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Abstract

We present a new algorithm called TITANIC for computing concept lattices. It
is based on data mining techniques for computing frequent itemsets. The algo-
rithm is experimentally evaluated and compared with B. Ganter’s Next-Closure
algorithm.

1 Introduction

Concept Lattices are used to represent conceptual hierarchies which are inherent in
data. They are the core of the mathematical theory of Formal Concept Analysis
(FCA). Introduced in the early 80ies as a formalization of the concept of ‘concept’
[18], FCA has over the years grown to a powerful theory for data analysis, information
retrieval, and knowledge discovery [14]. In Artificial Intelligence (AI), FCA is used
as a knowledge representation mechanism. In database theory, FCA has been exten-
sively used for class hierarchy design and management [12, 17, 19, 9]. Its usefulness
for the analysis of data stored in relational databases has been demonstrated with
the commercially used management system TOSCANA for Conceptual Information
Systems [16].

A current research domain common to both the Al and the database community
is Knowledge Discovery in Databases (KDD). Here FCA has been used as a formal
framework for implication and association rules discovery and reduction [4, 11, 15] and
for improving the response times of algorithms for mining association rules [10, 11].
The interaction of FCA and KDD in general has been discussed in [13] and [5].

In this paper we show that, vice versa, FCA can also benefit from ideas used for
mining association rules: Computing concept lattices is an important issue, investi-
gated for long years [9, 2, 4, 19]. We address the problem of computing concept lattices
from a data mining viewpoint by using a level-wise approach [1, 8]; and provide a new,
efficient algorithm called T1TANIC.
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In the next section, we present the theoretical foundation. It is turned into pseudo-
code in Section 3. We conclude the paper with results of an experimental evaluation.
Because of lack of space we will not provide proofs, and will not discuss the general
use of FCA in Al and database theory.

2 Computing Concept Lattices
by Using the Support Function

2.1 Formal Concept Analysis

In the first part of this section, we briefly recall the basic notions of Formal Concept
Analysis. For a more extensive introduction into Formal Concept Analysis refer to [3].

Definition 1 A formal context is a triple K := (G, M,I) where G and M are sets
and I C G x M is a binary relation. The elements of G are called objects and the
elements of M items. The inclusion (g,m) € I is read as “object g has attribute m”.
In this paper we assume that all sets are finite, especially G and M.

For A C G, we define A" := {m € M | Vg € A:(g9,m) € I}; and for B C M, we
define dually B' :={g € G | Ym € B:(g,m) € I}. A formal concept is a pair (A, B)
with ACG, BC M, A' =B and B' = A. A is called extent and B is called intent
of the concept. The set of all concepts of a formal context K together with the partial
order (A1, B1) < (Ag, By) :& Ay C Ay (which is equivalent to By O Bsy) is a complete

lattice, called concept lattice of K.
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Figure 1: Formal context about coffee brands sold in a supermarket.
Figure 1 shows a formal context which lists all coffee brands sold in a supermarket.

Figure 2 shows the concept lattice of the context by a line diagram. In the line
diagram, the name of an object ¢ is always attached to the circle representing the
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Melitta Cafe Auslese

J Melitta Cafe Auslese Mild
\Kaisers Kaffee Auslese Mild

Jacobs Kronung Free
Jacobs Krénung Light

Plus Naturmild
Plus milde Sorte

Figure 2: The concept lattice of the context in Figure 1

smallest concept with ¢ in its extent; dually, the name of an attribute m is always
attached to the circle representing the largest concept with m in its intent. This allows
us to read the context relation from the diagram because an object g has an attribute
m if and only if there is an ascending path from the circle labeled by g to the circle
labeled by m. The extent of a concept consists of all objects whose labels are below
in the diagram, and the intent consists of all attributes attached to concepts above in
the hierarchy. For example, the concept labeled by ‘< 6 DM’ has {‘Plus Naturmild’,
‘Plus milde Sorte’, ‘Plus Gold’} as extent, and {‘< 6 DM’, ‘Plus’ [the house brand of
the supermarket], ‘< 8 DM’} as intent.

