
Divisibility of Trinomials by Irreducible

Polynomials overF2

Ryul Kim

Faculty of Mathematics and Mechanics
Kim Il Sung University, Pyongyang, D.P.R.Korea

Wolfram Koepf

Department of Mathematics
University of Kassel, Kassel, F. R. Germany

Abstract

Irreducible trinomials of given degreen overF2 do not always exist and
in the cases that there is no irreducible trinomial of degreen it may be ef-
fective to use trinomials with an irreducible factor of degreen. In this paper
we consider some conditions under which irreducible polynomials divide tri-
nomials overF2. A condition for divisibility of self-reciprocal trinomials by
irreducible polynomials overF2 is established. And we extend Welch’s crite-
rion for testing if an irreducible polynomial divides trinomialsxm + xs + 1 to
the trinomialsxam + xbs + 1.
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1 Introduction

Irreducible and primitive trinomials over finite fields are of interest both in the-
ory and practise. We restrict our attention to polynomials over a binary fieldF2.
Sparse polynomials such as trinomials are commonly used to perform arithmetic
in extension fields of finite fields since they provide a fast modular reduction but
unfortunately irreducible trinomials of given degreen overF2 do not always exist.
Swan’s theorem [7] rules outn ≡ 0 (mod 8) and also mostn ≡ ±3 (mod 8). In
the cases that there is no irreducible trinomial of given degreen, one can always use
irreducible polynomials with more than three nonzero terms like as pentanomials.
But it may be more effective to use (reducible) trinomials with irreducible or prim-
itive factors of degreen. In 1994, Tromp, Zhang and Zhao [8] asked the following
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question: given an integern, do there exist integersm, k such that

G = gcd
(
xm + xk + 1, x2n−1 − 1

)
is a primitive polynomial of degreen over F2? They verified that the answer is
yes forn up to 171 and conjectured that the answer is always yes. Blake, Gao
and Lambert [1] confirmed the conjecture forn ≤ 500 and they also relaxed the
condition slightly and asked: do there exist integerm, k such thatG has a primi-
tive factor of degreen? Motivated by [1], Brent and Zimmermann [2] defined an
almost primitive (irreducible) trinomial which is the trinomial with a primitive (ir-
reducible) factor of given degreen and they proposed the algorithms for finding
almost primitive (irreducible) trinomials. Doche [4] called these trinomials (almost
irreducible trinomials) as redundant trinomials and gave a precise comparison of
running times between redundant trinomials and irreducible pentanomials over fi-
nite fields of characteristic 2. In [5] it was given a positive answer to the latter
question and the authors developed the theory of irreducible polynomials which do,
or do not, divide trinomials overF2. They considered some families of polynomials
with prime orderp > 3 that do not divide trinomials. To know which irreducible
polynomials divide trinomials overF2 is of interest in many applications such as
generation of pseudorandom sequences. In this paper we consider some conditions
under which a given irreducible polynomial divides trinomials overF2. We prove a
condition for a given irreducible polynomial to divide self-reciprocal trinomials.

Welch’s criterion is a clever one for testing if an irreducible polynomial divides
trinomials overF2. We give a refinement of a necessary condition for divisibility of
trinomialsxam +xbs +1 by a given irreducible polynomial ([3]) and extend Welch’s
criterion to this type of trinomials.

2 Divisibility of self-reciprocal trinomials by irreducible
polynomials

In this section we consider divisibility of self-reciprocal trinomials by given irre-
ducible polynomials. Letq be a prime power. For a polynomialf(x) of degreen
over finite fieldFq, a reciprocalof f(x) is the polynomialf ∗(x) of degreen over
Fq given byf ∗(x) = xnf(1/x) and a polynomialf(x) is calledself-reciprocalif
f ∗(x) = f(x) . Numerous results are known concerning self-reciprocal irreducible
polynomials over finite fields. In [9], it was studied in detail the order of self-
reciprocal irreducible polynomials over finite fields. Letf ∈ Fq[x] be a nonzero
polynomial withf(0) 6= 0. The least positive integere for which f dividesxe − 1
is called theorder of f and denoted by ord(f). [6] If f is an irreducible polynomial
of degreen over Fq and withf(0) 6= 0 then ord(f) is equal to the order of any
root of f in the multiplicative groupF∗

qn and dividesqn − 1. Below we assume all
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polynomials to be overF2. In this case the order of an irreducible polynomial is
always odd integer.

