; = 0y + -
to (7 yields 9C?/027 as the leader of that equation; therefore equation H fj is of class 7,
and the equations of maximal class are H! ; the equations of second highest class in the
system are H? | and so on. There are only equations Hipj of a class indicated by some
index 2 < j < n.

From the Jacobi identity for vector fields U;, U; and Uy where 1 <i < j <k <n, we
have

(Ui, (Uy, U]l + [Uj, Uy, Uil] + [Uy, [Us, Uj]] = 0 .

The structure equations (3.28) for the vector fields Uy, and the definitions of Gf; and H};
in Equations (3.29) and (3.30) imply that this is
0= [Ui, I} Un + G52 + HLY,)
+ U, iU + GraZe + HEY,)
+ Uy, TLU + G Ze + HEY,)

3] 1P
= [Ui, T} Un) + [Us, G5, 2] + [Us, HRY,)
+ Uy, LU + U, GRZd + (U, HYY)

= T Us, Up) + Ui(Th)Un + G54[Us, Ze + Ui(GS1) Ze + Hi UL Y, + Us(HE)Y,

J

+ DRU;, Ul + U (L) Un + G5,[U;, Ze) + U (GSy) Ze + HE U, Yy + U (HE)Y,

+ FZJL[Uk, Uh] + Uk(FZJL)Uh + GZ[U}C, ZC] + Uk<Gc)Zc + HZ[Uk’ Y;,] + Uk(HZ)Y;; .

ij
The combined system (3.29, 3.30) means that all G¢, = 0 and all H?, = 0 which implies
that U is involutive, which it is, being in triangular form, exactly if all [U,, Uy] = 0. This
leaves only
0 = {Ui(Ify) + U;(I3) + Up(I7)} Un,
+ {Ui(G1) + Uj(Gy) + Ur(GY)) } Ze
+ {U(Hj,) + U (HE) + Un(H) Y, -

As part of a basis for V'[R,], the vector fields Uy, Z. and Y, are linearly independent,
which means their coefficients must vanish individually. So in particular

Ui(H},) + Ui (Hy;) + Up(HJ;) =0 .
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Under the assumption ¢ < 5 < k, the term Uk(Hfj) contains derivations with respect
to z), of U;((}) and U;(¢7). Thus, according to our order, this is a non-multiplicative
prolongation, and the remaining terms are multiplicative prolongations. But since any
non-multiplicative prolongation within the system (3.30) must be of such a form, it is a
linear combination of multiplicative prolongations. Therefore, no integrability conditions
arise from cross-derivatives (and none arise from a prolongation of lower order equations
since all equations of the system are of first order).
If we set

GGl — CE B — G By, — G = A
for the inhomogeneous parts of the system (3.30), 9¢?/0x? =: (¢?); for the leaders and
U;(¢F) = Uy(¢P) — (¢D); + A,
and solve each equation of the system (3.30) for its leader, then it takes the form

(P = Ur(¢R) = Un(C) + A%,
(Cg)n = Uz(ﬁﬁ) - Un(c ) + AQn 5

(5—1)71: n— 1(§p) Un( )+An 1,n s
(Qf)n—l = 1( ) Un 1(Cl)+Aln 19

(Qg)n—leZ( ) n— 1((2)+A2n 1
(3.30*)

(_n1 = Una(C_y) = Una(_y) + A on1s

(Qg)?’ =U, (Qg) Us(C%’) + A23 )

(Q{))?’ =U (Qg) 3(Cf) + A13 )
(D)2 = () — Ua(¢7) + Ay 5
here for each line 1 < p < r. Therefore the system (3.30*) is in Cartan normal form given
in Definition 2.4.26. From Lemma 2.4.29 now follows that the system is involutive. O

If the original equation R is analytic, then the quasi-linear system (3.30) is analytic,
too. Thus we may apply the Cartan-Kahler theorem 2.4.31 to it, which guarantees the
existence of solutions.

