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Introduction

The study of matter has been the most interesting and also one of the most important
topics of physics ever since. Matter is what surrounds us all, matter is what we are
made of. Matter, that is—basically—atoms and molecules in terms of our modern un-
derstanding. Composed of (partially) charged quantum particles with different masses.
Their Coulomb interactions define stable compositions of atoms. They also define the
stability of chemical bonds and hence of molecules. Therefore, the interactions also
define the possibilities and outcomes of chemical reactions. And with this, the inter-
actions of the constituents of matter define practically everything from simple atoms
to complex organisms in our world. What starts as quantum physics, quickly leads
to atomic and molecular physics, quantum chemistry, reaction dynamics and chemical
equilibria, biochemistry, cells, organisms, and life.

All this can be further influenced from “outside”, i.e., by different conditions like tem-
perature, electromagnetic fields of static or oscillating character of arbitrary frequency
and even by Coulomb interaction with additional particles. Usually, most interesting are
manipulations from outside directly influencing the Coulomb interactions between the
matter constituents. Since scattering processes with particles usually involve large ac-
celerator machines, this technique is usually applied in the area of high-energy physics.
Also, not as many parameters as in the case of laser systems are accessible. This tech-
nique is mainly used for investigations of nuclear structure. Static fields influence the
level structure of atoms and allow for the analysis of symmetries and degeneracies of
electronic states.

Oscillating continuous-wave laser fields instead correspond to mono-energetic pho-
tons. These directly interact with the charged particles depositing energy there. Param-
eters like frequency and phase, polarisation and to a certain extent intensity of the laser
light can be controlled in today’s labs in a very accurate way. Also, today’s laser sys-
tems are strong enough in terms of intensity to ionise atoms even in the low-frequency
regime, where many photons are needed to deposit enough energy for ionisation events
to take place.

If the laser is pulsed, it can be used to investigate the nuclear dynamics of molecules,
since ionisation at different configurations of nuclear positions will lead to different
Coulomb repulsions if the system is forced to dissociate. The picture of the laser pulse
is that of a shutter from a camera. The shorter the pulse, the higher the temporal
resolution of the dynamics of the investigated system. All this is only possible because
in pulsing the laser, the energy is concentrated in very short instances, while the laser
is otherwise dark most of the time. With this technique, electric fields strengths com-
parable to those found in atomic hydrogen can be produced! This means, the laser is
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able to compete in field strength with what is found inside the system itself. The laser
is no perturbation any more, but acts on an equal footing upon electrons and protons.

To avoid handling with unsuitable units, the atomic units have been introduced,
scaling the physical quantities to values found in atoms and molecules. This is not only
useful for comparisons of (external) quantities with those found in the system itself, but
also allows one to work with numbers of the order of unity, which is always important
when delegating work to computers. The scales are defined as the following:

e Masses are measured in multiples of the electron mass, i.e., m, = 1.

e Actions are measured in multiples of #, i.e., i = 1.

e Charge is scaled with the elementary charge, i.e., |e] = 1.

e As four scales are needed, finally the electric permittivity is scaled as 4meg = 1.

This leads to values for the speed of light of ¢ = 1/« in atomic units, where « is
Sommerfeld’s fine-structure constant. The charge of the electron is eg = —1. One
length unit corresponds to the radius of the first Bohr orbit ag = 0.529177 x 10~ %m.
Energy is measured in units of one Hartree, which is twice the energy of the first Bohr
level in atomic hydrogen, i.e., 1 Hartree= 27.2114 eV. Basically, everything is scaled
according to what is found in atomic hydrogen. This gives a good estimate of how
large a physical quantity really is in atomic dimensions. From now on, all formulae
and expressions will be given in atomic units. In particular, no h will appear where it
usually would. No masses will appear, where electron masses usually would. Electron
charges manifest as minus signs only. This may lead to some confusion first, since the
dimensions of two sides of the same equation seem not to match. After getting used to
it, life is much easier.

With this at hand, we are able to investigate the intrinsic motion of matter (e.g.,
nuclear vibration). As pulses get shorter, reaching the femto-second timescale, and
stronger (< 1 a.u. of field amplitude), more and more interesting effects can be ob-
served, leading to a detailed understanding of electronic behaviour and electro-nuclear
interaction. In field-ionisation of atoms, electrons can be promoted directly into the
continuum, they can be driven back to the ionic core and re-scatter elastically or inelas-
tically, or even not re-scatter at all. Re-scattering inelastically, they can excite or even
knock out further electrons. This strongly enhances the double-ionisation rates. They
can also recombine, sending out high-harmonic radiation up to very high order. Simple
theoretical models such as Franck-Condon factors or ionisation rates can be scrutinised.
Nowadays, where even attosecond laser pulses can be generated, the timescale of elec-
tronic motion is reached. It is in principle possible now to investigate moving electrons.
This is surely the most important missing piece for a full understanding of the intrinsic
dynamics of matter.

All these processes exist in molecules, too, but are harder to explore since more de-
grees of freedom are involved into the dynamics. Molecular alignment is the first hurdle
to be taken when the laser polarisation direction is important. For linear molecules,
this is usually not a problem, since they can be aligned in strong laser fields, and the
rotational periods are orders of magnitude longer than electronic or nuclear motion,
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which are mainly studied within those systems nowadays and are also the main topic
of this work.

The simplest molecule we have is that composed of two hydrogen atoms, Hs. Two
electrons, two protons. A mononuclear, linear, lightweight system with vibrating nu-
clei.! This introduces exactly one additional degree of freedom to a purely electronic
system, namely the vibrational motion of the nuclei along the inter-nuclear axis. This
motion is of course coupled to the electronic motion, and energy is transferred back
and forth between these two very different dynamics. This is exactly the point of
observation of this thesis.

Usually, the motions of electrons and nuclei are treated separately. This stems from
the fact that the nuclear motion is much slower than the electronic motion. Hence, from
the viewpoint of an electron, the situation it finds itself in changes only adiabatically.
This can be compared to a fly whirring around a snail. The rotation of the earth
could stand for the rotation of a molecule in this picture. The separation of scales is a
very powerful tool of theoretical physics to isolate parts of a system that only weakly
influence each other. Since this approach assumes adiabatic assimilation of the electron
to each new situation, i.e., each new configuration of ionic cores, it only works as long
as the electron does not undergo excitations or, even worse, ionisation. Because then
state transitions would come up, whereas in the adiabatic picture, the electronic state
changes according to the changes outside, but the population stays constant and follows
the deformation. For very strong laser fields this is surely not the case. Therefore, we
have to give up what is called the famous Born-Oppenheimer Approzimation, explained
in detail within the first chapter of this work.

If the laser field strength is modest, i.e., small compared to inner-atomic or inner-
molecular field strengths, in can be treated as a perturbation to the system. The
system without laser field is solved and corrections are calculated under the influence
of a perturbative laser field. We certainly don’t reside in this regime. The laser fields
treated within this work are non-perturbative. For extremely strong laser fields, the
atomic or molecular Coulomb potential can be treated as a perturbation to a free
electron in a laser field. This is also not possible here, since such high laser field
strengths would immediately destroy the system under investigation, which is not of
interest either within the scope of this work.

For the case where there is no possibility to distinguish between a system and a
perturbation, where excitation and ionisation will take place, and where the coupling
between electronic and nuclear motion is to be studied, there is no other way of obtain-
ing reasonable results than to start at the very basics and integrate the Time-Dependent
Schrodinger Equation. Only these ab-initio calculations allow for a thorough investi-
gation of the system, since everything not explicitly excluded from the simulation (like
complicated details of interactions, spin, magnetic fields) will be contained in the final
results. The result of the calculation is a wave function, containing all the information
possible to obtain for a quantum system. This procedure will be explained in detail in
the second chapter of this work.

A focus is laid upon single ionisation of Hy and Dy. Therefore, to not lose any data,
extremely large extensions of the computational grid are needed in the direction of elec-

1 . . . . .
Rotation is not taken into account, since we assume aligned molecules from now on.
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tronic motion. A special technique is applied for this. In detail, spectral enhancements
within the kinetic-energy spectra of photo-electrons due to a change in the effective
ionisation threshold are examined. The effect is known from atoms and already deeply
investigated, experimentally as well as theoretically. The same effect is presented for
small molecules, involving the nuclear degree of freedom and therefore avoiding the
need to change the laser intensity to observe the effect. The findings are put in context
with electro-nuclear correlations also found within the data. On this topic, two articles
[1, 2] have been published together with Manfred Lein. All this is presented in the third
chapter of this work.

Finally, a way to optimise kinetic-energy spectra is presented. It takes the Coulomb
energy of photo electrons into account, which is usually neglected in the Fourier method.
It could be shown that, for low-energy electrons, the error is substantial and therefore
the corresponding kinetic-energy peaks are significantly shifted. The key idea is to
make use of the Wigner distribution function instead of simple Fourier transformations,
which yields position-resolved spectra and hence allows for position-dependent Coulomb
corrections. This can be found in the fourth and last chapter of this work.



Zusammenfassung

Die vorliegende Arbeit befasst sich mit der theoretischen, rechnergestiitzten Beschrei-
bung des Wasserstoffmolekiils Ho und seines schweren Bruders, dem Deuteriummolekiil
D5 in kurzen, starken Laserfeldern. Da im Bereich von Laserfeldern, deren Krifte
auf die Elektronen in der gleichen Liga wie die der inneratomaren Krifte spielen,
Niherungsmethoden nicht mehr greifen, wird in dieser Arbeit eine (allerdings stark
vereinfachte) zweidimensionale Schrédingergleichung numerisch integriert. Dabei wird
im Rahmen der Einfachionisation besonderes Augenmerk auf den Prozess der above
threshold ionisation (ATT) gelegt, d.h. der Ionisation unter Absorbtion von mehr Photo-
nen als nétig, um die Ionisationsbarriere zu iiberschreiten. Dabei entstehen charakteris-
tische Energiespektren des Photoelektrons, deren Struktur interessante Abhéngigkeiten
von der Laserintensitéit zeigt.

Das erste Kapitel behandelt die im Bereich der Molekiilphysik sonst hiufig bemiihte
Born-Oppenheimer-Néherung, die allerdings im vorliegenden Falle nicht geeignet ist,
da durch die Induzierung mannigfaltiger nichtlinearer Prozesse bis hin zur Ionisation
von einer Separation von Elektron- und Kernbewegung abgesehen werden muss, da
adiabatische Bewegung nicht mehr gegeben ist.

Im zweiten Kapitel werden die verwendeten numerischen Methoden vorgestellt.
Dabei wird das Wasserstoffmolekiil durch einen effektiven, eindimensional vibrierenden
HyP-Rumpf und ein aktives, eindimensionales Elektron modelliert. Um Energiespek-
tren hoher Giite zu erhalten, wurde eine Splittingtechnik benutzt, bei der die Wellen-
funktion fiir Bereiche grofler Elektronkoordinaten in spezielle Produktzustdnde, die
sogenannte kanonische Basis, entwickelt wird. Dadurch kann in diesem &ufleren Git-
terbereich entkoppelt und fiir jede Koordinate separat eindimensional gerechnet wer-
den. Das ermoglicht eine deutlich hohere Anzahl von Gitterpunkten in Richtung der
Elektronkoordinate, was wiederum hohe spektrale Auflésung sowie vernachldssigbaren
Datenverlust in Bezug auf die Energiespektren bedeutet.

Ein im Bereich der Einfachionisation von Atomen beobachteter Effekt, der eine deut-
liche Erhohung der Ausbeute von gestreuten Elektronen vorhersagt, wenn die Laserin-
tensitéit bestimmte Werte annimmt, wird im Dritten Kapitel fiir das Wasserstoffmolekiil
nachgewiesen. Der Effekt beruht auf der Abhéngigkeit des Ponderomotivpotentials von
der Laserintensitéit und somit einer variablen effektiven lonisationsschwelle. Es konnte
gezeigt werden, dass dieser Effekt fiir den Fall von Mokekiilen, die durch die Kern-
vibration eine zweite, intrinsische Energieskala bereitstellen, zu beobachten ist, ohne
die Laserintensitéit zu variieren. Die effektive lonisationsschwelle hdngt hier vom Vi-
brationsniveau des produzierten lons ab, so dass bei Separation der Energiespektren
in Bezug auf die Vibrationsniveaus des produzierten lons der gleiche Effekt intrinsisch
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beobachtet werden kann. Er entspricht qualitativ den Erwartungen, weicht quantitativ
jedoch von dem einfachen Mechanismus der Energieerhaltung ab, der bemiiht wurde,
um die Vorgénge anschaulich zu beschreiben. Dies ist von dem atomaren Pendant her
bekannt. Der durchgefithrte Vergleich zwischen Wasserstoff und Deuterium entspricht
jedoch auch quantitativ den Erwartungen. Die Resultate dieser Rechnungen konnten
in zwei Artikeln publiziert werden [1, 2]. Schlielich wurde versucht, die Korrelation
von Elektron und Ion quantitativ zu untersuchen. Ein in der Fachliteratur bereits
vorgeschlagenes Maf fiir diese Grofle wurde im Impulsraum impulsaufgelost berechnet.
Dabei konnte eine deutliche Struktur indentifiziert werden, deren genauer Ursprung
aber Spekulation bleiben muss.

Im letzten Kapitel wurde eine neue Methode untersucht, Energiespektren von Pho-
toelektronen zu berechnen. Das {ibliche Problem besteht darin, dass wesentliche Teile
der Wellenfunktion sich zum Zeitpunkt der Berechnung des Spektrums noch in Raumge-
bieten befinden, wo das Coulombpotential des Ions wesentlich von Null verschieden
ist. Durch diesen Umstand werden die Energien solcher Elektronen systematisch iiber-
schéitzt, wenn man lediglich die Fourieranalyse bemiiht, da sie auf den Weg zu einem De-
tektor weiter Energie verlieren wiirden, liefen sie den Coulomb-Berg weiter hinauf. Der
iibliche Weg aus dieser Misere besteht darin, die Elektronen weiter auswérts propagieren
zu lassen, was lidngere Simulationszeiten sowie noch groflere Gitter bedeutet. Es ist je-
doch moglich, die ortsabhéngige Coulombenergie korrigierend abzuziehen, indem man
die Impulse der Elektronen ortsaufgelost iiber die Wignerfunktion berechnet. Aus den
auf diesem Wege korrigierten effektiven Impulsen kénnen dann korrigierte Energiespek-
tren berechnet werden, die es erlauben, auch Elektronen korrekt spektral zu erfassen,
die sich noch sehr nah am Ion befinden. Die Qualitédt dieser Spektren ist erstaunlich
gut und entspricht in den entsprechenden Bereichen quantitativ den erwarteten Abwe-
ichungen zu herkémmlichen, dort fehlerbehafteten Fourier-Spektren.



Chapter 1

The starting point

In the beginning there was nothing but a very complicated Schrédinger Equation,

0 ~
ih ) = A1), (L1)

This holds for almost everything appearing in nature!, even for simple molecules. The
best solver of Time-(In-)Dependent Schrédinger Equations is nature itself. But since
the “description” of a system nature gives us at hand is just the realization itself,
this does not help us in understanding the laws of motion and interaction valid under
certain aspects of life. Therefore we have to introduce simplifications if possible to
extract the very core of a certain problem or system under consideration. Helpful tools
in this aspect are the separation of energy scales, the reduction of dimensionality, or
the approximative decoupling of weakly interacting parts of the system.

