
The Concept Classi�cation of a TerminologyExtended by Conjunction and DisjunctionGerd StummeTechnische Hochschule Darmstadt, Fachbereich MathematikSchlo�gartenstr. 7, D{64289 Darmstadt, stumme@mathematik.th-darmstadt.dec Springer-Verlag Berlin{Heidelberg 19961 IntroductionAt the two conferences KRUSE '95 ([5]) and ICCS '95 ([6], [7]) held at SantaCruz in August 1995 researchers on description logics, conceptual graphs, andformal concept analysis came together and discovered common interests andtasks. A fruitful discussion revealed that these three disciplines should integratetheir research. Therefore common developments were considered. In one of thepresented papers ([2]), for instance, F. Baader demonstrated how a classi�cationalgorithm providing more information can be built by combining a subsump-tion algorithm of description logics with a knowledge acquisition tool of formalconcept analysis. In this paper we show how a classi�cation algorithm providingstill more information can be obtained by choosing another acquisition tool offormal concept analysis.Much work has been done to develop algorithms for computing the subsump-tion hierarchy for knowledge representation systems based on description logics(also called KL-ONE like systems, terminological knowledge representation sys-tems; cf. [1]). In [2], F. Baader describes how this computation can be extendedto all conjunctions of concepts given in a terminology (TBox). He applies at-tribute exploration [8], an exploration tool of formal concept analysis (cf. [22],[9]) which is usually used as an interactive procedure to interview e�ciently a hu-man expert about a certain domain of knowledge. Instead of computing only thepartially ordered set of the concepts in the TBox with the subsumption ordering,he obtains the complete semi-lattice of all possible conjunctions of concepts inthe TBox. Since every complete semi-lattice is in fact a complete lattice, the ex-istence of suprema (i. e., least common superconcepts) is asserted. However theygenerally di�er from the disjunction { unlike the in�ma which are always equalto the conjunction of concepts. This paper describes, how the complete latticeof all possible combinations of conjunctions and disjunctions (and negations) ofconcepts in the TBox can be computed by applying another exploration tool offormal concept analysis, namely distributive concept exploration [17], instead ofattribute exploration.As in [2] we restrict ourselves to the description logic language ALC, butthe results can be generalized to other languages. The basic notions of ALC arerecalled in the next section. There we also give a short introduction into formalconcept analysis.



2 Description Logic and Formal Concept AnalysisIn this section we briey recall the basic notations of the description logic ALCand of formal concept analysis. For a more detailed introduction we refer to [14]and [1] for ALC, and to [9] and [22] for formal concept analysis.2.1 The Description Logic ALCThe syntax of ALC is built from a set of concept names and a set of role names.Concept descriptions are de�ned recursively:{ The concept names (which are assumed to contain two particular names >and ? for the top and the bottom concept) are concept descriptions.{ If C and D are concept descriptions and R is a role name, then C uD (con-junction), CtD (disjunction), :C (negation), 9R:C (existential restriction),and 8R:C (value restriction) are concept descriptions.A terminological axiom is a pair A=D where A is a concept name di�erent from> and? andD is a concept description. A terminology (TBox ) is a �nite set T ofterminological axioms such that there are no cyclic and no multiple de�nitions.The concepts A appearing in an axiom A = D on the left side are called de�nedconcepts, otherwise they are called primitive concepts.Next we describe the semantics of ALC: An interpretation I consists of aset dom(I) and of a function ( )I which maps every concept name to a subsetof dom(I) (> has to be mapped to dom(I) and ? to the empty set) and everyrole name to a binary relation on dom(I). This mapping is recursively extendedto concept descriptions by{ (C uD)I := CI \DI ,{ (C tD)I := CI [DI ,{ (:C)I := dom(I) nCI,{ (9R:C)I := fx 2dom(I) j 9y 2 CI : (x; y) 2 RIg,{ (8R:C)I := fx 2dom(I) j 8y 2dom(I): (x; y) 2 RI ) y 2 CIg.A model of a TBox T is an interpretation I which satis�es the equality AI = DIfor all terminological axioms A=D in the TBox T .We say that a concept description D subsumes a concept description C withrespect to a TBox T (C vT D), if the inequality CI � DI holds for all modelsI of T .In [14], a subsumption algorithm is described which computes for given con-cept descriptions C and D whether C is subsumed by D with respect to a TBoxT . In [2], it is shown that, if C is not subsumed by D then the algorithm canprovide a \counterexample", i. e. a model I of T and an individual c 2 dom(I)with c 2 CI nDI . 2



