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Chapter 1

Introduction

In this thesis restarting automata and extensions of restarting automata are studied. Restarting
automata were introduced in [JMPV95] as a formal tool to describe analysis by reduction, which is
a technique used in linguistics to analyze sentences of natural languages. The next section explains
the basics of analysis by reduction and the process of grammar checking.

A (two-way) restarting automaton consists of a finite control, a read/write window of fixed size and
a single flexible tape that contains the input as well as left and right border markers. Here flexible
means that during a length reducing rewrite step the tape is really shortened. The restarting
automaton has one initial state in which the computation starts. Its window is moved along the
tape performing move-left and move-right steps until the window content is replaced by a shorter
string in a rewrite step. It is allowed that the new string contains auxiliary symbols. Then the
restarting automaton can again perform move-left and move-right steps until it decides to perform
a restart step. A restart causes the restarting automaton to move to the left end of the tape and to
reenter the initial state. The period from one restart step to the next is called a cycle. Thus, each
computation of a restarting automaton can be described through a sequence of cycles. In general
a restarting automaton is nondeterministic.

Restarting automata have two restrictions that come with their restart operation: they do not
know what they have done in the last cycle, because their state is reset to the initial state, and
they do not know where they have done the rewrite step of the last cycle, because they are forced
to move to the left border of the tape. Nonforgetting restarting automata have only one of these
restrictions. They are not forced to enter the initial state after a restart step, instead they can
change the state as for any other operation. They do, however, need to move to the left end of the
tape. Thus, they can remember what they have done in previous cycles, but not where they have
done it.

A cooperating distributed (CD-) system of restarting automata consists of a finite collection of
restarting automata, a successor relation, and a set of initial components. The cooperation is done
similar to CD-grammar systems (see e.g. [CVD90, DP97]). The computation of a CD-system of
restarting automata works as follows: A restarting automaton is chosen from the set of initial
components and it performs some cycles on the input. Then another restarting automaton takes
over and continues the computation. This automaton is chosen from among the successors of
the first component. This is continued until an active component accepts or rejects. A mode of
operation determines how long a component is active.

The two main parts of this thesis are about nonforgetting restarting automata and CD-systems of
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restarting automata. It is assumed that the reader is familiar with the fundamentals of automata
and formal language theory, advanced terms are introduced when they are needed.

1.1 Grammar Checking and Analysis by Reduction

In this section the linguistic background of restarting automata is discussed and the applications
of restarting automata in linguistics are given. The complete process of language recognition is
not described here, the intention of this section is rather to give an overview over the process and
to describe some special problems.

Analysis by reduction and restarting automata are mainly of interest for languages with free word
order, such as slavic languages, Russian and German. Analysis by reduction simplifies or shortens a
sentence while preserving the correctness or incorrectness of it. This is done until a simple sentence
is obtained, such that its correctness is easily decidable.

But how is analysis by reduction done, and what is a sentence?

A sentence is a sequence of symbols. In natural languages there exists a special blank symbol that
separates the words in a sentence. So in natural languages a sentence is a sequence of words and
punctuation marks, where words are sequences of letters. In fact a word consists of smaller parts,
so called morphemes, for now it is sufficient to regard a sentence as a sequence of words.

To analyze a sentence it is necessary to retrieve information about it, to give a meaning to the
words in it. This is done by a morphological, a syntactical and perhaps a semantical analysis. It is
not always possible to do these analyses completely, because for example most of the words have
more than one meaning. Therefore after these analyses the ambiguity of the sentence must be
reduced. When the sentence is disambiguated the next step is the analysis by reduction. On the
next pages this process is described and the methods for this process are given.

1.1.1 Syntactical and Morphological Analysis

The first step is to find the corresponding tags for all words or groups of words in the sentence.
Every sequence of letters (word) gets a morphological tagset, which contains for example the part
of speech, number, gender, person, case and time. It gets a syntactical tagset for the syntactical
meaning, (e.g. Subject, Predicate, Object) and as part of the semantical analysis, it gets a struc-
tural semantic tagset to describe the meaning of words and subsentences. The last two tagsets can
be assigned to words and groups of words.

To have a closer look at this analysis and at the ambiguity of words and word groups we give two
examples:

The subsentence or word group "Peter, Paul and Mary" can be an enumeration but it need not be
one. In the sentence "I am living next door to Peter, Paul and Mary are living in another street.",
it is not an enumeration. A morphological tag for the word talks can be:

Part-of speech: verb

Number: singular

Person: third

Time: present

but if we have no further knowledge about the word the following tag is also valid:

Part-of speech: noun
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Number: plural

Person: -

Time: -

So a word normally gets more than one tag in each tagset.

Morphological analysis is mostly done by checking the regular cases and by doing a lookup in a
large database for the irregular ones. Up to now there are no effective ways to make morphological
analysis by an algorithm, so the only way is a database which has all irregular tags to a given
sequence of letters. To divide the regular from the irregular cases morphemes can be used.

A morpheme is the smallest part of a word that carries a semantic interpretation. For example
"houses" has two morphemes "house" and "s" where "s" is a plural suffix. The exact way to do
morphological, syntactical or semantical analysis is not part of this work. It is important to note
that after the analysis every word has a tagset of all its possible tags. We have seen that more
than one tag is possible. If a word has different tags it is called ambiguous. But normally not all
these tags are valid with respect to the full sentence, therefore disambiguation is used to reduce
the ambiguity. After this, if no discrepancy was detected, the analysis by reduction can start to
analyze the sentence.

1.1.2 Morphological Disambiguation

There are different types of analyses, which lead to different tagsets for a word or a word group.
All of these tagsets need to be disambiguated. To understand the method of disambiguation it is
sufficient to have a look at the morphological disambiguation.

An ambiguous sentence can be described in two different ways, in the columns notation or in the
readings notation. In the columns notation there is a column assigned to every word. This column
contains all tags from the tagset for this word. All possible meanings are obtained by taking one
tag from each tagset.

In the readings notation, all possible meanings of the sentence are given. This means that for each
word one tag is chosen from its tagset and all possible combinations of tags are written in different
rows. Every such combination is a different reading.

For example assume that a and b are words with the tagset {A,B} for a and with the tagset
{B} for b, and that "a a b " is a sentence. Then the columns notation for this sentence is
{A,B}, {A,B}, {B}, while the readings notation is the following set of readings: {(AAB), (ABB),
(BAB), (BBB)}. This formal "sentence" is used to describe the concepts and the behavior without
expecting too much linguistic knowledge.

The columns notation is more compact and gives a better overview about the ambiguity, but it
has also some disadvantages, as we will see during the explanation of disambiguation.

Disambiguation is the process in which the context of a word is used to eliminate some of its
tags. In languages with free word order it is not always a local context only, sometimes the whole
sentence must be used as context. This is done with several rules, for example a rule may state
that no verb can follow an article or that a following noun is not allowed to have a gender different
from that of the article.

Disambiguation rules are negative rules, as they state what is not possible. With these negative
rules it is possible to remove tags from a word if we are in the column notation, or to reject readings
in the readings notation.
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In the ideal case all but one tag are removed from every word, thus every word has only one
morphological meaning. This is equivalent to the fact that only one reading remains of the sentence.
If it is not possible to fully disambiguate a sentence, then there can be a difference between the
columns and the readings notation.

In the readings notation all readings which are incorrect are removed, this gives the maximal
disambiguation of the sentence by the disambiguation rules. In the columns notation a tag can
only be removed if it is incorrect in all possible readings. Thus a sentence can be less ambiguous
as the columns notation suggests.

For example, assume the sentence a a b remains ambiguous, say the readings (AAB) and (BBB)
are correct. Then in the columns notation a has the tagset {A,B} and b has the tagset {B}.
But this columns notation corresponds to the four readings (AAB), (ABB), (BAB) and (BBB).
Thus, in the readings notation a better disambiguation can be achieved.

Note that a partial disambiguation can have different reasons: either the sentence contains a
"genuine ambiguity", which means that more than one possible reading of the sentence is correct,
or the disambiguation rules are not complete.

On the other hand, if no reading of a sentence is left, then the sentence is not correct. This does
not mean that the word where the last tag was deleted is incorrect. It only says that the whole
sentence is incorrect. To find the error in the sentence and to make suggestions for a correction
other techniques must be used.

Even if these rules are applied in non-deterministic order they are error and correctness preserving.
This means that correct sentences are never found to be incorrect and that incorrect sentences are
never changed in a way that they become correct.

Note: To do better disambiguation it is possible to apply rules that are true for almost all
sentences, but not for all. This is called a stochastic disambiguation. As natural languages are not
defined formally, there are sometimes cases which cannot be described by rules, or there are rules
which are correct only for most of the cases.

1.1.3 Analysis by Reduction

The disambiguated sentence is analyzed by the analysis by reduction. Analysis by reduction
consists of a stepwise simplification of a sentence, so that the correctness and incorrectness of
the sentence is preserved. These properties are called the Correctness Preserving and the Error
Preserving Property.

Analysis by reduction is a well known method in language recognition in the Czech republic.
There are two ways of doing an analysis by reduction. A first very formal way starts with a fully
disambiguated sentence. But Czech children learn analysis by reduction already at the primary
school, so there is a second more informal way, which is done with plain text. We will present an
example which uses this informal analysis by reduction. For many sentences even children at the
primary school know how to reduce them, without understanding their morphological, syntactical
and semantical structure and meaning.

Analysis by reduction is a stepwise reduction of a given sentence, which continues until either an
error is detected or a correct simplified sentence is obtained. In the following example, a sentence
is given and it is assumed that the sentence is fully disambiguated, so each word has only one
tag in each of its tagsets. The sentence is so simple that these tags do not need to be written to
understand the example. Therefore the informal way of analysis by reduction is used.
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Example 1.1.1.
The sentence:

Peter, Paul and Mary eat delicious ice cream.

can be reduced to
Peter, Paul and Mary eat ice cream.

or one of the enumeration parts can be deleted
Peter and Mary eat delicious ice cream.

After each of these reductions the other one can be applied, therefore these reductions are indepen-
dent from each other and both reductions lead to the sentence:

Peter and Mary eat ice cream.

This sentence is in such a simple form that its correctness can be seen easily.

There are two more reductions from the original sentence:
Paul and Mary eat delicious ice cream.
Peter and Paul eat delicious ice cream.

The second one contains a rewrite instead of only a deletion and these reductions are not indepen-
dent from each other, because only one of them can be applied to the sentence. If one more name is
deleted, then the subject is no longer an enumeration and the number of the subject changes from
plural to singular.

Apart from independent reductions there can be dependencies between some reductions. The
reduction from "Peter, Paul and Mary" to "Peter and Paul" must be done in one step, because
neither "Peter, Paul and eat delicious ice cream" nor "Peter and Paul Mary eat delicious ice cream"
are correct sentences.

In the formal analysis by reduction the sentence must be fully disambiguated. If it is not fully
disambiguated, then the analysis by reduction must be done for all remaining readings of the
sentence. For example the subsentence "Peter, Paul and Mary" can only be reduced to "Peter and
Mary" if it is an enumeration.

To do so one needs to know exactly which tag belongs to which word or word group, in order to
rewrite the sentence. If the subsentence "Peter, Paul and Mary" is an enumeration, then it can
be reduced to "Peter and Mary". But in Section 1.1.1 the following sentence was given: "I am
living next door to Peter, Paul and Mary are living in another street." In this sentence "Peter,
Paul and Mary" is not an enumeration and the reduction to "Peter and Mary" would contradict
the Correctness Preserving Property.

Another important property of analysis by reduction is that it also preserves the meaning of the
whole sentence: "I believe in Santa Claus" must not be rewritten into "I believe Santa Claus".
Here both sentences are correct, but they express different things.

Restarting automata were introduced to model analysis by reduction, but they can be used for
both the disambiguation and the analysis by reduction. During the disambiguation tags are deleted
from tagsets, while in the analysis by reduction words of the sentence itself are deleted or rewritten.
Therefore one could think about merging these two steps by using different restarting automata
for the disambiguation and for the analysis by reduction. These restarting automata can work
together as a cooperating distributed (CD-) system of restarting automata to analyze the sentence.
We will see later in this work that a CD- system of restarting automata corresponds in some sense
to nonforgetting restarting automata.
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1.2 Summary and Results

We will now give a summary of the main part of this thesis. The main results are stated and the
definitions and automata models are informally described.

Restarting Automata

In Chapter 2 restarting automata are studied. Definitions and known results are stated, for an
overview see e.g. [Ott03, Ott06]. An unrestricted restarting automaton is called RLWW-automaton.
There are various restricted types of restarting automata which are obtained by combining two
types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the first part of the
class name):

RL- denotes no restriction,
RR- means that no move left steps are allowed, thus the automaton scans the tape only once

from left to right between two restart steps,
R- means that no move left steps are allowed and each rewrite step is immediately followed

by a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of the class name):

-WW denotes no restriction,
-W means that no auxiliary symbols are available,

ε means that no auxiliary symbols are available and that each rewrite step is simply a
deletion (that is, if the rewrite operation u → v occurs in the transition relation of M ,
then v is obtained from u by deleting some symbols).

In this work ε represents the empty string.

The equivalence of nondeterministic RLWW- and RRWW-automata is stated in [Plá01]. This
equivalence allows to introduce a shorter form of description for restarting automata, so called
meta-instructions. The Error Preserving Property (EPP) and the Correctness Preserving Prop-
erty (CPP) are stated and a reduction from RRWW- to RRW- and then to RR-automata is
given [JOMP04, Ott06]. Also deterministic, monotone, deterministic monotone and weakly mono-
tone restarting automata are introduced. Restarting automata are called monotone, if the place
where the rewrite of a cycle occur is restricted. In two following cycles the right distance of the
rewrite is not increasing. It is called weakly monotone, if there exists a constant, such that the
right distance is increased by at most this constant.

For monotone restarting automata it is known that CFL = L(mon-RWW) = L(mon-RRWW)
[JMPV99], DCFL = L(det-mon-R) = L(det-mon-RRWW) [JMPV99] and L(det-mon-RLWW) =
L(det-mon-RL) [JMOP05] hold. Here CFL stands for the context-free languages and DCFL for the
deterministic context-free languages. L(RRWW) describes the class of languages that are accepted
by RRWW-automata.

Deterministic restarting automata with auxiliary symbols recognize exactly the Church-Rosser lan-
guages [NO00, NO03], while weakly monotone restarting automata with auxiliary symbols charac-
terize the growing context-sensitive languages [Nie02, JLNO04]. For deterministic, monotone and
weakly monotone restarting automata without auxiliary symbols there exists a strict hierarchy for
the different types of restrictions for restarting automata. For unrestricted restarting automata it
is an open question whether the inclusion L(RWW) ⊆ L(RRWW) is proper or not.
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In the following, generalizations of restarting automata are considered: the shrinking restarting
automata, the nonforgetting restarting automata, and the restarting automata with many rewrites
per cycle. It has been shown that shrinking RRWW-automata are as expressive as shrinking non-
forgetting restarting automata with many rewrites per cycle [JO07]. This language class coincides
with the class of languages accepted by finite change automata (see [vBV79]).

In the sections 2.1 - 2.7 almost all results were already known. Only Lemma 2.2.6 and Theorem 2.2.7
contain new results. A restarting automaton is correctness preserving, if there exists no cycle such
that an incorrect word is derived from a correct one. Each deterministic restarting automaton is per
definition correctness preserving. Correctness preserving restarting automata are defined, and it is
shown that correctness preserving X-automata are as expressive as deterministic X-automata, for
X ∈ {R,RL,RW,RLW, RWW,RLWW}. For RR- and RRW-automata a separation language is given
to show the strictness of the inclusion between deterministic and correctness preserving restarting
automata. The error detection distance is a generalization of the correctness preservation. A
restarting automaton can make an error, but if it always detects this error after c cycles it has
error detection distance c.

It is shown that the property of having a finite error detection distance does not add expressive
power to restarting automata. It is shown for all types of restarting automata that correctness
preserving restarting automata are as expressive as restarting automata with finite error detection
distance. The results in the Sections 2.8 and 2.9 are joint work with Friedrich Otto, and an
extended abstract appeared in [MO08].

Nonforgetting Restarting Automata

Chapter 3 is one of the main chapters of this thesis. There a generalization of restarting automata,
the nonforgetting (nf-) restarting automata are studied. They were first mentioned in [MS04]. Dur-
ing this chapter, restarting automata are often called forgetting restarting automata to distinguish
them from nonforgetting restarting automata.

The same restricted types as for forgetting restarting automata are applied and it is also shown
that each nf-RLWW-automaton can be simulated by a nf-RRWW-automaton. Similarly, meta-
instructions are defined and error and correctness preserving properties are given. These properties
vary from those for forgetting restarting automata; in fact they are real extensions of the normal
EPP and CPP.

For deterministic nonforgetting restarting automata it is shown that already the weakest model,
that is the det-nf-R-automaton, accepts languages that are not growing context-sensitive. Thus all
types of deterministic nonforgetting restarting automata are strictly more expressive than their
forgetting counterparts.

A normalform for deterministic (nonforgetting) RLWW-automata is derived that allows to describe
(nonforgetting) deterministic RLWW-automata by meta-instructions.

Unfortunately, there is not a complete hierarchy for deterministic nonforgetting restarting au-
tomata. It is an open question whether the inclusions L(det-nf-R(W)(W)) ⊆ L(det-nf-RR(W)(W)) ⊆
L(det-nf-RL(W)(W)) are proper. In addition we will see that det-nf-RW-automata accept the
language of all valid computations of a Turing machine, and therefore, many decision problems
for these automata are undecidable. As an encoding of this language is accepted by a det-nf-R-
automaton these undecidable results are valid for all kinds of deterministic nonforgetting restarting
automata.

Monotone nonforgetting RRWW-automata are as expressive as monotone forgetting RRWW-auto-
mata as they accept exactly the context-free languages. For deterministic monotone restarting
automata the known results do not carry over from forgetting to nonforgetting restarting au-
tomata. While L(det-mon-nf-R) = L(det-mon-nf-RWW) = DCFL holds, we show that already
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det-mon-nf-RR-automata accept languages that are not deterministic context-free. In fact we ob-
tain a proper hierarchy between DCFL and L(det-mon-RL) (see Figure 1.1), which equals the
LR-regular languages [Ott07] .

LRR = L(det-mon-nf-sh-RLWW) = L(det-mon-RL)

L(det-mon-nf-RRW)

OO

L(det-mon-nf-RR)

OO

DCFL = L(det-mon-nf-R)

OO

= L(det-mon-nf-RWW)

Figure 1.1: The taxonomy of deterministic monotone nonforgetting restarting automata

This is the first time that it is shown that RWW-automata are strictly less powerful than the
RRWW-automata of the same type. In addition, both automata models describe well known
language classes. The result L(det-mon-RL) = L(det-mon-RLWW) is extended to shrinking and
nonforgetting restarting automata, that is, the following holds:

L(det-mon-RL) = L(det-mon-nf-sh-RLWW) = L(det-mon-nf-RRWW) = LRR.

In the section about shrinking nonforgetting restarting automata it is shown that the class of
languages accepted by shrinking det-RLWW-automata does not increase if the restarting automaton
is nonforgetting or can perform many rewrites per cycle. This is a result similar to the one
about nondeterministic shrinking RRWW-automata. Another possible way to define the notion of
shrinking for nonforgetting restarting automata is introduced and some properties for this language
class are shown.

Then the notion of correctness preservation and the error detection distance is carried over to
nonforgetting restarting automata. Here the new correctness preserving property is used. Many of
the results obtained for forgetting restarting automata are as well shown for nonforgetting restarting
automata. But there are two open questions: Does a finite error detection distance increase the
expressive power of nf-R(W)(W)-automata, and are correctness preserving nf-RR(W)(W)-automata
more expressive than det-nf-RR(W)(W)? The second question is shown to be equivalent to the
open question whether L(det-nf-R(W)(W)) equals L(det-nf-RR(W)(W)) or not. In the last section
of this chapter cyclic restarting automata are introduced and compared to forgetting restarting
automata with many rewrites per cycle.

CD-Systems of Restarting Automata

In Chapter 4, the second main part of this work, cooperating distributed (CD-) systems of restarting
automata are studied. As explained above, they are collections of restarting automata, and the
cooperating is controlled by a mode of operation, which determines how long a component is active.
The following modes of operation are considered:

= j : execute exactly j cycles;
≤ j : execute up to j cycles;
≥ j : execute at least j cycles;

t : continue until no more cycle can be executed.

10



After a formal definition of CD-systems of restarting automata, meta-instructions, the Error pre-
serving and the Correctness preserving property are defined. These properties are closely related
to the ones for nonforgetting restarting automata. The original properties are no useful tools for
CD-systems either. Then it is shown that not only the EPP and CPP of nonforgetting restart-
ing automata and CD-systems are closely related: A nonforgetting restarting automaton can be
simulated by a CD-system of restarting automata working in mode = 1. The other direction is
true for all modes of operations and almost all types of restricted restarting automata. The only
open question is whether CD-systems of R-, RW-, and RWW-automata working in mode t can be
simulated by nonforgetting restarting automata of the same type or not.

Deterministic CD-systems of restarting automata are considered as well, in fact three different
notions of determinism are introduced.

A CD-system of restarting automata can be called deterministic, if each component is a determinis-
tic restarting automaton. This is the way in which deterministic CD-grammar systems are defined.
But a computation of such a deterministic CD-system is not necessarily completely determinis-
tic. The initial component can be chosen nondeterministically from among the initial components
and the same is true for a successor component. Therefore these CD-systems are called locally
deterministic.

If we restrict a deterministic CD-system to only one initial component and require that each
component has exactly one successor, then each computation of such a CD-system is completely
deterministic. But the restriction to only one successor is a rather serious one, so these systems
are called strictly deterministic.

A third notion of determinism is introduced, that guarantees a deterministic computation without
the restriction to only one successor component. A CD-system of restarting automata is called
globally deterministic, if each component is deterministic, if there is only one initial component and
if each restart is assigned with a successor from among the possible successors. Thus a computation
of a globally deterministic CD-system of restarting automata is completely deterministic, but a
component can have more than one successor.

Only globally and strictly deterministic CD-systems of restarting automata working in a determin-
istic mode of operation are completely deterministic and therefore only those are per definition
correctness preserving.

Globally deterministic CD-systems of restarting automata working in mode = 1 are shown to be
related to deterministic nonforgetting restarting automata as in the nondeterministic case.

Further it is shown that in mode = 1 all types of strictly deterministic CD-systems are strictly
more powerful than deterministic restarting automata of the same type, and that strictly determin-
istic CD-systems without auxiliary symbols are strictly less powerful than globally deterministic
CD-systems.

Locally deterministic CD-systems seem less restricted than globally deterministic ones, but they
cannot control the choice of a successor component. However it is shown that at least in mode
= 1 they can simulate globally deterministic CD-systems. For CD-systems of restarting automata
without auxiliary symbols working in mode = 1, it is shown that the expressive power of locally
deterministic CD-systems of restarting automata lies in between that of globally deterministic and
nondeterministic CD-systems. Thus the following hierarchy for CD-X-systems is achieved. Here X
denotes a R(R)(W)-automaton:

L(det-X) ( L=1(det-strict-CD-X) ⊂ L=1(det-global-CD-X) ⊂ L=1(det-local-CD-X) ⊂ L=1(CD-X).

Finally, CD-systems of shrinking restarting automata are considered and it is shown that the
relation to nonforgetting restarting automata can be extended to shrinking restarting automata.
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Chapter 2

Restarting Automata

The restarting automaton is the automata model for analysis by reduction as described in the
previous chapter. It simulates one reduction step by one cycle of the automaton. It is also a
useful tool in formal language theory, as we will see in this chapter. Restarting automata were first
specified in [JMPV95], and it has been shown that many common language classes can be character-
ized by different types of restarting automata. Deterministic restarting automata characterize the
Church-Rosser languages, monotone restarting automata accept exactly the context-free languages,
deterministic monotone restarting automata characterize the deterministic context-free languages,
while weakly monotone restarting automata can be used to describe the growing context-sensitive
languages. All these restrictions will be described in this chapter. There are also some extensions
of restarting automata, which are studied in this and in the following chapters, but all types of
restarting automata only characterize certain context-sensitive and NP languages.

A restarting automaton consists of a finite control, one flexible tape containing the finite input
as well as left and right border markers, and a window of finite size. The tape is flexible as it is
shortened in every rewrite step. A restarting automaton moves its window over the tape, by using
move-right and move-left steps. It can also perform rewrite and restart steps. In a rewrite step
the window content u is rewritten into a word v, which is strictly shorter than u and the window
is placed to the right of v, in a restart step the window is placed over the left end of the tape and
the automaton reenters the initial state. In addition the automaton can halt and accept, and if
it is not able to do another step it halts and rejects. It is required that rewrite and restart steps
alternate, when ignoring move operations, with a rewrite step coming first. The period from one
restart-step to the next is called a cycle.

. . .c| $ flexible
tape

read/write-window

finite
control

Figure 2.1: Schematic representation of a restarting automaton
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2.1 Definitions and Examples

Most of the formal definitions, results and examples in this chapter are taken from [Ott03] or
[Ott06]. Some are slightly varied, generalized or rearranged.

Definition 2.1.1. A two-way restarting automaton, RLWW-automaton for short, is a one-tape
machine that is described by an 8-tuple M = (Q,Σ, Γ, c| , $, q0, k, δ), where Q is the finite set of
states, Σ is the finite input alphabet, Γ is the finite tape alphabet containing Σ, the symbols c| , $ 6∈ Γ
are markers for the left and right border of the work space, respectively, q0 ∈ Q is the initial state,
k ≥ 1 is the size of the read/write window, and

δ : Q× PC(k) → P((Q× ({MVR,MVL} ∪ PC≤(k−1))) ∪ {Restart, Accept})

is the transition relation.

Here P(S) denotes the powerset of the set S, PC(k) is the set of possible contents of the read/write
window of M , where

PC(i) := (c| · Γi−1) ∪ Γi ∪ (Γ≤i−1 · $) ∪ (c| · Γ≤i−2 · $) (i ≥ 1),

and

Γ≤n :=
n⋃

i=0

Γi and PC≤(k−1) :=
k−1⋃
i=1

PC(i) ∪ {ε}.

The transition relation describes five different types of transition steps:

(1.) A move-right step is of the form (q′,MVR) ∈ δ(q, u), where q, q′ ∈ Q and u ∈ PC(k), u 6= $.
If M is in state q and sees the string u in its read/write window, then this move-right step
causes M to shift the read/write window one position to the right and to enter state q′.
However, if the contents u of the read/write window is only the symbol $, then no shift to
the right is possible.

(2.) A move-left step is of the form (q′,MVL) ∈ δ(q, u), where q, q′ ∈ Q and u ∈ PC(k), u 6∈ c| ·Γ∗.
It causes M to shift the read/write window one position to the left and to enter state q′.
This, however, is only possible if the window is not already at the left end of the tape.

(3.) A rewrite step is of the form (q′, v) ∈ δ(q, u), where q, q′ ∈ Q, u ∈ PC(k), u 6= $, and
v ∈ PC≤(k−1) such that |v| < |u|. It causes M to replace the contents u of the read/write
window by the string v, and to enter state q′. Further, the read/write window is placed
immediately to the right of v. However, some additional restrictions apply in that the border
markers c| and $ must not disappear from the tape nor that new occurrences of these markers
are created. Further, the read/write window must not move across the right border marker $,
that is, if the string u ends in $, then so does the string v, and after performing the rewrite
operation, the read/write window is placed on the $-symbol.

(4.) A restart step is of the form Restart ∈ δ(q, u), where q ∈ Q and u ∈ PC(k). It causes M to
move its read/write window to the left end of the tape, so that the first symbol it sees is the
left border marker c| , and to re-enter the initial state q0.

(5.) An accept step is of the form Accept ∈ δ(q, u), where q ∈ Q and u ∈ PC(k). It causes M to
halt and accept.
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If no instruction with a left-hand side (q, u) exists, then the automaton halts and rejects, when
it reaches state q while it sees tape content u in its window. A halting configuration is either
an accepting or a rejecting configuration. A restarting automaton performs exactly one rewrite
operation between two restart steps. In general an automaton M is non-deterministic that means
that for a left-hand side (q, u) there can be more than one instruction. If for every left-hand side
(q, u) there exists at most one instruction, then M is called deterministic and the prefix det- is
used to describe the class of deterministic restarting automata.

A configuration of a restarting automaton is given by a word αqβ where q ∈ Q is the current
state and αβ is the current tape content including the border markers, with the read/write win-
dow scanning the first k letters of the word β. A configuration q0c|ω$ with ω ∈ Γ∗ is called a
restarting configuration, and if ω ∈ Σ∗ then it is called an initial configuration. The transition
relation transforms a configuration α0q0β0 into a successor configuration α1q1β1. This is denoted
as α0q0β0 ` α1q1β1 and the type of the transition relation is given as an index. `∗MVR describes a
sequence of MVR steps.

Definition 2.1.2. The language accepted by a restarting automaton M , L(M), consists of all words
w ∈ Σ∗ for which there is an accepting computation of M starting from the initial configuration
q0c|w$. The complete language, or characteristic language, of M , LC(M) for short, consists of all
words w ∈ Γ∗ which are accepted by M .

Example 2.1.3. Let M := (Q, Σ, Σ, c| , $, q0, 3, δ) be the deterministic RLWW-automaton that is
defined by taking Q := {q0, qc, qd, qr}, Σ := {a, b, c, d}, and δ as given by the following table:

(1) δ(q0, x) = (q0,MVR) for all x ∈ {aaa, aab, abb, abc, bbb, bbc, bbd} ,
(2) δ(q0, c| c $) = Accept, (9) δ(qc, abc) = (qr, c),
(3) δ(q0, c|d $) = Accept, (10) δ(qc, bbc) = (qc,MVL),
(4) δ(q0, c|ab) = (q0,MVR), (11) δ(qc, bbb) = (qc,MVL),
(5) δ(q0, c|aa) = (q0,MVR), (12) δ(qc, abb) = (qr, b),
(6) δ(q0, bc $) = (qc,MVL), (13) δ(qd, bbd) = (qd,MVL),
(7) δ(q0, bd $) = (qd,MVL), (14) δ(qd, bbb) = (qd,MVL),
(8) δ(qr,−) = Restart, (15) δ(qd, abb) = (qr, ε).

Obviously, M accepts the strings c and d immediately. So let w ∈ Σ+ r {c, d}. Starting from the
initial configuration q0c|w$, M will get stuck (and therewith reject) while scanning w from left to
right unless w is of the form w = ambnc or w = ambnd for some positive integers m and n. In these
cases the configuration c|ambn−1q0bc $ or c|ambn−1q0bd $ is reached by performing the transition
steps (4) or (5) and (1) repeatedly, and then either the state qc (6) or the state qd is entered (7).
Now M performs MVL-steps until the read/write window gets back to the boundary between the
syllables am and bn. If the actual state is qc that is, if w ends in c, then a factor ab is deleted (12);
if the actual state is qd that is, if w ends in d, then a factor abb is deleted (15). In both cases M
enters the state qr and restarts (8) independent of the string in the read/write window. Thus, we
see that M accepts the following language

L1 := { anbnc | n ≥ 0 } ∪ { anb2nd | n ≥ 0 },

which is a well-known example of a context-free language that is not deterministic context-free.

There are various restricted types of restarting automata. They are obtained by combining two
types of restrictions:
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(a) Restrictions on the movement of the read/write window (expressed by the first part of the
class name):

RL- denotes no restriction,

RR- means that no MVL-steps are allowed, thus the automaton scans the tape only once
from left to right between two restart steps,

R- means that no MVL-steps are allowed and each rewrite step is immediately followed by
a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of the class name):

-WW denotes no restriction,

-W means that no auxiliary symbols are available (that is, Γ = Σ),

ε means that no auxiliary symbols are available and that each rewrite step is simply a
deletion (that is, if the rewrite operation u → v occurs in the transition relation of M ,
then v is obtained from u by deleting some symbols).

A restarting automaton works in phases. A phase, called cycle, starts in a restarting configuration
followed by some MVR-, MVL- and a single Rewrite-step and then by a Restart-step which leads to a
new restarting configuration. If no further Restart-step is performed, then every finite computation
ends with a halting configuration. Such a phase is called a tail. In every cycle exactly one rewrite
step must be performed, while in a tail at most one rewrite step can be performed.

Let x, y ∈ Γ∗, then a cycle of a restarting automaton M from one restarting configuration q0c|x$
to another restarting configuration q0c|y$ is denoted by (q0, c|x$) `c

M (q0, c|y$); an accepting tail
starting from q0c|x$ is denoted by (q0, c|x$) `c

M Accept. As the border markers and the initial state
remain unchanged, this relation can be seen as a reduction relation x `c

M y over Γ∗

In the following chapters nonforgetting restarting automata and CD-systems of restarting automata
will be introduced, and for these automata there is a difference between the relation `c

M over
restarting configurations and the induced relation over words. There we will need information in
addition to the words to describe cycles.

In each cycle an RRWW-automaton can scan its tape only once from left to right. Nevertheless it
has been shown in [Plá01] that nondeterministic RRWW-automata accept the same languages as
RLWW-automata.

Each cycle of each computation of an RLWW-automaton M consists of three phases: first M scans
its tape performing MVR- and MVL-instructions, then it executes a Rewrite step, and finally it
scans its tape again performing MVR- and MVL-steps. Hence, in the first and the last phase of
each cycle M behaves like a nondeterministic two-way finite-state acceptor (2NFA). In analogy to
the proof that the language accepted by a 2NFA is regular (see, e.g, [HU79]), the following result
can be established.

Theorem 2.1.4. [Plá01]

Let ML = (QL,Σ, Γ, c| , $, q0, k, δL) be an RLWW-automaton. Then there exists an RRWW-automa-
ton MR = (QR,Σ, Γ, c| , $, q0, k, δR) such that, for all u, v ∈ Γ∗,

q0c|u$ `c
ML

q0c|v$ if and only if q0c|u$ `c
MR

q0c|v$,

and the languages L(ML) and L(MR) coincide.
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This result is valid only in non-deterministic mode. In deterministic mode there is a difference in
the expressive power between RRWW- and RLWW-automata.

In [Ott03] it is shown that for every (det-)RRWW-automaton M , there exists a (det-)RRWW-
automaton M ′ which accepts the same language and which performs restart steps only when it
sees the right border marker. Thus, every cycle of an RRWW-automaton can be divided into four
parts:

q0c|ω$ = q0c|ω1uω2$ `∗
MVR

c|ω1q1uω2$ `
Rewrite

c|ω1vq2ω2$ `∗
MVR

c|ω1vω2q3$ `
Restart

q0c|ω1vω2$.

In the first part there are only move right operations, then one rewrite step is performed, followed
by more move right operations, and finally a restart is executed when the right border marker is
reached. During the move right parts the RRWW-automaton works like a finite automaton. Thus,
these parts can be described by regular expressions. We can use this fact to shorten the description
of the transition relation δ by using meta-instructions.

Definition 2.1.5. A meta-instruction of an RRWW-automaton M is either of the form (E1, u →
v,E2) or (E1,Accept), where E1 and E2 are regular expressions and u, v ∈ Γ∗ are words with
|u| > |v|. The rule u → v stands for a Rewrite step of M . To perform a cycle, M chooses a
meta-instruction of the form (E1, u → v,E2). On trying to execute this meta-instruction, M will
get stuck (and so reject) starting from the configuration q0c|ω$, if ω does not admit a factorization
of the form ω = ω1uω2 such that c|ω1 ∈ E1 and ω2$ ∈ E2. On the other hand, if ω does have
factorizations of this form, then one such factorization is chosen nondeterministically, and q0c|ω$ is
transformed into q0c|ω1vω2$. In order to describe the tails of accepting computations we use meta-
instructions of the form (E1,Accept), where the strings of the regular language E1 are accepted by
M in tail computations.

A rewriting meta-instruction of an RWW-automaton M is of the form (E1, u → v), because it
restarts immediately after the rewrite.

Restrictions on the second part of a restarting automaton (−W and ε) only effect the word v in
the meta-instruction, because they restrict the form of the rewrite operation. For −W, no auxiliary
symbols may appear in v, and for ε, v must be a scattered subword of u.

Example 2.1.6. Let M1 be the RRWW-automaton with input alphabet {a, b, c, d} and without
auxiliary symbols that is described by the following sequence of meta-instructions:

(1) (c| · a∗, ab → ε, b∗ · c $), (3) (c| c $, Accept),
(2) (c| · a∗, abb → ε, b∗ · d $), (4) (c|d $, Accept).

It is easily seen that L(M1) = L1 holds.

The restarting automaton from Example 2.1.3 is a det-RL-automaton, because it only deletes in
its rewrite steps, and it is deterministic. The language L1 can be recognized by an RR-automaton,
because the restarting automaton in Example 2.1.6 performs only MVR-steps, but is not determin-
istic. The following example shows that L1 can be recognized by an RWW-automaton.

Example 2.1.7. The following sequence of meta-instructions defines an RWW-automaton M2 for
the language L1. M2 has input alphabet Σ := {a, b, c, d} and tape alphabet Γ := Σ ∪ {C,D} :

(1) (c| · a∗, ab → C), (5) (c|Cc $, Accept),
(2) (c| · a∗, abb → D), (6) (c|Dd $, Accept),
(3) (c| · a∗, aCb → C), (7) (c| c $, Accept),
(4) (c| · a∗, aDbb → D), (8) (c|d $, Accept).
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2.2 Properties and Lemmata

In this section some well known properties and lemmata on restarting automata are presented.

First, as in every cycle the length of the tape is reduced by at least one, it is easily seen that all
restarting automata only accept languages from the classes CSL and NP. Deterministic restarting
automata accept only certain languages from the classes DCSL (deterministic context-sensitive
language) and P.

Lemma 2.2.1.

• L(RLWW) ⊆ NP ∩ CSL.

• L(det-RLWW) ⊆ P ∩ DCSL.

Proof. An accepting computation for an input of length n has at most n cycles. Therefore a
(deterministic) Turing machine can simulate a (deterministic) RRWW-automaton in time O(n2).
The Turing machine needs only linear space. Thus the inclusions hold.