Still doing all of this might not be enough in certain cases to thoroughly describe a
quantum system. Experiments have to be done to confirm expectations. But as always,
certain experiments are either not (yet) feasible or just not promising enough to justify
the effort needed to obtain results. This is where an important intermediate step comes
into play: Numerical simulation. In fact, a numerical simulation is, in some sense, an
experiment. If there is no chance for a closed calculation, one can only fall back on
general rules of behaviour and laws of nature. What one does is to prepare the initial
state of the system and to watch it evolve in time under the influence of the prescribed
laws and rules and interactions, i.e., to solve the Time Dependent Schrodinger Equation.
Certain kinds of “measurements” are taken out at the end or during the simulation of the
system which allow us to extract information about the characteristics of the system
under consideration. All this is basically identical to what is done in a laboratory.
The only differences are the limited dimensionality of a simulation, the discreteness of
the numbers on a computer and the simplifications used. On the winning side, the
“experiment” is dramatically cheaper and simpler. It can also be redone arbitrarily
many times without big effort, it will always keep its accuracy and one can strongly
expect a speedup of the simulation in the future, since computers usually obey an
exponentially increasing power with time. Of course all this only holds as long as all
components of the system and its influences upon each other are known. The result

!as long as only mid-energy physics are considered and spin is not important
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of their interplay is then given by the calculation. One must not leave out important
physics within the simulation, otherwise it will not reflect what really happens in a real
system. What is important, has to be investigated carefully. But this is also valid for
every real experiment, where not everything can be measured, where the system can
necessarily not be completely decoupled from the environment and where systematic
errors may as well occur as statistical ones. The demands are different but high in both
worlds.

The first chapter deals with the Born-Oppenheimer Approximation. It will be in-
troduced in detail and discussed in terms of its limitations. In the end it will come out
that for Ho, within this work, one has to go beyond the Born-Oppenheimer approxi-
mation. It will however be employed for Ho", calculating an effective nuclear repulsion
and vibrational states of the molecular ion. The intention of this introductory chapter
is to understand why this approximation does not suit our needs for the full calcula-
tion.c This is important since the Born-Oppenheimer approximation is a legitimate and
powerful tool in theoretical molecular physics, and vastly used in quantum chemistry
as well.

1.1 The Born-Oppenheimer Approximation

The following illustration of the Born-Oppenheimer approximation follows closely [3]
and [4]. The Born-Oppenheimer (BO) approximation was first introduced by Born and
Oppenheimer in 1927. It is ubiquitous in quantum chemical calculations® of molecular
wave functions and was also frequently used for quantum molecular calculations in
physics ever since its appearance. It will be applied to a molecular system described
by the Time-Independent Schrédinger Equation (TISE)

HU(r,R) = E¥(r,R), (1.2)

where r and R denote all electronic and nuclear coordinates, respectively. It consists
of two steps. In the first step the nuclear kinetic energy is neglected, that is, the
corresponding operator T;, is subtracted from the total molecular Hamiltonian

H(r,R) = T,(R) + Te(r) + Va(R) + Ve(r) 4 Ven(r,R) . (1.3)

He(r;R)

In the remaining electronic Hamiltonian He(r;R), containing the electronic kinetic
energy operator, and the potentials describing inter-electronic, inter-nuclear and electro-
nuclear interactions, the nuclear positions R enter only as parameters and represent no
dynamic variables any more. The electron-nucleus interactions are not removed and the
electrons still “feel” the Coulomb potential of the nuclei clamped at certain positions
in space. (This first step of the BO approximation is therefore often referred to as the
clamped nuclei approximation.) The electronic Schrédinger equation

He(r;R)¢(r; R) = Eo(R)¢(r; R) (1.4)

2By this, calculations involving a rather large number of atoms are meant.



1.1. The Born-Oppenheimer Approximation 3

is solved (out of necessity approximately) with a fixed nuclear geometry as input. Ob-
viously, the electronic energy eigenvalue F, depends on the chosen positions R of the
nuclei. Varying these positions R in small steps and repeatedly solving the electronic
Schrédinger equation, one obtains Ee(R) being called the potential energy surface
(PES) of the system. Because this procedure of recomputing the electronic wave func-
tions as a function of an infinitesimally changing nuclear geometry is reminiscent of
the conditions for the adiabatic theorem [5], this manner of obtaining a PES is often
referred to as the adiabatic approximation, and the PES itself is called an adiabatic
surface.?

In the second step of the BO approximation the nuclear kinetic energy T,,(R) (con-
taining partial derivatives with respect to the components of R) is reintroduced and
the Schrodinger equation for the nuclear motion

[Th(R) + Ee(R)] x(R) = E x(R), (1.5)

containing the electronic energies E.(R) obtained before, is solved. This second step
of the BO approximation involves separation of vibrational and rotational motion.
The real number E is the total energy of the molecule, including contributions from
electrons, nuclear vibrations, and rotations.

It will be discussed how the BO approximation may be derived and under which
conditions it is applicable. At the same time we will show how the BO approximation
may be improved by including vibronic coupling. To that end the second step of the
BO approximation is generalised to a set of coupled eigenvalue equations depending
on nuclear coordinates only. Off-diagonal elements in these equations are shown to
be nuclear kinetic energy terms. It will be shown that the BO approximation can be
trusted whenever the PESs, obtained from the solution of the electronic Schrédinger
equation, are well separated: Eyp(R) < E1(R) < E3(R),... for all R. We start from
the exact time-independent molecular Hamiltonian,

H(r,R) = He(r;R) + T,(R), (1.6)

where in general

) , TiA > Tij A> Rap
and )
h
T, = — Ay, 1.8

The position vectors r = {r;} of the electrons and the position vectors R = {R4 =
(Raz, Ray, Raz)} of the nuclei are with respect to a Cartesian inertial frame. Distances
between particles are written as r; 4 = |r; —R 4| (distance between electron i and nucleus
A) and similar definitions hold for r;; and Rap. The constants explicitly entering the

3Tt is assumed, in accordance with the adiabatic theorem, that the same electronic state (for instance
the electronic ground state) is obtained upon small changes of the nuclear geometry, i.e., small changes
in the potential make the system follow the changes without populating other states. The method
could give a non-continuous PES if electronic state-switching would occur.
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formula are Z4 and M4, the atomic number and charge of nucleus A, the electron mass
me, and Planck’s constant A. It is useful to rewrite the nuclear kinetic energy operator
as follows:

p? 0
To=)Y Y -3¢ with Py, =—ih : (1.9)
ol 2M 4 ORAq
Suppose we have K electronic eigenfunctions ¢y (r; R) of He(r;R), that is, we have
solved
He(r;R)¢r(r;R) = Ex(R)¢p(r;R) for k=1,... K. (1.10)

The electronic wave functions ¢ (r; R) will be taken to be real, which is possible when
there are no magnetic or spin interactions. The parametric dependence of the functions
¢r(r;R) on the nuclear coordinates is indicated by the R symbol after the semicolon.
This indicates that, although ¢ (r; R) is a real-valued function of r, its functional form
depends on R. We will assume that the parametric dependence is continuous and
differentiable, so that it is meaningful to consider

3¢k(r; R)

Py :R) = —ih
A0 ®k(T; R) = —i OR 1

for a=u,y,z, (1.11)

which in general will not be zero. The total wave function ¥(r, R) is expanded in terms

of ¢r(r;R),

K
\I’(I‘, R) = ZXk(R)¢k(r; R)’ (1'12)
k=1
with
(o (r;R) | @r(r; R)) (r) = Onri; (1.13)

and where the subscript (r) indicates that the integration, implied by the bra-ket nota-
tion, is over electronic coordinates only. The expansion coefficients yi(R), suggestively
already looking like wave functions, only depend on R and can be interpreted as nuclear
wave functions.

After multiplication by ¢}, (r; R) from the left and integration over the electronic
coordinates r, the total Schrédinger equation (1.2) is turned into a set of K coupled
eigenvalue equations depending on nuclear coordinates only,

[Hn(R) + He(R)] x(R) = Ex(R), (1.14)
where, by definition, the matrix with general element
(He(R))k/k = <¢k’(r; R)‘He‘(bk(r; R)>(r) = 5k’kEk(R) (115)

is diagonal. The column vector x(R) has elements xx(R), & = 1,..., K. The nu-
clear Hamilton matrix H,(R) is non-diagonal with the following off-diagonal (vibronic
coupling) terms,

(Hn(R) . = (0n (1 R)| T [ 61 (15 R)) - (1.16)

The vibronic coupling in this approach is through nuclear kinetic energy terms. Solution
of these coupled equations gives an approximation for energy and wave function that
goes beyond the BO approximation. Unfortunately, the off-diagonal kinetic energy
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terms are usually difficult to handle. (This is why often a diabatic transformation is
applied, which retains part of the nuclear kinetic energy terms on the diagonal, removes
the kinetic energy terms from the off-diagonal and creates coupling terms between the
adiabatic PESs on the off-diagonal.)

If we can neglect the off-diagonal elements the equations will uncouple and simplify
drastically. In order to show when this neglect is justified, we write, leaving out func-
tional arguments, by applying the Leibniz rule for differentiation, the matrix elements
of T, as

h2
2M 4

(Or'|Paa®r) vy Paa + (Or| Tudr) (r)-

(1.17)
The diagonal (k' = k) matrix elements (¢r|Paa®r)r) of the operator Pa, vanish,
because this operator is Hermitian and purely imaginary. The off-diagonal matrix
elements satisfy

Hn(R)k’k = (HH(R))k/k == 619’an + 22
A«

(Drr[[Pac, He|bk) (x)
Ey(R) — Ep(R)

(D[ Paadr) (r) = (1.18)

The matrix element in the numerator is

(O |[Pac, Hel k) ) = ihZ4 Y (w %!@M(r) with 14 =r; —Ra.  (1.19)

The matrix element of the one-electron operator appearing on the right hand side is
finite. When the two surfaces come close, Ex(R) ~ Ei/(R), the nuclear momentum
coupling term becomes large and is no longer negligible. This is the case where the
BO approximation breaks down and a coupled set of nuclear motion equations must
be considered, instead of the one equation appearing in the second step of the BO
approximation. Conversely, if all surfaces are well separated, all off-diagonal terms can
be neglected and hence the whole matrix of P2 is effectively zero. The third term on the
right hand side of Eq. 1.17 can approximately be written as the matrix of P2 squared
and, accordingly, is then negligible also. Only the first (diagonal) kinetic energy term in
this equation survives in the case of well-separated surfaces and a diagonal, uncoupled
set of nuclear motion equations results,

[Th(R) + Eu(R)] xx(R) = Exx(R) for k=1,...,K, (1.20)

which are the normal second-step of the BO equations discussed above. We reiterate
that when two or more potential energy surfaces approach each other, or even cross,
the BO approximation breaks down and one must fall back on the coupled equations.

1.2 Going Beyond the Born-Oppenheimer Approximation

Calculations of molecules involving the Born-Oppenheimer approximation usually (de-
tails follow) yield quite reasonable results, but of course the validity of every approx-
imation is limited. In section 1.1, the BO approximation was introduced and also its
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limitations were pointed out: As soon as two or more coupling? PES (i.e., total poten-
tial energy surfaces as functions of the nuclear positions for different electronic states)
of the system in question closely approach each other, or even cross, the adiabatic pic-
ture is no longer valid. Electrons do not just follow the moving nuclei adiabatically, but
instead may change their state into other levels, without changing the nuclear configu-
ration. When the electrons are strongly driven from outside, the potential curves are
significantly bent and it may easily happen that for some nuclear distance the ignored
energy corrections stemming from the electro-nuclear coupling exceed the energy gaps
between neighbouring PESs. As soon as ionisation plays a role, the BO approximation
is definitely over-challenged. In the situation of this work, where the connection be-
tween strong-field single ionisation and nuclear motion shall be investigated, a different
approach has to be taken.

In our case, a laser electric field drives the electron(s). For simplicity we start our
considerations with a single-mode laser of infinite pulse duration, i.e., a continuous
wave (CW), and frequency wy. The dressed-states picture can help understanding
the situation. Now, the electric field is treated quantum-mechanically, and due to
the limitations set upon the laser field, all photons have the same energy hw;. Each
electronic state can now be “dressed” with photons, i.e., electrons can absorb photons
from the laser. This rises the energy FE.(R) an electron can have by some integer
multiple of the photon energy hwy, to E.(R)+nhwy,. Transferred into the PES picture,
this means that each PES has to be repeated n times, shifted by hwjy respectively.
This way, otherwise well distinct PESs are now able to approach or even cross each
other, this being introduced by a sufficiently strong laser field. Correction terms can
grow large in these cases. Non-adiabatic motion in induced. In this situation, the
BO approximation may reach its limits. Depending on the intensity of the laser, the
probability to absorb many photons can be quite large. Hence even for photon energies
well below the gap of two PESs an intense field is still able to couple these two states
by absorption of many photons.

In the present situation of this work, the intensity of the laser is strong enough to
reliably treat the laser electric field completely classically. This fact is associated with a
high photon density. Hence, even for well-separated PESs as is the case for the hydro-
gen molecular ion, multi-photon effects can easily induce transitions between ground
and first excited state. For the H;‘ ion this already means dissociation. In fact, the in-
terplay of avoided crossings and their dynamics due to the oscillating laser field leads to
important effects in H;L like bond-hardening, bond-softening etc. Bond-softening is the
complex interplay of avoided multiphoton crossings and nuclear wave packet dynamics
in the course of an oscillating laser field. Due to changing avoided crossings of PESs
during a laser cycle, the nuclear wave packet can under certain conditions easily travel
onto a dissociating PES at one time, there being further accelerated towards larger R
at a later time, finally dissociating. This interplay leads to unexpectedly strong dis-
sociation dynamics and is therefore referred to as bond-softening [6, 7]. This periodic
mechanism is akin to a conventional pump. Bond-hardening on the other hand comes
up when due to an avoided crossing a potential well builds up, gathering part of an

4Because with the absorption of every photon the parity of the molecular state has to change, the
coupling depends on the number of photons needed for the transition and the symmetry of the states
in question.
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otherwise dissociating wave packet as some vibrationally excited state, which is later
released back into a bound state. This way, dissociation is diminished. This process of
vibrational trapping is also referred to as bond hardening|8, 6, 7).

Yet it is possible to diminish couplings between PESs induced by strong laser fields
via choosing specific polarisations, such that the corresponding dipole does not mediate
between the states in question.

If it is not advisable to make use of the BO approximation, one has to go beyond
it. This means we have to take direct interactions between electrons and nuclei into
account. Further common approximations like perturbation theory do not apply here as
well, since the forces of the laser field upon electron compete with the inner-molecular
forces on equal level.

For monochromatic laser light, the Floquet theory [9] is a good access to the system.
Due to the strict periodicity of the laser field and hence the time dependence of the
Hamiltonian, the restrictions on the wave functions are quite strong. For example, they
can be written as a product of a plane wave and a time-periodic amplitude, which will
obey the same periodicity as the laser field. The formalism is similar to the Bloch
formalism for space-periodic potentials.

Even if the laser is pulsed, in the case of adiabatic pulse ramps one can make use of
the Floquet picture, in combination with the adiabatic theorem [10]. If the laser pulse
is long compared to the laser period, and the pulse envelope is rather flat, i.e., it goes on
and off slowly compared to the laser frequency, another separation of scales is possible.
The Floquet picture is possible even then through separation of time scales. The fast
oscillation and the slow envelope of the laser are treated separately and the system can
be solved as in the Floquet picture, with the second time scale treated parametrically.

Still, none of the above-mentioned techniques will suffice, since the laser fields within
this work are comparably strong (no perturbation), the pulses are comparably short
and hence the envelopes are steep (no adiabatic Floquet). The spectrum is comparably
broad and hence neither monochromaticity nor adiabaticity of the laser pulse can be
assumed. Energy scales lie close, time scales lie close. The full interaction has to
be taken into account. Therefore, the only way to gain access to the system under
consideration is via solving the TDSE explicitly. Of course, simplifications will have to
be introduced since a four-partite molecule in a laser field cannot be fully treated even
today in full dimensionality. These aspects will be addressed in the following chapter.
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Chapter 2

Numerics

This chapter contains sections about the numerical techniques used to obtain the pre-
sented results. Examined is single ionisation of the hydrogen and deuterium molecules.
As the previous chapter clearly pointed out, none of the usual approximations can be
made to analytically investigate the systems(s) considered. We have to go back to the
very basis of Quantum Mechanics, i.e., basically all data is produced by solving the Time
Dependent Schrodinger Equation (TDSE). This is done on a 2D grid, representing one
electronic and one nuclear degree of freedom. Obviously, this is a severe simplification.
Nevertheless, the model is capable of yielding definite effects. Since 3D calculations are
computationally still demanding, especially if the electronic motion stretches out over
several thousands of atomic units, for a first investigation of molecular channel closing
effects calculations with reduced dimensionality suffice our needs.