In [5], it was proved that for primep > 3, if there exists a self-reciprocal irre-
ducible polynomial of orderp then all irreducible polynomials of the same order do
not divide trinomials.
In particular, every self-reciprocal irreducible polynomial of prime order> 3 does
not divide trinomials. In fact we can easily see that a self-reciprocal irreducible
polynomialf divides trinomials inF2[x] if and only if ord(f) is a multiple of 3.(See
exercise 3.93 in [6]).

Now consider self-reciprocal trinomials. Self-reciprocal irreducible trinomials
overF2 are only of the formf = x2·3k

+ x3k
+ 1 which has order3k+1. Then which

irreducible polynomial divides self-reciprocal trinomials? As above mentioned, the
order of a self-reciprocal irreducible polynomial which divides self-reciprocal trino-
mial is a multiple of 3. Furthermore, we can say the similiar thing about the general
irreducible polynomials which divide self-reciprocal trinomials. For this we need
an auxiliary result.

Lemma 1 If an irreducible polynomialf of ordere divides a self-reciprocal tri-
nomialx2m + xm + 1, then there exists a unique self-reciprocal trinomial of degree
< e which is divided byf .

Proof. Letα be any root off in a certain extension ofF2 thenα2m+αm+1 = 0.
Write

m = e · q + r, 0 < r < e

Note thatr is not null. If 2r < e, thenx2r + xr + 1 is a desired trinomial. Suppose
2r > e.(2r 6= e because if2r = e, then0 = α2m +αm +1 = α2r +αr +1 = αr +1,
which is impossible.) Letr1 = 2r − e, then0 < r − r1 = e− r < r and

0 = α2m + αm + 1 = αe(2q+1)+r1 + αeq+r + 1 = αr + αr1 + 1

On the other hand,(
α−1

)2m
+

(
α−1

)m
+ 1 = α−r + α−r1 + 1 = 0

and thus
αr + αr−r1 + 1 = 0

From this we getαr−r1 = αr1, that is,α|r−2r1| = 1 which meanse divides|r− 2r1|.
Since|r− 2r1| < e, r = 2r1. Thereforef divides the trinomialx2r1 + xr1 + 1. And
then we have alsoα3r = 1(α3r1 = 1), which implies thate divides3r(3r1). Since
2r(2r1) < e, we gete = 3r(3r1). If there exists another integerm1 such that

α2m1 + αm1 + 1 = 0, 2m1 < e

thene = 3m1 and thereforem1 = r(r1). 2

Now we are ready to describe the condition for divisibility of self-reciprocal
trinomials by a given irreducible polynomial.
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Theorem 1 Given an irreducible polynomialf overF2, f divides self-reciprocal
trinomials if and only if the order off is a multiple of 3.

Proof. Supposef divides self-reciprocal trinomials. By lemma 1,f divides
self-reciprocal trinomialx2m + xm + 1 with 2m < e wheree is the order off . Let
α be any root off thenα2m + αm + 1 = 0 and we gete = 3m as in the proof of
lemma 1. Conversely supposee = 3m for a positive integerm. Let α be a root of
f thenαe = 1 that is0 = α3m − 1 = (αm − 1) (α2m + αm + 1). Sinceαm 6= 1,
α2m + αm + 1 = 0 and thusf divides the trinomialx2m + xm + 1. 2

Below we show a factorization of an arbitrary self-reciprocal trinomial overF2.

Theorem 2 For any odd numberm,

x2m + xm + 1 =
∏
n|m
3n-m

Q3n

whereQ3n is the3nth cyclotomic polynomial overF2.