2.2 Formal Concept AnalysisFormal concept analysis is based on the philosophical understanding of a conceptas a unit of thought consisting of two parts: the extension contains all objectsbelonging to the concept and the intension contains all attributes valid for allthese objects (cf. [21]). Formal concept analysis starts with a formal context(G;M; I) which consists of two sets G and M and a relation I � G � M .The elements of G and M are called objects and attributes, respectively, and(g;m) 2 I is read as \the object g has the attribute m".Now, the formal concepts of the context (G;M; I) are all pairs (A;B) withA � G and B � M such that (A;B) is maximal with the property A � B � I.The set A is called the extent and the set B is called the intent of the formalconcept (A;B). The set B(G;M; I) of all formal concepts of a formal contextwith the ordering (A1; B1) � (A2; B2) : () A1 � A2 is always a completelattice which is called the concept lattice of the context (G;M; I) (cf. [22]). Theordering reects the subconcept-superconcept-relation.Next we introduce the two derivations A0 := fm 2 M j 8g 2 A: (g;m) 2 Igfor A � G, and B0 := fg 2 G j 8m 2 B: (g;m) 2 Ig for B � M . The fact that(A;B) with A � G and B � M is a formal concept is equivalent to A0 = Band A = B0. The smallest formal concept having an object g in its extent isg := (fgg00; fgg0), the largest formal concept having an attribute m in its intentis �m := (fmg0; fmg00). In the concept lattice, in�ma and suprema are calculatedas follows:t̂2T(At; Bt) = (\t2T At; ([t2T Bt)00); _t2T(At; Bt) = (([t2T At)00;\t2T Bt)Every complete lattice can be viewed as a concept lattice: The Basic Theorem ofFormal Concept Analysis (cf. [22]) shows that a complete lattice L is isomorphicto the concept latticeB(L;L;�). We say that a complete lattice L is representedby a formal context (G;M; I) if L �= B(G;M; I). If L is a �nite lattice then itis also isomorphic to the concept lattice B(J(L);M (L);�) where J(L) is theset of all join-irreducible elements and M (L) is the set of all meet-irreducibleelements of L. The context (J(L);M (L);�) is said to be reduced. It is (up toisomorphism) the unique minimal context which represents L.Since description logics and formal concept analysis have been developedindependently, the notations are slightly di�erent (see [27] for an extensive dis-cussion): The concepts in description logics are understood as unary predicates.Hence they correspond more to the attributes in formal concept analysis than tothe formal concepts, which have no direct counterpart in description logics. Theconjunction of concepts in description logics correspond directly to the in�mumof attribute concepts in formal concept analysis. In [11] and [15], concept for-mations like negation and disjunction are discussed for formal concept analysis,since they are important for the handling of incomplete knowledge (cf. [4], [11],[25], [26]) in conceptual knowledge systems [26]. For her dissertation, U. Pri� isworking on adding existential and value restriction (cf. also [12]).3



