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tWe present a new algorithm 
alled Titani
 for 
omputing 
on
ept latti
es. Itis based on data mining te
hniques for 
omputing frequent itemsets. The algo-rithm is experimentally evaluated and 
ompared with B. Ganter's Next-Closurealgorithm.1 Introdu
tionCon
ept Latti
es are used to represent 
on
eptual hierar
hies whi
h are inherent indata. They are the 
ore of the mathemati
al theory of Formal Con
ept Analysis(FCA). Introdu
ed in the early 80ies as a formalization of the 
on
ept of `
on
ept'[18℄, FCA has over the years grown to a powerful theory for data analysis, informationretrieval, and knowledge dis
overy [14℄. In Arti�
ial Intelligen
e (AI), FCA is usedas a knowledge representation me
hanism. In database theory, FCA has been exten-sively used for 
lass hierar
hy design and management [12, 17, 19, 9℄. Its usefulnessfor the analysis of data stored in relational databases has been demonstrated withthe 
ommer
ially used management system TOSCANA for Con
eptual InformationSystems [16℄.A 
urrent resear
h domain 
ommon to both the AI and the database 
ommunityis Knowledge Dis
overy in Databases (KDD). Here FCA has been used as a formalframework for impli
ation and asso
iation rules dis
overy and redu
tion [4, 11, 15℄ andfor improving the response times of algorithms for mining asso
iation rules [10, 11℄.The intera
tion of FCA and KDD in general has been dis
ussed in [13℄ and [5℄.In this paper we show that, vi
e versa, FCA 
an also bene�t from ideas used formining asso
iation rules: Computing 
on
ept latti
es is an important issue, investi-gated for long years [9, 2, 4, 19℄. We address the problem of 
omputing 
on
ept latti
esfrom a data mining viewpoint by using a level-wise approa
h [1, 8℄; and provide a new,eÆ
ient algorithm 
alled Titani
. 129



In the next se
tion, we present the theoreti
al foundation. It is turned into pseudo-
ode in Se
tion 3. We 
on
lude the paper with results of an experimental evaluation.Be
ause of la
k of spa
e we will not provide proofs, and will not dis
uss the generaluse of FCA in AI and database theory.2 Computing Con
ept Latti
esby Using the Support Fun
tion2.1 Formal Con
ept AnalysisIn the �rst part of this se
tion, we brie
y re
all the basi
 notions of Formal Con
eptAnalysis. For a more extensive introdu
tion into Formal Con
ept Analysis refer to [3℄.De�nition 1 A formal 
ontext is a triple K := (G;M; I) where G and M are setsand I � G �M is a binary relation. The elements of G are 
alled obje
ts and theelements of M items. The in
lusion (g;m) 2 I is read as \obje
t g has attribute m".In this paper we assume that all sets are �nite, espe
ially G and M .For A � G, we de�ne A0 := fm 2 M j 8g 2 A: (g;m) 2 Ig; and for B � M , wede�ne dually B0 := fg 2 G j 8m 2 B: (g;m) 2 Ig. A formal 
on
ept is a pair (A;B)with A � G, B � M , A0 = B and B0 = A. A is 
alled extent and B is 
alled intentof the 
on
ept. The set of all 
on
epts of a formal 
ontext K together with the partialorder (A1; B1) � (A2; B2) :, A1 � A2 (whi
h is equivalent to B1 � B2) is a 
ompletelatti
e, 
alled 
on
ept latti
e of K .
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Figure 1: Formal 
ontext about 
o�ee brands sold in a supermarket.Figure 1 shows a formal 
ontext whi
h lists all 
o�ee brands sold in a supermarket.Figure 2 shows the 
on
ept latti
e of the 
ontext by a line diagram. In the linediagram, the name of an obje
t g is always atta
hed to the 
ir
le representing the130
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Figure 2: The 
on
ept latti
e of the 
ontext in Figure 1smallest 
on
ept with g in its extent; dually, the name of an attribute m is alwaysatta
hed to the 
ir
le representing the largest 
on
ept withm in its intent. This allowsus to read the 
ontext relation from the diagram be
ause an obje
t g has an attributem if and only if there is an as
ending path from the 
ir
le labeled by g to the 
ir
lelabeled by m. The extent of a 
on
ept 
onsists of all obje
ts whose labels are belowin the diagram, and the intent 
onsists of all attributes atta
hed to 
on
epts above inthe hierar
hy. For example, the 
on
ept labeled by `< 6 DM' has f`Plus Naturmild',`Plus milde Sorte', `Plus Gold'g as extent, and f`< 6 DM', `Plus' [the house brand ofthe supermarket℄, `< 8 DM'g as intent.For X;Y � M , we say that the impli
ation X ! Y holds in the 
ontext, if ea
hobje
t having all attributes in X also has all attributes in Y (i. e., an impli
ation is anasso
iation rule with 100% 
on�den
e). For instan
e, the impli
ation fPlus, 
lassi
g! f< 6DMg holds in the 
o�ee 
ontext. Impli
ations 
an be read dire
tly in the linediagram: the largest 
on
ept having both `Plus' and `
lassi
' in its intent is below the
on
ept labeled by `< 6DM'. In [15℄ is shown how also the asso
iation rules with lessthan 100% 
on�den
e 
an by visualized in the line diagram.2.2 Support-Based Computation of the Closure System of all Con-
ept IntentsIn the following, we will use the 
omposed fun
tion �00:P(M) ! P(M) whi
h isa 
losure operator on M (i. e., it is extensive, monotonous, and idempotent). The131



