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Theory for the Change of the Bond Character in Divalent-Metal Clusters
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To determine the size dependence of the bonding in divalent-metal clusters we use a many-electron
Hamiltonian describing the interplay between van der Waals (vdW) and covalent interactions. Using a
saddle-point slave-boson method and taking into account the size-dependent screening of charge fluctua­
tions, we obtain for Hgn a sharp transition from vdW to covalent bonding for increasing n. We show
also, by solving the model Hamiltonian exactly, that for divalent metals vdW and covalent bonding
coexist already in the dimers.

PACS numbers: 71.30.+h, 36.40.+d, 71.10.+x

(1)H =-HvdW+ H cov •

Here vdW interactions involving intra-atomic sp excita­
tions are described by

H vdW == t ~ VijCi~oCiSoCj~a'CjsC1'
;;I!j,paa'

- t ~ VijCi;oCiSoCj~a'Cjpa'+ H.c. , (2)
;;I!j,paa'

teratomic sp transitions and consequently involve charge
fluctuations and Coulomb repulsions [see inset (a) of Fig.
1]. Since the same electrons take part in both cohesion
processes, there is an interplay between vdW and co­
valent interactions which must be taken carefully into ac­
count. Consequently, we propose the Hamiltonian [5]

and covalent interactions due to interatomic transitions
involving sand p states are described by

H cov == ~sIJCi1oC;JJa+ ~ tVyC;1oCirC1
iJJC1 ;;I!j,Pra

+ ~ UlJrnifjanira'. (3)
i,!JC1;1!rC1'

The operators ci1C1, C;JJC1, and nifja -Ci~oC;fJC1 refer to the
creation, annihilation, and occupation-number operators
for an electron with spin a at site i and orbital f3 - s ,p.
Vij is the vdW coupling constant between sites i and j,
which depends on the sp atomic energy gap A, the sp con­
tribution to the atomic polarizability a, and the inter­
atomic distance rij (Vij ex Aa/r;}) [6]. H COy is a two-band
Hubb~~d Hamiltonian, where sJJ refer to the on-site ener­
gies, t'lr to the hopping integrals, and Ufjr to the on-site
Coulomb interactions. The Coulomb energy U involved
in a local charge fluctuation [e.g., U - 2Usp - Uss from
the inset (a) of Fig. 1] actually depends on the cluster
size due to the size dependence of screening. For small
clusters we expect U to be a sensitive function of the coor­
dination number, as will be discussed below.

An exact solution of the many-body Hamiltonian H is
not available at present. A correct treatment of the inter­
play between vdW and covalent bonding inherent in H re­
quires one to take into account explicitly the different lo­
cal electronic configurations which contribute to the
correlated ground-state wave function. Therefore, we in-
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FIG. I. Phase diagram for vdW and covalent bonding as a
function of the Coulomb energy of a charge fluctuation U and
the vdW coupling constant V (both scaled by tsp ) for n - 13
atoms {see Refs. (I3] and [14]). In the inset figures the dom­
inant electronic excitations responsible for (a) covalent and (b)
vdW interactions are illustrated.

Divalent-metal atoms are characterized by a closed­
shell electronic configuration (ns 2npO), whereas the cor­
responding solids have sand p bands which overlap and
thus give rise to metallic bulk behavior. Therefore, clus­
ters of these elements are expected to exhibit a strong
change in their electronic properties as a function of clus­
ter size. This physical picture seems to be confirmed by
recent experiments for Hgn [1-3], which are interpreted
as reflecting a size-dependent transition from van der
Waals (vdW) to covalent bonding and for larger clusters
to metallic bonding [4]. So far, an electronic theory for
the size dependence of the bonding and consequently for
the transition from van der Waals-like to covalent to me­
talliclike bonding is lacking. It is the goal of this Letter
to present such a theory treating vdW and covalent in­
teractions on the same electronic level.

The dynamics of the valence electrons in divalent-metal
clusters is dominated by two distinct interactions: The
vdW interactions (induced dipole-dipole), which involve
mainly intra-atomic sp excitations [see inset (b) of Fig.
1], and the covalent interactions, which result from in-
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troduce, in analogy with the slave-boson method of Ref. [7], a set of boson operators which project onto the atomic
configurations illustrated in the insets of Fig. 1. The creation (annihilation) operators Si~ (Sia), d? (di ), mi~a (miaa),
and Pi~ (Pia) correspond, respectively, to the configurations ns I, ns 2, ns Inp I (with opposite spins), and ns 2np I. The
physical states in the enlarged Hilbert space <including fermions and bosons) must satisfy

and the normalization condition

d;td;+~ (S;~;a+P;~P;a+mi~amiaa)-I .
a

n _p.tp. + tpa la la miaam;oa'

(5)

Notice that atomic configurations having no s or more than one P electron have been projected out, since they are not
expected to be relevant for the ground state of small neutral Hgn clusters.

