
On Parallel Communicating Grammar Systems

and Correctness Preserving Restarting Automata

Dana Pardubská⋆1, Martin Plátek⋆⋆2, and Friedrich Otto3

1 Dept. of Computer Science, Comenius University, Bratislava
pardubska@dcs.fmph.uniba.sk

2 Dept. of Computer Science, Charles University, Prague
Martin.Platek@mff.cuni.cz

3 Fachbereich Elektrotechnik/Informatik, Universität Kassel, Kassel
otto@theory.informatik.uni-kassel.de

Abstract. This paper contributes to the study of Freely Rewriting Re-
starting Automata (FRR-automata) and Parallel Communicating Gram-
mar Systems (PCGS), which both are useful models in computational lin-
guistics. For PCGS we study two complexity measures called generation

complexity and distribution complexity, and we prove that a PCGS Π ,
for which the generation complexity and the distribution complexity are
both bounded by constants, can be transformed into a freely rewriting
restarting automaton of a very restricted form. From this characteriza-
tion it follows that the language L(Π) is semi-linear, that its characteris-
tic analysis is of polynomial size, and that this analysis can be computed
in polynomial time.

1 Introduction

This paper contributes to the analysis of Freely Rewriting Restarting Automata
(FRR-automata, see [8]) and Parallel Communicating Grammar Systems (PCGS,
see, e.g., [2,3,12]). The motivation for our study is the quest for a formal transfor-
mation of PCGSs into a suitable formal model of analysis by reduction. Here the
main goal is the identification of constraints for FRRs and PCGSs, under which
the corresponding classes of languages can be used to model important phenom-
ena of natural languages. We are mainly interested in formal languages which
are semi-linear and which have a possibly simple syntactic analysis. The type of
syntactic analysis we focus on is the characteristic analysis formally introduced
in this paper.

Freely rewriting restarting automata create a suitable tool for modelling the
so-called analysis by reduction. In general, analysis by reduction explains basic

⋆ Partially supported by the Slovak Grant Agency for Science (VEGA) under contract
“Theory of Models, Complexity and Algorithms”.

⋆⋆ Partially supported by the Grant Agency of the Czech Republic un-
der Grant-No. 405/08/0681 and by the program Information Society under
project 1ET100300517.

2 D. Pardubská, M. Plátek, F. Otto

types of so-called dependencies in sentences of natural languages. The Functional
Generative Description for the Czech language developed in Prague (see, e.g., [4])
is based on this method.

In order to model analysis by reduction, FRR-automata work on so-called
characteristic languages, that is, on languages with auxiliary symbols (cate-
gories) included in addition to the input symbols. The proper language is ob-
tained from a characteristic language by removing all auxiliary symbols from its
sentences. By requiring that the automata considered are linearized we restrict
the number of auxiliary symbols allowed in each sentence by a function linear
in the number of input symbols in that sentence. We mainly focus on restarting
automata that ensure the correctness preserving property for the analysis, that
is, after any restart within a computation starting with a word from the charac-
teristic language, the content of the tape is again a word from the characteristic
language, and conversely, after any restart within a computation starting with
a word from the complement of the characteristic language, the content of the
tape is again from this complement. This property is necessary in order to ob-
tain a type of characteristic analysis which has the properties of manual syntactic
analysis of traditional central-European linguistics.

Here we use formalized analysis by reduction to show that Parallel Commu-
nicating Grammar Systems inherently define two important types of linguistic
phenomena: sentence segments with common valencies (parallel dependencies)
and full independence of sentence segments. To achieve our goal we use a tech-
nique that is based on the notion of skeletal set, which is particularly useful for
error recovery during a robust parsing or during a grammar-checking procedure.

We study two complexity measures for PCGSs: the generation complexity,
which bounds the number of generative sections in a word generated by a PCGS,
and the distribution complexity, which bounds the distribution of concurrently
generated segments over the word generated. Our technical main result states
the following. If Π is a PCGS, for which the generation complexity is bounded
by a constant g and the distribution complexity bounded by a constant d, then
the language L(Π) generated by Π is the proper language of a freely rewriting
restarting automaton M of a very restricted form: M is correctness preserving,
and it only performs rewrite operations of a very restricted type. In addition, the
number of rewrites per cycle and the number of auxiliary symbols that occur in
any word from the characteristic language of M are both bounded by constants
that depend on the bounds g and d above. In fact, M even has a skeletal set of
type (g, d). Based on these restrictions of M we obtain the following important
results on the language L(Π): it is semi-linear, its characteristic analysis is of
the polynomial size, and it can even be computed in polynomial time, where
the degree of the polynomial time-bound also depends on the constants g and d.
This is an essential improvement of the results from [10,11].

The structure of the paper is as follows. In Section 2 we give the (informal)
definitions of FRR-automata, AuxRR-automata, and PCGS and present some ba-
sic facts about them. In Section 3, which constitutes the technical main part of
the paper, we present our simulation result described above, and in Section 4 we

PCGS & Restarting Automata 3

introduce the notion of skeletal set. Using this notion we then derive the main
results of the paper from the simulation given in the previous section. Finally,
some closing remarks are found in Section 5.

2 Basic notions

Here we informally introduce FRRs and PCGSs, define some necessary notions
and abbreviations, and list relevant properties of both models.

2.1 Restarting automata

A freely rewriting restarting automaton, abbreviated as FRR-automaton, is a
nondeterministic machine with a flexible tape, a read/write window of a fixed
size k ≥ 1 that can move along this tape, and a finite-state control. Formally, it
is described by an 8-tuple M = (Q, Σ, Γ, c, $, q0, k, δ). Here Q denotes a finite set
of (internal) states that contains the initial state q0, Σ is a finite input alphabet,
and Γ is a finite tape alphabet that contains Σ. The elements of Γ r Σ are
called auxiliary symbols. The additional symbols c, $ 6∈ Γ are used as markers
for the left and right end of the workspace, respectively. They cannot be removed
from the tape. The behavior of M is described by a transition function δ that
associates a finite set of transition steps to each pair of the form (q, u), where q is
a state and u is a possible content of the read/write window. There are four types
of transition steps: move-right steps, rewrite steps, restart steps, and accept steps.
A move-right step simply shifts the read/write window one position to the right
and changes the internal state. A rewrite step causes M to replace a non-empty
prefix u of the content of the read/write window by a word v satisfying |v| ≤ |u|,
and to change the state. Further, the read/write window is placed immediately
to the right of the string v. However, some restrictions apply in that neither a
move-right step nor a rewrite step can shift the read/write window across the
right sentinel $. A restart step causes M to place its read/write window over the
left end of the tape, so that the first symbol it sees is the left sentinel c, and to
reenter the initial state q0. Finally, an accept step simply causes M to halt and
accept.

A configuration of M is described by a string αqβ, where q ∈ Q, and either
α = ε (the empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$};
here q represents the current state, αβ is the current content of the tape, and it
is understood that the window contains the first k symbols of β or all of β when
|β| ≤ k. A restarting configuration is of the form q0cw$, where w ∈ Γ ∗.