Two very useful properties of restarting automata are the so called error and correctness preserving
properties. They state that a word not belonging to the language accepted by an automaton is
never reduced to a word belonging to the language, and that in an accepting computation each
word derived belongs to the language, too.

Proposition 2.2.2 (Error Preserving Property).

Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be an RLWW-automaton, and let u, v be words over its input (tape)
alphabet Σ (Γ). If q0c|u$ `c∗

M q0c|v$ holds and u /∈ L(M) (LC(M)), then v /∈ L(M) (LC(M)),
either.

Proposition 2.2.3 (Correctness Preserving Property).

Let M = (Q, Σ, Γ, c| , $, q0, k, δ) be an RLWW-automaton, and let u, v be words over its input alpha-
bet Σ. If q0c|u$ `c∗

M q0c|v$ is an initial segment of an accepting computation of M , then v ∈ L(M).

There is a stronger notion of correctness preservation: If for a word w ∈ LC(M) each computation
of the restarting automaton M is an accepting computation, M is called strongly correctness
preserving.

Definition 2.2.4. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be an RLWW-automaton. M is called (strongly)
correctness preserving, if for all words u ∈ LC(M) and all cycles q0c|u$ `c

M q0c|v$ it follows that
v ∈ LC(M).

Observe that every deterministic restarting automaton is strongly correctness preserving.

Proposition 2.2.5 (Pumping Lemma).

For any RLWW-automaton M = (Q,Σ, Γ, c| , $, q0, k, δ), there exists a constant p such that the
following holds: Assume that q0c|uvw$ `c

M q0c|uv′w$, where u = u1u2u3 and |u2| = p. Then there
exists a factorization u2 = z1z2z3 such that z2 is non-empty, and

q0c|u1z1(z2)iz3u3vw$ `c
M q0c|u1z1(z2)iz3u3v

′w$

holds for all i ≥ 0 that is, z2 is a ‘pumping factor’ in the above cycle. Similarly, such a pumping
factor can be found in any factor of length p of w. Such a pumping factor can also be found in any
factor of length p of a word accepted in a tail computation.
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In [MS04] we have shown that nonforgetting restarting automata (see chapter 3) without auxiliary
symbols accept only regular languages over a unary alphabet. This result is valid for all types of
restarting automata without auxiliary symbols. Here we give the version for "normal" restarting
automata, to prove it we first show a result about RRWW-automata that are restricted to perform
their rewrites at the right border marker.

Lemma 2.2.6. Let M be an RRWW-automaton M such that M performs all of its rewrites while
seeing the right border marker $ in its window. Then L(M) is regular.

Proof. As the automaton performs all of its rewrites while seeing the right border marker $, this
RRWW-automaton is in fact an RWW-automaton.

We will construct an NFA A for L(M). If x0 ∈ L(M), then there exists an accepting computation
starting from x0, which can be described by a sequence of cycles:

x0 `c
M x1 `c

M x2 . . . `c
M xn `c

M Accept.

As the rewrites of M are performed only at the right end of the tape, there exists a factorization
of x0 = xunun−1 . . . u2u1, such that xi = xun . . . ui+1vi, 0 < i < n, and xn = xvn hold. Here
uivi−1$ → vi$ is the ith rewrite step. It is required that v0 = ε holds.

A simulates the regular conditions of all meta-instructions simultaneously in its finite control. As
M performs all its rewrite steps at the right border, the input x0 is divided into two parts: a
prefix x which is not changed during the sequence of cycles, and a suffix unun−1 . . . u2u1 which is
rewritten step-by-step into vn during this sequence.

The sequence of cycles is simulated from right to left as follows. First A guesses an accepting
meta-instruction. Then it checks for the prefix c|x of it and remembers the missing suffix vn$.
This suffix needs to be a right-hand side of a rewrite step unvn−1$ → vn$ of a meta-instruction
(En, unvn−1$ → vn$) such that c|x ∈ En holds. That is, the meta-instruction is applicable to
q0c|xunvn−1$.

Then A looks for the prefix un of this rewrite instruction. The remaining suffix vn−1$ again has
to be the right-hand side of the rewrite step of a meta-instruction (En−1, un−1vn−2$ → vn−1$),
such that c|xun ∈ En−1 holds. This is repeated until the whole input is consumed and A has
found a meta-instruction that is applicable to q0c|x1$ = q0c|xunun−1 . . . u2u1$, transferring it to
q0c|x0$ = q0c|xunun−1 . . . u2v1$.

Thus A accepts the input x0 if and only if it finds an accepting sequence of cycles of M .

Theorem 2.2.7. [MS04] A language over a unary alphabet is regular if and only if it is accepted
by an RLW-automaton.

Proof. Each regular language can be accepted by an RLW-automaton in one cycle, so REG ⊆
L(RLW) holds.

The other direction is a bit more complicated. An RLW-automaton can be simulated by a RRW-
automaton (Theorem 2.1.4). A restarting automaton without auxiliary symbols can only delete
some symbols when the tape alphabet is unary. Thus over a unary alphabet Σ = {a}, RRW-
automata are in fact only RR automata. Next it does not matter where the rewrite occurs. Each
meta-instruction of an RR-automaton of the form (c|E1, al → ε, E2$) checks the same conditions
as the meta-instruction (c|E1 · E2, al$ → $) of an R-automaton. Thus over a unary alphabet each
RR-automaton can be simulated by an R-automaton. The only difference is that the R-automaton
needs a window of size k + 1 to see the right border marker and delete up to k symbols.
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Now the assertion follows from Lemma 2.2.6.

As the unary language Lexpo is not regular, this theorem gives an easy separation language for
restarting automata.

Corollary 2.2.8. The language Lexpo = {a2n | n ≥ 0} is not accepted by any RLW-automaton M .

Next we give a result from [Ott06], which describes the role of auxiliary symbols in restarting
automata.

Theorem 2.2.9. [Ott06] A language L is accepted by a (deterministic) RLWW-automaton if and
only if there exists a (deterministic) RLW-automaton M1 and a regular language E such that
L = L(M1) ∩ E.

This characterization yields the following closure property.

Corollary 2.2.10. [Ott06] The language classes L(RLWW), L(RRWW), and L(RWW) and their
deterministic counterparts are closed under the operation of intersection with regular languages.

As a consequence the following result is obtained from Theorem 2.2.9.

Corollary 2.2.11. [Ott06] The language class L(RLWW) is reducible in linear time and constant
space to the language class L(RLW).

Proof. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be an RLWW-automaton. Take M1 = (Q,Γ,Γ, c| , $, q0, k, δ)
and ϕ the identity mapping on Σ∗ This mapping is obviously a reduction from the language L(M)
to the language L(M1).

This reduction works as well for L(RRWW) and L(RWW) and their deterministic counterparts.

In the next paragraph we recall a reduction from RLW-automata to RL-automata from [JOMP04]
(see also [Ott06]). All letters are encoded in such a way that we can get every word from any
longer word by just deleting some symbols.

Let Γ1 = {a1, . . . , am} be a finite alphabet, let m, k be positive integers, and let Γ2 := {0, 1, c, d}.
We define an encoding ϕk,m : Γ1 → Γ+

2 as follows:

ai 7→ c1m+1−i0i(cd1m+10m+1)k, (1 ≤ i ≤ m).

Then, for all 1 ≤ i ≤ m,

|ϕk,m(ai)| = (m + 1) · (2k + 1) + 2k + 1 = (m + 2) · (2k + 1).

The encoding ϕk,m is naturally extended to strings by taking

ϕk,m(x1x2 . . . xn) := ϕk,m(x1) . . . ϕk,m(xn) for all x1, . . . , xn ∈ Γ1, n ≥ 0.

Observe that ϕk,m : Γ∗1 → Γ∗2 is indeed an encoding that is, it is an injective mapping. It has the
following important property.

Lemma 2.2.12. [JOMP04]
Let u ∈ Γk

1 and v ∈ Γ∗1 with |v| < k. Then ϕk,m(v) is a scattered subword of ϕk,m(u).

Based on this encoding another reduction is obtained.
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Theorem 2.2.13. [JOMP04] If a language L is accepted by a (deterministic) RLW-automaton M
with tape alphabet Γ1 of size m and read/write window of size k, then there exists a (deterministic)
RL-automaton M ′ which accepts the language ϕk,m(L) ⊆ Γ∗2.

Obviously each encoding of the form ϕk,m can be computed in linear time and constant space.
Thus, the following result holds (see [JOMP04] or [Ott06]).

Corollary 2.2.14. The language class L(RLW) is reducible in linear time and constant space to
the language class L(RL).

Again, an analogous result holds for the classes L(RRW) and L(RW) and the corresponding deter-
ministic classes.

With these reductions and the language Lcopy = {ω#ω|ω ∈ {a, b}∗} it can be shown that L(R)
contains languages that are not growing context-sensitive(see [JOMP04]).

2.3 Monotone Restarting Automata

In [JMPV97b] the notion of monotonicity is introduced for restarting automata. We use the
definitions from [JMPV07], which are a bit more general. Again, many definitions and results and
their proofs are taken from [Ott03].

Definition 2.3.1. Let M be an RLWW-automaton. Each computation of M can be described by
a sequence of cycles C1, C2 . . . , Cn, where Cn is the last cycle, which is followed by the tail of
the computation. Each cycle Ci of this computation contains a unique configuration of the form
c|xquy$ such that q is a state and (q′, v) ∈ δ(q, u) is the Rewrite step that is applied during this
cycle.

By Dr(Ci) we denote the right distance |y$| of this cycle, and Dl(Ci) := |c|x| is the left distance of
this cycle. The sequence of cycles C1, C2, . . . , Cn is called monotone if Dr(C1) ≥ Dr(C2) ≥ . . . ≥
Dr(Cn) holds.

A computation of M is called monotone if the corresponding sequence of cycles is monotone.
Observe that the tail of the computation is not taken into account here.

Finally, the RLWW-automaton M is called monotone if each of its computations that starts from
an initial configuration is monotone.

The prefix mon- is used for monotone restarting automata.

In this section we will describe the expressive power of the various types of monotone restarting
automata and give example languages to separate them. First we present a result for the most
powerful monotone type of restarting automata.

Theorem 2.3.2. [JMPV99] L(mon-RLWW) = L(mon-RRWW) = L(mon-RWW) = CFL.

A corresponding result holds for deterministic monotone restarting automata. With the charac-
terization of the deterministic context-free languages by LR(0)-grammars (see, e.g., [HU79]) it can
be shown that already monotone det-R-automata accept all deterministic context-free languages,
which yields the following result.

Theorem 2.3.3. [JMPV97b, JMPV97a, JMPV98, JMPV99]
For all types X ∈ {R, RR,RW,RRW,RWW,RRWW}, L(det-mon-X) = DCFL.
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In [JMOP05] the following result about deterministic monotone restarting automata is shown.

Theorem 2.3.4. [JMOP05]

L(det-mon-RL) = L(det-mon-RLWW)

With the language from Example 2.1.3 it can be shown that DCFL ( L(det-mon-RL) holds. Thus,
in the deterministic case, RL(W)(W)-automata are more powerful than RR(W)(W)-automata.

The following languages are used to separate the different types of monotone restarting automata.

Lemma 2.3.5.

L1 := { anbnc | n ≥ 0 } ∪ { anb2nd | n ≥ 0 } ∈ L(mon-RR) \ L(RW),
L2 := { anbn | n ≥ 0 } ∪ { anbm | m > 2n ≥ 0 } ∈ L(mon-RWW) \ L(RLW),
L3 := {f, ee} · { anbn | n ≥ 0 } ∪ {g, ee} · { anbm | m > 2n ≥ 0 } ∈ L(mon-RW) \ L(RL),
L4 := { anbm | 0 ≤ n ≤ m ≤ 2n } ∈ L(mon-R) \ L(det-RLW).

Together with Theorem 2.3.4 these facts yield all the relations displayed in figure 2.2.

CFL = L(mon-RWW)OO

L2

= L(mon-RRWW)OO
L2

= L(mon-RLWW)OO
L2

L(mon-RRW)33
L1gggggggggggg OO

L3

= L(mon-RLW)OO

L3L(mon-RW)OO

L3 L(mon-RR)33

L1ggggggggggggg
= L(mon-RL)OO

L4

L(mon-R)OO
L4

L(det-mon-RL(W)(W))

DCFL = L(det-mon-R) = L(det-mon-RRWW)

L1 22ffffffffffff

Figure 2.2: The taxonomy of monotone restarting automata

Now we turn to the decidability of monotonicity. For the following theorem a generalization of the
simulation of monotone restarting automata by pushdown automata is used together with the fact
that the set of non-monotone computations is regular.

Theorem 2.3.6. [JMPV07] It is decidable whether a given RRWW-automaton is monotone.

By Theorem 2.1.4 we can associate with each RLWW-automaton M an RRWW-automaton MR

such that, in each computation, MR executes the same sequence of cycles as M . Hence, M is
monotone if and only if MR is. Thus, Theorem 2.3.6 holds for RLWW-automata in general.

2.4 Deterministic Restarting Automata

In this section we will regard deterministic restarting automata. They are more limited than the
non-deterministic ones, but they are more often used in practice. Deterministic RRWW-automata
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recognize exactly the Church-Rosser languages, so we first give the main properties of this language
class here.

Definition 2.4.1. Let Σ be a finite alphabet. A string-rewriting system R on Σ is a subset of
Σ∗ × Σ∗. It induces several binary relations on Σ∗:

• The single-step reduction relation →R:= { (u`v, urv) | u, v ∈ Σ∗, (` → r) ∈ R } is the most
basic of these.

• The reduction relation →∗
R induced by R is the reflexive and transitive closure of →R.

If u →∗
R v, then u is an ancestor of v, and v is a descendant of u. If there is no v ∈ Σ∗ such that

u →R v holds, then the string u is called irreducible (mod R). By IRR(R) we denote the set of all
irreducible strings. If R is finite, then IRR(R) is obviously a regular language. The string-rewriting
system R is called

– length-reducing if |`| > |r| holds for each rule (` → r) ∈ R,

– confluent if, for all u, v, w ∈ Σ∗, u →∗
R v and u →∗

R w imply that v and w have a common
descendant.

If a string-rewriting system R is length-reducing, then each reduction sequence starting with a
string of length n has itself at most length n. If, in addition, R is confluent, then each string
w ∈ Σ∗ has a unique irreducible descendant ŵ ∈ IRR(R), which can be computed from w in
linear time (see, e.g., [BO93]). This observation was one of the main reasons to introduce the
Church-Rosser languages in [MNO88, Nar84].

Definition 2.4.2. A language L ⊆ Σ∗ is a Church-Rosser language if there exists an alphabet
Γ ) Σ, a finite, length-reducing, confluent string-rewriting system R on Γ, two strings t1, t2 ∈
(Γ r Σ)∗ ∩ IRR(R), and a symbol Y ∈ (Γ r Σ)∩ IRR(R) such that, for all w ∈ Σ∗, t1wt2 →∗

R Y if
and only if w ∈ L.

Definition 2.4.3. A context-sensitive grammar G = (Σ, N, S, P ) is called a growing context-
sensitive grammar, if, for each production (l → r) ∈ P , |l| < |r| or l = S holds. Further S must
not appear on the right-hand side of any production. A language is called growing context-sensitive
if it can be generated by a growing context-sensitive grammar. GCSL denotes the class of all growing
context-sensitive languages.

By CRL we denote the class of Church-Rosser languages. It is known that the inclusions DCFL ⊂
CRL ⊂ GCSL ⊂ CSL are proper, and that the classes CRL and CFL are incomparable under set
inclusion [BO98, MNO88, Nar84]. The Church-Rosser languages have been characterized by certain
types of two-pushdown automata.

Definition 2.4.4. A two-pushdown automaton (TPDA) with pushdown windows of size k is a
nondeterministic automaton P = (Q,Σ, Γ, δ, k, q0,⊥, t1, t2, F ), where Q is the finite set of states,
Σ is the finite input alphabet, Γ is the finite tape alphabet containing Σ, q0 ∈ Q is the initial state,
⊥ ∈ ΓrΣ is the bottom marker of the pushdown stores, t1, t2 ∈ (ΓrΣ)∗ is the preassigned contents
of the first and second pushdown store, respectively, F ⊆ Q is the set of final (or halting) states,
and δ is the transition relation. To each triple (q, u, v), where q ∈ Q is a state, u ∈ Γk ∪ {⊥} ·Γ<k

is the contents of the topmost part of the first pushdown store, and v ∈ Γk ∪ Γ<k · {⊥} is the
contents of the topmost part of the second pushdown store, it associates a finite set of triples from
Q × Γ∗ × Γ∗. The automaton P is a deterministic two-pushdown automaton (DTPDA), if δ is a
(partial) function.

22



A configuration of a (D)TPDA is described by uqv, where q ∈ Q is the actual state, u ∈ Γ∗

is the contents of the first pushdown store with the first symbol of u at the bottom and the
last symbol of u at the top, and v ∈ Γ∗ is the contents of the second pushdown store with
the last symbol of v at the bottom and the first symbol of v at the top. For an input string
w ∈ Σ∗, the corresponding initial configuration is ⊥t1q0wt2⊥. The computation relation of a
(D)TPDA P is denoted by `∗P . The (D)TPDA P accepts with empty pushdown stores that is,
L(P ) := {w ∈ Σ∗ | ⊥t1q0wt2⊥ `∗P q for some q ∈ F } is the language accepted by P .

Observe that the input is provided to a TPDA as the initial contents of its second pushdown store,
and that in order to accept a TPDA is required to empty its pushdown stores. Thus, it is forced
to consume its input completely.

A (D)TPDA is called shrinking if there exists a weight-function ϕ : Q ∪ Γ → N+ such that,
for all transitions (p, u′, v′) ∈ δ(q, u, v), ϕ(u′pv′) < ϕ(uqv). Here ϕ is extended to a morphism
ϕ : (Q ∪ Γ)∗ → N in the obvious way. A (D)TPDA is called length-reducing if |u′v′| < |uv| holds
for all transitions (p, u′, v′) ∈ δ(q, u, v). Obviously, the length-reducing TPDA is a special case of
the shrinking TPDA.

The following characterizations have been established in [BO98, Nie02, NO98, NO05].

Theorem 2.4.5.

(a) A language is Church-Rosser, if and only if it is accepted by a shrinking DTPDA, if and only
if it is accepted by a length-reducing DTPDA.

(b) A language is growing context-sensitive, if and only if it is accepted by a shrinking TPDA, if
and only if it is accepted by a length-reducing TPDA.

Based on this result the following theorem, which gives a characterization of the Church-Rosser
languages by deterministic restarting automata with auxiliary symbols, has been established.

Theorem 2.4.6. [NO00, NO03] (a) CRL = L(det-RWW) = L(det-RRWW).
(b) GCSL ⊆ L(RWW) ⊆ L(RRWW).

Lemma 2.4.7. [MNO88] The language Lexpo = {a2n |n ∈ N} is a Church-Rosser language.

Apart from the restarting automata with auxiliary symbols, the following inclusions have been
established for deterministic restarting automata, where the separation languages are defined as
follows:

L6 := L6,1 ∪ L6,2 ∪ L6,3,

L6,1 := { (ab)2
n−ic(ab)i | n ≥ 0, 0 ≤ i ≤ 2n },

L6,2 := { (ab)2
n−2i(abb)i | n ≥ 1, 0 ≤ i ≤ 2n−1 },

L6,3 := { (abb)2
n−i(ab)i | n ≥ 0, 0 ≤ i ≤ 2n },

L7 := L7,1 ∪ L7,2,

L7,1 := { a2n−2icai | n ≥ 1, 0 ≤ 2i < 2n },
L7,2 := { aida2n−2i | n ≥ 1, 0 ≤ 2i < 2n }.

The language L6 is in L(det-RR)\L(RW) and L7 is in L(det-RW)\L(RL).

It can be shown that the copy language Lcopy = {ω#ω|ω ∈ {a, b}∗} is in L(det-RLWW). By using
the reductions from Theorem 2.2.9 and Theorem 2.2.13 it can be shown that there exist languages
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L′
copy ∈ L(det-RLW) and L̃copy ∈ L(det-RL), which are not in CRL. Remark that CRL is closed

under the operations of intersection with regular sets and inverse morphisms [Nie02].

The exponential language together with these reductions can be used to separate L(det-R) from
DCFL, because CFL, as well as DCFL, is closed under intersection with regular sets and inverse
morphisms [HU79], too.

Corollary 2.4.8. The language classes L(det-R) and CFL are incomparable with respect to inclu-
sion.

Obviously L(det-R) is not contained in L(det-mon-RL), because the latter class is included in CFL.

L(det-RLWW)33

Lcopyhhhhhhhhhhhhhhhhhhh

CRL = L(det-RWW)OO

Lexpo

= L(det-RRWW)OO
Lexpo

L(det-RLW)33
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Lexpo
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L(det-RRW)33

L6ggggggggggggggggggggg OO

L7
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L(det-RW)OO
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L(det-RR)33
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L1
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Figure 2.3: The taxonomy of deterministic restarting automata

Theorem 2.4.9. [Ott06] L(det-mon-RL) ( CRL

This result can be shown just as Theorem 2.4.6, since a deterministic monotone RL-automaton can
be simulated by a shrinking TPDA just like a deterministic RR-automaton.

On the other hand the language Lpal = {ωωR | ω ∈ {a, b}∗} is included in L(mon-RWW) while
in [JL02] it is shown that this language is not a Church-Rosser language. With the reduction from
Corollary 2.2.14, we get the following result.

Corollary 2.4.10. The language classes L(mon-R) and CRL are incomparable with respect to
inclusion.
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2.5 Weakly Monotone Restarting Automata

The class GCSL is included in L(RWW), see Theorem 2.4.6. However, in the language class L(R)
there are already languages which are not growing context-sensitive. Thus we have the following
result:

Corollary 2.5.1. [JLNO04] The class GCSL is properly contained in L(RWW).

The class of growing context-sensitive languages (GCSL) can be characterized by restarting au-
tomata that fulfill a weaker form of monotonicity [JLNO04], the so-called weakly monotone restart-
ing automata. They are defined as follows.

Definition 2.5.2. Let M be an RLWW-automaton, and let c ≥ 0 be an integer. A sequence of
cycles C1, C2, . . . , Cn of M is called weakly c-monotone if Dr(Ci+1) ≤ Dr(Ci) + c holds for all
i = 1, . . . , n− 1.

A computation of M is called weakly c-monotone if the corresponding sequence of cycles is weakly
c-monotone. Observe that the tail of the computation is not taken into account.

Finally, the RLWW-automaton M is called weakly c-monotone if, for each restarting configuration
q0c|w$ of M , each computation of M starting with q0c|w$ is weakly c-monotone.

The RLWW-automaton M is called weakly monotone if it is weakly c-monotone for some integer
constant c ≥ 0. The prefix wmon- is used to denote classes of weakly monotone restarting automata.

Note that, in contrast to monotone restarting automata, for weakly monotone restarting automata
every computation from every restarting configuration needs to be weakly monotone, not just
those that start from initial configurations. This slightly different definition does not affect the
accepted language, because without auxiliary symbols every restarting configuration is an initial
configuration. With auxiliary symbols exactly GCSL is accepted independent of the definition of
weak monotonicity, because a TPDA simulating a weakly monotone restarting automaton always
starts in an initial configuration.

The advantage of this stronger definition is that weak monotonicity becomes decidable.

Theorem 2.5.3. [MO05] It is decidable whether a given RLWW-automaton M is weakly monotone.
In the affirmative the smallest integer c can be determined for which M is weakly c-monotone.

Deterministic RRWW-automata can only perform a rewrite step if they have seen at least one
symbol of the string v from the last rewrite step u → v. Otherwise they would have done this
rewrite in the previous cycle. Thus the following lemma holds.

Lemma 2.5.4. Each deterministic RRWW-automaton is weakly monotone.

This result is not valid for det-RLWW-automata. For example the deterministic restarting automa-
ton for the copy language is not weakly monotone. We will see that weak monotonicity is a strong
restriction for various kinds of restarting automata.

Lemma 2.5.5. [MO05] An RLWW-automaton M = (Q,Σ, Γ, c| , $, q0, k, δ) is weakly monotone, if
and only if it is weakly c-monotone for some constant c < |Q|2 · |Γ|k + 2k.

The proof of Theorem 2.4.6 (a) can be generalized to a proof of the following characterization for
weakly monotone restarting automata with auxiliary symbols.

Theorem 2.5.6. [Nie02] GCSL = L(wmon-RWW) = L(wmon-RRWW) = L(wmon-RLWW).
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Figure 2.4: The taxonomy of weakly monotone restarting automata

These results lead to the following diagram.

For all types of restarting automata X ∈ {R,RR,RW,RRW, RWW,RRWW} monotonicity is a
stronger restriction than weak monotonicity and the same holds for determinism. Because of
Corollaries 2.4.8 and 2.4.10, we obtain proper inclusions for each of these language classes, and
even the language class L(wmon-R) is not included in any language class obtained by deterministic
or monotone restarting automata. On the other hand L(det-RL) is not included in GCSL because
of the language Lcopy and its reductions (see Section 2.4).

2.6 Unrestricted Restarting Automata

In this section we will regard nondeterministic non monotone restarting automata. For restarting
automata without auxiliary symbols the trivial inclusions obtained in the previous sections hold
and they are proper, which can be shown using almost the same separation languages. It is an open
problem, which other inclusions exist and (if any) which of them are proper. The main question
displayed in Figure 2.5 is whether L(RWW) = L(RRWW) holds or not. However, all results about
the equivalence of restarting automata with auxiliary symbols are obtained using their equivalence
to the common languages classes GCSL, CRL, CFL and DCFL.

In all but the monotone case, the separation language L2 can be replaced by the exponential
language, L7 is already some kind of exponential language. With the encoding from Theorem
2.2.13 one can find a language that is in L(R), but as the exponential language and all its reductions
are not monotone this language is not monotone either. The first separation language for this case
was described in [JMPV97b] and named L′

5.

It follows from Theorem 2.2.9 that RRW and RW-automata are not closed under intersection with
regular sets and with Corollary 2.2.14 it follows that there are languages in L(R) that are not in
GCSL and this yields the following Corollary.

Corollary 2.6.1. The language class L(R) is incomparable to CFL, CRL and GCSL with respect
to inclusion.
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Figure 2.5: The taxonomy of nondeterministic restarting automata

2.7 Generalizations of Restarting Automata

One generalization of the standard restarting automaton, nonforgetting restarting automata, is
considered in the next chapter, which is one of the main parts of this dissertation. But there are
other generalizations, which have been studied before. We will mention a few of them here.

Restarting automata are defined as length reducing automata, as they have to reduce the length
of the tape in every rewrite step. A slightly different model is the shrinking restarting automaton,
first introduced in [OJ03] and then studied in [JO07]. These restarting automata are less restricted
than length reducing restarting automata.

Definition 2.7.1. A shrinking restarting automaton M = (Q,Σ, Γ, c| , $, q0, k, δ) does not need to
shorten its tape in each rewrite step. Instead there must exist a weight function ϕ : Γ → N+, such
that, for every rewrite step u → v, ϕ(u) > ϕ(v) holds.

The language class that is accepted by shrinking RLWW-automata is called L(sh-RLWW)

It is clear that with the weight function ω → |ω| every length reducing restarting automata is
shrinking. On the other hand shrinking restarting automata are in some cases more powerful than
length reducing restarting automata.

First, we present some results where shrinking restarting automata are not more expressive. The
following Lemma is obvious, because the property of being shrinking can only have a benefit, if
the restarting automaton can alter the tape content.

Lemma 2.7.2. L(sh-R) = L(R) and L(sh-RR) = L(RR).

Shrinking RRWW-automata are not more powerful than their length-reducing counterparts if they
are deterministic, monotone, deterministic and monotone or weakly monotone. This can be proven
with the corresponding classical automata model.

27



Theorem 2.7.3.

CRL = L(det-sh-RWW) = L(det-sh-RRWW).
CFL = L(mon-sh-RWW) = L(mon-sh-RRWW).

DCFL = L(det-mon-sh-R) = L(det-mon-sh-RRWW).
GCSL = L(sh-wmon-RWW) = L(sh-wmon-RRWW).

It is an open question whether unrestricted sh-RRWW-automata are more powerful than RRWW-
automata.

But in [JO07] it has been shown that the class of shrinking RRWW-automata yields a very robust
language class, because the property of being nonforgetting, or the ability to perform many rewrites
per cycle, does not increase the expressive power of shrinking RRWW-automata.

Definition 2.7.4. A restarting automaton with up to (exactly) c > 1 rewrites per cycle is allowed
to do up to c > 1 (must perform exactly c > 1) rewrite steps per cycle. A meta-instruction for an
RRWW-automaton with (up to) c > 1 rewrites per cycle is of the form

(c|E1, u1 → v1, E2, u2 → v2, . . . , uc → vc, Ec$)

Definition 2.7.5. A nonforgetting restarting automaton, nf-RLWW-automaton for short, is a nine
tuple M = (Q,Σ, Γ, c| , $, q0, k, δ,QR), where:

Q is a finite set of states, Σ is a finite input alphabet, Γ ⊇ Σ is a finite tape alphabet, c| , $ 6∈ Γ
are border markers, q0 ∈ Q is the initial state, k ≥ 1 is the window size, δ : Q × PC(k) →
P((Q× ({MVR,MVL} ∪ PC≤(k−1))) ∪ {Restart, Accept}) is the transition relation and QR ⊂ Q is
the set of restarting states that contains q0.

Nonforgetting restarting automata have the ability to restart in any of the restarting states q ∈ QR

instead of restarting in the initial state q0.

In [JO07] it has also been shown that shrinking RRWW-automata are characterized by finite-
change automata (FC). Finite-change-automata are a restricted type of Turing machines and they
accept only deterministic context-sensitive languages. They were introduced by von Braunmühl
and Verbeek [vBV79].

Proposition 2.7.6. [JO07] L(sh-RRWW) = L(nf-sh-RRWW) = L(FC) ⊆ DCSL.

In this work a (nonforgetting) restarting automaton (with c rewrites per cycle) is called shrinking,
if all of its rewrites are shrinking.

Nonforgetting restarting automata are studied in detail in the next chapter. To show the expressive
power of restarting automata with c rewrites per cycle we give a small example. There exists an
R-automaton with two rewrites per cycle for the Language Lcopy = {w#w|w ∈ {a, b}∗}. Here it
is required that an R-automaton with many rewrites per cycle restarts immediately after the last
rewrite of the cycle.

Example 2.7.7. The automaton M for Lcopy is described by the following meta-instructions.

(c|a → ε, {a, b}∗#, a → ε)
(c| b → ε, {a, b}∗#, b → ε)
(c|#$, Accept).
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The automaton deletes the first symbol from the tape and performs MVR-steps until it sees the #,
then it checks whether the first symbol after the # coincides with the symbol from the first delete.
In the affirmative it deletes it and restarts. Otherwise it halts and rejects. The automaton accepts,
when it sees only the separator on the tape.

2.8 Correctness Preserving Restarting Automata

In this and the following sections the results about correctness preserving restarting automata
from [MO08] by the author and Friedrich Otto are presented. First we restate the definition of
(strongly) correctness preserving restarting automata from page 17.

Definition 2.8.1. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be an RLWW-automaton. M is called (strongly)
correctness preserving, if for all words u ∈ LC(M) and all cycles q0c|u$ `c

M q0c|v$ it follows that
v ∈ LC(M).

The following example shows the difference between correctness preserving and non correctness
preserving restarting automata.

Example 2.8.2. Let L̃1 := { anbnc, ancbnc | n ≥ 0 } ∪ { anbmd, andbmd | m > 2n ≥ 0 }. Then
L̃1 is accepted by the RW-automaton M1 that is given through the following sequence of meta-
instructions:

(1) (c| · a+, abb → cb), (4) (c| · a+, adbbb → db),
(2) (c| · a+, abbb → db), (5) (c| · {ε, ab, c, acb} · c · $,Accept),
(3) (c| · a+, acbb → cb), (6) (c| · {ε, abb, d, adbb} · b+ · d · $,Accept).

It is easily seen that L(M1) = L̃1 holds. Further, starting from the configuration q0c|anbnc$ for
a sufficiently large value of n, M1 can execute the cycle anbnc `c

M1
an−1dbn−2c. As anbnc ∈ L̃1,

while an−1dbn−2c 6∈ L̃1, we see that M1 is not correctness preserving.

On the other hand, the language L̃1 is accepted by the RR-automaton M2 that is described through
the following meta-instructions (see, e.g., [Ott06]):

(1) (c| · a∗, ab → ε, b∗ · c · $), (4) (c| · a∗, adbb → d, b+ · d · $),
(2) (c| · a∗, acb → c, b∗ · c · $), (5) (c| · {c, cc} · $,Accept),
(3) (c| · a∗, abb → ε, b+ · d · $), (6) (c| · {ε, d} · b+ · d · $,Accept).

The automaton M2 is nondeterministic, but it is correctness preserving. Indeed, starting from a
configuration of the form q0c|anbnc$, M2 may execute the rewrite step abb → ε, thereby trans-
forming the tape content into c|an−1bn−2c$, but it will then detect its error at the right end of the
tape, where it encounters the symbol c. Analogous considerations apply to the other cases. On
the other hand, it can be shown that L̃1 is not accepted by any deterministic RRW-automaton.

Thus, we see that correctness preserving RR- (RRW-)automata are more expressive than determin-
istic RR-(RRW-)automata.

For R-, RW-, and RWW-automata we obtain the following result relating nondeterministic au-
tomata that are strongly correctness preserving to deterministic automata of the same type.

Theorem 2.8.3. For any X ∈ {WW,W, ε}, if M = (Q,Σ, Γ, c| , $, q0, k, δ) is a correctness pre-
serving RX-automaton, then there exists a deterministic RX-automaton M ′ satisfying LC(M ′) =
LC(M) and L(M ′) = L(M).
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Proof. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be a correctness preserving RX-automaton. We describe
a deterministic RX-automaton M ′ = (Q′,Σ, Γ, c| , $, q0, k, δ′) such that LC(M ′) = LC(M) holds.
The automaton M ′ acts in the same way as M , but when scanning its tape from left to right it
applies the first rewrite instruction that becomes applicable. In case several such instructions exist,
the tie is broken based on a linear ordering of the rewrite instructions. Then M ′ is obviously a
deterministic RX-automaton.

As M ′ has the same Accept instructions as M , and as all rewrite steps that M ′ can execute are
also valid rewrite steps of M , we see that LC(M ′) ⊆ LC(M) holds. So it remains to verify the
converse inclusion.

Let w ∈ Γ∗. Assume that w is accepted by M , that is, w ∈ LC(M). If starting from the restarting
configuration q0c|w$, M can execute a rewrite operation, then M ′ will definitely execute a rewrite
operation in this situation, that is, we obtain a cycle of the form w `c

M ′ w′ for some w′ ∈ Γ∗. From
the definition of M ′ it follows that we also have the cycle w `c

M w′. However, as M is correctness
preserving, this means that w′ ∈ LC(M) holds. By induction it now follows that M ′ accepts on
input w, that is, LC(M ′) = LC(M). As M ′ and M have the same input alphabet, we obtain
L(M ′) = L(M), too.

In the following we will extend this result to RLWW-automata. In fact, we consider two general-
izations of these automata. First of all we consider shrinking RLWW-automata. In fact, it is easily
seen from the proof of Theorem 2.8.3 that this theorem even holds for RWW- and RW-automata
that are shrinking.

Secondly, we admit (shrinking) restarting automata that are allowed to perform up to c rewrite
operations per cycle for some constant c ≥ 1. Next we recall the following useful technical result
which is a slight extension of Theorem 2.1.4.

Theorem 2.8.4. For any X ∈ {WW,W, ε}, if ML = (QL,Σ, Γ, c| , $, q0, k, δL) is a (shrinking)
RLX-automaton that executes up to c ≥ 1 rewrite steps per cycle, then there exists a (shrinking)
RRX-automaton MR = (QR,Σ, Γ, c| , $, q0, k, δR) that also executes up to c rewrite steps per cycle
such that, for all u, v ∈ Γ∗, u `c

ML
v if and only if u `c

MR
v. In particular, LC(ML) = LC(MR)

and L(ML) = L(MR).

Hence, correctness preserving RR-automata are as expressive as correctness preserving RL-automa-
ta, but as seen in Example 2.8.2 they are more expressive than deterministic RR-automata. Thus,
Theorem 2.8.3 does not carry over to RR-automata. On the other hand, it is easily seen that deter-
ministic RL-automata are more expressive than deterministic RR-automata, too; for example, one
can easily design a deterministic RL-automaton for the language L1 considered in Example 2.8.2.
The following result now relates deterministic RL-automata to correctness preserving RL- (and
therewith RR-) automata.

Theorem 2.8.5. For any X ∈ {WW,W, ε}, if M = (Q,Σ, Γ, c| , $, q0, k, δ) is a correctness preserv-
ing (shrinking) RLX-automaton that performs up to c ≥ 1 rewrite steps per cycle, then there exists
a (shrinking) deterministic RLX-automaton M ′ performing up to c rewrite steps per cycle such that
LC(M ′) = LC(M) and L(M ′) = L(M).

The proof is an adaptation of the proof of the corresponding result for t-sRL-automata presented
in [MMOP06]. Theorem 2.8.4 enables us to describe any (shrinking) RLX-automaton that executes
up to c ≥ 1 rewrite steps per cycle by accepting meta-instructions and by generalized rewriting
meta-instructions of the form

I = (c| · E0, u1 → v1, E1, u2 → v2, . . . , Es−1, us → vs, Es · $),
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where 1 ≤ s ≤ c, E0, E1, . . . , Es are regular languages, and u1 → v1, . . . , us → vs are the
rewrite steps executed by I. This meta-instruction can be applied to a word of the form w =
x0u1x1u2 · · ·xs−1usxs satisfying xi ∈ Ei for all i = 0, . . . , s, and it yields the word x0v1x1v2 · · ·xs−1

vsxs.

