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 Springer-Verlag Berlin{Heidelberg 1995Abstract. Concept lattices are used in formal concept analysis to rep-resent data conceptually so that the original data are still recognizable.Their line diagrams should re
ect the semantical relationships withinthe data. Up to now, no satisfactory automatic drawing programs forthis task exist. The geometrical heuristic is the most successful tool fordrawing concept lattices manually. It uses a geometric representation asintermediate step between the list of upper covers and the line diagramof the lattice.1 IntroductionConcept lattices have become a useful tool in data analysis and knowledge pro-cessing (cf. [7], [10], [6]). They allow to represent data conceptually so that theoriginal data are still recognizable. This supports reliable data interpretationsand opens possibilities of exploring data and retrieving information. Concept lat-tices can be graphically represented by labelled line diagrams which have beenproved as useful communication tools in many applications (cf. [9]). Althoughconcept lattices can be easily computed for given data contexts by using theNext-Closure-Algorithm of B. Ganter (cf. [3]), the automatic drawing of conceptlattices is a great problem. The existing drawing programs are not satisfactorybecause they do not make the lattice structure su�ciently apparent. Also inter-active procedures do not reach satisfactory results up to now. A serious problemis how to represent graphically concept lattices such that the semantical relation-ships within the data become mostly transparent. This problem cannot be solvedby drawing algorithms which are only based on formal optimization strategies(e. g. minimizing line crossings).Up to now, a geometrical heuristic yields the most successful method fordrawing concept lattices. The idea is to sketch �rst a geometric representationof the given concept lattice which gives substantial insights into the structure ofthe concept lattice. Extensive experiences have shown that these insights enableto draw satisfactory line diagrams of concept lattices. It is the aim of this paperto explain this \geometrical method" (cf. [8]).2 Concept LatticesFormally, a concept lattice is derived from a (formal) context de�ned as a triple(G;M; I) where G andM are sets and I is a relation between G andM (i. e. I �



Triangles equilateral scalene isosceles oblique-angled acute-angled obtuse-angled right-angledT1 (0; 0); (6; 0); (3; 1) � � � �T2 (0; 0); (1; 0); (0; 1) � � �T3 (0; 0); (4; 0); (1; 2) � � �T4 (0; 0); (2; 0)(1;p3) � � � �T5 (0; 0); (2; 0); (5; 1) � � �T6 (0; 0); (2; 0); (1; 3) � � � �T7 (0; 0); (2; 0); (0; 1) � �Fig. 1. Context of trianglesG�M ). The elements of G andM are called objects and attributes, respectively,and gIm (:() (g;m) 2 I) is read: the object g has the attribute m. The twofollowing operators are needed to explain what we understand under a formalconcept: A 7! A0 := fm 2M jgIm for all g 2 Ag for A � GB 7! B0 := fg 2 GjgIm for all m 2 Bg for B �MNow a (formal) concept of the context (G;M; I) is a pair (A;B) with A � G,B �M , A0 = B, and B0 = A. The set A is called the extent of the concept, the setB the intent. The hierarchical subconcept-superconcept-relation is mathematizedby (A1; B1) � (A2; B2) :() A1 � A2 (() B1 � B2)The set of all concepts of a context (G;M; I) together with this order relation isa complete lattice which is called the concept lattice of (G;M; I) and is denotedby B(G;M; I).The following example shows how a line diagram of a concept lattice un-folds the conceptual relationships contained in the underlying data context. Theformal context given by Fig. 1 has common properties of triangles as attributesand enough concrete triangles as objects to violate all non-valid implicationsbetween those properties (cf. [2]). The concept lattice of the context in Fig. 1 isshown in Fig. 2. The numbered circles indicate the concepts of the given con-text. A circle labelled by an object g represents the concept 
g := (fgg00; fgg0),i. e., the concept with the smallest extent containing g. A circle labelled with anattribute m represents the concept �m := (fmg0; fmg00), i. e., the concept withthe smallest intent containing m. In general, the circle of a concept is linked bya descending path to the circles of all those objects which belong to the extentof the concept and by an ascending path to the circles of all those attributeswhich are contained in the intent of the concept. For example, concept 12 has
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Fig. 2. Concept lattice of the context in Fig. 1the objects T1, T2, and T6 in its extent and the attributes isosceles and scalenein its intent. The whole information given by the context (G;M; I) can thereforebe read from the line diagram of its concept lattice: An object g has an attributem if and only if there is an ascending path from g to m in the line diagram.3 A Geometric RepresentationThe considered geometric representation of lattices is best explained by imag-ining the following situation: One is sitting on the top element of a lattice andis looking downwards. The �rst elements which one sees are the lower coversof the top element. Those elements are viewed as \points". In general, everyelement having only one upper cover shall be recognized as a \point"(hiddenpartly by its upper cover if this is not the top element). Further downwardsone may discover elements having more than one upper cover. An element withtwo upper covers is viewed as a line segment between those upper covers, anelement with three upper covers as triangle and so on. An element having nupper covers shall therefore be understood as a (n�1){simplex with its uppercovers as vertices. Of course, these vertices themselves may be simplices! Thegeometric representation of the lattice is now a visualization of those geometricobjects with their incidences. A geometric representation of the triangle conceptlattice is shown in the upper left of Fig. 3. Concept 1 is not represented in the