Any computation of M consists of certain phases. A phase, called a cycle,
starts in a restarting configuration. The window is shifted along the tape by
move-right and rewrite operations until a restart operation is performed and
thus a new restarting configuration is reached. If no further restart operation is
performed, the computation necessarily finishes in a halting configuration – such
a phase is called a tail. It is required that in each cycle M performs at least one
rewrite step that is strictly length-decreasing. Thus, each cycle strictly reduces

4 D. Pardubská, M. Plátek, F. Otto

the length of the tape. We use the notation u ⊢c
M v to denote a cycle of M

that begins with the restarting configuration q0cu$ and ends with the restarting
configuration q0cv$; the relation ⊢c∗

M is the reflexive and transitive closure of ⊢c
M .

A word w ∈ Γ ∗ is accepted by M , if there is a computation which starts from
the restarting configuration q0cw$, and ends with an application of an accept
step. By LC(M) we denote the so-called characteristic language of M , which
is the language consisting of all words accepted by M . By PrΣ we denote the
projection from Γ ∗ onto Σ∗, that is, PrΣ is the morphism defined by a 7→ a

(a ∈ Σ) and A 7→ ε (A ∈ Γ r Σ). If v := PrΣ(w), then v is the Σ-projection
of w, and w is an expanded version of v. For a language L ⊆ Γ ∗, PrΣ(L) :=
{PrΣ(w) | w ∈ L }. Further, for K ⊆ Γ , |x|K denotes the number of occurrences
of symbols from K in x.

In recent papers (see, e.g., [7]) restarting automata were mainly used as ac-
ceptors. The main focus was on the so-called (input) language of a restarting
automaton M , that is, the set L(M) := LC(M)∩Σ∗. Here, motivated by linguis-
tic considerations to model the analysis by reduction with parallel processing,
we are rather interested in the so-called proper language of M , which is the set
of words LP(M) := PrΣ(LC(M)). Hence, a word v ∈ Σ∗ belongs to LP(M)
if and only if there exists an expanded version u of v such that u ∈ LC(M).
Realize that the main difference between the input and the proper language lies
in the way in which auxiliary symbols are inserted into the (terminal) words of
the language. For words from the input language, auxiliary symbols can only be
inserted by the automaton itself in the course of a computation, while for words
from the proper language, the auxiliary symbols are provided beforehand by an
outside source, e.g., a linguist.

Based on the number of auxiliary symbols that are allowed in a word two dif-
ferent classes of FRR automata have been considered in the literature –lexicalized
and linearized FRR-automata [8,10,11]. An FRR-automaton M is called lexical-
ized if there exists a constant j such that, for every substring u ∈ (Γ r Σ)∗

of every word w ∈ LC(M), |u| ≤ j holds. M is called linearized if there exists
a constant j such that |w|ΓrΣ ≤ j · |w|Σ + j for each w ∈ LC(M). Since a
linearized FRR-automaton only uses linear space, the following upper bound on
its computational power is obvious.

Fact 1 If M is a linearized FRR-automaton, then the proper language LP(M)
is context-sensitive.

In a real process of analysis by reduction of a sentence of a natural language
it is desired that whatever is done within the process does not change the cor-
rectness of the sentence. For restarting automata this property can be formalized
as follows.

Definition 1. (Correctness Preserving Property.) An FRR-automaton M

is correctness preserving if u ∈ LC(M) and u ⊢c∗

M v imply that v ∈ LC(M), too.

While it is easily seen that each deterministic FRR-automaton is correctness
preserving, there are FRR-automata which are not correctness preserving.

PCGS & Restarting Automata 5

The characteristic analysis is a formalization of the traditional syntactic anal-
ysis of central-European languages. In fact, it is taught manually in middle-
schools in a very similar way.

Definition 2. Let M = (Q, Σ, Γ, c, $, q0, k, δ) be an FRR-automaton that is cor-
rectness preserving, and let w ∈ Σ∗. Then the set

AC(w, M) := {wC ∈ Γ ∗ | wC ∈ LC(M) and PrΣ(wC) = w }

is called the characteristic analysis of w by M . The size of the set AC(w, M) is
denoted as the characteristic ambiguity of w by M .

Note that the assumption of the correctness preserving property is quite
important in the previous definition. It ensures the so-called ‘syntactic com-
pleteness’ of categories used in the characteristic analysis; in our approach we
use auxiliary symbols to model these categories.

Definition 3. An FRR-automaton M = (Q, Σ, Γ, c, $, q0, k, δ) is called aux-
rewriting if, for each of its rewrite operations (q′, v) ∈ δ(q, u), PrΣ(v) is obtained

from PrΣ(u) by deleting some symbols, and PrΓ\Σ(v) is obtained from PrΓ\Σ(u)
by replacing some symbol by another symbol.

Below we will mainly be interested in proper languages of aux-rewriting FRR-
automata that are correctness preserving; in particular, we denote by AuxRR the
class of aux-rewriting FRR-automata that are correctness preserving. For each
type X of restarting automata and each t ∈ N+, we use t -X to denote the class
of X-automata that execute at most t rewrite steps in any cycle.

2.2 Parallel Communicating Grammar Systems

A PCGS Π of degree m, m ≥ 1, is an (m + 1)-tuple Π = (G1, . . . , Gm, K),
where, for all i ∈ {1, . . . , m}, Gi = (Ni, T, Si, Pi) are regular grammars, called
component grammars, satisfying Ni ∩ T = ∅, and K ⊆ {Q1, . . . , Qm}

⋂⋃m

i=1 Ni

is a set of special symbols, called communication symbols. A configuration of Π

is an m-tuple C = (x1, . . . , xm), where xi = αiAi, αi ∈ T ∗, and Ai ∈ (Ni ∪
{ε}); we call xi the i-th component of the configuration. The nonterminal cut of
configuration C is the m-tuple N(C) = (A1, A2, . . . , Am). If N(C) contains at
least one communication symbol, it is called an NC-cut and denoted by NC(C).

A derivation of the PCGS Π is a sequence of configurations D = C1, C2, . . . , Ct,
where Ci+1 is obtained from Ci by one generative step or one communication
step.

If no communication symbol appears in any of the components, then we
perform a generative step. It consists of synchronously performing a rewrite step
in each of the component grammars Gi, 1 ≤ i ≤ m. If any of the components
is a terminal string, it is left unchanged, and if any of the components contains
a nonterminal that cannot be rewritten, the derivation is blocked. If the first

6 D. Pardubská, M. Plátek, F. Otto

component is a terminal word w, then w is the word that is generated by Π in
this derivation. In this situation D is usually denoted as D(w).

If a communication symbol is present in any of the components, then a com-
munication step is performed. It consists of replacing those communication sym-
bols with the phrases they refer to for which the phrases themselves do not
contain communication symbols. Such an individual replacement is called a com-
munication. Further, those components that are used to replace communication
symbols are reset to their start symbol. Obviously, in one communication step at
most m − 1 communications can be performed. If some communication symbol
is not replaced in this communication step, it may be replaced in one of the
next communication steps. Communication steps are performed until no more
communication symbols are present, or until the derivation is blocked because
no communication symbol can be replaced. The maximal sub-sequence of com-
munication steps forms a communication section.