Proof. Supposen | m, 3n - m and letf be an irreducible polynomial of order
3n andα be any root off in a certain extension ofF2. Thenα3n = 1 and therefore

α3m − 1 = (αm − 1)
(
α2m + αm + 1

)
= 0

Since3n - m, αm − 1 6= 0 and thusα2m + αm + 1 = 0. Thereforef divides the
trinomial x2m + xm + 1. SinceQ3n is a product of all irreducible polynomials of
order3n, it divides the trinomialx2m + xm + 1. Fromdeg(Q3n) = φ(3n), it is
sufficient to show ∑

n|m
3n-m

φ(3n) = 2m

Using the formulan =
∑

d|n φ(d) = n, we get∑
n|m
3n-m

φ(3n) =
∑
n|m

φ(3n)−
∑
3n|m

φ(3n) =

=
∑

3n|3m

φ(3n)−
∑
3n|m

φ(3n) = 3m−m = 2m

This completes the proof.2

Corollary 1 If m is an odd number andm = 3k · n, 3 - n for a non-negative
integerk, then the self-reciprocal irreducible trinomialx2·3k

+x3k
+1 dividesx2m+

xm + 1.
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Proof. The trinomialx2·3k
+ x3k

+ 1 dividesQ3k+1 since it is an irreducible
polynomial of order3k+1. Recalling3k | m, 3k+1 - m, we get a desired result from
the theorem 2.2

We can extend the theorem 2 to any positive degreem.

Corollary 2 Suppose thatm = 2k · n, 2 - n. Then

x2m + xm + 1 =

 ∏
n1|n
3n1-n

Q3n1


2k

Proof. Since

x2m + xm + 1 =
(
x2n

)2k

+ (xn)2k

+ 1 =
(
x2n + xn + 1

)2k

,

the assertion is followed from theorem 2.2

If an irreducible polynomialf of ordere divides a trinomialxn + xk + 1, then
for all positive integerr ands, f dividesxn+re +xk+se +1 and it divides at least one
trinomial of degree< e. Consider a number of trinomials of degree< e which are
divided by a given irreducible polynomial. Denote asNf the number of trinomials
of degree< e which are divided by given irreducible polynomialf of ordere.

Theorem 3 Let f(x) be an irreducible polynomial of ordere which divides tri-
nomials overF2. Then

Nf =
1

2
deg (gcd (1 + xe, 1 + (1 + x)e)) .

wheredeg means the degree of the polynomial.

Proof. Let
1 + xe = g1(x) · g2(x) · · · gt(x)

be a product of all irreducible polynomials whose orders dividee. Then we get

1 + (1 + x)e = g1(x + 1) · g2(x + 1) · · · gt(x + 1)

Letα be a root off(x) then1, α, α2, · · · , αe−1 are all roots ofg1(x), g2(x), · · · , gt(x)
and0, 1+α, 1+α2, · · · , 1+αe−1 are all roots ofg1(x+1), g2(x+1), · · · , gt(x+1).
From the assumption there exists at least one pair(i, j) such that1 ≤ i, j < e, i 6=
j, αi = αj + 1. It can be easily seen that the number of such pairs is equal to
the number of common roots of1 + xe and1 + (1 + x)e that is the degree of the
polynomialgcd (1 + xe, 1 + (1 + x)e). (Note thatgcd (1 + xe, 1 + (1 + x)e) can
not has any multiple root.) Since the different pairs(i, j) and(j, i) corespond the
same trinomial, the result is true.2
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Corollary 3 The number of trinomials of degree< 2k − 1 which are divided by
a given primitive polynomial of degreek is 2k−1 − 1.

In particular it is interesting the case when the numberNf is 1.

Theorem 4 If Nf is 1, thenf divides a self-reciprocal trinomial.

Proof. Let e be an order off . From the theorem 1, it is sufficient to prove
thate is divided by 3. Suppose thate is not divided by 3 andf divides a trinomial
xn + xk + 1. Then by the theorem 1n 6= 2k. Let α be a root off . Thenα−1 is a
root off ∗, the reciprocal off . Sincef ∗ dividesxn + xn−k + 1,

α−n + α−(n−k) + 1 = 0,

that is,
αe−n + αe−n+k + 1 = 0.

Here
0 < e− n, e− n + k < e, e− n 6= e− n + k.

