
Applicability of Emergence Engineering to Distributed
SystemsScenarios

Michael Zapf, Thomas Weise

Universiẗat Kassel, Wilhelmsḧoher Allee 73
D-34121 Kassel, Germany

{zapf|weise}@vs.uni-kassel.de

Presented at EUMAS’08,
the Sixth European Workshop on Multi-Agent Systems

Bath, UK, December 18–29, 2008

Abstract Genetic Programming can be effectively used to create emergent be-
havior for a group of autonomous agents. In the process we call Offline Emer-
gence Engineering, the behavior is at first bred in a Genetic Programming envi-
ronment and then deployed to the agents in the real environment. In this article we
shortly describe our approach, introduce an extended behavioral rule syntax, and
discuss the impact of the expressiveness of the behavioral description to the gen-
eration success, using two scenarios in comparison: the election problem and the
distributed critical section problem. We evaluate the results, formulating criteria
for the applicability of our approach.

1 Introduction

Within the area of software engineering, we have to face new challenges for developing
programs, especially for systems which are geographically dispersed, or which con-
sist of far too many components to allow a reasonable divide-and-conquer approach.
Biologically inspired approaches attempt to learn from nature, for instance, by taking
swarm behavior and other self-organizing phenomena as a model for computing tech-
nology. However, while we can easily conceive that a collection of autonomous agents
cooperate in a way to produce some common, possibly also unexpected behavior, we
still do not know how to trigger this development, and specifically, in a given, desired
direction.

Utilizing these unexpected – or emergent – phenomena within an engineering pro-
cess is called Emergence Engineering [1], a rather new area in software engineering. In
[2] we presented a first approach to this concept with our offline emergence engineer-
ing approach and demonstrated that it is suitable to create an appropriate group behavior
within a load balancing scenario. However, we cannot guarantee whether the results of
this process actually reliably fulfill the requirements of the scenario, that is, whether the
results are really “solutions” as we understand the term. Can such an emergent process
create reliable solutions at all?

2

We attempt to approach this question by briefly introducing our previous approach
from [2], adding a new, extended version with richer semantics. Comparing the basic
and enhanced version, we will elaborate on two related aspects: On one hand we dis-
cuss the contribution of the base language to the evolution success, and on the other
hand we comment on the overall practicability of creating solutions by emergence. Two
example scenarios, the Election Problem and the Critical Section Problem, will serve
as representants of two different classes of problems, and the evolution success of each
class will be evaluated.

2 Offline Emergence Engineering

Before we describe our recent experiments, we will summarize the core aspects of our
approach [2].

2.1 Rule-Based Genetic Programming

Our approach to emergence engineering is based on Genetic Programming which allows
us to breed adequate solutions for a given task. At this point we will only give a brief
description of the most important concepts.

Genetic Programming is a class of evolutionary algorithms for breeding programs,
algorithms, and similar constructs. All evolutionary algorithms proceed in principle ac-
cording to the following scheme: Initially, a population of individuals with a totally
random genome is created. The objective functions rate the utility of the different fea-
tures of the solution candidates. Then a fitness value is assigned to each individual.
A subsequent selection process filters out the solution candidates with low fitness and
allows those with good fitness to enter the mating pool with a higher probability. In
the reproduction phase, offspring is created by varying or combining these solution
candidates and integrated it into the population. If the termination criterion is met, the
evolution stops here. Otherwise, the process is repeated.

Genetic programming has to cope with some unwanted effects inferred by the un-
controlled modification of program code, likeepistasis. Instead of sequentially executed
program lines, the approach as described here features an unordered set of rule lines as
the behavior definition. Each rule consists of a condition and an action part. The actions
are carried out only if the condition part evaluates to true. The outputs and storage op-
erations performed by the actions are buffered and committed after all rules have been
applied. ThisRule-based Genetic Programming,as we call it, keeps epistatic effects
considerably lower than other standard or linear GP methods so that programs become
more robust in terms of reproduction operations. We expect that this will lead to a more
durable evolution with a higher probability of finding good solutions.

2.2 Engineering Process

Figure1 provides an overview on the engineering process, especially whereGenetic
Programming comes into place. The OEE approach consists of five phases:

3

Figure 1: Engineering Process

1. The scenario must be analyzed, resulting in a collection of requirements.
2. Suitable objective functions must be found which determine the fitness of a solution
3. The evolutionary algorithm is run, creating new versions of the individuals and

selecting the fittest ones repeatedly.
4. At some point in time, the evolutionary process is halted and the best individual

found is picked out.
5. The individual is put into a component as its behavior, being deployed in the real

environment.

Creating programs with Genetic Programming by itself is not a new concept. The es-
sential idea of Offline Emergence Engineering (OEE) is to set up this technique as a
part of an engineering process for multi-agent systems. In classical approaches and also
in recent Agent-Oriented Software Engineering methodologies like Gaia [3], the over-
all scenario is usually analyzed in order to identify sub-problems which can be handled
by a small group of agents. Together, the various agent groups contribute to the overall
functionality, and so we can expect to have a suitable overall solution.

