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1 Introduction.

In this paper we will deal with the linear model

E(y)
n×1

= X
n×k

β
k×1

, Cov(y) = σ2 I. (1)

We denote by span{z1, . . . , zr} the linear subspace spanned by the vec-
tors z1, . . . , zr of the vector-space V . For a matrix A we denote the
range of the matrix A by im(A) and its rank by r(A). A g-inverse of
A is denoted A− and the Moore-Penrose of A is denoted by A+. PL

denotes the orthogonal projection into the linear subspace L of the
vector-space V .

It should be noted that the model (1) is the most general linear
model. Further, (1) is understood with respect to a general inner prod-
uct, i.e.,

E(y, a) = (Xβ, a), Var(y, a) = σ2(a, a) (2)

with respect to a given inner product. If with respect to the classical
inner product (x, y)o = x′y and the relation Cov(y) = Q, (Q is nonneg-
ative definite matrix) is correct, then if im(X) ⊆ im(Q) with respect
to the inner product

(x, z) = (x,Q+z)0 = x′Q+z, (3)

then the relation Var(y, a) = σ2(a, a) holds. (x, z) is also equal to (x, ρ)o

where ρ is any solution of Qρ = z. This definition does not depend on
the selection ρ. If im(X) ⊆ im(Q) does not hold, then with respect to
the estimation of E(y), we can “regularize” the model by replacing Q
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by W = Q + cXX ′, c > 0. Then im(X) ⊆ im(W ) and for the inner
product

(x, z) = (x,W+z)o = x′W+z, (4)

again Var(y, a) = σ2(a, a). This is just what Cov y = σ2I means.
In the model (1) the BLUE (Best Linear Unbiased Estimator) or

GME (Gauss-Markov-Estimator) of Ey is

Gy = Pim(X)y, (5)

which is the orthogonal projection of y onto im(X). If X = (x1, . . . , xk), xi ∈
Rk×1 and β = (β1, . . . , βk)′ then

Xβ = β1x1 + . . . + βkxk. (6)

Gy is easy to compute if xi’s are pairwise orthogonal, i.e., (xi, xj) = 0
if i 6= j. In this case

Gy =
k∑

i=1

β̂ixi, β̂i =





(xi, y)
(xi, xi)

if xi 6= 0

arbitrary if xi = 0 .
(7)

Also the measure of determination R2 = ||Gy||2/||y||2 can be easily
computed. Indeed,

||Gy||2 =
∑

i:xi 6=0

(xi, y)2

(xi, xi)
=

k∑

i=1

β̂2
i (xi, xi) (8)

and

R2 =
∑

i:xi 6=0

(xi, y)2

(xi, xi)(y, y)
=

∑

i:xi 6=0

Corr2(xi, y) (9)

where Corr(x, y) denotes the (empirical) correlation coefficient between
x and y.

When xi’s are not pairwise orthogonal, then by the orthogonal-
ization method due to Erhard Schmidt, late professor at “Humboldt-
University at Berlin”, it is possible to represent Xβ as follows:

Xβ =
s∑

i=1

αiqi, (10)

where s = r(X) and qi’s are non-zero vectors which are pairwise
orthogonal. They are determined by the orthogonalization algorithm
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which in the literature is mostly called Gram-Schmidt orthogonaliza-
tion method. If

xj =
s∑

l=1

rljql, j = 1, . . . , k , (11)

then it follows that (xj , ql) = rlj(ql, ql) and

rlj =
(xj , ql)
(ql, ql)

. (12)

Without loss of generality, we can assume that x1, . . . , xs are linearly
independent. If we then let q1 = x1, then r11 = 1 and if also rll = 1, l =
2, . . . , s, then

ql = xl −
l−1∑

j=1

(xl, qj)
(qj , qj)

qj . (13)

Since (xj , ql) = (qj , ql) if l ≥ j, it follows that rll = 1 and rlj = 0 if
j < l. Let

Q1 = (q1, . . . , qs), R1 = (rlj ; l = 1, . . . , s, j = 1, . . . , k). (14)

Then

X = Q1R1 (15)

where R1 is an upper triangular matrix. This representation is called
QR-decomposition in numerical analysis (See Björck-Dahlquist (1972)
or Lawson and Hanson (1974)). Since Xβ = Q1α, α = (α1, . . . , αs)′, it
follows that α̂ = (Q′