In the new representation the Hamiltonian is given in terms of the fermion and boson operators as

The operator Ob (O;a) changes the boson occupations if
an intra-atomic sp excitation is created (annihilated) at
site i. n;~ is given by

Similarly, Zi1a (ZiJJa) changes the boson occupations ac­
cording to the creation (annihilation) of an electron of
spin a at site i and orbital /3. Z;JJa is the natural generali­
zation for two bands of the operator z;a of Ref. [7] [5,8].

The ground-state properties are evaluated in the
saddle-point approximation (SPA) [7]. Here, the boson
operators p;~, d/, etc., are taken as numbers determined
by minimizing the ground-state energy baking into ac­
count the constraints (4) and (5)]. Thus, both the hop­
ping elements and the vdW coupling constant become re­
normalized by the factors

qbra -<ZJaZ ra>- P 2(d + m) 2/(m 2+P 2) (m 2+ 3p 2+d 2)

and

q:a' -<nZn:> -d2m2/(m2+2p2)(m2+4p2+d2) ,

respectively [9]. This reflects in a physically transparent
way the interplay between covalent and vdW bonding.
The factors q' and qV can be interpreted as order param­
eters. For example, q'-O means that triple and single
occupations vanish, implying localized electrons (vdW
bonding), whereas q' -1 means maximal covalent bond­
ing (delocalized electrons). A transition from localized to
delocalized electronic states should be reflected in the
cluster-size dependence of qt and q v. The competition
between itinerancy and vdW interactions can be already
seen by noting that o~ q'+qV~ 1.

Using Eqs. (4)-(6) in the SPA the ground-state energy

En of a cluster can be written as

f - (q VYr)2
En-2~ ds(s-£JJ)NJJ(s)+~ _ ~ +2nUp 2

JJ IJ £s -£p

+2nA}2)(d 2+3p 2+ m 2) +2nA~2)(p2+m2)

+nA (l)(d 2+4p 2+2m 2), (8)

where £p -£fj+AJ2), and Afi2),A (I) are the Lagrange multi­
pliers resulting from the constraints (4) and (5). The
first term in Eq. (8) is the kinetic energy, where Ns (Np )

refers to the total s (p) density of states calculated using
the renormalized hopping elements ifly -q'tj/r and the
shifted on-site energies Bfj. The second term refers to the
vdW energy, which is calculated to second order in
V-qVy. This is a good approximation, since ip -is» V.
The third term is the Coulomb energy due to interatomic
charge fluctuations [see inset (a) of Fig. 1]. For simplici­
ty we ~~sume UJJy-U and we drop the site dependences
(i.e., t}/r - tpy and Vij - V) by restricting the sums to
nearest neighbors. The saddle-point (SP) values of the
boson fields and renormalization factors qt and qV have
been obtained by minimizing En (s2,m 2,p2,d 2) for clus­
ters with n oS 43 atoms and different values of the in­
teraction parameters U and V [10].

For Y-O we obtain, for all cluster sizes, a single
minimum in En having q'-I and qV-0. This corre­
sponds to the SP solution of the two-band Hubbard mod­
el with two electrons per site. Here, p2 -s2¢0 [p2
-ts~/(~+U)2 for U-+ 00], whereas m 2 is negligible
(p2»m 2). The binding energy En(q'-I) decreases for
increasing U, and particularly En-ts~/(~+U)-+O for
U-+ 00. The binding is, as expected, exclusively due to
interatomic charge fluctuations.

New features appear if vdW interactions are included.
For Y¢O, in addition to the covalent minimum a second
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SP is found in En having qV-I and m 2-(Y/8)2¢O,
while q'-O and p 2«m 2. At this SP the excitations il­
lustrated in the inset (b) of Fig. 1 dominate and the ener­
gy is independent of U (En - y 2/A). The bonding is of
pure vdW character. The SP which is actually relevant
for the cluster ground state is the one with the lowest en­
ergy. The resulting phase diagram for the bond character
as a function of U and Y is shown in Fig. 1 for a cluster
with n == 13 atoms [11]. A similar phase diagram is ob­
tained for other cluster sizes (n ~ 43) provided that the s
and p bands do not overlap. The importance of treating
vdW and covalent interactions on the same microscopic
level is evident. Furthermore, from Fig. lone may con­
clude already quite generally that a transition from vdW
to covalent bonding can occur for increasing n, since the
energy U involved in a local charge fluctuation should de­
crease witlt increasing n due to screening.

To demonstrate that our theory is able to explain quan­
titatively the change in the bond character of Hgn clus­
ters as a function of cluster size, we estimate the interac­
tion parameters Yand U as follows. The vdW coupling
constant [5] V"caA/r?J "0.55 eV is obtained from the
atomic polarizability per valence electron a -=2.85 A3, the
average between the dimer and the bulk nearest-neighbor
distances TO" 3.33 A, and the constant c = 1.25, which
was determined by fitting to the binding energy of rare­
gas dimers. The Coulomb energy U involved in an inter­
atomic charge fluctuation is given by U-UO-Ul-~U,

where U0"2Usp - Uss stands for the increase of the
intra-atomic Coulomb repulsion, and U 1= (Uo- J+rot
e 2 ) -1 for the remaining electron-hole interaction [see in­
set (a) of Fig. 1]. aU takes into account the screening of
interatomic charge fluctuations due to the polarization of
the atoms surrounding the electron-hole pair. Using

second-order perturbation theory one obtains for the
screening resulting from the charge-dipole interaction

(9)

where ( ... }ij indicates cluster average through all
nearest neighbors ij at which the charge fluctuation
occurs. As physically expected, AU yields a reduction of
U with increasing n due to the increase of the coordina­
tion number [12].