First of all the properties of the grid are discussed. Propagation schemes follow,
continued by a detailed explanation of how parts of the wave function are extracted
for further analysis. A grid splitting technique is presented that allows for huge grid
extensions in one dimension of the problem. A decomposition of the wave function into
sums of products states is also discussed as a way of reducing computational effort.

2.1 Grid construction

All computations contained in this work have been done on a simple rectangular, regu-
larly spaced grid in each dimension. The size of the grid (in atomic units) is determined
by the calculation that has to be done, i.e., by the strength of the laser field, the length
of the laser pulse and the amount of data that is wanted to be kept. The simulation
time certainly has influence on this parameter, since strong laser fields are capable of
driving electrons hundreds or even thousands of atomic units away from their nuclear
core even in ultra-short few-cycle pulses. If additionally further time of propagation
without laser field is wanted to allow for the escape of the electrons from the central
parts of the Coulomb well, the fastest electrons will still move on outwards without
deceleration. This enhances the need for large grid sizes further. If loss of electronic
probability is intolerable, an additional security buffer should be appended. For 2D
simulations, numbers of about 10°-107 grid points are easily reached, combined with
long propagation times.
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The grid spacing on the other hand is chosen according to the momenta that can
occur during a calculation. The highest frequency that can be displayed on a discrete
grid is

2 o7

Wmax = ﬁ = Z7
where A is the grid spacing. This is clear because the fastest oscillation detectable on
a discrete grid would be two values changing back and forth grid point after grid point.
This oscillation has exactly the above mentioned frequency wpax. The sampling theo-
rem reflects exactly this fact, since it says that one always has to sample a continuous
function with at least twice the highest occurring frequency to uniquely represent it
in Fourier space. Therefore, a careful investigation of the system and an estimation of
the momenta possible within the dynamics during propagation has to be done first. In
particular, the two degrees of freedom appearing in this thesis behave quite differently
due to the large difference in mass and acceleration and have to be treated separately
within this estimation.

For this work, we chose a grid spacing of Az = 0.36 a.u. for the electronic coordinate
and AR = 0.05 a.u. for the nuclear coordinate. This reflects the very different momenta
due to the three orders of magnitude of difference in mass of electron and nuclei.
This obviously dominates over the driving of the laser field, which only affects the
electron, while the nuclei oscillate in a Born-Oppenheimer potential with practically no
dissociation.

(2.1)

2.2 Propagating the Wave function

To propagate the wave function 1 (x,t) in time, i.e., to solve the TDSE

.0 -
zaip(x,t) = H(x,t)(x,1), (2.2)

the Split-Operator technique is used. Within this approach, the time-evolution operator
A~ ~ t/ ~
U(t',t) = © exp <—i H(T) d7'> , (2.3)
¢

where O is the time-ordering operator reflecting the fact that H will not commute with
itself at differnt times, is decomposed in the following way: The Hamilton operator
consists of potential and kinetic parts, i.e., parts that contain only derivatives with
respect to coordinates, and parts that contain only coordinates,

H(x,t) = T(dy) + V(x,1), (2.4)

where the vector x stands for all coordinates of the system. If we consider an infinites-
imal time step dt, the above equation (2.3) simplifies to

U(t + dt, t) = exp[—iH (t)dt], (2.5)

where we assume that the time dependence within the Hamiltonian itself is in a sense
slow. In fact, the meaning of “slow” can be clearly expressed as soon as numerical
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application of this method takes place, for then the infinitesimal time step dt¢ has to be
replaced by some finite time step d¢. The necessary condition is then that the Hamilto-
nian changes only negligibly within a time change §t. Assuming all these conditions are
met, propagating a wave function from time ¢ to time ¢ + d¢ reduces to the application
of the time evolution operator,

B(x, T + 6t) = exp[—iH (£)5t](x, 1). (2.6)
Splitting the Hamiltonian as in Eq. (2.4) gives

exp(—z'(f + 17)&) — exp(—iT5t) exp(—iVdt) exp (—z'[f, V]st2/2 + 0(&3)) (2.7)

according to the Baker-Hausdorff formulae, and in general [T, ‘7] # 0. We will ignore
terms above square order in 6t from now on. But still, leaving out the term containing
the commutator will introduce a large error proportional to 6t2. However, if we further
split the central term into exp(—iV6t/2)exp(—iVt/2), and then change order with
the first term, we introduce a phase, such that

exp(—iTdt) exp(—iVot/2) exp(—iV 6t /2) =
exp(—iV6t/2) exp(—iTst) exp(—iV 5t /2) exp(i[V, T|6t%/2), (2.8)

where the phase exactly compensates for the above term of order O(§t?). So, if the
Hamiltonian is symmetrically split, the time evolution operator reduces to

exp (—iﬁ(t)ét) = exp <—ig§t> exp(—ifét) exp(—i%ét) exp(O(6t%)). (2.9)

The last factor is now close enough to unity to be ignored. This form of the time
evolution operator is now easily applicable. The two factors containing the potential
operator act on the (coordinate-space) wave function by simple multiplication, since
they are diagonal in coordinate space. An alternative approach would be the application
of the Crank-Nicolson algorithm, an implicit scheme working with finite differences to
express the time and space derivatives. In this thesis, the Fourier transform was used
instead: In momentum space, the kinetic factor is also diagonal. The clear payoff is that
Fourier transforms cannot be efficiently parallelised. But since this was never wanted,
the existence of an efficient discrete Fourier transform algorithm (FFTW) was rated
higher than possible parallelisation. Altogether, time evolution now results in

P(x,t+ 0t) = exp(—i%ét) F! exp(—if“ét)]—"exp(—i%ét)w(x, t), (2.10)

where T is the kinetic energy operator in momentum representation, F is the Fourier
transform operator, defined by

o) = Uomt) = 5 [ [ dxexp(-ipaxjuix. 1), (211)



12 Chapter 2. Numerics

transforming from coordinate space to momentum space, and F ! is the inverse Fourier
transform operator transforming back from momentum to coordinate space. No deriva-
tives have to be performed, all operators act by simple multiplication, because they are
diagonal in their application domain. Instead, though, time evolution now contains
two Fourier transforms. The accuracy of this method obviously depends strongly on
the size of the time step 0t. The time step has to be chosen in such a way that no
significant change within the Hamiltonian takes place during a time Jt. In our case,
this means that the laser field must not change significantly during a time §t. This,
and the energies appearing within the simulation, determines the actual size of the time
step.

As another advantage of this method, the applied operator is unitary, therefore the
norm of the wave function stays constant. No re-normalisation during the propagation
is necessary.

2.3 The Time-step

As just mentioned in the previous section, the size of the time step §t is crucial for the
accuracy of the propagation operator. In principal, there exists a method to increase
the time step via introduction of another splitting of the Hamiltonian into five terms
[11]. This could reduce computational effort since a larger time step means lesser
propagation steps for the same time period. But the size of the time step also comes
into play when looking at the energies within the system, since in quantum mechanics,
energy converts to temporal oscillation within the wave function. Of course, it is always
possible to expand a wave function into energy eigenstates of the system,

G(x,t) = > hn(x) exp(—iEnt). (2.12)

The stationary eigenstates 1, (x) will rotate in complex space with frequencies wy,
proportional—and in the system of atomic units identical—to their eigen-energy FE,.
The size of the time step now determines the maximum frequency of rotating energy
eigenstates that can be represented within the simulation. Hence, the time step sets an
upper limit to energies that will be treated correctly during the simulation according
to

T

5

Ernax = (2.13)

Therefore, a careful estimation of energies appearing during the simulation has to be
carried out. In our case, the maximum energy investigated within the kinetic-energy
spectra of photo-electrons reaches up to 80 eV corresponding to approximately 3 a.u.
of energy. This alone would allow for a time-step of about dt &~ 1 a.u., which is too
large in any case. Here, obviously the split operator method sets the restrictions. We
chose a time-step of dt = 0.0276 a.u. which was confirmed to be sufficiently small to
yield correct results.
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2.4 Finding the Ground State

There exist different techniques to calculate numerically the ground state of a given
Hamiltonian. Only one of them is used in this present work. Anyway, another famous
one shall at least be mentioned, because it is quite elegant and fruitful for situations
where the other one fails. This method is called Spectral Method. In contrast to this,
the method of Imaginary-Time Propagation is used exclusively throughout this work,
because it was found to be very reliable, and the major payoffs it brings along with it
did not gravely advise against it in this particular case.

The results for the 2D ground states of Hy and Ds as modelled in this work are
plotted in Fig. 3.11. Also, the vibrational ground and excited states of Hy™ and Do™
have been calculated with this method. The results of vibrational energies can be found
in the Appendix, Tab. A.1. The ground-state energies of the neutral systems came out
as Ei2 = —1.164536 a.u. and E5? = —1.167439 a.u., respectively.

2.4.1 The Spectral Method

The Spectral Method utilises the spectrum of the autocorrelation function of a wave
function propagating under the influence of the Hamiltonian in question. It is not
important to choose a specific wave function for this method to work. The only thing
one has to do is propagate the chosen wave function in time. Since this is wanted in
later calculations anyway, there has so far no extra work to be done.

It is generally possible to decompose a wave function into a superposition of energy
eigenstates of the Hamiltonian H under consideration. (For the sake of simplicity, we
will discuss here only the one-dimensional case.) Let us assume we know the energy
eigenstates ¢, (x) of the system,

H¢n(x) = En¢n(x)a (2'14)

and hence the decomposition of our initially chosen wave function ¢(x) into these
eigenstates, namely

vle) = Y antn(o), an = [ @) de, (2.15)

Then we also know the time evolution of the wave function under the Hamiltonian in
question,

Y(x,t) = exp|—iHt] Z ann(x) (2.16)

n

= Z any (x) exp(—iEpt), (2.17)

where the second equality only holds for time-independent Hamiltonians. This repre-
sents the well-known fact, that the energy eigenstates 1, (x) of a Hamiltonian system
only gain a phase under time evolution, which is proportional to the energy F,, of the
eigenstate in question. In other words, all the different energy eigenstates 'rotate’ in
the complex plane, having all different angular frequencies w,, = E,. (Of course they
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are only all different if the system shows no degeneracy.) Now we have easy access to
the eigenenergies of the system, which are proportional to the rotation frequencies of
the energy eigenstates under time evolution. Let us assume that there is only a finite
number N of eigenenergies available for the system. Obviously, each energy eigenstate
V() oscillates with its specific eigenfrequency w, = E,,. Hence, after a time 27w, !,
the eigenstate revives for the first time. In other words, 1, (z,0) = 9, (7, 27w, !). This
is of course true for all n. If this process happens several times, a structure in the time
propagated wave function builds up. To get access to this structure, we calculate the
autocorrelation function of ¥ (x,t), namely

C(t) = /¢*(x,0) Y(x,t)dr. (2.18)

This yields information about when in time v (z, t) resembles its structure of time ¢t = 0.
One can easily estimate that there are not only similarities within the wave function
for full revivals after time Q1 but also partial revivals after each time w, ! when only
one of the energy eigenstates resembles its structure from time ¢t = 0. This can be seen
by using the wave function expansion (2.15) in the definition of the autocorrelation
function,

C(t) = lan|* exp(—iEnt). (2.19)

All coefficients being real now, the frequencies involved in the change of the wave
function are clearly identified as w, = F,. To obtain the eigenenergies of the system,
we therefore calculate the spectrum of the autocorrelation function,

O(E) = % / C(t) exp(iEt) dt (2.20)

= an6(E - E,). (2:21)

The spectrum is peaked at the eigenenergies of the system. This result is of course
only the ideal limiting case for infinitely long propagation, which in practise can never
be reached. Nevertheless, it makes good sense to propagate for a time T' = N 27w L
N > 1, where wy is the ground-state frequency, or alternatively the lowest frequency of
interest. Depending on the propagation time, we can now calculate the eigen-energies
up to arbitrary accuracy. Obviously, the high frequencies will appear already for short
propagation times, while the lowest eigenenergies will only show up if they cycle often
enough and hence leave their marks in the autocorrelation function.

With the eigenenergies at hand, we can now calculate the energy eigenstates of the
system. To accomplish this, we multiply the initial wave-function ¢(x,t = 0) with the

complex conjugate of the phase factor that belongs to the energy in question,

Uy (2,1) = (2, t) exp(iEpt), (2.22)

containing the eigenenergy F, s picked from the autocorrelation spectrum. This leads
to the expansion

Do (x,t) = Z ann () exp(—iEnyt), Eny = E, — Epy. (2.23)
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For n = n/, the exponential vanishes, hence 1,/ () is the only function in the expansion
with constant phase 1. All other contributors oscillate in time and therefore average
out under a time integration,

T _ T
Q,Z)n/(:v)oc/o ¢n/(:r3,t)dt:/0 Y(x,t) exp(iE,yt)dt. (2.24)

With this method, any energy eigenstate from the spectrum is directly accessible. This
is the major difference between this technique and the following one.

2.4.2 Imaginary-Time Propagation

This method was used to calculate the initial states for all simulations within this
work. The major limitation is the necessity of the Hamiltonian to be bound from
below, because this technique will always drive a wave function towards the energetically
lowest-lying accessible state. If there is now lower bound, the method will not converge.
Therefore, it is e.g. not suited for ground states of Dirac calculations, which contain
negative energy states of arbitrary depth.

The idea of this method is based on a simple mathematical trick: Again we assume
to know all energy eigenstates 1, (x) of the system under consideration. Then, again,
we also know the time evolution of a given wave function,

P(x,t) = Z ann(x) exp(—iEpnt), ap = /wz (x)(z,t =0)dz. (2.25)

But changing time from ¢ to —ir, i.e. propagating (backwards) in imaginary time, we
replace the oscillating phases exp(—iF,t) of the energy eigenstates by an exponential
damping exp(—E, ), the damping factor being the respective eigenenergy E,,, assuming
only positive energies so far. Hence, higher energies lead to stronger damping of the
respective eigenstate in the composition of the total wave function. In other words, the
state with lowest energy is least damped during time evolution and will gain dominance
over all others within the expansion. In the case of negative eigen-energies, the method
still works, but the lowest-lying state is now the one gaining most of all states in the
expansion. This also shows, why a system has to be bound from below. If this were
not the case, this would imply infinitely growing exponentials in this step. Unbound
systems simply do not converge.

After several time steps of propagation, one has to re-normalise the wave function
and to continue propagating in imaginary time. As the method obviously converges
towards the energetically lowest-lying eigenstate contained in the initial wave-function
(z,t = 0), one has to take care that the desired state (usually the ground state of the
system) is present in the initial wave function, which is otherwise arbitrary. Starting
with a constant function ¢ (x,0) = C (gerade function of z) or ¥ (z,0) = = (ungerade
function of x) as initial wave function is a good starting point to guarantee a nonzero
overlap with any state in question. Anyway, usually small numerical errors always lead
to a small occupation of the ground state level, so that any wave function should fit as
a starting point.

It is also possible to converge to other states than the ground state of the system,
as long as there is a possibility to select it. One example would be to relax to the
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energetically lowest-lying state of a certain symmetry, which need not necessarily be
the ground state. By repeatedly projecting out the symmetric fraction of the wave
function,

¢,($,t) = 7/)(%75) - /wi(x’t)¢(x’t) dx’ ¢+($,t) = %[1[)(:6,75) + w(_x’t)]’ (2'26)

which will due to numerical errors usually be slightly populated again and again, one
will finally relax to the lowest antisymmetric state contained in the initially chosen wave
function, and vice versa. Higher excited states can also be calculated in the same way
by projecting out all lower-lying states in the process of damping. Obviously, one needs
to know them before. It is not possible to selectively calculate an energy eigenstate
somewhere in the middle of the spectrum, in contrast to the Spectral Method mentioned
above. One always has to climb the ladder starting from the lowest accessible state of
the system.