1Q1)−1Q′
1y is the least squares estimator (BLUE,

GME) of α. From

Q1α =
s∑

l=1

αlql =
k∑

j=1

βjxj =
k∑

j=1

(
s∑

l=1

rljql) =
s∑

l=1

(
k∑

j=1

rljβj)ql = Xβ,

it follows that

αl =
k∑

j=1

rljβj = (R1β)l, l = 1, . . . , r, (16)

implying R1β = α.
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Theorem 1. Let α̂ = (Q′
1Q1)−1Q′

1y and β̂ be any solution of the equa-
tion R1β̂ = α̂. Then (l, β̂) is BLUE of (l, β) whenever (l, β) is estimable.
There exists at least one solution of R1β̂ = α̂.

Proof. a) We have the representation X = Q1R1 and (l, β) is estimable
iff l ∈ im(X ′), i.e., l ∈ im(R′

1Q
′
1) or l = R′

1Q
′
1z for some z. Then

(l, β̂) = (R′
1Q

′
1z, β̂) = (Q′

1z, R1β̂) = (z, Q1α̂) (17)

and this is BLUE of (z, Q1α) = (z, Xβ) = (X ′z, β) = (l, β).

b) The equation R1β = α is solvable. Let R = (R′
11

...R12) where R11 is
of order s× s and R12 of order s× k− s. Since R11 is upper triangular
with diagonal elements equal to one, it follows that the determinant of
R11 equals one. Hence R11 is regular. If we split up β̂ as β̂′ = (β̂′1, β̂

′
2)

where β1 of order s × 1 and β2 of order k − s × 1, then β̂1 = R−1
11 α,

β̂2 = 0, form a solution of R1β = α̂.

Since R1 and R11 are upper triangular the system R1β̂ = α̂ and
R11β̂1 = α̂ can be easily solved successively as follows:

β̂s = α̂s =
(qs, y)
(qs, qs)

(18)

β̂l = α̂l −
s∑

j=l+1

rlj β̂j

=
(ql, y)
(ql, ql)

−
s∑

j=l+1

rlj β̂j , l = s− 1, s− 2, . . . , 1. (19)

2 Estimable Functions and the Computation of Their
Estimates

In the model E(y) = Xβ, Cov(y) = σ2I, the least squares estimator of
β is

β̂ = (X ′X)−1X ′y, (20)

if X has full column-rank and

Cov(β̂) = σ2(X ′X)−1. (21)

Let X = (X0
...xk), where X0 is of order n × (k − 1) and xk of order

n× 1. Then
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X ′X =
(

X ′
0X0 x′kX0

X ′
0xk x′kxk

)
(22)

and

(X ′X)−1 =
(

A B
C D

)
,

where D is the inverse of the Schur-complement as

x′kxk − x′kX0(X ′
0X0)−1X ′

0xk = x′k(I−X0(X ′
0X0)−1X ′

0)xk

= x′k(I− Pim(X0))xk

= ||(I− Pim(X0))xk||2. (23)

Let q = (I−Pim(X0))xk. Then if (a, b) = b′a is the classical inner product
used in this model, then

q′y
q′q

(24)

is an estimator with variance σ2/(q′q) and q′q is the Schur-complement
of x′kxk. Since

E(q′y) = q′Xβ = q′(X0β0 + βkxk) = q′βkxk = βkq
′xk = βkq

′q, (25)

it follows that

q′y
q′q

(26)

is the best linear unbiased estimator (BLUE) of βk. This result is also
correct in more general situations.

Theorem 2. Let the linear model E(y) = Xβ, Cov(y) = σ2I be given
and l ∈ Rk. Then for l 6= 0

(i) (l, β) is estimable iff Xl /∈ X(l)⊥,

(ii) (l, β̂) = ||l||2 (q, y)
(q, q)

is BLUE of (l, β), where q = (I− PX(l)⊥)Xl,

(iii) Var(l, β̂) = σ2||l||4||q||−2.

Proof. The proof can already be found in Drygas (1976), but for the
sake of completeness, it is repeated here.