To reduce complexity for the evolution process, we let only one type of agent be-
havior evolve, which must be put into all participating agents. This is no limitation of
flexibility; if we had multiple behavior types, we can put them into one type and select
the appropriate part of the behavior by means of a state variable.

2.3 Emergence

For the scenarios that we envisage, an analysis may not be applicable, due to the com-
plexity of the overall system, the number of involved agents, their spatial distribution,
or simply because we are just unable to find a consistent set of sub-problems. In those

4

cases,we may still have an idea about the overall functionality of the multi-agent sys-
tem. That is, a desirable engineering approach should be to provide the overall condi-
tions as input, and getting implementations for the individuals as output. If the process
works correctly, and if we have adequately described the target environment with its
requirements, the resulting individuals should act in a way so that gradually or imme-
diately, the desired properties appear.

In all cases where we cannot precisely say how the actions of the subparts contribute
to the success of the overall system, we refer to this phenomenon asemergence. Emer-
gence is typically found in collections of individuals which are interacting with each
other. If this collection can exhibit structural properties, emergence is often linked to
self-organization although this is not generally the case.

As we have only one type of individual (determined by its behavior), the pressure of
selection on the individuals is propagated to the rule set of the individuals. Concerning
the effect, a set of rules excerts direct influence on the behavior of the agent, and the
individual behavior contributes to the overall behavior which can be measured by the
fitness function. Hence, within OEE, we can witness emergence in different levels. The
behavior of the group somehow emerges from the behavior of the individuals, and the
behavior of the individuals emerges from the rule set.

2.4 Flexibility and Reliability

Unlike classical approaches, we usually cannot verify the fitness of the resulting be-
havior by looking at the code. In most cases, the outcome of Genetic Programming is
hardly understandable – again emphazing the fact that we have an emergent process.
Moreover, the result of the creation is fixed; the agents are not able to modify their
own behavior. This raises two questions: How flexible are these solutions in the light of
changing environments, and how can we rely on the results?

While analyzing the requirements of the scenario, we certainly need to pay attention
whether there may be varying conditions. These influences have to be modeled as well;
the simulation environment, where the Genetic Algorithm executes its creative and se-
lective process, must mirror those conditions precisely. So if the behavior depends on
the presence and the number of specific entities, these must be appropriately varied dur-
ing the simulation. Agents which can cope with these changes will also be able to do so
in the real environment.

Still, we cannot say whether a “solution” will work reliably during the whole time of
application. It is certainly possible that a solution will at some time change its behavior
in an unexpected way – since we are not able to foretell this effect by looking at the
code. This may be a principle problem of emergent behavior. However, we should also
think about the nature of a “solution” – is it allowed to deviate from the optimal path, or
is it required to strictly fulfill the requirements at all times? In that case, is the scenario
suitable for an emergent approach at all?

5

2.5 Expressiveness of the Behavioral Language

Another issue which we addressed in our recent experiments is the influence of the
behavior language. As described above (see also [4, 2]), the Rule-Based Genetic Pro-
gramming language (RBGP) defines rules with two parts:

Condition1 ⊗ Condition2 ⇒ Effect,with ⊗ ∈ {and,or}

with a conditional part, consisting of two conditions connected byand / or, and an effect
part. Figure2 shows the correspondence between the genotype and phenotype ofRBGP.
The evolutionary operations (crossover and mutation) modify the genotype which is
then transformed to the corresponding phenotype using the genotype-phenotype map-
ping (GPM).

true
false

¹ 101

110

111

>

³

=

£

<

Comp. Enc.

001

010

011

100

000

Enc.

00

01

10

11

Action

x
1-x

x+y=

x-y=

=

=

Enc.

0

1

Concat.

Ù

Ú

0

Symbol Encoding

1
start

enter
leave

id
netSize
receive
send

a
b

0000 1100,

0001 1101,

0010 1110,

0011 1111,

0100

0101

0110

0111

1000

1001

1010

(receive 1)t = (true) send send + at+1 t t=Ù Þ

(1)¹ Ú ³ Þstart (enter leave) var1 id -at t t t+1 t t=

(false) Ù < Þ(leave 1)) enter 1-entert t+1 t=

...

...

0101 010 1101 0 XXXX 110 XXXX 0110 00 1001

XXXX 111 XXXX 1 1000 100 0001 0111 11 0111

0001 101 0010 1 0111 001 1000 1001 01 1111

...

...

Genotype

Phenotype

GPM

Figure 2: RBGP genotype and phenotype

Althoughthe primitives of Rule-based Genetic Programming are powerful enough
to express many of the constructs known from high-level programming languages, the
original RBGP as described above has some inherent limitations. The most obvious
drawback is the lack of Turing completeness.