The problem remains that the combined system (3.29, 3.30) is in general not involu-
tive, as the prolongation of the algebraic equations (3.29) leads to additional differential
equations. Instead of analyzing the effect of these integrability conditions, we proceed
as follows. If we assume that R, is involutive, then we know from Theorem 3.3.9 that
the algebraic equations (3.29) are solvable. Now we use the interrelation between the
unknowns ¢} as shown in Corollary 3.3.23 to eliminate in (3.30) some of the unknowns
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¢, by expressing them as linear combinations of the remaining ones; that is, we plug the
algebraic conditions into the differential conditions and thus get rid of them. We can then
prove the following existence theorem for flat Vessiot connections.

Theorem 3.3.28. Assume that d-reqular coordinates have been chosen for the differential
equation Ry and that Ry is analytic. Then the combined system (3.29, 3.30) is solvable.

Proof. First we transform the generators of U into a triangular system. Then the inho-
mogeneous terms A := B +(f Bf, —(FBY — (fCF By, — (/T in the differential conditions

Ui(G) = Ui (¢7) + A7 = 0 (3.30)

vanish, and it suffices to consider the system (3.29, 3.30") instead of (3.29, 3.30). We follow
the strategy outlined above and eliminate some of the unknowns (}. As we consider each

of the equations of (3.30) as being solved for its derivative 8(’@-(6 h) /0x7 of highest class j, as
given in Equation (3.30%), we must take a closer look only at those equations where this
leading derivative is of one of the unknowns we eliminate. The structure of the vectors
(i, given in Corollary 3.3.23, shows which ones these are. Let k be such that 2 < k < n.
Then for the subsystem of the equations of class k in the system (3.30), the equations
which hold the following terms are concerned:

U9,
Up(¢SPD), U8y,

Ue(¢PD), UR(C2y ., UGy

here, for any Uk((’i(ﬁ’h)), we have ﬁfh) +1 < B <m. We now show that these equations
vanish. The proof is by straightforward calculation, though tedious and requiring a case
distinction. Let 1 < ¢ < k. Fix some ﬁfh) + 1 < 3 < m. Consider the equation

U(¢*) = U™ (3.80)

Then h < @ < k. According to the structure of the vector (;, the entries of which in its
hth block are of two kinds, there are two cases.

oM _ o (5)

1. The interrelation for Qi(ﬁ ") is an equality: . This is so if, and only if,

ﬁy) + 1 < 3 < m according to the structure of (;. Now there arise two subcases.

(a) The other mterrelatlon is an equality, too: (j Bh) ,56 *) " This is so if, and

only if, 51 + 1 < B < m according to the structure of (. In this subcase,
Equation (3.80) becomes

Ui(¢G™) = UG - (3.81)



3.3 Constructing Flat Vessiot Connections II: A New Approach 129

Since the system (3.30) contains the equalities Ui(g“}(f’k)) = Uh(gi(@k)) and
Up(¢P) = U, (¢\%"), Equation (3.81) becomes

Un(¢P) = U, (¢ . (3.82)

Since ¢« < k and 61 +1 < B < 'm, from the structure of (, follows C (ﬁ 2
Thus, Equation (3.80) vanishes.

(b) The other interrelation is an affine-linear combination:

k m
=30 0 a@a + Gl

o=l = +1

This is so if, and only if, ﬁli) +1<3< ﬁ%k) according to the structure of (.
In this subcase, the term Ui(C,gB’h)) in Equation (3.80) becomes

k m
=>" 3 oy () (3.83a)
o=l =@ +1
k m

+3 N T(CHeDIGT + U(CP (8])) - (3.83b)
a=1y_pgl®) 1

The term Uk(Ci(ﬁ’h)) in Equation (3.80) becomes

Un(¢™) = UL(¢™)
=Un(¢)

(ﬁz
k m
:Uh(Z > e + Y (¢g))