(i) If Xl ∈ X(l)⊥ then Xl = Xl1 for some l1 ⊥ l. Then X(l − l1) = 0,
(l, l− l1) = (l, l)−(l, l1) = (l, l) 6= 0. Hence l /∈ im(X ′) = (X−1(0))⊥.
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(ii)Let q = (I− PX(l)⊥)Xl. Then

E(l, β̂) = ||l||2(X ′(I− PX(l)⊥)Xl, β)/||q||2.
Now

X ′(I− PX(l)⊥)Xl = X ′PX
′−1(span(l))Xl = λl (27)

for some λ ∈ R and

λ||l||2 = λ(l, l) = λ(l, X ′(I− PX(l)⊥)Xl)

= λ(Xl, (I− PX(l)⊥)Xl) = ||q||2, (28)

i.e., λ = ||q||2||l||−2 and consequently

E(l, β̂) = (l, β).

(iii)(c, y) is BLUE of its expectation (X ′c, β) = (c,Xβ) iff c ∈ im(X).
This follows from the linear version of the Lehmann-Scheffé Theo-
rem which says that (c, y) is BLUE iff it is uncorrelated with every
linear unbiased estimator of 0. (b, y) is an unbiased estimator of zero
iff X ′b = 0. Thus (c, y) is BLUE iff (c, b) = 0 for every b ∈ X−1′(0),
i.e., c ∈ (X

′−1(0))⊥ = im(X). Since q ∈ im(X), the proof is com-
plete.

Corollary 3 Let xi be the i-th column of X and Xi be the matrix
obtained from X by deleting the i-th column. Then

β̂i =
(y, (I−Xi(X ′

iXi)−X ′
i)xi

(xi, (I−Xi(X ′
iXi)−X ′

i)xi)
(29)

is BLUE of βi.

¤

Still the problem of an actual computation of the least squares
estimator (l, β̂) remains. To solve this we need an appropriate form of
the Gram-Schmidt orthogonalization method.

Theorem 4. Let x1, . . . , xk be the arbitrary vectors of the inner product
vector-space V and let Pi be the orthogonal projection onto span{x1, . . . , xi}.
If q1 = x1 and

qi = xi − Pi−1xi, i = 2, . . . , k

then {q1, . . . , qk} form a system of orthogonal vectors and span{x1, . . . , xk}
= span{q1, . . . , qk}.



QR-decomposition 7

Proof. Firstly, we show that span{x1, . . . , xi} = span{q1, . . . , qi}, i =
1, . . . , k. This assertion is true for i = 1 since x1 = q1. Since by in-
duction assumption Pi−1 xi ∈ span{x1, . . . , xi−1} = span{q1, . . . , qi−1}
it follows that xi = qi + Pi−1xi ∈ span{q1, . . . , qi}. But qi ∈ xi −
Pi−1xi ∈ span{x1, . . . , xi}. Thus span{x1, . . . , xi} and span{q1, . . . , qi}
coincide. Moreover, if i < j then from qi ∈ span{q1, . . . , qj−1} =
span{x1, . . . , xj−1} it follows that

(qi, qj) = (qi, xj)− (qi, Pj−1xj) = (qi, xj)− (Pj−1qi, xj)
= (qi, qj)− (qi, qj) = 0.

Clearly, Piy =
∑

j≤i:qj 6=0

(qj , y)qj

(qj , qj)
for both sides are equal to qi if y = qi

and vanish if y ⊥ q1, . . . , qi. From the properties of projections it also
follows that

||qi||2 = ||xi||2 − ||Pi−1xi||2 = ||xi||2 −
∑

j≤i:qj 6=0

(xi, qj)2

||qj ||2 .

This is an important formula for making computations.

Now we are in a position to solve the computation-problem for
(l, β̂). Let l1, . . . , lk−1 be an basis of (l)⊥ and perform the Gram-
Schmidt orthogonalization procedure for

Xl1, . . . , Xlk−1, Xl.

Then

qk = Xl − Pspan{Xl1,...,Xlk−1}Xl

= Xl − (PX(l)⊥)Xl = (I− PX(l)⊥)Xl.

Thus

||l||2(qk, y)
||qk||2 (30)

is the BLUE of (l, β).
In order to find the BLUE of βi = (ei, β) = e′iβ, ei the i-th unit-

vector, we have to apply the orthogonalization process to the sequence

x1, . . . , xi−1, xk, xi+1, . . . , xk−1, xi.