In order to illustrate this problem, imagine we would restrict Java data types to
primitive, non-constructed types like integers. This would make it hard to create data
structures like lists, since we would have to define one variable for every single element.
Writing a method for sorting a list of arbitrary length would be unfeasible. The plain

6

Algorithm 1 Sortingalgorithm written in the eRBGP language
(startt > 0)∧ true⇒ at+1 = 0
(startt > 0)∧ true⇒ bt+1 = 0
(at < lt)∧ ([at]t < [bt]t) ⇒ [at]t+1 = [bt]t
(at < lt)∧ ([at]t < [bt]t) ⇒ [bt]t+1 = [at]t
(bt ≥ at)∧ (at < lt) ⇒ at+1 = at +1
(bt < at)∧ true⇒ bt+1 = bt +1
(bt ≥ at)∧ (at < lt) ⇒ bt+1 = 0

Rule-based Genetic Programming approach has a similar limitationas the symbols re-
semble integer variables. In Java, this whole problem is circumvented with arrays, a
form of memory which can be accessed indirectly.

To extend the expressiveness, we add indirect memory access to the programming
language, using the notation[at]t , which stands for the value of theath

t symbol (at time
step t) in the ordered list of all symbols. This new form of Rule-based Genetic Program-
ming which we call eRBGP allows the evolution of list-sorting algorithms and makes it
Turing-complete1. Algorithm 1 shows an example of list processing.

We included another enhancement in eRBGP: The base RBGP language only al-
lows for two-part expressions. Creating a conjunction or disjunction of three or more
expressions requires the evolutionary process to introduce intermediate boolean stores,
and to formulate the complete condition in multiple lines. In eRBGP, rules can be built
with complex conditions. However, as the expressions do not have a common structure
anymore, we lose the ability of using Genetic Algorithms with fixed-size genes for its
evolution. Instead we apply Genetic Programming with a tree-shaped genome, as Fig-
ure3 shows. In this case, the evolutionary operations modify the treestructure directly.
The text representation of the illustrated eRBGP program can be seen as Algorithm2.

Þ

ct dt
at dt

Ù

< Ù

at bt > <

=

at+1 +

at 1

Þ

ct dt
at dt

Ù =

< Ù ct+1 -

at bt > < ct 1

condition part action part

one rule

Figure 3: eRBGP genotype and phenotype

1 Theproof for Turing Completeness of Genetic Programming languages with indexed memory
[5] can be easily adapted to eRBGP.

7

Algorithm 2 Textual representation of the tree genome
((at < bt)∧ ((ct > dt)∧ (at < dt))) ⇒ at+1 = (at +ct)
((at < bt)∧ ((ct > dt)∧ (at < dt))) ⇒ ct+1 = (ct −1)

3 Experiments

We conducted some experiments in order to determine preconditions for a successful
Emergence Engineering:

– Load balancing: Distribute load among the available hosts using mobile agents.
– Election: Get an agreement on choosing one individual from a given set.
– Critical section: Restrict access to a resource so that only one agent may access it

at a time.

In a load balancing scenario, we assume that we have a network ofn nodes which offer
execution resources, and a set ofm tasks to be distributed among these hosts. Using
mobile agents, we can map the tasks to the agents, where each agent is responsible to
migrate to a suitable host by itself. We have already shown that this scenario may be ad-
equately handled by the Offline Emergence Engineering approach [2]. The agents start
to circulate from host to host and start to migrate away if they detect that a neighboring
host has less load. In the following, we will have a closer look at the other two problems
which seem related but show a surpringly different behavior in this approach.

3.1 Election

Election algorithms have many applications in distributed systems. Election is also a
very common functionality needed in numerous agent scenarios. A distributed election
algorithm can be initiated by any number of agents in the systems and will reach a
terminal configuration in which exactly one agent is elected asleader and all agents
agree to this choice. The challenge of such an election procedure is the distributed
nature: It must be ensured that all agents get a consistent view of the election.

Before we start the evolution, we define the operations available to the agents. An
agent may send a message containing a single number stored in the variableout with
the commandsend. Whenever a message is received, its contents appear in the symbol
in, and the variableincomingMsg is set to 1. The communication among the agents is
delayed arbitrarily and messages may overtake each other. All agents run in parallel, at
different, randomly changing processing speeds. Furthermore the agents have unique
identifiers (variableid) and two multi-purpose variablesa andb. We expect the iden-
tifier of the elected agent to be stored in variablea after about 5000 simulated time
units.

For our OEE process, we need to define objective functions which guide the se-
lection mechanism. The challenge is to find some properties which, by maximizing or
minimizing, indicate the fitness of the individual for the given problem. Thus, binary
properties are virtually worthless. In this case, we define the following functions:

8

f1 countsthe number of different IDs found when comparing all the values stored in
thea variables of the agents after the simulation and penalizes values that do not denote
valid IDs. f2 determines the behavior size in terms of the number of rules,f3 counts
the time units used for active computations (penalizing useless computation when the
node could sleep instead), andf4 counts the number of messages exchanged. For the
best overall fitness, all four functions shall yield minimal values.