A generative section is a non-empty sequence of generative steps between
two consecutive communication steps (resp. communication sequences) in D,
resp. before the first and/or after the last communication step in D. Thus, the
communication steps divide the derivation into generative and communication
sections.

The (terminal) language L(Π) generated by the PCGS Π is the set of terminal
words that appear in the component G1 (this component is also called the master
of the system):

L(Π) = {α ∈ T ∗ | (S1, . . . , Sm) ⇒+ (α, β2, . . . , βm) }.

Several notions can be associated with the derivation D(w) which help to
analyze the derivation of Π and to unambiguously describe w. We start with
those describing the structure of w first:

• g(i, j), resp. g(i, j, D(w)), denotes the terminal word that is generated by Gi

within the j-th generative section of D(w) – we call it the (i, j)-(generative)
factor (by D(w));

• n(i, j), resp. n(i, j, D(w)), denotes the number of occurrences of g(i, j) in w.
Note that n(i, j) > 1 is possible. For example, this happens when there are
two or more different component grammars that require the content of the
same component grammar at the same time.

The communication structure CS(D(w)) of D(w) captures the connection be-
tween the terminal word w and its particular derivation D(w)) – it determines,
how w is composed from the individual g(i, j)’s:

CS(D(w)) = (i1, j1), (i2, j2), . . . , (ir, jr), if w = g(i1, j1)g(i2, j2) . . . g(ir, jr).

The set of tuples of indices of CS(D(w)) is denoted I(D(w)). Realize that a
communication has been involved if (i, j) ∈ I(D(w)) for i 6= 1. Let

N(j, D(w)) =

m
∑

i=1

n(i, j, D(w)).

PCGS & Restarting Automata 7

Then, the so-called degree of distribution DD(D(w)) of D(w) is the maximum
over all N(j, D(w)).

The last couple of notions is mostly connected with the derivations them-
selves.

The trace of a (sub)derivation D is the sequence T (D) of nonterminal cuts of
individual configurations of D; T (D)=N(C0), N(C1), . . . , N(Ct). Note that (in
general) the trace does not unambiguously identify the derivation.

The communication sequence, resp. the NC-sequence, is defined analogously;
NCS(D) is the sequence of all NC-cuts in the (sub)derivation D. Recall that
any NC-cut contains at least one communication symbol. Realize also that the
communication sequence NCS(D(w)) unambiguously defines the communica-
tion structure of D(w). Moreover, the set of words with the same communication
sequence/structure might, in general, be infinite.

A cycle in a derivation D is a smallest (continuous) sub-derivation C of D,
C = C1, . . . , Cj , such that the corresponding first and last nonterminal cuts
are identical; N(C1) = N(Cj). If none of the nonterminal cuts involved in C
contains a communication symbol, then, obviously, the whole cycle is contained
in a generative section; we speak about a generative cycle in this case. If the first
nonterminal cut contains communication symbols, which means that N(C1) =
N(Cj) are NC-cuts, then the cycle is called a communication cycle.

Note that, if there is a cycle in the derivation D(w), then manifold repetition4

of the cycle is possible and the resulting derivation is again a derivation of some
terminal word. We call a derivation D(w) reduced, if every repetition of any
of its cycles leads to a longer terminal word ω; |w| < |ω|. Obviously, to every
derivation D(w) there is an equivalent reduced derivation D′(w) of the same
word. In what follows, we consider only derivations that are reduced. Observe
the following basic fact.

Fact 2 Repetition/deletion of a generative cycle does not change the communi-
cation sequence or the communication structure of a derivation.

Finally, we define several complexity measures for PCGS. Informally, the
communication complexity of a derivation D (denoted com(D)) is defined as
the number of communications performed within the derivation D; analogously,
the distribution complexity of a derivation D is the degree of distribution de-
fined above, and the generation complexity of the derivation D is the number
of generative sections in D. Then the communication/distribution/generation
complexity of the language and the associated complexity class are defined in
the usual way (always considering the corresponding maximum). For a function
f : N → N, the class of languages with communication complexity f is denoted
COM(f(n)). For the distribution and generation complexities, the corresponding
complexity classes are denoted DD(f) and DG(f), respectively.

4 Deletion of a cycle is also possible.

8 D. Pardubská, M. Plátek, F. Otto

Here we are mainly interested in the classes of languages for which all the
complexity measures considered above are bounded from above by a constant.
For natural numbers s, d, g, we denote the corresponding communication com-
plexity class by COM(s), and the distribution and/or generation complexity class
by d-DG, g-DD and d-g-DDG, respectively. Some relevant observations charac-
terizing the derivations of a PCGS with constant communication complexity (see
[9] for more information) are summarized in the following facts.

Fact 3 Let Π be a PCGS with constant communication complexity. Then there
are constants d(Π), ℓ(Π), s(Π) such that

1. the number n(i, j) of occurrences of individual g(i, j)’s in a reduced deriva-
tion is bounded by d(Π); that is, n(i, j) ≤ d(Π);

2. the length of the communication structure for every (reduced) derivation is
bounded by ℓ(Π);

3. the cardinality of the set of all possible communication structures correspond-
ing to a reduced derivation by Π is bounded by s(Π).

Fact 4 Let Π be a PCGS with constant communication complexity, and let D(w)
be a reduced derivation of a terminal word w in Π. Then there is a constant
e(Π) such that, if more than e(Π) generative steps of the j-th generative section
are performed in D(w), then at least one factor g(i, j, D(w)) has been changed.

Based on pumping arguments the following observation follows easily.

Proposition 1. Let Π be a PCGS with constant communication complexity.
Then the set of all derivations by Π that do not contain any generative cycle is
finite.

3 Analysis by Reduction for PCGSs

As already mentioned in the introduction we are looking for restrictions of FRR-
automata and PCGSs that imply that the resulting (proper) languages are semi-
linear with polynomial-time computable characteristic analysis (of polynomial
size). In the following we will place restrictions on the positions at which rewrites
within a cycle can be performed by a restarting automaton. These restrictions
will be formalized through the notion of a skeletal set in Definition 4. They are
motivated by the way in which a PCGS with constant communication complexity
is transformed into an AuxRR-automaton (modelling analysis by reduction) in
the proof of Theorem 1.

In [10] we have presented a transformation of a PCGS with constant com-
munication complexity into a deterministic linearized FRR-automaton. In that
transformation we use auxiliary symbols to merge the description of a derivation
of a word w into the word itself. In what follows we will reduce the number of
occurrences of auxiliary symbols in the words from the characteristic language
of the corresponding restarting automaton to a constant by utilizing nonde-
terminism. In fact, the resulting automaton will be an AuxRR-automaton the
computations of which have some additional nice properties.

PCGS & Restarting Automata 9

Theorem 1. For each L ∈ g-d-DDG, there is a d-AuxRR-automaton M such
that L = LP(M). Moreover, the number of auxiliary symbols in w ∈ LC(M) is
bounded from above by the constant 2 · g · d + 2.