Having found one formula, the other formulae are just obtained by
interchanging index k and i.
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As an example let us at first consider the case k = 2. Then

q1 = x1, q2 = x2 − (x2, x1)
(x1, x1)

x1, ifx1 6= 0, (31)

(if x1 = 0, then q2 = x2 and we have indeed the case k = 1),

||q2||2 = (x2, x2)− (x1, x2)2

(x1, x1)

and

β̂2 =
(q2, y)
||q2||2

=
(x2, y)− (x2, x1)

(x1, x1)
(x1, y)

(x2, x2)− (x1, x2)2

(x1, x1)

=
(x1, x1)(x2, y)− (x2, x1)(x1, y)

(x2, x2)(x1, x1)− (x1, x2)2
. (32)

(if q2 = 0, then β2 is not estimable and β̂1 =
(x1, y)
(x1, x1)

).

By interchanging Index 1 and 2 we get β̂1:

β̂1 =
(x2, x2)(x1, y)− (x2, x1)(x2, y)

(x2, x2)(x1, x1)− (x1, x2)2
. (33)

From R1β̂ = α̂, we get an alternative representation of β̂1, namely

β̂1 =
(x1, y)
(x1, x1)

− (x2, x1)
(x1, x1)

β̂2. (34)

This gives a possibility to check the computation of β̂1 and β̂2 compu-
tationally and numerically.

Now let us also consider the example k = 3

q1 = x1, q2 = x2 − (x2, x1)
(x1, x1)

x1, q3 = x3 − (x3, x1)
(x1, x1)

x1 − (x3, q2)
(q2, q2)

q2,

(35)

||q3||2 = (x3, x3)− (x3, x1)2

(x1, x1)
− (x3, q2)2(x1, x1)

(x2, x2)(x1, x1)− (x2, x1)2
. (36)
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After some rearrangement the formula

q3 = x3 − (x3, x2)(x1, x1)− (x2, x1)(x3, x1)
(x2, x2)(x1, x1)− (x2, x1)2

x2

+
(

(x2, x1)
(x1, x1)

(x3, x2)(x1, x1)− (x2, x1)(x3, x1)
(x2, x2)(x1, x1)− (x2, x1)2

− (x3, x1)
(x1, x1)

)
x1 (37)

is obtained.
By interchanging Index 3 and 1 we get:

q
(1)
3 = x1 − (x1, x2)(x3, x3)− (x2, x3)(x3, x3)

(x3, x3)(x2, x2)− (x2, x3)2
x2

+
(

(x2, x3)
(x3, x3)

(x1, x2)(x3, x3)− (x2, x3)(x3, x1)
(x2, x2)(x3, x3)− (x2, x3)2

− (x3, x1)
(x3, x3)

)
x3 (38)

and by interchanging Index 3 and 2:

q
(2)
3 = x2 − (x3, x2)(x1, x1)− (x3, x1)(x2, x1)

(x3, x3)(x1, x1)− (x3, x1)2
x3

+
(

(x2, x1)
(x1, x1)

(x3, x2)(x1, x1)− (x2, x3)(x2, x1)
(x3, x3)(x1, x1)− (x3, x1)2

− (x2, x1)
(x3, x3)

)
x1. (39)

Of course, β̂1 and β̂2 can be obtained from β̂3 and α̂i =
(qi, y)
(qi, qi)

, i = 1, 2

by solving R1β̂ = α̂.
A final remark on the computation. There are, of course, computer-

programs such as R, SPSS etc. by which estimates of regression coeffi-
cients can easily and efficiently be calculated. But even with a pocket-
calculator or similar equipment it is possible to calculate the formula
derived in this section.

A pocket-calculator can calculate from a data-array x (an n-
dimensional vector x) the (empirical) mean and the (empirical) standard-
deviation (SD), if the numbers are plugged in. Moreover, for two arrays
x and y the (empirical) linear regression y = α + βx can be computed
by just plugging in all numbers. The above formulae show that from
the inner products (xi, xj) and (xi, y) the regression coefficients esti-
mators can be obtained by some very few elementary calculations. The
inner product (x, x) can be obtained from mean and variance. Now the
estimator of regression coefficient β in the regression y = α + βx is
given by

β̂ =
(x, y)− nx̄ȳ∑n

i=1(xi − x̄)2
. (40)
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Thus the inner product (x, y) can be obtained from mean, variance and
regression coefficient. Another method is to use the formula

(x, y) =
1
2
((x + y, x + y)− (x, x)− (y, y)) (41)

and computing the standard deviation of x + y. An alternative to (41)
is the Jordan-v.Neumann formula

(x, y) =
1
4
(||x + y||2 − ||x− y||2) =

1
4
((x + y, x + y)− (x− y, x− y))

(42)

Here mean and variance of x + y and x− y are needed.