0=l y=p{"+1

:Z Z C’ff((bf)Uh(gi(“”“)) (3.84a)

k m
+3° % (@) + U (CP (@) ; (3.84b)

o=l =6 +1

here we have the first equality because we are considering the first main case,
the second equality because of the structure of the system (3.30) and the third

equality according to the structure of (i, since ¢ < k and because () +1<
g < ﬁf‘c). Substituting (3.83) and (3.84) in Equation (3.80) and factorlng out,
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we get
:i ) CoeD (UG = U} (3.85a)
=
*Zf; i(n:) {U(C2(e)) e = Un(Co(o)) ¢ (3.85)
(7 §1(¢;)) Un(CY (6))) - (3.85¢)

Line (3.85¢) contains the Lie bracket [U;, Chl)](gbf). According to the structure
of the system (3.30), the term (3.85a) vanishes. If the terms (3.85b) and (3.85c¢)
vanish, too, then so does equation (3.30). Otherwise they form a new algebraic

condition for (3.30), which can be solved for some function ¢ ,gﬁ ) Substituting
this function in (3.30) does not change the classes or the numbers of the single
equations therein. Thus, equation (3.80) vanishes.

2. The interrelation for (; is an affine-linear combination:

V=3 Y e + 6@

=1 V=ﬁ§a)+1

This is so if, and only if, ﬁfh) +1 << ﬁfi) according to the structure of (;.
Since we have h < i < k and ﬂfl) < ﬁfk), according to the structure of (; the other
interrelation is an affine-linear combination, too:

Igﬁh Z Z C5 <Z56 (8,b) 01(11)@5).

b=1 5_g(®) 1
Thus, Equation (3.80) becomes

k m
Z S @) - S U (3soa)
a=1,_p(@) 4 b=1 5_g®) 1
i m k m
300> UG =D D> UGG (3.86D)
o=l y=p{" 11 b=1 55" 11
+ UV (6))) = UG (47)) - (3.86¢)

In part (3.86a), the terms Uj((, (ra) ) and Ui(g,(f’b)) are equal to Uh(C,g%a)) and Uh(g(é’b))
according to the structure of the system (3.30). Thus, Equation (3.86) becomes

k m
O—Z Z CHONUNG) =D D ChAUME™) (3.862)
y=6{"+1 b=1 5_p® 11

+ (3.86b) + (3.86¢) .
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Factoring out the vector field Uy, in part (3.86a’), this equals

o_Uh(Z Z Ca(ef) W“—Z i ) (3.87a)

0=l =g 41 o=p{"

k m

(Z Z Un(CUONG =D Z W(C2(eP)) g“b) (3.87b)
y=A"+1 =1 o=p)”

+ (3.86b) + (3.86¢) . (3.87¢)

According to Corollary 3.3.25 (for j = k), the term (3.87a) equals
Un(CP(6f) = G (@),

which does not contain any C,g%a) or Ci(&’b) any more; it is an algebraic expression
instead of the differential expression that it seems to be when written in the form
(3.87a). The other terms, (3.87b) and (3.87c¢), are algebraic, too. So all of Equation
(3.80) has shown to be an algebraic condition when the interrelations between the
entries of the vectors (p, (; and (x, as noted in Corollary 3.3.23, are taken into
account.

If this new algebraic condition for the system (3.30) vanishes, Equation (3.80) van-
ishes. Otherwise, this new algebraic condition given in Equation (3.87) now appears

as
0=Un(C"(6}) — (l)(éﬁ)) (3.87)
k m
(Z Z Un(CUONGT =D D7 U(Ch())) g“b) (3.87b)
=8 41 b=1 5_g®) 1
) m k m
+ Z Uk e U0 St N N VA (e 1 Mo (3.86b)
a=1 5 b=1 5_g) 4
+ Uk(C (¢ﬁ)) Ud(C(9))) - (3.86¢)

Collecting terms in lines (3.87a’) and (3.86¢), this yields

0 = (3.86b) + (3.87h)
+ULC (1) — U(CP (0))) + UL(CV (7)) — Un(C{7(67)) -

The lower line contains the Lie brackets [Up, Ci(l)] (¢?) and [Uy, C,(ll)] (¢7). There must
be some non-vanishing summand containing a factor C}g%a)’ Ci(é’b), ,(L%a) or ,(f’a). As
we did in case 1.(b), we solve (3.86) for this non-vanishing factor and substitute
it into the system (3.30), which does not change the class of any equation therein.

