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Abstract

Various results on parity of the number of irreducible factors of given
polynomials over finite fields have been obtained in the recent literature.
Those are mainly based on Swan’s theorem in which discriminants of poly-
nomials over a finite field or the integral ring Z play an important role. In
this paper we consider discriminants of the composition of some polynomi-
als over finite fields. The relation between the discriminants of composed
polynomial and the original ones will be established. We apply this to obtain
some results concerning the parity of the number of irreducible factors for
several special polynomials over finite fields.
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1 Introduction

Irreducible polynomials over finite fields are widely used in many applications to
codes, cryptography and computer algebra. The construction and distribution of
irreducible and primitive polynomials over finite fields have been investigated by
many researchers [5, 10, 12].

Swan’s theorem [13] is an important tool for determining parity of the number
of irreducible factors of a given polynomial and thus giving a necessary condition
for irreducibility of polynomials over finite fields. Below we write PNIF simply
for ’parity of the number of irreducible factors’. Some results similar as Swan’s
theorem have been obtained for various classes of polynomials over finite fields
[1-3,6-8]. In these results the discriminants of polynomials over finite fields or the
integral ring Z are needed to compute. Swan found an elegant formula for the dis-
criminant of a general trinomial and applied it for the determination of the PNIF of
trinomials over F2. In [4] the result for the discriminants of certain self-reciprocal
quadrinomials was established. The authors of this paper derived a formula for the
discriminant of composite polynomial f(ax + b) for their results. Concerning the
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irreducibility of some composite polynomials obtained from irreducible polynomi-
als over finite fields already various considerable results have been achieved [10].
It is desirable to investigate the relation between the PNIF of a composition of two
polynomials and that of the original polynomials for the treatment of polynomials
with unknown PNIF. In this paper we consider the discriminants of some compos-
ite polynomials over finite fields. Then we apply this to determine the PNIF for
several special polynomials over finite fields.

2 Background results

In this section we give some results which will be used in the following sections.
First recall the discriminant and the resultant of polynomials over a field. Let K be
a field, and let f(x) = a

∏n−1
i=0 (x − αi) ∈ K[x] be a polynomial of degree n with

leading coefficient a where α0, α1, · · · , αn−1 are the roots of f(x) in a certain
extension of K. Then the discriminant D(f) of f is defined as follows:

D(f) = a2n−2
∏
i<j

(αi − αj)2 (1)

Let f(x) be the same as above and let g(x) = b
∏m−1

j=0 (x − βj) ∈ K[x], where
β0, β1, · · · , βm−1 are the roots of g(x) in a certain extension of K. The resultant
R(f, g) of f(x) and g(x) is

R(f, g) = (−1)mnbn
m−1∏
j=0

f (βj) = am
n−1∏
i=0

g (αi) (2)

The resultant has the following properties.

Lemma 1 [9, 13]1)R(f, g) = (−1)mnR(g, f)
2) If c is a constant, R(f, c) = R(c, f) = cn

3) R(x, g) = g(0), R(f,−x) = f(0)
4) R(f1f2, g) = R(f1, g)R(f2, g), R(f, g1g2) = R(f, g1)R(f, g2)
5) If f = gq + r, deg r = t, then R(f, g) = (−1)m(n−t)bn−tR(r, g)

Proof. We prove only 5).

R(f, g) = (−1)mnbn
m−1∏
j=0

[g (βj) q (βj) + r (βj)] = (−1)mnbn
m−1∏
j=0

r (βj)

= (−1)mn−mtbn−t

(−1)mtbt
m−1∏
j=0

r (βj)

 = (−1)m(n−t)bn−tR(r, g).2

The discriminant of a polynomial f can be given in terms of the resultant by

D(f) =
1
a
(−1)n(n−1)/2R

(
f, f ′

)
(3)
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where f ′ is the derivative of f .
In [9] the following chain rule for resultants was proved.

Theorem 1 Let f(x), g(x) be the same as above, h(x) ∈ K[x] and h0 be the
leading coefficient of h(x). Then

R (f(h), g(h)) = [hmn
0 R(f, g)]deg h (4)

unless h is (a constant which is) a common root of f and g.