The eigenenergy FE, of the just found state can easily be calculated from the norm
of the wave function, as soon as the relaxation has completed and only one energy
eigenstate is occupied. Then, the damping acquired during one ’propagation step’ is
known and contains the energy wanted. After normalisation of ¢ (x,7), we apply one
final 'propagation’ step and arrive at

¢(9€, T = Z‘dT) = 1/1(967 T) GXp(—En/dT) = an’wn’(x) eXp(—En/dT), (2'27)

all the other states being successfully suppressed, i.e. in particular |a,/| = 1. The norm
of this wave function reduces to

| (x, T —idr)|| = / |y () exp(—En/dT)|2 dz (2.28)
= |an |* exp(—2E,,dr) (2.29)
= exp(—2E,dr). (2.30)
Therefore,
B, — —%m [, 7 — idr)]| (2.31)

This method is also very easy to implement, because again nothing more than simple
propagation in (imaginary) time is needed.

2.5 Masking

To avoid reflections at the grid boundaries, masking functions are used to force the wave
function smoothly down to zero before the grid borders are reached. In a simulation
such as those used in this thesis, it is hardly possible to prevent tiny fractions of the
wave function from hitting the grid boundaries. A grid size which would guarantee this
is by far too large in terms of physically significant effects. The exact amount of loss
can be checked via this technique, and the procedure is absolutely safe as long as the
masking region z,, is large enough,

max

Dy
My

At, x =2z R, (2.32)

Tm >
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where p'®* is the largest momentum present in the z-coordinate, m, is the mass of

the corresponding particle and At is the time step used within the calculations. As a
good estimate, the maximum momenta representable on the grid in each direction can
be taken as pi'®*, see section 2.1. This way it is impossible for the wave function to
reach one of the grid boundaries before being damped out.

Also when analyzing the wave function with respect to ionisation, only certain parts
of the grid will be used as a basis for further calculations such as spectral analysis. To
obtain reasonable results after application of, say, Fourier transforms, one should take
care that the grid part in question is masked out with a smooth window function, such
that the function under investigation will smoothly run to zero within this area. This
avoids artifacts in the spectra due to abrupt changes of the wave function at the ends of
the examined intervals, which would lead to high frequency contributions not present
in the data itself.

The mask functions used are simple (halves of ) Hanning windows,

wi(z) = 0.5+ 0.5 cos (i w>, 2 € [0, 2], (2.33)

Tm

where the sign of the second term determines the orientation of the mask, i.e., distin-
guishes rising and falling mask functions.

2.6 Fourier Transformations

The propagation scheme applied in this work, as well as spectral analysis, calculation
of the Wigner distribution function and even convolution of a function with a kernel
involve applications of Fourier transforms. If Fourier transformations are applied nu-
merically, usually we automatically speak about Fast Fourier Transforms (FFTs). A
huge amount of literature can be found on this topic. This work will only contain a brief
overview of important facts and details necessary to follow the steps done to obtain the
presented results.

Every part of a wave-function that has been Fourier-transformed within this work
has beforehand been masked with a smooth mask function. We refer to Section 2.5
for details. This is important to avoid artifacts stemming from abrupt changes at the
boundaries of the grid. They are easily produced when cutting somewhere in the middle
of the grid. This way, extremely high frequency components are introduced artificially,
later spoiling the spectrum. Additionally, one has to take into account that an FFT is
always a circular Fourier transform, i.e., the data is bent ‘round the corner such that the
array loops within itself. In other words, the data is repeated periodically. Therefore,
if the data is not really periodic but limited, as is the case for grid snippets, padding
zeros at the end will lead to an interpretation of the data by the FFT algorithm that
matches reality better. Zero-padding of course lengthens the data array, but it only
corresponds to ideal band-limited interpolation in the frequency domain, but it does
not increase the resolution of the spectrum, since no further data is added.

All FFTs necessary for this work have been done with the routines provided by the
FFTW package, version 3.0.1, which is available in the Internet.
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2.7 Canonical Basis State Expansion and Correlation

2.7.1 Canonical Basis States

Let 9(z, R,t) be a time dependent two coordinate wave-function. In the context of this
work, one shall interpret z and R as the electron coordinate and the core separation,
respectively. Then, there naturally exists a decomposition of ¥(z, R,t) into products
of orthonormal single particle wave-functions,

1/J(Z,R, t) = Zaij(t)gi(z,t)jzj (R,t). (2.34)

]

This expansion is exact, as long as the double sum runs to infinity for both indices,
i.e., the basis is complete for both degrees of freedom. If one particularly chooses the
so-called canonical basis {¢n(2,t)xn(R,t)}, the above double sum reduces to a single
sum [12],

1/}(27]%7 t) = Zaj(t)¢j(zvt)Xj(th)v (2'35)
J

and in contrast to the double sum this representation is unique. Still it is exact, as long
as an infinite summation is applied. Under the condition that v (z, R, t) be normalised,
ie.,

// (2, R, t)]* dzdR = //¢(z,R,t)1,Z)*(z,R,t) dzdR =1, (2.36)

it immediately follows

>_las®F =1, (2.37)

as is usual for an orthonormal expansion. A simple example that shows the possibility
to reduce the decomposition (2.34) to a single summation is to make use of the relative
state formalism [13],

V(2 R, t) = Z al-j(t)%i(z, t)X; (R, 1) (2.38)
=D 0i(zt) Y aiX (R, 1) (2.39)
@ J

=2 Gz ON(R,Y), (2:40)

where ?i(R, t) is the state relative to ggi(z, t), the system being in the two-particle state
¥ (z, R, t). This way, to each given state, the state relative to it in terms of 1)(z, R, t) can
be given. Of course, they are not orthogonal in the R domain owing to the arbitrariness
of the chosen basis. Still, the picture of relatives states also holds for the canonical basis
states: If the state within domain z is known, for a given two-particle state the state
within domain R is immediately given. It is worth keeping this in mind.
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2.7.2 Single-Particle Density Matrices

Now we define the reduced or single-particle density matrices
pe(z, 2 t) == /¢(2,R,t)1/)*(z',R,t) dR, (2.41)
pn(R, R 1) == /w(z,R, )™ (2, R, t) dz, (2.42)

where one coordinate is integrated out respectively, and which are obviously hermitian,
ie.,

pe(z,2',t) = pX(2, 2, 1), (2.43)
pn(R, R t) = ph(R', R, 1). (2.44)

Another obvious feature of the single-particle density matrices is their unit trace,

/pe(z,z,t)dz = /pn(R, R, t)dR =1, (2.45)

which is identical to—and thus follows from—the normalisation condition (2.36) of the
wave function. The trace is also equal to the sum of eigenvalues. This is another reason
for the unity of the trace, because the sum over the eigenvalues equals unity. This is
because the eigenstates of the single-particle density matrices are just the single particle
orbitals ¢;(z,t) and x;(R,t) of the canonical decomposition (2.35),

/ pu(R R ) (R AR = |ay(8) x5 (R, 1), (2.46)
/ pel, 2 00 (2, 02" = [ag (1) 65(2. 1), (2.47)

with corresponding eigenvalues ]aj(t)\Q. The above relations are readily verified by
inserting the decomposition of v (z, R,t) and making use of the orthonormality of the
single particle orbitals. Consequently, one gets the weights ]aj(t)]2 of the canonical
decomposition of ¥(z, R, t) in product states of single particle orbitals as eigenvalues of
the two single particle density matrices p. and p,. We have the same eigenvalues for
both matrices p. and p,!' In retrospective, the fact that any two-particle state can be
decomposed into a single sum of product states stems from the possibility to diagonalise
the respective single-particle density matrices. This is also nicely explained in [14]. The
canonical basis states have been computed as eigenvectors of the single-particle density
matrices with the help of the LAPACK package, version 3.0, for this work.

2.7.3 A Correlation Measure

As a measure of the correlation between the two contributing particles, it turns out
to be sensible choosing the “amount of non-pureness” of the respective single-particle
states. By this is meant that in case of a perfectly uncorrelated state, the corresponding

'"Due to this fact, from now on only the single particle density matrix (in the sense of being one of
the two) is spoken of.
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single-particle states would be pure, leading to a product two-particle state. This in
turn is identical to a single eigenvalue ‘aj/(t){Z of the single particle density matrix
being equal to one, all other eigenvalues being simply zero,

|aj ()] = d;;:. (2.48)

In other words, only one single particle orbital is occupied. In this case we know that
the (single particle) density matrix becomes idempotent, i.e. p?> = p, or in other words,
becomes a projector. In the case of a non-pure, i.e., mixed state, other orbitals are also
occupied, leading to the fact that squaring the density matrix (as a side effect) reduces
the size of its trace, because it is no projector any more. The more states are involved,
the less the trace of the squared density matrix gets. Thus, a sensible measure for the
lack of correlation is the sum of the squared eigenvalues of the density matrix,

S (lay0P) = X la 01", (2.49)

J J

and the reciprocal of it,
-1
4
K= S| (2.50)
J

is a measure for correlation. This quantity is equal to 1 for the case that only one
product state of the canonical expansion is occupied, i.e. for a pure single particle state.
In all other cases, it grows, having a maximum? of N. This maximum is a numerical
artifact, as there are infinitely many possible product states in the expansion of the
two particle wave-function. So in fact, theoretically, K—and thus the correlation—can
increase without limit.

An easy way to see that the quantity K reflects the amount of correlation between
the two degrees of freedom can be asking the following question: If one knows the state
of one particle, does one gain information about the state of the second? If there is
only one product state in the expansion, the answer is surely no. As before, we know
the states of both particles exactly, and we don’t learn anything by measuring one of
them. But the more single-particle states involved in the expansion, the more we know
about the second particle when measuring the first one. We can determine one of the
N states in the expansion as the one the second particle must be in. This means lots
of information gain, going down from N possibilities to only one. Therefore it is clear,
that the more states are involved, the higher the correlation, and the more information
is gained about one particle if one measures the other. If, e.g., one imagines all the
states of both particles being Gaussians, highly localised in position space with pairwise
little overlap, then we could easily estimate the position of one particle by measuring
the position of the other, which is not possible beforehand. This example was taken
from [15].

2This maximum is easily calculated if you consider the “most unpure state” you can think of, i.e.,
all possible product states—there being N of them—populated equally by a fraction of 1/N. In this
case, the sum of squares is simply Zj\[:l N2=N"1!s0oK=N.
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2.7.4 Numerical Access to the Correlation

The numerical calculation of K is quite easy due to a few facts from linear algebra. We
know from above section that we need to calculate the sum of the squared eigenvalues
of the single particle density matrix. How to obtain them? Of course there exist lots
of numerical methods to calculate the eigenvalues of a matrix, which we only need
to square before summation. The more sophisticated approach should instead be the
following: Consider the density matrix p in diagonalised form, p#. We can achieve
this by performing a similarity transform to p, which reads

UTpU = pdise, (2.51)

Now, if we square the whole diagonal matrix, (p3ia8)? = pdiagdiag the result will still
be a diagonal matrix, with the diagonal elements being the squared diagonal elements,
i.e. the squared eigenvalues, of the initial matrix. Its trace would therefore simply be
the sum of the squared eigenvalues, which is what we were looking for,

tr[(p5)2) = 3 Jas (1) (2.52)

J

For makings things even easier, remember that the similarity transform involves the
matrix U, which is unitary, i.e., UUT = UTU = 1. Therefore one gets

(pYee)2 = UTpUUTpU = UTp*U, (2.53)

which means that also the square of p is transformed in the same manner. Remembering
finally that the trace of a matrix is independent of its particular representation, i.e.,
the trace is invariant under unitary transformations of the matrix, such that we get

tr[(pdiag)z] = tr(UTp2U) = tr p?, (2.54)

which gives us the possibility to calculate the sum of the squared eigenvalues simply by
tracing out the square of the single particle density matrix. This does not even involve
a whole matrix multiplication, because we are only interested in the diagonal elements
of the squared matrix. In this new situation, the correlation parameter reads

K = [trp?] " (2.55)



22 Chapter 2. Numerics

If we make use of the definitions of the density matrices (2.41) and (2.42), the trace
converts to

trp2 (R, R t) = / / 5(R— R / pn(R,R" t)pu(R",R',t) dR" dR' dR (2.56)
://pn(R, R" t)pp(R", R, t)dR" dR (2.57)
Z / / |pn(R, R",t)|” dR"dR  and (2.58)

2. * 1" ! pl kot / 1"
2 ][] vterw e R ot B0 R 42 dzdR ?R |
2.59

— ////1/}(2;7]{7 t)w*(zl,R,t)l/)(z/,RH,t)T/J*(Z,R”,t) dz' dz dR/, dR
(2.60)

= // pe(z, 2, t)pe(2, 2, 1) d2’ dz (2.61)

= // ‘pe(z,z',t)‘2 dz’ dz (2.62)
= trp2(z,2,1). (2.63)

The conclusion is that both traces are equal (which was already clear because of equal
eigenvalues for both matrices).

The logarithm of K can be interpreted as an entropy. In fact, this quantity is
sometimes referred to as Stickelberg entropy, having values between 0 and infinity. In
[14], the von Neumann entropy is used instead, being defined as

S:=—trplnp, (2.64)

where p can be any of the two single-particle density matrices.

2.8 Splitting the Grid

As a full two-dimensional calculation is computationally quite expensive, one always
tries to simplify the problem as much as possible, even in this dimensional aspect. If
we look at our particular example of a two-dimensional system, it is immediately clear
that for large electronic distances z (in both directions) the interaction between nuclei
and electron almost vanishes, at least simplifies a lot. This observation leads to the
idea of separating the two degrees of freedom. If we simply neglect the R-dependence of
the interaction between nuclei and electron, there is no mixed term in the Hamiltonian
anymore, and we can try to expand the wave-function into product states. These will
then be propagated separately, i.e., in only one dimension, respectively, see section 2.9.
In other words, the interaction potential Vi (z, R) will change according to

Vint (2, R) amiaN ~int(z, R = const.), (2.65)



2.8. Splitting the Grid 23

by assuming that the nuclei can be treated as fixed in space for large z. Technically
this means, we let R gradually acquire some constant value in the interaction potential
for large electronic distances, R ——— const.

A particular choice could be taking Ry = 0, i.e., replacing the two nuclei by one
point charge at z = 0 of strength —1 (in the case of Hy) for large z. Here we obviously
do not lie because for z — oo this is in fact the true behaviour. On the other hand,
to take advantage out of this, we will have to apply this approximation at some finite
zo already. As well one could pick the most probable value of R as Ry, making the
choice “correct” for the major part of the wave function. Still this means we introduce
a slight error, which is not big as long as zy is large enough. But as we switch to the
approximated potential at z = zy, we then have a step in our potential, because

IR : Vine(z = 20, R) # Vint(z = 20, R = const). (2.66)

Only for R = Ry, this step at z = zg will vanish by construction. That means we will
have to adjust the correct two-dimensional soft core-potential in a way that this step
at zo vanishes for all R. In other words, we have to find a function D, (z) with the
following properties:

o Dn(z): [0’ ZO] - [1’0]

e 7 should be a parameter allowing to adjust for smoothness of match against size
of the interval of significant change.

Then we can simply replace R by Ry + (R — Ry) D, (z) and at z = zy the step is gone.
The easiest approach to achieve this is a direct interpolation of nth degree,

DV (2) = (1 — z/z)™. (2.67)

This way we enforce R to become Ry while z approaches zg, thus matching the two
potentials for all R at z = zg. The degree of the interpolation n determines two things:

1. The higher the degree, the earlier (in the sense of smaller z) the correction becomes
substantial.

2. The higher the degree, the smoother the matching, because all derivatives up to
(n — 1)th degree will be continuous at z.