3 Linear Sufficiency

Baksalary and Kala (1981) and Drygas (1983) have introduced the
concept of a linearly sufficient statistic z = Ty in the linear model
Ey = Xβ, Cov(y) = σ2Q. Ty is called linear sufficient if the BLUE
of E(y) can be computed from Ty alone. The following theorem was
proved:

Theorem 5. Ty is linearly sufficient iff

im(X) ⊆ im(WT ′), (43)

where W = Q + cXX ′ is such that c ≥ 0 and im(X) ⊆ im(W ).
If we introduce the inner product (x, y)W+ = (x,W+y) = x′W+y,

then WT is just the adjoint T ∗ of T with respect to this inner product.
Indeed, for x, y ∈ im(W )

(Tx, y) = (x, T ′y) = (WW+x, T ′y) = (W+x,WT ′y)
= (x,WT ′y)W+ = (x, T ∗y)W+ . (44)

Thus im(X) ⊆ im(T ∗) is the more transparent formulation of linear
sufficiency.

Let us now return to the model E(y) = Xβ, Cov(y) = σ2I and let
q1, . . . , qs, qs+1, . . . , qk be the vectors obtained from the columns of X
by applying the Gram-Schmidt orthogonalization procedure to them.
Without restricting generality it can be assumed that qs+1 = qs+2 =
. . . = qk = 0. Then let

Q = (q1, . . . , qs, 0, . . . , 0) = (q1, . . . , qk) (45)
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and

Q1 = (q1, . . . , qs) (46)

Theorem 6. Q′
1y and Q′y are linearly sufficient statistics.

Proof. Since im(X) = im(Q) = im(Q1) it follows from theorem 5 that
Q′y and Q′

1y are linearly sufficient.

Linear sufficiency means that the BLUE of Xβ can be obtained
from Q′y and Q′

1y, respectively. Since Q(Q′Q)−Q′y and Q1(Q′
1Q1)−1Q′

1y,
respectively are the orthogonal projections onto im(X), this property
is evident.

The model E(y) = Xβ can be split up into X = (X1
...X2), where

X2 = X1A. Thus E(y) = X1(β1 + Aβ2), where β = (β′1, β
′
2). Then

X1 = Q1R11 and X2 = Q1R12 and

Q1(Q′
1Q1)−1Q′

1 = Q1R11R
−1
11 (Q′

1Q1)−1Q′
1y = X1R

−1
11 (Q′

1Q1)−1Q′
1y.

(47)

Thus R−1
11 (Q′

1Q1)−1Q′
1y is the BLUE of β1 + Aβ2 in the model E(y) =

X1(β1 + Aβ2), Cov(y) = σ2I.
A similar representation is more complicated for Q. At first

X = QR, R =




R1

· · ·
0


 =




R11
... R12

· · · · · · · · ·
0

... 0


 . (48)

By Searle (1971, p. 4) generalized inverse of R and Q′Q can be found
as follows:

R− =




R−1
11

... 0
· · · · · · · · ·
0

... 0


 , (Q′Q)− =




(Q′
1Q1)−1

... 0
· · · · · · · · ·
0

... 0


 . (49)

Then RR−(Q′Q)− = (Q′Q)− and

Q(Q′Q)−Q′ = QRR−(Q′Q)−Q′ = XR−(Q′Q)−Q′. (50)

Thus R−(Q′Q)−Q′y = β̂ can be considered as an estimator of β in the
sense that (l, β̂) is BLUE of (l, β) whenever (l, β) is estimable.
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It is remarkable to note that in the model E(Q′y) = Q′Xβ =
(Q′Q)Rβ, Cov(Q′y) = σ2(Q′Q) there is a linear unbiased estimator of
β if and only if Q′Q is regular, i.e., s = k. In this case

R−1(Q′Q)−1y = β̂ (51)

is the only unbiased estimator. It is at the same time the Aitken-
estimator

((Q′Q)R)′(Q′Q)−1((Q′Q)R)−1((Q′Q)R)′(Q′Q)−1y

= (R′(Q′Q)R)−1R′y
= R−1(Q′Q)−1(R′)−1R′y
= R−1(Q′Q)−1y.