For X,Y C M, we say that the implication X — Y holds in the context, if each
object having all attributes in X also has all attributes in Y (i. e., an implication is an
association rule with 100% confidence). For instance, the implication {Plus, classic}
— {< 6 DM} holds in the coffee context. Implications can be read directly in the line
diagram: the largest concept having both ‘Plus’ and ‘classic’ in its intent is below the
concept labeled by ‘< 6 DM’. In [15] is shown how also the association rules with less
than 100 % confidence can by visualized in the line diagram.

2.2 Support-Based Computation of the Closure System of all Con-
cept Intents

In the following, we will use the composed function ":B(M) — PB(M) which is
a closure operator on M (i.e., it is extensive, monotonous, and idempotent). The
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related closure system (i.e., the set of all B C M with B” = B) is exactly the set of
the intents of all concepts of the context. The structure of the concept lattice is already
determined by this closure system. Hence we restrict ourselves to the computation
of the closure system of all concept intents in the sequel. The computation makes
extensive use of the following support function:

Definition 2 The support of X C M is defined by supp(X) := ‘fg“ .

In the case of X and Y with X" = Y", both sets have obviously the same support.
On the other hand, comparable attribute sets with the same support also have the
same closures:

Lemma 1 Let X, Y C M.
(1) X"=Y" = supp(X) = supp(Y)
(i1) X CY Asupp(X) =supp(Y) = X" =Y"

This lemma allows us to develop the algorithm in a more general setting:

Definition 3 A weight function on PB(M) is a function s:B(M) — P from the pow-
erset of M to a partially ordered set (P,<). For a set X C M, s(X) is called the
weight of X. The weight function is compatible with a closure operator h if (i)
X CY = 5(X) > s(Y),! (i) M(X) =h(Y) = s5(X) =s(Y), (#54) X CY As(X) =
s(Y)= h(X)=h(Y) .

Let h be a closure operator on a finite set M, and let s be a compatible weight
function. The task is now to determine efficiently the closure system H := {X C M |
h(X) = X} related to the closure operator h.

It is easy to check, that for a given formal context, the support function fulfills
the conditions of Definition 3 for the closure operator A(X) := X" . Another problem
where such a weight function can be used is the computation of the closure system
induced by those functional dependencies which are valid for the actual data of a
relational database (refer to [6]).

We discuss the problem of computing the closure system by using a weight function
in three parts:

1. How can we compute the closure of a given set using the weight function only,
and not the closure operator?

2. How can we compute the closure system by computing as few closures as possi-
ble?

3. Since the weight function is usually not stored explicitly, how can we derive the
weights of as many sets as possible from the weights already computed?

Questions 2 and 3 are not independent from each other. Hence we will not provide
an optimal answer for each of them, but one which improves the overall benefit.

If X C Y = s(X) < s(Y) holds instead of (i) (as e.g. for functional dependencies), then all
‘min’ in the sequel (beside the one in Definition 6) have to be replaced by ‘max’.
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2.2.1 Weight-based computation of closures

We use the constraints on the function s for determining the closure of a set by
comparing its weight with the weights of its immediate supersets.

Proposition 2 Let X C M. Then
h(X)=XU{me M\ X |s(X)=s(XU{m})} .

Hence if we know the weights of all sets, then we can compute the closure operator
(— Algorithm 3, steps 3-7).2 In the next subsection we discuss for which sets it is
necessary to compute the closure in order to obtain all closed sets. In Subsection 2.2.3
we discuss how the weights needed for those computations can be determined.

2.2.2 A level-wise approach for computing all closed sets

One can now compute the closure system H by applying Proposition 2 to all subsets
X of M. But this is not efficient, since many closed sets will be determined several
times.

Definition 4 We define an equivalence relation 6 on the powerset PB(M) of M by
(X,Y)€0: < h(X)=hn(Y), for X,Y C M. The equivalence class of X is given
by [X]:={Y C M| (X,Y) €0}

If we knew the equivalence relation 6 in advance, it would be sufficient to compute
the closure for one set of each equivalence class only. But since we have to determine
the relation during the computation, we have to consider more than one element of
each class in general. As known from algorithms for mining association rules, we will
use a level-wise approach.

Definition 5 A k-set is a subset X of M with |X| = k. For X C B(M), we define
X, ={X € X | |X| =k}

At the kth iteration, the weights of all k-sets which remained from the pruning
strategy described below are determined; and the closures of all (k — 1)-sets which
passed the pruning in the (k — 1)th iteration are computed.