The results of this Emergence Engineering process are, in most cases, incomprehen-
sible [2] – due to the fact that there is no “intelligent program designer” with more or
less clear and interpretable intentions. Even worse, some effects of these programs are
caused by the iterative execution which may require a prohibitive effort to analyze. So
we were quite surprised to see that one of the results we got from the evolution process
looked very similar to the well-knownMessage Extinctionalgorithm. Further experi-
ments showed, however, that this easily understandable result was rather an exception,
as following results included much more complicated internal computations. They im-
plement valid election algorithms and, as in the previous example, either the node with
the highest or lowest ID wins.

RBGP

1 false or (start(t)=incomingMsg(t)) => start(t+1)=1-b(t)

2 false or (b(t)>=a(t)) => a(t+1)=a(t)+id(t)

3 (out(t) <=start(t)) or (id(t)!=b(t)) => send

4 false or (a(t)!=out(t)) => out(t+1)=a(t)

5 (id(t)=0) and (out(t) >=0) => id(t+1)=id(t)/b(t)

6 (0=id(t)) or (id(t)<in(t)) => a(t+1)=in(t)

eRBGP

1 id(t) => send

2 [incomingMsg(t)](t) => out(t+1) = id(t)

3 (out(t) - (incomingMsg(t) or [a(t)](t))) => a(t+1) = id(t)

4 (in(t) / id(t)) => id(t+1) = in(t)

Figure4: Comparing RBGP and eRBGP solutions of the election algorithm

We conducted our experiments with the standard RBGP language and the new eR-
BGP language, hoping for simpler solutions as the eRBGP is more expressive. Figure4
shows one of the delivered individuals for each case. The evolved solution for eRBGP
only requires four lines. We evaluated the reliability of multiple solutions delivered by
these two approaches by the fraction of scenarios where the election process proceeds
correctly. Programs generated with RBGP are reliable in 60% of the scenarios and those
from eRBGP achieve correct behavior in 91% of the network simulations. This shows
the encouraging result that eRBGP solutions are much more reliable, and it seems to
be a strong indication that the expressiveness of the language can help to find better
solutions.

9

3.2 Critical Section (CS)

An interesting problem which has been examined first in the 1960s is thecritical sec-
tion. The term critical section denotes the access to a shared resource which must be
utilized by only one process at a time. This access therefore requires some form of co-
operative arbitration of the requests from multiple agents. The processes running con-
currently on different nodes have to communicate by the means of message exchange.
Based on the messages sent and received, an agent has to decide whether it is allowed
to access the critical section or whether it has to wait. The first algorithms for the mu-
tual exclusion at a distributed critical section were introduced by Lamport and Ricard
and Agrawala, followed by Maekawa’s solution, which is optimal in the number of
exchanged messages.

In order to breed solutions for the CS problem, we again need to analyze the re-
quirements. The first objective functionf1 imposed on the program evolution relates
to the number of violations of the mutual exclusion criterion. We simply sum up the
time steps where more than one process accessed the critical section. To increase the
pressure, we sum up the square of the number of nodes inside the CS. As this function
alone would reward solutions where no process ever enters the critical section, we need
a second objective functionf2 which represents the number of times each process could
enter the critical sectionat leastin the fixed time span of the simulation. We also add a
value proportional to the total number of accesses of the CS. Finally,f3counts the num-
ber of rules and, thus, exerts pressure to drop unnecessary rules.f1 and f3 are subject
to minimization, f2 is to be maximized.

f1(P) =
T

∑
t=1

{

0 : if ncs(t) ≤ 1
(ncs(t))2 : otherwise

(1)

f2(P) = min{node in cs}+1−
1

∑(nodein cs)
(2)

f3(P) = |P| (3)

For our experiments we have chosen a population size of more than 7000 individu-
als. Nine nodes were running in the simulation for 1000 time steps in order to test every
evolved program.

The first disappointment we had to face was that during the RBGP evolution, no
persistently good solution emerged. We terminated the experiment after more than 2100
generations, although we still observed changes in the population up to that point. We
drew the best individuals from the evolved set and put them into a simulation environ-
ment.

Table1 shows the results, evaluating the behavior of the best individualsin 200 ran-
dom network configurations. The columns contain the ratio of the networks where the
respective individual abided by the preconditions of the Critical Section scenario. For
evaluating the correct function of the individual, we have to check whether it prevents
collisions, and whether it shows fairness to all agents, i.e. ideally, each agent gets the
chance to enter the CS.

10

Table1: RBGP success ratio for the critical section problem
No collisions Fairness

98.5% 52.5%
98% 53%
97% 54.5%

90.5% 84%

For RBGP, we found a solution avoiding collisions in 98.5% of allgiven environ-
ments. In 52.5% of the environments, the solution is also fair, allowing more than one
process to enter the critical section. As the table shows, lower rates of collisions cor-
relate with lower fairness. From an intuitive point of view this is understandable – in-
volving more agents increases the chances of triggering violations. The last individual,
failing to ensure exclusiveness in 1 of 10 test networks, has the best fairness value.
Whether such a “solution” is tolerable for employing in the real environment is another
question.