4 Application: Diabetes Mellitus

Diabetes mellitus is a disease where the autoregulation of metabolism
is disturbed. Normally after eating, the content of glucosis in the blood
decreases very rapidly after perhaps one hour to a value below 100
mg/dl (5.55 mmol/l). Under diabetes mellitus it takes perhaps 4 hours
to reach such a value - even under medicaments. However, by physical
training it is possible to get a lower value perhaps already after two
hours.

We will here discuss the behavior of glucosis during the night and
the early morning. Though there is in general no intensive consumption
of food in the late evening and during the night an acceptable value in
the morning seems to pose a serious problem.

Some years ago it was said that it can not be recommended to
use antidiabetic oral medicaments in the late evening unless you eat
regularly during the night. To avoid hypoglycemia during the night (or
counter-reactions), it was recommended to eat one bread-unit (12 g
carbon-hydrats) just before bedtime. In later years the opinion about
this procedure was changed and oral antidiabetic medicaments of an
appropriate dose were also recommended before bedtime. There was,
however, no recommendation of change of the amount of food that
should be consumed at bedtime. The patients continued to eat one
bread-unit (BU) just before bedtime. Thus simultaneously measures
against too high and too low glucosis-values were taken. This seems to
be a rather contradictory proposal. In my opinion with fixed medica-
ments, the amount of food just before bedtime should depend on the
value of glucosis at this time. I finally decided that 100 mg/dl (5.55
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mmol/l) and 150 mg/dl (8.32 mmol/l) should be the critical values for
this decision. If the glucosis is equal or above 150 mg/dl (8.32 mmol/l)
you should not eat anything. If however, the value is equal or below
100 mg/dl, then you should eat one bread-unit (1 BU). If the value is
between 100 and 150, then the last meal of day is less accordingly. For
example, if the value is 120, then 0.6 BU are eaten.

If you awake during the night between perhaps 1 A.M. and 2 A.M.
you repeat the procedure of the evening. If the value is equal or below
100mg/dl, you eat 1 BU and you eat no BU for values equal or above
150 mg/dl. For values between 100 and 150, you eat a fraction of a BU.

I have pursued this method since some time and I have constructed
and computed a regression model describing the behavior of the changes
of the glucosis-values. We have the following Variables:

• y, change of the glucosis-values, i.e., the difference of the value dur-
ing the night and the value in the evening or the difference of the
values in the morning and value during the night

• x, the amount of food, measured in BU, taken in the evening and
during the night, respectively and

• t, time between two measurements.

The model which will be studied in the sequel is as follows:

y = α(t−D) + βx + ε. (52)

Here

D = I{x>0} =
{

1 x > 0
0 x = 0 .

(53)

The idea behind this modelation is as follows: If you eat an amount x
then the glucosis will increase and it will reach its highest point after
approximately one hour.

Since the model (52) is difficult to treat by a pocket-calculator, we
have changed it to

ŷ =
y

(t−D)
= α + βx̂ + δ , x̂ =

x

(t−D)
. (54)
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Table 1. Night/Morning Measurements (Transformed)

Nr. Date y t x ŷ = y/(t−D) x̂ = x/(t−D)
1 26.3.07 -23 5.22 0.4 -5.4502 0.0948
2 28.3.07 -42 5.82 0.2 -8.7137 0.0415
3 29.3.07 30 3.12 1.0 14.1509 0.4717
4 30.3.07 -41 5.18 0.4 -9.1086 0.0957
5 31.3.07 -28 6.22 0 -4.5016 0
6 2.4.07 -29 5.28 0.6 -6.7757 0.1402
7 4.4.07 -13 3.53 0.6 -5.1383 0.2372
8 5.4.07 9 5.05 1.0 2.2222 0.2469
9 6.4.07 -48 5.17 0.4 -10.0719 0.0959
10 7.4.07 -18 3.42 0.2 -7.4380 0.0826
m=Mean -19.7 0.48 -4.1525 0.15065
σ=Standard Deviation 23.4665 0.3293 7.3329 0.1368

Regression ŷ = α̂ + β̂x̂, ŷ = −11.2354 + 47.0156x̂, r=0.8768090
1− r2 = 0.2312059,

∑10
i=1(ŷi − ¯̂y)2 = 9σ2

0 = 483.9428,
σ̂2 = 1

8 × 0.2312059× 483.9428 = 13.986304 = (3.7398)2.