Description logics have a strict distinction between the TBox containingpurely intensional de�nitions of concepts and roles, and the ABox providing in-formation about individuals. In formal concept analysis, extension and intensionare understood as two aspects of a concept which cannot be treated separately.3 Extending the Concept Classi�cation of a TerminologyIt is e�cient to provide the subsumption relationships of the concepts in a ter-minology explicitly as a partially ordered set for further computations. The com-putation of the ordering, called classi�cation, is done by repeatedly applying asubsumption algorithm. For two given concepts C and D the subsumption algo-rithm computes whether C is subsumed by D with respect to a terminology. In[14], the �rst sound and complete subsumption algorithm for ALC is given.Although the classi�cation gives important information about a terminol-ogy, there are hierarchical dependencies between the concepts that cannot bedescribed. In [2] (where also the subsumption algorithm of [14] is described),F. Baader gives as example the terminologyMale= :Female, Human=MaletFemale, Parent= 9child.Human,NoDaughter= 8child.Male, NoSon= 8child.Female,and NoSmallChild= 8child::Smallwhere Small and Female are primitive concepts. In the ordering resulting fromthe classi�cation, the three concepts NoDaughter, NoSon and NoSmallChild areincomparable. The subsumption NoDaughteruNoSonvNoSmallChild cannot bededuced from the partially ordered set.For including information about the subsumption-relationship between con-junctions, the classi�cation can be extended with all conjunctions of the con-cepts of the terminology. Instead of testing all pairs of conjunctions for sub-sumption (which would not be e�ective, since in the worst case the numberof concepts built by conjunction is exponential in the size of the terminology),Baader applies attribute exploration ([8], see also [9], [3]), an exploration toolof formal concept analysis. Attribute exploration produces questions of the kind\Is C1 u : : : u Cn subsumed by D1 u : : : u Dm?" which are answered by thesubsumption algorithm. The set of all suggested subsumptions being acceptedby the subsumption algorithm is a minimal representation (called Duquenne{Guigues{Basis) of the semi-lattice of all possible conjunctions of the conceptsin the TBox. Additionally this algorithm provides a list of \counterexamples"(I; c) for all subsumptions that do not hold with respect to the terminology: Forevery pair C1 u : : :uCn, D1 u : : :uDm of conjunctions of concepts of the TBoxwith C1 u : : :uCn 6vT D1 u : : :uDm there is a pair (I; c) in the list such thatc 2 (C1 u : : :uCn)I n (D1 u : : :uDm)I .Since every complete semi-lattice is also a complete lattice, we can com-pute suprema in the resulting ordering. For instance, the supremum of Maleand Female is Human in our example. Unfortunately, this does not imply Hu-man = MaletFemale (but only HumanwMaletFemale), since the supremum4



in general does not correspond to the disjunction.1 The subsumption Humanv MaletFemale cannot be deduced from the classi�cation of all conjunctionsalone, although it follows directly from the de�nition of Human in the TBox.By replacing attribute exploration by distributive concept exploration ([17],[10]), the classi�cation algorithm computes the complete lattice of all combina-tions of conjunctions and disjunctions of the concepts in the TBox. In particular,the supremum in the resulting lattice will correspond to the disjunction. The lat-tice will be represented by a minimal formal context (which can be stored forfurther computations). As in the previous case, the algorithm provides a list ofcounterexamples for all non valid subsumptions.4 Computing the Conjunction-Disjunction-LatticeThe algorithm for the computation of the conjunction-disjunction-lattice gener-ated by the concepts of a terminology uses the fact that this lattice is isomorphicto a suitable quotient lattice of the free bounded distributive lattice generatedby the concepts. Hence the main task is to determine the corresponding con-gruence relation. Since free bounded distributive lattices grow exponentially,the algorithm does not calculate in this lattice, but splits up the task of de-termining the congruence relation. Therefore the tensor product for completelattices ([23], see de�nition below) which is the coproduct in the category of com-pletely distributive complete lattices is used. The equation FBD(fx1; : : : ; xig) =FBD(fx1; : : : ; xi�1g) 
 FBD(fxig) allows an iterative computation.Starting with i = 1 the algorithm determines a lattice Li that is isomor-phic to the conjunction-disjunction-lattice generated by the �rst i conceptsC1; : : : ; Ci of the terminology. The lattice Li results from Li�1 by Li := (Li�1
FBD(fCig))=�i, where L0 is the two element lattice ? < >. The congruencerelation �i is determined by applying the subsumption algorithm. The latticeLi�1 
 FBD(fCig) is the lattice which respects all hierarchical dependenciesbetween the �rst i�1 concepts, but no relationships to the concept Ci. The con-gruence �i is then describing these relationships. Both congruence relations andtensor products can be de�ned by formal contexts representing the lattices. Thisallows an e�ective computation.4.1 Tensor Products and Congruence Relationsof Complete LatticesThe tensor product of two complete lattices L1 and L2 is de�ned to be theconcept lattice L1 
 L2 := B(L1�L2; L1�L2;r) with (x1; x2)r(y1; y2) :()(x1 � y1 or x2 � y2). We de�ne the direct product of two contexts K1 :=(G1;M1; I1) and K2 := (G2;M2; I2) to be the context K1�K2 := (G1�G2;M1�M2;r) with the incidence (g1; g2)r(m1;m2) :() ((g1;m1)2I1 or (g2;m2)2I2).1 The supremum always subsumes the disjunction; in general the inverse does nothold. 5