Figure5 shows the RBGP code of one of the individuals. Note that the firstrule
seems to make this program immediately violate the first condition, as it uncondition-
ally forces the process to enter the critical section at the very first place. However, the
evolutionary process “discovered” that in our framework, the rules are only committed
if no error occurs when evaluating the remaining lines. In this case, a division by zero in
one of the following lines breaks the evaluation, and it only succeeds when the process
gets an incoming message. A human software engineer would surely choose a “cleaner”
design, but this version obviously had a better fitness than other variants.

Figure5 also shows an individual from our framework, using the eRBGP language.
As we already suspected, the solution is much more compact (6 rules) as the solution
of RBGP (15 rules), also defining much more complex conditions. Table2 presents the
evaluation of some individuals in test networks. Unfortunately, the results have become
worse.

Table 2: eRBGP success ratio for the critical section problem
No collisions Fairness

99% 1%
98.5% 1.5%
84% 16%
80% 20%

While the best solution, according to the first criterion, succeedsin 99% of all net-
works, it fails to be fair in 99% of all cases, by only allowing a single process to enter.
The same holds for the other individuals, showing complementary ratios of collision
avoidance and fairness. It seems as if fairness was only achieved for that moment when
it failed to ensure the exclusiveness.

11

RBGP

1 t rue and t rue => e n t e r C s
2 (leaveCS (t)>l eaveCS (t)) o r t rue => i n1 (t +1)= in1 (t) +1
3 t rue or t rue => send
4 . . . [9 l i n e s d e l e t e d] . . .
5 (ou t2 (t) != a (t)) o r t rue => n e t S i z e (t +1)= n e t S i z e (t) / i n1 (t)
6 (n e t S i z e (t)>=b (t)) o r (d (t)>=out1 (t)) =>

out1 (t +1)= ou t1 (t) + leaveCS (t)
7 t rue or f a l s e => send

eRBGP

1 (0 or ((! incomingMsg (t)) o r s t a r t (t))) => send
2 ((((! s t a r t (t)) ∗ i n2 (t))
3 and (((ou t1 (t) − (! incomingMsg (t)))
4 and ((0 and b (t)) ∗ −2)) ∗ ((leaveCS (t) =(s t a r t (t)
5 + (s t a r t (t) =b (t)))) + 1)))
6 + (((((! incomingMsg (t)) and incomingMsg (t))
7 or −1) − i n2 (t)) + s t a r t (t))) => [b (t)] (t +1) = 2
8 (! incomingMsg (t)) => out2 (t +1) = s t a r t (t)
9 out2 (t) => send (t)

10 ((s t a r t (t) and b (t)) =(ou t2 (t)− st a r t (t))) =>
11 i n1 (t +1) = ((incomingMsg (t) and a (t)) =b (t))
12 i n1 (t) => enterCS

Figure 5: RBGP and eRBGP solution for the critical section problem

4 Evaluation

The observations of the experiments lead us to some first conclusions. First, increasing
the language expressiveness does not necessarily improve the quality of the solution.
This is, to some extend, in line with our observation in the Load Balancing scenario [2]
where we noticed that the evolutionary process only utilizes those features and proper-
ties which yield an evolutionary advantage. The idea behind a more expressive language
like eRBGP is that by decreasing the number of rules – using a more expressive syntax
– we remove possible non-functional evolutions of the code. Second, we allow for a
more complete repository of evolvable functionality due to the Turing completeness.
The problem may be that we are still trapped in classical notions of engineering, and
we possibly witness that evolution unleashes other problem-solving capabilities.

As we saw in our experiments, some scenarios seem to allow a higher evolutionary
success than others. Although the scenarios seem to share some common properties,
they are obviously not equally suited for the OEE process. Finding out what makes a
scenario suitable for Emergence Engineering is an open question. We can try to ap-
proach this question by distinguishing the following special simple cases. The result of
the evolution may be

– any-agentand
– all-agent properties or behaviors.

12

Theformer one refers to the observation that eventually, one of the agent instances has
got some property or expresses some behavior. The latter case refers to the situation
where eventually, the whole collective adops the same properties and behaviors. That
way, we can analyze our scenarios as follows:

Load balancing and election seem to be suitable problems for an emergence ap-
proach. We believe that this is due to the fact that both problems requireall-agent be-
haviors. For load balancing, each agent migrates as soon as there is a host with lower
load, while for election, all agents eventually share the same property at the end, know-
ing the ID of the winner. Election also shows an any-agent property, namely for the
elected agent.

At first sight, Critical Section is some kind of an election problem: Choose one agent
to enter the CS. But due to the fact that we also want to reach fairness, there are more
requirements which need to be fulfilled. More specifically, the CS problem requires an
iterative election, and worse, it requires the behavior of the group to change in order to
achieve fairness. This is neither an any-agent nor an all-agent behavior.

Obviously, the agents somehow need tolearn that some agent was already allowed
to enter the CS, and so it does not qualify to enter again for some time. While it is
not impossible that agents develop learning behavior within the evolutionary process, it
is obviously fairly unlikely. Hence, for the applicability of this approach, the analysis
must take care whether the group behavior implies learning capabilities or not.