Proof. Let M be a correctness preserving (shrinking) RLX-automaton that performs up to c ≥ 1
rewrite steps per cycle. By the remark above M can be described through a finite sequence of meta-
instructions I1, . . . , Ii. We will present a deterministic (shrinking) RLX-automaton M ′ recognizing
the same language as M . First, for each j = 1, . . . , i, we construct a finite-state acceptor Aj for
the set of words to which meta-instruction Ij is applicable. The automaton M ′ will then proceed
as follows:

1. M ′ scans the current word w ∈ Γ∗ on its tape from left to right simulating all the acceptors
A1, . . . , Ai in parallel. At the right sentinel M ′ knows which meta-instructions of M are
applicable to the current word. If none is applicable, then M ′ halts and rejects; if any of
the applicable meta-instructions is accepting, then M ′ halts and accepts. Otherwise, any
correct application of any of the applicable meta-instructions will yield a word w′ such that
w′ ∈ LC(M) if and only if w ∈ LC(M), as M is correctness preserving. Thus, M ′ simply
chooses one of these applicable meta-instructions, e.g., the one with the smallest index. By
I we denote this meta-instruction.

2. M ′ simulates an application of I on its current tape content.

It remains to show how M ′ simulates an application of I to the configuration q0c|w$. Let w =
y1 · · · yn, where y1, . . . , yn ∈ Γ, and assume that

I = (c| · E0, u1 → v1, E1, u2 → v2, E2, . . . , Es−1, us → vs, Es · $),

where 1 ≤ s ≤ c. M ′ must determine a factorization of the form w = x0u1x1u2 · · ·xs−1usxs such
that xi ∈ Ei for all i = 0, . . . , s, and replace the factors u1, u2, . . . , us by the words v1, v2, . . . , vs,
respectively. As w may have many such factorizations, M ′ must choose one of them deterministi-
cally. For this task M ′ will use finite-state acceptors M1, . . . ,Ms and MR

1 , . . . ,MR
s , which accept

the following regular languages:

L(M1) = E0 · u1, (E1 · u2 · E2 · u3 · · ·Es−1 · us · Es)R = L(MR
1 ),

L(M2) = E1 · u2, (E2 · u3 · · ·Es−1 · us · Es)R = L(MR
2 ),

...
...

L(Ms−1) = Es−2 · us−1, (Es−1 · us · Es)R = L(MR
s−1),

L(Ms) = Es−1 · us, (Es)R = L(MR
s ).

After step (1) above (that is, when choosing the meta-instruction I), M ′ is at the right sentinel.
Now it scans its tape again, this time from right to left, thereby simulating the finite-state acceptors
MR

1 , . . . ,MR
s in parallel. For each 1 ≤ j ≤ s and 0 ≤ ` ≤ n− 1, let q(j, `) denote the state of MR

j

after reading the word yn · · · y`+1. When reaching the left sentinel, M ′ changes direction again.
Now, while moving to the right, M ′ simulates the finite-state acceptor M1. Simultaneously, it
recomputes the internal states of all the acceptors MR

1 , . . . ,MR
s on the respective tape symbol

that is, it runs these acceptors in reverse. This it can do due to the following technical result from
[AHU69] (pages 212–213).

Lemma 2.8.6. Let A be a deterministic finite-state acceptor. For each word x and each integer
i, 1 ≤ i ≤ |x|, let qA(x, i) be the internal state of A after processing the prefix of length i of x.
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Then there exists a deterministic two-way finite-state acceptor A′ such that, for each input x and
each i ∈ {2, 3, . . . , |x|}, if A′ starts its computation on x in state qA(x, i) with its head on the i-th
symbol of x, then A′ finishes its computation in state qA(x, i − 1) with its head on the (i − 1)-th
symbol of x. During this computation A′ only visits (a part of) the prefix of length i of x.

As meta-instruction I is applicable to the configuration q0c|w$, w belongs to the set E0 · u1 · E1 ·
u2 · E2 · u3 · · ·Es−1 · us · Es. Hence, there is a smallest index `1 such that y1 · · · y`1 ∈ L(M1) and
y`1+1 · · · yn ∈ [L(MR

1 )]R. That is, after scanning y1 · · · y`1 , the finite-state acceptor M1 is in an
accepting state, and simultaneously q(1, `1) is an accepting state of MR

1 . On reaching this position,
M ′ replaces the suffix u1 of y1 · · · y`1 by v1, aborts the simulations of M1 and MR

1 , and starts to
simulate M2 from its initial state. Now M ′ looks for an index `2 > `1 such that M2 is in an
accepting state after processing y`1+1 · · · y`2 , and q(2, `2) is an accepting state of MR

2 . Once this
position is reached, M ′ replaces the suffix u2 by v2, aborts the simulations of M2 and MR

2 , and
starts to simulate M3. This process is then continued for i = 3, 4, . . . , s. In this way, M ′ does
indeed apply the meta-instruction I to its current tape content.

It is easy to see that the RLX-automaton M ′ constructed in the way described above is determin-
istic, and that it accepts the same languages as the given RLX-automaton M .

2.9 The Error-Detection Distance

Here we introduce the notion of error-detection distance. It is a generalization of the correctness
preserving property.

Definition 2.9.1. Let M = (Q, Σ, Γ, c| , $, q0, k, δ) be an RLWW-automaton, and let i be a non-
negative integer. We say that M has error-detection distance i, if, for all words w ∈ LC(M) and
all partial computations w `c

M w1 `c
M · · · `c

M wm, if w1 6∈ LC(M), then m ≤ i. That is, if the
first cycle w `c

M w1 transforms the word w ∈ LC(M) into a word w1 6∈ LC(M), which means that
M has made a mistake, then starting from the restarting configuration q0c|w1$, M can execute at
most i− 1 more cycles before it halts and rejects, that is, before it detects its error.

Obviously, the property of being correctness preserving corresponds to error-detection distance 0.
Our first result now states that restarting automata with bounded error-detection distance are
algorithmically well-behaved. Here we will use the notation |M | to denote the size of a restarting
automaton M , that is, the length of a description of M .

Theorem 2.9.2. For each i ≥ 0, the following uniform membership problem is solvable in time
O(|M |i+1 · ni+2):

INSTANCE : An RLWW-automaton M = (Q,Σ, Γ, c| , $, q0, k, δ) that has error de-
tection distance i, and a string w ∈ Γ∗ of length n.

QUESTION : Is w accepted by M , that is, does w ∈ LC(M) hold?

Proof. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be the given RLWW-automaton that has error detection
distance i, and let w ∈ Γ∗ be the given input word of length n. In order to decide whether
or not w ∈ LC(M) holds, we construct a tree T = T (M,w, i) inductively as follows from the
RLWW-automaton M , the string w, and the constant i.

The root of T is labelled by w. If M accepts w in a tail computation, then w ∈ LC(M), and we
accept. Otherwise, if no meta-instruction of M is applicable to w, then M rejects w, and so do we.
Finally, we create a new node with label w1 for each string w1 ∈ Γ∗ for which M can execute a
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cycle of the form w `c
M w1, and we introduce directed edges from the root to each of these nodes.

Each of these nodes can be constructed in time O(|M | · n). As |w| = n, and as for each factor of
length k of w, the number of applicable rewrite transitions is bounded by a constant that depends
on M , we see that there are at most O(|M | · n) many such strings w1. Thus, this part of the tree
is constructed in time O(|M |2 · n2).

Next, if there is an accepting tail computation for any of the strings w1, then w1 ∈ LC(M), and
therewith w ∈ LC(M). Hence, we terminate the process and accept. On the other hand, if no
meta-instruction is applicable to any of the strings w1, then M rejects all these strings, and so it
rejects w, that is, we terminate the process and reject as well. Finally, for each string w1, we create
a new node with label w2 for each string such that M can execute the cycle w1 `c

M w2, and add a
directed edge from the node with label w1 to all these new nodes. As there are at most O(|M | ·n)
successor nodes for each node at level 1, we obtain at most O(|M |2 · n2) nodes at level 2. Hence,
this part takes time at most O(|M |3 · n3).

This process of creating nodes and edges is repeated until either we accept, or we reject, or until we
have created all possible nodes up to level i. Thus, we have obtained at most

∑i
j=0 O(|M |j ·nj) =

O(|M |i · ni) many nodes, and this construction takes time O(|M |i+1 · ni+1).

Finally, if M accepts any string occurring as a label in the tree T in a tail computation, then
w ∈ LC(M), and we accept. If no meta-instruction of M is applicable to any string wi that
occurs as a label of a node at level i, then M rejects all these strings, and so it rejects w, that is,
w 6∈ LC(M). If, for some string wi labelling a node at level i, M can execute a cycle of the form
wi `c

M v, then we replace w by the string w1 that is the immediate descendant of the root on the
path p from the root to the node with label wi. Indeed, with the path p we have constructed a
sequence of cycles of the form w `c

M w1 `c
M w2 `c

M · · · `c
M wi `c

M v, and as M has error detection
distance i, this shows that w1 ∈ LC(M) if and only if w ∈ LC(M). Thus, we can now repeat the
above construction with the string w1. As |w1| < |w|, we see that this overall process will terminate
after at most n rounds. Hence, in this way we can determine whether or not w ∈ LC(M) holds.
The whole process takes time at most O(|M |i+1 · ni+2).

2.9.1 Bounded Error-Detection Distance

Here it is shown that, for each type X of RLWW-automaton, an X-automaton of bounded error-
detection distance is equivalent in expressive power to an X-automaton that is correctness preserv-
ing. We first establish this result for R-, RW-, and RWW-automata.

Theorem 2.9.3. For any X ∈ {WW,W, ε}, if M = (Q,Σ, Γ, c| , $, q0, k, δ) is an RX-automaton that
has error-detection distance i ≥ 1, then there exists an RX-automaton M ′ = (Q′,Σ, Γ, c| , $, q0, k

′, δ′)
with error-detection distance 0 such that LC(M ′) = LC(M) and L(M ′) = L(M).

Proof. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be an RX-automaton that has error-detection distance i = 1.
We will construct a correctness preserving RX-automaton M ′ = (Q′,Σ, Γ, c| , $, q0, k

′, δ′) satisfying
LC(M ′) = LC(M).

In general a rewrite step or a cycle w1uw2 `c
M ′ w1vw2 of M ′ is correctness preserving, if M can

perform this cycle as well and if M can execute another cycle starting from w1vw2, because M has
error detection distance 1. A correctness preserving rewrite step is called safe, if M ′ knows that it
is correctness preserving.

Let q0c|w$ be a restarting configuration of M . Assume that w = w1uw2 for some rewrite step
u → v of M , and assume that this is the leftmost applicable rewrite step. Thus, by applying this
rewrite step, M can execute the cycle w = w1uw2 `c

M w1vw2. If w1vw2 contains the lefthand
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side of a rewrite operation u′ → v′ such that u′ overlaps with the prefix w1v of w1vw2, then
w1vw2 = w′

1u
′w′

2 `c
M w′

1v
′w′

2. As by hypothesis M has error-detection distance 1, we see that
w1uw2 ∈ LC(M) holds if and only if w1vw2 ∈ LC(M) holds. Thus, in this situation the above
application of the rewrite step u → v is safe.

If no such safe rewrite is found, then no rewrite is done and the head moves on, looking for another
possible rewrite on w1uw2 and on w1vw2. If a second rewrite for w1uw2 is found, then it is safe,
because M can perform the leftmost rewrite afterwards. A rewrite u1 → v1 on x1 = w1vw2 =
w1vw2,1u1w2,2 is not safe, we only know that the first rewrite step would have been safe, which
does not help because M has no MVL-operations to reach the place of this rewrite step again. We
have to move on, scanning the tape content w1uw2, x1 and x2 = w1vw2,1v1w2,2, until we find a
rewrite which is the second possible rewrite for one of the xi.

Now M ′ can simulate M as follows. Starting from the restarting configuration q0c|w1uw2$, M ′

detects the factor u. While doing this it determines whether there exists a rewrite operation of M
for which the lefthand side overlaps with the prefix w1v of w1vw2. If such an overlap exists, then
M ′ simply applies the rewrite step u → v and restarts. If no such overlap exists, then M ′ moves
on, scanning w2. At the same time it simulates the behavior of M on the tape content x1 = w1vw2

in its finite-state control. In this way M ′ tries to detect a safe rewrite step that it can apply to
c|w1uw2$.

In detail:

Each of the meta-instructions Ii = (Ei, ui → vi) of the automaton M is simulated simultaneously,
by a finite automaton Fi in the finite control of M ′. Everytime M can perform a rewrite step
u → v, then each of the Fi simulates the tape content w1uw2 and w1vw2. After the first possible
rewrite each Fi has two marked states, one with the marker "old" for the tape content w1uw2

and one with the marker "new" for the tape content w1vw2. When there is a possible rewrite for
w1vw2, then the old marker "new" is changed to "old" and a new marker "new" is created. Thus
there are two markers "old" and one marker "new". For every possible rewrite with the marker
"new", there is a new marker "new" created and the old one is renamed to "old", such that always
one marker "new" and some markers "old" exist. If there is a possible rewrite for an "old" marker,
then this rewrite is applied, and if the right border marker is reached without the possibility to
perform a safe rewrite, M ′ rejects. Whenever an accepting meta-instruction is applicable, M ′

accepts, no matter whether it is an "old or "new" marker.

Obviously, M ′ is an RX-automaton. There are two things left to prove: the new automaton M ′ is
correctness preserving and LC(M ′) = LC(M) holds.

We will show that all rewrites of M ′ are safe. M ′ performs a rewrite if it sees another rewrite
which overlaps with the current one, therefore this rewrite is safe.

The only other time M ′ performs a rewrite is, when there is a possible rewrite with the marker
"old". This means that there is a tape content wk and there are two different rewrites applicable
to this tape content. This means that, after this cycle, M is able to perform another cycle with a
rewrite which is more to the left. Thus this rewrite is safe. And there is a sequence of cycles of
M , which leads to these two possible rewrites.

Claim: LC(M ′) = LC(M)

LC(M ′) ⊆ LC(M): As M ′ has the same accepting meta-instructions as M and as all rewrite steps
that M ′ can execute are also valid rewrite steps of M , it follows that each accepting computation
of M ′ is also a valid accepting computation of M .

LC(M ′) ⊇ LC(M): If a word w belongs to LC(M), then there exists an accepting sequence of
cycles starting from c|w$. Assume that w is not accepted by M ′ and that there is no cycle of M ′
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applicable to w. If there exists a word w ∈ LC(M) \ LC(M ′), then for each word v with w `c∗

M ′ v
it follows that v ∈ LC(M) \ LC(M ′). v ∈ LC(M) holds because M ′ is correctness preserving and
LC(M ′) ⊆ LC(M) holds, and v 6∈ LC(M ′) holds because of the error preserving property of M ′.
As each computation of M ′ starting with w is finite, it follows that there exist words such that no
meta-instruction of M ′ is applicable to them.

Assume w ∈ LC(M) \ LC(M ′) and there is no cycle of M ′ applicable to w. This is the case
when M ′ scans the tape completely from left to right and finds no safe rewrite step. Then M
can perform only one sequence of cycles on w and this sequence is strictly monotone (the right
distance decreases in each cycle by more than the windowsize of M), because otherwise there would
be a safe rewrite for M ′. The sequence ends with a reject, because otherwise M ′ would accept w,
therefore w 6∈ LC(M). This contradicts the assumption w ∈ LC(M) \ LC(M ′).

If M has error-detection distance i > 1, then the technique described above can be used to
combine, in each computation of M , the last cycle with the following tail computation. In this way
the error-detection distance is reduced by 1. Thus, if M is an RX-automaton with error-detection
distance i > 1, then we obtain an RX-automaton M ′ with error-detection distance i− 1 such that
LC(M ′) = LC(M) and L(M ′) = L(M).

A corresponding result also holds for RRX- and RLX-automata.

Theorem 2.9.4. For any X ∈ {WW,W, ε}, if M = (Q,Σ, Γ, c| , $, q0, k, δ) is an RRX- or RLX-
automaton that has error-detection distance i ≥ 1, then there exists an RRX- or RLX-automaton
M ′ = (Q′,Σ, Γ, c| , $, q0, k, δ′) with error-detection distance at most i−1 such that LC(M ′) = LC(M)
and L(M ′) = L(M).

Proof. The idea is similar to the one used in the proof of the preceding result. However, for RRX-
and RLX-automata the situation is slightly less involved, as such an automaton, after executing
a rewrite operation, can completely scan the resulting tape content before performing a restart
operation.

By applying Theorem 2.9.3 or Theorem 2.9.4 repeatedly we obtain the following consequence.

Corollary 2.9.5. For any X ∈ {R,RR,RL,RW,RRW, RLW, RWW,RRWW,RLWW}, if M is an
X-automaton that has bounded error-detection distance, then there exists a correctness preserving
X-automaton M ′ such that LC(M ′) = LC(M) and L(M ′) = L(M).

Thus, for all these types of restarting automata bounded error-detection distance limits the ex-
pressive power to that of correctness preserving automata.

In combination with Theorem 2.9.2 this means that the membership problem for the language
LC(M) is decidable in quadratic time, if M is an RLWW-automaton with bounded error-detection
distance. Observe, however that the resulting uniform algorithm includes the transformation of a
given RLWW-automaton of bounded error-detection distance into an equivalent RLWW-automaton
that is correctness preserving.

By combining Theorems 2.8.3 and 2.8.5 with Corollary 2.9.5 we obtain the following result.

Corollary 2.9.6. (a) For any X ∈ {WW,W, ε}, if M is an RX-automaton that has bounded
error-detection distance, then there exists a deterministic RX-automaton M ′ satisfying L(M)
= L(M ′) and LC(M) = LC(M ′).
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(b) For any X ∈ {WW,W, ε}, if M is an RRX- or an RLX-automaton that has bounded error-
detection distance, then there exists a deterministic RLX-automaton M ′ satisfying L(M ′) =
L(M) and LC(M ′) = LC(M).

With the possible exception of RLWW-automata, it is well-known that, for all types X of restarting
automata, nondeterministic X-automata are strictly more powerful than deterministic X-automata.
However, Corollary 2.9.6 shows that for the various types of R- and RL-automata, the deterministic
variant is as expressive as the nondeterministic variant with bounded error-detection distance.
This clearly shows that for these types of restarting automata, the nondeterministic variants are
more expressive than the corresponding deterministic variants only if they have unbounded error-
detection distance. Thus, it is the ability of a nondeterministic RWW- or RLWW-automaton to
make an error that is only detected an unbounded number of cycles later that really contributes to
the expressive power of these automata. On the negative side this means that the error-detection
distance is not a useful complexity measure for restarting automata, as there are essentially only two
cases: error-detection distance 0 (that is, strongly correctness preserving automata) and unbounded
error-detection distance.
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Chapter 3

Nonforgetting Restarting Automata

In this chapter we consider restarting automata with more than one restarting state, the so-called
nonforgetting restarting automata. These automata are able to restart in different restarting states.

This generalization of restarting automata is linguistically and theoretically motivated. The lin-
guistic motivation is that not all reduction steps are independent from each other. Sometimes more
than one step needs to be done, to maintain the correctness or incorrectness of a given sentence.
To solve this problem, we need to have many rewrites per cycle or perform them sequentially and
remember the information in the restarting states.

The theoretical or technical motivation is the following: a restarting automaton has two restrictions
that come with its restart operation:

• It cannot remember what it has done in the previous cycle.

• It cannot remember where the last rewrite or restart was performed on the tape.

So we can consider restarting automata with only one of these restrictions. Removing the first
restriction leads to nonforgetting restarting automata. Restarting automata without the second
restriction are not considered here. The "normal" restarting automata are often called forgetting
restarting automata in this chapter to distinguish them from the nonforgetting ones.

3.1 Definitions and Examples

Nonforgetting restarting automata were first introduced in a joint paper by the author and Heiko
Stamer [MS04]. Some of the results on nonforgetting restarting automata that are deterministic,
monotone or deterministic monotone have been announced in [MO06].

Definition 3.1.1. A nonforgetting restarting automaton, nf-RLWW-automaton for short, is a nine
tuple M = (Q,Σ, Γ, c| , $, q0, k, δ,QR), where

• Q is a finite set of states,

• Σ is a finite input alphabet,

• Γ ⊇ Σ is a finite tape alphabet,
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• c| , $ 6∈ Γ are border markers,

• q0 ∈ Q is the initial state

• k ≥ 1 is the window size

• δ : Q × PC(k) → P((Q × ({MVR,MVL} ∪ PC≤(k−1))) ∪ {Restart × QR} ∪ {Accept}) is the
transition relation and

• QR ⊂ Q is the set of restarting states that contains q0.

The only formal difference between forgetting and nonforgetting restarting automata is the fact
that nonforgetting restarting automata are able to restart not only in their initial state, but in
different restarting states. Nonforgetting restarting automata can be described by the eight tuple
(Q, Σ, Γ, c| , $, q0, k, δ), if the number of restarting states that are needed to accept a language is not
taken into account. In this case QR = Q holds and QR is not given explicitly.

The restrictions on the movement and the rewrite step can be applied to nonforgetting restarting
automata without changes (see Section 2.1).

A configuration of a nonforgetting restarting automaton is described by αqβ where q ∈ Q is
the current state and αβ is the current tape content including the border markers, with the
read/write window on the first k letters of β. A configuration qc|w$ with q ∈ QR is called a
restarting configuration; it is called an initial configuration only if q = q0 and w ∈ Σ∗ hold.
Thus, a nonforgetting restarting automaton can distinguish between initial and certain restarting
configurations even if no auxiliary symbols are present.

Definition 3.1.2. The language accepted by a nonforgetting restarting automaton M , L(M),
consists of all words w ∈ Σ∗ for which there is an accepting computation of M starting from the
initial configuration q0c|w$. The complete language of M , LC(M) for short, consists of all words
w ∈ Γ∗ for which there exists an accepting computation starting from the restarting configuration
q0c|w$.

The meta-instructions for nf-RRWW-automata, which again can shorten the description of the
transition relation, differ from the meta-instructions of forgetting restarting automata. A meta-
instruction describes a cycle from one restarting configuration to the next. As a restarting con-
figuration of a nonforgetting restarting automata contains a state q ∈ QR, which need not be the
initial state, meta-instructions are defined as follows.

Definition 3.1.3. A meta-instruction of a nf-RRWW-automaton M is either of the form (q, E1,
u → v,E2, p) or (q, E1,ACCEPT), where E1, E2 are regular expressions and u, v ∈ Γ∗ are words
with |u| > |v|. q ∈ QR is the current restarting state and p ∈ QR is the restarting state for the
next cycle of the computation.

To perform a cycle, M chooses a meta-instruction of the form (q, E1, u → v,E2, p). On trying
to execute this meta-instruction, M will get stuck (and so reject) starting from the configura-
tion q1c|w$, if q 6= q1 or if w does not admit a factorization of the form w = w1uw2 such that
c|w1 ∈ E1 and w2$ ∈ E2. On the other hand, if q = q1 and w does have a factorization of this
form, then one such factorization is chosen nondeterministically, and qc|w$ is transformed into
pc|w1vw2$. In order to describe the tails of accepting computations we use meta-instructions of the
form (q, E1,ACCEPT), where the strings from the regular language E1 are accepted by M in tail
computations when starting in state q.

Rewriting meta-instructions for nf-RWW-automata are of the form (q, E1, u → v, p). Rewriting
restrictions apply only to v. For a nf-RRW-automaton the word v must not contain auxiliary
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symbols, this implies that u, E1 and E2 do not contain auxiliary symbols either. For a nf-RR-
automaton, v must be a scattered subword of u, which again implies that u, v, E1 and E2 do not
contain auxiliary symbols.

Accepting meta-instructions are equal for all types of nonforgetting restarting automata.

A cycle of M from one restarting configuration pc|w0$ to another restarting configuration qc|w1$ is
written as pc|w0$ `c

M qc|w1$ or as a relation over pairs consisting of restarting states and words:
(p, w0) `c

M (q, w1). An accepting tail is described by pc|w0$ `c
M ACCEPT or by (p, w0) `c

M ACCEPT.

Some results on forgetting restarting automata carry over to nonforgetting ones. First of all
nonforgetting restarting automata do not need MVL-operations, if they are nondeterministic.

Theorem 3.1.4. [Plá01] Let ML = (Q, Σ, Γ, c| , $, q0, k, δL, QR) be a nf-RLWW-automaton. Then
there exists a nf-RRWW-automaton MR = (Q′,Σ, Γ, c| , $, q0, k, δR, QR) where QR ⊆ Q′ such that,
for all u, v ∈ Γ∗ and q1, q2 ∈ QR,

q1c|u$ `c
ML

q2c|v$ if and only if q1c|u$ `c
MR

q2c|v$,

and the languages L(ML) and L(MR) coincide.

Proof. The proof is the same as for forgetting restarting automata [Plá01]. We use two sets of
crossing sequences to simulate the two two-way-finite automata before and after the rewrite by
one-way-finite automata [HU79]. The only difference is that we have to consider not only the
starting state q0 at the left border of the tape, but all restarting states. So we get different sets of
crossing sequences, if the automaton starts in different restarting states.

A nonforgetting restarting automaton can have different states that it may be in after a restart step.
With this, it is possible to remember what has been done in the last steps. The largest difference to
forgetting restarting automata is that a nonforgetting restarting automaton can remember whether
it is in an initial or in a restarting configuration. Because of this the "normal" error preserving and
correctness preserving properties of restarting automata are not of much help for nonforgetting
restarting automata. But first we look at a short example to illustrate the expressive power of this
type of automaton.

Example 3.1.5 (Exponential Languages).

The language Lexpo = {a2n | n ∈ N} is recognizable by the det-nf-RWW-automaton with one
auxiliary symbol B with the following meta-instructions:

(q0, c|a∗, aaaa$ → Baa$, q1) (q1, c|a∗, aaB → Ba, q1)
(q1, c| , B → ε, q0) (q0, c|aa$, ACCEPT)
(q0, c|a$, ACCEPT)

In the initial state M scans the tape completely from left to right. If it sees any symbols different
from a it halts and rejects. Otherwise it creates a B at the right border and restarts in q1. This
B is used to halve the number of a’s while it moves across them from right to left. When the B
reaches the left border marker it is deleted and the initial state is reentered. This halving is repeated
until M encounters an error or until it accepts the string a or aa.

The language L′
expo = {a2n

b | n ∈ N} is recognizable by the det-nf-RW-automaton with the following
meta-instructions:
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(q0, c|a+, aab$ → ba$, q1) (q1, c|a∗, aab → ba, q1)
(q1, c| b → ε, q1) (q1, c|a∗, aaaa$ → baa$, q1)
(q1, c|aa$, ACCEPT) (q0, c|ab$, ACCEPT)
(q0, c|aab$, ACCEPT)

Here the b is used instead of the auxiliary symbol B from the previous automaton. After the first
cycle it follows for each configuration qc|w$ in an accepting computation that w 6∈ L′

expo holds. This
is the reason that the initial state is never reached again after the first cycle.

The language L′
expo can be encoded using the encoding from Theorem 2.2.13, or, in this case with

the easier encoding φ(a) = ab and φ(b) = b. This encoded version of L′
expo can be accepted by a

deterministic nf-R-automaton. Thus already a nf-R-automaton can recognize an encoding of the
exponential language. Remark that all these automata are deterministic.

3.2 Properties and Lemmata

Now we come to the error and the correctness preserving properties. Nonforgetting restarting
automata fulfill the old Error and Correctness Preserving properties, but these do no longer yield
effective proof methods, because a nonforgetting restarting automaton does not need to reach its
initial state after every restart (In fact it does not have to reach it ever again).

Lemma 3.2.1 (Error Preserving Property 1).

Let M = (Q,Σ, Γ, c| , $, q0, k, δ,QR) be a nf-RLWW-automaton, and let u, v be words over its input
alphabet. If q0c|u$ `c∗

M q0c|v$ holds and u /∈ L(M), then v /∈ L(M), either.

So we have to find new properties, which are more useful. First we define different types of
configurations for nonforgetting restarting automata.

Definition 3.2.2.

A restarting configuration qc|w$ is called an accepting configuration, if qc|w$ `c ACCEPT holds.

A restarting configuration qc|w$ is called a promising configuration, if there exists a computation
qc|w$ `c∗ pc|w′$ and pc|w′$ is an accepting configuration.

The set of all promising configurations of M is called PC(M).

For each initial promising configuration q0c|w$ , it follows that there exists an accepting com-
putation for w ∈ Σ∗, that is, w is accepted by M and belongs to L(M). For each promising
restarting configuration qc|w$ with q = q0, it follows that w belongs to the complete language of
M (w ∈ LC(M)). Restarting configurations can be described either by qc|w$ or by the pair (q, w).
With this definition we can define an extension of the error preserving property.

Lemma 3.2.3 (Error Preserving Property 2).

Let M = (Q,Σ, Γ, c| , $, q0, k, δ,QR) be a nf-RLWW-automaton, let u, v be words over its tape alpha-
bet, and let p, q ∈ QR. If qc|u$ `c∗

M pc|v$ holds and qc|u$ is not a promising configuration, then
pc|v$ is neither.
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Lemma 3.2.4 (Correctness Preserving Property).

Let M = (Q,Σ, Γ, c| , $, q0, k, δ,QR) be a nf-RLWW-automaton, let u be a word over its tape alphabet,
and let q ∈ QR. If qc|u$ is a promising configuration, then qc|u$ is an accepting configuration or
there exists a word v and a restarting state p, such that qc|u$ `c

M pc|v$ holds and pc|v$ is also a
promising configuration.

The strong Correctness Preservation is defined as follows.

Definition 3.2.5. Let M = (Q,Σ, Γ, c| , $, q0, k, δ,QR) be a nf-RLWW-automaton. M is called
(strongly) correctness preserving, if every successor restarting configuration of a promising config-
uration is again a promising configuration.

These two lemmata allow us to use the error and correctness preserving properties for nonfor-
getting restarting automata. Deterministic nonforgetting restarting automata are always strongly
correctness preserving.

For forgetting restarting automata the new and the old version of these lemmata coincide.

As the pumping lemma for restarting automata describes only the behavior in one cycle or in a
tail, it is also valid for nonforgetting restarting automata with the only change that the restarting
states in the cycle can be different from the initial state.

Proposition 3.2.6 (Pumping Lemma).

For any nf-RLWW-automaton M = (Q,Σ, Γ, c| , $, q0, k, δ), there exists a constant p such that the
following holds: Assume that q1c|uvw$ `c

M q2c|uv′w$, where u = u1u2u3 and |u2| = p. Then there
exists a factorization u2 = z1z2z3 such that z2 is non-empty, and

q0c|u1z1(z2)iz3u3vw$ `c
M q0c|u1z1(z2)iz3u3v

′w$

holds for all i ≥ 0, that is, z2 is a ‘pumping factor’ in the above cycle. Similarly, such a pumping
factor can be found in any factor of length p of w. Such a pumping factor can also be found in any
factor of length p of a word accepted in a tail computation.

3.3 Deterministic Restarting Automata

Deterministic RWW- and RRWW-automata accept the Church-Rosser languages (CRL) (see Defi-
nition 2.4.2 on page 22), which are in some sense the deterministic variants of the growing context-
sensitive languages (GCSL). While the language Lcopy := {w#w | w ∈ {a, b}∗ } is not even growing
context-sensitive [BO98], it is accepted by the det-nf-R-automaton that is given in the following
example.

Example 3.3.1. The language Lcopy is accepted by a det-nf-R-automaton M with two restarting
states.

(i) (q0, c|a · {a, b}∗ ·#, a → ε, q1), (iv) (q1, c| , a → ε, q0),
(ii) (q0, c| b · {a, b}∗ ·#, b → ε, q1), (v) (q1, c| , b → ε, q0).
(iii) (q0, c|#$, Accept),

M remembers the first symbol on the tape in its finite control and moves to the right until it sees
the separator #. If the first symbol after the separator coincides with the first symbol on the tape,
then M deletes it and restarts in state q1, otherwise it halts and rejects ((i) and (ii)) In state q1

M simply deletes the first symbol on the tape and restarts in the initial state ((iv) and (v)). M
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knows that if it is in the restarting state q1, then it was already checked that the first symbols from
the first and the second part of the word coincide. The meta-instructions (i) and (vi) or (ii) and
(v) are used alternatingly until M accepts in the initial state while seeing the tape content c|#$.

Thus, we see that deterministic nonforgetting restarting automata are more powerful than their
forgetting counterparts. The question is how powerful are they exactly?

It is still open whether L(det-nf-RLWW) = L(nf-RLWW) holds or not, but it is a conjecture that
these classes do not coincide.

The next lemma gives a normalform for deterministic (nonforgetting) restarting automata

Lemma 3.3.2. For every (nonforgetting) det-RL- (det-RLW-, det-RLWW-) automaton M , there
exist a (nonforgetting) det-RL-(det-RLW-, det-RLWW-) automaton M ′ that performs its restart
operations immediately after its rewrite operations, such that L(M) = L(M ′) holds. If M is a
forgetting restarting automaton, then so is M ′.

Proof. In the following proof let X ∈ {ε, W,WW}. In each cycle

(q, w1uw2) `c
M (p, w1vw2),

a det-nf-RLX-automaton M moves over the tape performing MVR- and MVL-steps until it performs
one Rewrite-step. After this it can scan the tape again, but we will show that it is sufficient to
scan the tape prior to the rewrite step. For this we construct a det− nfRLX-automaton M ′ with
L(M) = L(M ′) and M ′ restarts immediately after the rewrite step.

A det-nf-RLX-automaton is correctness preserving, therefore with Theorem 3.8.3 there exists a
correctness preserving nf-RRX-automaton M̃ that accepts the same language and M performs
the same cycles as M̃ . Thus after M has found the place of the rewrite deterministically it can
again move over the tape, but as M̃ can perform the same cycle there exists a meta-instruction
(q, E1, u → v,E2, p) for that cycle that only checks regular conditions for w1 and w2. The only
problem is that M̃ does not need to find the place of the rewrite step deterministically.

The det-nf-RLX-automaton M ′ works as follows. It first scans the tape completely from left to right,
looking for accepting meta-instructions of M̃ . If it detects that M̃ would accept, it accepts as well.
Otherwise it simulates M until M would perform a rewrite step u → v. M ′ does not perform this
Rewrite-step, instead it moves to the left border marker and determines all meta-instructions of M̃
such that w1 fulfills the prefix-condition and the rewrite step is u → v. Then it simulates M a second
time to find the place for the rewrite again and checks whether w2 fulfills the suffix-condition of one
of these meta-instructions. If at least one meta-instruction (q, E1, u → v,E2, p) of M̃ is applicable,
that is w1 ∈ E1 and w2 ∈ E2 holds, then M̃ can performs the cycle (q, w1uw2) `c

M̃
(p, w1vw2).

Thus also M can perform this cycle and M ′ therefore simulates M a third time to find the place
for the rewrite step again, performs it and restarts in state p. If no meta-instruction fulfills these
conditions, then M̃ cannot perform a cycle with this particular rewrite step and therefore M does
not perform a cycle with this rewrite step. Therefore M rejects after the rewrite step and M ′ can
reject without performing this rewrite step.

Thus M ′ simulates M cycle by cycle, but it restarts immediately after the rewrite step. As M ′

simulates M cycle by cycle, it follows that L(M) = L(M ′).

Now we state a Theorem from [MS04], which was already mentioned in a weaker form in the
previous chapter. Also the new result about RRWW-automata that are restricted to perform their
rewrites at the right border marker carries over to nf-RRWW-automata.
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Lemma 3.3.3. Let M be a nf-RRWW-automaton such that M performs all of its rewrites while
seeing the right border marker $ in its window. Then L(M) is regular.

Proof. As the automaton performs all of its rewrites while seeing the right border marker $, each
nf-RRWW-automaton is in fact an nf-RWW-automaton.

We will construct an NFA A for L(M). If x0 ∈ L(M), then there exists an accepting computation
starting from q0c|x0$, which can be described by a sequence of cycles:

(q0, x0) `c
m (qj1 , x1) `c

m (qj2 , x2) . . . `c
m (qjn , xn) `c

m ACCEPT

As the rewrites of M are performed only at the right end of the tape, there exists a factorization
of x0 = xunun−1 . . . u2u1, such that xi = xunun−1 . . . ui+1vi, 0 < i < n, and xn = xvn hold. Here
uivi−1$ → vi$ is the ith rewrite step. It is required that v0 = ε holds.

A simulates the regular conditions of all meta-instructions simultaneously in its finite control,
remembering, in which restarting state they started. As M performs all its rewrite steps at the
right border, the input x0 is divided into two parts: a prefix x which is not changed during the
sequence of cycles, and a suffix unun−1 . . . u2u1 which is rewritten step-by-step into vn during this
sequence.

The sequence of cycles is simulated from right to left as follows. First A guesses an accepting
meta-instruction (qjn , c|xvn$). Then it checks for the prefix c|x of it and remembers the missing
suffix vn$. This suffix needs to be a right-hand side of a rewrite step unvn−1$ → vn$ of a meta-
instruction (qjn−1 , En, unvn−1$ → vn$, qjn

) such that c|x ∈ En holds. That is, the meta-instruction
is applicable to qjn−1c|xunvn−1$.

Then A looks for the prefix un of this rewrite instruction. The remaining suffix vn−1$ again
has to be the right-hand side of the rewrite step of a meta-instruction (qjn−2 , En−1, un−1vn−2$ →
vn−1$, qjn−1), such that c|xun ∈ En−1 holds. This is repeated until the whole input is consumed and
A has found a meta-instruction that is applicable to q0c|x0$ = q0c|xunun−1 . . . u2u1$, transferring
it to qj1c|x1$ = qj1c|xunun−1 . . . u2v1$.

Thus A accepts the input x0 if and only if it finds an accepting sequence of cycles of M .

Theorem 3.3.4. [MS04] A language over an unary alphabet is regular if and only if it is accepted
by a nf-RLW-automaton.

Proof. Each regular language can be accepted by a nf-RLW-automaton in one cycle, so REG ⊆
L(nf-RLW) holds.