Therefore Equation (3.80) drops out from the system (3.30).
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Now we have shown that all those equations vanish where the leading derivative is
subject to being substituted through the interrelations concerning the coefficient function
Cff ) In the system (3.30%), these are the equations with the leaders

(CZ(BJ))IC )
(P (PPN

1 ,2 k=2 .
(P, (P, (PR,

here 2 < k < n and ﬁ@ + 1 < B < m. The remaining equations still form an involutive
system (we may numerate the remaining ¢’ in such a way that no gaps appear) as the
considerations for the system (3.30) in Proposition 3.3.27 apply likewise. Thus we even-
tually arrive at an analytic involutive differential equation for the coefficient functions ¢¥
which is solvable according to the Cartan-Kahler theorem 2.4.31. O

Example 3.3.29. Consider the first-order equation

R, : Utzvt:wt:u8:07 US:2U$+4uy’
Pl ws = —us — 3uy Uy = vy + 2w, + vy + dw, .

It is formally integrable, and its symbol is involutive with dim AN; = 8. Thus R, is an
involutive equation. For the matrices =;, all of which have three rows and eight columns,

we find

-1 0 0O 00 O0O0O0 000 -1 0 0O 0 0
==|0 -1 0 00000, ==lo00 0 =1 0 0o0],

0 0 -1 00 0 0O 000 O 0O -1 0 0

0 -1 -2 0 -3 -4 0 0 0O 00 O O0O0O0OTO
=Z3=10 0 0O 0 0 0 -1 0 , =4=|—-2 00 —4 0 0 0 0},

0 0 0O 0 O 0 0 -1 1 00 3 0O0O0O0
S5 = O3xs

For the first two steps in the construction of the fields U;, the rank conditions are trivially
satisfied even for the non-contracted matrices. But not so in the third step where we have
in the row echelon form of the arising 9 x 32-matrix in the 7th row zero entries throughout
except in the 12th column (where we have —2) and in the 17th column (where we have
2). As a consequence, we obtain the equality ¢} = ¢} and the rank condition for this
step does not hold. However, since both u, and u, are parametric derivatives and in our
ordering Y7 = 1.(0,,) and Yy = 1,(0,, ), this equality is already taken into account in our
reduced ansatz and for the matrices é’z the rank condition is satisfied.

Note that the rank condition is first violated when the rank reaches the symbol dimen-
sion. From then on, the rank of the left matrix in Equation (3.41) for the rank condition
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stagnates at dim N, while the rank of the augmented matrix may rise further. The entries
breaking the rank condition differ by their sign, while their corresponding coefficients in
Lemma 2.5.8 are collected into one sum and thus vanish.

Remark 3.3.30. One of Vessiot’s [43] aims was to give a proof of his own for the Cartan-
Kahler theorem 2.4.31. Within this same argumentation, he developed his step-by-step
approach for the construction of transversal involutive subdistributions within the Vessiot
distribution, thus striving for two separate objectives at once. Since, in contrast, we split
both parts of this argument by basing the Vessiot theory on the formal theory, we need
not prove the Cartan-Kéhler theorem while analyzing the step-by-step construction at
the same time.

As with Vessiot’s original approach, our strategy guarantees only the existence of an
analytical solution. But we have an advantage: if for some system under consideration
we can show that the differential conditions (3.30) are solvable without turning to the
Cartan-Kahler theorem—for the special equation at hand some other argument may be
available—then our approach yields the existence of a unique solution in the smooth cate-
gory because of the remarkable setting: to prove the existence of the necessary involutive
subdistributions within the Vessiot distribution, we need the Cartan-Kahler theorem. But
once we have them, we use the Frobenius theorem (as is outlined in Remark 3.1.12). Now
the Frobenius theorem refers to smooth solutions as apposed to analytical ones: here the
integral manifolds are C*°-manifolds. Therefore, by dividing both parts of the argument
in two—proving the Cartan-Kahler theorem and developing the step-by-step approach—
for those differential equations where the differential conditions (3.30) can be shown to
be solvable without recourse to the Cartan-Kéhler theorem, it is possible to sidestep the
Cartan-Kahler theorem altogether, gaining a stronger existence theorem.
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Chapter 4

Possible Further Developments

In this closing chapter we hint at some possible further developments. Apart from an
interest in Vessiot theory on aesthetic grounds there is the question of how it can be
applied or linked to other ideas.