This result is our main tool for computing the discriminant of composite polyno-
mials.

Next let us recall Swan’s results [13].

Theorem 2 Let f(x) be a polynomial of degree n over a finite field Fq with no
repeated root where q is an odd prime power. Let r be the number of irreducible
factors of f(x) over Fq. Then r ≡ n (mod 2) if and only if D(f) is a square in
Fq.

Theorem 3 Let f(x) be a polynomial of degree n over F2 with no repeated root
and let r be the number of irreducible factors of f(x) over F2. Let F (x) ∈ Z[x] be
any monic lift of f(x) to the integers. Then D(F ) ≡ 1 or 5 (mod 8) and r ≡ n
(mod 2) if and only if D(f) ≡ 1 (mod 8).

Using these results we determine the PNIF of composite polynomials over finite
fields in some special cases.

3 The PNIF of composite polynomials over finite fields

First we deal with the PNIF of f
(
xt
)

for an arbitrary polynomial f(x).

Lemma 2 Let K be a field, f(x) ∈ K[x] be a polynomial of degree n with a
leading coefficient a and let t be a positive integer. Then

D
(
f
(
xt
))

= (−1)n2t(t−1)/2at−1tntf(0)t−1D (f(x))t (5)

Proof. By (3) and Lemma 1 we can write

D
(
f
(
xt
))

=
1
a
(−1)nt(nt−1)/2R

(
f
(
xt
)
, f ′
(
xt
)
txt−1

)
=

1
a
(−1)nt(nt−1)/2R

(
f
(
xt
)
, f ′
(
xt
))
R
(
f
(
xt
)
, t
) [
R
(
f
(
xt
)
, x
)]t−1

=
1
a
(−1)nt(nt−1)/2tntf(0)t−1R

(
f
(
xt
)
, f ′
(
xt
))

Put h(x) = xt and apply Theorem 1. Then we get

R
(
f
(
xt
)
, f ′
(
xt
))

=
[
R
(
f(x), f ′(x)

)]t
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Therefore

D
(
f
(
xt
))

=

= (−1)
nt(nt−1)

2
−nt(n−1)

2 at−1tntf(0)t−1

[
(−1)n(n−1)/2 1

a
R
(
f(x), f ′(x)

)]t

= (−1)n2t(t−1)/2at−1tntf(0)t−1D (f(x))t
2

(5) shows that if f(x) has repeated root, then f
(
xt
)

also has. But the inverse is
not true. For example, f(x) = x2 + x + 1 is irreducible over F2, but f(x2) =
x4 + x2 + 1 =

(
x2 + x+ 1

)2. Below we consider the relation between the PNIF
of f(x) and f

(
xt
)

over F2.

Theorem 4 Let f(x) be a polynomial of degree n over F2 with no repeated root.
Let t be any positive integer and assume that f(0) 6= 0. Then

1) f
(
xt
)

has repeated root if and only if t is even.
2) If n is even and t is odd, or n is odd and t ≡ ±1 (mod 8), then the PNIF

of f
(
xt
)

coincides with one of f(x).
3) If n is odd and t ≡ ±3 (mod 8), then the PNIF of f

(
xt
)

is opposite to one
of f(x).

Proof. In this case (5) can be written as follows.

D
(
f
(
xt
))

= (−1)n2t(t−1)/2tntD (f(x))t

If t is even, then D
(
f
(
xt
))

= 0 in F2[x], that is, f
(
xt
)

has a repeated root over
F2 and vice versa. Let t be odd and put C = (−1)n2t(t−1)/2tnt. Since a square of
odd integer is congruent to 1 modulo 8, it can be easily seen

C ≡
{

1, if n is even and t is odd, or n is odd and t ≡ ±1 (mod 8),
5, if n is odd and t ≡ ±3 (mod 8)