Anyway, there is a little caveat: For degrees above m = 1 the change sets in quite
substantial even for small z, see Fig. 2.1. It would be nicer to have a matching function
that starts the matching procedure at z = 0 as smooth as it is supposed to end it at
zp. This leads us to the next more sophisticated approach,

D@ (z) = [l + 1Cos (wi>} ' (2.68)
" 2 2 20 ' '
With this construction, the matching sets in in a much smoother way, see Fig. 2.2.
Altogether, we should take at least n = 2 to get a continuous derivative of our potential,
because this is the force the electron experiences. Secondly, a value of n being too large
leads to quite an abrupt change of the potential, which is again not desired.
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Figure 2.1: Polynomial interpolation between 1 and 0 for degrees n =1,2,...,7.

If we apply this “correction” to our soft core-potentials and take zg sufficiently
large, the result is a smooth interaction potential that eventually changes into a one-
dimensional (only z-dependent) potential for the outer part of the grid. This outer part
is therefore defined by z > zp. In this outer part, we are now able to decompose the
wave-function into product states, propagating the two degrees of freedom separately,
as there is no interaction anymore. The nuclei simply drift apart of each other due
to their inherent Coulomb repulsion. It should be stressed, that only the interaction
potential Vip(z, R) is approximated towards constant R. The inter-nuclear potential is
unchanged and the repulsion is fully modelled also in the outer region of the grid. The
electron moves in the laser field plus a Coulomb field of two fixed nuclei.

2.9 Splitting the Wave Function

Having defined two different grids for the calculation, the next step is to define a
procedure to shift the wave function across the line z = 2y and to represent the wave
function for the outer region z > z3. As shown in section 2.7, the wave function
can be easily expanded into a single sum of one-dimensional product states, using
the canonical basis states as basis functions for the expansion. This is now used to
decompose the wave function and make one-dimensional propagation possible. Fig.2.3
shows the principal construction of the grid: The 2D grid is the central basis of the
computation (top panel). At both z-ends of the grid, the grid is extended into an outer
region (central panel), which is not realized as a 2D grid but just sketched like that
to simplify the understanding of the construction. Each time the front of the wave
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Figure 2.2: Sinusoidal interpolation between 1 and 0 for degrees n =1...5.

function is on the verge of hitting the end of the inner grid, the corresponding portion
is transferred onto the outer part of the grid (lower panel). The same is valid for the
counter direction: Probability moving inwards has to be prevented from colliding with
the inner boundary of the outer grid and is thus transferred upwards in the same manner
as described above. The part of the wave function to be transported onto another grid
is smoothly masked out to avoid discontinuities at the borders of the overlap regions.
The masking is implemented according to the description in section 2.5.

A few problems arise in doing this. In the following, only one of the two outer grids
z > zp is considered, as everything is identically valid for the second one in the other
direction of the coordinate axis.

e An overlap region has to be defined where probability can still move further, but
already resides in a region where the respective other grid is present, such that
transportation onto the other grid is possible.

e Within this overlap region, the potential has to be identical on both grids, i.e.,
already at the beginning of the overlap region, z and R have to be decoupled.

e Each time probability is shifted from the inner grid to the outer, a new decom-
position of the wave function within this overlap region becomes necessary.

e Since proceeding like this implies more and more product expansions existing in
parallel, even one-dimensional propagation at some point becomes inefficient.

All these items will be accounted for in the following subsection.
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Figure 2.3: Sketch of the grid construction used in this work: A standard 2D grid is
extended further in z direction. Data moving across the boundary is transferred up-
and downwards, respectively. The wave function on the outer parts is expanded into
a sum of canonical basis states. Since every time this happens a new decomposition is
born, several “layers” will exist on the outer grid.
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Figure 2.4: Sketch of the decomposition of the 2D wave function on the outer grid:
The part of the wave function running towards a grid boundary is masked out and
decomposed into canonical basis states. Those are propagated independently on a
1D grid. The coupling is removed on the outer grid. The sheets represent multiple
expansions present at the same time, since every few time steps a new one has to be

added.

2.9.1 Different Approaches to Splitting

Depending on the details of a particular calculation, different approaches might be
appropriate. The principal technique is sketched in Fig. 2.4: The wave function residing
in the overlap region is first masked out smoothly, then it is decomposed into canonical
basis states. The number of expansion terms is usually limited according to a prescribed
accuracy of the representation of the full 2D wave function. The sheets sketched in the
picture represent the possibly necessary several instances of expansions.

Single-Layer Expansion It is of course possible to deal with only one single layer on
the outer one-dimensional grid. This forces a new decomposition into a product
expansion every time some probability is to be shifted to the outer grid. The whole
wave function in the outer region has to be reconstructed as a two-dimensional
object and coherently superimposed with the new part coming from the inner
grid. This new outer wave function must now be decomposed into product states
again. As this is computationally very expensive, one has to carefully investigate
where this is the method of choice.

Multiple-Layer Expansion A more efficient and also easy to implement strategy is
to simply add a new layer, i.e., a new product expansion, to the outer grid each
time a shift of probability becomes necessary. As mentioned above, at some point
this way of propagating the wave function becomes inefficient. The outer grid,
containing hundreds of one-dimensional wave functions, will simply become larger
than a straight-forward two-dimensional grid for the whole space. This clearly
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has to be avoided. The easiest way to do this is to keep propagation time short.
This way you will possibly never reach the point where too many expansions exist.
However, of course this is not always possible. A combination of this approach
and the previous one has to be implemented.

Restricted Multi-Layer Expansion For simulations that clearly exceed the max-
imum propagation time mentioned in the previous subsection, there is no way
around melting all expansions on the outer grid together in one single expansion
again, which has to happen at the latest when the maximum number of layers rec-
ommended has been reached. This is of course a computationally very expensive
step. But having done this, we start all over again with one single layer on the
outer grid and propagation becomes very efficient again. This can be done auto-
matically and repeatedly as long as the simulation goes, no matter what the total
simulation time may be. We will always stay in an efficient situation, because as
soon as layers exceed the maximum allowed number, everything is wrapped onto
a single one again.

2.9.2 A Simple Estimation of Computational Effort

To estimate the maximum number of layers or the maximum propagation time allowed
for efficient propagation, we look at a very simple model. Only the number of grid points
involved in the computation will be counted as a measure for the computational effort.
The grid dimensions will be denoted by N, and N/ for the inner and outer grid regions
in z direction, and by Ng in R direction. The number of simulation time steps will be
denoted by T, the number of layers present at time ¢ by My, where t = 0,...,7T. With
Tstep we denote the number of time-steps until a new expansion enters the outer grid,
and M := T /Tyep is the total number of expansions asking for treatment. The number
of product states within each expansion will be assumed constant for all expansions
and both sides of the grid and denoted by N. For a real 2D grid this means the total
number of grid points # involved® can be written as

#(2D) = N,NgRT + 2N.NgT, (2.69)

where the part of the outer regions is the last term

#(2D, out) = 2N’ NpT. (2.70)

Only this part of the grid is of interest, since the inner 2D part is identical for all
different types of splitting methods mentioned above.
For a multi-layer grid, the number of grid points in the outer region is in any case

T
#(2D + 2 x 1D, out) = 2N (N’ + Ng) Y~ M. (2.71)
t=0

In some of the cases, the full outer grids have to be decomposed into product states
again, which we will call a collapse, to reduce the number of layers to one. The number

3By this the size of the grid times the number of time steps they are utilised is meant.
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of grid points involved in this procedure will always be

T

#(2D + 2 x 1D, out, collapse) = QN;NRF,

(2.72)

where T™ defines how often this happens. We now consider all three different types of
techniques of how to deal with the outer part of the grid. This will have influence on
the explicit expression of the sum ), M; and the time T*.

The first method uses only one single layer on the outer grid. If M; = 1 for all
times, then ), M; = T, but additionally we have to re-expand the whole outer region
each time a splitting takes place, and therefore T* = Tytep, hence

T
#(2D + 2 x 1D, single, out) = 2N (N. + Ng)T + QN;NRT : (2.73)
step

If we consider unrestricted multi-layer expansion and thus allow a new layer each
time a new expansion is necessary, no collapse will ever take place. Therefore this
contribution is exactly zero. The sum of layers is easy to evaluate, since every Tyep
time-steps a new layer is added, up to a total number of T'/Tep. This gives in total

T
| #(2D + 2 x 1D, multi, out) | = 2N (N, + Ng) Y M, (2.74)
t=0

= 2N(N. + Ng)Ttep

M(M +1)
2

+ 1>, (2.76)

(2.75)

=|N(N. + NR)T< T

step

where M = T'/Tyep has been used. The sum was evaluated according to the fact that
the number of layers will stay constant for T, time-steps each time before it grows
further. This situation is sketched in Fig. 2.5 in the central panel.

Comparing Eqs. (2.73) and (2.76), one beautifully sees how these two extreme cases
diverge in their applications: The single-layer approach contains a part proportional
to N.Npg, whereas the multi-layer approach is only proportional to the sum of both
grid extensions. This shows that huge z-expansions will increase the number of grid
points dramatically in the case of single-layer propagation due to the re-expansion of the
whole outer grid every Tiiep time steps. On the other hand, the multi-layer approach
contains a term proportional to T2, whereas the single-layer expression is proportional
to T linearly. This reflects what was already obvious, namely that for long propagation
times, i.e., for large T, the multi-layer approach without limitation will surely fail
because too many layers add up over time.

Application of a limiting time T},.x to collapse the outer grid every Ti,ax time steps
will be considered finally, which is sketched in the lower panel of Fig. 2.5. The evaluation
of the sum ), M; is similar to the previous case of one flight of stairs, multiplied by
the number of staircases T/Tiax, and T = Tyax by construction. This gives
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Figure 2.5: Sketch of the number of expansion layers on the outer grids for the different
methods discussed within the text. For the single-layer approach (upper panel), the
number of layers stays constantly one for all times. In the unrestricted multi-layer case,
every Tyep time steps, a new layer will be introduced (centre panel). If the maximum
number of layers is restricted (lower panel), it will collapse to one every Tyax time steps.
In this example, Titep = 5 and Tinax = 3Tistep = 15.

‘ method ‘ propagation ‘ collapse
general 2N (N, + Ng) >, M, QN;NRTL*
single 2N (N, + Ng)T QN;NRTgep
multi N(N. + ]\71’~2)T<T3:ep + 1>
restricted | N(N. + Ng)T <%‘;’j + 1> QN;NRTEHX

Table 2.1: Estimation of the number of grid points involved in the computation in
general and for three different splitting techniques, split up into contributions from the
propagation of the wave function and from the collapse of the accumulated expansions
into a single one.
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T Max(Mpax + 1
‘ #(2D + 2 x 1D, restricted, out) ‘ = 2N (N, + NR)T Titep—— (Minax + 1)

max 2

ON'N
TN NRT

Trnax T
=|N(N! +NR)T< =+ 1> +2N.Ng .
step Tmax

(2.77)

All results have been collected in Table 2.1 for an overview. Apparently, we did not
yvet decide for a definite value of Ty, as this value determines whether the method
is advantageous over the other two or not. If Tihax = Titep, the restricted method
obviously coincides with the single-layer method. This is clear because then we would
collapse every Tiiep time steps. For T,.c = T', we resemble the multi-layer case without
restriction. (The single product term 2N, Ng stemming from the collapse contribution
can safely be ignored since the ansatz did not take into account, that at the end of the
propagation there is no collapse necessary.?) As always, the truth lies somewhere in
between.

The question is: How can we estimate a sensible value for a limiting number of
expansion layers? The highest limit should be given at least by the number of grid points
that would be involved in a true 2D calculation, since this would be the alternative
approach and from this point on the more efficient one. This number is given by
Eq. (2.70). We restrict the number of layers to a maximum of Myax = Tmax/Tstep,
where T defines the time from where on no further layers are added, but the outer
region is collapsed into one layer. From there on the procedure starts from the beginning
until 7.« is reached a second time, and so forth. The time Ti,.y is calculated by
equating Eqs. (2.70) and (2.76), which yields

2N’ Ng
Toax = | ——21 1) Tatep. 2.78
ma. (N(Né + NR) ) step ( )

Usually, we can consider 1 small against the fraction, which gives us an idea of Tiax:
The ratio of Timax and Tiiep is given by the ratio of the grid points of a 2D outer grid
and half of the grid points of a 1D outer grid, which is a reasonable result. Yet if we
plug this result in Eq. (2.77), we get

Tmax
2D + 2 x 1D, restricted, out) = N(N. + Np)T'| —= + 1) 4+ 2N/ Np
z z

Tstep Tmax

T 2N’ Np -t
— ON'NpT + 2N'N ( z —1>
R T en \N(N! + Np)

T
~ 2N_NgT + N(N. + Ng) ,
Tstep

(2.79)

where we have slightly approximated in the second term ignoring the 1 over the frac-
tion. Interestingly, via Ti,.x the contributions have changed character, namely the one

40f course, there is a collapse necessary at the end of the simulation, if the 2D wave function is
desired. But this is the case for all methods involving expansions on the outer grid.
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stemming from the propagation itself is now proportional to the product of the grid
dimensions, whereas the contribution from collapsing the outer grid is only propor-
tional to their sum. However, the result is not satisfactory since the product term
(having most impact on the total number) is by a factor Ty, worse than in the case
of single-layer propagation. Obviously, this approach was not strict enough, and Tiyax
has to be much smaller than given in Eq. (2.78) for the restricted method to be ef-
ficient. Equating directly with the expression for single-layer propagation does not
yield a simple expression for Ti,.x, therefore we go one step further and insert typical
values for the calculations done in this work. Estimation of orders of magnitude for
the different contributions shall suffice. This gives N/Np = O(10°) for the product,
N! 4+ Ng = O(103) for the sum of the grid points, T' = O(10%) for the number of time
steps and Tytep = (’)(102). The number of expansion terms N is always very low and
can be estimated by an upper bound of N = (O(10). Usually it is below 10. Now,
the single-layer approach gives a number of grid points of O(10%). For comparison,
the true-2D approach gives O(10'°) grid points. This is good news. The restricted
approach gives 10Ty + 1010 /Thax. Obviously, for T = O(102), we can keep up
with the single-layer approach. This is the same order as Tiep, which was actually the
lower bound of Ti,ax. This means we have to choose the exact value really carefully to
gain speed over the single-layer approach. Going back to the notation as in Eq. (2.78),
expressing Tax as a multiple of Tyep, namely Tiyax = nTstep, we have n = O(1). This
is much smaller than the estimation via Eq. (2.78), which would yield n = O(10?).

Concluding, we definitely found a method to reduce computational effort compared
to the case of a simple 2D grid. A coarse estimation gives us a reduction of grid points
of two orders of magnitude. Obviously, the multi-layer approach is not suitable as
well for O(10%) time steps and more. In this case it already reaches the same order
of grid points as the 2D case. The number of layers on the outer grid has to be kept
small. Whether this number is one (single-layer approach) or slightly larger (restricted
multi-layer approach), strongly depends on the detailed number values of a concrete
calculation. Since it is also important, what is done on the grids, namely propagation
via FFT in 1D opposed to matrix decomposition in 2D, in practice there will be more
aspects to consider.



Chapter 3

The Hydrogen Molecule

In this main chapter of the thesis a model Hy system will be introduced and numerically
simulated and investigated with the methods described within the previous chapter.
First, a basic understanding of above-threshold ionisation (ATI) of atoms and molecules
in strong fields is given. Then, the concept of channel closings within strong-field
ionisation of atoms in terms of number of photons absorbed by the ejected electron
will be presented. This situation will then be transported to small dimers, especially
Hs, which is treated in this thesis. Numerical simulations carried out on the model
Hs system will show characteristic channel-closing effects known from atoms, resulting
from a change of laser intensity of the ionising laser field. Additionally, the vibrational
energy scale of the dimer allows access to channel closing effects without changing the
laser intensity. This is the major result presented within this work and has led to the
publication of two articles [1, 2].