Cartan-Kahler theory Now that we have related the approach of Vessiot’s theory
with the central concepts of the formal theory by proving that Vessiot’s construction
succeeds if, and only if, it is applied to an involutive differential equation, the relation to
the Cartan-Kéahler theory of exterior differential systems may be considered. As Cartan-
Kahler theory is dual to Vessiot’s approach, it seems natural to assume that the formal
theory and the Cartan-Kéhler theory are equivalent, too. Malgrange [31] discusses this
point in an appendix. Here, equivalence means, the pull-back of the contact codistribution
is involutive in the sense of Cartan-Kahler theory if, and only if, the differential equation
is involutive in the sense of formal theory. As Vessiot theory is intermediate between
Cartan-Kahler theory and formal theory, it should facilitate an explicit equivalence proof.

To prove the equivalence of formal theory and Cartan-Kéahler theory one can use
now Proposition 2.4.22 on how the integral elements fit in the formal theory as the new
definition of integral elements based on the contact map makes the relations between the
formal theory and the Cartan-Kéhler theory more transparent. One should clarify the
following point: Matsushima [33] considers the link between Cartan’s test in the version of
the theory of exterior systems [4, 21] and Cartan’s test as it appears in the formal theory
based on intrinsic concepts of Spencer cohomology as given by Seiler [37, 39]. Both times
the comparison of Cartan characters is linked to the involutive symbols of the formal
theory, and the intention should be to formulate the role of the symbol and the Spencer
cohomology clearly.

Qualitative Investigations One also could try to develop methods from Vessiot theory
into an algorithm for the completion of differential equations to involutive systems. But
as it turns out, the method of formal theory is at least as simple. Then again, completion
to involution is not an end in itself. Indeed, it is at the beginning in the analysis of over-
and under-determined systems. One could proceed to qualitative investigations: can the
geometrical structure of the differential equation—its Vessiot distribution and the involu-
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tive subdistributions in it—be used to classify differential equations? Can it distinguish,
for example, an elliptic system from a hyperbolic system? There are such considerations
for exterior systems. Vassiliou [42] studies for hyperbolic equations algebraic structures
within the Vessiot distribution: here, the Vessiot distribution is constructed as a direct
sum of two subdistributions which correspond to the characteristics.

As Vessiot theory is dual to the theory of exterior systems one can translate the
methods of Cartan-Kahler theory into methods of Vessiot theory. Not to replace one
approach with the other; but if a question is posed in the language of formal theory,
it should be an advantage to stick to it throughout, without the need to reformulate
it as a question regarding exterior systems, just like when a question arises naturally
within the context of exterior systems one does not reformulate it as a partial differential
equation. Now Vessiot theory offers the development of analogues. This would avoid the
indefiniteness in the transcription, too. Though there is a manifest way to transform a
problem concerning a differential equation into a problem concerning an exterior system
(pulling back the contact codistribution), there are several other approaches as well: the
Korteweg-de-Vries equation ., = 6uu, — u, rewritten as an exterior system the way
Estabrook and Wahlquist [14] do it is not a Pfaffian system but contains higher order
forms.

Vessiot theory may help to clarify phenomena concerning singularities as Arnold [3]
studies them for ordinary differential equations; this is indicated in Remark 3.1.9.

We have assumed throughout that the Vessiot distribution has constant rank; a more
general consideration would be to omit this restriction. For a non-linear differential equa-
tion, the Vessiot distribution is not a distribution in the strict sense any more as its rank
then may vary for different points on the differential equation.