related 
losure system (i. e., the set of all B � M with B00 = B) is exa
tly the set ofthe intents of all 
on
epts of the 
ontext. The stru
ture of the 
on
ept latti
e is alreadydetermined by this 
losure system. Hen
e we restri
t ourselves to the 
omputationof the 
losure system of all 
on
ept intents in the sequel. The 
omputation makesextensive use of the following support fun
tion:De�nition 2 The support of X �M is de�ned by supp(X) := jX0jjGj :In the 
ase of X and Y with X 00 = Y 00, both sets have obviously the same support.On the other hand, 
omparable attribute sets with the same support also have thesame 
losures:Lemma 1 Let X;Y �M .(i) X 00 = Y 00 =) supp(X) = supp(Y )(ii) X � Y ^ supp(X) = supp(Y ) =) X 00 = Y 00This lemma allows us to develop the algorithm in a more general setting:De�nition 3 A weight fun
tion on P(M) is a fun
tion s:P(M)! P from the pow-erset of M to a partially ordered set (P;�). For a set X � M , s(X) is 
alled theweight of X. The weight fun
tion is 
ompatible with a 
losure operator h if (i)X � Y =) s(X) � s(Y ),1 (ii) h(X) = h(Y ) =) s(X) = s(Y ), (iii) X � Y ^ s(X) =s(Y ) =) h(X) = h(Y ) :Let h be a 
losure operator on a �nite set M , and let s be a 
ompatible weightfun
tion. The task is now to determine eÆ
iently the 
losure system H := fX �M jh(X) = Xg related to the 
losure operator h.It is easy to 
he
k, that for a given formal 
ontext, the support fun
tion ful�llsthe 
onditions of De�nition 3 for the 
losure operator h(X) := X 00 . Another problemwhere su
h a weight fun
tion 
an be used is the 
omputation of the 
losure systemindu
ed by those fun
tional dependen
ies whi
h are valid for the a
tual data of arelational database (refer to [6℄).We dis
uss the problem of 
omputing the 
losure system by using a weight fun
tionin three parts:1. How 
an we 
ompute the 
losure of a given set using the weight fun
tion only,and not the 
losure operator?2. How 
an we 
ompute the 
losure system by 
omputing as few 
losures as possi-ble?3. Sin
e the weight fun
tion is usually not stored expli
itly, how 
an we derive theweights of as many sets as possible from the weights already 
omputed?Questions 2 and 3 are not independent from ea
h other. Hen
e we will not providean optimal answer for ea
h of them, but one whi
h improves the overall bene�t.1If X � Y =) s(X) � s(Y ) holds instead of (i) (as e. g. for fun
tional dependen
ies), then all`min' in the sequel (beside the one in De�nition 6) have to be repla
ed by `max'.132