3.1 Above-Threshold Ionisation

3.1.1 Ionisation regimes

When ionising an atom through means of an intense laser field, depending on frequency
and strength of the laser, different ionisation regimes exist. In the so-called multi-photon
regime, which applies to low intensities and high frequencies on the scale of the binding
potential of the atom, the only way out of the potential is the absorption of many
photons from the laser field. If the intensity is high enough, the laser electric field
is usually well described classically. Coulomb potential and electric field amplitude
compete against each other with respect to the highest occupied atomic level. The
Coulomb potential is bent, a (now finite) barrier builds up to one side of the potential,
and if the laser suppresses the barrier below energy of the highest occupied atomic level,
immediate ionisation takes place. This process is called over-the-barrier ionisation. For
intensities just not high enough to completely suppress the ionisation barrier, there is
still a chance for the electron to ionise, namely via tunnel ionisation. The probability of
this effect to take place additionally strongly depends on the laser frequency. Since the
barrier is lowered periodically twice within every laser cycle, each time on opposite sides,
there is only a chance to tunnel out if the tunnelling time, i.e., the time necessary to
tunnel out, is short enough. In other words, the time interval, during which the barrier
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is low enough, must be long enough. Obviously, this time is inversely proportional to
the laser frequency. To quantify the regime of ionisation, one refers to the often-quoted,
so-called Keldysh-parameter [16, 17] v = wy,/w;, where wy, is the laser frequency, and
w = E/ m is the tunnelling frequency, depending on the maximum electric field
amplitude E and the ionisation potential of the atom I,. Assuming intensities low
enough to prohibit over-the-barrier ionisation, for v > 1, the laser oscillates too fast to
allow for tunnel ionisation. Hence this characterises the multi-photon regime. On the
other hand, if the tunnelling frequency clearly exceeds the laser frequency, i.e., v < 1,
tunnelling ionisation is favoured. In between these to extreme cases, all mixtures of
both processes take place, with respective probability.

In the multi-photon regime, one would think in absorption of photons. In the case
of tunnel ionisation, the better picture is a bent potential and a tunnel barrier. In other
words, the Keldysh parameter describes the adiabaticity of the system: In the limiting
case of almost zero laser frequency, the electron wave packet will tunnel through a
barrier of almost constant width, which is solely defined by the laser field strength and
the ionisation potential. If the laser oscillates rapidly instead, nothing like a tunnelling
barrier builds up, but the potential changes dramatically back and forth before the
wave packet could move significantly. This is the opposite of adiabatic motion. Yet,
the electron can absorb photons and gain energy, eventually leaving the potential.

Of course, as is always the case, the intermediate situation is the most interesting
one, since no crude approximations can be done emphasising only one aspect of the
two alternatives. This is where numerical simulations are the best method to access
the behaviour of the system, because a treatment as accurate as possible is necessary
to understand the detailed and complicated dynamics. In the context of this work, we
reside almost exactly in the middle of both situations, the Keldysh parameter being
always between v =~ 1.81 and y ~ 1.34 for laser intensities between 8.132 x 10'3W /cm?
and 1.464 x 101*W /cm?.

3.1.2 ATI peaks in kinetic energy spectra of photo electrons

From experiment it is known [18, 19] that ionising electrons can absorb by far more
photons from the laser field than are actually needed to escape the binding potential of
the atom, if the laser intensity is high enough. This effect is known as above-threshold
ionisation. The following summary of ATI phenomena and explanations is based on
[20].

In the kinetic-energy spectra of the ionised electrons, one finds sharp peaks under-
neath a certain envelope, all separated by the photon energy of the laser. In experiment,
however, the clear peak structure is not always resolved due to so-called volume effects,
i.e., the spacio-temporal intensity profile of the laser focus. In particular, it depends
on the pulse length and the laser intensity. ATI is observed in the intensity regime
102 W/em? to 10'6 W/cm?.

A classical model is capable of describing the major characteristics of an ATI spec-
trum already. We assume that an electron moving in z direction tunnels out of the
potential barrier at time tg and starts its orbit at z = 0 with an initial velocity of
Z(tg) = 0. As for strong fields the oscillation amplitude of the ejected electron exceeds
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Figure 3.1: Typical atomic ATT spectrum showing the structure predicted by the three-
step model. Direct electrons reach up to energies of 2 Uy, then the yield drops signif-
icantly. A plateau structure extends up to 10 Up, which is classically the maximum
energy of re-scattered electrons. There, a second and final cutoff resides.
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the atomic or molecular extensions by far!, we will ignore the Coulomb potential for a
while. If the electron does not interact with the ion in any significant way, we speak of
direct electrons. However, it may happen that the laser field drives the electron back
to the ion core, where it may re-scatter. In the following, we will consider the motion
of an electron within a linearly polarized, monochromatic laser field E(t) = Eysin(wt).
The Newton equation of motion of such an electron is

Z(t) = —Epsin(wt). (3.1)

Solving this equation with respect to above conditions upon initial position and velocity,
we get

2(t) = aw cos(wt) — aw cos(wtp), (3.2)

z(t) = asin(wt) — asin(wty) — aw(t — to) cos(wtp),

where a = Ey/w? is the classical oscillation amplitude. Obviously, the constant drift
term aw cos(wtg) in the expression for the velocity depends in magnitude and direction
on the ionisation time ty. For long pulses, this corresponds to the final velocity of
the electron after the end of the laser pulse. The maximum amounts to aw, giving a
maximum kinetic energy of Fyi, = EZ/(2w?). The time-dependent kinetic energy of
the electron in the laser field is given by

a’w?

Eyin(t) = [cos? (wt) + cos? (witg) — 2 cos(wt) cos(witp)]. (3.4)

Averaged over one laser cycle, the cross-term vanishes and we get
(Bxin(t))1 = Up + 2U, cos?(wty), (3.5)

with U, = Eg /(4w?) the ponderomotive potential, because this first term corresponds to
the average kinetic energy due to oscillation. The second term, having a maximum of
2U,, (depending on ionisation time (), is the drift energy of the electron corresponding
to the drift velocity from above. For long pulses, it corresponds to the final energy
of the electron. So far, these are pure classical considerations and we do not allow
influence of the ionic potential. Still, this classical limit of 2U}, for direct electrons is
clearly visible in ATT spectra as a strong cutoff. See Fig. 3.1 for a typical ATI spectrum
which stems from an atomic calculation. The yield drops significantly around 2U,,. For
a quantum-mechanical treatment of the direct electrons, in the context of the strong-
field approximation, the Keldysh-Faisal-Reiss (KFR) amplitudes have been developed
[16, 21, 22, 23, 24]. Application of the saddle-point method yields a representation of
the KFR amplitudes involving a coherent superposition of contributing terms, wrapped
in a sum containing an energy-conserving delta function. This energy-conservation
condition yields exactly the ATI condition

Ekin = Nwi, — Up — Ip, (3.6)

'For lasers of 800nm wavelength, an electric field strengh of about 1072 a.u. already leads to
excursions of the photoelectron of about ten Bohrs.
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stemming from the interference of contributions from different laser periods. This
already gives a hint, that ultra-short laser pulses will not produce the most pronounced
ATI spectra.

The first cutoff is followed by the re-scattering plateau, i.e., the intensity within the
next spectral region is more or less constant on a logarithmic scale. It stretches out
up to approximately 10 U, [25, 26, 27], which is the classical limit of kinetic energy
for electrons re-scattering once with their parent ion, to be shown next. For this
purpose, we consider its trajectory (3.3). Re-scattering at time ¢; > ¢y is now defined
by z(t1) = 0. On such a revisit, different things may happen [28]:

1. Through recombination, the electron may emit all its energy (including I,) as one
single photon, contributing to high-harmonic radiation in the plateau region.

2. Inelastic re-scattering may lead to excitation or even ionisation of the ion, which
is a process mainly responsible for non-sequential double-ionisation.

3. Elastic re-scattering may lead to acquisition of more drift energy, which results
in ATT peaks within the re-scattering plateau of the spectrum beyond the 2 U,
limit.

This last effect is now described in more detail. The return energy of the electron after
its journey in the laser field is

1. .
Eretum = §[Z(t1) — Z(to)]Q. (3.7)
The maximum of this expression with respect to tg, where z(¢1) = 0 is fulfilled, amounts
to Eppdx, = 3.17 Up [28]. In the extreme case, the electron will now re-scatter in the

opposite direction, changing its momentum by sign only. This would give the final
energy

1. .
Escatt = 5[22(t1) - Z(to)]Q, (38)
which, maximised under the same conditions as above, will give EI3% = 10.007 U,

[25]. For this to happen, the electron has to escape shortly after a field maximum. It
will then return to the ion close to a zero of the field. Re-scattering at this instant can
therefore lead to a further acceleration of the electron via the laser field, if backscattered
in the right direction. Then, higher kinetic energies are found in the ATI spectrum.
An easy understanding of this procedure is to write the condition z(¢1) = 0 as

t

f(0) = f(to) + (1 =) 1), S0 = [ 2(ar (3.9)

to
This describes a tangent on f at tg that crosses f at t;. Since this function f is the
integrated velocity and hence a sinusoidal function proportional to the electric field?,
we see that a tangent at a time tg shortly after a maximum will indeed give a return

time ¢1 close to a field minimum. The less steep the tangent, the later the return, and
the more further returns are possible. To a given final energy Fgcatt of the electron,

2The electron velocity is phase-shifted with respect to the electric field by /2.
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z/au.

Figure 3.2: Qualitative plot for the electron density of ionising Dy evolving with time
from bottom to top. The laser intensity is 1.204 x 104W/em? (U, = 4.63 w), the
propagation time is five optical cycles plus three cycles without laser field.

there are always two start times ¢y and hence two trajectories, one shorter and one
longer. If the electron does not re-scatter on its first revisit, but later, the orbit is
long, but the maximum energy is then less. The highest energy of 10.007 U, is only
possible if the electron re-scatters at its first revisit. Also the re-scattering electron can
be described quantum mechanically. The trajectories become complex then, because
due to tunnelling under the restriction of energy conservation, a real solution does not
exist. It is the interference of these complex quantum orbits that leads to enhancements
within the re-scattering plateau of the ATI spectrum for certain laser intensities, as is
described in the next section.

The re-scattering process (and thus the yield within the re-scattering plateau)
clearly depends on the probability of the electron wave packet to re-collide with its
parent ion, which can be diminished by using circularly polarised laser fields (intro-
ducing non-straight motion) [29] or extremely high intensities where the magnetic field
component of the laser field introduces a drift in propagation direction of the laser field
[30] strong enough to let the electron mainly miss its parent ion. This again is com-
pensated for the case of antisymmetric states [31]. Also, extremely long trajectories,
stemming from strong, slowly-varying fields, let the ionised wave packed spread in space
to a large amount, such that the overlap with its parent ion at return time is fairly
small. All these additional effects do not have to be considered within the present work,
since all laser pulses are linearly polarised and weak enough to be able to completely
ignore the magnetic-field component of the laser.

However, to produce a significant portion of re-scattered electrons, the laser pulse
needs to have a certain length in terms of laser cycles. In our case, pulse lengths of five
cycles prove sufficient to produce ATI orders of fifty and more. See Fig. 3.2 for a plot
of electron density evolving with time. Clearly, one recognises ionisation with different
energies (slopes of the trajectories), re-scattering at the ionic core and interference
of electrons of different kinetic energy. The longer the pulse, the more detailed the
ATT spectrum will be, since more and also not so pronounced re-scattering events will



3.2. Channel Closing Effects in ATI Spectra 39

le-07 X
1e-08 E
£
=
’;’g 1e-09 3
E [
[}
=
le-10 ¢
le_ll 1 1 1 1 1

30 35 40 45 50 55 60
kinetic energy [eV]

Figure 3.3: Envelopes of kinetic-energy spectra of ATI-electrons of a 1D hydrogen
atom described by Eq. 3.15. The laser intensity varies from 8.91 x 10%W/ecm? to
9.96 x 10®W /ecm?. The pronounced enhancement within the re-scattering plateau of
the spectrum between 37 eV and 48 eV is clearly visible.

occur. But long pulses lead to long propagation times, and electrons having escaped
early within the pulse will propagate outwards very fast. Therefore, large computational
grids are needed, if high-order ATI peaks are of interest. It is those that will first hit
the boundary of the grid and hence get lost (if masked out) or reflected (and distort
the data) if not taken care of.

3.2 Channel Closing Effects in ATI Spectra

Above-threshold ionisation of atoms or molecules by intense laser fields stands for the
absorption of more photons than needed to overcome the ionisation threshold. A simple
analysis of classical electron trajectories shows that electrons re-scattering once from
the core after the initial ionisation step attain final energies up to 10 U, while direct
(un-scattered) electrons have a maximum energy of 2 U, as explained in the previous
section. U, denotes the ponderomotive potential.

A striking phenomenon arises when high-order above-threshold ionisation is studied
with respect to its dependence on intensity. For the re-scattering plateau between 2 U,
and 10 Up, it was found in experiment [32] and calculations [33, 34|, that a slight
change in laser intensity can lead to order-of-magnitude changes in yield for groups of
peaks within the plateau. Explanations were found in terms of multi-photon resonances
with Rydberg states [33] and within the framework of quantum paths [35, 36, 37].
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The spectral enhancements can be related to channel closings that occur when the
(ponderomotively shifted) lowest ATI peak coincides with an effective threshold [35].
See Fig. 3.3 for a calculation. Scanning through a range of laser intensities, for U, =
3.63 w the big hump between 37 eV and 48 eV is highest compared to neighbouring
laser intensities, differing only by 0.1 w.

The minimum energy of a free electron in the presence of a laser field is equal to
the ponderomotive potential U, = E?/(4w?) ~ I, which is the quiver energy of the
free oscillating electron. Here, I denotes the intensity of the laser field. Therefore, the
laser field modifies the ionisation threshold. In non-resonant n-photon ionisation of an
atom, the electron carries the kinetic energy

Exin = nw — I, = Up, (3.10)

with integer n. The ionisation potential I, in our case of a 2D hydrogen molecule and
a laser wavelength of 800 nm, amounts to I, = 10 w. The system is described by the
Hamiltonian given in Eq. 3.12.

The minimum number s of photons needed to free a bound electron is therefore
defined through s = ceil[([, + U,)/w]. Raising U, via the laser intensity and therefore
shifting the ionisation threshold to higher photon numbers leads to the disappearance
of the first ATI peak in the spectrum. As this happens, a certain s’-photon-channel
is closed, which leads to an increased probability of finding the electron near the core
[33], since its drift velocity is nearly zero. This situation is favourable for re-scattering
and certain groups of peaks within the re-scattering plateau of the ATI spectrum are
enhanced. Unfortunately, due to the long-range Coulomb potential, the precise intensity
at which this effect takes place cannot be predicted via application of Eq. (3.10) alone
[38, 39, 37].

The process is sketched in Fig. 3.4. The red line denotes the ponderomotively shifted
(effective) ionisation threshold and is therefore the theoretically predicted start of the
ATI spectrum. The tips of the arrows starting at this red line mark the theoretically
predicted positions of the ATI peaks. Obviously, if the effective barrier is raised, at
some point the first peak will vanish as the corresponding ionisation channel will close.

In [37], the enhancement effect appearing within the re-scattering plateau when rais-
ing the laser intensity is explained as constructive interference of long quantum-orbits.
An ejected electron is driven in the laser field for several (sometimes many) optical
cycles before the system fully ionises. During this time, it may re-scatter with the core
many times, although this is not very likely to happen. This motion is calculated via
the formalism of complex quantum paths [36] (see also references [15-17] therein), as
mentioned in the previous section, where the real part of the quantum path corresponds
closely to the classical electron trajectory. Quantum paths belonging to the same final
energy of the electron appear in pairs of one long and one short orbit, i.e., they differ
in travelling time. For lower energies, more pairs exist, contributing from earlier start
times. This explains the general yield drop for high-energy ATI electrons beyond the
re-scattering plateau. The maximum energy of 10.007 U, can only be reached for elec-
trons re-scattering at their first revisit at the ion core, as was explained in the previous
section. The mechanism is, in a reduced form, known as the simple-man model. The
condition for constructive interference of the long quantum orbits can be shown to be
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Figure 3.4: Atomic Channel Closing due to varying laser intensity: The ionisation
barrier I, is ponderomotively shifted to I, + U, via changing the laser intensity. This
effective barrier defines the beginning of the continuum and hence the beginning of the
ATT kinetic-energy spectrum. Obviously, raising U, can close ionisation channels as is
the case for the s-photon-channel in the picture.

an energy of I, + U, = new for even/odd n. in the case of an s-state/p-state. If the
condition is not met, due to strong wave-packet spreading and hence less re-scattering-
probability, the long orbits do not contribute significantly to ionisation with energies
within the re-scattering plateau. Two types of enhancements are identified in [37],
appearing at even and odd channel closings, respectively. The latter type needs much
more quantum orbits to evolve, i.e., much longer pulses of about 50 cycles, therefore
they are not expected to be observed within this work. The former type for even chan-
nel closings needs about 20-40 orbits corresponding to about 4-8 optical cycles, which
is well within the scope of this work. It was however not possible to visualise a clear
dependence on the pulse-length within the calculations for this work. Probably, all
pulse lenghts considered were not long enough to enter the realm of the second type of
channel closing.

