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1 Introduction

The management system TOSCANA ([7], [11]) for conceptual data systems ([10],
[8]) provides a flexible tool for conceptually structuring large data tables and for
dynamicly browsing through the data. Among the applications are a retrieval
system for documents in a library ([6]), an evaluation tool for questionaries, and
a navigation tool for laws and regulations in civil engineering ([7]).

Conceptual data systems are based on the theory of formal concept analysis
([13], [4]) which has been developed mainly at the Technische Hochschule Darm-
stadt during the last 15 years. The basic idea of conceptual data systems is to
provide so-called conceptual scales which reflect each a different aspect of the
data. In TOSCANA | these scales are displayed on the screen as a line diagram.
For focussing on more than one aspect at the same time, the program combines
these scales online and shows them as a nested line diagram. Therefore it “blows
up” the points of the line diagram of the first scale and inserts the line diagram
of the second scale into every point. This nesting process can be repeated. One
can also examine only one concept of the first scale by zooming in the point
of the scale and displaying a differentiation of that concept by a (nested) line
diagram.

The conception of TOSCANA allows a dynamic navigation through the data.
There are no restrictions to the user which scale to choose next or where to zoom
in. In the implemented version, the scaling process is global: Once the next scale
is chosen, it 1s inserted into every point of the first scale even if the second
scale is 1rrelevant to the corresponding facet of the first scale.

In this paper we present the technique of local scaling, where only concepts
of the outer scale, which are differentiated further by the inner scale, are refined.
This is also called dynamic scaling, since only at run-time the result of the request
to the underlying database determines where to scale and where not.

2 Conceptual Data Systems

Conceptual data systems are developed within the theory of formal concept anal-
ysis, which 1s based on a mathematical model of the philosophical understanding
of a concept as a unit of thoughts consisting of two parts: The extension which
s containing all objects belonging to the concept, and the intension which is
containing all attributes common to all those objects (cf. [12]).
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Fig. 1. The concrete scale “Functionality”

Tn formal concept analysis, the data are given by a (one-valued) (formal)
context (G, M, T) which consists of a set G of elements called objects, a set, M
of elements called attributes, and a relation T C G x M where (g,m) € T is
read as “the object g has the attribute m”. Now, the (formal) concepts of the
context (G, M, T) are all pairs (A, B) with A C G and B C M such that (A, B) is
maximal with the property Ax B C T. The set A is called the extent and the set B
is called the intent of the concept, (A, B). The set B(G, M, T) of all concepts of a
context with the order (A1, By) < (Ag, By) : <= Ay C Ay is always a complete
lattice (cf. [13]) which is called the concept lattice of the context (G, M, T). The
order relation reflects the natural subconcept-superconcept-relation.

In many applications, objects may not just have attributes or not, but differ-
ent values for the attributes. This is modeled by a many-valued context (G, M, W,
) where G, M, and W are sets whose elements are called objects, attributes, and
values, respectively, and T C G x M x W is a relation such that (g, m,wq) € T
and (g,m,wsy) € T implies wy = wy. Hence one can understand the attributes
m as partial functions from G to W. There is a priori no concept lattice of a
many-valued context. Tt has first to be “translated” into a “one-valued” context.
This translation process is called conceptual scaling.

A conceptual scale for aset Y C M is a one-valued context § := (Gg, Mg, Is)

with ereym((;) C Gy. The derwed relation Jg C (G x Mg is defined by
(9,n) € Js : <= ((wm)mey,n) € Ig with (g,m,w,,) € T forall m € V. A
conceptual data system (cf. [10], [8]) consists of a (relational) database in which
the many-valued context is stored and of a concepiual scheme which contains the
scales. Tn TOSCANA ([7], [11]) one can choose a list, (S;)ier of scales, and the
line diagram of the concept lattice of the context (G,J,cr Ma,, UserJs,) will
be displayed on the screen. Since there is up to now no satisfying algorithm for
an automatic drawing of lattices (cf. [9], [14]), it is important that the concept
lattice can be embedded in the direct product of the concept lattices of the
scales. The diagrams of the scales are provided in the conceptual scheme as well,
as so-called abstract scales. Concrete scales combine the abstract scales with the
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Fig. 2. The realized scale “Functionality”

correct names of the attributes and the database queries. Hence the same line
diagram can be used for different concrete scales having the same structure. The
result of the scaling process is then shown in a nested line diagram of the concept
lattices of the scales.