The other direction is a bit more complicated. A nf-RLW-automaton can be simulated by a nf-RRW-
automaton (Theorem 3.1.4). A restarting automaton without auxiliary symbols can only delete
some symbols when the tape alphabet is unary. Thus over a unary alphabet nf-RRW-automata
are in fact only nf-RR automata. Next it does not matter where the rewrite occurs. Each meta-
instruction of a nf-RR-automaton of the form (q, c|E1, al → ε, E2$, p), where Σ = {a} and l ≤ k,
checks the same conditions as the meta-instruction (q, c|E1 · E2, al$ → $, p) of a nf-R-automaton.
Thus over a unary alphabet each nf-RR-automaton can be simulated by a nf-R-automaton. The
nf-R-automaton only needs a window of size k + 1 to see the right border marker and delete up to
k symbols.

Now the assertion follows from Lemma 3.3.3.
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With this result and the deterministic nonforgetting RWW-automaton from Example 3.1.5, we see
that the language Lexpo separates (deterministic) nonforgetting restarting automata with auxiliary
symbols from those without auxiliary symbols.

Corollary 3.3.5.
Lexpo ∈ L(det-nf-RWW) \ L(nf-RRW),

L′
expo ∈ L(det-nf-RW) \ L(nf-RR).

Proof. From Example 3.1.5 we know that the exponential languages belong to the stated language
classes. As Lexpo is not regular, it follows from Theorem 3.3.4 that it does not belong to L(nf-RRW).

It remains to show that L′
expo 6∈ L(nf-RR) holds.

Lexpo is a unary non-regular language and L′
expo differs from Lexpo only by the occurrence of an

additional b at the end of the tape. For a nf-RR-automaton the b at the end cannot be used.
Therefore, if there exists a nf-RR-automaton that accepts L′

expo, then it follows, that there exists
also a nf-RR-automaton that accepts Lexpo. This contradicts Theorem 3.3.4. Thus L′

expo 6∈ L(nf-RR)
holds.

Thus we have the situation depicted in Figure 3.1, where L1
// L2 expresses the fact that the

language class L1 is properly contained in the class L2, while L1
?

// L2 indicates an inclusion for

which it is still open whether it is proper or not. Where no arrow is given the language classes are
incomparable with respect to inclusion.

L(det-nf-RWW)OO

Lexpo

>>

Lcopy

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

L(det-nf-RRWW)OO
Lexpo

//
?

GCSLOO L(det-nf-RRW)33
?ggggggggggg OO

Lexpo′L(det-nf-RW)OO

Lexpo′CRLOO

Lexpo

L(det-nf-RR)33

?ggggggggggggg

L(det-nf-R)OO
Lcopy

DCFL = L(det-mon-R) = L(det-mon-RRWW)

Figure 3.1: The taxonomy of deterministic nonforgetting restarting automata

In addition it is open whether, for any choice of X ∈ {WW,W, ε}, any of the inclusions L(det-nf-RX)
⊆ L(det-nf-RRX) ⊆ L(det-nf-RLX) are proper or not. The problem in showing whether these inclu-
sions are proper or not is that a nonforgetting restarting automaton can scan the tape completely
and then remember information in the restarting state. So a det-nf-R-automaton is able to scan
the whole tape finitely many times during a computation. It can do this by deleting the last letter
and remembering it in the restarting state. It is also open whether the ability to move left and
right increases the expressive power of deterministic nonforgetting restarting automata or not.

44



3.3.1 Forgetting versus Nonforgetting Restarting Automata

Deterministic forgetting restarting automata are much less powerful than nonforgetting ones. As
Lcopy ∈ L(det-nf-R), which is not even a growing context-sensitive language, the following corollary
can be shown.

Corollary 3.3.6. Let X ∈ {R,RR,RW,RRW,RWW,RRWW} then the following proper inclusion
holds: L(det-X) ( L(det-nf-X)

To further illustrate the expressive power of det-nf-RW automata, we now consider the language

Lcopy∗ := { (w#)∗ | w ∈ {a, b}∗ }.

Lemma 3.3.7. Lcopy∗ ∈ L(det-nf-RW).

Proof. The det-nf-RW automaton M for the language Lcopy∗ is described by the following meta-
instructions, here c, d, e ∈ {a, b} and x ∈ {a, b}≤2 hold:

(1)(q0, c| (x#)∗$,Accept), (2)(q0, c|{a, b}≥3#$, Accept)
(3)(q0, c| ({a, b}≥3#)+{a, b}≥3,#$ → $, q1) (4)(q1, c|{a, b}+, cd# → ##, qcd)
(5)(qcd, c| ({a, b}+##)+{a, b}+, cd#e → ##e, qcd) (6)(qcd, c| ({a, b}+##)+{a, b}+, cd$ → #$, q#)
(7)(q#, c| ({a, b}+#)∗{a, b}+,## → #, q#) (8)(q#, c| ({a, b}+#)∗{a, b}+,#$ → $, q1)
(9)(q1, c| (x#)+x$,Accept)

M accepts a word belonging to Lcopy∗ without performing a single cycle, if w ≤ 2 or less than two
syllables are on the tape . In all other cases M checks in the first cycle whether the input is of the
form w1#w2# . . .#wm# and each syllable has length at least three. In the affirmative it deletes
the last # and restarts in q1, in the negative it halts and rejects.

In q1 the last two symbols of w1 are replaced by a new copy of the symbol #, thus creating an
occurrence of a factor ##, and stored in the restarting state of M . In the next cycle M compares
the stored symbols to the last two symbols of w2. If they do not agree, then M halts and rejects,
otherwise the last two symbols of w2 are also replaced by the symbol #. This continues until all
syllables w2, . . . , wm have been processed. Then M enters the restarting state q#, which causes
M to replace each factor of the form ## by the symbol #, one at a time, proceeding from left to
right. Once this task is completed, every syllable wi has been shortened by two symbols, which
have been verified to agree for all syllables. Now M reenters the restarting state q1, proceeding to
process the now shortened word.

This process continues until either a disagreement between some factors is found, or until all factors
have been shortened to length at most 2, and their agreement can be checked simply by scanning
the tape from left to right.

Essentially the same method can be used to design a det-nf-RW automaton that accepts the lan-
guage VALC(T ) of all valid computations of a Turing machine T . This language consists of words
of the form w0#w1# . . .#wn#, where w0 is an initial configuration of T , wn is an accepting con-
figuration of T , and wi+1 is an immediate successor configuration of the configuration wi for all
0 ≤ i ≤ n − 1. Each configuration wi is of the form t0t1 . . . tj−1qtjtj+1 . . . tm, where t0t1 . . . tm is
the support of the tape inscription and q is the current state of T .

Lemma 3.3.8. VALC(T ) ∈ L(det-nf-RW).
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Proof. To accept VALC(T ), a det-nf-RW automaton M first checks that all syllables wi are config-
urations of T , that w0 is an initial configuration and that wn is an accepting configuration. This is
done in the first cycle. Also M checks in this cycle whether, for all 0 ≤ i ≤ n−1, wi+1 is a possible
successor configuration of wi. This means that, if wi contains the factor tj−1qtjtj+1, where q is a
state of T , and wi+1 contains the factor tl−1ptltl+1, where p is a state of T , then either

• δ(q, tj) = (p, tl−1, R) and tj+1 = tl, or

• δ(q, tj) = (p, tl, N), tj−1 = tl−1, and tj+1 = tl+1, or

• δ(q, tj) = (p, tl+1, L) and tj−1 = tl

holds, where δ denotes the transition function of T . When M reaches the end of the tape, the
last occurrence of the symbol # is removed, and, if all these tests were positive, M restarts in
a restarting state q1 that indicates that the initial check was done. In this first cycle, M cannot
possibly check whether the various configurations are consistent with each other, that means that
every wi is a successor of wi−1. In the first cycle this check is done only for the last four letters.
For the rest of each syllable it is done in the next phase, where a variant of the method to accept
the language Lcopy∗ is used to shorten the tape content. Also it is verified letter by letter that the
states occur at the correct places within the various configurations, and that the tape content of
each configuration is consistent with the tape content of the next configuration.

In contrast to Lcopy∗ , M remembers the last four letters in its restarting state, because in a valid
computation the configurations of a Turing machine are not equal to each other. Near the states
that occur in every configuration, the configurations differ.

The consistency check between wi−1 and wi is done as follows:

In the first cycle M verifies that either the last four letters of both syllables are tape symbols of
T and they coincide, or that one of the last four letters a1a2a3a4 of wi−1 is a state of the Turing
machine and one of the following cases holds, with b1b2b3b4 being the last four letters of wi, t, t′

and ti, 1 ≤ i ≤ 4, are tape symbols of T , and p, q are states of T :

• a1a2a3a4 = qt1t2t3 and

– δ(q, t1) = (p, t, R) and b1b2b3b4 = tpt2t3, or

– δ(q, t1) = (p, t,N) and b1b2b3b4 = ptt2t3 or

– δ(q, t1) = (p, t, L) and b1b2b3b4 = t′tt2t3,

• a1a2a3a4 = t1qt2t3 and

– δ(q, t2) = (p, t, R) and b1b2b3b4 = t1tpt3, or

– δ(q, t2) = (p, t,N) and b1b2b3b4 = t1ptt3 or

– δ(q, t2) = (p, t, L) and b1b2b3b4 = pt1tt3,

• a1a2a3a4 = t1t2qt3 and

– δ(q, t3) = (p, t,N) and b1b2b3b4 = t1t2pt or

– δ(q, t3) = (p, t, L) and b1b2b3b4 = t1pt2t.
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In the first cycle it is not allowed that the last letter of a syllable is a state, because then the
syllable is not a valid configuration of a Turing machine. In all other cycles the syllables may
already be shortened and therefore have to be only prefixes of valid configurations. Here the last
letter of a syllable can be a state. It is even possible that a state is the last letter of a syllable,
when none of the last four symbols of the previous syllable is a state. As the conditions for the
last two symbols and the deleted parts of each syllable were already checked, we have some more
conditions for the last four letters of each syllable that are allowed:

• a1a2a3a4 = t1t2qt3 and

– δ(q, t3) = (p, t, R) and b1b2b3b4 = t1t2tp,

• a1a2a3a4 = t1t2t3q and

– δ(q, t′) = (p, t, R) and b1b2b3b4 = t1t2t3t, or

– δ(q, t′) = (p, t,N) and b1b2b3b4 = t1t2t3p or

– δ(q, t′) = (p, t, L) and b1b2b3b4 = t1t2pt3,

• a1a2a3a4 = t1t2t3t4 and

– δ(q, t′) = (p, t, L) and b1b2b3b4 = t1t2t3p.

M replaces the last two letters of the first syllable by #, but remembers the last four. In the next
cycle it moves to the next syllable and checks for consistency. If the consistency check is positive,
then it replaces the last two letters of this syllable by #. This is continued as for Lcopy∗ . After all
syllables are shortened another restarting state is entered and all of the ## are rewritten into #.
Then again each syllable is shortened by two symbols while consistency is checked.

If one of these checks is negative, M rejects immediately, otherwise M accepts after each syllable
has length at most four and all checks are positive. Thus each x ∈ VALC(T ) is accepted by M ,
and no other words are accepted.

This completes the proof.

Thus we have shown that VALC(T ) ∈ L(det-nf-RW) holds. If every letter a is encoded by a#,
then the resulting language is accepted by a det-nf-R automaton. It is known that for language
classes that include VALC(T ) many decision problems are undecidable (see e.g. [HU79]). With
this we have the following results.

Corollary 3.3.9. The following problems are in general undecidable:

INSTANCE : A det-nf-R automaton M .
QUESTION 1 : Is the language L(M) non-empty?
QUESTION 2 : Is the language L(M) finite?
QUESTION 3 : Is the language L(M) regular?
QUESTION 4 : Is the language L(M) context-free?

Observe that for a det-R-automaton, emptiness of the accepted language is easily decidable.
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3.4 Monotone Restarting Automata

In this section we describe the expressive power of the various types of monotone nonforgetting
restarting automata, compare them to monotone forgetting restarting automata, and give example
languages. Monotone RRWW-automata recognize the context-free languages, a similar result is
shown here for nf-RRWW-automata.

Monotonicity for nonforgetting restarting automata is defined as for forgetting restarting automata
(see Definition 2.3.1 on page 20). The prefix mon- is used for monotone restarting automata.

Theorem 3.4.1. [MO06] L(mon-nf-RLWW) = L(mon-nf-RRWW) = L(mon-nf-RWW) = CFL.

Proof. From Theorem 2.3.2 we know that CFL = L(mon-RWW), and in Theorem 3.1.4 the equal-
ity L(nf-RLWW) = L(nf-RRWW) is shown. As the simulating nf-RRWW-automaton performs
exactly the same cycles as the given nf-RLWW-automaton, it follows that the rewrites are done
at the same places, and hence the one automaton is monotone if and only if the other is. Thus
L(mon-nf-RLWW) = L(mon-nf-RRWW) holds, too.

Together with the trivial inclusions L(mon-RWW) ⊆ L(mon-nf-RWW) ⊆ L(mon-nf-RRWW) it
follows that CFL ⊆ L(mon-nf-RWW) ⊆ L(mon-nf-RRWW) = L(mon-nf-RLWW) holds. It only
remains to show that L(mon-nf-RRWW) ⊆ CFL holds.

Claim L(mon-nf-RRWW) ⊆ CFL.

Proof. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be a nonforgetting monotone RRWW-automaton and let w
be an input string. Further let C1, C2, . . . , Cm be the sequence of cycles that correspond to a
computation of M starting on input w. For each cycle Cj the tape contents can be divided into
three parts: a prefix xj , the part uj within the read/write window during the execution of the
actual Rewrite-step, and the remaining suffix yj .

As M is monotone, the positions where the Rewrite-steps are performed move from left to right
across the tape. Accordingly, the prefixes xj can be stored in a pushdown store. In the forgetting
case the states in which M can be after reading the prefix xj of the restarting configuration
q0c|xjujyj$ are stored in an extra track on the tape. As M is nondeterministic this is in general a
set of states. For nonforgetting RRWW-automata there is an extra track for each restarting state.
The states that are derived starting from qc|xjujyj$ are stored in the track for the restarting state
q.

In detail: A PDA A uses a buffer of size k. On simulating M on the input w, A starts with reading
the first k symbols into its buffer. Then it simulates one step of the transition relation δ of M
that corresponds to the first step of the cycle C1. The leftmost symbol of w that is no longer
in the window of M is stored in the pushdown store together with |Q| many extra tracks. All
possible states that M can derive from q0c|w$ in one step are stored in the first track. As M is
nondeterministic, this can be more than the state in the finite control, which corresponds to the
first step of the cycle C1.

In the second track, A stores all states that M can derive from q1c|w$ in one step. This is done for
all states qi ∈ Q, so that each of the tracks contains a subset of Q that corresponds to the states,
in which M can be after performing its first step starting from the configurations (qic|w$).

This simulation is continued until A has stored x1 on the pushdown store and has u1 in its finite
control. Then A performs the Rewrite-step within its finite control and pops symbols from the
pushdown store until it has again k symbols in its finite control. But if there are not enough
symbols left, the bottom marker is not popped from the pushdown store, instead A reads symbols
from the tape until it has again k symbols in its finite control.
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Unfortunately A is unable to read the rest of the tape to check whether M will do a restart, and
if it will do one, in which state it will start the next cycle. So A has to guess the behavior of M
and check if its guess was correct, when it reaches the right border marker $ of the tape.

So A guesses the behavior of M for the rest of the tape and the state qj1 in which M restarts
after the first cycle. If the pushdown store is empty except for the bottom marker, A starts the
simulation with qj1 . Otherwise A chooses one of the states in the track corresponding to qj1 .
Remember that these states are derived when reading the prefix present on the pushdown and
starting in state qj1 . A chooses the one that corresponds to the first part of the second cycle C2 of
M . As M is monotone and the remaining tape was not touched since the simulation of the first
rewrite, the next rewrite cannot be to the left of the topmost symbol of the pushdown store, and
A can continue to simulate the second cycle C2 in the same way as the first.

But A has to remember the state in which M was after the rewrite step of the first cycle and
the restarting state with which the second cycle of M started. While A continues to read the
tape it must simulate the second part of the first cycle to check if its guess was correct. After the
rewrite of the second cycle the simulation of the third cycle starts and A must now remember the
information for the second cycle and simulate the second part of the second cycle, too.

This is continued until A simulates the last cycle Cn. Then A simulates the tail of the computation
of M , by again choosing one state from the pushdown store. Then it moves to the end of the tape
and enters a final state if M accepts, and gets stuck if M rejects.

But there are m cycles and m is arbitrary large. So the simulation of some cycles must be joint,
as A can do the simulation of the suffixes yj only for a finite number of cycles. But fortunately
there are at most |Q|2 many different simulations to do.

For each simulation, A remembers an actual state which changes while A reads the rest of the
tape, and a restarting state which is fixed. There can be only |Q| many different actual states and
to an actual state there can be only |Q| many different restarting states and therefore there are at
most |Q|2 many different simulations to do.

This completes the proof.

Before we prove that the inclusions for monotone nonforgetting restarting automata are strict we
need some technical lemmata and introduce the Kolmogorov complexity (see e.g. [LV97]). K(x)
is the Kolmogorov complexity of a word x over a finite alphabet Σ of cardinality at least two. The
Kolmogorov complexity is the shortest description of a word.

Definition 3.4.2. A word x ∈ Σ+ is called incompressible if K(x) ≥ |x| holds, it is called
c−incompressible if K(x) ≥ |x| − c holds, and it is called random if K(x) ≥ |x| − 4 log3 |x| holds.

Proposition 3.4.3. [JO06] Let A be a deterministic finite-state acceptor with tape alphabet Γ ⊇
Σ 6= ∅. Then there exists a constant n0 ∈ N+ such that, for each integer n > n0 and each random
word w ∈ Σn, the following condition is satisfied for each word v ∈ Σ+: Assume A is in state q
when it enters the factor wv on its tape from the left, and that it reaches state q′ when its head
is located inside the factor v. Then A already encounters state q′ while its head is still inside the
prefix of w of length log2

s n where s = |Σ|.

With this proposition the following corollary can be shown.

Corollary 3.4.4. Let M be a nf-RRWW-automaton with tape alphabet Γ. Then there exists a
constant n0 ∈ N+ such that, for each integer n > n0 and each random word w ∈ Γn, the following
condition is satisfied for each word v ∈ Γ+: Assume M is in state q when it enters the factor wv
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on its tape from the left, and that it reaches state q′ with window content u when its head is located
inside the factor v. Then M already encounters state q′ and window content u while its head is
still inside the prefix x of w of length log2

s n where s = |Γ|.
If M is able to perform a rewrite step inside v, then it can perform the same rewrite step inside
the prefix x of w, that is, it has to perform this rewrite step nondeterministically.

Proof. From M we will construct a deterministic finite-state acceptor A that fulfills the conditions
of Proposition 3.4.3. A reads the first k symbols into its finite control, where k is the window size
of M , then it simulates the transition relation of M without the rewrites. As the transition relation
of M behaves like a finite-state acceptor except for the rewrite and restart steps we can assume
without loss of generality that the MVR-steps of M are performed deterministically. Thus it may
still be that M can perform a rewrite step nondeterministically, but all MVR-steps are performed
deterministically. Therefore whenever M is in state q′ and sees the window content u, then A is
in state q′′. If this happens while the window of M is inside v, then so is A’s head and therefore,
because of Proposition 3.4.3, A has reached a corresponding state q′′ already inside the prefix x of
w and so did M .

If M is able to rewrite u → v while it is in state q′, then M was able to rewrite u → v in the prefix
x of w.

Lemma 3.4.5. Let z ∈ Σ∗, φ an injective morphism, L = {wzφ(wR)|w ∈ Σ∗} a palindrome
language and M = (Q,Σ, Σ, c| , $, q0, k, δ) a monotone nf-RRW-automaton. Then there exists an
integer c such that at the start of an accepting computation on input xzφ(xR), where x is a large
incompressible word over Σ, M can perform at most c rewrites completely in x, rewriting it to x1

before it rewrites parts of the suffix zφ(xR). In addition, the suffix of x1 of length |x| − c log2(|x|)
is random.

Proof idea. Let z ∈ Σ∗, φ an injective morphism, L = {wzφ(wR)|w ∈ Σ∗} a palindrome language
and M = (Q,Σ, Σ, c| , $, q0, k, δ) a monotone nf-RRW-automaton and x a large incompressible word.
Assume for a contradiction that M starts an accepting computation with an arbitrary large number
of rewrites completely inside the prefix x. Then it follows with counting arguments, as explained
in [Ott08], that M will also accept words that do not belong to L. That the suffix of the remaining
word is random is shown similar to the proof of Proposition 9 of [Ott08].

Lemma 3.4.6. Let z ∈ Σ∗, φ an injective morphism, L = {wzφ(wR)|w ∈ Σ∗} be a palindrome
language, and M = (Q,Σ, Σ, c| , $, q0, k, δ) a monotone nf-RRW-automaton. If in an accepting
computation starting from xzφ(xR), where x is a large incompressible word over Σ, M does perform
a sequence of cycles (q0, xzφ(xR)) `c∗

M (q, w1w2) = (q, w1x1ux2) `c
M (p, w1x1vx2), where w2 is the

unchanged suffix of φ(xR), then |x1| is bounded by a constant.

Proof. Assume for a contradiction that x1 is unbounded. (q, w1x1ux2) and (p, w1x1vx2) are promis-
ing configurations, therefore M will accept (p, w1x1vx2). How does the remaining accepting com-
putation look like? M must compare symbols to their counterparts. But before M can again do
a rewrite in w1 it has to delete x1 almost completely, because of the monotonicity of M . But as
x1 is unbounded it contains a regular pumping factor x1 = x1,1yx1,2 , such that for all l ≥ 0, M
can also perform the following sequence of cycles (q0, wx1,1y

lx1,2ux2) `c∗

M (q, w1x1,1y
lx1,2ux2) `c

M

(p, w1x1,1y
lx1,2vx2). And again M must delete x1,1y

lx1,2 almost completely, before it can compare
symbols to their counterparts.

Thus both computations delete the factor x1 or x1,1y
lx1,2 almost completely. During this process

the suffix vx2 may be rewritten as well, but then these rewrites are performed in both words
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identically. As all rewrites during this part of the computation that effect x1 or x1,1y
lx1,2 are

rewriting the suffix of x1 or x1,1y
lx1,2, respectively, it follows that M can check only regular

conditions for x1 or x1,1y
lx1,2, respectively. This is shown similar as in the proof of Lemma 3.3.3.

M is able to rewrite the suffix vx2 and store information on the tape, but again because of the
monotonicity only k − 1 new symbols can be written on the tape.

Therefore M will end in both cases in the same configuration. Thus there exists a computation
such that the initial configuration (q0, φ

−1(x1,1yx1,2ux2)R)zx1,1y
lx1,2ux2) is transformed into a

promising configuration. But if x1 is not equal to ym
1 y for a palindrome y1, then wx1,1y

lx1,2ux2 6∈ L
holds for some l ≥ 0. And as x is c-incompressible, x and therefore φ(x) does not contain a factor
ym
1 y for a large m. This contradicts the error preserving property.

To show that the inclusions for the different variants of monotone nonforgetting restarting automata
are proper we use the following languages:

Lpal :={wwR | w ∈ {a, b}∗} ∈ L(mon-nf-RWW) \L(mon-nf-RW)

Lpal′ :={wwR# | w ∈ {a, b}∗} ∈ L(mon-nf-RW) \L(mon-nf-R)

Lpal′′ :={wcφ(wR) | w ∈ {a, b, c}∗

φ(a) = aa, φ(b) = ab, φ(c) = ba, } ∈ L(det-mon-RL) \L(mon-nf-RW)
L4 := { anbm | 0 ≤ n ≤ m ≤ 2n } ∈ L(mon-R) \L(det-RLW).

In the next lemmata we show that they belong to the given language classes. Lpal is known to be
a context-free language, so the following lemma shows that the first inclusion is proper.

Lemma 3.4.7. The language Lpal is not accepted by any monotone nf-RW-automaton.

Proof. Let M = (Q,Σ, Σ, c| , $, q0, k, δ) be a monotone nf-RW-automaton that accepts Lpal and let
x be a large incompressible word. In an accepting computation, starting with input xxR, M can
perform only a fixed number of rewrites completely in the prefix x (Lemma 3.4.5) by performing
a sequence of cycles (q0, xxR) `cn

M (q, x1x
R). The suffix of x1 of length |x| − n log2(|x|) is random.

The next rewrite is performed in the middle of the tape (Lemma 3.4.6), but from Corollary 3.4.4
it follows that the next rewrite after that one can be performed in a prefix of the random suffix of
x1. This contradicts the assumption that M is monotone.

Lemma 3.4.8.

Lpal′ := {wwR# | w ∈ {a, b}∗} ∈ L(mon-nf-RW) \ L(mon-nf-R)

Proof. Lpal′ can be recognized by a mon-nf-RW-automaton M with the following meta-instructions:

(1)(q0, c|{a, b}∗, aa → #, q1)
(2)(q0, c|{a, b}∗, bb → #, q1)
(3)(q1, c|{a, b}∗, b#b → #, q1)
(4)(q1, c|{a, b}∗, a#a → #, q1)
(5)(q0c|#$, ACCEPT)
(5)(q1c|##$,ACCEPT)
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In the first cycle M guesses the middle and places a # there. Then it enters the state q1. In this
state it deletes the two symbols near the # if they coincide. M does this until it accepts the word
##.

This language cannot be recognized by a mon-nf-R-automaton, because from the previous lemma
we know that Lpal 6∈ L(mon-nf-RW), and the extra symbol # at the end does not help for a
mon-nf-R-automaton. Thus the assertion follows.

It is a strong conjecture that the language Lpal is also not included in L(mon-nf-RRW), because
reading after the rewrite should not help by accepting palindromes.

Conjecture 3.4.9.

Lpal 6∈ L(mon-nf-RRW) and Lpal′ 6∈ L(mon-nf-RR).

Lemma 3.4.10.

Lpal′′ ∈ L(det-mon-RL) \ L(mon-nf-RW).

Proof. Lpal′′ is recognizable by a det-mon-RL-automaton M . M can perform MVL-steps, so it can
determine the last c in the word. Then it deletes the corresponding letters around it. M accepts
the word c| c$.

In each cycle, M works in two phases, it first moves to the right border marker $ and then back
to the last occurrence of the letter c. The move right steps are expressed by the first part of
each "meta-instruction" that starts with MVR. In the second phase it performs only MVL-steps
to find the rightmost occurrence of the letter c and performs a rewrite if the surrounding letters
correspond. This is expressed by the second part of each "meta-instruction" that start with MVL.

MVR(c|{a, b, c}∗$) MVL(${a, b}∗, aaca → c)
MVR(c|{a, b, c}∗$) MVL(${a, b}∗, bacb → c)
MVR(c|{a, b, c}∗$) MVL(${a, b}∗, abcc → c)

(c| c$,ACCEPT)

Claim: Lpal′′ 6∈ L(mon-nf-RW)

Observe that the morphism φ is injective. Assume that there exists a nf-RW-automaton M with
L(M) = Lpal′′ . M cannot accept all words belonging to Lpal′′ in tail computations. Thus M must
perform some cycles to accept a word wcφ(wR) ∈ Lpal′′ if w is sufficiently large. It follows from
Lemma 3.4.6 that M cannot perform rewrites to the right of the last occurrence of the letter c.
If w is a large incompressible word, then it follows from Lemma 3.4.5 that M can only perform
finitely many rewrites completely in w and that the suffix of the derived word w′ is random.

Assume that an accepting computation of the word w1w2cφ((w1w2)R) ∈ Lpal′′ starts with the
following sequence of cycle, where w1 is an incompressible word.

q0c|w1w2cφ((w1w2)R)$ `c∗

M qc|w′
1w2cφ((w1w2)R)$ `c

M q′c|w′
1wφ(wR

1 )$ `c
M q′c|w′

1w
′φ(wR

1 )$

As w1 is incompressible it follows from Lemma 3.4.5 that a suffix of w′
1 is random. Now it follows

from Corollary 3.4.4 that instead of the second rewrite inside w M can perform a rewrite in the
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prefix of the suffix of w1, therefore M can perform nonmonotone computations and therefore M
is not monotone.

The separation language

L4 := { anbm | 0 ≤ n ≤ m ≤ 2n } ∈ L(mon-R) \ L(det-RLW).

was already used in the previous chapter and it is well known that it separates these two language
classes. With these results we have the same taxonomy for monotone nonforgetting restarting
automata as for the forgetting types.

CFL = L(mon-nf-RWW)OO

Lpal

= L(mon-nf-RRWW)OO
?(Lpal)

= L(mon-nf-RLWW)OO
?(Lpal)

L(mon-nf-RRW)33
Lpal′′fffffffffff OO

?(Lpal′ )

= L(mon-nf-RLW)OO

?(Lpal′ )L(mon-nf-RW)OO

Lpal′ L(mon-nf-RR)33
Lpal′′ffffffffffff

= L(mon-nf-RL)OO
L4

L(mon-nf-R)OO
L4

L(det-mon-RL)

DCFL = L(det-mon-R) = L(det-mon-RRWW)

Lpal′′ 33fffffffffff

Figure 3.2: The taxonomy of monotone nonforgetting restarting automata

If we compare monotone forgetting with monotone nonforgetting restarting automata, then we see
that only the trivial inclusions hold and that they are proper.

Lemma 3.4.11. The classes L(mon-nf-R) and L(mon-RRW) are incomparable with respect to
inclusion.

Proof. L(mon-nf-R) 6⊂ L(mon-RRW):

The example language L2 6∈ L(mon-RRW) is recognized by the monotone nf-R-automaton M with
the following meta-instructions:

(1)(q0, c|a∗, abb → b, q1) (5)(q0, c|a∗, abbb → b, q2)
(2)(q1, c|a∗, abb → b, q1) (6)(q2, c|a∗, abbb → b, q2)
(3)(q1, c|ab$,ACCEPT) (7)(q2, c| b+$,ACCEPT)
(4)(q0, c|ab$,ACCEPT) (8)(q0, c| b∗$,ACCEPT)

M first guesses to which of the sublanguages the input belongs, enters an according restarting
state, and accepts this sublanguage. The empty string and ab are accepted without performing a
single cycle.
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L(mon-RRW) 6⊂ L(mon-nf-R):

The language L̃pal′ = Lpal′ ∪ {w#wR#|w ∈ {a, b}∗} is accepted by a mon-RW-automaton, but not
by a mon-nf-R-automaton, because it cannot accept Lpal′ .

Lemma 3.4.12. The classes L(mon-nf-RW) and L(mon-RR) are incomparable with respect to
inclusion.

Proof. L(mon-RR) 6⊂ L(mon-nf-RW):

Lpal′′ 6∈ L(mon-nf-RW) (see Lemma 3.4.10) can be recognized by a mon-RR-automaton with the
following meta-instructions, where d ∈ {a, b, c} holds:

(1)(c|{a, b, c}∗, dcφ(d) → c, {a, b}∗$))
(2)(c| c$,ACCEPT)

The other direction was already shown in the proof of the last lemma.

3.5 Deterministic Monotone Restarting Automata

A restarting automaton is deterministic monotone if it is deterministic and monotone. We have
seen that deterministic nonforgetting restarting automata are more powerful than deterministic
forgetting ones. This is as well true for monotone restarting automata that are deterministic.

Forgetting deterministic monotone restarting automata recognize exactly DCFL, and the R-model is
as powerful as the RRWW-model. This is shown in [JMPV99] by a simulation of a det-mon-RRWW-
automaton by a deterministic PDA. This result can be adapted to nonforgetting automata, however
only in a weaker form.

Theorem 3.5.1. DCFL = L(det-mon-nf-R) = L(det-mon-nf-RWW).

Proof. DCFL ⊆ L(det-mon-nf-R) ⊆ L(det-mon-nf-RWW) is already known, see Theorem 2.3.3 on
page 20. We prove now that the inclusion L(det-mon-nf-RWW) ⊆ DCFL is valid.

Claim L(det-mon-nf-RWW) ⊆ DCFL

Proof. Let M = (Q, Σ, Γ, c| , $, q0, k, δ) be a nonforgetting deterministic monotone RWW-automaton,
let w be an input string, and let C1, C2, . . . , Cm be the sequence of cycles that correspond to the
computation of M starting with q0c|w$. For each cycle Cj the tape contents can be divided into
three parts: a prefix xj , the part uj within the read/write window during the execution of the
actual Rewrite-step, and the remaining suffix yj .

As M is monotone, the positions where the Rewrite-steps are performed move from left to right
across the tape. Accordingly, the prefixes xj can be stored in a pushdown store. In the forget-
ting case the state in which M can be after reading the prefix xj of the restarting configuration
q0c|xjujyj$ is stored in an extra track on the tape. For nonforgetting RRWW-automata there is an
extra track for each restarting state. The state that is derived starting from qc|xjujyj$ is stored
in the track for the restarting state q. This is done analogously to the proof of Theorem 3.4.1.

In detail: A DPDA A uses a buffer of size k. On simulating M on the input w, A starts with
reading the first k symbols into its buffer. Then it simulates one step of the transition relation δ
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of M that corresponds to the first step of the cycle C1. As M is deterministic there is only one
possible step that is applicable to the configuration q0c|w$. The leftmost symbol of w that is no
longer in the window of M is stored in the pushdown store together with |Q| many extra tracks.
The state that M derives from qc|w$, q ∈ Q, in one step is stored in the track assigned to q. As
M is deterministic, there is at most one state in each track.

This simulation is continued until A has stored x1 on the pushdown store and has u1 in its finite
control. Then A performs the Rewrite-step within its finite control and pops symbols from the
pushdown store until it has again k symbols in its finite control. If there are not enough symbols
left, the bottom marker is not popped from the pushdown store. Instead A reads symbols from
the tape until it has again k symbols in its finite control.

M restarts immediately after the rewrite, so A can continue with the state from the track that
corresponds to the restarting state in which M restarts. As M is monotone, the next rewrite is
not to the left of the current k symbols in the finite control. So A can continue to simulate the
second cycle C2 in the same way as the first.

This is done until either M halts and accepts, or halts and rejects. Accordingly A enters a final
state or a trap state which it never leaves again. Thus, A accepts the same language as M .

Thus we know that DCFL ⊆ L(det-mon-nf-R) ⊆ L(det-mon-nf-RWW) ⊆ DCFL and therefore
DCFL = L(det-mon-nf-R) = L(det-mon-nf-RWW).

This theorem only covers restarting automata that restart immediately after executing a rewrite
step. In the next paragraphs we show that this theorem is only valid for these restarting automata.
Because already det-mon-nf-RR-automata accept languages that are not deterministic context-free.

Example 3.5.2. Lpal = {wcw̄R | w ∈ {a, b, c}∗, ā = a, b̄ = b, c̄ = ε} ∈ L(det-mon-nf-RR):

(1)(q0, c| ce → c|e, {a, b, c}∗$, q0) |e ∈ {a, b, c} (2)(q0, c| c$,ACCEPT)

(3)(q0, c|a → c| , ({a, b}∗c)2{a, b, c}∗$, qa) (10)(q0, c| b → c| , ({a, b}∗c)2{a, b, c}∗$, qb)
(4)(q0, c|a → c| , {a, b}∗c{a, b}∗$, q′a) (11)(q0, c| b → c| , {a, b}∗c{a, b}∗$, q′b)
(5)(qa, c|{a, b}∗, c → ε, ({a, b}∗c)2{a, b, c}∗$, qa) (12)(qb, c|{a, b}∗, c → ε, ({a, b}∗c)2{a, b, c}∗$, qb)
(6)(qa, c|{a, b}∗, c → ε, {a, b}∗c{a, b}∗$, q′a) (13)(qb, c|{a, b}∗, c → ε, {a, b}∗c{a, b}∗$, q′b)
(7)(q′a, c|{a, b}∗, aca → c, {a, b}∗$, q′a) (14)(q′b, c|{a, b}∗, aca → c, {a, b}∗$, q′b)
(8)(q′a, c|{a, b}∗, bcb → c, {a, b}∗$, q′a) (15)(q′b, c|{a, b}∗, bcb → c, {a, b}∗$, q′b)
(9)(q′a, c| ca$,ACCEPT) (16)(q′b, c| cb$,ACCEPT)

In the initial state M accepts the input c, and if the input is cx, x ∈ {a, b, c}+ it deletes the first
c and restarts in q0. Thus, in the restarting state q0, M deletes cs at the left end of the tape,
provided the tape content is not c| c$. This is achieved by the rewrite step c| ce → c|e, e ∈ {a, b, c}.
If the tape content does not start with c, then M deletes the first letter d, d ∈ {a, b}, on the tape
and moves on, counting the remaining cs on the tape. If there are at least two cs left it restarts in
the restarting state qd, if there is only one c left on the tape, then M restarts in q′d.

In qa(qb) M deletes the first c and counts the remaining cs. If there are at least two cs left, it
restarts in qa(qb). If there is only one c left, then M restarts in q′a(q′b). In q′a M simply accepts the
language {wcwRa|w ∈ {a, b}∗}. This is done by deleting the letters next to the c if they coincide. In
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q′b M simply accepts the language {wcwRb|w ∈ {a, b}∗}. Again this is done by deleting the letters
next to the c if they coincide. Thus, an input x is accepted if it belongs to Lpal. M is monotone,
because it deletes at the left border marker until it finds a letter a or b. Then it deletes all but the
last c from left to right, and finally it deletes the letters next to the last remaining c.

To show that Lpal 6∈ DCFL is valid, we use Ogdens Lemma for deterministic context-free languages.

Lemma 3.5.3 (Ogdens Lemma for DCFL). [Har79, JMPV97b]

Let L ∈ DCFL, then there is an integer p(L) such that for every w ∈ L and for every set K of
positions in w the following holds: if |K| ≥ p(L), then there is a factorization ϕ = (v1, ..., v5) of w
such that:

1. v2 6= ε;

2. For all n ≥ 0, v1v
n
2 v3v

n
4 v5 ∈ L;

3. if K/ϕ = {K1, ...,K5}, then

i) K1,K2,K3 6= ∅ or K3,K4,K5 6= ∅,
ii) |K2 ∪K3 ∪K4| ≤ p(L);

4. if v5 6= ε, then for each m,n ≥ 0, u ∈ Σ∗,
v1v

m+n
2 v3v

n
4 u ∈ L if and only if v1v

m
2 v3u ∈ L.