Proof. Let L ∈ g-d-DDG, and let Π be a PCGS with m components that gen-
erates L with distribution complexity d and generation complexity g. Our con-
struction is based on the fact that Π has only a finite number σ of cycle-free
derivations. Let Cf = {D̂1(ŵ1), · · · , D̂σ(ŵσ)} be the set of these derivations.

We describe a d-AuxRR-automaton M that, given a certain extended version
wC of a word w, performs the analysis by reduction which starts by considering
a Π-derivation D(w) of the word w ∈ L, and ends by checking that the Π-
derivation D̂k(ŵk) obtained is one of the cycle-free derivations listed above.

Let w ∈ L, let D(w) be a derivation of w in Π , and let g(i, j) be the ter-
minal word generated by the component grammar Gi within the j-th gener-
ative section. Then w can be written as w = g(i1, j1)g(i2, j2) . . . g(ir, jr). As
Π has generation complexity g, there are at most g generative sections in the
derivation D(w), and as Π has distribution complexity d, there are at most d

occurrences of factors g(it, jt) such that jt = j for any j. Hence, we have r ≤ d·g.
To reconstruct the derivation of a factor g(i, j) in detail we utilize the fol-

lowing notion of an extended j-trace. Let

(A1, . . . , Am), (α1,1A1,1, . . . , α1,mA1,m), . . .
(α1,1α2,1 . . . αs,1As,1, . . . , α1,mα2,m . . . αs,mAs,m)

be the sub-derivation corresponding to the j-th generative section of D(w). It
yields the following extended version of the trace of the j-th generative section:









A1

A2

· · ·
Am

















α1,1A1,1

α1,2A1,2

· · ·
α1,mA1,m

















α2,1A2,1

α2,2A2,2

· · ·
α2,mA2,m









.









αs,1As,1

αs,2As,2

· · ·
αs,mAs,m









.

This description of the j-th generative section of the derivation D(w) is de-
noted by ex-T (D(w), j). It describes the sequence of generative steps of the j-th
generative section. Assume that D(w) has gk generative sections. Then

ex-T (D(w)) = ex-T (D(w), 1), ex-T (D(w), 2), . . . , ex-T (D(w), gk)

is called the extended trace of D(w). Let us note that ex-T (D(w)) can serve as
an another representation of D(w).

The restarting automaton M processes the word wC as follows. In each cycle
M first nondeterministically chooses an index j of a generative section, and then
it consistently removes the rightmost generative cycle from each of the factors
g(i, j) of w. Simultaneously, it checks the consistency of its guess and makes
the necessary changes in the delimiters. M repeatedly executes such cycles until
a word is obtained that does not contain any generative cycles anymore. From
Proposition 1 we see that the set of words of this form is finite.

10 D. Pardubská, M. Plátek, F. Otto

Fig. 1. The situation before and after the execution of a cycle that makes rewrites
within the j-th generative section: the reduced parts are grey. Two occurrences of
g(1, j) were reduced to g′(1, j); one occurrence of g(2, j) was reduced to g′(2, j).

We show that we only need to store a constant amount of information in the
auxiliary symbols to realize this strategy. Accordingly, the word wC is chosen as

wC := ∆0,k∆1,k g(i1, j1)Λ1,k∆2,k g(i2, j2)Λ2,k . . . ∆r,k g(ir, jr)Λr,k∆r+1,k,

where ∆0,k, . . . , ∆r+1,k and Λ1,k, . . . , Λr,k are auxiliary symbols. These symbols
are not only used to separate the individual factors g(i, j) from each other, but
also to store relevant information about the derivations D(w) and D̂k(ŵk). In
fact, the information stored in each symbol ∆t,k (0 ≤ t ≤ r + 1) will be fixed,
while the information stored in each symbol Λt,k (1 ≤ t ≤ r) is temporary. The
information stored in ∆t,k describes the factor g(it, jt) and the factor ĝ(it, jt).
The information stored in Λt,k will be changed whenever a deletion is executed in
the left neighborhood of this particular delimiter; it describes a suffix of the rele-
vant extended trace ex-T (D(w), jt). By Λt,k(D(w)) we will denote the particular
symbol that corresponds to this information.

The description of g(i, j): Consider an extended trace ex-T (D(w), j) that
corresponds to a generative section j of D(w), and assume that there is a cycle
within this trace. The removal of such a cycle from ex-T (D(w), j) leads to a
relevant change in all occurrences of factors g(i, j) in w. We can repeat this
reduction of the extended trace considered until no more cycles occur in it. The
resulting reduced form of g(i, j) is denoted by ĝ(i, j), and by our assumption
ex-T (D̂k(ŵk), j) is the extended trace of the corresponding cycle-free derivation
of ĝ(i, j). Further, by our assumption

ex-T (D̂k(ŵk)) = ex-T (D̂k(ŵk), 1), ex-T (D̂k(ŵk), 2), . . . , ex-T (D̂k(ŵk), gk).

Then ex-T (D̂k(ŵk)) represents the cycle free derivation D̂k(ŵk). Now, in all
delimiters ∆t,k for which g(it, jt) = g(i, j), we store t, k, the pair (i, j), and

the factor ĝ(i, j). Moreover, the complete ex-T (D̂k(ŵk)) will be stored in ∆0,k.

Remember that the set of all possible values (i, j), ĝ(i, j), and ex-T (D̂(ŵ)) is
finite, and that its cardinality only depends on Π .

The communication structure: Since Π is a g-d-DDG, the length of the
communication structure CS(w) for D(w) is bounded by d · g. Thus, we can
store the complete communication structure CS(w) together with the extended
trace ex-T (D̂k(ŵk)) in the first delimiter ∆0,k. We see that all factors ĝ(i, j) can

simply be obtained from ex-T (D̂k(ŵk)). This part of information in the delimiter
is fixed. Remember that the set of all communication structures of Π is finite,
its cardinality depending on Π only.

PCGS & Restarting Automata 11

The relevant suffix of an extended trace: Based on Fact 4 we know that
there is a constant p(Π) such that, whenever an extended trace ex-T (D(w), j)
is of length at least p(Π), then it contains a (generative) cycle. Accordingly in
the symbol Λt,k we store the suffix of length p(Π) of the corresponding extended
trace ex-T (D(w), jt). Observe that this information is the same for all values of
s′ satisfying js′ = jt, and it is consistent with the factor g(it, jt). When reducing
the factors g(i, j), where j = jt, then the right-most generative cycle is removed
from ex-T (D(w), j), which results in an extended trace ex-T (D′(w′), j) of a
shortened derivation, the corresponding factor is removed from g(it, jt), resulting
in the word g′(it, jt), and Λt,k is updated accordingly. These reductions must be
consistent, that is,

– there is a prefix pref and a suffix suf of ex-T (D, j) such that pref ·suf = ex-
T (D̂(ŵ), j),

– a suffix of Λt,k(D′(w′)) corresponds to a suffix of ex-T (D′, j), and
– the words g(it, jt) and g′(it, jt) are related to each other in accordance with

the factor removed from Λt,k(D(w)).

