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Abstract. Recurrent iterated function systems (RIFSs) are improvements of   
iterated function systems (IFSs) using elements of the theory of Marcovian 
stochastic processes which can produce more natural looking images. We 
construct new RIFSs consisting substantially of a vertical contraction factor 
function and nonlinear transformations. These RIFSs are applied to image 
compression. 
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1. Introduction 
Fractal image compression (FIC) was introduced by Barnsley and Sloan (1988, 
[2]) and after that has been widely studied by many scientists. FIC is based on 
the idea that any image (for example that of human face) contains self-
similarities, that is, it consists of small parts similar to itself or to some big part 
in it. So in FIC iterated function systems are used for modeling. Jacquin (1992, 
[12]) presented a more flexible method of FIC than Barnsley's, which is based 
on recurrent iterated function systems (RIFSs) introduced first by him. By his 
method, the original image is partitioned into small non-overlapping blocks 
called regions (or ranges) and big overlapping blocks called domains. For every 
region, a similar domain and some transformation are searched. Fisher (1994, 
[10]) improved the partition of Jacquin. Bouboulis etc.(2006, [7]) introduced an 
image compression scheme using fractal interpolation surfaces which are 
attractors of some RIFSs. RIFSs which have been used in image compression 
schemes consist of transformations which have a constant vertical contraction 
factor. This factor has a great influence on the shape of attractor. It is obvious 
that each point of a region has a different contraction ratio. So, replacing the 
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vertical contraction constant by a contraction function can give a more flexible 
construction so that the number of domains and regions needed for image 
coding can be reduced and the quality of the decoded image can be better, that 
is, the FIC will be improved. 
   We present a new construction of RIFSs which have vertical contraction 
factor functions and their application to image compression. 

 

2.  Recurrent bivariate IFSs on rectangular grids 
The idea of RIFSs was introduced by Jacquin ([12]). A recurrent iterated 
function system (RIFS) is defined as a pair of a collection , ,  of 
Lipschitz mappings in a complete metric space (i.e. an IFS) and a row 
irreducible stochastic matrix  satisfying ∑ 1 for all 

1, ,   and additionally for any , 1, ,  , there exist 
, ,  such that · · ·  0 (Barnsley, Elton and Hardin [5]). The 

attractor A of a RIFS is computed as follows: By a stochastic matrix , for an 
initial 1, ,  a sequence  is given, which obeys Pr

| . With this, we get a sequence of transformations  that 
generates an orbit  for an initial R , that is,  is chosen with the 
probability that  equals   and we have . In the 
matrix ,  gives the possibility of applying the transformation  to the 
point in state , so that the system transits to state . 
   The attractor A is defined as the limit set of these orbits, which consists of the 
points whose every neighbourhood contains infinitely many  for almost all 
orbits. By Barnsley, Elton and Hardin ([5]) the existence, uniqueness and 
characterization of this limit set A was proved. We present a new construction 
of a RIFS with a given data set on a grid. 
   We construct a local IFS R ;  , , 1, , , 1, ,  
over the grid, whose general definition is as follows ([3]).  

Definition 1 Let ( X,  ) be a compact metric space. Let  be a nonempty 
subset of X. Let : X and let s be a real number with 0 1. If  

                               , · ,       for all ,  in , 

then  is called a local contraction  mapping on ( X,  ). The number  is 
called a contractivity factor for . 

Definition 2 Let ( X,  )  be a compact metric space, and let : X be a 
local contraction mapping on ( X,  ), with contractivity factor  for 
1, 2, , , where  is a finite positive integer. Then  

: X : 1, 2, ,  
is called a local iterated function system (local IFS) (or partitioned IFS ([10])). 
The number max :  1, 2, ,  is called the contractivity factor of the 
local IFS. 
   Let the data set on the rectangular grid be  

, , R  ;  0, 1, , , 0, 1, ,  
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such that ,   . Let denote 

        N 1, , 1, , , I , ,  I , , 

        I , ,  I , ,  E I I   

       E I I  (which we call the region),  for  , N , 

We choose big rectangulars (called domains)  E I I , where  I
,    I I ,    I ,    I I   and                                

, , for 1, , . Then, there exist 
, 0,  , 0,  such that  and  (
 and  ), which we denote by  and  

 and   respectively.  
We define the contraction transformations : E E  for , N   by 

, , , 

where I I  , I I  are contraction transformations with 
contractivity factors  ,  obeying for any , N    

   :
1
, , ,   

   :
1
, , .   