The algorithm for the completion to involution then does not complete one single
differential equation but has to work out a tree of subsystems, where the terminal knots
of which, the leaves, correspond to different systems of differential equations which are
regular in that the Vessiot distribution has constant rank on each of them. The question
is being studied by Marcus Hausdorf [19].

Differential Galois Theory Now that we know the Vessiot approach is successful for
an involutive system, we can regard the differential equation as covered with systems of
finite type, as any involutive subdistribution within the Vessiot distribution corresponds to
a system of finite type. In differential Galois theory systems of finite type are considered;
now if a differential equation of non-finite type is given, and one regards it as covered by
systems of finite type, this should offer a way to confer the methods of differential Galois
theory to such general systems.

Malgrange [30] proposes a Galois theory for nonlinear differential equations where
his starting-point is the projection of the Vessiot distribution from T Jim to TE. The
interest of this theory concentrates on the case when there are singularities of the kind
that arise at those points where the Vessiot distribution is not transversal any more
(as opposed to the points where the Vessiot distribution is of different rank). Those
points of the jet bundle are projected onto the zero vector, and the projected distribution
is not of constant rank any more. An example is provided by the Clairaut equation
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u = xu + f(u), the symbol matrix of which is (z + f’(%)). Among the solutions, there is
an envelope which is not represented within a general solution (a family of straight lines,
u(z) = cx + f(c)). The singular points constitute a fibred submanifold which locally
represents a differential equation that is over-determined to the extent that it admits only
one solution (a parabola). To analyze these singularities, one has to prefer the Vessiot
distribution on the level of Jy7 to its projected version in T'E.

Symmetries Another point for further research is to analyze symmetries using the
Vessiot distribution. Lie’s classical approach is to analyze contact transformations of the
jet bundle (where a diffeomorphism ¢: J,m — J,m is called a contact transformation, if
it satisfies T¢(C,) = C,) to check which of them leave the differential equation invariant:
if p(R,) C Ry, then ¢ is called an external symmetry. But then one uses too much of
the contact distribution which is irrelevant because it is not tangential to the differential
equation, and thus some symmetries may be overlooked in some cases. An inner symmetry
is a diffeomorphism ¢: R, — R, with ¢*(:*C)) C +*C) and ¢(R,) € R,. Cartan [6]
computed inner symmetries. Olver [34] and Kamran [24] and both of them with Anderson
[2] distinguish inner, external and generalized symmetries and compute them for special
differential equations. For the Hilbert-Cartan equation v, = (u,,)? they find that the Lie
algebra of external symmetries is six-dimensional and contained in the Lie algebra of inner
symmetries, which equals the Lie algebra of generalized symmetries and has dimension
fourteen.

Now another way to compute inner symmetries of partial differential equations is
this: instead of regarding a differential equation as a fibred submanifold in a jet bundle
consider it as a manifold with a distribution V[R,]. (Now this distribution encodes the
information of imbedding R, into J,m.) Then analyze the symmetries of this distribution.
This yields inner symmetries without further ado, while external symmetries are avoided.
This would be the natural geometric approach to the analysis of symmetries. When
is there a difference between inner and external symmetries? For systems of Cauchy-
Kovalevskaya type (well-determined equations) there are none according to Anderson,
Kamran and Olver [2]: any inner symmetry can be extended to a external symmetry.
As the different kinds of symmetries were studied separately until fairly recently, general
criteria to characterize those systems where there is a difference between them are not
yet available. (Ordinary and under-determined differential equations like the Hilbert-
Cartan equation allow such a difference.) To develop a geometrical insight instead of
several technical criteria for special types of differential equations, Vessiot’s theory may
be helpful because there, internal symmetries appear as an intrinsic concept.