Another interpretation of the above-mentioned spectral enhancements is that of
threshold phenomena [40, 41], i.e., they are related to threshold anomalies of collision
theory when the respective multi-photon reaction channel closes, see [42, 43, 44| (above-
threshold detachment of negative ions). Also in this last cited work, a dependence on
the orbital angular momentum of the bound electron is found.

Another idea is a that of pure resonances, where field-induced Rydberg states show
multi-photon resonances for certain intensities of the laser [45]. The existence of such
laser-generated quasi-bound states is questionable in three dimensions though.

Experimentally, this topic was investigated via ATI of argon [46, 47, 48, 38, 29|
(where it is particularly pronounced), krypton [29] and xenon [32, 29]. In krypton, the
effect is rather small for current experiments, which is accredited to small scattering
cross-sections for electrons of the energies in question [29].
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Figure 3.5: Vibrational states v = 0...9 for Hy™ (left panel) and Dy™ (right panel)
inside the Born-Oppenheimer potential energy surface (PES) for the electronic ground
state as calculated. These are exact numerical results and no sketches. The numerically
exact vibrational states reside at the correct energies within a correct PES. This already
shows the huge difference in density of states that will be exploited in the context of

molecular channel closings. The vibrational energies and their separation can also be
found in Tab. A.1 in the Appendix.

3.3 Molecular Channel Closing Effects

So far all published work on this effect has been related to atoms in laser fields. We
found that the vibrational motion of molecules can have a striking effect on ATI chan-
nel closings. In this work, hydrogen and deuterium molecules are investigated and
compared with atoms. Since these simple linear molecules provide a nuclear degree of
freedom, an additional energy scale is involved in the dynamics. We show that due
to the coupling between electron motion and nuclear motion, intrinsic channel-closing
effects can be observed: ATI electron spectra decomposed into contributions belonging
to different vibrational states of the remaining ion reveal channel-closing effects upon
variation of the vibrational quantum number while the laser intensity remains fixed.
This is to be contrasted with atoms where the laser intensity (or laser frequency) needs
to be varied in order to observe channel closings.

3.3.1 Theoretical Background

In the case of molecules, electrons and nuclei are coupled by their Coulomb interaction
so that vibrationally excited states of the ion are occupied after a strong-field ionisation
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Figure 3.6: Molecular Channel Closing due to different vibrational states of the created
ion: For constant laser intensity, Ho is singly ionised, producing an in general vibra-
tionally excited Ho™ ion. The ionisation barrier I, is ponderomotively shifted by Uy, as
is the case for atoms, and additionally raised by the vibrational energy AFE" of the re-
spective vibrational level, which is transferred from the electron to the ion. Obviously,
highly excited ions can lead to a channel closing for the corresponding ionised electron,
as is the case for the s-photon-channel in the picture.

process. This amounts to the assumption that Eq. (3.10) is changed to
Eyin =nw—1I, — U, — AE" (3.11)

for a given vibrational state with quantum number v. Here, AEY = EV — E° is the
difference in vibrational energy between the vibrationally excited state in question and
the vibrational ground state of the ion. See Fig. 3.5 for a sketch of the vibrational levels
of Hy™ and Dy™. These states have been computed via imaginary time propagation
(see Sec. 2.2) within the one-dimensional BO-potential energy surface of Hy™ and Do,
respectively, also shown in Fig. 3.5. The results for the vibrational energy levels from
these calculations can be found in Tab. A.1 in the Appendix.

In this molecular case, it should be noted that I, is the adiabatic ionisation potential,
i.e., the difference between the ground-state energies of molecule and ion, including the
motion of the nuclei. The process is sketched in Fig. 3.6. The laser intensity is kept
fixed, but the vibrational states of the corresponding ions provide a second energy scale
coupled to the electronic motion. This means the effective ionisation potential of a
photo electron is defined by the laser intensity and additionally the vibrational state
of the corresponding ion. Highly excited ions will therefore close the lower ionisation
channels.
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o polarisation direction

Figure 3.7: Particle setup for the model molecule: The active electron (black dot)
moves along the laser polarisation direction (z-axis), while the protons (big grey dots)
vibrate orthogonally to this. The coordinate R represents the proton separation. The
second electron (bright grey dot) drawn in between the two protons is inactive within
this model and does not couple to the laser field nor interact directly with the active
electron. It is represented as a screening charge only, staying in the electronic ground
state for all times.

3.3.2 Numerical model

We model the Hy (or Dg) molecule as composed of a single active electron interacting
with the core which is allowed to vibrate. This is justified by the fact that no qualitative
influence of electron-electron correlation on ATI spectra has been found so far. Both
degrees of freedom (electron coordinate and inter-nuclear distance) are treated only in
one dimension, since for strong, short laser pulses, the electron is essentially driven
along the laser field and the timescale for rotational motion of the whole molecule is
much longer than the ultrashort pulse durations considered here.

The alignment of the molecular axis was chosen orthogonal to the laser polarisation
direction. This removes the dipole coupling between the ground and first excited state
of the ion [49, 50] and allows the ion to be vibrationally excited to very high v without
dissociation through bond softening. This results from the fact that the electronic
ground state of Hy™ is composed as a symmetric linear combination of two 1s atomic
orbitals and therefore a 1so, state, hence gerade. The first exited molecular state is the
antisymmetric linear combination of these two atomic orbitals, leading to a 2po,, state,
i.e., it is ungerade. Now obviously, a laser dipole in direction of the molecular axis is an
ungerade function of the space coordinate along this axis. Therefore, (2po,|z|1s0oy) # 0
in general. If the molecular axis is perpendicular to the laser dipole instead, the overlap
integral between gerade and ungerade will vanish, (2po,|z|1so4) = 0. Hence, almost no
probability is transferred to the dissociating 2po,, state and the electronic ground state
is populated with highly excited vibrational states instead. A sketch of the particle
setup is given in Fig. 3.7.

This setup leads to the Hamiltonian

- 1/1 d? 1 d?
Ht)=—=- —— + ———
®) 2 <,un dR? * He dz2> (3.12)
+ Va(R) + Vine (2, R) + E(t)z,
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Figure 3.8: Ground state potential energy surface of Ho*. It is identical for Dy™.

where the operator E(t)z with E(t) = F(t)Fjsin(wt) describes the interaction of the
active electron with the electric field of a linearly polarised laser pulse in length gauge.
Fjy is the maximum field amplitude and F'(¢) defines the pulse shape. The electron
coordinate and inter-nuclear distance are denoted by z and R; pe and p, denote the
reduced masses of the active electron and of the two nuclei, respectively. The repelling
nuclei are screened by the second (inactive) electron, which we assume to remain always
in the energetically lowest possible state. The inter-nuclear potential is thus taken to
be the exact Born-Oppenheimer ground-state potential of the molecular ion,

Va(R) = Vag (R), (3.13)

shown in Fig. 3.8, which is of course identical for Do*. The electron-ion interaction is
modelled via the soft-core potential

1

shown in Fig. 3.10, upper plot. This choice expresses that since the electron moves
perpendicular to the nuclei, there is only one single Coulomb well, whose strength is
dependent on the inter-nuclear separation and the screening. The parameter o(R) (see
Fig. 3.9) is adjusted such that the Born-Oppenheimer ground-state potential of the
model Hamiltonian matches the exact Born-Oppenheimer ground-state potential of Ho
given in [51]. The shape of the parameter curve for o(R) is perfectly translated into
the interaction potential. In the limit of large R, o tends towards /2, such that o
gives the correct soft-core parameter for separated hydrogen atoms. The full potential

Vint(2, R) = — (3.14)
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Figure 3.9: The screening length o(R) appearing in the electro-nuclear interaction
potential Vi (z, R). It is fitted such that the Born-Oppenheimer ground-state potential
of the model Hamiltonian for each R exactly matches the Born-Oppenheimer ground
state potential of Hy and Ds.
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Figure 3.10: Interaction potential between active electron and model Hy™ /Do, without
(upper panel) and with (lower panel) nuclear repulsion included.
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Vint (2, R) + V,,(R) is shown in Fig. 3.10, lower plot. Through the combination of both
components, it exhibits an absolute minimum at R = 1.2 a.u. for z = 0. The average
binding length is 1.45 a.u. (1.43 a.u.) for Hy (D2). The ground states of both systems
Hs and Dy are shown in Fig. 3.11.

In interpreting the fit, it helps to imagine a 2D Coulomb potential. A fixed soft-core
parameter would describe the offset with which one would have to fly by the Coulomb
centre. The potential along the path gives exactly the soft-core potential. If the soft-
core parameter is varying with R, the line path simply shifts closer to or further away
from the Coulomb centre. The soft-core parameter for the correct ground-state energy
of a hydrogen atom is exactly 2, matching perfectly with the o-fit.

A similar fitting procedure has been used previously to reproduce the Born-Oppen-
heimer potential of Hy™ in a 1D model [52].

Obviously, this model allows only for single ionisation of the molecule. There is
no dissociation channel included, and the second electron is completely passive in its
ground state. No interaction between the two electrons in taken into account and hence
no energy is transferred between the electrons. This is surely a severe simplification,
yet it was the only numerically feasible one and still shows interesting and important
features stemming from the coupling between electronic and nuclear motion.

For comparison, we also carry out calculations for a 1D atom. The atomic Hamil-

tonian reads
~ 1 d2

Hatom(t) = _ﬂ@ + Wnt(z) + E(t)z, (315)

where the Coulomb interaction between electron and nucleus was modelled as a simple

soft-core potential,
1

VZ2+a
The soft-core parameter was adjusted to a = 1.4863, such that the ionisation potential
I, of the atom equals the one for Hs.

Vint(2) = (3.16)

To simulate the system constructed above, the 2D Time-Dependent Schrodinger
Equation
.0
ot
is solved numerically. The 2D wave function ¥(z, R,t) is propagated via the split-
operator method combined with 2D Fourier transformations, as is explained in Section
2.2. The two-dimensional grid (z-spacing 0.36 a.u., R-spacing 0.05 a.u.) extends in
R-direction from 0.2 a.u. to 12.95 a.u., in electronic direction from -276.3 a.u. to
276.3 a.u., corresponding to 256 and 1536 grid points, respectively. In the electronic
dimension, the grid is further extended up to |z| = 2522.7 a.u. to allow for the possibility
of large electronic excursions and to obtain high-resolution energy spectra for the ATI
electrons. This is done via splitting the grid and wave function [15], see sections 2.8
and 2.9: in the overlap region between inner and outer grid, we decompose the 2D wave
function Wy (z, R, t) repeatedly into a single sum of product states,

U(z,R,t) = H(z, R, 1)¥(z, R, 1) (3.17)

Tout(z, Rot) = > &(2,t)¢(R, 1), (3.18)
J
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Figure 3.11: Numerically calculated ground-state wave functions of the model Hy (upper
plot) and Dy (lower plot) molecule. The wave function was calculated via the imaginary
time propagation technique explained in Section 2.2. The ground-state energies come
out as E(I){2 = —1.164536 a.u. and Eé)Q = —1.167439 a.u., respectively.
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Figure 3.12: Pulse shape used within the calculations: It extends over five optical cycles,
while ramped on and off with a sin?-shaped ramp extending over 1.5 cycles. Three cycles
with zero electric field are appended to let outgoing photoelectrons move into regions
of small Coulomb potential. The time integral over the electric field vanishes exactly
by construction.

where &j(z,t) and (j(R,t) are the canonical basis states or natural orbitals. We chose
the number of expansion terms such that all terms add up to a probability of at least
0.999. No more than four terms were needed in each expansion.

In the outer part of the 2D grid, the coupling between the two degrees of freedom
is neglected: the interaction potential Viy (2, R) is replaced by the R-independent po-
tential Voue(z) = Vine(z, R = 2). This allows us to apply 1D propagations separately to
the functions &;(z,t) and (j(R,t), and grid extensions up to several thousands atomic
units become feasible. The potential is gradually changed between |z| = 10...161 a.u.
from Vipt to Vour to avoid discontinuities of the Hamiltonian.

For the atomic calculation, a 1D grid with no grid splitting was applied. We used
the same electronic grid spacing and applied the same propagation scheme.

The pulse shape F'(t) is chosen such that the temporal pulse integral vanishes. The
five-cycle pulses used in this work are ramped on and off following a sin? envelope over
1.5 cycles and have a mid plateau with constant intensity that extends over two cycles.
Three cycles without laser field are added to let the ejected electrons move further
away from the Coulomb potential of the core. The pulse is shown in Fig. 3.12. We
have checked that finally no significant Coulomb energy is carried by the ATI electrons
considered in this work. For small electronic energies usually corresponding to electrons
close to the nuclear core, see Chapter 4 for an advanced technique to avoid Coulomb
shifts of ATI peaks through application of the Wigner Distribution Function.



3.3. Molecular Channel Closing Effects 51

The laser wavelength is 800 nm, hence w = 0.05695 a.u., so that we have I, = 10.0 w
for all three systems considered. The system is regarded as ionised for |z| > 30 a.u. The
precise choice of this value is not important for the investigation of the channel-closing
effects since the corresponding results shown in this work involve electrons driven at
least 500 a.u. from the ion at the end of the simulation. It only means that the part of
the computational grid used for analysis corresponds to electrons at least 30 a.u. away
from the nuclear core. In the last part of this work, dealing with Coulomb shifts of
kinetic energy spectra, also near electrons play a role.

The time step was chosen as dt = 0.0276 a.u. which corresponds to 4000 time steps
per laser cycle.

3.3.3 Results

The kinetic-energy spectra of ATI electrons are analysed into contributions correspond-
ing to different vibrational states v of the remaining ion. This is done via projection of
the ionised part Wi, (i.e., where |z| > 30 a.u., see above) of the wave function at the
end of the simulation onto the different vibrational states y, of the ion,

Pu(z) = / X (R) Wion(2, R, tena) dR. (3.19)
The modulus squared, |¢A§v(pz)|2, of the Fourier transform then gives the momentum
power spectrum. This is then further rescaled from momentum to energy by weighting
the respective contributions for each momentum p = +v2mFE with

dp [ m

since the momentum distribution f(p) and the energy distribution f(F) are related by

Fo)dp = 1(B)E = ()| {5 ar. (3.21)

where the function f(E) contains only the positive or only the negative momenta. In
this way we obtain one ATI spectrum for each vibrational state. In this work, Wi, is
chosen such that it contains only the right-going part of the final wave function.
According to Eq. (3.11), the ATT peaks in these spectra are shifted by AEY. Scan-
ning through different v and thus varying AE" can therefore lead to channel closings.
Since AEY can easily exceed the photon energy within the first few vibrational states
(for the Ho™ ion and A\ = 800 nm, AE" ~ 1.0w and for the Dy ion, AE? ~ 0.96w),
a channel closing will almost certainly be observed within the first nine vibrational
states, no matter where exactly the first ATI peak is located.? So instead of scanning
through different laser intensities, in the case of molecules one can also “scan” through
different vibrational states of the remaining ion. With growing quantum number v the
vibrational energy gets larger, so at some v, the lowest-possible channel is closed, and
we expect the corresponding energy spectrum to show the characteristic channel-closing

30f course, depending on the exact situation, it can be an even-n or an odd-n channel-closing, which
are not equally well observable.
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features known from atoms. The difference to atoms is that the energy is scanned in
discrete steps of hard-wired, non-equidistant size. We compare ionisation of Hy and
D,. In the case of Do ions, the closer-lying vibrational states allow for a less coarse
scanning in energy already for low vibrational states, and we expect a clearer resolution
of the observed features as compared to Ho™.