The first sets of an equivalence class that we reach using such a level-wise approach
are the minimal sets in the class:

Definition 6 A set X C M is a key set (or minimal generator) if X € min[X]. The
set of all key sets is denoted by K.

Obviously we have H = {h(X) | X € K}.

Proposition 3 The set K is an order ideal of (PB(M),C) (i.e., XeK, YCX =
YeK).

2In this section, we give some references to the algorithms in the following section. These references
can be skipped at the first reading.
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We will use a pruning strategy given in [1]. Originally this strategy was presented
as a heuristic for determining all frequent sets only (which are, in our terminology, all
sets with weights above a user-defined threshold). We show that this strategy can be
applied to arbitrary order ideals of the powerset of M:

Definition 7 Let T be an order ideal of B(M). A candidate set for Z is a subset of
M such that all its proper subsets are in I.

This definition is justified by the following lemma:

Lemma 4 Let X C By (M), and let Y be the set of all candidate (k + 1)-sets for the
order ideal | X (i. e., the order ideal generated by X ).

1. For each subset Z of ), there exists an order ideal T of PB(M) with I, = X and
Ty = 2.

2. For each order ideal T of PB(M) with I = X the inclusion Iy C Y holds.

The efficient generation of the set of all candidate sets for the next level is described
in the following proposition (— Algorithm 2). We assume that M is linearly ordered,
e.g., M =A{1,...,n}.

Proposition 5 Let X C Pj_1(M). Let C := {{z1,..., a1} | i < j = = < zj,
{z1,.. ,xp—2, xp—1}, {x1,. .., p—0,zp} € X}; and C:={X € C|Vz € X: X \ {z} €
X}. Then C = {X € Br(M) | X is candidate set for | X}.

Unlike in the Apriori algorithm, in our application the pruning of a set (— Algo-
rithm 1, step 8) cannot be determined by its properties alone, but properties of its
subsets have to be taken into account as well. This causes an additional step in the
generation function (— Algorithm 2, step 5) compared to the original version pre-
sented in [1]. Based on this additional step, at each iteration the non-key sets among
the candidate sets are pruned by using (i7) of the following proposition.

Proposition 6 Let X C M.
(1) Letme X. Then X € [X \ {m}] if and only if s(X) = s(X \ {m}).
(11) X is a key set if and only if s(X) # minpex(s(X \ {m})).

2.2.3 Deriving weights from already known weights

If we reach a k-set which is known not to be a key set, then we already passed along
at least one of the key sets in its equivalence class in an earlier iteration. Hence we
already know its weight. Using the following proposition, we determine this weight
by using only weights already computed.

Proposition 7 If X is not a key set, then
$(X)=min{s(K) | Ke L,K C X} .

Hence it is sufficient to compute the weights of the candidate sets only (by calling a
function depending on the specific implementation — Algorithm 1, step 7). All other
weights can be derived from those weights.
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3 The Tritanic Algorithm

The pseudo-code is given in Algorithm 1. A list of notations is provided in Table 1.

Algorithm 1 TITANIC

1)

2) ’Co — {(Z)}

3) k<« 1;

4) forallmeMdo {m}.p_s < 1;
5) C« {{m}|me M},

6) loop begin

7)  WEIGH(C);

8) Kp+{XeC|Xs#X.psh

9) forall X € £ do X.closure <~ CLOSURE(X);
10) if K; = 0 then exit loop ;
11) k4 +;
12)  C « TITANIC-GEN(K) _1);
13) end loop ; ;
14) return '~ { X closure | X € K;}.

Table 1: Notations used in TITANIC

k is the counter which indicates the current iteration. In the kth iter-
ation, all key k-sets are determined.

Ky contains after the kth iteration all key k-sets K together with their
weight K.s and their closure K.closure.

C  stores the candidate k-sets C' together with a counter C.p_s which
stores the minimum of the weights of all (k — 1)-subsets of C. The
counter is used in step 8 to prune all non-key sets.

The algorithm starts with stating that the empty set is always a key set, and that its
weight is — in the case of concept lattices — always equal to 1 (steps 14-2). Then all
1-sets are candidate sets by definition (steps 4+5). In later iterations, the candidate
k-sets are determined by the function TITANIC-GEN (step 12/Algorithm 2) which is
(except step 5) a straight-forward implementation of Proposition 5. (The result of
step 5 will be used in step 8 of Algorithm 1 for pruning the non-key sets.)