Field Theories In [16] an intrinsic definition of Hamiltonian differential equations as
fibred submanifolds of a first order jet bundle with a one-dimensional base space for the
description of explicitly time-dependent systems is given. A natural extension of this
theory is to field theories where the base space may have arbitrary dimension. In [7],
de Léon and others summarize the various generalizations of the tangent and cotangent
structures and bundles that are used in the Lagrangian and Hamiltonian formulations
of classical mechanics and classify them into two categories: one where the geometric
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structure of the bundles is being generalized, which results in several axiomatic systems
such as k-symplectic and k-tangent structures; and one where the bundles themselves are
being extended and the geometric properties of these extensions are studied, which results
in the multi-symplectic geometry on jet and cojet bundles and the n-symplectic geometry
on frame bundles. These theories study several distributions of vector fields; their relation
to the Vessiot distribution of the differential equation which describes a dynamical system
is an open question.



Chapter 5

Deutsche Zusammenfassung

Forschungsgegenstand der Arbeit ist Vessiots Theorie partieller Differentialgleichungen:
Zu einem gegebenen System von Differentialgleichungen sucht man eine Distribution von
Vektorfeldern, von deren Unterdistributionen manche aufgefasst werden konnen als tan-
gentiale Naherungen an Losungen der Gleichung.

Ernest Vessiot [43] verfolgte in den zwanziger bis vierziger Jahren des 20. Jahrhunderts
einen Ansatz zur Behandlung allgemeiner Systeme partieller Differentialgleichungen, der
dual ist zur Theorie duBlerer Systeme, der Cartan-Kahler-Theorie [4, 21], insofern, als er
Vektorfelder zum zentralen Gegenstand der Betrachtung macht und die &uere Ableitung
ersetzt durch die Lie-Klammer von Vektorfeldern. Gewisse Distributionen von Vektor-
feldern erlauben dann, Losungen einer Differentialgleichung als Integralmannigfaltigkeiten
dieser Distributionen aufzufassen. Vessiots Ansatz besteht darin, zu einer gegebenen Dif-
ferentialgleichung eine Distribution zu konstruieren, die tangential ist zur Differentialgle-
ichung und zudem in der Kontaktdistribution des Jet-Biindels enthalten. Dann sucht man
darin nach n-dimensionalen, zu der Basismannigfaltigkeit transversalen Teildistributio-
nen, den Integraldistributionen. Diese bestehen aus Integralelementen, und diese wiederum
sollen so aneinandergepasst werden, dass sie eine unter der Lie-Klammer schliefende Un-
terdistribution bilden. Man spricht dann von einem flachen Vessiot-Zusammenhang.

Vessiots Ansatz ist nicht populir geworden. Modern formulierte Darstellungen seiner
Theorie beschranken sich auf spezielle Systeme (wie hyperbolische Gleichungen, siehe
[42]), und allgemeinen Betrachtungen [15, 40] fehlt die Rigorositdt der Betrachtungen,
wie sie in der verbreiteteren Cartan-Kahler-Theorie ausgearbeitet worden ist; speziell
die notigen Voraussetzungen zur Losbarkeit einer Gleichung und zur Konstruktion oben
erwahnter Distributionen sind noch nicht erforscht worden und werden selbst in Vessiots
eigenen Arbeiten vernachlassigt. Ein Ergebnis dieser Arbeit ist, diese Liicke geschlossen
und fiir Vessiots Theorie ebenso rigorose Grundlagen geschaffen zu haben. Zudem wird
der Zusammenhang zwischen Vessiots Ansatz und den zentralen Begriffen der formalen
Theorie (wie formale Integrierbarkeit und Involution von Differentialgleichungen) her-
ausgearbeitet. Ein Hauptergebnis der Arbeit ist zu zeigen, unter welchen Bedingungen
Vessiots Ansatz gelingen kann.

Im ersten Teil der Arbeit gebe ich eine aktuelle Ubersicht iiber die formale Theorie
partieller Differentialgleichungen. Ich folge in der Darstellung Seiler [37, 38] und Pom-
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maret [35]. Die moderne Beschreibung der formalen Theorie von Differentialgleichung be-
trachtet Differentialgleichungen als gefaserte Untermannigfaltigkeiten in einem geeigneten
Jet-Biindel und untersucht formale Integrierbarkeit und das starkere Konzept der Invo-
lutivitat von Differentialgleichungen zur Analyse ihrer Losbarkeit.

