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 Springer-Verlag Berlin{Heidelberg 1998In this paper we discuss Conceptual Knowledge Discovery in Databases (CKDD)as it is developing in the �eld of Conceptual Knowledge Processing (cf. [29],[30]).Conceptual Knowledge Processing is based on the mathematical theory of For-mal Concept Analysis which has become a successful theory for data analysisduring the last 18 years. This approach relies on the pragmatic philosophy ofCh.S. Peirce [15] who claims that we can only analyze and argue within re-stricted contexts where we always rely on pre-knowledge and common sense. Thedevelopment of Formal Concept Analysis led to the software system TOSCANA,which is presented as a CKDD tool in this paper. TOSCANA is a 
exible nav-igation tool that allows dynamic browsing through and zooming into the data.It supports the exploration of large databases by visualizing conceptual aspectsinherent to the data. We want to clarify that CKDD can be understood asa human-centered approach of Knowledge Discovery in Databases. The actualdiscussion about human-centered Knowledge Discovery is therefore brie
y sum-marized in Section 1.1 Human-Centered Knowledge DiscoveryKnowledge Discovery in Databases (KDD) is aimed at the development of meth-ods, techniques, and tools that support human analysts in the overall processof discovering useful information and knowledge in databases. Many real-worldknowledge discovery tasks are both too complex to be accessible by simply ap-plying a single learning or data mining algorithm and too knowledge-intensiveto be performed without repeated participation of the domain expert. There-fore, knowledge discovery in databases is considered an interactive and iterativeprocess between a human and a database that may strongly involve backgroundknowledge of the analyzing domain expert. This process-centered view of KDDis the overall theme and contribution of the volume\Advances in KnowledgeDiscovery and Data Mining" [7].According to R.S. Brachman and T. Anand [3], much attention and e�orthas been focused on the development of data-mining techniques but only a minore�ort has been devoted to the development of tools that support the analyst inthe overall discovery task. They see a clear need to emphasize the processori-entation of KDD tasks and argue in favor of a more human-centered approach



for a successful development of knowledge-discovery support tools (see also [24],p. 564). All in all, human-centered KDD refers to the constitutive character ofhuman interpretation for the discovery of knowledge, and stresses the complex,interactive process of KDD as being lead by human thought.Real-world knowledge-discovery applications obviously vary in terms of un-derlying data, complexity, the amount of human involvement required, and theirdegree of possible automation of parts of the discovery process. In most ap-plications, however, an indispensable part of the discovery process is that theanalyst explores the data and sifts through the raw data to become familiarwith it and to get a feel for what the data may cover. Often an explicit spec-i�cation of what one is looking for only arises during an interactive process ofdata exploration, analysis, and segmentation. R.S. Brachman et al. introducedthe notion of Data Archaeology for KDD tasks in which a precise speci�cationof the discovery strategy, the crucial questions, and the basic goals of the taskhave to be elaborated during such an unpredictable interactive exploration of thedata [4]. Data Archaeology can be considered a highly human-centered processof asking, exploring, analyzing, interpreting, and learning in interaction with theunderlying database.Emphasizing the KDD process, comprehensive support of the analyst hasto be provided that, according to [3], should be embedded into a knowledge-discovery support environment. A support environment should especially sup-port the overall process of human-centered KDD, including Data Archaeologyinvolved in many KDD applications. In this paper, we investigate and discusshow the process of human-centered KDD can be supported by Formal ConceptAnalysis methods. This is done with regard to the basic requirements formulatedfor human-centered KDD support tools.In order to formulate requirements for knowledge discovery support tools,it is necessary to re
ect the underlying understanding of knowledge. A human-centered approach to KDD that supports the overall KDD process should bebased on a comprehensive notion of knowledge a part of human thought ratherthan on a restrictive formalization as it is used for the evaluation of automatedknowledge-discovery or data-mining �ndings (for example [6], p. 8). The land-scape paradigm of knowledge underlying conceptual knowledge processing as de-scribed in [30] provides such a comprehensive and human-centered notion ofknowledge. Although there is some similarity with the archaeology metaphor,the landscape paradigm places more emphasizes on the intersubjective charac-ter of knowledge. Following Peirce's pragmatic philosophy, knowledge is under-stood as always being incomplete, formed and continuously assured by humanargumentation within an intersubjective community of communication (cf. [30]).Knowledge discovery based on such an understanding of knowledge shouldsupport knowledge communication as a part of the KDD process, both withrespect to the dialog between user and system and also as a part of human com-munication and argumentation. This presupposes a high transparency of thediscovery process and a representation of its (interim) �ndings that supportshuman argumentation to establish intersubjectively assured knowledge. Further2