Beyond our presented approach of OEE, the observations are important for other
Emergence Engineering approaches as well, as we believe – that is, there may be prob-
lems with an inherent difficulty for Emergence Engineering. In the examples, there is
no obvious correlation between the design mechanism and the behaviour except for the
fact that our agents have to use the behavior that was previously created. But as we
described in [2], even though our agents use the fixed ruleset which has evolved, they
will show adaptivity if adaptivity has led to an evolutionary advantage. In turn, if we al-
low an agent community to build up emergent behavior dynamically (“online”), there is
neither a guarantee that we reach our goal without subtle side-effects, as demonstrated
with the Critical Section example.

5 Related Work

Automatic program generation is already a classic problem and covered by numerous
approaches for some decades by now. Genetic Programming is a class of evolutionary
algorithms for breeding programs, algorithms, and similar constructs [6, 7]. Cramer uti-
lized genetic algorithms and tree-like structures to evolve programs [8]. The standard
tree-based Genetic Programming, which is most often used in practical applications
and as reference model, was formalized by Koza a few years later [6]. Since then, many
different approaches like grammar-guided Genetic Programming [9] and linear Genetic
Programming [10] have branched off. Also in the context of multi-agent systems, Ge-
netic Programming is a well-known approach, especially in the context of foraging
simulations [11] or rendezvous scenarios [12]. These concepts all address either opti-
mization problems or solutions for specific problem areas. In contrast, in this article we
discuss a new engineering concept for multi-agent societies for generic problems. By

13

utilizing the inherent emergence of Genetic Programming, we envisage to create a part
of a larger engineering process.

There is currently only few related work concerning emergence engineering for
agent societies. The most notable work here is ADELFE [13]. ADELFE is an engi-
neering approach based on the Rational Unified Process [14] which explicitly exploits
emergence among a set of cooperative agents. Basically, in ADELFE the overall sys-
tem is modelled as an environment in which a set of agents is situated. By its interaction
with the multi-agent system, the environment forces the agents to cooperate. Compar-
ing to our approach, we call ADELFE anonline emergence engineeringapproach, due
to the fact that the agents are situated in the real environment and need to self-organize
to respond to changes in the environment.

6 Conclusions

The Offline Emergence Engineering approach, as described in this paper, is a compa-
rably new approach to create implementations for multi-agent systems. Our research
is still in an early state where we need to conduct more experiments to find out char-
acteristics of problems which may be suitably handled by this approach. However, we
must face the fact that generating programs in this way is extremely time-consuming,
literally taking days to weeks until a solution is found. This may certainly be handled
by faster hardware, but relying on Moore’s Law is a weak excuse.

There are some challenges in Emergence Engineering as we discovered in our ap-
proach: First, it is important to find criteria whether a problem is suitable for Emergence
Engineering. This is currently a widely open question, but also the most important one.
We have presented some simple criteria which may indicate whether EE is likely to
produce suitable solutions for a problem. Second, if we have considered a problem to
be suitable for EE, we must find appropriate objective functions for the evolutionary
algorithms to measure the fitness of individuals. In other approaches [13] this corre-
sponds to evaluating the adequateness of the agent behavior. Third, we have to decide
on the expressiveness of the behavioral language and the capabilities of the agents. We
found that increasing the expressiveness of the implementation language of the agent
behavior need not necessarily yield better solutions. Although we increased the scope
of the possible agent behavior, some problems seem to be trapped in sub-optimal areas
of the evolution.

We believe that defining some more scenarios will provide us with more experience
on the behavior of the evolution process and whether it may be required to introduce
additional modifications.

Bibliography

[1] ÖzalpBabaŏglu, David Hales, Mark Jelasity, et al., editors.Proceedings of the
Workshop on Engineering with Complexity and Emergence (ECE), Satellite Work-
shop of the European Conference on Complex Systems (ECCS), 2005.

[2] Michael Zapf and Thomas Weise from the University of Kassel, FB-16, Dis-
tributed Systems Group, Wilhelmshöher Allee 73, 34121 Kassel, Germany. Of-
fline Emergence Engineering For Agent Societies. InProceedings of the Fifth
European Workshop on Multi-Agent Systems (EUMAS’07), December 14, 2007,
Elmouradi Hotel, Hammamet, Tunesia. Also presented at the co-located Fifth
Technical Forum Group (TFG5). Online available athttp://www.it-weise.

de/documents/files/ZW2007EUMASTR.pdf [accessed 2009-01-07]. Seealso [15].
[3] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing

multiagent systems: The Gaia methodology.ACM Trans. Softw. Eng. Methodol.,
12(3):317–370, 2003.