Table 2. Evening/Night Measurements (Transformed)

Nr. Date y t x ŷ = y/(t−D) x̂ = x/(t−D)
1 25./26.3.07 -49 2.98 0 -1.6443 0
2 26./27.3.07 21 3.6 0 5.8333 0
3 27./28.3.07 -39 3.85 0 -10.1299 0
4 28./29.3.07 -85 3.73 0 -22.7882 0
5 29./30.3.07 0 3.57 0.2 0 0.0778
6 30./31.3.07 81 3.55 1 31.7647 0.3922
7 31.3/1.4.07 79 4.77 1 20.9549 0.2653
8 1.4./2.4.07 -38 3.73 0 -10.1877 0
9 2.4./3.4.07 -26 3.8 0 -6.8421 0
10 3.4./4.4.07 -3 5.03 0.6 -0.7444 0.1489
m=Mean -5.9 0.28 0.62163 0.08842
σ=Standard Deviation 53.9247 0.4237 15.8256 0.1391

Regression ŷ = α̂ + β̂x̂, ŷ = −8.1859 + 99.6107x̂, r = 0.8758071
1− r2 = 0.23296,

∑10
i=1(ŷi − ¯̂y)2 = 9σ2

0 = 2254.05
σ̂2 = (1−r2)

8 ×∑10
i=1(ŷi − ¯̂y)2 = 65.6378 = (8.1017)2
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The variation of y is very high, so is the coefficient β̂.
Since the value for the time t, as we will see later, is almost identical

for most values, so it could be hoped that there will be no large differ-
ence in the estimated regression coefficients. We have to see whether
this is actually the case.

We begin with the Night/Morning values. We now proceed to Table
3 with the original data.

Table 3. Night/Morning Measurements (Original)

Nr. Date y t x t−D y + x y + t−D x + t−D

1 26.3.07 -23 5.22 0.4 4.22 -22.6 -18.78 4.62
2 28.3.07 -42 5.82 0.2 4.82 -41.8 -37.18 5.02
3 29.3.07 30 3.12 1.0 2.12 31.0 32.12 3.12
4 30.3.07 -41 5.18 0.4 4.18 -40.6 -36.82 4.58
5 31.3.07 -28 6.22 0 6.22 -28 -21.78 6.22
6 2.4.07 -29 5.28 0.6 4.28 -28.4 -24.72 4.88
7 4.4.07 -13 3.53 0.6 2.53 -12.4 -10.47 3.13
8 5.4.07 9 5.05 1.0 4.05 10.0 13.05 5.05
9 6.4.07 -42 5.17 0.4 4.17 -41.6 -37.83 4.57
10 7.4.07 -18 3.42 0.2 2.42 -17.8 -15.58 2.62
m=Mean -19.7 0.48 3.901 -19.22 -15.791 4.381
s=Standard Deviation 23.4665 0.3293 1.2421 23.7229 22.7683 1.0993
SQ = 9s2 + 10m2 8837 3.28 166.0631 8759.08 7161.6633 202.8071
(y, x) = 1

2 ((y + x, y + x)− (y, y)− (x, x)) = −40.6
(y, t−D) = 1

2 ((y + t−D, y + t−D)− (y, y)− (t−D, t−D)) = −920.6999
(x, t−D) = 1

2 ((x + t−D, x + t−D)− (x, x)− (t−D, t−D)) = 16.732

α̂ =
(y, t−D)(x, x)− (y, x)(t−D, x)
(x, x)(t−D, t−D)− (x, t−D)2

=
−2340.5765
264.7272

= −8.8415

β̂ =
−(t−D,x)(y, t−D)− (t−D, t−D)(y, x)

(x, x)(t−D, t−D)− (x, t−D)2
=
−8662.9888
264.7272

= 32.7242

=
(y, x)− (t−D, x)α̂

(x, x)
=

147.936− 40.6
3.28

=
107.336

3.28
= 32.7244

Thus the regression function equals y = −8.8415(t−D) + 32.724x.