Lemma 3.5.4. DCFL is strictly included in L(det-mon-nf-RR).

Proof. We have seen that Lpal ∈ L(det-mon-nf-RR) is valid. Now we show that this language is not
deterministic context-free.

We use w = akcak ∈ Lpal, where k = p(Lpal) + 1 holds and the set K contains all positions after
the c. Then we get a factorization of w with v1 = ai, v2 = aj , v3 = ak−i−jcal, v4 = aj , v5 = ak−l−j .
This is the only way to factor w so that 1. and 2. is complied. The pumping factors v2 and v4

must have the same length and must occur on different sides of the c, because this is the only
way such that v1v

n
2 v3v

n
4 v5 ∈ Lpal holds. With this factorization we know that K1 = K2 = ∅ and

K3,K4,K5 6= ∅ hold.

As |K2 ∪K3 ∪K4| = l + j ≤ p(Lpal) < k must be valid, v5 6= ε holds. Thus we can use 4. to prove
that Lpal is not in DCFL.

For m = 0 and u = cak+l−j it follows that v1v3u = ai ak−i−jcal cak+l−j = ak−jcalcak−j+l ∈ Lpal

holds. But for every n > 0 we get v1v
n
2 v3v

n
4 u /∈ Lpal, because the number of a’s before the last c

increases, while the number of a’s after the last c remains unchanged. Thus Lpal /∈ DCFL holds.

With small changes we can find languages that prove the strictness of the inclusions between
L(det-mon-nf-RR), L(det-mon-nf-RRW) and L(det-mon-nf-RRWW). To simplify the description
of the restarting automata, we use the additional restriction |w|c ≥ 1 for the other languages.
Without this restriction the same results hold. Here (EF ), for e, f ∈ {a, b, c}, are extra symbols
that are used to encode the tape content.
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Lpal ={wcw̄R | w ∈ {a, b, c}∗, ā = a, b̄ = b, c̄ = ε} ∈ L(det-mon-nf-RR) \ DCFL

Lpal′′ ={wcφ(wR) | w ∈ {a, b, c}∗, φ(a) = aa, φ(b) = ab, φ(c) = ba, |w|c ≥ 1}
∈ L(det-mon-nf-RRWW) \ L(det-mon-nf-RRW)

Lpal
′′ ={w(AA)(AB)(AC)(BA)(BB)(BC)(CA)(CB)(CC) | w ∈ Lpal′′}

∈ L(det-mon-nf-RRW) \ L(det-mon-nf-RR)

In Lpal the morphism d → d only removes the cs. Lpal′′ was already used in Lemma 3.4.10. In Lpal
′′

each word from Lpal′′ is followed by nine additional symbols that are used to encode two input
symbols of Lpal′′ .

Lemma 3.5.5. Lpal′′ ∈ L(det-mon-nf-RRWW) \ L(det-mon-nf-RRW).

Proof. With the restriction to subwords w of even length we can use the following determinis-
tic monotone nf-RRWW automaton M ′′ that accepts the language Lpal′′ . This restriction is not
necessary, it only shortens the description of the automaton. M ′′ uses the auxiliary symbols
Γ0 = {(AA), (AB), (AC), (BA), (BB), (BC), (CA), (CB), (CC)}. Let d, e ∈ {a, b, c}, let (DE) be
the auxiliary symbol that corresponds to the two input symbols d and e.

(1)(q0, c|Γ∗0, de → (DE), {a, b, c}2{a, b}∗c{a, b, c}∗$, q0) (3)(q1, c|Γ∗0, (DE)cφ(ed) → c, {a, b}∗$, q1)
(2)(q0, c|Γ∗0, de → (DE), c{a, b}∗$, q1) (4)(q1, c| c$,ACCEPT)

M ′′ first encodes the word w with its auxiliary symbols. Again the technique from the previous
restarting automata is used to deterministically restart in a different state, if only one c remains
on the tape. Here it is only restarted in a different state if the suffix starts with the last c. The last
remaining c now marks the middle. The symbols around this c are deleted if the encoded symbol
(DE) match with φ((de)R) = φ(ed).

Claim: Lpal′′ 6∈ L(det-mon-nf-RRW).

Proof. Assume that there exists a det-mon-nf-RRW-automaton M = (Q,Σ, Σ, c| , $, q0, k, δ), with
Σ = {a, b, c}, for this language. Let wcφ(wR) ∈ Lpal′′ and w is a large incompressible word over
Σ. Then M is unable to deterministically find the last occurrence of the letter c in one cycle.
Thus it needs to process the input from left to right. From Lemma 3.4.5 we know that M can
only perform a finite number of rewrites inside of w in an accepting computation and that the
remaining word has a long suffix that is random. Thus with Corollary 3.4.4 it follows that M
cannot deterministically perform a rewrite in the middle of the word afterwards. Thus M cannot
accept Lpal′′ .

Lemma 3.5.6. Lpal
′′ ∈ L(det-mon-nf-RRW) \ L(det-mon-nf-RR).

Proof. Again we use the restriction to subwords w of even length to describe a deterministic
monotone nf-RRW automaton M that accepts the language Lpal

′′ . M uses the additional symbols
{(AA), (AB), (AC), (BA), (BB), (BC), (CA), (CB), (CC)} at the end of each word to encode pairs
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of input symbols . Let d, e ∈ {a, b, c} , let (DE) be the additional symbol that corresponds to the
two input symbols d and e, and let w0 = (AA)(AB)(AC)(BA)(BB)(BC)(CA)(CB)(CC).

(1)(q0, c|Γ∗0, de → (DE), ({a, b}∗c)2{a, b, c}∗w0$, q0)
(2)(q0, c|Γ∗0, de → (DE), {a, b}∗c{a, b}∗w0$, q1)
(3)(q1, c|Γ∗0{a, b}∗, decφ(ed) → c, {a, b}∗w0$, q1)
(4)(q1, c|Γ∗0, (DE)cφ(ed) → c, {a, b}∗w0$, q1)
(5)(q1, c| cw0$,ACCEPT)

M behaves just like M ′′ in the proof of Lemma 3.5.5 except that the word w0 must be at the right
end of the tape. w0 is not altered during the computation.

As Lpal′′ 6∈ L(det-nf-RRW) holds and as the additional symbols at the end of the tape do not help
an RR-automaton it follows that Lpal

′′ 6∈ L(det-nf-RR) holds.

All of these languages are in L(det-mon-nf-RL), because we always look for the last c, which is
trivial for RL-automata. We will now prove a result that goes much further. In this proof shrinking
nonforgetting restarting automata are used. To recall the Definition 2.7.1 on page 27: A shrinking
restarting automaton does not need to reduce the length of the tape in each rewrite step u → v,
it must only reduce, for a given weight function, the weight. That means the weight of v must be
smaller than the weight of u.

Theorem 3.5.7. L(det-mon-nf-sh-RLWW) = L(det-mon-RL).

Proof. It is shown in [JMOP05] that L(det-mon-RL) = L(det-mon-RLWW) holds. The extension
to shrinking restarting automata is obtained as follows.

A language L is accepted by a monotone deterministic shrinking RLWW automaton (sh-RLWW) if
and only if LR is accepted by a left-monotone deterministic sh-RLWW automaton (cf. Lemma 1
of [JMOP05]).

From the main results of [OJ03] we see that L(det-left-mon-sh-RLWW) = L(det-left-mon-RLWW),
while Theorem 3 of [JMOP05] yields L(det-left-mon-RLWW) = L(det-left-mon-RL). Hence, we see
that L(det-left-mon-sh-RLWW) = L(det-left-mon-RL). By using Lemma 1 of [JMOP05] again we
obtain L(det-mon-RL) = L(det-mon-sh-RLWW).

Thus, it remains to show that every monotone deterministic nonforgetting sh-RLWW automaton
can be simulated by a monotone deterministic sh-RLWW automaton. This can be done as follows.

Let M by a det-mon-nf-sh-RLWW automaton. It is simulated by a monotone deterministic sh-RLWW
automaton M ′. We can assume that M restarts immediately after the rewrite (see Lemma 3.3.2).
Thus, M ′ is able to write the restarting state on the tape.

First M ′ scans the tape from left to right searching for symbols that encode a state and a tape
symbol of M . In its internal state, M ′ remembers the rightmost state found in this way, and if
no such symbol is found, then M ′ remembers the initial state of M . Next M ′ starts with the
simulation of M at the left end of the tape with the remembered restarting state. M ′ continues
with the simulation until it reaches the configuration in which M would perform a rewrite operation
u → v. M ′ executes this rewrite operation, encoding the new restarting state of M in the rightmost
symbol of v. To ensure that the right-hand side of each rewrite step is not empty M ′ has a window
of size k+1, where k is the window size of M . As M is monotone, the newly written restarting state
is the rightmost state encoded in the tape inscription, and therewith it will be chosen correctly in
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the next cycle. It is easily seen that M ′ simulates M cycle by cycle and that it accepts the same
language as M .

But L(det-mon-RL) is strictly included in CRL, CFL and their intersection.

Lemma 3.5.8. L(det-mon-nf-RLWW) = L(det-mon-RL) ( CRL ∩ CFL.

Proof. The inclusion in CFL has been shown in the previous section. The inclusion in CRL was
shown in Theorem 2.4.9 on page 24. The strictness of the inclusion follows by the example language
L2 = { anbn | n ≥ 0 }∪{ anbm | m > 2n ≥ 0 }, which is context-free and Church-Rosser by [Ott06]
Lemma 6, but cannot be accepted by a det-mon-RL-automaton, see Lemma 2.3.5 on page 21.

The only question left to answer is the exact relationship between L(det-mon-nf-RRWW) and
L(det-mon-nf-RL). We first study shrinking deterministic monotone nonforgetting restarting au-
tomata. Then we use the obtained results to answer this question.

Theorem 3.5.9. L(det-mon-nf-sh-RRWW) = L(det-mon-RL).

Proof. L(det-mon-nf-sh-RRWW) ⊆ L(det-mon-RL) follows immediately from Theorem 3.5.7.

For the other direction we use the fact that each det-mon-RL-automaton is correctness preserv-
ing. With Theorem 2.8.4 it follows that there exists a correctness preserving mon-RR-automaton
that accepts the same language. Thus, if a language L belongs to L(det-mon-RL), then there
exists a correctness preserving mon-RR-automaton M = (Q,Σ, Σ, c| , $, q0, k, δ) with L(M) = L.
M can be described by meta-instructions (Ei, ui → vi, E

′
i), Ei and E′

i are called the prefix- and
suffix-condition, respectively. As M is correctness preserving a cycle that starts in a promising
configuration leads again to a promising configuration.

We are now going to give a construction of a det-mon-nf-sh-RRWW-automaton M ′ = (Q′,Σ, Γ, c| , $,
q0, k + 1, δ′) that is able to check the regular conditions for a cycle before it performs the rewrite.
Here Σ′ = {A | a ∈ Σ} and Γ = Σ∪Σ′ hold. The weight of the letters in Σ is taken as two and the
weight of the auxiliary symbols is one.

M ′ starts its computation by marking the first k symbols on the tape and moves to the right
border marker. The prefix conditions of all meta-instructions are checked for the empty set and
the suffix conditions are checked for the unmarked part of the tape. If one meta-instruction Ii is
found for which the prefix- and the suffix-conditions are fulfilled and ui is the marked part of the
tape, then M ′ restarts in a restarting state indicating that the meta-instruction Ii is applicable.
Otherwise it restarts in a state indicating that the marking must go on. Whenever M ′ detects that
an accepting meta-instruction is applicable it accepts immediately.

If the marking goes on, then M ′ marks the next unmarked symbol and checks whether the sequence
of all but the last k symbols of the marked part fulfills the prefix condition of Ii, the sequence of
the last k symbols of the marked part are equal to ui, and the unmarked part fulfills the suffix
condition of Ii. If one meta-instruction Ii is found that fulfills all these conditions, then M ′ restarts
in a restarting state indicating that the meta-instruction Ii is applicable. Otherwise it restarts in
a state indicating that the marking must go on.

If a meta-instruction Ii is applicable, then it is applied in the next cycle. M ′ moves over the
marked part of the tape, rewrites ui to vi, the vi is written as marked symbols on the tape. While
it performs this cycle it also checks what meta-instruction is applicable next. As M is monotone
the next rewrite must completely contain vi or it contains symbols from the unmarked part of the
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tape. Thus either one meta-instruction Ij is applicable such that vi is a suffix of uj or M ′ can
continue to mark letters on the tape.

To find the position of the ui deterministically, M ′ needs a window of size k+1 to see one unmarked
symbol on the tape while it has all of ui in its window. This additional symbol remains unmarked
and is not changed in the rewrite step.

Observe that M can be nondeterministic, thus the place for the rewrite is perhaps not determinis-
tically detectable. But as M ′ tests at each place of the tape, whether a rewrite is applicable there
or not, it can always check the prefix and suffix condition from left to right, because it does not
need to find the place of the rewrite.

Claim: L(M) = L(M ′).

Proof. L(M) ⊆ L(M ′).

Let w ∈ L(M), then there exists an accepting sequence of cycles starting with w:

w `M w1 `M . . . `M wn−1 `M wn `M ACCEPT.

M ′ starts simulating the first cycle w = w′uw′′ `M w′vw′′ = w1 by marking the first k letters.
Then it checks whether the conditions for one meta-instruction are fulfilled. In this case it restarts
in a restarting state indicating that in the next cycle a rewrite of M can be simulated. In all other
cases M ′ marks symbols until w′u is marked. Then it restarts in a restarting state indicating that
in the next cycle a rewrite of M can be simulated.

When the cycle of M is performed by M ′, remark that all conditions are already checked and the
rewrite W ′ · U · w′′ → W ′ · V · w′′ is at the last k marked symbols, here W ′ = A1A2 . . . Am, if
w′ = a1a2 . . . am holds. In this cycle, M ′ checks if the next rewrite has V as a suffix. As M is
monotone, the next rewrite is not left of the last marked symbol. Thus either in the next cycle of
M ′ the next cycle of M is performed if it has the same right distance, or M ′ continues to mark
the tape until it detects the place for the next rewrite.

This is done until M ′ accepts the input Xy after n cycles, where wn = xy holds. Conversely
if w ∈ L(M ′), then beside the marking all rewrites simulate cycles of M . So for each accepting
sequence of cycles of M ′ there exists a accepting sequence of cycles of M that starts with the same
word. Thus L(M ′) ⊆ L(M) holds.

This completes the proof.

This proof can be adapted for length reducing det-mon-nf-RRWW-automata.

Theorem 3.5.10. L(det-mon-nf-RRWW) = L(det-mon-RL).

Proof. L(det-mon-nf-RRWW) ⊆ L(det-mon-nf-RLWW) is trivial and in Theorem 3.5.7 it was shown
that L(det-mon-nf-RLWW) = L(det-mon-RL) holds.

The construction for the other direction is similar to the one in the previous Theorem. Again
not the det-mon-RL-automaton, but a correctness preserving mon-RR-automaton that accepts the
same language is simulated.

Let M = (Q, Σ, Σ, c| , $, q0, k, δ) be a correctness preserving mon-RL-automaton with (Ei, ui →
vi, E

′
i) the meta-instructions of M , where 1 ≤ i ≤ n, Ei is again called the prefix-, E′

i the
suffix-condition. This automaton can be simulated by a det-mon-nf-RRWW-automaton M ′ =
(Q′,Σ, Γ, c| , $, q0, k +1, δ′) that is able to check the regular conditions for a cycle before it performs
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the rewrite. Here Σ′
2 = {(AB)|a, b ∈ Σ} and Γ = Σ ∪ Σ′

2 hold. M ′ works like the shrinking
automaton in the proof of the previous Theorem with two differences.

First two input symbols are encoded in one auxiliary symbol, such that the encoding (marking)
can be done with length reducing rewrites. This implies the second difference, because if more
than one rewrite with the same right distance occurs in successive cycles, and each rewrite reduces
the length only by one, then it is not so easy to simulate them one by one.

Thus every time M ′ detects a place for a rewrite ui → vi, it also checks whether the next cycle has
a rewrite uj → vj with the same right distance that means whether vi is a suffix of uj or not. In
the affirmative M ′ performs both rewrites together in a single rewrite step. This ensures that the
length of the tape is reduced by at least two, which means that even the encoded tape is reduced
by at least one. In the negative M ′ can encode the letter d which is right of the rewrite if it is
needed to have a length reducing rewrite step. This is possible, because the rewrite of the next
cycle has a smaller right distance.

Thus it follows as for shrinking restarting automata that L(M) = L(M ′) holds.

This is the first time that some variants of RWW and RRWW-automata are separated. Just recently
it was shown that the language class L(det-mon-RL) coincides with the class of left-to-right regular
languages (LRR). For a definition of LRR grammars and languages see [CC73].

Proposition 3.5.11. [Ott07] LRR = L(det-mon-RL).

So the classes L(det-mon-nf-RWW) and L(det-mon-nf-RRWW) are not only different, but they
both describe well-known language classes. Thus we get the following taxonomy of deterministic
monotone nonforgetting restarting automata:

LRR = L(det-mon-nf-sh-RLWW) = L(det-mon-RL)

L(det-mon-nf-RRW)

Lpal′′
OO

L(det-mon-nf-RR)

L
pal′′

OO

DCFL = L(det-mon-nf-R)

Lpal

OO

= L(det-mon-nf-RWW)

Figure 3.3: The taxonomy of deterministic monotone nonforgetting restarting automata

3.6 Shrinking Nonforgetting Restarting Automata

Shrinking automata are an extension to the normal length reducing restarting automata. Length
reducing restarting automata reduce the length of the tape in each cycle, while shrinking restarting
automata only have to reduce the weight of the tape, or the restarting configuration, in each cycle.
For forgetting restarting automata the weight from cycle to cycle can be measured by looking at
the rewrite instruction. If the rewrite instruction is weight reducing, then the weight of the tape,
or of the restarting configuration, is reduced and vice versa.

For nonforgetting restarting automata this is not true. There are two different methods to define
the notion of shrinking for nonforgetting restarting automata. The weight must be reduced in
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every cycle but it is a difference whether the weight of the tape or the weight of the restarting
configuration is considered. The reduction of the weight of the tape corresponds to a weight
reduction of the rewrite step. This is the definition, which is given next. The other notion is
studied in Subsection 3.7.

Definition 3.6.1. A shrinking nonforgetting restarting automata M = (Q,Σ, Γ, c| , $, q0, k, δ) is a
restarting automaton without the restriction to shorten the tape in every rewrite step. Instead there
must exist a weight function ϕ : Γ → N+, such that, for every rewrite step u → v, ϕ(u) > ϕ(v)
holds. Here ϕ is extended to words by taking ϕ(u1u2 . . . un) = ϕ(u1) + ϕ(u2) + . . . + ϕ(un), ui ∈ Γ
for all i = 1, . . . , n.

This definition of shrinking is closely related to the notion of shrinking for forgetting automata.
Also in [JO07] this kind of shrinking is considered for nonforgetting restarting automata. In this
work we will always use this type of (tape) shrinking unless it is especially mentioned that the other
kind of shrinking is used. Some results concerning shrinking nonforgetting restarting automata are
already obtained in the previous sections.

We have seen in Section 2.7 that L(sh-RRWW) = L(nf-sh-RRWW) holds. Here we show that the
same is true for deterministic RLWW-automata.

To establish this result we need Lemma 3.3.2 from page 42, which describes a normalform for
deterministic nonforgetting restarting automata.

Theorem 3.6.2. L(det-sh-RLWW) = L(det-nf-sh-RLWW).

Proof. We simulate a shrinking nonforgetting restarting automaton M = (Q,Σ, Γ, c| , $, q0, k, δ) with
weight function σ by a shrinking forgetting restarting automaton M ′ = (Q′,Σ, Γ′, c| , $, q′0, k + 1, δ)
with the weight function σ′. This is done by writing the restarting states on the tape. To have at
least one symbol on the right-hand side of each rewrite step, the window size is increased by one.
The new tape alphabet consists of several copies of the old one Γ′ = {A,Anew,q, Aold,q|A ∈ Γ, q ∈
Q}. We call the new symbols marked with a state and a label "new"/"old". The weight function
is defined as follows:

σ′(A) = 3 ∗ σ(A),
σ′(Anew,q) = 3 ∗ σ(A) + 2,

σ′(Aold,q) = 3 ∗ σ(A) + 1.

M ′ simulates M cycle by cycle. At the beginning of each cycle, M ′ scans the whole tape for
occurrences of marked symbols, and then returns to the left border marker c| . M ′ distinguishes
four cases: no occurrence of a marked symbol, one marked symbol with the label "new", one
marked symbol with the label "old", and two marked symbols, one with label "new" and one with
label "old".

(i) No marked symbol on the tape::
M ′ simulates a cycle of M starting from the initial state q0. There is only one difference: when
M ′ simulates a rewrite step u → v of M it marks the leftmost symbol in the new factor v with the
next restarting state and the label "new". M ′ can do this because we can assume that M restarts
immediately after the rewrite (see Lemma 3.3.2). The weight of the marked symbol is larger than
the weight of the original symbol, but the weight of each rewrite step of M is reduced by at least
one, thus in σ′ the weight is reduced by at least three and therefore the overall weight is reduced
in a rewrite step of M ′ as well. This case only happens at the start of a computation.
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(ii) One marked symbol with the label "new" on the tape::
The symbol of the form Anew,q is replaced by Aold,q.

(ii) One marked symbol with the label "old" on the tape::
M ′ simulates M starting its simulation in the restarting state q, if Aold,q is the marked symbol on
the tape. Again the leftmost symbol of the new factor v is marked with the new restarting state
and the label "new". If the rewrite occurs in the place of the marked symbol Aold,q, then this
symbol is rewritten into A.

(iv) Two marked symbols on the tape::
If two marked symbols are on the tape, then one must have the marker "old" and one the marker
"new". If this is the case, then M ′ deletes the label "old", that means the symbol Aold,q is replaced
by A.

The automaton M ′ works as follows:

At the start of each cycle M ′ scans the tape completely for occurrences of marked symbols. Only
in the initial configuration there is none. In this case M ′ performs a cycle (q0, w0) `c

M (q, w1) as
described in (i). After this cycle, there is one marked symbol Anew,q on the tape. This symbol is
replaced by the corresponding symbol Aold,q in the next cycle as described in (ii).

In the next cycle M ′ sees the marked symbol Aold,q on the tape. It then moves to the left border
marker and starts simulating a cycle of M starting in the restarting state q, say (q, w1) `c

M (p, w2).
The new restarting state p is encoded in the leftmost symbol of the rewrite, instead of B the
symbol Bnew,p is written. If there are now two marked symbols on the tape, the symbol with the
label "old", Aold,q, is replaced by the symbol A in the next cycle. Now there is only the marked
symbol Bnew,p on the tape, this is replaced by Bold,p. This sequence of two or three cycles iterates
while simulating M .

As each cycle of M is simulated by a sequence of two or three cycles of M ′, it follows that
L(M) = L(M ′) holds.

The same method of marking symbols can be used to simulate restarting automata that are allowed
to perform more than one rewrite per cycle.

Theorem 3.6.3. For every shrinking det-nf-RLWW-automaton with c rewrites per cycle M , there
exists a shrinking det-nf-RLWW-automaton M ′ such that L(M) = L(M ′) holds. If M is forgetting,
then so is M ′.

Proof. We simulate a shrinking (nonforgetting) restarting automaton M = (Q, Σ, Γ, c| , $, q0, k, δ),
with c rewrites per cycle and weight function σ by a shrinking (nonforgetting) restarting automaton
M ′ = (Q′,Σ, Γ′, c| , $, q′0, k + 1, δ) with the weight function σ′. This is done by writing the state
on the tape. To have at least one symbol on the right-hand side of each rewrite step, the window
size is increased by one. The new tape alphabet consists of several copies of the old one Γ′ =
{A,Aq,i, Aremove|A ∈ Γ, q ∈ Q, 1 ≤ i ≤ c}. We call the new symbols A(q,i) marked with a state q
and a number i. The symbols Aremove are called "remove" symbols. The weight function is defined
as follows:

σ′(A) = 3 ∗ σ(A),
σ′(Aq,i) = 3 ∗ σ(A) + 2,

σ′(Aremove) = 3 ∗ σ(A) + 1.
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M ′ simulates one cycle of M by 2c + 1 cycles. In each cycle it first scans the tape completely for
occurrences of marked or remove symbols. If a marked symbol is found it remembers the state of
the marked symbol with the highest number. In the first c cycles the c rewrites are performed,
one in each cycle. While doing this c marked symbols Aq,i, 1 ≤ i ≤ c, q ∈ Q, are written on the
tape. The state in the marked symbol is the states in which M continues after the rewrite and the
second index is the number of the rewrite. Assume M rewrites a configuration c|w1xpuw2$ into
c|w1xvqw2$, x ∈ Γ and w1, w2, u, v ∈ Γ∗ in its first rewrite. Then M ′ rewrites the configuration
c|w1pxuw2$ into c|w1xq,1qw2$ if v = ε holds, or into a configuration where the leftmost symbol of
v is marked with q, 1. After the rewrite M ′ restarts.

For all other rewrites M ′ moves to the marked symbol Aq,i with the highest second index, enters
state q and continues by simulating another rewrite of M . M ′ again restarts immediately after the
rewrite.

When M ′ finds a marked symbol with the number c on the tape, then the leftmost of the marked
symbols Aq,j is replaced by Aremove. In the following c− 1 cycles the other marked symbols Al

q,i,
1 ≤ i ≤ c, i 6= j, are replaced by Al. In the last cycle the Aremove is replaced by A. If M is
nonforgetting the restarting state is remembered in the state of M ′.

Thus M ′ can simulate M cycle by cycle (or by 2c+1 cycles) and therefore L(M) = L(M ′) holds.

Together Theorem 3.6.3 and Theorem 3.6.2 lead to the following Corollary.

Corollary 3.6.4. The language class L(det-sh-RLWW) coincides with the class of languages that
are recognized by shrinking deterministic nonforgetting RLWW-automata with multiple rewrites.

Thus for deterministic sh-RLWW as well as for nondeterministic sh-RRWW-automata (see Sec-
tion 2.7 on page 27), the property of being nonforgetting or the ability to perform many rewrites
per cycles do not increase the expressive power. It is an open question whether these two language
classes coincide. It is conjectured that they are not equal.

3.7 A Different Kind of Shrinking Nonforgetting Restarting
Automata

Here we will study a different kind of shrinking. As it was mentioned in the beginning of the
previous section it is possible to define shrinking nonforgetting restarting automata in two different
ways.

1. each letter of the tape alphabet has a weight and the weight of the tape is reduced in each
rewrite step. This coincides with the case that the weight of the tape is reduced in each
cycle.

2. Each letter of the tape alphabet and each (restarting) state has a weight. It is required that
the weight of the restarting configurations is reduced in each cycle.

Definition 3.7.1. A state shrinking nonforgetting restarting automaton M = (Q,Σ, Γ, c| , $, q0, k, δ)
is a nonforgetting restarting automaton without the restriction to shorten the tape in every rewrite
step. Instead there must exist a weight function ϕ : Γ ∪ Q → N+ such that, if (q, w) `c

M (p, w′)
holds, then ϕ((q, w)) > ϕ((p, w′)) holds, too. Here ϕ is extended to configurations ϕ : (q, w) → N+.

The prefix shq− denotes that the automaton is a state shrinking restarting automaton.
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It is easily seen that shrinking is a special case of state shrinking.

Proposition 3.7.2. L(sh-X) ⊆ L(shq-X) for all types of restarting automata X.

Proof. For all types of forgetting restarting automata these two types of shrinking are equivalent.
Every nonforgetting shrinking restarting automaton M = (Q,Σ, Γ, c| , $, q0, k, δ) with weight func-
tion ϕ can be simulated by a nonforgetting state shrinking restarting automaton M ′(Q,Σ, Γ, c| , $, q0,
k, δ) with weight function ϕ′. ϕ′ is defined as follows: ϕ′(q) = 1 for all q ∈ Q and ϕ′(A) = ϕ(A)
for all A ∈ Γ.

These state shrinking automata have some interesting properties. For example deterministic state
shrinking nonforgetting restarting automata do not need to read after the rewrite if they are non
monotone.

Lemma 3.7.3. L(det-nf-shq-RRX) = L(det-nf-shq-RX) for X ∈ {WW,W, ε}.

Proof. L(det-nf-shq-RX) ⊆ L(det-nf-shq-RRX) is trivial. For the other direction let M = (Q,Σ, Γ, c| ,
$, q0, k, δ) be a deterministic state shrinking nonforgetting RRX-automaton. Every cycle (q, w) `c

M

(p, w′) of M is simulated by a deterministic state shrinking nonforgetting RX-automaton M ′ =
(Q′,Σ, Γ, c| , $, q0, k, δ′) in two cycles. In the first cycle it is checked which meta-instruction is
applicable and the rewrite is performed at the end of the tape rewriting $ → $. M ′ restarts in
a restarting state with a smaller weight than q and the information which meta-instruction is
applicable. In the second cycle this meta-instruction is simulated until M ′ performs the rewrite,
where the simulation is ended and M ′ restarts immediately in the restarting state p. Thus in two
cycles of M ′ (q, w) `2c

M (p, w′) is obtained as well.

This lemma does not hold for monotone restarting automata. Another interesting property is that
state shrinking RRWW-automata are closed under intersection.

Theorem 3.7.4. The language class L(nf-shq-RRWW) is closed under intersection.

Proof. For two languages L1, L2 ∈ L(nf-shq-RRWW) and two nf-shq-RRWW-automata M1 =
(Q1,Σ, Γ1, c| , $, q(0,1), k1, δ1),M2 = (Q2,Σ, Γ2, c| , $, q(0,2), k2, δ2, with L(M1) = L1 and L(M2) = L2

we construct a nf-shq-RRWW-automata M = (Q,Σ, Γ, c| , $, q0, k, δ) with L(M) = L1 ∩ L2.

M first copies the tape content so that it can check membership in L1 on the first syllable and
membership in L2 on the second. If both checks are positive, then M accepts.

In detail: Let ϕ1 be the weight function of M1 and ϕ2 be the weight function of M2. Then M
uses the weight function ϕ(a) = ϕ1(a) + ϕ2(a) + 2 for all a ∈ Σ, ϕ(A) = ϕi(A) for A ∈ Γi \Σ with
i ∈ {1, 2}. Γ = Σ ∪ Σ1 ∪ Σ2 ∪ (Γ1 \ Σ) ∪ (Γ2 \ Σ) ∪ {#} where Σ1 and Σ2 are copies of Σ with
ϕ(ai) = ϕi(a) for ai ∈ Σi. ϕ(#) = 1 and for the initial state ϕ(q0) = ϕ1(q(0,1)) + ϕ2(q(0,2)) + 1.

M proceeds as follows. The first letter on the tape a1 is rewritten into a1
1. This rewrite reduces

the weight by ϕ(a1)−ϕ(a1
1) = ϕ(a2

1)+2. ϕ(a2
1)+1 of this weight is "stored" in the restarting state

such that the new restarting state has weight ϕ1(q(0,1)) + ϕ2(q(0,2)) + ϕ(a2
1) + 2 and the weight of

the restarting configuration is reduced by 1. In the next cycle #a2
1 is written at the end of the tape.

The weight of the new restarting state is ϕ1(q(0,1)) + ϕ2(q(0,2)). In the next two cycles the second
letter a2 is first rewritten into a1

2 and then written at the end of the tape as a2
2. In each cycle the

weight is reduced by one and the weight of the restarting state is again ϕ1(q(0,1))+ϕ2(q(0,2)). This
is repeated until all of the initial tape contents c|w$ is rewritten into c|w1#w2$. Now M simulates
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M1 on the first syllable w1. Observe that ϕ(w1) = ϕ1(w) holds and that the current restarting state
has weight ϕ1(q(0,1))+ϕ2(q(0,2)). Thus if M1 accepts the input w then the remaining weight in the
restarting state is at least ϕ2(q(0,2)). If M1 accepts the input, then M simulates M2 on the second
syllable w2. If this simulation is also accepting, then M accepts. It follows that L(M) = L1 ∩ L2

holds.

There are still many open questions about state shrinking restarting automata. The most important
is perhaps whether L(shq-nf-RRWW) = L(sh-RRWW) = L(FC) holds or not.

3.8 Correctness Preserving Restarting Automata

In this and the following section the results about correctness preserving restarting automata
from Section 2.8 are extended to nonforgetting restarting automata. For nonforgetting restarting
automata the definition of (strong) correctness preservation is different from the one for forget-
ting restarting automata. Here promising configurations are considered instead of the complete
language. So we restate the definitions about promising configurations and strongly correctness
preservation from the beginning of this chapter.

Definition 3.8.1. A restarting configuration qc|ω$ is called an accepting configuration, if qc|ω$ `c

ACCEPT holds.

A restarting configuration qc|ω$ is called a promising configuration, if there exists a computation
qc|ω$ `c∗ pc|ω′$ and pc|ω′$ is an accepting configuration.

The set of all promising configurations of M is called PC(M).

Let M = (Q,Σ, Γ, c| , $, q0, k, δ,QR) be a nf-RLWW-automaton. M is called (strongly) correct-
ness preserving, if every successor restarting configuration of a promising configuration is again a
promising configuration.

Remember that, if a nonforgetting restarting automaton M = (Q, Σ, Γ, c|$, q0, k, δ) has an accepting
computation starting from the restarting configuration qc|w$ where w ∈ Σ∗(∈ Γ∗), it does not follow
necessarily that w ∈ L(M)(∈ LC(M)) holds. It follows only for a promising configuration of the
form q0c|w$ with w ∈ Σ∗(∈ Γ∗) that w ∈ L(M)(∈ LC(M)) holds.

For forgetting restarting automata there is a separation language between deterministic and cor-
rectness preserving RR-automata. For nonforgetting it is open whether this inclusion is proper.
Later in this section we show that this question is related to another open problem about deter-
ministic nonforgetting restarting automata.

For nf-R-, nf-RW-, and nf-RWW-automata we obtain the following result relating nondeterministic
automata that are strongly correctness preserving to deterministic automata of the same type.

Theorem 3.8.2. For any X ∈ {WW,W, ε}, if M = (Q,Σ, Γ, c| , $, q0, k, δ) is a correctness preserv-
ing nf-RX-automaton, then there exists a deterministic nf-RX-automaton M ′ satisfying PC(M ′) =
PC(M) and L(M ′) = L(M).

Proof. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be a correctness preserving nf-RX-automaton. We describe
a deterministic nf-RX-automaton M ′ = (Q′,Σ, Γ, c| , $, q0, k, δ′) such that PC(M ′) = PC(M) holds.
The automaton M ′ acts in the same way as M , but when scanning its tape from left to right it
applies the first rewrite instruction that becomes applicable. In case several such instructions exist,
the tie is broken based on a linear ordering of the rewrite instructions. Then M ′ is obviously a
deterministic nf-RX-automaton.
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As M ′ has the same Accept instructions as M , and as all rewrite steps that M ′ can execute are
also valid rewrite steps of M , we see that PC(M ′) ⊆ PC(M) holds. So it remains to verify the
converse inclusion.

Let w ∈ Γ∗ and q ∈ Q. Assume that w is accepted by M when it starts in the restarting state
q, that is, qc|w$ ∈ PC(M). If starting from the restarting configuration qc|w$, M can execute a
rewrite operation, then M ′ will definitely execute a rewrite operation in this situation, that is, we
obtain a cycle of the form

qc|w$ `c
M ′ q′c|w′$

for some w′ ∈ Γ∗ and q′ ∈ Q. From the definition of M ′ it follows that we also have the cycle
w `c

M w′. However, as M is correctness preserving, this means that w′ ∈ PC(M) holds. By
induction it now follows that qc|w$ is a promising configuration of M ′, that is, PC(M ′) = PC(M).
As M ′ and M have the same input alphabet and initial state, we obtain L(M ′) = L(M), too.

In the following we will extend this result to nf-RLWW-automata. In fact, we consider two gener-
alizations of these automata. First of all we consider shrinking nf-RLWW-automata. In fact, it is
easily seen from the proof of Theorem 3.8.2 that this theorem even holds for shrinking nf-RWW-
and shrinking nf-RW-automata.

Secondly, we admit (shrinking) restarting automata that are allowed to perform up to c rewrite
operations per cycle for some constant c ≥ 1. Next we recall the following useful technical result
which is an extension of Theorem 3.1.4.

Theorem 3.8.3. For any X ∈ {WW,W, ε}, if ML = (QL,Σ, Γ, c| , $, q0, k, δL) is a (shrinking)
nf-RLX-automaton that executes up to c ≥ 1 rewrite steps per cycle, then there exists a (shrinking)
nf-RRX-automaton MR = (QR,Σ, Γ, c| , $, q0, k, δR) that also executes up to c rewrite steps per cycle
such that, for all u, v ∈ Γ∗, qc|u$ `c

ML
q′c|v$ if and only if qc|u$ `c

MR
q′c|v$. In particular, PC(ML) =

PC(MR), LC(ML) = LC(MR) and L(ML) = L(MR) hold.

Hence, correctness preserving nf-RRX-automata are as expressive as correctness preserving nf-RLX-
automata. The following result now relates deterministic nf-RLX-automata to correctness preserv-
ing nf-RLX- (and therewith nf-RRX-) automata.

Theorem 3.8.4. For any X ∈ {WW,W, ε}, if M = (Q, Σ, Γ, c| , $, q0, k, δ) is a correctness preserv-
ing (shrinking) nf-RLX-automaton that performs up to c ≥ 1 rewrite steps per cycle, then there
exists a (shrinking) deterministic nf-RLX-automaton M ′ performing up to c rewrite steps per cycle
such that PC(M ′) = PC(M) and L(M ′) = L(M) hold.