Obviously, the information stored in Λt,k is temporary. However, the set of all
possible values of Λt,k is bounded from above by a constant that only depends
on Π .

Thus, we can summarize the definition of the auxiliary symbols of M for each
value of k ∈ {1, . . . , σ} as follows:

∆t,k = [t, k, (it, jt), ĝ(it, jt)], for all 1 ≤ t ≤ r,

∆0,k = [0, k, CS, ex-T (D̂k(ŵk))],
∆r+1,k = [r + 1, k, ε, ε],
Λt,k(D(w)) = [s], where s is the suffix of the extended trace ex-T (D(w), jt)

satisfying |s| = p(Π).

Now we can describe the behaviour of M in some more detail.

◮ If M has decided to try to execute a cycle, then it nondeterministically chooses
a number j ∈ {1, . . . , gk} as the index of the generative section of D(w) that it
will reduce in this cycle. It stores j and ∆0,k in its internal state and moves its
head to the right until it reaches the first delimiter ∆t,k for which jt = j holds,
that is, the leftmost occurrence of a factor of the form g(i, j) is found. Then M

moves its window further to the right until ∆t,k becomes the leftmost symbol
inside the window. Now M is going to try to simulate a reduction of the factor
g(it, jt) as described above.

1. From the description of ex-T (D̂k(ŵk)) stored in ∆0,k, M determines the
nonterminal cut with which the extended j-trace ex-T (D(w), j) begins.

2. Moving from left to right across the factor g(it, j), M guesses the extended j-
trace ex-T (D(w), j) in such a way that it is consistent with the word g(it, j);
if no such guess is possible, the computation is blocked. Simultaneously, M

always remembers the current suffix ℓt of length 2 · p(Π) of the part of
ex-T (D(w), j) considered so far.

12 D. Pardubská, M. Plátek, F. Otto

3. When the delimiter ∆t+1,k occurs as a rightmost symbol in M ’s window, then
M tries to execute a reduction of the suffix of g(it, j); if none is possible,
then the computation is blocked. To perform a reduction M checks whether
the current suffix ℓt of ex-T (D(w, j)) contains a (generative) cycle, that is,
whether the suffix ℓt,2 of ℓt of length p(Π) has the following form:









α1,1A1,1

α1,2A1,2

· · ·
α1,mA1,m









. . .









αγ,1Aγ,1

αγ,2Aγ,2

· · ·
αγ,mAγ,m









. . .









αγ+ν,1Aγ+ν,1

αγ+ν,2Aγ+ν,2

· · ·
αγ+ν,mAγ+ν,m









. . .









αs′,1As′,1

αs′,2As′,2

· · ·
αs′,mAs′,m









such that Aγ,µ = Aγ+ν,µ for all µ = 1, . . . , m. If that is the case, and if
ℓt,2 coincides with the information stored in the symbol Λt,k(D(w)), then
M removes the factor αγ+1,it

· · ·αγ+ν,it
from g(it, j), it removes the corre-

sponding cycle from ℓt, which yields the suffix ℓ′t of an extended j-trace, and
it replaces the information stored in Λt,k by the suffix of ℓ′t of length p(Π).
Observe that the factor αγ+1,it

· · ·αγ+ν,it
may well be empty, implying that

this rewrite step simply replaces the symbol Λt,k by a new symbol Λ′
t,k.

Further, M stores ℓt in its finite control, in order to be able to verify at
later occurrences of factors of the form g(., j) that a consistent reduction is
performed, and then M moves further to the right.

If no further factor of the form g(., j) is encountered, then M restarts at the
right end of the tape. If, however, another factor g(it′ , jt′) = g(i′, j) is found,
then M tries to reduce this factor in a way consistent with the reduction
applied to g(it, j). Essentially, M processes the factor g(i′, j) in the same
way as g(it, j). However, on reaching the symbol Λt′,k it checks whether the
current suffix ℓt′ of the extended j-trace simulated coincides with the suffix
ℓt stored in its finite control. In the affirmative it can then perform the same
replacement in Λt′,k that it performed on Λt,k, and it can reduce the factor
g(i′, j) in a way consistent with this replacement; otherwise, the computation
is blocked.

◮ In an accepting tail M simply checks whether the current content w′
C of the

tape belongs to the finite set of “shortest” characteristic words. These words are
characterized by the following properties:

– the communication structure CS(w′) implicitly stored in the delimiters of
w′

C coincides with the one stored in ∆0,k;
– there is a Π-derivation D(w′) of w′ = PrΣ(w′

C) that is consistent with this
communication structure, and that does not contain any generative cycles;

– the factors ĝ(i, j) stored on the tape are equal to the corresponding factors
g(i, j, D(w′)).

From the description above it follows that M is a nondeterministic aux-
rewriting FRR-automaton, that the number of auxiliary symbols occurring in
any restarting configuration of an accepting computation of M is bounded from

PCGS & Restarting Automata 13

above by the constant 2 ·g ·d+2, and that M performs at most d rewrite steps in
any cycle of any computation. Further, it is quite clear that LP(M) = L holds.

Finally, observe that M is in fact correctness preserving. For two different
factors g(it, j) and g(it′ , j) it may guess different extended j-traces, but because
of the information stored in Λt,k = Λt′,k, the suffixes of length 2 · p(Π) of these
traces coincide. Thus, as long as the corresponding suffix of the extended j-
trace considered coincides with Λt,k, the reduction performed is consistent with
a valid derivation D(w). Further, if an inconsistency is discovered by M , then
the computation is blocked immediately, that is, no further restart is performed.
It follows that w′

C ∈ LC(M) if wC ∈ LC(M) and wC ⊢c
M w′

C hold, that is, M is
indeed correctness preserving. This completes the proof of Theorem 1. 2

We now illustrate the above construction by a detailed example.

Example 1. Let Πab(2) be the following PCGS:

G1 : S1 → aS1|aQ2, G2 : S2 → bZ2, G3 : S3 → Z3,

Z2 → aZ2|aQ3, Z2 → bZ2, Z3 → bZ3.

Z3 → b,

It is easily seen that Πab(2) generates the language

Lab(2) = { ai1bi1ai2bi1+i2 | i1, i2 ∈ N }.