In order to find the measure of determination we must compute
(q1, y) and (q2, y). Here

q1 = x,

q2 = (t−D)− (t−D, x)
(x, x)

x
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(q1, y) = (x, y) = −40.6,

(q2, y) = (t−D, y)− (t−D,x)
(x, x)

(x, y)

= −920.6999 +
16.732
3.28

40.6 = −713.5904,

(y, y) = 8837,
(q1, q1) = (x, x) = 3.28,

(q2, q2) = (t−D, t−D)− (t−D, x)2

(x, x)

= 166.0631− 16.7322

3.28
= 80.7095,

(q1, y)2 = 1648.36,

(q2, y)2 = (713.5904)2 = 509211.259
R2 = 0.05687 + 0.71395 = 0.77082.

The estimator σ̂2 of σ2 is given by

σ̂2 =
1
8
(1−R2)(y, y) = 253.1580 = (15.9109)2. (55)

Finally we analyze the Evening/Night measurements in their orig-
inal form, see Table 4 for this.
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Table 4. Evening/Night Measurements (Original)

Nr. Date y x t t−D

1 25./26.3.07 -49 0 2.98 2.98
2 26./27.3.07 21 0 3.6 3.6
3 27./28.3.07 -39 0 3.85 3.85
4 28./29.3.07 -85 0 3.73 3.73
5 29./30.3.07 0 0.2 3.57 2.57
6 30./31.3.07 81 1 3.55 2.55
7 31.3/1.4.07 79 1 4.77 3.77
8 1.4./2.4.07 -38 0 3.73 3.73
9 2.4./3.4.07 -26 0 3.8 3.8
10 3.4./4.4.07 -3 0.6 5.03 4.03
m=Mean -5.9 0.28 3.461
s=Standard Deviation 53.1247 0.4237 0.5482
9s2 =

∑n
i=1(zi − z̄)2 26170.90 1.6160 2.4707

SQ = 9s2 + 10m2 26519 2.4 122.49
y = a1 + b1x , y = −36.1733 + 108.1188x, r = 0.8496
(y, x)− 10x̄ȳ = 174.7199, (y, x) = 158.2
y = a2 + b2(t−D) = 98.6086− 30.1961(t−D), r = −0.3070
(y, t−D)− 10ȳ( ¯t−D) = −81.67098, (t−D) = −285.86998
t−D = a3 + b3x = −3.537− 0.2715x, r = −0.20589
(t−D,x)− 10( ¯t−D)x̄ = −0.4388, (t−D, x) = 9.252, (t−D, x)2 = 85.5995
Det = (x, x)(t−D, t−D)− (x, t− d)2 = 208.3762
A1 = (t−D, t−D)(y, x)− (t−D, x)(y, t−D) = 22022.76414
A2 = −(t−D, x)(y, x) + (x, x)(y, t−D) = −2149.7544
β̂ = A1

det = 105.68752

α̂ = A2

det = [(y,t−D)−β̂(x,t−D)]
(t−D,t−D) = −10.3167.

Thus the (estimated) regression function is

y = −10.3167(t−D) + 105.68752x (56)

For the computation of the measure of determination let

q1 = (t−D),

q2 = x− (x, t−D)
(t−D, t−D)

(t−D).

Then
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(q1, y) = −285.86998,

(q1, q1) = 122.49,

(q2, y) = 158.2− (9.252)(−285.86998)
122.49

= 179.79523,

(q2, q2) = (x, x)− (x, t−D)2

(t−D, t−D)
= 2, 4− 9.2522

122.49
= 1.70117.

Thus

R2 =
1

(y, y)

(
(q1, y)2

(q1, q1)
+

(q2, y)2

(q2, q2)

)

= 0.025181 + 0.07165366 = 0.7417176.

In the evening/night-tables, the high variance of y and the high
coefficients of the x-variables is very remarkable.

σ̂2 =
1
8
(1−R2)(y, y) = 854.2538 = (29.22762)2.

It may perhaps be interesting how large the fastening actual values
in the morning have been. These were as follows:

Date 26.3 27.3 28.3 29.3 30.3 31.3 1.4 2.4 3.4 4.4 5.4 6.4 7.4
mg/dl 104 99 97 103 98 124 94 98 98 104 108 86 123

This is very a good result because these values are normal or close
to normality. The relative high values on 31th of March and 7th of
April can be explained by an additional medicament taken on that day
(Saturday).
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