The proof is an adaptation of the proof of Theorem 2.8.5. Theorem 3.8.3 enables us to describe
any (shrinking) nf-RLX-automaton that executes up to c ≥ 1 rewrite steps per cycle by accepting
meta-instructions and by generalized rewriting meta-instructions of the form

I = (q, c| · E0, u1 → v1, E1, u2 → v2, . . . , Es−1, us → vs, Es · $, p),

where 1 ≤ s ≤ c, E0, E1, . . . , Es are regular languages, u1 → v1, . . . , us → vs are the rewrite steps
executed by I, and p, q ∈ Q. This meta-instruction can be applied to a restarting configuration
qc|w$, where w has the form w = x0u1x1u2 · · ·xs−1usxs satisfying xi ∈ Ei for all i = 0, . . . , s,
and it yields the restarting configuration pc|x0v1x1v2 · · ·xs−1vsxs$. In the proof of Theorem 2.8.5
the simulation is done cycle by cycle. Thus, it can easily be adapted for nonforgetting restarting
automata if promising configurations instead of words w ∈ LC(M) are considered.
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It is still open whether Theorem 3.8.4 carries over to nf-RRX-automata or not. From Theorems 3.8.3
and 3.8.4 it follows that L(det-nf-RLX) equals the class of languages accepted by correctness pre-
serving nf-RRX-automata. Thus the following open questions are related. Here the prefix cp-
stands for correctness preserving restarting automata.

Corollary 3.8.5. The following two open questions are equivalent:

• Does L(det-nf-RRX) = L(cp-nf-RRX) hold?

• Does L(det-nf-RRX) = L(det-nf-RLX) hold (see Section 3.3)?

3.9 The Error-Detection Distance

Here we introduce the notion of error-detection distance for nonforgetting restarting automata. It
is a generalization of the correctness preserving property.

Definition 3.9.1. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be a nf-RLWW-automaton, and let i be a non-
negative integer. We say that M has error-detection distance i, if, for all restarting configura-
tions qc|w$ ∈ PC(M) and all partial computations qc|w$ `c

M q1c|w1$ `c
M · · · `c

M qmc|wm$, if
q1c|w1$ 6∈ PC(M), then m ≤ i. That is, if the first cycle qc|w$ `c

M q1c|w1$ transforms the promis-
ing configuration q c|w $ into a restarting configuration q1c|w1$ 6∈ PC(M), which means that M has
made a mistake, then starting from the restarting configuration q1c|w1$, M can execute at most
i− 1 more cycles before it halts and rejects, that is, before it detects its error.

Obviously, the property of being correctness preserving corresponds to error-detection distance 0.

3.9.1 Bounded Error-Detection Distance

Here it is shown that, for almost all types X of nf-RLWW-automata, an X-automaton of bounded
error-detection distance is equivalent in expressive power to an X-automaton that is correctness
preserving. Unfortunately up to now it is still just a conjecture that the result for R-, RW-, and
RWW-automata can also be shown for nonforgetting restarting automata.

Conjecture 3.9.2. For any X ∈ {WW,W, ε}, if M = (Q,Σ, Γ, c| , $, q0, k, δ) is a nf-RX-automaton
that has error-detection distance i ≥ 1, then there exists a nf-RX-automaton M ′ = (Q′,Σ, Γ, c| , $, q0,
k′, δ′) with error-detection distance 0 such that PC(M ′) = PC(M) and L(M ′) = L(M).

The corresponding result for RRX- and RLX-automata carries over to nf-RRX- and nf-RLX-automata.

Theorem 3.9.3. For any X ∈ {WW,W, ε}, if M = (Q,Σ, Γ, c| , $, q0, k, δ) is a nf-RRX- or nf-RLX-
automaton that has error-detection distance i ≥ 1, then there exists a nf-RRX- or nf-RLX-automaton
M ′ = (Q′,Σ, Γ, c| , $, q0, k, δ′) with error-detection distance at most i−1 such that PC(M ′) = PC(M)
and L(M ′) = L(M).

Proof. If M is a nf-RRX-automaton, then with Theorem 3.8.3 there exists a nf-RLX-automaton M̂
that accepts the same language as M , and it is easily seen that it has the same error detection
distance as M . M̂ is then simulated by a nf-RLX-automaton M̂ ′. By using Theorem 3.8.3 again
there exists a nf-RRX-automaton M ′ that accepts the same language and has the same error
detection distance as M̂ ′. Thus, only nf-RLX-automata need to be considered in this proof.
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Let qc|w$ `C
M q1c|w1$ be a cycle of M . M ′ simulates this cycle of M but instead of a restart at the

end it moves to the left end of the tape, enters a state q′1, and tries to apply a cycle to q1c|w1$.
From Lemma 3.3.2 we can assume without loss of generality that M restarts immediately after
the rewrite, and therefore M ′ can simulate a second cycle. If M would perform a rewrite, then M ′

simply restarts in the restarting state q1, if M is unable to perform another cycle, then M ′ halts
and rejects, and if M accepts, then M ′ accepts as well.

Thus, while simulating a cycle of M , the automaton M ′ can already verify whether all computations
following the current cycle will be tails, or whether another restart step follows. In the former case
M ′ can shorten the simulation by checking the results of all these tail computations without
performing the restart step, that is, M ′ shortens the computation of M being simulated by one
cycle. In this way an automaton with error-detection distance i− 1 is obtained from M .

By applying Theorem 3.9.3 repeatedly we obtain the following consequence.

Corollary 3.9.4. For any X ∈ {nf-RR, nf-RL, nf-RRW, nf-RLW, nf-RRWW, nf-RLWW}, if M is an
X-automaton that has bounded error-detection distance, then there exists a correctness preserving
X-automaton M ′ such that PC(M ′) = PC(M), LC(M ′) = LC(M), and L(M ′) = L(M) hold.

Thus, for all these types of restarting automata, bounded error-detection distance limits the ex-
pressive power to that of correctness preserving automata.

By combining Theorem 3.8.4 with Corollary 3.9.4 we obtain the following result.

Corollary 3.9.5. For any X ∈ {WW,W, ε}, if M is a nf-RRX- or a nf-RLX-automaton that has
bounded error-detection distance, then there exists a deterministic nf-RLX-automaton M ′ satisfying
PC(M ′) = PC(M), LC(M ′) = LC(M), and L(M ′) = L(M).

Corollary 3.9.5 shows that for the various types of nf-RL-automata, the deterministic variant is
as expressive as the nondeterministic variant with bounded error-detection distance. This clearly
shows that for these types of restarting automata, the nondeterministic variants are more expressive
than the corresponding deterministic variants only if they have unbounded error-detection distance.
Thus, it is the ability of a nondeterministic nf-RLWW-automaton to make an error that is only
detected an unbounded number of cycles later that really contributes to the expressive power of
these automata. On the negative side this means that the error-detection distance is not a useful
complexity measure for nonforgetting restarting automata, as there are essentially only two cases:
error-detection distance 0 (that is, strongly correctness preserving automata) and unbounded error-
detection distance.

3.10 Cyclic Restarting Automata

Definition 3.10.1. A nonforgetting restarting automaton is called cyclic, if it always reaches its
initial state q0 after finitely many restart steps.

A cyclic nf-restarting automaton is called l-cyclic, if it always reaches the initial state q0 after
exactly l restart steps. It is called l≤-cyclic, if it always reaches the initial state q0 after at most l
restart steps.

The meta-cycle from q0 to q0 of an l-cyclic nf-restarting automaton M that contains l cycles of M
is called an l-cycle of M .
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A cyclic restarting automaton is always a nonforgetting automaton and therefore is called only
cyclic restarting automaton to simplify the notation.

Lemma 3.10.2.

a) Every nondeterministic l-cyclic restarting automaton M of type X can be simulated by a
nondeterministic restarting automaton M ′ of the same type with exactly l rewrites per cycle.

b) Every nondeterministic l≤-cyclic restarting automaton M type X can be simulated by a non-
deterministic restarting automaton M ′ of the same type with at most l rewrites per cycle.

Here X ∈ {R, RR,RL,RW,RRW,RLW,RWW,RRWW,RLWW} holds.

Proof. In the proof only X ∈ {R, RR,RW,RRW,RWW,RRWW} are considered, because from The-
orem 3.8.3 the other cases follow. We start with proving the first part. The second follows directly
from this proof.

The idea of the proof is that the l-cyclic restarting automaton M cannot remember things from
one l-cycle to the next. Because of this we can simulate an l-cycle by one cycle of M ′ with l rewrite
operations. For X ∈ {R,RR,RW,RRW,RWW,RRWW} let M = (Q,Σ, Γ, c| , $, q0, k, δ,QR) be an
l-cyclic restarting automaton of type X, then the X-automaton M ′ = (Q′,Σ, Γ, c| , $, q0, k, δ′) with l
rewrites per cycle can recognize the same language as M .

First of all, M ′ guesses the l rewrite steps of M of one l-cycle. If the rewrites occur all in different
places, M ′ can perform these l rewrites without changes. It only has to do them from left to right
and remember the original order to check the regular expressions, which have to be checked all at
once.

Let I1, I2, ...Il, be the sequence of meta-instructions of M that are used in the current l cycles.
Then M ′ does the l rewrites from these meta-instructions from left to right in one single cycle. M ′

simulates all regular expressions. If a rewrite step Ii : ui → vi occurs, then the regular expressions
of the meta-instructions I1, ..., Ii−1 use ui and the meta-instructions Ii+1, ..., Il use vi to simulate
the original order.

If more than one rewrite step occurs at the same place on the tape, then M ′ puts all rewrites in
one area together and then performs these rewrites sequentially from left to right.

In detail: Let m be the number of rewrites that are performed on a subword x of length k ∗m in
one l-cycle. Then M ′ first combines these m rewrites. In the l-cycle

q0c|αxβ$ `cl

M α1yβ1

x is rewritten into y in m not necessarily successive cycles. Thus |x| ≥ |y| + m, therefore x =
a1a2 . . . ak∗m can be rewritten into y = b1b2 . . . bn in m rewrite steps. In the first cycle a1a2 . . . ak

is rewritten into b1b2 . . . bk−1, and in the ith rewrite step ak∗i+1ak∗i+2 . . . ak∗i+k is rewritten into
b(k−1)∗i+1b(k−1)∗i+2 . . . b(k−1)∗i+(k−1). Here bi = ε for i > n, if X is not an R- or RR-automaton. If
X is a R- or RR-automaton, then ak∗i+1ak∗i+2 . . . ak∗i+k is rewritten into the remaining scattered
subword of ak∗i+1ak∗i+2 . . . ak∗i+k in y.

Thus these m overlapping rewrites can be performed sequentially in a subword of length k ∗m. As
there are at most l rewrites it is possible to perform overlapping rewrites in a subword of at most
length k ∗ l.

M ′ must accept or reject all words up to length k ∗ l directly in one step, to ensure that always
a subword of length k ∗ m with m ≤ l exists. In every cycle M ′ makes as many rewrites as M
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does in its meta-cycle from q0 to q0. So if M is a l≤-cyclic (R)RW(W) automaton then M ′ is a
(R)RW(W) automaton with at most l rewrites per cycle.

This proof heavily depends on the nondeterminism of M ′. Therefore there is no deterministic
variant of this lemma.

The converse is not true, there exist languages that can be recognized by a restarting automaton
with l rewrites per cycle, but are not recognizable by an l-cyclic restarting automaton.

Lemma 3.10.3. The language class of restarting automata with l rewrites per cycle is not in-
cluded in the class of l-cyclic restarting automata. The language LDyck2 = D2 shuffle D2 is easily
recognized by an R-automaton with 2 rewrites per cycle, but it cannot be recognized by a 2-cyclic R
automaton.

Proof. Let L1 ⊂ {a, ā, b, b̄}∗ and L2 ⊂ {c, c̄, d, d̄} be Dyck languages over two symbols and let
LDyck2 be the shuffle of L1 with L2. This language is recognized by the following R-automaton M
with two rewrites per cycle.

(1)(c|{a, b, c, d}∗, a → ε, {c, d}∗, ā → ε)
(2)(c|{a, b, c, d}∗, b → ε, {c, d}∗, b̄ → ε)
(3)(c|{a, b, c, d}∗, c → ε, {a, b}∗, c̄ → ε)
(4)(c|{a, b, c, d}∗, d → ε, {a, b}∗, d̄ → ε)
(5)(c|$,ACCEPT)

M guesses the correct opening bracket to the first closing bracket, deletes it and then it checks, if
its guess was correct, that means that the inner part between these brackets contains no brackets
from the same Dyck-language and that the first closing bracket corresponds to the deleted opening
bracket. Then it deletes the closing bracket. M accepts the empty word.

But it is impossible for a 2-cyclic R-automaton M ′ to recognize this language. This is proved as
follows:

There exist words that can only be recognized by deleting only one type of opening and closing
bracket in one 2-cycle. The word ω is one of these:

ω = α1 . . . αN1 ā
N ′

1αN1+1 . . . αN2 ā
N ′

2 . . . αNE
āN ′

E βNE
. . . β1 ∈ L

αi = bm′
idm′′′

i amicm′′
i consists of opening brackets, βi = āni b̄m′

i c̄m′′
i d̄m′′′

i consists of closing brackets
and ni = mi for all 1 ≤ i ≤ NE except for i ∈ {N1 . . . NE} where ni = mi − N ′

i . All ni and mi

must be large.

If an automaton M ′ deletes two types of brackets in one cycle, then there are only four possibilities:
bd, da, ac and cb, because of the structure of the first part of the word. bd and ac are not possible,
as their closing brackets are not sufficiently close together at the end of the tape. d̄ā is at the
end of the Tape together too, but in different blocks, so that the deleting of both in one 2-cycle is
against the Error preserving Property. b̄c̄ is at the end in one block, but at the beginning in two
different blocks, so it is also impossible to delete these two brackets.

With that we can assume that M ′ deletes only one type of brackets in an accepting computation
in one 2-cycle. There are four cases:
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• Deleting a’s
It is possible to find the first a, but it is impossible to find the last ā, which corresponds to
the first a. It is the same with the second third and so on. It is also possible to find the first
ā, but the last a before this ā cannot be found, and it is the same for all other ā in the first
part of the word, because the distance between two ā is too large. With the same reason it is
impossible to delete the first ā in the second part of the word, because it is indistinguishable
from the ās in the first part.

• Deleting b’s
Again the first b can be found, but not the last b̄. The first b̄ can be found, but it is impossible
to find the associated b. There are no other parts of ω where b’s and associated b̄s can be
detected.

• Deleting c’s
With the c’s it is more or less the same as with the b’s, the beginning and end of the word
does not help and the border between the first and the second part looks the same as the ā
in the first part.

• Deleting d’s
The first d and the last d̄ can both be found and therefore there is a possible 2-cycle for M ′.
But there are no other places, where associated brackets of type d can be deleted with the
same reasons than in case b.

Thus, except for the d’s at the border, it is impossible to find associated brackets of any type in ω.

We now construct a new word ω′ that contains many words of the same type as ω:

ω′ = (α1 . . . αN1 ā
N ′

1αN1+1 . . . αN2 ā
N ′

2 . . . αNE
āN ′

E βNE
TNE

βNE−1TNE−1 . . . T1β1)2 ∈ L.

Here the words Tj have the same structure as ω:

Tj = α1 . . . αN1 ā
N ′

1αN1+1 . . . αN2 ā
N ′

2 . . . αNE
āN ′

E βNE
. . . β1 ∈ L.

Where αi = bm′
idm′′′

i amicm′′
i consists of opening brackets, βi = āni b̄m′

i c̄m′′
i d̄m′′′

i consists of closing
brackets and ni = mi for all 1 ≤ i ≤ NE except for i ∈ {N1 . . . NE} where ni = mi −N ′

i . All ni

and mi must be large.

In ω′ it is no longer possible to detect the borders of the words Tj of type ω, because after the
end of Tj another block of the same structure as the end of Tj begins. Therefore it is impossible
to delete d’s at the borders of one of the Tjs. ω′ contains two main parts and the border is not
detectable for an R-automaton because of the structure of the words Tj . The prefix of each Tj

equals the prefix of the second main part of ω′. That is why the deletion of the brackets from type
d at the borders of ω does not work for ω′.

And the Tj does not help by finding associated brackets because they appear in the part of the
closing brackets and except for the last blocks of closing brackets it is the problem to find the
associated opening ones.

We have seen that there is no possibility to find two associated brackets of any type in ω′ by
an 2-cyclic R-automaton, therefore the language LDyck2 cannot be recognized by an 2-cyclic R-
automaton.

72



In contrast to this, some results about shrinking restarting automata were obtained in previous
sections. We know from the sections 2.7 and 3.6 that many types of shrinking restarting automata
with c rewrites per cycle are equal in expressive power to shrinking forgetting automata.

73



Chapter 4

CD Systems of Restarting Automata

In this chapter we consider another extension of restarting automata: cooperating distributed (CD-)
systems of restarting automata. They consist of a finite collection of restarting automata that
work together to analyze a sentence. The cooperation is done in a similar way as for CD-grammar
systems (see e.g. [CVD90, DP97]). One automaton is chosen to start the computation and this
automaton performs some cycles on the given input. A mode of operation controls how long the
chosen automaton works on the input. A successor relation determines which automaton takes
over, after the active automaton has finished its part of the computation.

An input is accepted, if one automaton accepts the input and an input is rejected, if an automaton
is unable to perform the number of cycles that is required by the mode of operation.

In this chapter the expressive power of these systems is studied and they are compared to nonfor-
getting restarting automata. Also different types of determinism for CD-systems are introduced
and compared.

4.1 Definitions and Examples

Definition 4.1.1. A cooperating distributed system of RLWW-automata, CD-RLWW-system for
short, consists of

• a finite collection M := ((Mi, σi)i∈I , I0) of RLWW-automata Mi = (Qi,Σ, Γ, c| , $, q
(i)
0 , k, δi)

(i ∈ I),

• successor relations σi ⊆ I (i ∈ I) and

• a subset I0 ⊆ I of initial indices.

Here it is required that Qi ∩Qj = ∅ for all i, j ∈ I, i 6= j, that I0 6= ∅, that σi 6= ∅ for all i ∈ I and
that i 6∈ σi. Further, let m be one of the following modes of operation, where j ∈ N:

= j : execute exactly j cycles;
≤ j : execute up to j cycles;
≥ j : execute at least j cycles;
t : continue until no more cycle can be executed.
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Note: In ([MO07a, MO07c]) we defined CD-systems of restarting automata such that each com-
ponent automaton Mi had its own tape alphabet Γi. However, all example systems given had a
single tape alphabet only. Having different tape alphabets looks like a generalization, but in fact it
is not. With Γ =

⋃
Γi and δi designed accordingly it is always possible to construct a CD-system

of restarting automata with one tape alphabet for all components that accepts the same language.
On the other hand, if each component is allowed to have its own tape alphabet, there must be a
mechanism that checks that, when another component Mi becomes active, only symbols from Γi

are on the tape. Only if we consider the number of auxiliary symbols for the components as a
complexity measure, it may make a difference whether each automaton has its own tape alphabet
or not.

One could also think about systems, where only some of the components use auxiliary symbols.
Then the tape alphabets are different as well.

Definition 4.1.2. A configuration of a CD-system M is given by a tuple (Mi, α · qβ), where Mi

is a component of M, q is a state of Mi, and either α = c|w1, β = w2$ with w1, w2 ∈ Γ∗ or
α = ε, β = c|w$ with w ∈ Γ∗.

A configuration (Mi, q
(i)
0 c|w$) with w ∈ Γ∗ and q

(i)
0 the initial state of Mi is called a restarting

configuration. If ω ∈ Σ∗ and i ∈ I0 hold, it is called an initial configuration.

For restarting configurations it would not be necessary to give the initial state of the active com-
ponent explicitly. A cycle of a CD-RLWW-system M from one restarting configuration to the next
can be seen as a relation over tuples of component automata and words. (Mi, w1) `c

M (Mj , w2)
means that the component Mi transforms w1 in one cycle into w2 and that the component Mj

becomes active after this cycle.

A shorter form to describe a cycle is w1 `c
Mi

w2. But here the active component after the cycle is
not stated. However for an accepting sequence of cycles, the following sequence w1 `c

M1
w2 `c

M2

w3 . . . `c
Ml

wl `c
Ml+1

ACCEPT contains all relevant information and is succinct.

Let x ∈ Σ∗ be an input word, and let m be one of the above modes of operation. The computation
of M in mode m on input x proceeds as follows: First an index i0 ∈ I0 is chosen nondetermin-
istically. Then the RLWW-automaton Mi0 starts the computation with the initial configuration
q
(i0)
0 c|x$, executing one or more cycles according to mode m. Then an index i1 ∈ σi0 is chosen

nondeterministically, and Mi1 continues the computation by executing one or more cycles accord-
ing to mode m. After that an index i2 ∈ σi1 is chosen nondeterministically, and Mi2 continues
the computation. The computation halts successfully, if, for some l ≥ 0, the machine Mil

accepts.
Should at some stage the chosen machine Mij be unable to execute the required number of cycles,
then the computation fails.

In mode t the chosen restarting automaton Mij continues with the computation until it either
accepts, in which case M accepts, or until it can neither execute another cycle nor an accepting
tail, in which case an automaton Mij+1 with ij+1 ∈ σij

takes over. Should at any time the chosen
machine be unable to execute a single cycle or an accepting tail, then the computation of M fails.
This ensures that each component performs at least one cycle (or an accepting tail).

If no component of a CD system M performs MVL-operations, then each component automaton
can be described by meta-instructions.

Definition 4.1.3. By Lm(M) we denote the language that the CD-RLWW-system M accepts in
mode m. It consists of all words x ∈ Σ∗ that are accepted by M in mode m as described above.
If X ∈ {R,RR,RL,RW,RRW,RLW,RWW,RRWW,RLWW}, then a CD-X-system is a CD-RLWW-
system for which all restarting automata are of type X. By Lm(CD-X) we will denote the class of
languages that are accepted by CD-X-systems in mode m.
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The complete language of M in mode m consists of all words x ∈ Γ∗ that are accepted by M in
mode m as described above.

Now we explain how a CD-system works in a small example that also shows the expressive power
of CD-systems.

Example 4.1.4. We describe a CD-R-system M := ((M1, {2}), (M2, {1})), {1}) for the language
Lcopy := {w#w | w ∈ {a, b}∗ }. Here (M1, {2}) means that the component M1 has the successor
relation σ1 = {2}. (M2, {1}) means that the component M2 has the successor relation σ2 = {1}
and the set {1} is the set of initial indices, that is, here the only initial component is M1. The
starting machine M1 is described by the following two meta-instructions:

(1.) (c| · {a, b}∗ · c# · {a, b}∗, c$ → $) for c ∈ {a, b};
(2.) (c| ·# · $,Accept),

and the machine M2 is given through the following meta-instruction:

(3.) (c| · {a, b}∗, c# → #) for c ∈ {a, b}.

In mode =1 the machines M1 and M2 alternate, with M1 starting the computation. M1 always
deletes the last letter of the second factor, provided it coincides with the last letter of the first factor,
and M2 simply deletes the last letter of the first factor. It follows easily that L=1(M) = Lcopy.

In the previous chapter new error and correctness preserving properties were introduced. These
properties also hold for CD-systems of restarting automata.

Definition 4.1.5. A restarting configuration (Mi, qc|w$) is called an accepting configuration for
mode m, if it is accepted in a tail computation.

A restarting configuration (Mi, qc|w$) is called a promising configuration for mode m, if there exists
a computation of M in mode m, which leads to an accepting configuration, when starting from this
configuration.

An initial promising configuration is a promising configuration (Mi, qc|w$) with i ∈ I0 and w ∈ Σ∗.

For each initial promising configuration (Mi, qc|w$) of M in mode m, it follows that there exists an
accepting computation for w ∈ Σ∗, that is, w is accepted by M in mode m and therefore belongs
to Lm(M).

For each promising configuration (Mi, qc|w$) of M in mode m with i ∈ I0, it follows that there
exists an accepting computation for w ∈ Γ∗, that is, w is accepted by M in mode m and therefore
belongs to the complete language of M in mode m.

With this definition we can achieve the Error Preserving and the Correctness Preserving Property
for CD-systems of restarting automata.

Lemma 4.1.6 (Error Preserving Property).

Let M = ((Mi, σi)i∈I , I0) be a CD-system of restarting automata, and let u, v be words over its tape
alphabet Γ. If (Mi, qc|u$) `c

M (Mj , pc|v$) is part of a computation of M in mode m and (Mi, qc|u$)
is not a promising configuration of M in mode m, then (Mj , pc|v$) is neither.

Remark that for a word x that does not belong to the language of M, there exists no computation
of M, which reaches a promising configuration starting from an initial configuration (Mi, q

(i)
0 c|x$).

Thus this Error Preserving Property is an extension of the Error Preserving Property for restarting
automata. There is also a strong Correctness Preserving Property for CD-systems.
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Definition 4.1.7. A CD-system of restarting automata is called (strongly) correctness preserv-
ing, if each successor restarting configuration of a promising configuration is again a promising
configuration.

Lemma 4.1.8 (Correctness Preserving Property). Let M = ((Mi, σi)i∈I , I0) be a CD-system of
restarting automata. For every promising configuration of M in mode m it follows that either it is
an accepting configuration of M, or there exists a successor restarting configuration that is again
a promising configuration of M in mode m.

The strong Correctness Preserving Property does not hold for all kinds of determinism. Different
notions of determinism are introduced in the section about deterministic CD-systems of restarting
automata, and there the correctness preserving property for deterministic CD-systems of restarting
automata is given.

These two lemmata allow the usage of the Error and the Correctness Preserving Properties for
cooperating distributed systems of restarting automata.

4.2 Nonforgetting Restarting Automata versus CD-Systems
of Restarting Automata

In this section CD-systems of restarting automata are compared to nonforgetting restarting au-
tomata. It is shown that nonforgetting restarting automata can be simulated by certain CD-systems
of restarting automata and that almost all kinds of CD-systems can be simulated by nonforgetting
restarting automata.

Theorem 4.2.1. If M is a nonforgetting restarting automaton of type X for any type X ∈
{R,RR,RL,RW,RRW,RLW,RWW,RRWW,RLWW}, then there exists a CD-system M of restarting
automata of type X such that L=1(M) = L(M) holds.

Proof. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be a non-forgetting restarting automaton of type X, where
we assume that Q = {q0, q1, . . . , qm}. We define a simulating CD-system M of X-automata as
follows.

Let I := { (i, j) | 0 ≤ i, j ≤ m }∪ { (i) | 0 ≤ i ≤ m } be the set of indices, and let I0 := { (0, j) | 0 ≤
j ≤ m } be the set of initial indices.

For each pair of indices i, j ∈ {0, 1, . . . ,m}, i 6= j, we take a copy M(i,j) of M that simulates those
computations of M that start with a restarting configuration of the form qic|w$, and that either
accept, reject, or perform a restart that takes M into state qj . In addition, we introduce two
X-machines M(i,i) and M(i) for each i ∈ {0, 1, . . . ,m} that simulate those computations of M that
start with a restarting configuration of the form qic|w$, and that either accept, reject, or perform
a restart that takes M back into state qi. The reason for having both these machines, M(i,i) and
M(i), will become clear when we define the successor relations. Thus,

M(i,j) := (Q(i,j),Σ, Γ, c| , $, q
(i,j)
i , k, δ(i,j)),

M(i) := (Q(i),Σ, Γ, c| , $, q
(i)
i , k, δ(i)),

where Q(i,j) := {q(i,j)
0 , . . . , q

(i,j)
m } and Q(i) := {q(i)

0 , . . . , q
(i)
m } are copies of Q such that, for all

α, β ∈ I, if α 6= β, then Qα ∩Qβ = ∅. Further, for all i, j ∈ {0, 1, . . . ,m}, δ(i,j) is obtained from δ

by replacing each occurrence of a state ql ∈ Q by an occurrence of the corresponding state q
(i,j)
l ,
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by replacing each occurrence of the restart operation (qj ,Restart) by the simple restart operation
Restart, and by deleting all occurrences of restart operations of the form (ql,Restart), where l 6= j.
Further, δ(i) is obtained from δ(i,i) by replacing each occurrence of a state q

(i,i)
l by an occurrence

of the corresponding state q
(i)
l . Finally, the successor relations are defined as follows:

σ(i,j) := { (j, l) | 0 ≤ l ≤ m } for i 6= j,
σ(i,i) := { (i, l) | 0 ≤ l ≤ m, i 6= l } ∪ {(i)},
σ(i) := { (i, l) | 0 ≤ l ≤ m }.

Observe that according to the definition of CD-systems of restarting automata, index (i, i) must
not be a member of σ(i,i). That is the reason for introducing the machine M(i).

As each component automaton of the system M is essentially a forgetting copy of the nonforgetting
restarting automaton M , only the initial states are different, we see that M consists of restarting
automata of type X only. It remains to establish the following result.

Claim. L(M) = L=1(M).

Proof. Let x ∈ L(M), that is, there exists a computation of M of the form

(q0, x) `c
M (qi1 , x1) `c

M (qi2 , x2) `c
M · · · `c

M (qil
, xl) `c

M Accept.

The CD-system M can simulate this computation as follows. As starting machine M(0,i1) is chosen,
and the computation of M starts with the cycle

(M(0,i1), x) `c
M (M(i1,i2), x1),

as the restart operation (qi1 ,Restart) that M applies in the first cycle above is replaced by the simple
restart operation Restart of M(0,i1) and as (i1, i2) ∈ σ(0,i1)holds, it follows that the automaton
M(i1,i2) can become active and the initial state of this automaton is q

(i1,i2)
i1

, so the next cycle
begins in the correct state.

If i1 6= i2 or i2 6= i3, then M continues with the cycle

(M(i1,i2), x1) `c
M (M(i2,i3), x2),

as the restart operation (qi2 ,Restart) that M applies in the second cycle above is replaced by the
simple restart operation Restart of M(i1,i2), and as (i2, i3) ∈ σ(i1,i2)holds, the initial state of M(i2,i3)

is again a copy of the correct state needed to simulate the computation. If, however, i1 = i2 = i3,
then M continues with the cycle

(M(i1,i2), x1) `c
M (M(i1), x2),

as the restart operation (qi1 ,Restart) that M applies in the second cycle above is replaced by
the simple restart operation Restart of M(i1,i1), the automaton M(i1) is chosen. Observe that
(i1) ∈ σ(i1,i1) is chosen, because a component must not be its own successor. The initial state of
M(i1) is another copy of qi1 .

Inductively, it follows that M reaches the restarting configuration (M(il,il+1), c|xl$) or (M(il), c|xl$),
and that M(il,il+1) or M(il), respectively, will accept in a tail computation when starting from this
restarting configuration. Thus, we see that L(M) ⊆ L=1(M) holds.

Conversely, if x ∈ L=1(M), then there exist (0, i1) ∈ I0 and a computation of M of the following
form:

x `c
M(0,i1)

x1 `c
M(i1,i2)

· · · `c
M(il−1,il)

xl `c
M(il,il+1)

Accept,
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where (ij , ij+1) ∈ σ(ij−1,ij) for all j = 1, . . . , l. Observe that if some consecutive indices coincide,
then instead of M(ij ,ij) the automaton M(ij) may occur. From the definition of M we see that M
can execute the following computation:

(q0, x) `c
M (qi1 , x1) `c

M (qi2 , x2) `c
M · · · `c

M (qil
, xl) `c

M Accept.

Hence, L(M) = L=1(M) follows.

The converse holds for almost all modes of operations.

Theorem 4.2.2. Let j ≥ 1, and let m ∈ {=j,≤j,≥j} be a mode of operation. Then, for each
CD-X-system M, where X ∈ {R,RR,RL,RW, RRW, RLW, RWW, RRWW,RLWW}, there exists a
non-forgetting X-automaton M such that L(M) = Lm(M) holds.

Proof. Let X ∈ {R,RR,RL,RW,RRW, RLW, RWW,RRWW,RLWW}, let j ≥ 1, let m ∈ {=j,≤j,≥
j}, and let M = ((Mi)i∈I , I0) be a CD-X-system, where Mi = (Qi,Σ, Γ, c| , $, q

(i)
0 , k, δi). We define

a non-forgetting X-automaton M = (Q,Σ, Γ, c| , $, q0, k, δ) as follows:

Assume that, for each i ∈ I, the X-automaton Mi has state set Qi = { q
(i)
l | l = 0, 1, . . . , ni } with

initial state q
(i)
0 . Then we take

Q :=
⋃
i∈I

{ q
(i,l)
l | l = 0, 1, . . . , ni, 1 ≤ l ≤ j } ∪ {q0},

that is, Q consists of the disjoint union of j copies of each of the state sets of the automata Mi,
i ∈ I, plus an additional new initial state q0. Essentially the j copies of each state set Qi will
be used to count the number of iterations an automaton Mi is being simulated. The transition
relation of M is defined as follows:

(i) Transitions from the initial state q0:
For each possible content of the read/write window of the form c| · u,

δ(q0, c| · u) :=
⋃

i∈I0
{ (q(i,1)

l ,MVR) | (q(i)
l ,MVR) ∈ δi(q

(i)
0 , c| · u) }

∪
⋃

i∈I0
{ (q(i,1)

l , c| · v) | (q(i)
l , c| · v) ∈ δi(q

(i)
0 , c| · u) }

∪ ({Accept} ∩
⋃

i∈I0
δ(q(i)

0 , c| · u)).

Starting from an initial configuration these transitions allow M to pick an index i ∈ I0 and to
simulate the first step of the computation of Mi from the given initial configuration. In the first
line all MVR-operations of all initial components with the tape content c| · u are taken. In the
second line all REWRITE-operations for the given tape content are given, and the tape content c| ·u
is accepted, if one of the initial components accepts immediately.

(ii) Simulating the automata Mi (i ∈ I):
For i ∈ I and 1 ≤ l ≤ j, the states from the set { q

(i,l)
l | l = 0, 1, . . . , ni } are used to simulate the

automaton Mi step by step. Only the restart operations are replaced as described below.

(iii) General restart transitions:
For each index i ∈ I and each 1 ≤ n < j, we introduce, for each restart operation of Mi of the form
Restart ∈ δi(q

(i)
l , u), a restart operation of the form (q(i,n+1)

0 ,Restart) ∈ δ(q(i,n)
l , u), that is, the
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second index is used to count the number of cycles of Mi that have been simulated consecutively.
Further, we need some additional restart operations for M that depend on the mode of operation
m.

(iv) Restart transitions that depend on the mode m of M:
If m is mode = j, then, for each i ∈ I, we introduce restart operations (q(s,1)

0 ,Restart) ∈ δ(q(i,j)
l , u),

s ∈ σi, for each restart operation of Mi of the form Restart ∈ δi(q
(i)
l , u). Thus, after executing the

j-th cycle of Mi, an automaton Ms, s ∈ σi, is chosen.

If m is mode≥ j, then, for each i ∈ I, we introduce the restart operation (q(i,j)
0 ,Restart) ∈ δ(q(i,j)

l , u)
and the restart operations (q(s,1)

0 ,Restart) ∈ δ(q(i,j)
l , u), s ∈ σi, for each restart operation of Mi of

the form Restart ∈ δi(q
(i)
l , u). Thus, after executing the j-th cycle of Mi, either an automaton Ms,

s ∈ σi, is chosen, or another cycle of Mi is simulated, again with j as the second index.

Finally, if m is mode ≤ j, then, for each i ∈ I and each 1 ≤ n ≤ j, we introduce restart
operations (q(s,1)

0 ,Restart) ∈ δ(q(i,n)
l , u), s ∈ σi, for each restart operation of Mi of the form

Restart ∈ δi(q
(i)
l , u). Thus, after executing the n-th cycle of Mi, either an automaton Ms, s ∈ σi,

is chosen, or, if n < j, it is also possible to execute another cycle of Mi using a restart transition
from (iii).

From the given construction it now follows easily that M is a non-forgetting X-automaton.

Claim L(M) = Lm(M)

Proof. First we show, how M uses the second upper index to the conditions for the mode m, then
we show, how M simulates a sequence of cycles of M.

As described in (iii) M counts the number of cycles that the active automaton has already per-
formed within the second upper index of the state and simulates a change of the component by
changing the first upper index and resetting the second upper index to 1. This change of the
component is done according to the mode of operation as described in (iv).

Let x ∈ Lm(M), that is, there exists a computation of M of the form

x `cn1

M1
x1 `cn2

M2
· · · `cnl

Ml
xl `cnl+1

Ml+1
Accept.

How long a component is active depends on the mode of operation. The nonforgetting restarting
automaton M can simulate this computation as follows: M chooses in its first transition step to
simulate the component M1 and starts with its first step. It then simulates one cycle of the chosen
component and restarts either in q

(1,2)
0 or in q

(2,1)
0 according to the mode m. So M can simulate

ni cycles of each component Mi, 1 ≤ i ≤ l by increasing the second upper index up to ni and then
"change" the component by restarting in q

(i+1,1)
0 . Then it simulates a number of cycles of that

component and so on until M accepts from a restarting configuration (q(l+1,nl+1)
0 .

Conversely if x ∈ L(M) then there exists a sequence of cycles

(q0, x) `c
M (q(1,2)

0 , x(1,2)) . . . `c
M (q(1,n1)

0 , x(1,n1)) `
c
M (q(2,1)

0 , x(2,1)) . . .

. . . `c
M (q(l,1)

0 , x(l,1)) . . . `c
M (q(l,nl)

0 , x(l,nl)) `
c
M ACCEPT

and the first upper index is changed due to the conditions described in (iv) which corresponds to
the mode of operation m. Hence, L(M) = Lm(M) follows.
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Thus, we see that CD-systems of restarting automata in mode = 1 are just as powerful as non-
forgetting restarting automata. Also we see that a CD-system working in mode = j, ≤ j, or ≥ j
can be simulated by a CD-system of the same type that works in mode = 1.

It remains to study CD-systems working in mode t. Here we have the following result.

Theorem 4.2.3. Let X ∈ {RR,RL,RRW, RLW, RRWW,RLWW}, and let M be a CD-X-system.
Then there exists a non-forgetting X-automaton M such that L(M) = Lt(M) holds.

Proof. Let X ∈ {RR,RRW,RRWW} and M = ((Mi, σi)i∈I , I0) be a CD-X-system. Nondeterministic
RL- RLW- and RLWW-automata can be simulated by RR- RRW- and RRWW-automata, therefore
only CD-systems of restarting automata without MVL-operations need to be regarded in this proof.