The tensor product of two concept lattices is (up to isomorphism) just the con-cept lattice of the direct product of their contexts:B(K1 )
B(K2 ) �=B(K1�K2)(cf. [23]).We say that a context is distributive if its concept lattice is distributive. Allcontexts in the following will be distributive reduced �nite contexts. The directproduct of distributive reduced contexts is again a distributive reduced context.In reduced �nite contexts every congruence relation corresponds to a compat-ible subcontext : A context (H;N; J) is called a subcontext of a context (G;M; I)if H � G, N � M and J = I \ (H � N ). It is called compatible if for everyconcept (A;B) of (G;M; I) the pair (A\H;B\N ) is also a concept of the sub-context. Every compatible subcontext of a distributive reduced context is againa distributive reduced context (cf. [9]).Factorizing a concept lattice is equivalent to deleting suitable rows andcolumns in the context (which generates a compatible subcontext). The rowsand columns that have to be deleted can be described with the %.-relation: Forg 2 G and m 2M we write g %. m if g is minimal in G with g 6� �m and �mis maximal in �M with g 6� �m. In a distributive reduced �nite context the%.-relation is a bijection between the set of objects and the set of attributes, and thecompatible subcontexts are exactly those of the form (H;N; I \ (H �N )) whereg%.m implies g 2 H () m 2 N . The following theorem (cf. [17]) describes thecorrespondence between the compatible subcontexts and the congruence rela-tions:Theorem1. Let (G;M; I) be a distributive reduced �nite context, g 2 G andm 2M with g %. m. Then (A1; B1)�(A2; B2) :() A1 n fgg = A2 n fgg (()B1 n fmg = B2 n fmg) de�nes the congruence relation on B(G;M; I) that isgenerated by the pair (g; g^�m) (i. e., by forcing g � �m). The correspondingcompatible subcontext is(G n fgg;M n fmg; I \ ((G n fgg)� (M n fmg))) :For determining the congruence relation we have thus to compute for everypair g %. m if the subsumption g � �m holds. For the computation of the%.-relation, the algorithm uses the fact that the relation is inherited to compat-ible subcontexts, and that for every direct product of contexts the equivalence(g1; g2)%. (m1;m2) () (g1 %. m1 and g2 %. m2) holds.4.2 Classifying with Distributive Concept ExplorationIn this subsection we explain the algorithm via the example given above. Firstwe list the concepts of the terminology:C1 := Female, C2 :=Male, C3 := Human,: : : , C8 := NoSmallChild. The concepts > and ? are considered in the �rst stepof the computation.The algorithm starts with the free bounded distributive lattice FBD(fC1g)which is the three element chain shown in Fig. 1. For the two %. in the contextthe subsumptions > v Female and Female v ? are tested with the subsumption6