The functions : E R R , for , N  are defined as follows:  

, , , , , , 

where , 1, ,  are continuous Lipschitz mappings on E , E   
with the Lipschitz constants L , L  respectively satisfying 

                ,
,   

 ,    for    , 1, , 

                , ,                       for   , 1,  1, ,  

 where  ,   ,   , , , that is, 

 goes through 4 endpoints of the domain E ,  goes through 4 endpoints of 
the region E . 
   Then, the functions  satisfy 'join-up' conditions, for , 1, ,  

, ,
,   

,  

where , , , 1,  1, . 
   Thus, any    maps the endpoints of the -th domain to the endpoints of the 

, -th region. These transformations   are contractions for all , N   
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with respect to some metric  which is equivalent to the Euclidean metric on 
R3. This metric  is defined on R3 for , , , , ,  R3  by 

, , , , , | | | | | |, 

where 

1 Max  ,    ;   1, , , 1, ,
2LF

 

and LF Max  LF ;  1, , , 1, , , where  LF  are Lipschitz 
constants of the functions F . The contractivity of the transformation   is 
Max , LF , where 

1 Max  ,    ;   1, , , 1, ,
2  

   We enumerate the set N 1, , 1, ,  by a injective mapping 
: 1, , 1, , 1, , ·  and denote M N . For 

simplicity, we denote ,  by  and ·  by . The following is an 
example of a connection matrix  which can be defined as follows:  

  1      if    E E
0     otherwise

 

The connection matrix  shows that the transformation  can follow the 
transformation   iff   (See Fig. 1). 
   Then, we have a row irreducible stochastic matrix   given by: 

                                            
 1    iff   0
  0    iff   0 , 

   Thus, the RIFS is given as a pair consisting of the above local IFS and the 
row irreducible stochastic matrix .  The existence, uniqueness  and  characteri- 

Figure 1  Connection matrix and it's directed graph. 
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zation of the attractor A of this RIFS has been proved by Barnsley Elton and 
Hardin ([5]). 

 

3. Application: An algorithm for image compression using RIFSs 

Let us denote an image value at the position , E by , . 

3.1 Construction of the vertical contractivity factor functions 

In this section, we present a method of constructing the vertical contractivity 
factor function ,  on the region E  by the image values on the region E  
and on the corresponding domain E , N , 1, , .   
   The vertices  , ,  , ,  , ,  ,  of the 
domain E  are mapped to any one of the region E , , , , ,

, , ,  by the contraction transformation E E . Choose 
 

1
. For , , , ,  ,

1, , , N ,  we calculate the absolute vertical distance between the 
image value ,  and the straight line through the endpoints  , ,

 ,  and  , ,  , , and denote them by 
H ,

d , H ,
d , , H  ,

d  respectively. In general, choose  
1

 for 
0,  1, ,  ,    ,   , 1, , , N , H ,

d , , 
H  ,

d    are computed similarly. 
   Now, choose . For  

1
,  

1 1, ,
1

 ,  
analogously calculate the absolute vertical distance between the image value 

Figure 2  Hd   on the domain. 
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,  and the straight line through the endpoints  , ,  ,

 and  , ,  ,  and denote all these distances by 
H ,

d , H ,
d , , H ,  

d  respectively. By the same method, H ,
d , H ,

d , , H ,  
d  

are computed. In the case where , H ,
d 0 (excepting H ,  

d , H ,  
d , H  ,  

d  
, H

 ,  
d ), changing the value  or , we calculate that one again. Then, we 

get the set Hd H ,
d : 0, 1, , , 0, 1, ,  (See Fig. 2). 

   Similarly, in the region E , for any point , , where ,  
, , , ,  ,  

1
,  , 

, =  , the set Hr H ,
r : 0, 1, , , 0, 1, ,   is 

constructed.   
   With the sets Hd, Hr, we get a set  

D H ,
r H ,⁄ : 0, 1, , , 0, 1, , , 

where 0. 
   We construct the contractivity factor function ,  by an interpolation 
function for the data set D . 