Let F (x) ∈ Z[x] be any monic lift of f(x) to the integers. Since f(x) has no
repeated root, Theorem 3 implies that D (F (x)) ≡ 1 or 5 (mod 8) and therefore
D (F (x))t ≡ D (F (x)) (mod 8) for t is odd. Thus D

(
F
(
xt
))
≡ C ·D (F (x))

(mod 8) which gives the assertion of the theorem. 2

Next we consider f (L(x)) over finite fields where L(x) is a linearized poly-
nomial. Let Fq be a finite field of characteristic p. A polynomial of the form

L(x) =
t∑

i=0

βix
qi

with coefficients βi from Fqn is called q-polynomial over Fqn . For fixed q, L(x) is
called a linearized polynomial over Fqn . A polynomial of the form

A(x) = L(x) + β, β ∈ Fqn

is called an affine polynomial over Fqn [10].
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Lemma 3 Let Fq and f(x) ∈ Fq[x] be the same as above and let t be a positive
integer divided by p. Let h1(x) be any polynomial over Fq and h(x) = ht

1(x) +
cx+ d be a polynomial of degree k. Then

D (f (h(x))) = (−1)n2k(k−1)/2ak−1cnkh
n[k·deg f ′−1]
0 D (f(x))k (6)

where h0 is a leading coefficient of h(x).

The proof of this lemma is simple and similar with Lemma 2, so we omit it. The
linearized polynomials and affine polynomials are special cases of the polynomial
h(x) in Lemma 3.

The next simpler case is f(cx+d). Regarding h1 = 0, namely h(x) = cx+d,
we have from (6)

D (f(cx+ d)) = cn·deg f ′D (f(x)) (7)

over an arbitrary field which is the result in [4]. It shows that for any element d in
a given field, the PNIF of f(x + d) and f(x) are equal. And if a = h0 = c = 1,
namely f(x) and h(x) are monic, then (6) has the following form

D (f (h(x))) = (−1)
n2k(k−1)

2 D (f(x))k (8)

This can be used to get a criterion for determining the PNIF of composite polyno-
mials over finite fields.

Theorem 5 Let Fq be a finite field of odd characteristic p and t be a positive
integer divided by p. Let h(x) = ht

1(x) + x+ d ∈ Fq[x] be a monic polynomial of
even degree k. Then

1) f (h(x)) has repeated root if and only if f(x) has.
2) If f(x) has no repeated root, then f (h(x)) has an even number of irre-

ducible factors over Fq if and only if (−1)
n2k(k−1)

2 is a square in Fq.

Proof. 1) is trivial by (8) and 2) follows directly from Theorem 2 with the condition
of even k. 2

In [1], the PNIF of weight-n polynomials over F2 was considered. Using this
we determine the PNIF of a special type of pentanomials over F2.

Theorem 6 For any positive integer k ≥ 3 and l ≥ 1, the pentanomial

f(x) = x2k−1 + x2l+1 + x2l
+ x+ 1 ∈ F2[x]

has always an odd number of irreducible factors over F2 with only one exception
k = 3, l = 2.

Proof. Consider the weight-n polynomial

Fn,m(x) =
xn+1 + 1
x+ 1

+ xm ∈ F2[x]
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where n is odd. We have the composite polynomial in F2[x]

Fn,m(x+ 1) =
(x+ 1)n+1 + 1

x
+ (x+ 1)m

Let G(x) ∈ Z[x] be a monic lift of Fn,m(x) to the integers, then G(x + 1)
(composition in Z[x]) is a monic lift of Fn,m(x + 1) to the integers and by (7),
D (G(x+ 1)) = D (G(x)). Thus by Theorem 3 the PNIF ofFn,m(x) andFn,m(x+
1) over F2 are equal. Put u = 2k − 1,m = 2l + 1, then

F2k−1,2l+1(x+1) = x2k−1+(x+1)(x+1)2
l
= x2k−1+x2l+1+x2l

+x+1 = f(x).

The conditions k ≥ 3, l ≥ 1 imply n = 2k − 1 ≡ 7 (mod 8) and m 6= 2. And
m = n − 2 if and only if k = 3, l = 2. Therefore the assertion follows from
Theorem 5 in [1]. 2

The pentanomial of Theorem 6 is a special case of so called type I pentanomial
defined in [11] and we were not yet able to find any result dealing with the PNIF
of this type of pentanomial in the literature.