? FemaleFemale %. �> %. ?Female>Fig. 1. The free bounded distributive lattice FBD(fC1g) and its context representationalgorithm. The algorithm denies both and provides the two counterexamples(I1; c1) and (I2; c2):(I1; c1)dom(I1) := fOttogFemaleI1 := ;SmallI1 := ;childI1 := ;c1 := Otto (I2; c2)dom(I2) := fTina, TomgFemaleI2 := fTinagSmallI1 := ;childI1 := ;c2 := TinaHence there are no rows or columns to delete. We obtain the lattice L1 describingthe subsumption relationships between the three concepts ?,>, and Female. Thelattice and the representing context K1 are shown in the upper left of Fig. 2. Atthe left of the context the counterexamples are listed.Now the tensor-product of L1 with FBD(fC2g) is computed (see Fig. 2).The computation is only done on the context level, the line diagrams are onlydisplayed for a better understanding. For the two counterexamples (I1; c1) and(I2; c2), now the algorithm tests (by �nite model-checking) whether c1 2 MaleI1and c2 2 MaleI2 . The answers \Yes" and \No", resp., determine the place to putthe counterexamples in the context K01 . In the context we write Female u Malefor the object (Female;Male) and Female t Male for the attribute (Female;Male),since this is exactly the interpretation of the relation r in the de�nition of thedirect product.Next the congruence relation that describes the subsumption relationshipsof the concept Male to the three already computed concepts ?, >, and Femaleis computed. For two of the four %. there are already counterexamples. For theother two %., the subsumption algorithm is asked the questions \Does Femaleu Male v ? hold?" and \Does > v Female t Male hold?". This time both sub-sumptions are accepted, since the subsumption algorithm is not able to providea counterexample. Hence the corresponding two lines and two columns have tobe deleted. The resulting lattice is shown at the bottom of Fig. 3.In this way the classi�cation continues. The next step, for instance, withC3 =Human, discovers that > = Human, since the subsumption algorithm acceptsthe two subsumptions Male v Female t Human and Female v Male t Human.7



Female(I1; c1) >?(I2; c2) N Male? >?? =(I2; c2)(I1; c1) K1 ? FemaleFemale %. �> %. � ?? ? MaleMale %. �> %. =
?(I1; c1)(I2; c2)? K01 ? Female Male FemaletMaleFemale u Male %. � � �Male %. � �Female � %. �> %. Female u Male(I1; c1)?Male Female(I2; c2) >??Female t Male

Fig. 2. The tensor-productHence the fact that every individual of a model of the terminology is a Humancan directly be read from the result of the classi�cation. The computation forour example ends with the eighth concept NoSmallChild. The result is a formalcontext with 44 objects and 44 attributes, and a list of 44 counterexamples.5 OutlookThe algorithm can easily be modi�ed such that it computes the Boolean lattice ofall combinations of conjunctions, disjunctions, and negations of the concepts inthe terminology, since the tensor-product is also the coproduct in the category ofcompletely distributive complete Boolean algebras. In that case the free bounded8



?(I1; c1)(I2; c2)? K01 ? Female Male FemaletMaleFemale u Male %. � � �Male %. � �Female � %. �> %. Female u Male(I1; c1)?Male Female(I2; c2) >Female t Male
# #(I1; c1)(I2; c2) K2 Female MaleMale %. �Female � %. ? = Female u Male(I1; c1)Male Female(I2; c2) > = Female t MaleFig. 3. Factorization of the tensor-productdistributive lattice FBD(fCig) has to be replaced by the free Boolean algebraFBA(fCig) (see Fig. 4). An interesting question is whether the classi�cation canbe extended further by existential and value restriction. There one encounterswith new problems: The free algebra is in�nite, and hence the desired resultmay be in�nite, too. This could be overcome by restricting the length of theconcept descriptions to be considered. Secondly these algebras have less algebraicstructure than semi-lattices, lattices or Boolean algebras; and the quanti�ersare less related to the subsumption ordering than conjunction, disjunction andnegation.The inference mechanisms presented in the last section and the one describedin [1] show that combining techniques of description logic and formal conceptanalysis can provide interesting results. A further extension of these combina-tions seems desirable, especially for the development of conceptual knowledgesystems. While description logics are more sophisticated in knowledge repre-sentation and inference, tools of formal concept analysis focus more on knowl-edge acquisition (cf. [16], [24]) and communication (cf. [20]). All four aspects9
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