The problem in simulating the mode t computations of M by a non-forgetting X-automaton M
is caused by the way in which the computation of M switches from one component to the next.
If a component Mi gets stuck after having performed a positive number of cycles, that is, it can
neither execute another cycle nor an accepting tail, then a component Mj with j ∈ σi takes
over. However, if Mi gets stuck immediately, that is, without having executed any cycle, then
the overall computation of M fails, that is, in this case M halts and rejects. The non-forgetting
X-automaton M tries to simulate the computations of M cycle by cycle. However, when simulating
the component Mi of M, then M must decide at the end of each cycle, that is, when executing the
corresponding restart operation, whether to start the simulation of another cycle of Mi or whether
to start the simulation of a cycle of a component Mj for some j ∈ σi. To solve this problem we
proceed as follows.

The non-forgetting X-automaton M is essentially obtained as the disjoint union of the components
of the CD-X-system M as described in the proof of the previous theorem. However, we have to
adjust each component to solve the above-mentioned problem about the restart operations.

Mi reads its tape completely within each cycle, that is, it executes a restart operation only at
the right delimiter $. Hence, while simulating a cycle of Mi, the automaton M can already check
whether all computations of Mi that follow the current cycle will be rejecting tails, or whether
another Restart or an accepting tail follows. This is best described in terms of meta-instructions.

Let x ∈ Lt(M), that is, there exists a computation of M of the form

x `cn1

Mi1
x1 `cn2

Mi2
· · · `cnl

Mil
xl `cnl+1

Mil+1
Accept.

This means that the component Mi1 performs n1 cycles before it rejects and then the component
Mi2 , with i2 ∈ σi1 , become active. When Mi2 is unable to perform another cycle after n2 many
cycles, Mi3 becomes active. This is done until Mil+1 accepts after nl+1 many cycles.

M simulates the computation of M cycle by cycle. M starts simulating the first cycle of Mi1

from the initial configuration q0c|x$ as described in the previous proof. While M simulates a cycle
x `c

Mi1
y of Mi1 it also checks all meta-instructions Ij = (Ej , uj → vj , Ej

′) of Mi1 within its finite
control to determine, whether Mi1 is able to perform another cycle afterwards. It does this by
checking if y has a factorization wjujw

′
j with wj ∈ Ej , w

′
j ∈ E′

j . If y has such a factorization, that
means that the meta-instruction Ij is applicable, then M restarts in qi

0 simulating another cycle
of Mi1 . Otherwise none of the meta-instructions of Mi1 is applicable, and therefore Mi1 is unable
to perform another cycle, starting with y. Accordingly, at the end of the current cycle M executes
a restart operation that transfers control to the initial state of the component Mi2 , i2 ∈ σi1 .

It is easily seen that Lt(M) ⊆ L(M) follows.

The other direction is straightforward, because if x ∈ L(M), then there exists a sequence of cycles
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(q0, x) `cn1

M (qi1
0 , x̂) `cn1−1

M (qi2
0 , x1) `cn2

M · · · `cnl

M (qil
0 , xl) `cnl+1

M Accept,

and qi
0 corresponds to the initial state of Mi. This describes exactly a computation of M in mode

t.

It is an open question whether the latter result extends to CD-systems of R(W)(W)-automata.
The problem with these types of restarting automata stems from the fact that within a cycle such
an automaton will in general not see the complete tape content. Therefore it is not clear how a
nonforgetting restarting automaton can determine whether another cycle is applicable in the same
component or not.

4.3 Deterministic CD-Systems of Restarting Automata

In general it is very easy and natural to define determinism: an automaton is deterministic, if
all its computations are deterministic. For CD-systems it is a bit more difficult, because a system
consists of several components. First of all, each component of a CD-system has to be deterministic:
this is the first notion of determinism in this work. But there are two other notions, which are
also introduced here, because the first notion of determinism leads to CD-systems which are not
necessarily completely deterministic.

CD-grammar systems are called deterministic, if each component is deterministic (see, e.g., [DP97,
CVDKP94]). This is the motivation for the first notion of determinism. A CD-system of restart-
ing automata is called locally deterministic, if all its components Mi are deterministic restarting
automata. It is called locally deterministic, because only the components are deterministic, but in
general the whole system is not. Observe that the starting automaton is chosen nondeterministi-
cally from the set of initial components Mi, i ∈ I0, and also a successor automaton for it is chosen
nondeterministically from among the successor components Mj , j ∈ σi, and so on.

The above definition can be strengthened by removing this nondeterminism. A CD-system of
restarting automata is called strictly deterministic, if each component is deterministic, if I0 is
a singleton and each component has exactly one successor in its successor relation. The CD-R-
system of Example 4.1.4 is strictly deterministic. This ensures that all computations of a strictly
deterministic CD-system of restarting automata are deterministic.

We will see below that having only one successor is a rather serious restriction. Thus we introduce
a third kind of determinism, which allows more than one successor component, but ensures that it
is chosen deterministically by changing the restart operation. A CD-system of restarting automata
is called globally deterministic, if I0 is a singleton, each component is a deterministic restarting
automaton and the successor is chosen deterministically from among all possible successors of this
component. This is achieved by combining each restart operation from Mi with an index from the
set σi. As long as Mi is not finished with the computation the index is ignored, but if according to
the given mode of operation Mi has finished its last cycle, the component, whose index is assigned
to the final restart operation, takes over.

For example, when working in mode = j for some j > 1, then the first j − 1 applications of
restart steps within the computation of a component Mi just restart Mi itself, but at the j-th
application of a restart step, the component l ∈ σi becomes active, if l is the index associated with
this particular restart operation. In this way it is guaranteed that all computations of a globally
deterministic CD-system are deterministic. However, for a component Mi there can still be several
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possible successor components. This is reminiscent of the way in which nonforgetting restarting
automata work.

We use the prefix det-local to denote locally deterministic CD-systems, the prefix det-global to
denote globally deterministic CD-systems, and the prefix det-strict to denote strictly determinis-
tic CD-systems. For each type of restarting automaton X ∈ {R,RR,RL,RW,RRW, RLW, RWW,
RRWW,RLWW} and any mode m, it is easily seen that the following inclusions hold:

L(det-X) ⊆ Lm(det-strict-CD-X) ⊆ Lm(det-global-CD-X).

The missing inclusions between globally and locally deterministic CD-systems are not so easily
seen. They are treated in the subsection about locally deterministic CD-systems.

The modes ≤ j and ≥ j are nondeterministic modes, so even strictly or globally deterministic
CD-systems working in these modes have some nondeterminism. In the subsections about globally
and strictly deterministic CD-systems we only consider deterministic modes. In the subsection
about strictly deterministic CD-systems it will be shown that the above inclusions are proper,
when no auxiliary symbols are available.

As mentioned in the beginning of this chapter, the strong correctness preserving property does not
hold for all kinds of deterministic CD-systems of restarting automata. Strictly and globally de-
terministic CD-systems of restarting automata are completely deterministic. Locally deterministic
CD-systems are not necessarily completely deterministic, therefore they are not strongly correctness
preserving. For globally or strictly deterministic CD-systems of restarting automata working in a
deterministic mode (t or = j), every successor restarting configuration of a promising configuration
is again a promising configuration. Thus the following proposition holds.

Proposition 4.3.1. Each strictly or globally deterministic CD-system M operating in mode = j
or t is strongly correctness preserving.

4.3.1 Globally Deterministic CD-systems

Concerning the globally deterministic CD-systems, we have the following results, which correspond
to the results for nondeterministic CD-systems.

Theorem 4.3.2. If M is a nonforgetting deterministic restarting automaton of type X for some
X ∈ {R,RR,RL,RW,RRW, RLW, RWW,RRWW,RLWW}, then there exists a globally deterministic
CD-system M of restarting automata of type X such that L=1(M) = L(M) holds.

Proof. Let M = (Q,Σ, Γ, c| , $, q0, k, δ) be a nonforgetting deterministic restarting automaton of
type X, where Q = {q0, q1, . . . , qm}. We define a simulating globally deterministic CD-system M

of X-automata as follows.

Let I := { i | 0 ≤ i ≤ m }∪{ î | 0 ≤ i ≤ m } be the set of indices, and let 0 be the initial index. For
each index i ∈ {0, 1, . . . ,m}, we take two copies Mi and Mî of M that simulate those computations
of M that start with a restarting configuration of the form qic|w$. Thus,

Mi := (Q(i),Σ, Γ, c| , $, q
(i)
i , k, δ(i)),

Mî := (Q(̂i),Σ, Γ, c| , $, q
(̂i)
i , k, δ(̂i)),

where Q(i) := {q(i)
0 , . . . , q

(i)
m } and Q(̂i) := {q(̂i)

0 , . . . , q
(i)
m } are copies of Q such that, for all α, β ∈ I,

if α 6= β, then Qα ∩Qβ = ∅. Further, for all i ∈ {0, 1, . . . ,m}, δ(i) is obtained from δ by replacing
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each occurrence of a state ql ∈ Q by an occurrence of the corresponding state q
(i)
l , and by replacing

each occurrence of a restart operation (qj ,Restart) (0 ≤ j ≤ m) by the restart operation Restart,
combined with the successor ĵ. Further, δ(̂i) is obtained from δ by replacing each occurrence of a
state ql ∈ Q by an occurrence of the corresponding state q

(̂i)
l , and by replacing each occurrence of

a restart operation (qj ,Restart) (0 ≤ j ≤ m) by the restart operation Restart, combined with the
successor j. Finally, the successor relations are defined as follows:

σi := { ĵ | 0 ≤ j ≤ m } for all 0 ≤ i ≤ m,
σî := { j | 0 ≤ j ≤ m } for all 0 ≤ i ≤ m.

Observe that according to the definition of CD-systems of restarting automata, index i must not
be a member of σi. That is the reason for introducing the automata Mî.

As each component automaton of the system M is essentially a copy of the restarting automaton
M , we see that M consists of deterministic restarting automata of type X only. The initial index
is 0 and each restart is assigned with a successor, thus M is a globally deterministic CD-X-system.
It remains to establish the following result.

Claim. L(M) = L=1(M).

Proof. Let x ∈ L(M), that is, there exists a computation of M of the form

(q0, x) `c
M (q1, x1) `c

M (q2, x2) `c
M · · · `c

M (ql, xl) `c
M Accept.

The CD-system M can simulate this computation as follows: The computation of M starts with
the cycle

(M0, x) `c
M (M1̂, x1),

as the restart operation (qi1 ,Restart) that M applies in the first cycle above is replaced by the simple
restart operation Restart of M0 combined with the successor î1. The component Mî1

becomes

active. This component has as initial state q
(̂i1)
i1

. Therefore M starts its next cycle in the correct
state:

(M1̂, x1) `c
M (M2, x2).

The restart operation (qi2 ,Restart) that M applies in the second cycle above is replaced by the
simple restart operation Restart of Mî1

combined with the successor i2. Inductively, it follows that

M reaches the restarting configuration q
(il)
il

c|xl$ or q
(̂il)
il

c|xl$, and that Mil
or Mîl

, respectively, will
accept in a tail computation when starting from this restarting configuration. Thus, we see that
L(M) ⊆ L=1(M) holds.

Conversely, if x ∈ L=1(M), then there exists a computation of M of the form

x `c
M0

x1 `c
Mî1

· · · `c
Mil−1

xl `∗Mîl

Accept,

or
x `c

M0
x1 `c

Mî1
· · · `c

Mîl−1
xl `∗Mil

Accept.

From the definition of M we see that in either case M can execute the following computation:

(q0, x) `c
M (qi1 , x1) `c

M (qi2 , x2) `c
M · · · `c

M (qil
, xl) `∗M Accept.

Hence, L(M) = L=1(M) follows.
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For the converse we again have the following stronger result, but remark that only the deterministic
modes = j are considered.

Theorem 4.3.3. For each X ∈ {R,RR,RL,RW,RRW, RLW, RWW,RRWW,RLWW}, if M is a glob-
ally deterministic CD-X-system, and if j is a positive integer, then there exists a nonforgetting
deterministic X-automaton M such that L(M) = L=j(M) holds.

Proof. Let X ∈ {R,RR,RL,RW,RRW,RLW, RWW,RRWW,RLWW}, let j ≥ 1, and let M = ((Mi)
i ∈ I, {i0}) be a globally deterministic CD-X-system, where Mi = (Qi,Σ, Γ, c| , $, q

(i)
0 , k, δi). We

define a nonforgetting deterministic X-automaton M = (Q,Σ, Γ, c| , $, q0, k, δ) as follows:

Assume that, for each i ∈ I, the X-automaton Mi has the state set Qi = { q
(i)
l | l = 0, 1, . . . , ni }

with initial state q
(i)
0 . Then we take

Q :=
⋃
i∈I

{ q
(i,r)
l | l = 0, 1, . . . , ni, 1 ≤ r ≤ j },

that is, Q consists of the disjoint union of j copies of each of the state sets of the automata Mi,
i ∈ I. Essentially the j copies of each state set Qi will be used to count the number of iterations
an automaton Mi is being simulated. As initial state we choose q0 := q

(i0,1)
0 , as each computation

of M starts with the automaton Mi0 . The transition relation of M is defined as follows:

(i) Simulating the automata Mi (i ∈ I):
For i ∈ I and 1 ≤ r ≤ j, the states from the set { q

(i,r)
l | l = 0, 1, . . . , ni } are used to simulate the

automaton Mi step by step. However, the restart operations are replaced as described below.

(ii) Restart steps:
For each index i ∈ I, for each 1 ≤ r < j, and for each restart operation of Mi of the form
δi(q

(i)
l , u) = Restart, we introduce a restart operation of the form δ(q(i,r)

l , u) = (q(i,r+1)
0 ,Restart),

that is, the second index is used to count the number of cycles of Mi that have been simulated
consecutively.

In addition, for each i ∈ I, we introduce a restart operation δ(q(i,j)
l , u) = (q(s,1)

0 ,Restart) for
each restart operation of Mi of the form δi(q

(i)
l , u) = Restart, where s ∈ σi is the successor that

is associated to this restart operation of Mi. Thus, after executing the j-th cycle of Mi, the
computation continues with the automaton Ms.

From the given construction it follows similar to the proof of Theorem 4.2.2 that M is a nonfor-
getting deterministic X-automaton, and that L(M) = L=j(M) holds.

Thus, we see that globally deterministic CD-systems of restarting automata working in mode
= 1 are just as powerful as nonforgetting deterministic restarting automata. It remains to study
CD-systems that work in mode t.

In the nondeterministic case, RL-, RLW- and RLWW-automata needed no special treatment, in
the deterministic case they are strictly more powerful than the corresponding RR-, RRW- and
RRWW-automata and must be handled separately. For this we first restate the normalform for
det-RL-, det-RLW- and det-RLWW-automata. This normalform corresponds to the one established
in Lemma 3.3.2 on page 42.
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Let X ∈ {ε,W,WW}. For each det-RLX-automaton M , there exist a det-RLX-automaton M ′ that
performs its restart operation immediately after its rewrite operation, such that L(M) = L(M ′)
holds.

With this normalform we can prove the following theorem for all kinds of restarting automata.

Theorem 4.3.4. Let X ∈ {RR,RL,RRW, RLW, RRWW,RLWW}, and let M be a globally deter-
ministic CD-X-system. Then there exists a nonforgetting deterministic X-automaton M such that
L(M) = Lt(M) holds.

Proof. Let X ∈ {RR,RL,RRW,RLW, RRWW,RLWW}, and let M = ((Mi, σi)i∈I , {i0}) be a globally
deterministic CD-X-system. Again, as in the proof of Theorem 4.2.3, the problem in simulating
the mode t computations of M by a nonforgetting deterministic X-automaton M is caused by the
way in which the computation of M switches from one component to the next. If a component
Mi gets stuck after having performed a positive number of cycles, that is, it can neither execute
another cycle nor an accepting tail, then a component Mj with j ∈ σi takes over. As M is globally
deterministic, the index j ∈ σi is determined by the last restart operation executed by Mi in the
current computation. However, if Mi gets stuck immediately, that is, without having executed a
single cycle, then the overall computation of M fails, that is, in this case M halts and rejects. The
nonforgetting deterministic X-automaton M will simulate the computations of M cycle by cycle.

However, when simulating the component Mi of M, then M must decide at the end of each cycle,
that is, when executing the corresponding restart operation, whether to start the simulation of
another cycle of Mi or whether to start the simulation of a cycle of the component Mj , where
j ∈ σi is the index assigned to the last restart operation. To solve this problem we proceed as
follows.

For RL-, RLW- and RLWW-automata we can assume that Mi restarts immediately after executing
a rewrite (Lemma 3.3.2). This property is needed, when M tries to find a succeeding cycle. A
nonforgetting deterministic restarting automaton M with MVL-operations acts as the component
automaton Mi it wants to simulate.

The only difference is that when Mi would perform a restart, M moves to the left end of the tape
and tries to execute another cycle. If it reaches a configuration such that Mi can perform a rewrite,
and because of the normalform also a restart, then M knows that Mi can perform another cycle
afterwards. In this case M restarts again in the same "component". If it is unable to reach another
rewrite, it restarts in the "component", which is assigned to the most resent restart of Mi.

Thus after it has simulated one cycle of Mi, M can check whether this component is able to perform
another cycle or not and behave accordingly.

For RR-, RRW- and RRWW-automata the simulation is done similar to the nondeterministic case
(Theorem 4.2.3).

Again, we can assume that Mi reads its tape completely within each cycle, that is, it executes
a restart operation only at the right delimiter $. Hence, while simulating a cycle of Mi, the
automaton M can already check whether all computations of Mi that follow the current cycle will
be rejecting tails, or whether another Restart or an accepting tail follows. This is best described
in terms of meta-instructions.

Let x ∈ Lt(M), that is, there exists a computation of M of the form

x `cn1

Mi1
x1 `cn2

Mi2
· · · `cnl

Mil
xl `cnl+1

Mil+1
Accept,
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This means that the component Mi1 performs n1 cycles before it rejects and then the component
Mi2 , with i2 ∈ σ1 and Mi2 is assigned to the last restart operation of Mi1 , becomes active. When
Mi2 is unable to perform another cycle after n2 many cycles, Mi3 becomes active. This is done
until Mil+1 accepts after nl+1 many cycles.

M simulates the computation of M cycle by cycle. It starts simulating the first cycle of Mi1 starting
from the initial configuration q0c|x$. While M simulates a cycle x `c

Mi
y of Mi it also checks all

meta-instructions In = (En, un → vn, En
′) of Mi within its finite control, to determine if Mi is

able to perform another cycle afterwards. It does this, by checking, if y has a factorization wjujw
′
j

with wj ∈ Ej , w
′
j ∈ E′

j . If y has such a factorization, that means that the meta-instruction Ij is
applicable after the current cycle, then M restarts in qi

0 simulating another cycle of Mi.

Otherwise none of the meta-instructions of Mi are applicable, and therefore Mi is unable to perform
another cycle, starting with y. Accordingly, at the end of the current cycle M restarts in the
restarting state that corresponds to the initial state of the components Mj , j ∈ σi, which is
assigned to the corresponding restart of M.

It is easily seen that Lt(M) ⊆ L(M) follows.

The other direction is straight forward, because if x ∈ L(M), then there exists a sequence of cycles

(q0, x) `cn1

M (q1
0 , x̂) `cn1−1

M (q2
0 , x1) `cn2

M · · · `cnl

M (ql
0, xl) `cnl+1

M Accept,

and ql
0 corresponds to the initial state of Ml. This describes exactly a computation of M.

Again it is not clear whether the latter result extends to CD-systems of R(W)(W)-automata. The
problem with these types of restarting automata stems from the fact that within a cycle such an
automaton will in general not see the complete tape content.

4.3.2 Strictly Deterministic CD-Systems

Here we study the expressive power of strictly deterministic CD-systems of restarting automata.
As seen in Example 4.1.4 the copy language Lcopy is accepted by a strictly deterministic CD-R-
system with two components. This language is not growing context-sensitive [Bun96, Lau88]. As
deterministic RRWW-automata only accept Church-Rosser languages, which are a proper subclass
of the growing content-sensitive languages, this yields the following separation result.

Proposition 4.3.5. For all X ∈ {R,RR,RW,RRW,RWW, RRWW},

L(det-X) ( L=1(det-strict-CD-X).

Let Lcopym := {w(#w)m−1 | w ∈ Σ+
0 } be the m-fold copy language. Analogously to Example 4.1.4

it can be shown that this language is accepted by a strictly deterministic CD-R-system with m
components that works in mode = 1. The next example deals with a generalization of these
languages.

Example 4.3.6. Let Lcopy∗ := {w(#w)n | w ∈ (Σ2
0)

+, n ≥ 1 } be the copy-star language, where
Σ0 := {a, b}. Here the restriction to non-empty factors w ∈ Σ∗

0 of even length is introduced just
to simplify the description of a CD-system for the language Lcopy∗ .
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Let M := ((M1, {2}), (M2, {1}), {1}) be the following CD-RWW-system. The input alphabet is
Σ := Σ0∪{#}, the tape alphabet is Γ := Σ∪Γ0, where Γ0 := {Aa,a, Aa,b, Ab,a, Ab,b}, and the RWW-
automata M1 and M2 are given through the following meta-instructions, where c, d, e, f ∈ Σ0:

M1 : (c| · (Σ2
0)
∗ · cd ·# · (Σ2

0)
∗, cd ·# → Ac,d ·#),

(c| · (Σ2
0)
∗ · cd ·# · (Σ2

0)
∗, cd · $ → Ac,d · $),

(c| · (Σ2
0)
∗ · cd ·# · (Σ2

0)
∗, cdAe,f → Ac,dAe,f ),

(c| · Γ∗0 ·Ac,d ·# · (Σ2
0)
∗, cd ·# → Ac,d ·#),

(c| · Γ∗0 ·Ac,d ·# · (Σ2
0)
∗, cd · $ → Ac,d · $),

(c| · Γ∗0 ·Ac,d ·# · (Σ2
0)
∗, cdAe,f → Ac,dAe,f ),

(c| · Γ+
0 · $,Accept),

M2 : (c| · (Σ2
0)

+, cd ·# → #),
(c| , cd ·# → ε),
(c| · Γ+

0 , Ac,d ·# → #),
(c| , Ac,d ·# → ε).

It is easily verified that M1 and M2 are deterministic RWW-automata, and hence, M is a strictly
deterministic CD-RWW-system. In mode = 1, the two components M1 and M2 are used alternat-
ingly, with M1 starting the computation. Let x := w1#w2# . . .#wm be the given input, where
w1, w2, . . . , wm ∈ (Σ2

0)
+ and m ≥ 2. First w1 is compared to w2 by processing these strings from

right to left, two letters in each round. During this process w1 is erased, while w2 is encoded using
the letters from Γ0. Next the encoded version of w2 is used to compare w2 to w3, again from right
to left. This time the encoded version of w2 is erased, while w3 is encoded. This continues until
all syllables wi have been considered. It follows that L=1(M) = Lcopy∗ holds.

For accepting the language Lcopy∗ without using auxiliary symbols we have a CD-system of restart-
ing automata that is globally deterministic.

Lemma 4.3.7. The language Lcopy∗ is accepted by a globally deterministic CD-R-system working
in mode = 1.

Proof. Let M := ((Mi, σi)i∈I , I0) be the CD-R-system that is specified by I := {0, 1, 2, 3, 4, 5, 6},
I0 := {0}, σ0 := {5}, σ1 := {2, 6}, σ2 := {1, 6}, σ3 := {4, 5}, σ4 := {3, 5}, σ5 := {1}, σ6 := {3},
and M0 to M6 are given through the following meta-instructions, where c, d ∈ Σ0:

M0 : (c| · ((Σ2
0)

+ · Σ0 · c ·#)+ · (Σ2
0)

+ · Σ0, c · $ → $,Restart(5)),
(c| · (u ·#)+ · u · $,Accept) for all u ∈ Σ2

0,

M1 : (c| · ((Σ2
0)

+ · c ·#)+ · (Σ2
0)

+, c · $ → $,Restart(6)),
(c| · ((Σ2

0)
+ · c ·#)+ · (Σ2

0)
+ · c, d ·# → #, Restart(2)),

M2 : (c| · ((Σ2
0)

+ · c ·#)+ · (Σ2
0)

+, c · $ → $,Restart(6)),
(c| · ((Σ2

0)
+ · c ·#)+ · (Σ2

0)
+ · c, d ·# → #, Restart(1)),

M3 : (c| · ((Σ2
0)

+ · Σ0 · c ·#)+ · (Σ2
0)

+ · Σ0, c · $ → $,Restart(5)),
(c| · ((Σ2

0)
∗ · Σ0 · c ·#)+ · (Σ2

0)
∗ · Σ0 · c, d ·# → #, Restart(4)),

(c| · (u ·#)+ · u · $,Accept) for all u ∈ Σ2
0,

M4 : (c| · ((Σ2
0)

+ · Σ0 · c ·#)+ · (Σ2
0)

+ · Σ0, c · $ → $,Restart(5)),
(c| · ((Σ2

0)
∗ · Σ0 · c ·#)+ · (Σ2

0)
∗ · Σ0 · c, d ·# → #, Restart(3)),

(c| · (u ·#)+ · u · $,Accept) for all u ∈ Σ2
0,

M5 : (c| · Σ+
0 , c ·# → #, Restart(1)),

M6 : (c| · Σ+
0 , c ·# → #, Restart(3)).
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Clearly M0 to M6 are deterministic R-automata, and hence, M is a globally deterministic CD-R-
system. Given an input of the form w#w# · · ·#w, where |w| = 2m > 2, M0 verifies that all
syllables are of even length, and that they all end in the same letter, say c. This letter c is deleted
from the last syllable, and M5 is called, which simply deletes the last letter (that is, c) from the
first syllable. Now M1 is called, which in cooperation with M2, removes the last letter from all
the other syllables. Finally the tape content w1#w1# · · ·#w1 is reached, where w = w1c. In this
situation M1 (or M2) notices that all syllables are of odd length, and that they all end with the
same letter, say d, which it then removes from the last syllable. Now using M6, M3, and M4 this
letter is removed from all other syllables. This process continues until either an error is detected,
in which case M rejects, or until a tape content of the form u#u# · · ·#u is reached for a word
u ∈ Σ2

0, in which case M accepts. Thus, we see that M accepts the language Lcopy∗ working in
mode = 1.

The following negative result contrasts the positive results above.

Theorem 4.3.8. The language Lcopy∗ is not accepted by any strictly deterministic CD-RR-system
that is working in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0) be a strictly deterministic CD-RR-system that accepts the lan-
guage Lcopy∗ in mode = 1. We can assume that I = {0, 1, . . . ,m}, that I0 = {0}, that σi = {i+1}
for all i = 0, 1, . . . ,m − 1, and that σm = {s} for some s ∈ I. Thus, each computation of M has
the following structure:

w0 `cs

M ws `c
Ms

ws+1 `cm−s−1

M wm `c
Mm

wm+1 `c
Ms

wm+2 `cm−s−1

M · · · ,

that is, it is composed of a head w0 `cs

M ws that consists of s cycles and of a sequence of meta-cycles
of the form ws `c

Ms
ws+1 `cm−s−1

M wm `c
Mm

wm+1 that consist of m− s + 1 cycles each.

Let x := w#w(#w)n be an input word with w ∈ (Σ2
0)
∗, where |w| and the exponent n are

sufficiently large. Then x ∈ Lcopy∗ , and hence, the computation of M that begins with the restarting
configuration (M0, q

(0)
0 c|x$) is accepting. We will now analyze this computation. The factors w of

x and their descendants in this computation will be denoted as syllables. To simplify the discussion
we use indices to distinguish between different syllables.

M must compare each syllable wi to all the other syllables. As |wi| = |w| is large, it can compare
wi to wj for some j 6= i only piecewise. However, during this process it needs to distinguish the
parts that have already been compared from those parts that have not. This can only be achieved
by rewriting wi and wj accordingly. Since no auxiliary symbols are available, this must be done by
rewrite operations that delete those parts of wi and wj that have already been compared. Hence,
up to a finite part that remains of a syllable, each syllable can only be compared to other syllables
once. Therefore M has to compare the syllables all at once. But there are only m − s + 1 cycles
in a meta-cycle, thus, M cannot use the information provided by a special component to compare
the syllables.

On the other hand, if M uses some regular condition, i.e. even or odd length of the syllables
to rewrite all syllables at a time, then all components behave equal during a sequence of cycles
that shortens all syllables. Therefore it can only shorten each syllable once. Because if any
component rewrites the last syllable, then the other syllables remain unchanged and therefore the
next component will move to the last syllable as well. And so does the next and so on until
information is moved over one syllable, but this means that this syllable is deleted up to a finite
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part. As this syllable cannot be compared to the other syllables anymore it follows that this is not
a successful way to accept Lcopy∗ either.

Thus, M cannot accept Lcopy∗ .

Lemma 4.3.7 and Theorem 4.3.8 yield the following proper inclusions.

Corollary 4.3.9. For all types X ∈ {R,RR},

L=1(det-strict-CD-X) ( L=1(det-global-CD-X).

It remains to show that this inclusion is also valid for CD-X- systems, X ∈ {RW,RRW}. This is
proven in Theorem 4.3.27 on page 99.

However, if we consider the language of only finitely many copies Lcopym , then this language is
accepted by a strictly deterministic CD-RW-system with only three components. We describe the
method in the following lemma for Lcopy3 .

Lemma 4.3.10. The language Lcopy3 is accepted by a strictly deterministic CD-RW-system with
three components that executes meta-cycles of length 2.

Proof. For simplicity we consider the sublanguage L
(6)
copy3 := {w#w#w# | w ∈ (Σ6

0)
n, n ≥ 2 }

only. Let M := ((M0, {1}), (M1, {2}), (M2, {1}), {0}) be the CD-RW-system that is given through
the following meta-instructions. Here Σ0 := {a, b} and c, d, e, f, g, h, a′ ∈ Σ0:

M0 : (c| · (Σ6
0)

+ ·# · (Σ6
0)

+ ·# · (Σ6
0)

+,#$ → $),

M1 : (c| · (Σ6
0)
∗ · cdefgh ·# · (Σ6

0)
∗, cdefgh ·# · a′ → ## · fgh ·# · a′),

(c| · (Σ6
0)
∗ · cdefgh ·## · (Σ3

0)
+ ·# · (Σ6

0)
∗, cdefgh ·## → ## · fgh),

(c| ·## · (Σ3
0)
∗ · cde ·### · (Σ3

0)
+ ·# · (Σ6

0)
+, cdefgh · $ → ## · fgh · $),

(c| ·## · (Σ3
0)
∗ · cde ·### · (Σ3

0)
+ ·# · (Σ6

0)
∗, cdefgh ·## → ## · fgh),

(c| ·##### · (Σ3
0)
∗ · fgh ·### · (Σ3

0)
∗, fgh · $ → $),

(c| ·#8 · $,Accept),

M2 : (c| · (Σ6
0)
∗, cdefgh ·# · a′ → ## · cde ·# · a′),

(c| · (Σ6
0)
∗, cdefgh ·## → ## · cde),

(c| ·## · (Σ3
0)
∗, cde ·### → ###),

(c| ·##### · (Σ3
0)
∗, fgh ·### → ###).

Then M0, M1, and M2 are deterministic RW-automata, and therewith M is a strictly deterministic
CD-RW-system with three components that executes meta-cycles of length 2.

Claim. L=1(M) = L
(6)
copy3 .

Proof. Given an input of the form w#w#w#, where w = u1v1u2v2 . . . umvm for some words
u1, . . . , um, v1, . . . , vm ∈ Σ3

0 and an integer m ≥ 1, M proceeds as follows:

1. First M0 verifies that the given input is of the form w1#w2#w3# for some w1, w2, w3 ∈
(Σ6

0)
+. In the negative it halts and rejects. In the affirmative it removes the last occurrence

of # and restarts.
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2. Then w1 and w2 are compared to each other, proceeding from right to left. In the i-th meta-
cycle the factors um−i+1vm−i+1 of both syllables are compared. In w2 the factor um−i+1

is erased, while in w1 the factor vm−i+1 is erased. Further, the string ## is used in both
syllables as a marker to distinguish the prefix that has not been processed yet from the suffix
that has already been processed.

3. Next the descendant w′
1 := u1 . . . um of w1 is compared to the corresponding sequence of

factors of w3. This is again done from right to left, in the i-th meta-cycle deleting the factor
um−i+1 from both w′

1 and w3. Here again the string ## is used as a marker within the
descendants of w3.

4. Finally the descendant w′
2 := v1 . . . vm of w2 is compared to the remaining descendant w′

3 of
w3. This is again done from right to left, in the i-th meta-cycle deleting vm−i+1 from both
w′

2 and from w′
3. Here no markers are needed, because both words are deleted.

It follows that M accepts, that is, L
(6)
copy3 ⊆ L=1(M).

Conversely, if x ∈ (Σ0 ∪ {#})+ is accepted by M, then it follows from the form of the meta-
instruction of M0 that x is of the form x = w1#w2#w3# for some words w1, w2, w3 ∈ (Σ6

0)
+.

Further, the above description of how M works implies that w1 = w2 = w3 must hold, that is, we
see that L

(6)
copy3 = L=1(M)

This completes the proof of Lemma 4.3.10.

Observe that in the above construction the component M0 is used only once in each computation.
It performs a kind of head computation that is used to ensure that the words accepted belong to
the regular language (Σ6

0)
+ ·# · (Σ6

0)
+ ·# · (Σ6

0)
+ ·#. The necessary comparisons are all done by

the components M1 and M2 that alternate. The same technique can be used to show the following
result.

Proposition 4.3.11. For each integer m ≥ 3, the language Lcopym is accepted by a strictly deter-
ministic CD-RW-system with three components that executes meta-cycles of length 2.

Here we just need to divide the syllables into m− 1 factors such that each of them can be used in
m− 1 comparisons. This method also works for other variants of the copy language. For example
even the prefix language Lprem from the next definition is accepted by a strictly deterministic
CD-RW-system with five components and meta-cycles of length four.

Definition 4.3.12. For m ≥ 2, Lprem is the following variant of the m-fold copy language:

Lprem := {w1#w2# . . .#wm | w1, . . . , wm ∈ Σ∗
0, wm ≤pre wi for all 1 ≤ i ≤ m− 1 },

where ≤pre is the prefix relation.

Up to now, we were unable to find a separation language for CD-RW-systems based on the number
of components. And even for CD-RR-systems the language Lcopym does not separate the class of
CD-systems with m components from the one with m − 1 components as Martin Plátek proved
just recently.

Proposition 4.3.13. [Plá07]
For each integer m ≥ 6, the language Lcopym is accepted by a strictly deterministic CD-RR-system
with less than m components.
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However, strictly deterministic CD-systems working in mode t are even more expressive.

Proposition 4.3.14. The language Lcopy∗ is accepted by a strictly deterministic CD-R-system
working in mode t.

Proof. Let M := ((Mi, σi)i∈I , I0) be the CD-R-system that is specified by I := {0, 1, 2}, I0 := {0},
σ0 := {1}, σ1 := {2}, σ2 := {0}, where the R-automata M0,M1, and M2 are given through the
following meta-instructions. Here Σ0 := {a, b} and c, d, e ∈ Σ0:

M0 : (c| · ((Σ2
0)

+ · cd ·#)+ · (Σ2
0)

+, cd · $ → c$),
(c| · cd · (# · cd)+ · $,Accept),

M1 : (c| · ((Σ2
0)

+ · Σ0#)∗ · (Σ2
0)

+, cd ·# → c ·#),

M2 : (c| · ((Σ2
0)

+ ·#)∗ · (Σ2
0)

+, c ·# → ·#),
: (c| · ((Σ2

0)
+ ·#)∗ · (Σ2

0)
+, c · $ → ·$).

Obviously, the RW-automata M0, M1, and M2 are deterministic, and hence, M is a strictly de-
terministic CD-RW-system. Given an input of the form w(#w)n, where w ∈ (Σ2

0)
+ and n ≥ 1,

the automaton M0 checks that all syllables end with the same suffix cd of length 2, and in the
affirmative it rewrites the suffix cd of the last syllable into c. Now no meta-instruction of M0 is
applicable anymore, and therefore, M1 takes over. It rewrites the suffix cd ·# of the first n syllables
into c#, that is, it yields the tape content c| (w1c#))nw1c$, where w = w1cd. Then M2 takes over,
which deletes the last letter of each syllable, producing the tape content c|w1(#w1)n$ within n +1
cycles. Then M0 takes over again. It follows that Lt(M) = Lcopy∗ .

4.3.3 Locally Deterministic CD-Systems

Here we will show that the expressive power of locally deterministic CD-systems of restarting
automata differs from that of nondeterministic CD-systems on the one hand, and from that of
globally deterministic CD-systems on the other hand. First, however, we establish the following
inclusion result.

Theorem 4.3.15. For each type X ∈ {R,RR,RL,RW,RRW,RLW,RWW,RRWW,RLWW}, and
each integer j ≥ 1, L=j(det-global-CD-X) ⊆ L=1(det-local-CD-X).

Proof. Let j ≥ 1, and let M := ((Mi, σi)i∈I , {i0}) be a globally deterministic CD-system of X-
automata, where, for each i ∈ I, the set of states of Mi is Qi = {qi,0, qi,1, . . . , qi,ni

}. Then, for each
index i ∈ I, Mi is a deterministic X-automaton, and each restart operation δi(qi,r, u) = Restart of
Mi is combined with an index l ∈ σi. This means that the automaton Ml takes over, when Mi

finishes a part of a computation of M according to the actual mode of operation = j by executing
this particular restart operation. To express this combination, we will denote the above restart
operation as δi(qi,r, u) = (Restart, l). We have to construct a locally deterministic CD-system M′

of X- automata such that L=1(M′) = L=j(M) holds.

We first consider the case j = 1. Then M switches to the next component system whenever
a restart operation is executed. The CD-system M′ is defined as M′ := ((M (l)

i , σ
(l)
i )(i,l)∈I′ , I

′
0),

where I ′ :=
⋃

i∈I ({i} × σi), I ′0 := {i0} × σi0 , σ
(l)
i := {l} × σl, and M

(l)
i is essentially a copy of the
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X-automaton Mi for each i ∈ I and each l ∈ σi. However, all restart operations of Mi are deleted
from M

(l)
i but those of the form δi(q, u) = (Restart, l), which are changed into δ

(l)
i (q, u) = Restart.