In Fig. 2 results are given for the bond character of
Hgn clusters as a function of U0 and n [11]. The pbase
boundary is determined using Eqs. (8) and (9) as the
value of U0 for which n is equal to the critical cluster size
nc at which the transition from vdW to covalent bonding
occurs. An approximated realistic value of'U0 for Hg is
indicated [13]. According to this the transition occurs in
Hgn at nc = 10-20 atoms. Although the results depend
implicitly on the other parameters (Y,A,tsp ), Fig. 2 can
be interpreted as a phase diagram for the bond character.
Notice that the existence of a transition is restricted to a
certain range of values for Uo. For instance, if U0 < 5
eV, the system would be covalent already for n -2. For
Uo> 9 eV vdW behavior results for all cluster sizes, as
we obtain for rare-gas clusters. If AU is neglected the
range for the occurrence of the transition is reduced. In
the inset of Fig. 2 the size dependence of the hopping re­
normalization factor Q' of Hgn is shown. For n~ 13,
qt ==0 implies that the electrons are localized. Only vdW
bonding is present (q v == 1) and the binding energy per
bond is roughly independent of n. At n = 13 there is a
crossing of the SP solutions and the character of the
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FIG. 2. Phase diagram for vdW and covalent bonding as a
function of the intra-atomic Coulomb repulsion U0 and n. Es­
timating Uo(Hg) -7.5 eV, one obtains nc(Hg)= 13 atoms. In­
set: The resulting behavior of q' for Hg".
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FIG. 3. Size dependence of the cohesive energy per atom.
Open circles refer to the experimental values (Ref. (3]), and
solid circles to the theory <this work). The dashed lines indicate
results for the unstable covalent state (n < 13) and the unstable
vdW state (n> 13).
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bonding changes. For n > 13, we obtain q' -I which
physically means that the valence electrons delocalize to
form covalent bonds, or for larger clusters metallic bonds,
and vdW bonding is suppressed (qV ==0). Now the bind­
ing energy per bond increases with n. This change in the
bond character is also reflected in the size dependence of
the cohesive energy E coh (n) [14J. As shown in Fig. 3, a
change of the slope occurs at n =13, which results from
the crossing of the vdW and covalent SP. Quantitatively
our results are in good agreement with experiment (3].
The discrepancies for n > 19 are probably due to the ap­
proximation used for the screening [Eq. (9)], which
might tend to overestimate the repulsive Coulomb energy
of charge fluctuations in clusters with dominant covalent
character. The calculated suppression of band formation
(q' ==0) for n < nc and the change to delocalized valence.
electrons (q'" I) for n > nc is also in agreement with the
following observations on Hgn : For n ~ 13 the 5d -+ 6p
autoionization lines are symmetric (atomiclike) and the
line widths are approximately independent of n, while for
n ~ 20 they broaden asymmetrically indicating 6p band
formation [IJ. For n ~ 13 the size dependence of the ion­
ization energy In is very similar to that of vdW clusters~

while for n ~ 13 In decreases more rapidly indicating 6s
band broadening [2].

In order to study the interplay between vdW and co­
valent bonding beyond the SPA we diagonalize exactly
the Hamiltonian H [Eqs. (1)-(3)] for n -2. For V¢O,
tpr¢O, and finite U, we obtain coexistence of vdW and co­
valent bonding. For instance, we estimate that the vdW
contribution to the cohesive energy is more dominant for
Hg2 and Mg2 (-800/0) than for Ca2 (-600/0) [5]. The
origin of the coexistence can be understood by noting that
the electronic configurations involved in vdW and co­
valent bonding are interconnected by the terms tspci1aCjs<1

in H, for example.
Thus, quantum fluctuations between the vdW and co­

valent SP are present, which cause the actual ground
state to be a combination of both vdW and covalent con­
tributions.

Consequently, the transition from vdW to covalent
bonding as a function of cluster size should be somewhat
smoother than what the SPA calculations yield (Fig. 2).

The exact results (n - 2) agree with the SP slave-boson
calculations. For instance, the boundary between vdW
and covalent behavior as a function of V/tsp and U/tsp

compares well with the SPA results given in Fig. I. The
physical picture supplied by the slave-boson calculations
seems to account for the essential features of the charac­
ter of the bonding in divalent-metal clusters.

Summarizing, we have calculated, for the first time,

the transition from vdW to covalent bonding in Hgn clus­
ters. The importance of treating vdW and covalent in­
teractions on the same electronic level has been demon­
strated. Our theory should serve as a basis for calculat­
ing other electronic properties of divalent-metal clusters.
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