2.2.1 Weight-based 
omputation of 
losuresWe use the 
onstraints on the fun
tion s for determining the 
losure of a set by
omparing its weight with the weights of its immediate supersets.Proposition 2 Let X �M . Thenh(X) = X [ fm 2M nX j s(X) = s(X [ fmg)g :Hen
e if we know the weights of all sets, then we 
an 
ompute the 
losure operator(! Algorithm 3, steps 3{7).2 In the next subse
tion we dis
uss for whi
h sets it isne
essary to 
ompute the 
losure in order to obtain all 
losed sets. In Subse
tion 2.2.3we dis
uss how the weights needed for those 
omputations 
an be determined.2.2.2 A level-wise approa
h for 
omputing all 
losed setsOne 
an now 
ompute the 
losure system H by applying Proposition 2 to all subsetsX of M . But this is not eÆ
ient, sin
e many 
losed sets will be determined severaltimes.De�nition 4 We de�ne an equivalen
e relation � on the powerset P(M) of M by(X;Y ) 2 � : () h(X) = h(Y ), for X;Y � M . The equivalen
e 
lass of X is givenby [X℄ := fY �M j (X;Y ) 2 �g.If we knew the equivalen
e relation � in advan
e, it would be suÆ
ient to 
omputethe 
losure for one set of ea
h equivalen
e 
lass only. But sin
e we have to determinethe relation during the 
omputation, we have to 
onsider more than one element ofea
h 
lass in general. As known from algorithms for mining asso
iation rules, we willuse a level-wise approa
h.De�nition 5 A k-set is a subset X of M with jXj = k. For X � P(M), we de�neXk := fX 2 X j jXj = kg.At the kth iteration, the weights of all k-sets whi
h remained from the pruningstrategy des
ribed below are determined; and the 
losures of all (k � 1)-sets whi
hpassed the pruning in the (k � 1)th iteration are 
omputed.The �rst sets of an equivalen
e 
lass that we rea
h using su
h a level-wise approa
hare the minimal sets in the 
lass:De�nition 6 A set X �M is a key set (or minimal generator) if X 2 min[X℄. Theset of all key sets is denoted by K.Obviously we have H = fh(X) j X 2 Kg.Proposition 3 The set K is an order ideal of (P(M);�) (i. e., X2K; Y�X =)Y 2K).2In this se
tion, we give some referen
es to the algorithms in the following se
tion. These referen
es
an be skipped at the �rst reading. 133



We will use a pruning strategy given in [1℄. Originally this strategy was presentedas a heuristi
 for determining all frequent sets only (whi
h are, in our terminology, allsets with weights above a user-de�ned threshold). We show that this strategy 
an beapplied to arbitrary order ideals of the powerset of M :De�nition 7 Let I be an order ideal of P(M). A 
andidate set for I is a subset ofM su
h that all its proper subsets are in I.This de�nition is justi�ed by the following lemma:Lemma 4 Let X � Pk(M), and let Y be the set of all 
andidate (k + 1)-sets for theorder ideal # X (i. e., the order ideal generated by X ).1. For ea
h subset Z of Y, there exists an order ideal I of P(M) with Ik = X andIk+1 = Z.2. For ea
h order ideal I of P(M) with Ik = X the in
lusion Ik+1 � Y holds.The eÆ
ient generation of the set of all 
andidate sets for the next level is des
ribedin the following proposition (! Algorithm 2). We assume that M is linearly ordered,e. g., M = f1; : : : ; ng.Proposition 5 Let X � Pk�1(M). Let eC := ffx1; : : : ; xkg j i < j =) xi < xj;fx1; : : : ; xk�2; xk�1g; fx1; : : : ; xk�2; xkg 2 Xg; and C := fX 2 eC j 8x 2 X:X n fxg 2Xg. Then C = fX 2 Pk(M) j X is 
andidate set for # Xg.Unlike in the Apriori algorithm, in our appli
ation the pruning of a set (! Algo-rithm 1, step 8) 
annot be determined by its properties alone, but properties of itssubsets have to be taken into a