fundamental requirements for human-centered KDD support tools have beenstated by R.S. Brachman and T. Anand (see [3], p. 53). In addition to toolsthat support the individual phases of the KDD process, they basically demandsupport for the coupling of the overall process, for exploratory Data Archaeol-ogy, and some help in deciding what discovery techniques to choose. Most ofthe content of these claims is covered by the more explicit and detailed require-ments formulated already in [4]. Requirements 1 to 5 of the subsequent list areexplicitely stated in [4], p. 164, while the remaining requirements are implicit in[3] and [4].1. The system should represent and present to the user the underlying domainin a natural and appropriate fashion. Objects from the domain should beeasily incorporated into queries.2. The domain representation should be extendible by the addition of newcategories formed from queries. These categories (and their representativeindividuals) must be usable in subsequent queries.3. It should be easy to form tentative segmentations of data, to investigate thesegments, and to re-segment quickly and easily. There should be a powerfulrepertoire of viewing and analysis methods, and these methods should beapplicable to segments.4. Analysts should be supported in recognizing and abstracting common analy-sis (segmenting and viewing) patterns. These patterns must be easy to applyand modify.5. There should be facilities for monitoring changes in classes or categories overtime.6. The system should increase the transparency of the KDD process, and doc-ument its di�erent stages.7. Analysis tools should take advantage of explicitly represented backgroundknowledge of domain experts, but should also activate the implicit knowledgeof experts.8. The system should allow highly 
exible processes of knowledge discoveryrespecting the open and procedural nature of productive human thinking.This means in particular the support of intersubjective communication andargumentation.Before discussing Conceptual Knowledge Discovery in Databases with regard tothese requirements in Section 3, we introduce some basic notions and ideas ofFormal Concept Analysis and conceptual data systems in the next section.2 Formal Concept AnalysisConcepts are necessary for expressing human knowledge. Therefore, the processof discovering knowledge in databases bene�ts from a comprehensive formaliza-tion of concepts which can be activated to communicatively represent knowledgecoded in databases. Formal Concept Analysis ([27],[28],[5]) o�ers such a formal-ization by mathematizing concepts that are understood as units of thought con-stituted by their extension and intension. To allow a mathematical description of3
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B20, B22-28, B41-48, C4-9Fig. 1. A formal context concerning gates at Frankfurt Airport and its concept latticeextensions and intensions, Formal Concept Analysis always starts with a formalcontext de�ned as a triple (G;M; I), where G is a set of (formal) objects, M isa set of (formal) attributes, and I is a binary relation between G and M (i. e.I � G � M ); in general, gIm (, (g;m) 2 I) is read: \the object g has theattribute m".In Figure 1, a formal context is described by a table in which the crossesrepresent the binary relation I between the object set G (comprising the gatesof Terminal 1 at Frankfurt Airport) and the attribute setM (consisting of certaingate types).A formal concept of a formal context (G;M; I) is de�ned as a pair (A;B) withA � G and B �M such that (A;B) is maximalwith the property A�B � I; thesets A and B are called the extent and the intent of the formal concept (A;B).The subconcept{superconcept relation is formalized by (A1; B1) � (A2; B2) :()A1 � A2 (() B1 � B2): The set of all concepts of a context (G;M; I) togetherwith the order relation � is always a complete lattice, called the concept lattice of(G;M; I) and denoted by B(G;M; I). In this example, the intents of the formalcontext are exactly the subsets of its attribute set; hence its concept lattice isa 16-element Boolean lattice, as can be seen in Figure 1, which visualizes theconcept lattice by a (labeled) line diagram.In a line diagram of a concept lattice, the name of an object g is alwaysattached to the circle representing the smallest concept with g in its extent(denoted by 
g); dually, the name of an attribute m is always attached to thecircle representing the largest concept with m in its intent (denoted by �m).This labelling allows us to read the context relation from the diagram becausegIm () 
g � �m, in words: the object g has the attribute m if and only if there4
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exibility of being used either as Domestic or InternationalGate, but that with the exception of bus gate A22 they all are terminal gatesonly.Graphically represented concept lattices have proven to be extremely usefulin discovering and understanding conceptual relationships in given data. There-fore a theory of \conceptual data systems" has been developed to activate con-cept lattices as query structures for databases. A conceptual data system consistsof a (relational) database and a collection of formal contexts, called conceptualscales, together with line diagrams of their concept lattices; such systems are im-plemented with the management system TOSCANA (see [20],[26]). For a chosenconceptual scale, TOSCANA presents a line diagram of the corresponding con-cept lattice indicating all objects stored in the database in their relationshipsto the attributes of the scale. For instance, as result of a TOSCANA query,Figure 2 shows the concept lattice of the conceptual scale Runway indicating asobjects 18939 takeo�s at Frankfurt Airport (during one speci�c month). Theseobjects are classi�ed according to their runways, which are taken as attributesof the scale. The power of the TOSCANA systems lies in the possibility to re�nea presented concept lattice by another one so that one obtains either a nestedline diagram of a combination of both lattices or a line diagram of the secondlattice re�ning a speci�c concept of the �rst; the latter alternative may be used5