Of course, the states of M
(l)
i are renamed in such a way that all these automata have disjoint sets

of states.

It is obvious that each automaton M
(l)
i is a deterministic X-automaton. Thus, M′ is a locally

deterministic CD-X-system. It remains to show that L=1(M′) = L=1(M) holds.

Claim 1. L=1(M) ⊆ L=1(M′).

Proof. Let w ∈ Σ∗ be an input word that belongs to the language L=1(M). Then the computation
of M on input w has the following form:

w `c
Ml0

w1 `c
Ml1

· · · `c
Mlm−1

wm `c
Mlm

Accept,

where, for all i = 1, . . . ,m, the successor li ∈ σli−1 is combined with the restart step that Mli−1

executes in the cycle wi−1 `c
Mli−1

wi. This computation can be simulated by M′ as follows:

w `c

M
(l1)
l0

w1 `c

M
(l2)
l1

· · · `c

M
(lm)
lm−1

wm `c

M
(l′)
lm

Accept,

where l′ ∈ σlm . Observe that M
(l1)
l0

contains the restart operation that corresponds to the restart
operation (Restart, l1) of Mi0 executed in the first cycle of the M-computation above, and analo-
gously for the other components. Thus, it follows that L=1(M) ⊆ L=1(M′).

Claim 2. L=1(M′) ⊆ L=1(M).

Proof. Let w ∈ Σ∗ be an input word that belongs to the language L=1(M′). Then on input w, M′

can execute an accepting computation of the following form:

w `c

M
(l1)
l0

w1 `c

M
(l2)
l1

· · · `c

M
(lm)
lm−1

wm `c

M
(lm+1)
lm

Accept,

where, for all i = 1, . . . ,m + 1, li ∈ σli−1 . It follows immediately from the construction of M′

that this computation corresponds to an accepting computation of M. Hence, it follows that
L=1(M′) ⊆ L=1(M).

Together Claims 1 and 2 prove that L=1(M′) = L=1(M) holds.

For j > 1, M can be simulated by a locally deterministic CD-X-system that uses j copies of each
component of M to count the number of cycles that each component executes (compare the proof
of Theorem 4.3.3). The first j − 1 copies are true copies of the respective component of M, while
the j-th copy is modified as in the proof above for mode = 1. Thus only the restart operations
that are assigned to the chosen successor remain in the component.

This result together with Theorem 4.3.2 and Theorem 4.3.4 leads to the following Corollary.

Corollary 4.3.16. For each type X ∈ {RR,RL,RRW,RLW,RRWW,RLWW}the following inclusions
hold: Lt(det-global-CD-X) ⊆ L=1(det-local-CD-X).
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Proof. From Theorem 4.3.4 we know that Lt(det-global-CD-X) ⊆ L(det-nf-X), and in Theorem 4.3.2
it is shown that L(det-nf-X) ⊆ L=1(det-global-CD-X).

Thus, Lt(det-global-CD-X) ⊆ L=1(det-global-CD-X) holds and with Theorem 4.3.15 the assertion
follows.

It remains open whether a corresponding result holds for locally deterministic CD-systems working
in mode t or =j. The problem in both cases is that for globally deterministic CD-systems each
restart is assigned with a successor. This successor is only used, if the component is changed.
But a component in a locally deterministic CD-system does not know, when it is executing its last
cycle.

Next we turn to the separation results that were announced at the beginning of this subsection.
To establish the first of them we consider the following example language.

Definition 4.3.17. Let Σ0 := {a, b} and Σ1 := {a, b, c}. The language Lcc is a variant of the copy
language: Lcc := {wcφ1(w)cφ2(w) | w ∈ Σ∗

1 }, where φ1 : Σ∗
1 → Σ∗

0 is the morphism that is defined
by a 7→ a, b 7→ b, and c 7→ a, and φ2 : Σ∗

1 → Σ∗
0 is the morphism that is defined by a 7→ a, b 7→ b,

and c 7→ b.

Lemma 4.3.18. The language Lcc is accepted by a CD-RR-system consisting of three components
that is working in mode = 1.

Proof. Let M := ((M1, {2}), (M2, {3}), (M3, {1}), {1}) be the following CD-RR-system with input
alphabet Σ1, where the RR-automata M1, M2, and M3 are given through the following meta-
instructions:

M1 : (c| · Σ∗
1 · ac · Σ∗

0 · ac · Σ∗
0, a · $ → $, ε),

(c| · Σ∗
1 · bc · Σ∗

0 · bc · Σ∗
0, b · $ → $, ε),

(c| · Σ∗
1 · cc · Σ∗

0 · ac · Σ∗
0, b · $ → $, ε),

(c| · cc · $,Accept),

M2 : (c| · Σ+
1 · c · Σ∗

0, xc → c,Σ∗
0 · $) for all x ∈ Σ0,

M3 : (c| · Σ∗
1, yc → c,Σ∗

0 · c · Σ∗
0 · $) for all y ∈ Σ1.

Given an input z ∈ Σ∗
1, it is obvious that M1 will immediately reject, if |z|c ≤ 1. Thus, assume

that w has the form z = ucvcw, where u ∈ Σ∗
1 and v, w ∈ Σ∗

0. Observe that |u| = |v| = |w| must
hold if w = ucvcw belongs to the language Lcc. If u = v = w = ε, then M1 accepts immediately.
Observe that w = cc belongs to the language Lcc. If only one or two of the factors u, v, or w are
empty, then M1 rejects immediately. Otherwise, M1 compares the last letter of u, say d, to the
last letter of v, say e, and the last letter of w, say f . If φ1(d) = e and φ2(d) = f , then f is deleted,
and M2 becomes active; otherwise, M1 halts and rejects. In the latter case w = ucvcw does not
belong to Lcc, while in the former case M2 simply deletes the letter e, and then M3 deletes the
letter d. Thus, M has executed the sequence of cycles z = ucvcw = u1dcv1ecw1f `c3

M u1cv1cw1.
Now z ∈ Lcc if and only if u1cv1cw1 ∈ Lc, and hence, it follows inductively that L=1(M) = Lcc.

In contrast to this positive result the following negative result was achieved in [Ott08].

Proposition 4.3.19. The language Lcc is not accepted by any locally deterministic CD-RRW-
system that is working in mode = 1.

Combined Lemma 4.3.18 and Proposition 4.3.19 yield the following consequence.
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Corollary 4.3.20. For the types X ∈ {RR,RRW},

L=1(det-local-CD-X) ( L=1(CD-X) = L(nf-X).

Next we consider the language L(expo,pal) := Lpal ∪ Lexpo, where

Lpal := {w | w ∈ Σ∗
0, w = wR }, and

Lexpo := { ai0bai1b · · · ain−1bain | n ≥ 0, i0, . . . , in ≥ 0, and
∃m ≥ 0 :

∑n
j=0 2j · ij = 2m } ∪ b∗.

Lemma 4.3.21. The language L(expo,pal) is accepted by a locally deterministic CD-RW-system
working in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0) be the CD-RW-system that is specified by I := {1, 2, 3, 4}, I0 :=
{1, 3}, σ1 := {2}, σ2 := {1}, σ3 := {4}, and σ4 := {3}, where the components Mi, 1 ≤ i ≤ 3, are
given through the following meta-instructions:

M1 : (c| · d · Σ∗
0, d · $ → $) for all d ∈ Σ0,

(c| · {ε, a, b} · $,Accept),
M2 : (c| , d → ε) for all d ∈ Σ0,

M3 : (c| · a∗, aab → ba),
(c| , b → ε),
(c| · a∗, a4 · $ → baa · $),
(c| · {ε, a, aa, ab+} · $,Accept),

and M4 is simply a copy of M3. Obviously, these RW-automata are all deterministic, that is, M

is indeed a locally deterministic CD-RW-system. The subsystem consisting of M1 and M2 is easily
seen to accept the language Lpal. Thus, L=1(M) = L(expo,pal) is an immediate consequence of the
following claim:

Claim. M3 and M4 together accept the language Lexpo.

Proof. M3 and M4 are identical, and they simply alternate. If w = bm for some m ≥ 0, then
obviously w is accepted by M3 and M4. If w = ai0bai1b · · · ain−1bain is given as input to M3, where
n, i0, . . . , in ≥ 0, and

∑n
j=0 2j · ij = 2m for some m ≥ 0, then the first occurrence of b is first shifted

to the left end of the word. As
∑n

j=0 2j · ij = 2m, we see that i0 is an even number. Thus, this
particular occurrence of b is then deleted. This results in the word w1 := ai0/2+i1b · · · ain−1bain .
As

i0/2 + i1 +
n∑

j=2

2j−1 · ij = (
n∑

j=0

2j · ij)/2 = 2m−1,

we see that this word belongs to the language Lexpo. This continues until all occurrences of the
letter b have been deleted, or until a word of the form abm is reached. The resulting word is of
the form a2l

for some l ≥ 0. If l ≤ 1, then the word is accepted, otherwise an occurrence of b is
generated at the right end of the word and shifted through the word as described above, which
results in the word a2l−1

. Now the claim follows easily.
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In contrast to this positive result we have the following.

Theorem 4.3.22. The language L(expo,pal) is not accepted by any globally deterministic CD-RRW-
system that is working in mode = 1.

Proof. For a contradiction let M = ((Mi, σi)i∈I , I0) be a globally deterministic CD-RRW-system
with window size k that accepts the language L(expo,pal) in mode = 1, and let w := u1u1

Ruu1u1
R ∈

L(expo,pal), c ≥ 0 be an input word for which the words u, u1 have sufficient length and let u and
u1 both contain every string of length k over Σ0 arbitrary often and in any ordering. Then the
computation of M on input w is accepting. As M has no auxiliary symbols and the input symbols
are only a and b, it is impossible for it to find and mark the middle, because there is no string left,
which could be used as a marker. As each component Mi is deterministic, it can only distinguish
between |Qi| ∗ |Σ|k many configurations. Thus u1 can be chosen in a way that each Mi must
perform a rewrite in a prefix of u1, if it wants to perform a rewrite before it sees the right sentinel
$. So during the first m cycles of this computation each of the Mi and therefore M, can only
perform rewrites in a prefix of restricted length of w and therefore of u1 or while seeing the right
border marker $.

Assume that w `cm

M v, and assume that m is sufficiently large such that the information erased
from the tape during these m cycles cannot be remembered by selecting an appropriate component
system of M. There exists such a m, because M is globally deterministic, and information can
only be remembered by choosing a component, but M has only a finite number of components.
Information cannot be stored on the tape, if the word u1 has a high Kolmogorov complexity,

By executing these m cycles, it is in general not possible to transform a word w belonging to
Lpal into a word v from Lexpo or vice versa. More important there exist subwords u such that
w = u1u1

Ruu1u1
R is such a word. If u is not a palindrome and it is large enough, then w cannot

be transformed into a palindrome either, as u is not altered during these cycles. If w 6∈ Lexpo holds,
then there also exist subwords u ∈ {bnaΣ∗

0|n ≥ 0} such that w cannot be transformed into a word
belonging to Lexpo in these m cycles. Because the factor u1 needs to contain at least 2n a’s, if
u1uuR

1 can be rewritten into a word belonging to Lexpo.

Also, based on the information gathered during this process, M cannot decide whether it has to
verify that w belongs to the sublanguage Lpal or whether it has to verify that w belongs to the
sublanguage Lexpo. This is a property that also depends on the middle part u. Thus, modulo the
finite information that M can store by choosing a component, v must essentially belong to the
same sublanguage as the original input w. This means that the first m cycles must preserve this
property. Therefore M must check w ∈ Lpal and w ∈ Lexpo simultaneously.

To retain the property of being a palindrome for the tape content, symbols in the prefix are
compared to their counterparts in the suffix, and both are deleted in order to distinguish those
parts that have been compared from those parts that have not yet been compared.

There is no other way than deleting or rewriting, and thereby shortening, the compared parts.
The rewritten parts cannot be an encoding of the original tape content, as there are no markers.
However, this process will in general destroy the property of the tape content to belong to the
sublanguage Lexpo.

If M does not remember how many letters it has deleted, then together with a word of Lexpo it also
accepts some words not belonging to this language. This contradicts the error preserving property.
On the other hand, if rewrites are performed that are oriented towards checking membership in
Lexpo, then M has to move b’s from left to right over the tape, while halving the a’s. But this
destroys the symmetry of palindromes.
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In the following paragraphs we give details, about what M can do in every rewrite and discuss,
how this effects the property of belonging to one of the sublanguages. However a finite number
of these steps, which do not preserve this property, are always possible, as long as M remembers
where these steps were made. But as only a finite number of steps are possible, we will show that
M is unable to check the belonging to both sublanguages simultaneously for an arbitrary large
number of cycles.

In every rewrite there are four options what to do with the b’s: creating new b’s, deleting b’s,
moving b’s and doing nothing with the b’s.

Doing nothing with the b’s means that some a’s are deleted, this can be helpful for checking
membership in Lpal (if it is done in a position near the border markers and if the a’s are deleted
together with their counterparts), but this destroys the property of belonging to Lexpo.

Deleting b’s is allowed at the border markers. Deletes in any other place destroy the property of
belonging to Lexpo. For Lpal it is allowed, if they are deleted together with their counterparts. To
find the counterparts they must be in a position near the border markers.

b’s can only be created, if some a’s are deleted, because each restarting automaton is length
reducing. Therefore, while checking for Lexpo, b’s can only be created near the right border marker.
In this process the a’s that are rewritten are halved and written to the right of the b. An example
is the rewrite operation a4$ → ba2$. For Lpal this is allowed, if c|a4 → c|a2b is rewritten in another
cycle at the beginning of the tape, but this is not allowed while checking for Lexpo.

The last thing is moving b’s. If a b is moved from right to left while halving the a’s, which the
b moves over, this is no problem, but as each rewrite is length reducing, movements from left to
right destroy the property of belonging to Lexpo. But while checking for Lpal, movements are only
allowed, if they have different directions in the prefix and in the suffix.

Hence, in none of these cases, except for deleting b’s at the borders, it is possible to check for
membership in both sublanguages simultaneously. It follows that with L(expo,pal) the system M will
also accept some words that do not belong to this language.

By applying the encoding φ : Σ∗
0 → Σ∗

0 from above we obtain the language L′
(expo,pal) := φ(L(expo,pal)).

Lemma 4.3.23. The language L′
(expo,pal) is accepted by a locally deterministic CD-R-system working

in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0) be the CD-R-system that is specified by I := {1, 2, 3, 4}, I0 :=
{1, 3}, σ1 := {2}, σ2 := {1}, σ3 := {4}, and σ4 := {3}, where the components Mi, 1 ≤ i ≤ 3, are
given through the following meta-instructions:

M1 : (c| · d · φ(Σ0)∗, d · $ → $) for all d ∈ φ(Σ0),
(c| · {ε, ab, b} · $,Accept),

M2 : (c| , d → ε) for all d ∈ φ(Σ0),
M3 : (c| · (ab)∗, ababb → bab),

(c| , b → ε),
(c| · (ab)∗, (ab)4 · $ → babab · $),
(c| · {ε, ab, abab, ab · b+} · $,Accept),

and M4 is simply a copy of M3. Obviously, these R-automata are all deterministic, that is, M

is indeed a locally deterministic CD-R-system. The subsystem consisting of M1 and M2 is easily
seen to accept the language φ(Lpal), and it can be shown that M3 and M4 together accept the
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language φ(Lexpo). This follows from the claim in the proof of Lemma 4.3.21 and the fact that
the R-automata M3 and M4 above are obtained from the corresponding RW-automata from that
proof by applying the encoding φ to all meta-instructions.

Theorem 4.3.24. The language L′
(expo,pal) is not accepted by any globally deterministic CD-RR-

system that is working in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0) be a globally deterministic CD-RR-system that accepts the lan-
guage L′

(expo,pal) in mode = 1, and let w := (ab)i1bl1 · · · (ab)ij blj ublj (ab)ij · · · bl1(ab)i1 ∈ L′
(expo,pal)

be an input word for which the numbers j, i1, . . . , ij , l1, . . . , lj , and |u| are sufficiently large.

Then the computation of M on input w is accepting. As M is deterministic, it can only process
prefixes and suffixes of restricted length of w during the first m cycles of this computation. Assume
that w `cm

M v, and assume that m is sufficiently large such that the information erased from the
tape during these m cycles cannot be remembered by selecting an appropriate component system
of M. By executing these m cycles, it is in general not possible to transform a word w belonging
to φ(Lpal) into a word v from φ(Lexpo) or vice versa. Also, based on the information gathered
during this process, M cannot decide whether it has to verify that w belongs to the sublanguage
φ(Lpal), or whether it has to verify that w belongs to the sublanguage φ(Lexpo). Thus, modulo
the finite information that M can store by choosing a component, v must essentially belong to the
same sublanguage as the original input w. This means that the first m cycles must preserve this
property.

To preserve the property of the tape content of being a palindrome, symbols in the prefix are
compared to their counterparts in the suffix. In the palindrome language Lpal, symbols must be
deleted to distinguish those parts that have already been checked from those parts that have not.
For the language φ(Lpal), however, the situation is somewhat more involved. Here it helps that
φ(bi) = bi for all i ≥ 1, which implies that the only way to compare large blocks of b’s consists in
deleting some b’s from the prefix and from the suffix, as all components of M are just deterministic
RR-automata. However, this process will in general destroy the property of the tape content to
belong to the sublanguage φ(Lexpo). Further, it is not possible either to first check all a’s and then
compare the blocks of b’s, since M cannot move a marker from right to left across the blocks of
b’s.

On the other hand, if rewrites are performed that are oriented towards checking membership in
φ(Lexpo), then the symmetry of palindromes is destroyed. This follows from the fact that the
process of deleting at the left and at the right border is no sensible strategy for accepting the
sublanguage φ(Lexpo) (with the exception explained in the proof of Theorem 4.3.22). Here again
the encoding does not help, since the only possible markers are sequences with aa as prefix and as
suffix, and these sequences cannot be created within large blocks of b’s. Therefore, M cannot keep
all information on a possible palindrome (that is, only deleting symbols in combination with their
counterparts) and check at the same time whether the tape content belongs to the sublanguage
φ(Lexpo).

Thus, in either case information is lost that is necessary to verify membership in the corresponding
sublanguage. It follows that with L′

(expo,pal) the system M will also accept some words that do not
belong to this language.

Thus, we have the following separation result.
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Corollary 4.3.25. For all types X ∈ {R,RR,RW,RRW},

L(nf-det-X) = L=1(det-global-CD-X) ( L=1(det-local-CD-X).

Now we consider the following variation of the language L(expo,pal):

L̃(expo,pal) := Lpal′ ∪ Lexpo′ , where

Lpal′ := { awa | w ∈ Σ∗
0, w = wR }, and

Lexpo′ := { ai0bai1b · · · ain−1bain · b | n ≥ 0, i0, . . . , in ≥ 0, and
∃m ≥ 0 :

∑n
j=0 2j · ij = 2m } ∪ b+.

The difference to the original language is that a word belonging to Lpal′ always end with an a and
that a word belonging to Lexpo′ always end with a b. Thus a globally deterministic CD-RW-system
can move to the right border to determine which sublanguage to check.

Lemma 4.3.26. The language L̃(expo,pal) is accepted by a globally deterministic CD-RW-system
working in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0) be the CD-RW-system that is specified by I := {0, 1, 2, 3, 4},
I0 := {0}, σ0 := {2, 3}, σ1 := {2}, σ2 := {1}, σ3 := {4}, and σ4 := {3}, where the components Mi,
0 ≤ i ≤ 3, are given through the following meta-instructions:

M0 : (c| · a · Σ∗
0, a · $ → $,Restart(2)),

(c| · Σ+
0 , b · $ → $,Restart(3)),

M1 : (c| · d · Σ∗
0, d · $ → $,Restart(2)) for all d ∈ Σ0,

(c| · {ε, a, b} · $,Accept),
M2 : (c| , d → ε, Restart(1)) for all d ∈ Σ0,

M3 : (c| · a∗, aab → ba,Restart(4)),
(c| , b → ε, Restart(4)),
(c| · a∗, a4 · $ → baa · $,Restart(4)),
(c| · {ε, a, aa, ab+} · $,Accept),

and M4 is a copy of M3 which always assigns 3 with its restarts. Obviously, these RW-automata
are all deterministic, that is, M is indeed a globally deterministic CD-RW-system. In fact only the
component M0 has more than one successor. This component is only used once in a computation
to look which sublanguage to check. A computation starting with M0 and then continuing in the
subsystem consisting of M1 and M2 is easily seen to accept only words that belong to the language
Lpal. Thus, L=1(M) = L̃(expo,pal) as starting with M0, M3 and M4 together accept the language
Lexpo′ .

M0 transfers a word belonging to Lexpo′ into a word belonging to Lexpo by deleting the last b. In
the proof of Lemma 4.3.21 on page 95 it is shown that M3 and M4 together accept the language
Lexpo.

Theorem 4.3.27. The language L̃(expo,pal) is not accepted by any strictly deterministic CD-RRW-
system that is working in mode = 1.

Proof. Let M = ((Mi, σi)i∈I , I0) be a strictly deterministic CD-RRW-system that accepts the
language L̃(expo,pal) in mode = 1,
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In the proof of Theorem 4.3.22 it was shown, that there are words in L(expo,pal) such that an
arbitrary large prefix does not allow to determine to which sublanguage the word belongs. For
w ∈ L̃(expo,pal) the same is true, we only need to guarantee that w starts with the letter a.

In the proof of Theorem 4.3.22 is was also shown that it is impossible to check for the belonging in
Lpal and Lexpo simultaneously. Therefore it is impossible for M to check for the belonging in Lpal′

and Lexpo′ simultaneously in a prefix of w. Thus M has to move to the right border of the tape in
order to determine which sublanguage to check. But at the right border M cannot move back and
as there are only a’s and b’s on the tape M cannot move the information from right to left over
the tape. As M is strictly deterministic each component has a fixed successor and therefore it is
also impossible to transfer information in that way. Therefore the next component has the same
problem, it can either perform a rewrite in the prefix and does not know which sublanguage to
test, or it can perform a rewrite in the suffix, while seeing the right border marker in its window.

In the prefix M can perform as many rewrites as it can remember and only at places on the tape
it can remember, but this does not help for accepting w. M cannot create markers, because it has
no auxiliary symbols and the only tape symbols are a and b.

Thus, M has to know which sublanguage to check, but this means, that it performs its rewrites at
the right border marker. In Theorem 4.2.2 it is shown that a CD-RRWW-system working in mode
= 1 can be simulated cycle by cycle by a nonforgetting RRWW-automaton. From Lemma 3.3.3 we
know, that a nonforgetting RRWW-automaton that performs all its rewrites at the right border
marker only accepts regular languages. Thus even nondeterministic CD-RRWW-systems working
in mode = 1 only accept regular languages, when they perform all of their rewrites at the right
border of the tape.

Thus M cannot accept L̃(expo,pal) in mode = 1.

Proposition 4.3.5 together with the Corollaries 4.3.20, 4.3.9 and 4.3.25 and Theorem 4.3.27 show
that, for each type X ∈ {R,RR,RW,RRW}, we have the following chain of proper inclusions:

L(det-X) ( L=1(det-strict-CD-X) ( L=1(det-global-CD-X) ( L=1(det-local-CD-X)

and
L=1(det-local-CD-RR(W)) ( L=1(CD-RR(W)).

Thus it remains open, whether the inclusions L=1(det-local-CD-R(W)) ⊂ L=1(CD-R(W)) are strict
or not.

4.4 Shrinking CD-Systems of Restarting Automata

Shrinking restarting automata form a very robust language class. In Section 2.7 it is shown that
L(nf-sh-RLWW) equals L(sh-RRWW), and that multiple rewrites per cycle do not add expressive
power. Here we first show that all simulation results between CD-systems and nonforgetting
restarting automata also hold for CD-systems of shrinking restarting automata. With these results
we can extend the results from Chapter 3 to CD-systems of restarting automata.

Definition 4.4.1. A CD-system of shrinking RLWW-automata, CD-sh-RLWW-system for short, is
a CD-system, where each component is a shrinking RLWW-automaton and the weight functions of
the component automata coincides.
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It is important that the weight functions of the component automata in a CD-system are coordi-
nated. If each component had its own weight function, then computations of the system would in
general not be terminating.

With the restriction to only one weight function in a CD-system, the comparison between nonfor-
getting restarting automata and CD-systems carry over to the shrinking case.

Theorem 4.4.2. If M is a (deterministic) shrinking nonforgetting restarting automaton of type X
for any type X ∈ {R,RR,RL,RW,RRW,RLW,RWW,RRWW,RLWW}, then there exists a (globally
deterministic) CD-system M of shrinking restarting automata of type X such that L=1(M) = L(M)
holds.

Proof. M is constructed, as in the proof of Theorem 4.2.1. The weight function of M is taken as
weight function of M. In the proof of Theorem 4.2.1 the nonforgetting restarting automaton M is
simulated cycle by cycle, thus each rewrite of the CD-system equals the rewrite of the nonforgetting
restarting automaton. Thus if M is a shrinking nonforgetting restarting automaton, then M is a
CD-system of shrinking restarting automata.

The converse is also valid for shrinking restarting automata. The proof is done similarly. Remark
that the system has only one weight function and that the determinism of the mode must be
considered as well.

Theorem 4.4.3. Let j ≥ 1, and let m ∈ {=j,≤j,≥j} be a mode of operation. Then, for each
CD-sh-X-system M, where X ∈ {R,RR,RL,RW, RRW, RLW, RWW, RRWW,RLWW}, there exists a
shrinking non-forgetting X-automaton M such that L(M) = Lm(M) holds. M is deterministic, if
M is globally deterministic and the mode of operation is = j.

Theorem 4.4.4. Let X ∈ {RR,RL,RRW, RLW, RRWW,RLWW}, and let M be a (globally determin-
istic) CD-sh-X-system. Then there exists a (deterministic) shrinking nonforgetting X-automaton
M such that L(M) = Lt(M) holds.

Theorem 4.4.5. Lm(CD-sh-RRWW) = L(sh-RRWW) for all modes of operation m.

Proof. L(sh-RRWW) ⊆ Lm(CD-sh-RRWW) is obvious. The CD-system just consists of two copies
of M which alternate according to the mode of operation.

Lm(CD-sh-RRWW) ⊆ L(sh-RRWW):

The theorems in this section show that Lm(CD-sh-RRWW) ⊆ L(nf-sh-RRWW), from section 2.7 we
know that L(sh-RRWW) = L(nf-sh-RRWW), thus the inclusion holds.

This completes the proof.

There is another possible way to define the notion of shrinking for CD-systems:

Extending CD-systems of restarting automata to shrinking CD-systems of restarting automata can
be done similar to state shrinking for nonforgetting restarting automata (see Section 3.7). There
each tape symbol and each state has a weight and the shrinking restarting automaton has to
reduce its weight in every cycle. Again, as for state shrinking nonforgetting restarting automata
we can conjecture that shrinking CD-systems of restarting automata with this notion of shrinking
are closed under intersection. It remains for future work to study this notion of shrinking.
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4.5 Concluding Remarks

We have seen that CD-systems of restarting automata and nonforgetting restarting automata are
closely related. Further, for restarting automata without auxiliary symbols the locally deterministic
CD-systems yield language classes that lie strictly in between those classes that are defined by
nonforgetting deterministic restarting automata and those classes that are defined by nonforgetting
nondeterministic restarting automata. However, the following related questions remain open.

1. To what extend do these results carry over to restarting automata with auxiliary symbols?

2. A nondeterministic CD-system of restarting automata could be called strict if there is only
a single initial system (that is, |I0| = 1), and if the set of successors is a singleton for each
component. It is easily seen that strict CD-systems without auxiliary symbols are more
expressive than nondeterministic restarting automata of the same type. However, is there a
proper hierarchy of language classes defined by strict CD-systems, based on the number of
component systems that lies in between the class of languages defined by nondeterministic
restarting automata and the class of languages defined by nonforgetting nondeterministic
restarting automata?

3. Also monotone CD-systems of restarting automata are not considered in this work. Again it
is possible to define monotonicity in a global or a local manner. A conjecture is that globally
monotone CD-RRWW-systems accept only context-free languages, while local monotonicity
seems to be related to the notion of j-monotonicity defined in [Plá01].

102



Bibliography

[AHU69] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. A general theory of translation. Math. Sys-
tems Theory, 3:193–221, 1969.

[BO93] R.V. Book and F. Otto. String-Rewriting Systems. Springer-Verlag, New York, 1993.

[BO98] G. Buntrock and F. Otto. Growing context-sensitive languages and Church-Rosser
languages. Information and Computation, 141:1–36, 1998.

[Bun96] G. Buntrock. Wachsende kontext-sensitive Sprachen. Habilitationsschrift, Fakultät
für Mathematik und Informatik, Universität Würzburg, July 1996.

[CC73] K. Culic, II and R. Cohen. LR-regular grammars - an extension of LR(k) grammars.
J. Computer System Sciences, 7:66–96, 1973.

[CVD90] E. Csuhaj-Varju and J. Dassow. On cooperating distributed grammar systems. Jour-
nal of Information Processing and Cybernetics, EIK, 26:49–63, 1990.

[CVDKP94] E. Csuhaj-Varju, J. Dassow, JK̃elemen, and G. Păun. Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London,
1994.

[DP97] J. Dassow and G. Păun. Grammar systems. In Rozenberg G. and Salomaa A., editors,
Handbook of Formal Languages, volume 2 of Lecture Notes in Computer Science 3572,
pages 155–213. Springer, Berlin, 1997.

[Har79] M. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading,
M.A., 1979.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, M.A., 1979.

[JL02] T. Jurdziński and K. Loryś. Church-Rosser languages vs. UCFL. In P. Wid-
mayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz, and R. Conejo, editors,
ICALP 29rd, Lecture Notes in Computer Science 2380, pages 147–158. Springer-
Verlag, Berlin, 2002.

[JLNO04] T. Jurdziński, K. Loryś, G. Niemann, and F. Otto. Some results on RWW- and
RRWW-automata and their relation to the class of growing context-sensitive lan-
guages. J. Automata, Languages and Combinatorics, 9:407–437, 2004.

103



[JMOP05] T. Jurdziński, F. Mráz, F. Otto, and M. Plátek. Monotone deterministic RL-automata
don’t need auxiliary symbols. In C. De Felice and A. Restivo, editors, Developments
in Language Theory, DLT 2005, Proc., Lecture Notes in Computer Science 3572,
pages 284–295. Springer-Verlag, Berlin, 2005.

[JMPV95] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata. In H. Reichel,
editor, Fundamentals of Computation Theory, Proceedings FCT’95, Lecture Notes in
Computer Science 965, pages 283–292. Springer-Verlag, Berlin, 1995.

[JMPV97a] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Monotonic rewriting automata with a
restart operation. In F. Plášil and K.G. Jeffery, editors, SOFSEM’97: Theory and
Practise of Informatics, Lecture Notes in Computer Science 1338, pages 505–512.
Springer-Verlag, Berlin, 1997.

[JMPV97b] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. On restarting automata with rewriting.
In G. Păun and A. Salomaa, editors, New Trends in Formal Languages, Lecture Notes
in Computer Science 1218, pages 119–136. Springer-Verlag, Berlin, 1997.

[JMPV98] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Different types of monotonicity for
restarting automata. In V. Arvind and R. Ramanujam, editors, Foundations of Soft-
ware Technology and Theoretical Computer Science, 18th Conference, Proceedings,
Lecture Notes in Computer Science 1530, pages 343–354. Springer-Verlag, Berlin,
1998.

[JMPV99] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. On monotonic automata with a restart
operation. J. Automata, Languages and Combinatorics, 4:287–311, 1999.

[JMPV07] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Monotonicity of restarting automata.
J. Automata, Languages and Combinatorics, 12:353–371, 2007.

[JO06] T. Jurdziński and F. Otto. Restricting the use of auxiliary symbols for restarting
automata. In J. Farré, I. Litovsky, and S. Schmitz, editors, Tenth International Con-
ference on Implementation and Application of Automata, CIAA 2005, Proc., Lecture
Notes in Computer Science 3845, pages 176–187. Springer-Verlag, Berlin, 2006.

[JO07] T. Jurdziński and F. Otto. Shrinking restarting automata. International Journal of
Foundations of Computer Science, 18:361–385, 2007.

[JOMP04] T. Jurdziński, F. Otto, F. Mráz, and M. Plátek. On the complexity of 2-monotone
restarting automata. Mathematische Schriften Kassel 4/04, Universität Kassel, June
2004.

[Lau88] C. Lautemann. One pushdown and a small tape. In Wagner K.W., editor, Dirk
Siefkes zum 50. Geburtstag, pages 42–47. Technische Universität Berlin and Univer-
sität Augsburg, 1988.

[LV97] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and its Ap-
plications. Springer Press, New York, 1997.

[MMOP06] H. Messerschmidt, F. Mráz, F. Otto, and M. Plátek. Correctness preservation and
complexity of simple RL-automata. In O. Ibarra and H.-C. Yen, editors, CIAA 2006,
Proc., Lecture Notes in Computer Science 4094, pages 162–172. Springer-Verlag,
Berlin, 2006.

104



[MNO88] R. McNaughton, P. Narendran, and F. Otto. Church-Rosser Thue systems and formal
languages. J. Assoc. Comput. Mach. , 35:324–344, 1988.

[MO05] F. Mráz and F. Otto. Hierarchies of weakly monotone restarting automata. RAIRO
- Theoretical Informatics and Applications, 39:325–342, 2005.

[MO06] H. Messerschmidt and F. Otto. On nonforgetting restarting automata that are de-
terministic and/or monotone. In D. Grigoriev, J. Harrison, and E.A. Hirsch, editors,
CSR 2006, Proc., Lecture Notes in Computer Science 3967, pages 247–258. Springer,
Berlin, 2006.

[MO07a] H. Messerschmidt and F. Otto. Cooperating distributed systems of restarting au-
tomata. International Journal of Foundations of Computer Science, 18:1333–1342,
2007.

[MO07b] H. Messerschmidt and F. Otto. On determinism versus nondeterminism for restarting
automata. In R. Loos, S.Z. Fazekas, and C. Martin-Vide, editors, LATA 2007, Pre-
proc., Report 35/07, pages 413–424. Research Group on Mathematical Linguistics,
Universitat Rovira i Virgili, Tarragona, 2007.

[MO07c] H. Messerschmidt and F. Otto. Strictly deterministic CD-systems of restarting au-
tomata. In E. Csuhaj-Varjú and Z. Ésik, editors, Fundamentals of Computation
Theory, FCT 2007, Proc., Lecture Notes in Computer Science 4639, pages 424–434.
Springer, Berlin, 2007.

[MO08] H. Messerschmidt and F. Otto. On determinism versus nondeterminism for restarting
automata. Information and Computation, 206:1204–1218, 2008. A conference version
of this article is published as [MO07b].

[MS04] H. Messerschmidt and H. Stamer. Restart-automaten mit mehreren restart-
zuständen. In H. Bordihn, editor, Workshop “Formale Methoden in der Linguistik”
und 14. Theorietag “Automaten und Formale Sprachen”, Proc., pages 111–116. Insti-
tut für Informatik, Universität Potsdam, 2004.

[Nar84] P. Narendran. Church-Rosser and related Thue systems. PhD thesis, Rensselaer
Polytechnic Institute, Troy, New York, 1984.

[Nie02] G. Niemann. Church-Rosser Languages and Related Classes. Doktorarbeit, Fach-
bereich Mathematik/Informatik, Universität Kassel, 2002.

[NO98] G. Niemann and F. Otto. The Church-Rosser languages are the deterministic vari-
ants of the growing context-sensitive languages. In M. Nivat, editor, Foundations of
Software Science and Computation Structures, FoSSaCS’98, Proc., Lecture Notes in
Computer Science 1378, pages 243–257. Springer-Verlag, Berlin, 1998.

[NO00] G. Niemann and F. Otto. Restarting automata, Church-Rosser languages, and repre-
sentations of r.e. languages. In G. Rozenberg and W. Thomas, editors, Developments
in Language Theory - Foundations, Applications, and Perspectives, DLT 1999, Proc.,
pages 103–114. World Scientific, Singapore, 2000.

[NO03] G. Niemann and F. Otto. Further results on restarting automata. In M. Ito and
T. Imaoka, editors, Words, Languages and Combinatorics III, Proc., pages 352–369,
Singapore, 2003. World Scientific.

105



[NO05] G. Niemann and F. Otto. The Church-Rosser languages are the deterministic variants
of the growing context-sensitive languages. Information and Computation, 197:1–21,
2005.

[OJ03] F. Otto and T. Jurdziński. On left-monotone restarting automata. Mathematische
Schriften Kassel 17/03, Universität Kassel, November 2003.

[Ott03] F. Otto. Restarting automata and their relations to the Chomsky hierarchy. In Z.
Esik and Z. Fülöp, editors, Developments in Language Theory, DLT 2003, Proc.,
Lecture Notes in Computer Science 2710, pages 55–74. Springer-Verlag, Berlin, 2003.

[Ott06] F. Otto. Restarting automata. In Z. Ésik, C. Martin-Vide, and V. Mitrana, editors,
Recent Advances in Formal Languages and Applications, volume 25 of Studies in
Computational Intelligence, pages 269–303. Springer, Berlin, 2006.

[Ott07] F. Otto. Left-to-right regular languages and two-way restarting automata.
manuscript, 2007.

[Ott08] F. Otto. Lower bound techniques. Private communication, Universität Kassel, 2008.

[Plá01] M. Plátek. Two-way restarting automata and j-monotonicity. In L. Pacholski and
P. Ružička, editors, SOFSEM 2001: Theory and Practice of Informatics, Proceedings,
Lecture Notes in Computer Science 2234, pages 316–325. Springer-Verlag, Berlin,
2001.

[Plá07] M. Plátek. Private communication, December 2007.

[vBV79] B. von Braunmühl and R. Verbeek. Finite-change automata. In Weihrauch K.,
editor, 4th GI Conference Proc., Lecture Notes in Computer Science 67, pages 91–
100. Springer, Berlin, 1979.

106