ount as well. This 
auses an additional step in thegeneration fun
tion (! Algorithm 2, step 5) 
ompared to the original version pre-sented in [1℄. Based on this additional step, at ea
h iteration the non-key sets amongthe 
andidate sets are pruned by using (ii) of the following proposition.Proposition 6 Let X �M .(i) Let m 2 X. Then X 2 [X n fmg℄ if and only if s(X) = s(X n fmg).(ii) X is a key set if and only if s(X) 6= minm2X(s(X n fmg)).2.2.3 Deriving weights from already known weightsIf we rea
h a k-set whi
h is known not to be a key set, then we already passed alongat least one of the key sets in its equivalen
e 
lass in an earlier iteration. Hen
e wealready know its weight. Using the following proposition, we determine this weightby using only weights already 
omputed.Proposition 7 If X is not a key set, thens(X) = minfs(K) j K 2 K;K � Xg :Hen
e it is suÆ
ient to 
ompute the weights of the 
andidate sets only (by 
alling afun
tion depending on the spe
i�
 implementation! Algorithm 1, step 7). All otherweights 
an be derived from those weights.134



3 The TITANIC AlgorithmThe pseudo-
ode is given in Algorithm 1. A list of notations is provided in Table 1.Algorithm 1 Titani
1) ;:s 1;2) K0  f;g;3) k  1;4) forall m 2M do fmg:p s 1;5) C  ffmg j m 2Mg;6) loop begin7) Weigh(C);8) Kk  fX 2 C j X:s 6= X:p sg;9) forall X 2 Kk do X:
losure Closure(X);10) if Kk = ; then exit loop ;11) k ++;12) C  Titani
-Gen(Kk�1);13) end loop ;14) return Sk�1i=0 fX:
losure j X 2 Kig.Table 1: Notations used in Titani
k is the 
ounter whi
h indi
ates the 
urrent iteration. In the kth iter-ation, all key k-sets are determined.Kk 
ontains after the kth iteration all key k-sets K together with theirweight K:s and their 
losure K:
losure.C stores the 
andidate k-sets C together with a 
ounter C:p s whi
hstores the minimum of the weights of all (k � 1)-subsets of C. The
ounter is used in step 8 to prune all non-key sets.The algorithm starts with stating that the empty set is always a key set, and that itsweight is | in the 
ase of 
on
ept latti
es | always equal to 1 (steps 1+2). Then all1-sets are 
andidate sets by de�nition (steps 4+5). In later iterations, the 
andidatek-sets are determined by the fun
tion Titani
-Gen (step 12/Algorithm 2) whi
h is(ex
ept step 5) a straight-forward implementation of Proposition 5. (The result ofstep 5 will be used in step 8 of Algorithm 1 for pruning the non-key sets.)On
e the 
andidate k-sets are determined, the fun
tion Weigh(X ) is 
alled to
ompute, for ea
h X 2 X , the weight of X and stores it in the variable X:s (step 7).In the 
ase of 
on
ept latti
es, Weigh determines the weights (i. e., the supports) ofall X 2 X with a single pass of the 
ontext. This is (together with the fa
t that onlymaxfjXj j X � M is 
andidate setg passes are needed) the reason for the eÆ
ien
yof Titani
. 135