Consider the following (outline of) a derivation D(w) in Πab(2):

˛

˛

˛

˛

˛

˛

S1

S2

S3

˛

˛

˛

˛

˛

˛

aS1

bZ2

Z3

˛

˛

˛

˛

˛

˛

a2S1

b2Z2

bZ3

˛

˛

˛

˛

˛

˛

a3Q2

b3Z2

b2Z3

‚

‚

‚

‚

‚

‚

a3b3Z2

S2

b2Z3

˛

˛

˛

˛

˛

˛

a3b3aZ2

bZ2

b2bZ3

˛

˛

˛

˛

˛

˛

a3b3a2Q3

b2Z2

b2b2Z3

‚

‚

‚

‚

‚

‚

a3b3a2b2b2Z3

b2Z2

S3

˛

˛

˛

˛

˛

˛

a3b3a2b2b2b

b2bZ2

Z3

˛

˛

˛

˛

˛

˛

From this derivation we obtain the following extended trace:

∣

∣

∣

∣

∣

∣

S1

S2

S3

∣

∣

∣

∣

∣

∣

aS1

bZ2

Z3

∣

∣

∣

∣

∣

∣

aS1

bZ2

bZ3

∣

∣

∣

∣

∣

∣

aQ2

bZ2

bZ3

∥

∥

∥

∥

∥

∥

Z2

S2

Z3

∣

∣

∣

∣

∣

∣

aZ2

bZ2

bZ3

∣

∣

∣

∣

∣

∣

aQ3

bZ2

bZ3

∥

∥

∥

∥

∥

∥

Z3

Z2

S3

∣

∣

∣

∣

∣

∣

b

bZ2

Z3

∣

∣

∣

∣

∣

∣

,

which yields the following generative factors:

g(1, 1) = a3, g(1, 2) = a2, g(1, 3) = b,
g(2, 1) = b3, g(2, 2) = b2, g(2, 3) = b,
g(3, 1) = b2, g(3, 2) = b2, g(3, 3) = ε.

Thus,
w = a3b3a2b5 = g(1, 1)g(2, 1)g(1, 2)g(3, 1)g(3, 2)g(1, 3),

the communication structure of D(w) is

CS(D(w)) = (1, 1)(2, 1)(1, 2)(3, 1)(3, 2)(1, 3),

14 D. Pardubská, M. Plátek, F. Otto

and the corresponding NC-sequence is

NCS(D1(w)) =





Q2

Z2

Z3









Q3

Z2

Z3



 .

The derivation D(w) contains a generative cycle of length 1. By removing this
generative cycle we obtain the following derivation D̂1(ŵ), which does not con-
tain any (generative) cycle anymore:

∣

∣

∣

∣

∣

∣

S1

S2

S3

∣

∣

∣

∣

∣

∣

aS1

bZ2

Z3

a2Q2

b2Z2

bZ3

∥

∥

∥

∥

∥

∥

a2b2Z2

S2

bZ3

∣

∣

∣

∣

∣

∣

a2b2aZ2

bZ2

bbZ3

∣

∣

∣

∣

∣

∣

a2b2a2Q3

b2Z2

bb2Z3

∥

∥

∥

∥

∥

∥

a2b2a2bb2Z3

b2Z2

S3

∣

∣

∣

∣

∣

∣

a2b2a2bb2b

b2bZ2

Z3

∣

∣

∣

∣

∣

∣

.

From this derivation we obtain the following extended trace:

∣

∣

∣

∣

∣

∣

S1

S2

S3

∣

∣

∣

∣

∣

∣

aS1

bZ2

Z3

aQ2

bZ2

bZ3

∥

∥

∥

∥

∥

∥

Z2

S2

Z3

∣

∣

∣

∣

∣

∣

aZ2

bZ2

bZ3

∣

∣

∣

∣

∣

∣

aQ3

bZ2

bZ3

∥

∥

∥

∥

∥

∥

Z3

bZ2

S3

∣

∣

∣

∣

∣

∣

b

bZ2

Z3

∣

∣

∣

∣

∣

∣

,

which yields the following generative factors:

g′(1, 1) = a2, g′(1, 2) = a2, g′(1, 3) = b,
g′(2, 1) = b2, g′(2, 2) = b2, g′(2, 3) = b,
g′(3, 1) = b, g′(3, 2) = b2, g′(3, 3) = ε.

These, in turn, give the factorization

ŵ = a2b2a2b5 = g′(1, 1)g′(2, 1)g′(1, 2)g′(3, 1)g′(3, 2)g′(1, 3).

Observe that CS(D̂1(ŵ)) = CS(D(w)) and NCS(D̂1(ŵ)) = NCS(D(w)) hold.

Now we describe the representation of the words of Lab(2) through the
words of the characteristic language of an AuxRR-automaton M that corresponds
to Πab(2). First we describe the auxiliary symbols ∆0,1, ∆1,1, ∆2,1, ...∆7,1 and

Λ1,1, ..., Λ6,1 for the derivations D(w) and D̂1(ŵ):

∆0,1 =

[0, 1, ((1, 1)(2, 1)(1, 2)(3, 1)(3, 2)(1, 3)),

∣

∣

∣

∣

∣

S1

S2

S3

∣

∣

∣

∣

∣

aS1

bZ2

Z3

aQ2

bZ2

bZ3

∥

∥

∥

∥

∥

Z2

S2

Z3

∣

∣

∣

∣

∣

aZ2

bZ2

bZ3

∣

∣

∣

∣

∣

aQ3

bZ2

bZ3

∥

∥

∥

∥

∥

Z3

bZ2

S3

∣

∣

∣

∣

∣

b

bZ2

Z3

∣

∣

∣

∣

∣

],

∆1,1 = [1, 1, (1, 1), a2],

Λ1,1(D) =

∣

∣

∣

∣

∣

∣

S1

S2

S3

aS1

bZ2

Z3

aS1

bZ2

bZ3

aQ2

bZ2

bZ3

∣

∣

∣

∣

∣

∣

, and Λ1,1(D̂1) =

∣

∣

∣

∣

∣

∣

S1

S2

S3

aS1

bZ2

Z3

aQ2

bZ2

bZ3

∣

∣

∣

∣

∣

∣

,

PCGS & Restarting Automata 15

∆2,1 = [2, 1, (2, 1), b2],

Λ2,1(D) =

∣

∣

∣

∣

∣

∣

S1

S2

S3

aS1

bZ2

Z3

aS1

bZ2

bZ3

aQ2

bZ2

bZ3

∣

∣

∣

∣

∣

∣

, and Λ2,1(D̂1) =

∣

∣

∣

∣

∣

∣

S1

S2

S3

aS1

bZ2

Z3

aQ2

bZ2

bZ3

∣

∣

∣

∣

∣

∣

,

∆3,1 = [3, 1, (1, 2), a2],

Λ3,1(D) =

∣

∣

∣

∣

∣

∣

Z2

S2

Z3

aZ2

bZ2

bZ3

aQ3

bZ2

bZ3

∣

∣

∣

∣

∣

∣

= Λ3,1(D̂1),

∆4,1 = [4, 1, (3, 1), b],

Λ4,1(D) =

∣

∣

∣

∣

∣

∣

S1

S2

S3

aS1

bZ2

Z3

aS1

bZ2

bZ3

aQ2

bZ2

bZ3

∣

∣

∣

∣

∣

∣

, and Λ4,1(D̂1) =

∣

∣

∣

∣

∣

∣

S1

S2

S3

aS1

bZ2

Z3

aQ2

bZ2

bZ3

∣

∣

∣

∣

∣

∣

,

∆5,1 = [5, 1, (3, 2), b2],

Λ5,1(D) =

∣

∣

∣

∣

∣

∣

Z2

S2

Z3

aZ2

bZ2

bZ3

aQ3

bZ2

bZ3

∣

∣

∣

∣

∣

∣

= Λ5,1(D̂1),

∆6,1 = [6, 1, (1, 3), b],

Λ6,1(D) =

∣

∣

∣

∣

∣

∣

Z3

Z2

S3

b

bZ2

Z3

∣

∣

∣

∣

∣

∣

= Λ6,1(D̂1), and ∆7,1 = [7, 1, ε, ε].