Let us illuminate this by an example: The conceptual data system “Fax’ n’
Phone” contains information about all telephones, fax and answering machines
sold by the Deutsche Telekom ([2]). The concrete scale “Functionality” in Fig. 1,
for example, is used for focussing on the functional aspect of the telephones, fax
and answering machines in the database. Tt is labeled with the three attributes
“Fax”, “Telephone”, and “Answering Machine”, and contains furthermore seven
SQI statements as objects. The relation Ig describes which objects have which
attributes. If an object has an attribute then, in the line diagram, there is an
ascending path from the object to the attribute .

When the user has loaded the conceptual data system “Fax’ n’ Phone”
in TOSCANA, then he can choose among all scales provided in the concep-
tual scheme. When he chooses for instance the scale “Functionality”, then the
database is queried with the seven SQI. statements. This produces the realized
scale “Functionality” and displays it on the screen (see Fig. 2). The seven points
represent. the concepts, and the lines represent the subconcept-superconcept-
relation. A concept has all the objects in its extent which are listed below the
concept 1n the line diagram, and it has all the attributes in its intent which are
listed above the concept. The lower left concept for example has the objects
AF301T, AF 321, AF301TA,. .., AF 341 in its extent, and the attributes “Fax”
and “Telephone” in its intent. There are two fax-telephone combinations without
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Fig. 8. A nested diagram of the scales “Functionality” and “Registration”

answering machine, namely AF 301T and AF 321, the other six include addition-
ally an answering machine. The number “29” under “Telephone” indicates that
there are 29 telephones without fax and answering machine. With a mouse click
one can change between the display of this number and the display of the names
of the objects.

Scales can be combined on the screen. Figure 3 shows the combination of
the scale “Functionality” with the scale “Registration” which has the attributes
“Tape” and “Digital” and shows if an answering machine registers on a tape
or digitally. The resulting concept lattice 18 embedded in the direct product of
the scales as a join-semilattice. In the diagram, 1t is marked by filled circles.
Fvery thick line of the outer scale has to be interpreted as four lines each linking
the corresponding concepts of the inner scales. For example, the two stand-
alone answering machines have tape registration, and there are seven telephone-
answering machines without fax registering digitally and one registering on tape.

On principle, the number of scales nested one into another is unlimited. Fig-
ure 4 shows the nested line diagram of the three scales “Functionality”, “Regis-
tration” | and “Paper” (which shows if a fax machine needs ordinary or thermo
paper). Since these nested diagrams get soon very large, and one is often not
interested in the whole diagram, TOSCANA provides zooming into the scales.
E.g., one could zoom in the lower right concept in Fig. 3 and obtain the scale
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Fig. 4. A nested diagram of the scales “Functionality”, “Registration”, and “Paper”

“Registration” but restricted to the telephones with answering machines. Then
one can continue the navigation with a new scale, for example one about the
number of short dial memories.

However, sometimes it is interesting to see the whole outer scale on the
screen  but it would be enough to “blow up” certain circles of the outer scale.
For instance, it makes sense to insert the scale “Registration” only into the
three concepts of the outer scale having “Answering Machine” in their intent.
In the next section, the conception of local scaling as an approach to this idea
1s described.

3 Local Scaling

In the example, one can see that the scale “Registration” is only meaningful for
answering machines, hence it would be sufficient to insert it into the bottom
and the two right elements of the outer scale. For the scale “Paper” 1t would
be sufficient to insert it into the bottom and the two left elements of the outer
scale. We investigate now, for which concepts of an outer scale it is relevant to
insert the second scale, and how this fits into the theory. First we look at the
bottom elements of the scales.



Scaling a many-valued context (G, M, T) with two scales Sy := (G, My, Iy)
and Sq := (G, Ma, I5) is equivalent to scaling it with the semi-product S1XSq =
(G1 x G, MiUMs, V) with (g1,92)Vm : < (g;,m) € I; for m € M;. The
concept lattice of the semi-product 1s basically the direct product of the concept
lattices of the two scales, but with the following modification: From B(S;) and
B(Ss) we delete the bottom elements, if their extents are empty. Then we build
the direct product of the remaining ordered sets, and add a new bottom element,
if in the first step at least one bottom element was deleted (cf. [4]). Tf there is
a new bottom element, then we draw it together with a horizontal bracket to
indicate that there are lines from all elements not having a lower neighbor to
the new bottom element. Figure 5 shows, how the nested diagram of the scales
“Functionality”, “Registration”, and “Paper” in Fig. 4 can be simplified in this
way. If there were no models combining telephone, fax and answering machine
in the data base, then the lowest circle of the outer scale would be omitted, too.