for zooming further and further, which potentially allows us to navigate throughthe entire database.3 Conceptual Knowledge Discovery in DatabasesConceptual data systems activated by the management system TOSCANA canbe considered as knowledge discovery support environments that promote human-centered discovery processes and representations of their �ndings. In this section,we want to discuss how such processes of conceptual knowledge discovery ful�lthe requirements listed in Section 1. As illustrating example, we use a TOSCANAsystem established by U. Kaufmann [10] for exploring data of the informationsystem INFO-80 of the \Flughafen Frankfurt Main AG". this information systemsupports planning, realization, and control of business transactions related to
ight movements at Frankfurt Airport.In a TOSCANA system, the objects of the underlying domain are storedstructurally in a relational database so that they can be activated by SQL-statements for establishing updated conceptual scales. The objects are repre-sented for the user in line diagrams of the concept lattices of conceptual scalesas demonstrated in Figure 2. In general, the objects are �rst listed in quantitiesdescribing the size of the extents of the represented concepts. For instance, inFigure 2 the number 8331 attached to the circle labelled \18W" informs thatthere were 8331 takeo�s on Runway 18 West. If one wants more speci�c infor-mation about objects, one can obtain the object names for an extent by clickingon the attached number, or even more information about a single object byclicking on its name. Of course, larger numbers as in Figure 2 �rst have to bedi�erentiated by further scales before considering single objects. But the distri-bution of the quantities may be already informative: in our example the number8331 indicates that more than 40% of all takeo�s are from Runway 18 West; thishigh proportion is interesting because there was a strong controversy about theconstruction of this runway regarding noise pollution.Our discussion shows that the �rst requirement of appropriate object rep-resentations is ful�lled in TOSCANA systems. The second requirement of ex-tendibility of categorical structures is already realized by the great 
exibilityin forming conceptual scales; even during the process of discovery new insightsmay give rise to further conceptual scales. The third requirement of meaningfuldata segmentations is also ful�lled because the conceptual scales and their com-binations yield an almost unlimited multitude of conceptual segmentations andwith that a powerful repertoire of di�erent views for exploring and analyzingdata. This 
exible repertoire supports analysts in recognizing and abstractingthe interpretable patterns for which the fourth requirement asks.Let us demonstrate some of the discussed abilities of TOSCANA systemsby continuing the investigation of Runway 18 West. In Figure 2 we zoom intothe concept node labelled \18W" with the conceptual scale Wingspan Code andPosition Size. Then we can study the size of the 8331 planes that took o� from18 West within the resulting line diagram shown in Figure 3. The Position Sizes6
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6 1Fig. 4. The query structure Noise Class of the Plane by ICAO-Annex 16 with respectto position sizes P4 and P5via conceptual scales in which experts have explicitly coded formal aspects oftheir knowledge in structurally representing a certain theme, thereby also mak-ing connections to their implicit knowledge. Overall, a TOSCANA system o�ersa conceptually shaped landscape of structurally coded knowledge allowing di-verse excursions, during which a learning process yields an increasingly betterunderstanding of what to collect and where to continue (cf. [30]). The graphi-cal representation of interesting parts of the landscape, in particular, supportsintersubjective communication and argumentation.4 ApplicationsTOSCANA systems have been successfully elaborated for many purposes in dif-ferent research areas, but also on the commercial level. Its range covers a varietyof applications, that incorporate knowledge discovery. For instance, TOSCANAsystems have been established for analyzing data of children with diabetes [20],for investigating international cooperations [11], for exploring laws and regu-lations in civil engineering [13], for retrieving books in a library [12], [17], forassisting engineers in designing pipings [25], for developing qualitative theoriesin music esthetics [14], for studying semantics of speech-act verbs [8], and forexamining the medical nomenclature system SNOMED [18]. As a ConceptualKnowledge Discovery tool, TOSCANA was used to investigate de�ciencies ofthe control system of the incineration plant Darmstadt [9]. One of the lead-ing German mail-order companies is currently implementing a prototype of aTOSCANA system for its customer database, which shall be compared to sta-tistical KDD tools.Conceptual data systems can also be understood as On-Line Analytical Pro-cessing (OLAP) tools [22]. Roughly, the conceptual scales can be regarded asdimensions of a multi-dimensional data cube. The zooming-in on one of the con-cepts of a scale as described in the previous section corresponds to `slicing' thedata cube. `Rotating' and `Drill-Down' are also supported. Figure 5 shows how8
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ight movement numbers,which in turn lead to the data set stored in the INFO-80 system.Further research in Conceptual Knowledge Processing aims at developingconceptual knowledge systems by extending the functionalities of conceptualdata systems, especially by logic-based components. As Formal Concept Anal-ysis and Description Logics are closely related and have similar purposes (see,e. g., [4],[19]), �rst steps in integrating both theories have been made ([1], [2],[16], [21]). For hybrid knowledge processing, an extension of conceptual datasystems is foreseen by incorporating statistical and computational components[23]. This indicates a promising development in terms of extending TOSCANAsystems toward a wider range of CKDD applications.9
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