The characteristic word wC corresponding to w and the characteristic word

ŵC corresponding to ŵ are obtained as follows, where Λ
(1)
i,1 denotes Λi,1(D) and

Λ
(2)
i,1 denotes Λi,1(D̂1):

wC = ∆0,1∆1,1a
3Λ

(1)
1,1∆2,1b

3Λ
(1)
2,1∆3,1a

2Λ
(1)
3,1∆4,1b

2Λ
(1)
4,1∆5,1b

2Λ
(1)
5,1∆6,1bΛ

(1)
6,1∆7,1,

ŵC = ∆0,1∆1,1a
2Λ

(2)
1,1∆2,1b

2Λ
(2)
2,1∆3,1a

2Λ
(2)
3,1∆4,1b

2Λ
(2)
4,1∆5,1bΛ

(2)
5,1∆6,1bΛ

(2)
6,1∆7,1.

The construction in the proof of Theorem 1 shows that M reduces the word
wC to the word ŵC in a single cycle, and that it accepts the latter word in an
accepting tail.

4 Skeletal automata

Consider the way in which the AuxRR-automaton M described in the proof
of Theorem 1 processes a given input. First, a particular derivation without
cycles (and its communication structure) is chosen (from among the finite set of
possible derivations without cycles) by inserting delimiters. Then in each cycle

16 D. Pardubská, M. Plátek, F. Otto

a specific generative section j is chosen nondeterministically, and the rightmost
generative cycle is removed from each factor g(i, j). This is in fact an interesting
formal example of the mutual independence of segments in the linguistic sense
(in the sense of dependency theory). In fact, each rewrite operation of each
cycle executed by M replaces an auxiliary symbol of the form Λt,k(D(w)) by
another auxiliary symbol of the form Λt,k(D′(w′)), and there is at least one
rewrite operation in each cycle that removes a non-empty factor consisting of
terminals (input symbols). These observations motivate the following definition
of a skeletal set.

Definition 4. Let M = (Q, Σ, Γ, c, $, q0, k, δ) be a t-AuxRR-automaton, let r, s ∈
N+, and let SP be a subalphabet of Γ of cardinality |SP | ≤ s · r · t. We call SP a
skeletal set of type (r, t), if there is an injection φ : SP → {1, . . . , s}×{1, . . . , r}×
{1, . . . , t} such that all the properties listed below are satisfied:

1. Elements of SP are neither inserted, nor removed, nor changed during any
computation of M ; accordingly, we call them islands.

2. For all w ∈ LC(M) and all χ ∈ SP , |w|χ ≤ 1, that is, w contains at most
one occurrence of χ.

3. For 1 ≤ i ≤ s, let SP (i) = {χ ∈ SP | φ(χ) = [i, a, b] } be the i-th skeleton
of SP . For each word w ∈ LC(M), there exists a unique index i ∈ {1, . . . , s}
such that PrSP (w) ⊆ SP (i) holds. Thus, w only contains islands of a single
skeleton.

4. Each rewrite operation O of M has the form xyzγχ → xzγ′χ, where xyz ∈
Σ∗, |y| ≥ 0, γ, γ′ ∈ (Γ r (Σ ∪ SP)) are auxiliary symbols that are not
islands, and χ ∈ SP is an island. The symbol χ is called the island visited
by O.

5. For 1 ≤ i ≤ s and 1 ≤ j ≤ r, let SP (i, j) = {χ ∈ SP | φ(χ) = [i, j, b] },
which is the j-th level of the i-th skeleton of SP . Within a cycle of a computa-
tion of M , the level of a skeleton is kept fixed, that is, if a rewrite operation
O is applied in a cycle such that the island visited by O is from SP (i, j),
then for every rewrite operation executed during this cycle the island visited
belongs to SP (i, j).

6. There exists a constant ℓ(M) such that, for each w ∈ LC(M), if w = xyz,
where |y| > ℓ(M) and y does not contain any island, then starting from the
restarting configuration corresponding to w, M will execute at least one cycle
before it accepts.

If SP is a skeletal set of type (r, t), then the auxiliary symbols in Γ rSP are
called variables of M . Thus, Γ is partitioned into three disjoint subsets: the set
of input symbols Σ, the skeletal set SP , and the set of variables.

Let M be a t-AuxRR-automaton with a skeletal set SP , and let w ∈ LC(M).
If w ⊢c

M w1, where w = x0y1x1y2 · · · ytxt, and w1 = x0x1x2 · · ·xt, then we see
from condition (4) above that each rewrite operation can be interpreted as a
kind of suffix rewrite on a syllable ending with an island. Further, condition
(6) implies that the set of words of LC(M) that are accepted without a restart

PCGS & Restarting Automata 17

is finite. As suffix rewrites preserve regularity, it follows that all Σ-syllables of
words from LC(M) satisfy some regularity constraints. In particular this implies
the following important result.

Corollary 1 (SP semi-linearity). Let t ∈ N be a positive integer, and M be a
t-AuxRR-automaton with a skeletal set. Then the languages LC(M) and LP(M)
are semi-linear.

Now we reconsider the construction given in the proof of Theorem 1. Ob-
viously, with almost no change the delimiters ∆0,k and ∆1,k in the proof of
Theorem 1 can be shifted just before the delimiter ∆2,k. Thus, the set of delim-
iters of the form Θ1,k = (∆0,k, ∆1,k, ∆2,k), and Θt,k = ∆t+1,k for t > 1, can serve
as a skeletal set for a newly constructed automaton M ′. The characteristic word
wC from LC(M ′) that corresponds to the word w = g(i1, j1)g(i2, j2) . . . g(ir, jr)
will then be of the following form:

wC := g(i1, j1)Λ1,kΘ1,k g(i2, j2)Λ2,kΘ2,k . . . g(ir, jr)Λr,kΘr,k.

Finally, the symbols of the form Λt,k are the variables of M ′. Thus, we have the
following refinement of Theorem 1.

Corollary 2. For each L ∈ g-d-DDG, there exists a nondeterministic d-AuxRR-
automaton M with a skeletal set SP of type (g, d) such that L = LP(M). Each
variable of w ∈ LC(M) is positioned immediately to the left of an element of SP .
Moreover, whenever w ⊢c

M w1 holds, where w = x0y1x1y2 . . . ytxt and w1 =
x0x1x2 . . . xt, then

x0y
ℓ
1x1y

ℓ
2 · · · y

ℓ
sxs ∈ LC(M)

for all non-negative integers ℓ.