[4] Thomas Weise, Michael Zapf, and Kurt Geihs from the University of Kassel,
FB-16, Distributed Systems Group, Wilhelmshöher Allee 73, 34121 Kassel, Ger-
many. Rule-based Genetic Programming. InProceedings of BIONETICS 2007,
2nd International Conference on Bio-Inspired Models of Network, Information,
and Computing Systems, 2007. In proceedings [16]. Online available athttp://

www.it-weise.de/documents/files/WZG2007RBGP.pdf [accessed 2009-01-07].
[5] Astro Teller. Turing Completeness in the Language of Genetic Program-

ming with Indexed Memory. In Zbigniew Michalewicz, J. David Schaf-
fer, Hans-Paul Schwefel, David B. Fogel, and H. Kitano, editors,Proceed-
ings of the 1994 IEEE World Congress on Computational Intelligence, pages
136–141. IEEE Press, Piscataway, New Jersey, June 27–29, 1994, Orlando,
Florida, USA. ISBN: 0-7803-1899-4. Online available athttp://www.
cs.cmu.edu/afs/cs/usr/astro/public/papers/Turing.ps andhttp://
www.astroteller.net/work/pdfs/Turing.pdf [accessed 2007-09-17].

[6] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. A Bradford Book. The MIT Press, Cambridge,
Massachusetts, USA, 1992 first edition, 1993 second edition, 1992. ISBN:
0-2621-1170-5,978-0-26211-170-6. Partly online available athttp://books.

google.de/books?id=Bhtxo60BV0EC [accessed 2008-08-16].
[7] Jörg Heitk̈otter and David Beasley, editors.Hitch-Hiker’s Guide to Evolutionary

Computation: A List of Frequently Asked Questions (FAQ). ENCORE (The Evo-
lutioNary Computation REpository Network), 1998. USENET: comp.ai.genetic.
Online available athttp://www.cse.dmu.ac.uk/~rij/gafaq/top.htm and
http://alife.santafe.edu/~joke/encore/www/ [accessed 2007-07-03].

[8] Nichael Lynn Cramer. A representation for the Adaptive Generation of Simple Se-
quential Programs. InProceedings of the 1st International Conference on Genetic
Algorithms and their Applications, pages 183–187, 1985. In proceedings [17].
Online available athttp://www.sover.net/~nichael/nlc-publications/
icga85/index.html [accessed 2007-09-06].

http://www.it-weise.de/documents/files/ZW2007EUMASTR.pdf
http://www.it-weise.de/documents/files/ZW2007EUMASTR.pdf
http://www.it-weise.de/documents/files/WZG2007RBGP.pdf
http://www.it-weise.de/documents/files/WZG2007RBGP.pdf
http://books.google.com/books?as_isbn=0780318994
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Turing.ps
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Turing.ps
http://www.astroteller.net/work/pdfs/Turing.pdf
http://www.astroteller.net/work/pdfs/Turing.pdf
http://books.google.com/books?as_isbn=0262111705
http://books.google.com/books?as_isbn=9780262111706
http://books.google.de/books?id=Bhtxo60BV0EC
http://books.google.de/books?id=Bhtxo60BV0EC
http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm
http://alife.santafe.edu/~joke/encore/www/
http://www.sover.net/~nichael/nlc-publications/icga85/index.html
http://www.sover.net/~nichael/nlc-publications/icga85/index.html

15

[9] Robert Ian McKay, Xuan Hoai Nguyen, Peter Alexander Whigham, and Yin Shan.
Grammars in Genetic Programming: A Brief Review. In L. Kang, Z. Cai, and
Y. Yan, editors,Progress in Intelligence Computation and Intelligence: Proceed-
ings of the International Symposium on Intelligence, Computation and Applica-
tions, pages 3–18. China University of Geosciences Press, April 2005. Online
available athttp://sc.snu.ac.kr/PAPERS/isica05.pdf [accessed 2007-08-15].

[10] Peter Nordin. A compiling genetic programming system that directly manipu-
lates the machine code. In Kenneth E. Kinnear, Jr., editor,Advances in genetic
programming 1, volume 1 ofComplex Adaptive Systems, chapter 14, pages 311–
331. MIT Press, Cambridge, MA, USA, April 7, 1994. ISBN:0-2621-1188-8,
978-0-26211-188-1.

[11] Forrest H. Bennett III. Emergence of a Multi-Agent Architecture and New Tac-
tics For the Ant Colony Foraging Problem Using Genetic Programming. In Pattie
Maes, Maja J. Mataric, Jean-Arcady Meyer, Jordan B. Pollack, and Stewart W.
Wilson, editors,Proceedings of the Fourth International Conference on Simula-
tion of Adaptive Behavior: From animals to animats 4, pages 430–439, Septem-
ber 9-13, 1996, Cape Code, USA. MIT Press, Cambridge, MA, USA. ISBN:
0-2626-3178-4.