With the semi-product we have already reduced the complexity of the dia-
gram, since some unrealized concepts are no longer displayed. Figure 6 shows
that we can still do better by using local semi-products.

For their definition we need the two derivations A’ :={m € M | (¢9,m) € T
for all g € A} for A C G, and B' := {g € G| (g,m) € T for all m € B} for
B C M. The fact that (A, B) with A C G and B C M is a concept is equivalent,
to A’ = B and A = B’. The smallest concept having an object g in its extent is

vg = ({9}, {9})-

Definition. Tet Sy := (G4, My, 1) be a scale and let C' be a convex subset
of B(S4) (i.e., by, by € C and by < by < bs imply by € () with min(() C
Y(G1). Let Sy := (G, My, I5) be a scale such that there is an object § € G
with 27 = Tgg,)- We define the local semi-product of Sy and Sz i C by
S1%c Sy 1= (G, M, 0) with G := {(g1,92) € Gi x G2 | 791 € C or g5 = 7},
M := M1U(Tmax X M2) with Ty := {B | (A, B) maximal in C}, and (¢1,¢2) ©
my <= g1Iimq for my € My and (g1,92) ¢ (B,ms) : <= (¢1 € B’ and
g2Tams) for (B, ms) € Jmax X Mo

The following theorem describes how the concept lattice of the local semi-
product of two scales looks like. We use the notation 01 := Og(s,y, 02 := Op(s,),
11 = 1§(§1)7 12 = 1§(§2)

Theorem 1. Fori = 1,2, let V; := B(S;) if the extent of 0; is nonemply, and
Vi == B(S;)\ {01} otherwise. Then the concept lattice B(S1Xc Sa) is isomorphic
to V= WV\CYU(C x Va), if Vo = B(Sa) and 0y € C, with the order < given
by
by <0y 1= by <40y,
[31 S (C1,C2) [ —r [31 §1 Cq and o = 1§(§2)7 (*)
(c1,00) < by 1 <= 1 <4 by,
(C1 s CQ) < (21 s 22) = g <1 and o <3 g9

' The conditions min(C)C~(G) and 7g=1m(s,) can be avoided when we add addi-

tional objects to (7, but for our purpose this is not necessary (see Theorem 2).
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Fig. 5. The semi-product of the scales “Functionality”, “Registration”, and “Paper”

for 61,01 € B(S1)\ O (c1,¢2), (e1,e0) € C x B(S»).
Otherwise B(S1Xc Sa) is isomorphic to VU{0v } with Oy < = for allz € V.

Proof. Since 01€C = 01€7(G1) = Vi=B(S1), V or VU{0v}, resp., is isomor-
phic to (Vi x {1, U (C x Vo) U{(04,02)} with the component-wise order. For
(A, B) € B(SiZ:S2) we write (A, BiUBy) with By := BN My and By =
BN (Tmax X Mz). We define 1: B(S1Zz So) — (Vi x {12}) U (C x Vo) U {(04,02)}
by 1(A, B1UBs) == ((B}, B1), ((m2B2)’, m2B2)) where 75 is the projection on the
second component of a tuple.

The mapping ¢ is well defined: By is a concept intent of §1 because of (m A)' =
Bi, and w5 By is a concept intent, of Sy because of (72 A) = maBy. 1 7 € (w2 By)’
then 1(A, BiUBy) = (B}, B1),12). G & (m2B2)" then A C {g1 € G | yg1 €
O} x (G2\{7}). Because of (B}, B1) =V, ., 4791 thereis A = 0 or there exists
yg1 € C with vg1 < (B}, B1). In the first case we have (), M) = (01,02). Tn the
second case it remains to show that (B}, By) is laying below a maximal element,
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Fig. 6. The local semi-product of the scales “Functionality”, “Registration”, and “Pa-
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of C'. We have By # ), since otherwise m3Bs =  and g € (' = (w2 B>)’, which
is a contradiction to § & (m2B2)’. Hence there is (B, my) € B, which implies
(B}, By) <(B',B) € C.Hence (B}, By) € (.

The mapping + is injective: Let 1(A, Bi{UBs) = /,(%i, §1Uﬁ32). Then By = By
which 1mplies m By = m éQ. With 9By = 75 é27 it follows BiURy = /5310/:}2.