The d-AuxRR-automaton M in Corollary 2 is inherently nondeterministic, as
in each cycle it must guess the value of the parameter j (see the proof of The-
orem 1). To avoid this nondeterminism we now consider a slight generalization
of the underlying FRR-automaton: the FRL-automaton. The FRL-automaton is
obtained from the FRR-automaton by introducing move-left steps. For example,
such an automaton can first scan its tape completely from left to right, then
move back to the left end of the tape, and then perform some rewrite operations
during a second left-to-right sweep. A d-AuxRL-automaton is an FRL-automaton
that is aux-rewriting and correctness preserving, and that performs at most d

rewrite operations in any cycle.
Obviously, the d-AuxRR-automaton M from Corollary 2 can be seen as a

d-AuxRL-automaton of a restricted form. Hence, [6] Theorem 3.4 applies, which
states that there exists a deterministic d-FRL-automaton Mdet that accepts the
same characteristic language as M . In fact, if w ⊢c

Mdet
w′, then also w ⊢c

M w′

holds, and if w ⊢c
M w′, then w ⊢c

Mdet
w′′ for some word w′′. Since the transfor-

mation from M to Mdet in the proof of [6] Theorem 3.4 does not interfere with
the existence of a skeletal set, we can restate Corollary 2 as follows.

18 D. Pardubská, M. Plátek, F. Otto

Corollary 3. For each L ∈ g-d-DDG, there exists a deterministic d-AuxRL-
automaton M with a skeletal set SP of type (g, d) such that L = LP(M). Each
variable of w ∈ LC(M) is positioned immediately to the left of an element of SP .

Let M be deterministic d-FRL-automaton. Given an input w of length n,
M will execute at most n cycles, before it either accepts or rejects. Each of
these cycles requires a number of steps that is linear in n. It follows that the
membership problem for the language LC(M) is decidable in quadratic time.

If M is a deterministic d-AuxRL-automaton with a skeletal set SP of type
(g, d), then an input word w of length n belongs to the proper language LP(M),
if there exists an extended variant wC of w that is in the characteristic lan-
guage LC(M). From the form of the skeletal set we see that wC is obtained
from w by inserting at most g · d factors of the form λδ, where λ is a variable
and δ is an island. There are

(

n
g·d

)

= O(ng·d) many different ways to insert these

factors, of which there are mostly |Γ r Σ|2 many different ones. Hence, there
are O(|Γ r Σ|2·g·d · ng·d) many candidates for wC . They can all be enumerated
systematically, and then for each of them membership in LC(M) can be tested
in time O((n + 2 · g · d)2). Thus, we obtain the following result.

Proposition 2. Let M be a deterministic d-AuxRL-automaton with a skeletal
set SP of the type (g, d) such that each variable in w ∈ LC(M) is positioned
immediately to the left of an element of SP . Then, for each w ∈ Σ∗, the size of
AC(w, M), the characteristic analysis of w by M , is at most O(|Γ rΣ|2·g·d ·ng·d),
and this set can be computed in time O(|Γ r Σ|2·g·d · ng·d · (n + 2 · g · d)2).

This proposition together with Corollary 3 has the following consequence.

Corollary 4. For each language L ⊆ Σ∗, if L ∈ g-d-DDG, then there exists a
d-AuxRR-automaton M such that L = LP(M), and for each w ∈ Σ∗, the size of
the set AC(w, M) is at most O(|Γ r Σ|2·g·d · ng·d), and it can be computed in
time O(|Γ r Σ|2·g·d · ng·d · (n + 2 · g · d)2).

5 Conclusion

Here we have presented a transformation of PCGSs that are restricted by two
types of parameters into an adequate model of analysis by reduction with two
corresponding parameters. Based on these parameters we have established a
polynomial size restriction for the characteristic analysis for this model (which, in
fact, means an upper bound for the characteristic ambiguity of this model), and
a polynomial upper bound for the time required for the characteristic analysis.
That is an interesting result compared to the situation for context-free languages,
for which any reasonable type of ambiguity has an exponential upper bound. Let
us note that a polynomial upper bound for the (simple) membership problem
already follows from [1].

PCGS & Restarting Automata 19

References

1. L. Cai. The computational complexity of PCGS with regular components. In:
Developments in Language Theory, 1995, 209–219.

2. E. Czuhaj-Varjú, J. Dassow, J. Kelemen and G. Paun (eds.). Grammar Systems:

A Gramatical Approach to Distribution and Cooperation. Gordon and Breach
Science Publishers, 1994, ISBN 2-88124-957-4.

3. J. Hromkovič, J. Kari, L. Kari, and D. Pardubská. Two lower bounds on distribu-
tive generation of languages. In: I. Prívara, B. Rovan, and P. Ružička (eds.), Math-

ematical Foundations of Computer Science 1994, MFCS’94, Proc., LNCS 841,
Springer, Berlin, 1994, 423–432.

4. M. Lopatková, M. Plátek, and P. Sgall. Towards a formal model for functional gen-
erative description: Analysis by reduction and restarting automata. The Prague

Bulletin of Mathematical Linguistics 87 (2007) 7–26.
5. V. Kuboň, M. Lopatková, M. Plátek, and P. Pognan. Segmentation of Complex

Sentences. In: P. Sojka, I. Kopeček, and K. Pala (eds.), Text, Speech and Dialog,

TSD 2006, Proc., LNCS 4188, Springer, Berlin, 2006, 151-158.
6. H. Messerschmidt and F. Otto. On determinism versus nondeterminism for

restarting automata. Information and Computation 206 (2008) 1204–1218.
7. F. Otto. Restarting automata. In: Z. Ésik, C. Martin-Vide, and V. Mitrana

(eds.), Recent Advances in Formal Languages and Applications, Studies in Com-
putational Intelligence, Vol. 25, Springer, Berlin, 2006, 269–303.

8. F. Otto and M. Plátek. A two-dimensional taxonomy of proper languages of lex-
icalized FRR-automata. In: C. Martin-Vide, F. Otto, and H. Fernau (eds.), Lan-

guage and Automata Theory and Applications, LATA 2008, Proc., LNCS 5196,
Springer, Berlin, 2008, 409–420.

9. D. Pardubská. Communication complexity hierarchy of parallel communicating
grammar system. In: Developments in Theoretical Computer Science. Gordon and
Breach Science Publishers, Yverdon, 1994, 115–122.

10. D. Pardubská and M. Plátek. Parallel communicating grammar systems and anal-
ysis by reduction by restarting automata. In: G. Bel-Enguix and M.D. Jimenez-
Lopez (eds.), International Workshop on Non-Classical Formal Languages in Lin-

guistics, ForLing 2008, Proc., Tarragona, 2008, 81–98.
11. D. Pardubská, M. Plátek, and F. Otto. On PCGS and FRR-automata. In: P. Vo-

jtáš (ed.), Information Technologies – Applications and Theory, ITAT 2008, Proc.,
Department of Computer Science, Faculty of Science, Pavol Jozef Šafárik Univer-
sity, Košice, 2008, 41–47.

12. Gh. Pǎun and L. Santean. Parallel communicating grammar systems: the regular
case. Ann. Univ. Buc. Ser. Mat.-Inform. 37 (1989) 55–63.