In dieser Arbeit werden allgemeine Systeme partieller Differentialgleichungen betrach-
tet; dies schliefit beliebig komplizierte nicht-lineare Systeme ein. Die Struktur dieser Sy-
steme, wie sie durch die Vessiot-Distribution beschrieben wird, lasst sich trotzdem leicht
darstellen oder auf einfach darstellbare Systeme zuriickfiihren: Zunachst lasst sich jedes
System beliebig hoher Ordnung umschreiben in ein System erster Ordnung. Ist das System
nicht involutiv, lasst es sich durch endlich viele Operationen vervollstdndigen zu einem
involutiven System; dies besagt der Satz von Cartan-Kuranishi. Ist das Ausgangssystem
involutiv, so gibt es auch ein dquivalentes System erster Ordnung, das involutiv ist. (Die
Zahl der Veranderlichen bleibt dabei natiirlich nicht unbedingt erhalten. Erhalten bleibt
aber die fiir die Theorie wichtige Zahl an Cartan-Charakteren.) Nachdem ein beliebiges
System umgeschrieben ist in ein System erster Ordnung, ldsst es sich (lokal) darstellen
in der reduzierten Cartan-Normalform. Diese ist in der Literatur nicht tiblich, hilft aber
in dieser Arbeit wesentlich, die Argumentation zu vereinfachen, da sie die Veranderlichen
der lokalen Darstellung der Differentialgleichung auf naheliegende Weise klassifiziert. Dies
flihrt zu einer natiirlichen Beschreibung des zugehorigen geometrischen Symboles. Dieses
wieder ist als Unterdistribution der Vessiot-Distribution eine entscheidende Hilfe bei der
Konstruktion flacher Vessiot-Zusammenhénge: Die Vessiot-Distribution léasst sich nun zer-
legen in die direkte Summe des Symboles und eines (nicht eindeutigen) horizontalen Kom-
plementes. Die n-dimensionalen, unter der Lie-Klammer geschlossenen, zu der Basisman-
nigfaltigkeit transversalen Unterdistributionen sind die gesuchten tangentialen Néherun-
gen an die Losungen der Differentialgleichung. Thre Existenz zu zeigen, ist nun moglich
durch Analyse der Strukturgleichungen. Der hier verwendete Ansatz ist so geschickt, dass
diese eine sehr einfache (oder jedenfalls verglichen mit bisherigen Ansétzen einfache) Form
haben.

Im zweiten Teil der Arbeit wird gezeigt, dass Vessiots Ansatz zur schrittweisen Kon-
struktion der gewiinschten Distributionen genau dann gelingt, wenn das gegebene Sy-
stem involutiv ist. Bewiesen wird zunachst ein Existenzsatz fiir Integraldistributionen.
Weiter wird ein Existenzsatz fiir flache Vessiot-Zusammenhénge bewiesen. Die differen-
tialgeometrische Struktur der zugrundeliegenden Systeme wird analysiert und gegentiber
anderen Ansétzen vereinfacht (speziell die fiir die Beweise der Existenzséitze betrachteten
Strukturgleichungen). Die moglichen Obstruktionen zur Involution einer Differentialgle-
ichung werden explizit hergeleitet. (Die Darstellung bezieht sich auf Systeme erster Ord-
nung, was die Allgemeinheit nicht einschrinkt und die Ubersicht erhoht. )

Die Analyse der Strukturgleichungen liefert nicht nur theoretische Einsichten, son-
dern auch ein Verfahren, mit dem die Koeffizienten der Vektorfelder, welche die gesuchten
Integraldistributionen aufspannen, explizit bestimmt werden kénnen. Dadurch ist eine Im-
plementierung des Verfahrens in dem Computeralgebrasystem MuPAD moglich geworden,
an der zur Zeit gearbeitet wird.
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