[12] Mohammad Adil Qureshi from the Genetic Programming Group, Department of
Computer Science, University College London, Gower Street, London WC1E
6BT, UK. Evolving Agents. In John R. Koza, David E. Goldberg, David B.
Fogel, and Rick L. Riolo, editors,Genetic Programming 1996: Proceedings of the
First Annual Conference, pages 369–374. MIT Press, July 28–31, 1996, Stanford
University, CA, USA. See also [18]. Online available athttp://www.cs.ucl.

ac.uk/staff/W.Langdon/ftp/papers/AQ.gp96.ps.gz [accessed 2007-09-17].
[13] Carole Bernon, Marie-Pierre Gleizes, Sylvain Peyruqueou, and Gauthier Pi-

card. ADELFE: A Methodology for Adaptive Multi-agent Systems En-
gineering. 2577, September 16–17, 2002, Madrid, Spain. ISSN: 0302-
9743 (Print) 1611-3349 (Online). ISBN:3-5401-4009-3,978-3-54014-009-2.
doi:10.1007/3-540-39173-812. Online available athttp://www.agent.
ai/download.php?ctag=download&docID=464 and ftp://ftp.irit.fr/

IRIT/SMAC/DOCUMENTS/PUBLIS/ESAW02_Bernon.pdf [accessed 2008-12-01].
[14] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-

Wesley, 2003. ISBN:0-3211-9770-4.
[15] Michael Zapf and Thomas Weise from the University of Kassel, FB-16,

Distributed Systems Group, Wilhelmshöher Allee 73, 34121 Kassel, Ger-
many. Offline Emergence Engineering For Agent Societies. Kasseler In-
formatikschriften (KIS) 2007, 8, University of Kassel, FB16, Distributed
Systems Group, Wilhelmshöher Allee 73, 34121 Kassel, Germany, De-
cember 7, 2007. Persistent Identifier:urn:nbn:de:hebis:34-2007120719844.
Online available athttps://kobra.bibliothek.uni-kassel.de/handle/
urn:nbn:de:hebis:34-2007120719844 and http://www.it-weise.de/

documents/files/ZW2007EUMASTR.pdf [accessed 2007-11-20], seealso [19].
[16] Proceedings of BIONETICS 2007, 2nd International Conference on Bio-Inspired

Models of Network, Information, and Computing Systems, December 10–13,
2007, Radisson SAS Beke Hotel, 43. Terez krt., Budapest H-1067, Hungary. In-

http://sc.snu.ac.kr/PAPERS/isica05.pdf
http://books.google.com/books?as_isbn=0262111888
http://books.google.com/books?as_isbn=9780262111881
http://books.google.com/books?as_isbn=0262631784
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/AQ.gp96.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/AQ.gp96.ps.gz
http://books.google.com/books?as_isbn=3540140093
http://books.google.com/books?as_isbn=9783540140092
http://dx.doi.org/10.1007/3-540-39173-8_12
http://www.agent.ai/download.php?ctag=download&docID=464
http://www.agent.ai/download.php?ctag=download&docID=464
ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/PUBLIS/ESAW02_Bernon.pdf
ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/PUBLIS/ESAW02_Bernon.pdf
http://books.google.com/books?as_isbn=0321197704
http://wm-urn.org/?urn=urn:nbn:de:hebis:34-2007120719844
https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007120719844
https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007120719844
http://www.it-weise.de/documents/files/ZW2007EUMASTR.pdf
http://www.it-weise.de/documents/files/ZW2007EUMASTR.pdf

16

stitutefor Computer Sciences, Social-Informatics and Telecommunications Engi-
neering (ICST), IEEE, ACM. ISBN:978-9-63979-905-9.

[17] John J. Grefenstette, editor.Proceedings of the 1st International Conference on
Genetic Algorithms and their Applications, July 24–26, 1985, Carnegie-Mellon
University, Pittsburgh, PA, USA. Lawrence Erlbaum Associates, Inc., Mahwah,
NJ, USA. ISBN:0-8058-0426-9.

[18] Mohammad Adil Qureshi. Evolving Agents. Research Note RN/96/4,
UCL, Gower Street, London, WC1E 6BT, UK, January 1996. Online
available at http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
AQ.gp96.ps.gz andhttp://www.cs.bham.ac.uk/~wbl/biblio/gp-html/
qureshi_1996_eaRN.html [accessed 2008-09-02]. Seealso [18].

[19] Michael Zapf and Thomas Weise from the University of Kassel, FB-16, Dis-
tributed Systems Group, Wilhelmshöher Allee 73, 34121 Kassel, Germany. Of-
fline Emergence Engineering For Agent Societies. InProceedings of the Fifth
European Workshop on Multi-Agent Systems (EUMAS’07), December 14, 2007,
Elmouradi Hotel, Hammamet, Tunesia. Also presented at the co-located Fifth
Technical Forum Group (TFG5). Online available athttp://www.it-weise.

de/documents/files/ZW2007EUMASTR.pdf [accessed 2009-01-07]. Seealso [15].

http://books.google.com/books?as_isbn=9789639799059
http://books.google.com/books?as_isbn=0805804269
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/AQ.gp96.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/AQ.gp96.ps.gz
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/qureshi_1996_eaRN.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/qureshi_1996_eaRN.html
http://www.it-weise.de/documents/files/ZW2007EUMASTR.pdf
http://www.it-weise.de/documents/files/ZW2007EUMASTR.pdf