The mapping « is surjective: For ((A, B),(A, F})) e (Vi x {1, U (C x
V) U {(01~7 02)}7 we have 1((A x A) NG, BUHT € Jnax | T € B} x F})) =
((A, B), (A, B)).

Suprema are preserved by ¢, because in concept lattices the supremum is given
by Vier(As, Be) = ((Mier Bt)' [ier Be)- Hence infima are preserved, too. 0

In [5], W. Geyer examines similar constructions, namely local direct products, as
generalizations of A. Day’s interval doubling construction ([1]). But we cannot,
use his results, since in local direct products the condition (%) in Theorem 1 is
replaced by by <; ¢;.

The next theorem describes how the concept lattice of the scaled many-valued
context is embedded in the nested diagram produced with Theorem 1.
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Fig. 7. The local semi-product of the scales “Functionality” and “Wireless Telephone
Properties”

Theorem 2. Let H be a subset of G1 x (G9, and let C' be the conver closure of
{(Ar, BI)EB(S) | (A2, Bo)eB(So)\{To}: (B1UB)', BiUB2)EB(H, MiUMs,

61§(H7 M]UMQ,VQ H x (M1UM2)) — S1X(j SQ

with (A, BiUBs) = (A, BiU{T € Tmax | T C Bi} x Ba)) is a complete \/-
preserving embedding.

Proof. First we show that ¢ is well defined: Tet (¢1,92) € A. For g» = g we have
(91.92) € G. 1 (g1,92) & A, then yo95 # 15 and (g1, 92) € B(H, MiUM,,V N
H x (MyUMs)). Hence v191 € C, and (g1,92) € G by definition. Tt is easy to
prove that A" = By U ({7 € Jmax | T C B1} x Bz) and A = (B U ({7 € Jnax |
I C B1} x By)) . Because of

e (Vier(Ar, BHU’Q@)) =e (-, (Mier Be)U(Nyer Bi2))

= Pher Be)OUT € T | TC e Bk x (her Bio)))

= Vier (A, BouU{T € Tmax | T C B} X Bra) = Ve e (Ar, BiiUB2)
the mapping is a \/-semilattice-homomorphism. The injectivity follows from

e(A,..) = (A,..). 0



For applying this theorem, we let the set H be the set of all data base queries
yvielding a positive result. The theorem states that it is sufficient to display
S+1%: So instead of §1XS4, and that the concept lattice can still be embedded in
that scale. Figure 6 shows how Fig. 5 can be reduced in this way by applying
the local semi-product twice. Instead of 112 potential concepts as in Fig. 4 we
only need 24 concepts to show the same information.

More important than the fact that the embedding preserves suprema is that,
in general, infima are not preserved. It can easily be seen in the line diagram,
where an infimum is not preserved. This always indicates an implication between
the attributes of the inner and the outer scale. In Fig. 6, for example, one can
see that the infimum of the concepts labeled with “Telephone” and “Ordinary
Paper” is not realized. The first realized concept below is the bottom element;
and this indicates that the combination “Telephone” and “Ordinary Paper”
implies all other attributes. ITn this case the implication is true, because there
are no objects in the database fulfilling the premise.

In Fig. 7 we see an example, where the convex set i1s not including the bottom
element, of the outer scale. The inner scale is only relevant for wireless telephones,
and in fact the 4 4+ 2+ 1+ 1 = 8 telephones in the inner scale not noted at its
top element are exactly the wireless telephones in the data base. Observe that,
according to () in Theorem 1, the two concepts at the lower left and right,
labeled with “2” and “8”, resp., are lower neighbors only of the top element of
the inner scale. The only lower neighbor of the bottom concept of the inner scale
is the bottom element of the local semi-product!

In Fig. 8, the scale “Functionality” is combined with a scale about the number
of short dial memories. There is a copy of the set My of attributes of the inner
scale for every maximal element of the outer scale. This is the (desired) effect
of M = M1U('Jmax x My) in the definition of the local semi-product. Here one
can also see that there is not always an additional bottom element to be added,
since in this combination the lowest concepts of both scales are realized.

4 Conclusion

We conclude, that there should be four options in the management system for
conceptual data systems: The first is the one that is actually implemented,
namely to display the complete direct product of the scales, as in Fig. 3 and 4.
The second is using the semi-direct product (as in Fig. 5), and the third is using
the local semi-direct product as described in the last section.