Fig. 3. List of upper covers and geometric representations of the lattice in Fig. 2diagram, because we have taken it as viewpoint. The concepts 2, 4, and 7 arerepresented by whole circles as they are the only \points" that are not \hidden"behind other concepts. The concepts 3, 8, 10, and 17 are also represented bycircles as each of them has also only one upper cover, but they are lying belowconcepts di�erent from concept 1 and are therefore partially hidden in the geo-metric representation. In the concept lattice we �nd seven concepts having twoupper covers: these are the concepts 5, 6, 9, 11, 12, 13, and 15. In the geometricrepresentation they are visualized by line segments linking their upper covers.The line segements are labelled by the corresponding concept numbers. Finallywe �nd two triangles in the geometric representation. They are representing theconcepts 14 and 16 which have three upper covers. The bottom element of thelattice, concept 18, is not visualized in the geometric representation. However wecan easily deduce its upper covers: they are those concepts not beeing a vertex



of a simplex and not having a point lying behind them: these are the concepts13, 15, 16, and 17.The list of upper covers in Fig.3 is an output of the basic program of FormalConcept Analysis (cf. [1]). The upper covers of a concept are listed in the lineheaded by the number of the concept. The list is su�cient for drawing thegeometric representation. It is ordered in such a way that no concept appearsas an upper cover of another concept before it is listed itself. So it is possibleto obtain the geometric representation by working through the list of uppercovers once from top to bottom. M. Kark has written an interactive programsupporting the derivation of a geometric representation from a given list of uppercovers (cf. [5]). An output of this program for the former example is also shownin Fig. 3.4 From Geometric Representations to Line DiagramsGeometric representations can e�ectively support the drawing of line diagrams.They have extensively been used for elaborating adequate line diagrams of con-cept lattices. For this purpose it is important that meaningful substructures oflattices can be recognized by corresponding substructures of geometric represen-tations.
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6Fig. 4. Linediagrams and geometric representations of latticesFigure 4 shows some important substructures of lattices and their corre-sponding geometric representations: The cube in the upper left indicates theindependence of three attributes in a concept lattice. The chain at its right istypical for ordinally dependent attributes, while the diamond in the lower leftsignals that there are attributes excluding each other. The lattice in the lowerright is caused by attributes describing an interval structure.



Fig. 5. Line diagram based on the geometric representation in Fig. 6



Let us now have a look how the geometric representation in Fig. 3 has helpedus to draw the concept lattice in Fig. 2. As already described in the precedingsection, the program of P. Burmeister calculated the list of upper covers inFig.3 from the context in Fig. 1. Then the geometric representation was sketchedmanually. It shows us that the lattice mainly consists of two cubes. If one alreadyhas some experience in reading geometric representations, one also knows howthe two cubes are \glued" together. If not, one starts drawing the \upper" cubeconsisting of the concepts 1, 2, 4, 7, 5, 9, 12, and 14. Thereby one has the choiceto place two of the concepts 2, 4, and 7 on the outside. We choose concept 2 and7 as they have \points" as lower covers. This helps us keeping the line diagramin balance. Now we can attach concept 3 to concept 2 and complete the secondcube by the concepts 6, 11, and 16. The concepts 7 and 12 are completed to aparallelogram by adding the concepts 8 and 13. Together with the concepts 9and 14, the concepts 10 and 15 also form a parallelogram. The only which is leftto do is to attach the concept 17 to concept 6 and to add the bottom element,concept 18.Although drawing of parallelograms has high preference, the heuristic is notparticularly based on speci�c lattice properties. So it may also be useful forelaborating appropriate drawings of arbitrary (partially) ordered sets. In generalone does not have top and bottom elements in ordered sets; in this case theminimal and maximal elements of the ordered set has also to appear in thegeometric representation.5 A concrete exampleThe geometrical heuristic for drawing concept lattices has been applied in a greatvariety of applications. Here we can demonstrate this by only one example froma collaboration with the ministry of civil engineering of the German provinceNordrhein-Westfalen to develop a retrieval system concerning all regulations forbuilding constructions. Concept lattices are used in the retrieval system as con-ceptual nets leading the users to the regulations which they have to consider ina speci�c situation of the process of planing and designing. For our example wechoose the concept lattice for the fundamental construction (Rohbau) of a fam-ily house. It was interesting that there have been attemps of drawing experts tocreate an adequate line diagram without the geometrical heuristic. The resultswere not bad, but they could be substantially improved by using the geomet-rical method. The lattice has 30 elements which are listed in Fig. 6 with theirupper covers. The geometric representation in Fig.6 is shown as it was produceddirectly from this list. The left-right-order in the geometric diagram gave thebasic insight for the design of the line diagram (of course, there are many moreinstances which in
uenced the drawing of the line diagram). The labelled linediagram of the concept lattice which was also appreciated by our collaboratingengineers is presented in Fig. 5.
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