Thereforef divides the trinomialxe−n + xe−n+k + 1. Sincee is odd,e − n 6= n.
Assume nowe− n = k. We then get

αn+k = αe = 1

Multiplying αk on both sides of the equation

αn + αk + 1 = 0,

we have
α2k + αk + 1 = 0

which says thatf divides some self-reciprocal trinomial that contradicts the as-
sumption. Thusf divides two different trinomialsxn+xk+1 andxe−n+xe−n+k+1
of degree< e, that is,Nf ≥ 2. 2

3 Divisibility of trinomials xam + xbs + 1

In this section we consider the conditions for divisibility of trinomialsxam +xbs +1
by a given irreducible polynomial overF2. Let f be an irreducible polynomial of
degreen overF2 anda andb be positive integers. In [3] it was proved that if there
exist positive integersm ands such thatf dividesxam + xbs + 1, thena andb are
not divisible by2n − 1. Below we give a refinement of this result.

Theorem 5 Letf be an irreducible polynomial of ordere > 1 overF2 anda and
b be positive integers. if there exist positive integersm and s such thatf divides
trinomial xam + xbs + 1(am > bs), thenam, bs andam− bs are not divisible bye.
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Proof. Let α be any root off in a certain extension ofF2. If am is divided bye,
thenαam = 1, sof divides a polynomialxam + 1. Sincee > 1, f(0) 6= 0 and
thusf does not dividexbs. Thereforef can not divide the trinomialxam + xbs + 1.
The case wherebs is divided bye is very similar. Supposeam − bs is divided by
e. Then in the same way as above we see easily thatxam−bs + 1 is divided byf and
thusxam + xbs + 1 = xbs

(
xam−bs + 1

)
+ 1 is not divisible byf . 2

If f is an irreducible polynomial of ordere and degreen overF2, thene is a divisor
of 2n−1. Thus the above theorem derives directly the result in [3]. And ifa = b = 1
andf = x2 + x + 1 then the converse of theorem 5 is also true.

Corollary 4 The trinomialxn + xk + 1(n > k) is divided byx2 + x + 1 if and
only if n, k, andn− k are not divided by 3.

Proof. Since the order ofx2 + x + 1 is 3, the necessarility is clear from above
theorem. Suppose thatn, k, andn− k are not divided by 3. Then we get two cases:

n ≡ 2 (mod 3), k ≡ 1 (mod 3), n− k ≡ 1 (mod 3)

or
n ≡ 1 (mod 3), k ≡ 2 (mod 3), n− k ≡ 2 (mod 3)

Let α be any root ofx2 + x + 1 then in the first case we have

αn + αk + 1 = α3n1+2 + α3k1+1 + 1 = α2 + α + 1 = 0

Hencex2 + x + 1 dividesxn + xk + 1. The second case is similar.2

Finally we consider the criterion for testing if an irreducible polynomial divides
trinomials of typexam + xbs + 1 overF2.

Theorem 6 Let f be an irreducible polynomial of ordere and degreen overF2

anda and b be positive integers. Thenf divides trinomialsxam + xbs + 1 if and
only if gcd (1 + xe1 , 1 + (1 + x)e2) has degree greater than1, where

e1 =
e

gcd(a, e)
, e2 =

e

gcd(b, e)
.

Proof. Let α be any root off . Then the order ofα in the multiplicative group
F∗

qn is e and1, α, α2, · · · , αe−1 are distinct roots ofxe − 1. Since

xe − 1 =
∏
d|e

Qd

for everyi(0 ≤ i ≤ e − 1), αi is a root of an irreducible polynomial whose order
is a divisor ofe. In particular,αa has ordere1 = e

gcd(a,e)
andαa, α2a, · · · , α(e1−1)a

are all roots ofCe1(x) := xe1−1
x−1

. Similarly αb, α2b, · · · , α(e2−1)b are all roots of
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Ce2(x) := xe2−1
x−1

and thus1+αb, 1+α2b, · · · , 1+α(e2−1)b are all roots ofCe2(x+1).
Henceα is a root of trinomialxam + xbs + 1 if and only if Ce1(x) andCe2(x + 1)
have common root. This is equivalent to the fact thatgcd (1 + xe1 , 1 + (1 + x)e2)
has degree greater than1. 2

Puta = b = 1 in theorem 6. Then we have Welch’s criterion.

Corollary 5 ([5]) For any odd integere, the irreducible polynomials of ordere
divide trinomials if and only ifgcd (1 + xe, 1 + (1 + x)e) has degree greater than
1.
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