The fourth option provides more interactivity to the user: Tt allows him to
blow up or to collapse concepts of the outer scale by mouse click. The concepts
contained in the convex set. C' (which are the interesting ones to blow up) are
marked by a double circle. Figure 9 shows how this option can be used as a
“magnifying glass”. Tt gives the same information as zooming in the lower right
concept, but it states additionally the location of the magnifying glass in the
outer scale. Hence it combines both the local and the global aspect of the concept.
Here one should mention that it is possible not, only to display the number (or
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Fig. 8. The local semi-product of the scales “Functionality” and “Short Dial Memory”

names) of the objects labeled at a concept, but also to show the whole extent.
Thus in Fig. 9 one could also see how the six objects of the bottom concept
behave with respect to the inner scale.

At last we briefly discuss another desirable tool: Often one is interested to
see only parts of the outer scale. For example, we want to know more about
telephone-fax-combinations. Corresponding to the last paragraph, we can zoom
in the lower left concept of the scale “Functionality”, but then we lose the in-
formation of which combinations include an answering machine. Here parallel
zooming 1s a possibility: We “cut out” a convex subset of the outer scale, and
only this subset is displayed on the screen (see Fig. 10).

References

1. A. Day: Doubling constructions in lattice theory. Canad. J. Math. 44, 1992, 252
269

2. Deutsche Telekom: Ner Katalog. Herbst/Winter 95/96

3. B. Ganter: Algorithmen zur Begriffsanalyse. In: B. Ganter, R. Wille, K. E. Wolff
(eds.): Beistrige zur Begriffsanalyse. B. 1.-Wissenschaftsverlag, Mannheim, Wien,
Zurich 1987. 241 254

4. B. Ganter, R. Wille: Formale Begriffsanalyse: Mathematische Grundlagen. Sprin-
ger, Heidelberg 1996

5. W. Geyer: lLokale direkte Produkte von Begriffsverbanden. Diplomarbeit, TH
Darmstadt 1988



Telephone| Answering Maching

Fig. 9. The scale “Functionality” with the scale “Short Dial Memory” as a magnifying
glass

Answering Maching

Fig. 10. Parallel zooming into the scale “Functionality” with the scale “Short Dial
Memory”

6. W. Kollewe, C. Sander, R. Schmiede, R. Wille: TOSCANA als Instrument. der bib-
liothekarischen SacherschlieBung. Tn: H. Havekost, H.-J. Watjen (eds.): Aufbau und
Erschliefung begrifflicher Datenbanken. (BIS)-Verlag, Oldenburg 1995, 95 114

7. W. Kollewe, M. Skorsky, F. Vogt, R. Wille: TOSCANA ein Werkzeug zur
begrifflichen Analyse und FErkundung von Daten. In: R. Wille, M. Zickwolff
(eds.): Begriffliche Wissensverarbeitung Grundfragen und Aufgaben. B.1.
Wissenschaftsverlag, Mannheim 1994

8. P. Scheich, M. Skorsky, F. Vogt, C. Wachter, R. Wille: Conceptual data systems.
n: O. Opitz, B. Lausen, R. Klar (eds.): Information and classification. Springer,



Heidelberg 1993, 72 84

. G. Stumme, R. Wille: A geometrical heuristic for drawing concept lattices. In:

R. Tamassia, 1. G. Tollis (eds.): Graph Drawing. Springer, Heidelberg 1995, 452
459

. F. Vogt, C. Wachter, R. Wille: Data analysis based on a conceptual file. Tn: H.-

H. Bock, P. Thm (eds.): Classification, data analysis, and knowledge organization.
Springer, Heidelberg 1991, 131 140

. F. Vogt, R. Wille: TOSCANA A graphical tool for analyzing and exploring

data. Tn: R. Tamassia, 1. G. Tollis (eds.): Graph Drawing 94, Lecture Notes in
Computer Sciences 894, Springer, Heidelberg 1995, 226 233

. H. Wagner: Begriff. In: H. M. Baumgartner, C. Wild (eds.): Handbuch philosophi-

scher Grundbegriffe. Kosel Verlag, Munchen 1973, 191 209

. R. Wille: Restructuring lattice theory: an approach based on hierarchies of con-

cepts. Tn: I. Rival (ed.): Ordered sets. Reidel, Dordrecht Boston 1982, 445 470

. R. Wille: Tattices in data analysis: how to draw them with a computer In: . Rival

(ed.): Algorithms and order. Kluwer, Dordrecht Boston 1989, 33 58