3.2 Encoding algorithm 

Image encoding is a process to get reduced informations needed to preserve the 
data of an image. We introduce a way for getting the reduced information by a 
RIFS. We partition the original image into non-overlapping blocks on a 
rectangular grid and construct a grid of non-overlapping domains which are 

( 2 is integer) times as large as the regions . For each region, we look for 
the most similar domain to that as follows: By the above algorithm we calculate 
the contractivity factor function ,  on the region and the interpolation 
functions  on the domain and  on the region, respectively. Next we compute 
the distance between the image values on the region and the values mapped 
from the image values on the domain by a contraction transformation with 
regard to some metric. If the distance is less than a given tolerance, then we 
save the number of the domain and the data set for the contractivity factor 
function. If there is no suitable domain, then we divide equally the region into 
smaller rectangular (new regions), that is, repartition and repeat the above 
procedure for each smaller region. Finally, we get the reduced information, the  
endpoints of the regions, the number of the most similar domain for each region 
and the data set for the contractivity factor function. 

3.3  Decoding algorithm 

We calculate the interpolation functions , , , , ,  from the 
information of the encoded image and compute the transformations , ,  
out of them, that is, we determine the IFS. 
   The decoding algorithm is based on the Deterministic Iteration Algorithm 
(DIA) as in Barnsley [1] and it is similar to that in Bouboulis's [7], Section 3.3. 
The only difference compared with [7] is the following simplification: For any  
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region, we find out if its center is already drawn. If yes, then we go to the next 
region. If no, then we search for an appropriate transformation of the IFS to 
draw this center and additionally the four midpoints of the edges of the region, 
and then we go to the next region.  

 

4. Experiments 

We use a 513 513 8 Lena image as original image in our experiment. 
According to the above algorithm,  while this image is encoded and decoded, 
we measure the time needed to compress using a computer with a 1.86 GHz 
CPU clock and Windows XP. The experimental results show that our method 
can compress the image very fast, holding high quality of the decoded image 
(See Table 1). In Fig. 3-7, some images decoded by our scheme are shown. 

 

5. Results & Discussion  

In this paper we present a refined method of constructing an RIFS and its 
application to the fractal image compression (FIC). Its decoding scheme is 
simplified compared with earlier FIC schemes. Encoding is improved by a 
more complicated interpolation method based on the idea of using a vertical 
contractivity factor function instead of a constant contractivity factor. 
   The performance of FIC is significantly improved using our schemes. Now 
the compression ratio (CR) is not higher. To improve CR  we are planning to 
add some kind of lossless compression and entropy coding compression.  
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Compression 
Time(CT)(second) 

 
PSNR(dB) 

Compression 
Ratio(CR) 

 
32 

 
47.6 

 
11.7 : 1 

 
24 

 
40.0 

 
27.4 : 1 

 
13 

 
46.3 

 
11.7 : 1 

 
9 

 
38.0 

 
27.4 : 1 

 
4 

 
43.8 

 
11.7 : 1 

 
3 

 
35.5 

 
27.4 : 1 

Table 1  Some results obtained for Lena by the scheme in this paper. 
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( a ) ( b ) 

Figure 3  ( a  ) The 513×513 original image of  Lena. (b): The decoded image 
of  Lena using our scheme at CT=32 seconds, PSNR=47.6dB, CR=11.7:1. 

                                   

Figure 4  (c): The decoded image of Lena at CT=4 seconds, PSNR=43.8, 
CR=11.7:1. (d): The decoded image of Lena at CT=13 seconds, PSNR=46.3 dB, 
CR=11.7:1.

( c ) ( d ) 
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Figure 5  ( a ) : The 513×513 original image of the Boat. (b): The decoded 
image at CT=34 seconds, PSNR=43.6dB, CR=11.7:1 

( a ) ( b ) 

Figure 6  ( a ) : The 1025 ×1025 original image of the piled up benches. (b):The 
decoded image at CT=33 seconds, PSNR=36.5dB, CR=18.75:1. 

( a ) ( b )  
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