Finally consider the PNIF of the composite polynomial f(x2 + x+ 1). Let

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an ∈ Z[x]

be a monic polynomial of degree n with integer coefficients. Consider a homoge-
neous polynomial in two variables

F (x, y) = xn + a1x
n−1y + · · ·+ an−1xy

n−1 + any
n ∈ Z[x, y]

derived from f(x).

Lemma 4

D
(
f
(
x2 + x+ 1

))
= (−1)n · F (3, 4) ·D (f(x))2 .

Proof. Put g(x) = f
(
x2 + x+ 1

)
. Then by Lemma 1 and Theorem 1, we get

D (g(x)) = (−1)2n(2n−1)/2R
(
g(x), g′(x)(2x+ 1)

)
= (−1)n(2n−1)R

(
g(x), g′(x)

)
R (g(x), 2x+ 1)

= (−1)nR
(
f(x), f ′(x)

)2
R (g(x), 2x+ 1)

Since there exists a polynomial q(x) such that

g(x) = (2x+ 1)q(x) + g

(
−1

2

)
= (2x+ 1)q(x) + f

(
3
4

)
,

we use Lemma 1 again to get

D (g(x)) = (−1)nD (f(x))2 ·R (g(x), 2x+ 1)

= (−1)nD (f(x))2 · 4n ·R
(
f

(
3
4

)
, 2x+ 1

)
= (−1)n · F (3, 4) ·D (f(x))2 2
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Now consider a binary polynomial

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an ∈ F2[x] . (9)

Theorem 7 If a polynomial (9) has no repeated root, then the composition
f
(
x2 + x+ 1

)
∈ F2[x] also has no repeated root. In this case assume that

f
(
x2 + x+ 1

)
has r irreducible factors over F2. Then r is even if and only if

(−1)nF (3, 4) ≡ 1 (mod 8) where F is a homogeneous polynomial correspond-
ing to the monic lift of f(x) to the integers.

Proof. Let D(f), D(g) be the discriminants of f(x), g(x) = f
(
x2 + x+ 1

)
∈

F2[x] in F2[x], respectively. Then we get D(g) = (−1)n(3n−1)/2D(f) in the same
way as above lemma and this gives the first assertion. The second part of the theo-
rem is followed from Lemma 4 and Theorem 3. 2

Theorem 8 Let f(x), r and F be as in Theorem 7. Then

r ≡ n+ a1 (mod 2)

Proof. Let D be a discriminant of the monic lift of f
(
x2 + x+ 1

)
to the integers.

From Lemma 4, it can be easily seen

D ≡ (−1)n · F (3, 4) ≡ (−1)n ·
(
3n + 4a1 · 3n−1

)
≡ 1 + 4a1 + 4n (mod 8)

On the other hand, it follows that D ≡ 1 + 4r (mod 8) by Theorem 3 since
f
(
x2 + x+ 1

)
is of even degree. This means r ≡ n+ a1 (mod 2) 2

Theorem 8 shows that the PNIF of a composite polynomial f
(
x2 + x+ 1

)
∈

F2[x] depends only on the degree n and the coefficient of xn−1 of the original
polynomial f(x). From this we get the necessary condition for a composite poly-
nomial f

(
x2 + x+ 1

)
to be irreducible over F2.

Corollary 1 For a polynomial f(x) ∈ F2[x] if f
(
x2 + x+ 1

)
is irreducible over

F2, then

tr(f) =
{

1, if n is even
0, if n is odd

We apply Theorem 8 to trinomials over F2 to get the following.

Corollary 2 Let f(x) = xn + xk + 1 ∈ F2[x]. If f(x) has no repeated root, then
f
(
x2 + x+ 1

)
has an even number of irreducible factors over F2 in the following

cases
1) n− k = 1 and n is odd,
2) n− k ≥ 2 and n is even.
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