Once the candidate k-sets are determined, the function WEIGH(X) is called to
compute, for each X € X, the weight of X and stores it in the variable X.s (step 7).
In the case of concept lattices, WEIGH determines the weights (i.e., the supports) of
all X € X with a single pass of the context. This is (together with the fact that only
max{|X| | X C M is candidate set} passes are needed) the reason for the efficiency
of TITANIC.
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Algorithm 2 TI1TANIC-GEN
Input: Kg_1, the set of key (k — 1)-sets K with their weight K.s.

Output: C, the set of candidate k-sets C'
with the values C.p_s := min{s(C \ {m} | m € C}.

The variables p_s assigned to the sets {pi,...,pr} which are generated in step 1 are
initialized by {p1,...,px}.p-s < 1.

1) €+ {{p1.-- e} |1 <j=pi <pj,
{pla cee 7pk723pk71}a{p13 cee apkaapk} € Kk*l};

2) forall X € C do begin

3) forall (k — 1)-subsets S of X do begin

4) if S ¢ Ki_1 then begin C + C\ {X}; exit forall ; end;
5) X.p_s + min(X.p_s, S.s);

6) end;

7) end;

8) return C.

Algorithm 3 CLOSURE(X) for X € Ky

1) YV« X;
2) forallme X do Y + Y U (X \ {m}).closure;
3) forall m € M \'Y do begin
4) if X U{m} € C then s + (X U{m}).s
) else s <~ min{K.s | K e K, K C X U{m}};
)
)
)

ot

6) if s=X.sthenY Y U{m}
end;

return Y.

-J

8

In step 8 of Algorithm 1, all candidate k-sets which are not key sets are pruned
according to Proposition 6 (i7). For the remaining sets (which are now known to be
key sets) their closures are computed (step 9). The CLOSURE function (Algorithm 3)
is a straight-forward implementation of Propositions 3 and 7 (beside an additional
optimization (step 2)). Algorithm 1 terminates, if there are no key k-sets left (step
11414). Otherwise the next iteration begins (steps 10+12).

4 Experimental Evaluation and Conclusion

Several algorithms have been proposed for computing concept lattices. The most
efficient at the best of our knowledge is Ganter’s Next-Closure algorithm [2]. For
our experimental evaluation, a version of the Titanic algorithm was implemented in
C++ together with a rewriting of Ch. Lindig’s C version of Next-Closure [7]. The
comparisons took place on a Pentium Il running at 600 MHz, with 512 MB of main
memory, and were performed on the MUSHROOM (8,416 objects, 80 attributes) and
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INTERNET (10,000 objects, 141 attributes) databases, both available from the UCI
KDD Archive (http://kdd.ics.uci.edu/), with a varying number of objects.

The results are listed in Table 2 and visualized in Figure 3. They show that on
the relatively strongly corelated MUSHROOMS database, Next-Closure is faster for few
attributes, but takes twice the time of TITANIC for the whole dataset. On the weakly
corelated INTERNET database, the difference is much larger. This stems from the
fact that the development of TITANIC was inspired by the Apriori algorithm which is
known to perform well on weakly corelated data.

Table 2: Database characteristics and evaluation results

Computation time (sec.)

Database # of objects # of attr. | # of concepts | Next-Closure Titanic
Mushrooms 2,500 79 5,394 31.13 48.19
5,000 79 9.064 108.38 75.59

8,416 80 32,086 527.74 200.73

Internet 1,000 141 15,107 16.49 4.33
2,000 141 31,719 66.32 7.31

5,000 141 73,026 381.95 14.31

7,500 141 100,706 803.17 19.13

10,000 141 124,574 1431.86 23.46
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Figure 3: Comparison of TITANIC and Next-Closure on the MUSHROOMS (left) and
INTERNET databases (right)

The problem of computing concept lattices has exponential complexity. This shows
that one cannot expect from any algorithm — however robust it is claimed to be
— that it solves the problem in reasonable time in the worst case. However our
experimental results show that under normal conditions (and if handled with care) a
strong and waterproof algorithm may improve the exploration of unknown regions of
knowledge.
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