Algorithm 2 Titani
-GenInput: Kk�1, the set of key (k � 1)-sets K with their weight K:s.Output: C, the set of 
andidate k-sets Cwith the values C:p s := minfs(C n fmg j m 2 Cg.The variables p s assigned to the sets fp1; : : : ; pkg whi
h are generated in step 1 areinitialized by fp1; : : : ; pkg:p s 1.1) C  ffp1; : : : ; pkg j i < j =) pi < pj ;fp1; : : : ; pk�2; pk�1g; fp1; : : : ; pk�2; pkg 2 Kk�1g;2) forall X 2 C do begin3) forall (k � 1)-subsets S of X do begin4) if S =2 Kk�1 then begin C  C n fXg; exit forall ; end;5) X:p s min(X:p s; S:s);6) end;7) end;8) return C.Algorithm 3 Closure(X) for X 2 Kk�11) Y  X;2) forall m 2 X do Y  Y [ (X n fmg):
losure;3) forall m 2M n Y do begin4) if X [ fmg 2 C then s (X [ fmg):s5) else s minfK:s j K 2 K; K � X [ fmgg;6) if s = X:s then Y  Y [ fmg7) end;8) return Y .In step 8 of Algorithm 1, all 
andidate k-sets whi
h are not key sets are pruneda

ording to Proposition 6 (ii). For the remaining sets (whi
h are now known to bekey sets) their 
losures are 
omputed (step 9). The Closure fun
tion (Algorithm 3)is a straight-forward implementation of Propositions 3 and 7 (beside an additionaloptimization (step 2)). Algorithm 1 terminates, if there are no key k-sets left (step11+14). Otherwise the next iteration begins (steps 10+12).4 Experimental Evaluation and Con
lusionSeveral algorithms have been proposed for 
omputing 
on
ept latti
es. The mosteÆ
ient at the best of our knowledge is Ganter's Next-Closure algorithm [2℄. Forour experimental evaluation, a version of the Titani
 algorithm was implemented inC++ together with a rewriting of Ch. Lindig's C version of Next-Closure [7℄. The
omparisons took pla
e on a Pentium III running at 600MHz, with 512MB of mainmemory, and were performed on the Mushroom (8,416 obje
ts, 80 attributes) and136



Internet (10,000 obje
ts, 141 attributes) databases, both available from the UCIKDD Ar
hive (http://kdd.i
s.u
i.edu/), with a varying number of obje
ts.The results are listed in Table 2 and visualized in Figure 3. They show that onthe relatively strongly 
orelated Mushrooms database, Next-Closure is faster for fewattributes, but takes twi
e the time of Titani
 for the whole dataset. On the weakly
orelated Internet database, the di�eren
e is mu
h larger. This stems from thefa
t that the development of Titani
 was inspired by the Apriori algorithm whi
h isknown to perform well on weakly 
orelated data.Table 2: Database 
hara
teristi
s and evaluation resultsComputation time (se
.)Database # of obje
ts # of attr. # of 
on
epts Next-Closure Titani
Mushrooms 2,500 79 5,394 31.13 48.195,000 79 9,064 108.38 75.598,416 80 32,086 527.74 200.73Internet 1,000 141 15,107 16.49 4.332,000 141 31,719 66.32 7.315,000 141 73,026 381.95 14.317,500 141 100,706 803.17 19.1310,000 141 124,574 1431.86 23.46
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Figure 3: Comparison of Titani
 and Next-Closure on the Mushrooms (left) andInternet databases (right)The problem of 
omputing 
on
ept latti
es has exponential 
omplexity. This showsthat one 
annot expe
t from any algorithm | however robust it is 
laimed to be| that it solves the problem in reasonable time in the worst 
ase. However ourexperimental results show that under normal 
onditions (and if handled with 
are) astrong and waterproof algorithm may improve the exploration of unknown regions ofknowledge. 137
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