Intensity-Dependent Channel Closings

Strong-field single ionisation by a laser field of suitable intensity leads to a channel
closing according to Egs. (3.10) and (3.11). In Fig. 3.13, ATT electron spectra are shown
for ionisation of the three model systems under investigation: atom, molecular hydrogen
and molecular deuterium (top to bottom). In the latter two cases, projections onto the
v = 4 vibrational state of the molecular ion are taken. In each case, two different
intensities are plotted, with 0.4 w difference in U,. The two corresponding curves are
vertically shifted with respect to each other to enhance visibility. For each species, the
upper curve (lower intensity) shows a dip in the re-scattering plateau (located before
the final big hump), while the lower curve shows the maximum yield in the re-scattering
plateau within the intensity range under investigation. Clearly, the enhancement effect
known from atoms (upper panel) can be identified for the case of molecules as well.
The full molecular spectra (the sum over contributions from all v, shown in Fig. 3.14)
do not as clearly show the effect, because the channel-closing intensity depends on the
vibrational state. In the projections on individual vibrational states, Fig. 3.13, the
effect is clearly visible. However, depending on the distribution of vibrational states,
in general there will be one major contribution to the total spectrum by one specific v,
which is then responsible for a noticeable enhancement even in the complete spectrum.
A hint of this is visible in Fig. 3.14.

Applying Egs. (3.10) and (3.11), the channel closing is expected at intensities 7.89 x
10'3 W/cm? (n = 13) or 1.05 x 10'* W/cm? (n = 14) for the atom, 8.82 x 10 W /cm?
for Hy and 9.19 x 1013 W/cm? for Dy (ionic state v = 4 and n = 14 in both cases). As
known from earlier publications, this does not exactly match the observation, i.e., the
concept of energy conservation alone cannot explain the effect quantitatively. Due to
the different vibrational energies in hydrogen and deuterium, according to Eq. (3.11) it
is expected that in case of Dy more laser intensity is needed for the channel closing to
take place. For v = 4, the difference in AE* amounts to 0.17 w, which would have to
be compensated by a correspondingly higher U,,. In fact, the maximum enhancement
for Dy is found at a higher intensity with a value of U, higher by 0.1 w. (Note that Uy
was sampled in steps of 0.1 w.)

Molecular Channel Closings

In Fig. 3.15, envelopes of ATI spectra are plotted for molecular hydrogen and molecu-
lar deuterium. Several different projections on vibrational states of the ion are shown,
such that in both cases approximately the same range of vibrational energy is cov-
ered, namely about one laser photon energy. The laser intensity is fixed at 9.435 x
10" W /em?, and the variation in vibrational energy AEY plays the role of the chang-
ing laser intensity in the case of Fig. 3.13. According to Eq. (3.11), again a channel
closing takes place. The resulting effect is visible in both Hy and Ds. Yet it is masked
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Figure 3.13: Kinetic-energy spectra of (right-going) ATI electrons in the case of the
1D atom (upper panel), Hy (central panel), and Do (lower panel). For the molecular
cases, the v = 4 projection is shown. Two different laser intensities are plotted in each
case to visualise the intensity-dependent enhancement of the re-scattering plateau. In
each panel, one of the two spectra has been vertically shifted by a factor of 5 x 10* to
improve readability.
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Figure 3.14: Kinetic-energy spectra of (right-going) ATI electrons in the Hy (upper
panel) and Dy (lower panel). In both cases, the full spectrum (integrated over all
vibrational levels) is shown. Two different laser intensities are plotted in each case
to visualise the intensity-dependent enhancement of the re-scattering plateau. In each
panel, one of the two spectra has been vertically shifted by a factor of 5 x 10* to improve
readability.
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Figure 3.15: Envelopes of kinetic-energy spectra of (right-going) ATI electrons in
the case of Hy (upper panel), and Dy (lower panel). The laser intensity is 9.435 x
103 W/em? (U, = 3.63 w). Projections on several different vibrational states of the
remaining ion are plotted to show the intrinsic channel-closing effect. Plotted are ab-
solute spectra without any normalisation, therefore the trend of Fig. 3.16 is reflected,
but quantitatively masked by the general trend of different occupations of the different

vibrational states.
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Figure 3.16: Envelopes of kinetic-energy spectra of (right-going) ATI electrons in
the case of Hy (upper panel), and Dy (lower panel). The laser intensity is 9.435 x
10 W/em? (U, = 3.63 w). Projections on several different vibrational states of the
remaining ion are plotted to show the intrinsic channel-closing effect. Each spectrum
has been divided by the total yield of the respective vibrational state to clearly isolate
the channel-closing effect from the v-dependence of the total yield.
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Figure 3.17: Envelopes of kinetic-energy spectra of (right-going) ATI electrons in the
case of Hy (left column), and Ds (right column). The laser intensity is grows from
Up = 3.53 w (top row) to U, = 3.93 w (bottom row). Projections on vibrational states
1 to 7 of the remaining ion are plotted to show the intrinsic channel-closing effect.
Each spectrum has been divided by the total yield of the respective vibrational state
to clearly isolate the channel-closing effect from the v-dependence of the total yield.
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by a general trend prescribed by the vibrational state distribution. For example, in the
top-left panel of Fig. 3.18, which shows the total distribution of vibrational states for
the same laser intensity as in Figures 3.15 and 3.16, the population decreases quickly
as a function of v around v = 4.

To avoid confusion of the channel-closing effect with changes due to higher or lower
total occupation of vibrational states, the spectra have been normalised, i.e., divided
by the total yield of the respective vibrational state. The result is shown in Fig. 3.16.
For the case of Hy, it is obvious from Fig. 3.16 (upper panel) that the highest yield is
found for the v = 4 and v = 5 projections, i.e, the channel closing occurs somewhere
between these two vibrational energies. For Ds, the highest yield is clearly reached
for v = 6, maybe a little later, as the v = 7 curve is still quite close by. This fits
perfectly the relative comparison in energy conservation, since AE4 . 0.64 w and

AEH + = 0.78 w, whilst AE6 = = 0.68 w and AE7 = = 0.78 w. A coarse estimation,
Supported by both examples, Would suggest that the vibrational energy needed for an
exact closing is about 0.7 w.

To support the findings, the same plots were made for different laser intensities
ranging from U, = 3.53 w to U, = 3.93 w (top to bottom) in Fig. 3.17. The left column
shows the results for Hy, the right column those for Ds. The second row of the figure
shows exactly the situation of Fig. 3.16. One clearly sees for both cases of Hy and
Do that with growing laser intensity (top to bottom) the highest yield is reached for
lower and lower vibrational states of the ion. This matches perfectly the expected trend
due to energy conservation. In the case of Dy it is especially beautiful, since for each
0.1 w-step in U, the maximum is reached exactly one v earlier. This matches perfectly
the spacings of the vibrational states 1 to 7 in Dy™, given by 0.12 w, 0.12 w, 0.11 w,
0.11 w, 0.10 w, and 0.10 w respectively.

In any case, Hy and Dy exhibit a clear difference in the behaviour of the plateau
enhancement, namely with changing v, it happens much more slowly in the Do case as
compared to He, again supporting the connection to the concept of energy conservation.
Yet the application of Eq. (3.11) predicts the channel closing at AEY ~ 0.37 w, which
does obviously not quantitatively match the observation. Vibrational energies and their
separations are also given in Tab. A.1 in the Appendix. There, also the theoretically
predicted channel closings for n = 14 in terms of U, are shown.

Correlation Effects

In Fig. 3.18, the population of vibrational states v = 0 to v = 9 is plotted for the cases
of Hy (left column) and Dg (right column) after ionisation with a laser intensity of
9.435 x 1013 W /ecm?. From top to bottom, different energy windows have been applied
to the corresponding ATI electrons. The two upper panels show the total vibrational
distribution of the produced ions for all right-going electrons. In the lower four pan-
els, yields within restricted electron energy windows are shown. Here, the bars show
unnormalised distributions, i.e., the underlying ATI spectra have not been normalised.
In the background of the topmost panels, for comparison the Franck-Condon distri-
butions are shown in grey for both cases. They correspond to a “vertical” transition
between molecule and ion, i.e., it is assumed that the nuclear configuration does not
change while the molecule is ionising. The nuclear Hy wave packet is transferred onto
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Figure 3.18: Occupation of vibrational states of Ho™ (left column) and Do™ (right
column) after single ionisation of the respective molecule with laser intensity 9.435 x
101 W/em? (U, = 3.63 w). Three cases are shown: including all ATI electrons (upper
two panels), including only electrons with kinetic energies between 38 and 47 eV (two
central panels), and including only electrons with more than 47 eV (lower two panels).
The uppermost panels show in grey the Franck-Condon distribution for comparison.
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Figure 3.19: Occupation of vibrational states of Ho™ (left panel) and Do (right panel)
after single ionisation of the respective molecule with laser intensity 9.435x 101 W /cm?
(Up = 3.63 w) including ATT electrons with kinetic energies between 38 and 47 eV. The
bars show normalised distributions, i.e, the full spectrum was divided by the total yield
of the respective vibrational states (i.e. these distributions belong to the envelopes
shown in Fig. 3.16).

the Ho™ PES immediately, without changing shape. This leads to a significant popu-
lation of vibrationally excited states, since the nuclear Hy ground-state wave packet is
no stationary state of the ionic PES. The Franck-Condon factors represent the over-
lap of the Hy ground-state nuclear wave function with the vibrational states of Ha™,
JOE" (R)| W4 (2, R))d=.

If one restricts the spectra to ATI electrons with kinetic energy in a certain interval,
e.g. between 38 eV and 47 eV in the middle panel of Fig. 3.18, the distribution of
vibrational states is very different from the total distribution. It is significantly warmer,
i.e., the maximum and average are shifted towards higher v, especially for the case
of Dy, Since the chosen energy window matches the re-scattering plateau of the
ATI spectrum, the distributions show that for re-scattered electrons higher vibrational
excitation of the corresponding ion is favoured. In the lower two panels, ATI electrons
with energies above 47 eV are chosen. The corresponding distribution of vibrational
states changes again. The distributions resemble more the total distributions shown in
the uppermost panel.

For comparison, the bars of Fig. 3.19 correspond to the spectra of Fig. 3.16 and
therefore belong to normalised spectra, i.e., the yield for each vibrational state has
been divided by the total yield of the vibrational state. In other words, if the yield
falling within the chosen electron energy window followed the same dependence on v as
the total yield (upper panel of Fig. 3.18), then this normalised distribution would be
constant. Instead, one clearly sees a preference of highly excited vibrational states, ex-
actly matching the observation of maximum enhancement within Fig. 3.16 as expected.

For the present laser intensity, the windowed electrons (which lie in the re-scattering
plateau) give comparatively hot vibrational distributions, while the lower vibrational
states are mainly found as partners of direct electrons. Generally speaking, a strong
correlation between the kinetic energy of the ATI electrons and the vibrational state of
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Figure 3.20: Normalised distribution of vibrational states 0 to 9 (black bars from left
to right), of Do™ within energy window corresponding to the respective enhancement
region within the re-scattering plateau; laser intensities growing alphabetically, reaching
from U, = 3.13 w to U, = 5.63 w in steps of 0.1 w.
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the corresponding ion is obvious from these results.

Again, this behaviour is counter-checked for different laser intensities, plotted in
Fig. 3.20 for Do™. The figure is extremely simplified to just sketch the general trend
of the distribution. It is identical to the plots of Fig. 3.19, where the Dy ™ plot can be
found in Fig. 3.20 at position (f) in the left column. We will use this plot corresponding
to a laser intensity of U, = 3.63 w as a starting point for further discussions.

Obviously, changing laser intensity leads to a shift of the maximum within the
distribution. For lower intensities (a)-(e), the maximum “leaves” the plot, i.e., it is
shifted to higher vibrational states, while a “new” maximum seems to enter the plot
from the left. The concept of energy conservation explains this qualitatively, since a
lower U, can be compensated by a higher vibrational energy. Hence, the same structures
appear at higher AE". This is in perfect agreement with what is seen in Fig. 3.17, where
for lower laser intensity the highest yield is observed for higher-lying vibrational states.

The energy conservation formula (3.11) would also suggest that the maxima be
separated by a vibrational energy of exactly 1.0 w. Unfortunately, in Dot, AE? =
0.96 w. Therefore only the extreme case of the two maxima residing exactly at the
two borders of the plot in v = 0 and v = 9 should be visible. For the two lowest laser
intensities (a) and (b), there is obviously not enough structure within the re-scattering
plateau to produce a distribution of vibrational states significantly different from the
general trend.

For higher intensities as compared to plot (f), all the way down to the bottom of
the left column, the maximum shifts gracefully to the left. However, a second, rather
low/small maximum seems to enter the scene from the right already at (i),(j). This is
not expected since only 0.3 — 0.4 w of ponderomotive energy have been added. Chances
are that this small maximum is related to an odd channel closing, i.e., n = 15. However,
comparing with the results in [37], the effect for even channel closings should appear
slightly below the energy given by energy conservation alone. A systematic shift would
be acceptable, so this is not the problem. But then, the odd channel closings are found
to lie exactly at the predicted energies. This would mean a separation in energy larger
than 1 w between an even closing and a following one of higher order. This is obviously
not the case. An explanation cannot be given.

As we continue with the right column of the plot, the structure seems to almost
completely vanish. It is only in plot (q) of the right column that we again clearly
identify a pronounced maximum. Compared to the starting point (f), U, was raised by
1.1 w up to this point. And indeed, the maximum is at quite the same position. Shifting
to the left, it almost immediately washes out. A huge maximum seems to enter the
scene from the right in (s) and (t), yet it does not form a pronounced shape when fully
inside the plot. Also, the position of the maximum is shifted to the left compared to
the expectation, since plot (z) at the bottom of the right column is exactly 2.0 w away
from our starting point (f). Hence we should see a maximum at the same position.
This is not the case.

Obviously, the situation is not that easy: Energy conservation does somehow match
the observation, but cannot fully explain what is found. Maxima exhibit different
heights, appear shifted and/or washed out, relative separations do not match the energy
conservation. However, one has to stress that the observation window was more or less
arbitrarily positioned around the enhancement region within the re-scattering plateau
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for each plot. This region changes shape quite significantly while raising the laser
intensity. There is no prescription of how to exactly position the observation window
to get the correct results.

3.3.4 Conclusions

Our calculations show that spectral enhancements observed at certain laser intensities in
strong-field ionisation of atoms can also be found in strong-field ionisation of molecules.
The vibrational motion of the nuclei in the cases of Hy and Ds can play the role
of applying different laser intensities in the atomic case. Energy conservation serves
as a simple explanation of the observed channel-closing effect, yet cannot completely
determine at which laser intensity (or vibrational quantum number) it will take place.
The difference between Ho and Dy is well explained by the different spacing of the
vibrational levels. Furthermore, strong correlations between the nuclear motion and
the kinetic energy of the ATI electrons are found. These correlations are revealed
by the vibrational distributions of the ions for specific energy intervals of the ATI
electrons. We have observed spectral enhancements despite the rather short pulse
duration. It is expected that longer pulses will lead to even more pronounced effects.
On the experimental side, to observe the predicted effect, coincidence measurements
will be necessary. The distribution of vibrational states in the Hy™ ion after strong-field
ionisation of Hy has been successfully measured already [49], but it still seems difficult
to make such a measurement selectively for electrons of given kinetic energies.

3.4 Molecular Correlation

As was shown in the previous section, after photoionisation of Hy oder Ds, photo-
electron and ion are correlated with each other. In Section 2.7, a measure for the
correlation between these two degrees of freedom,

K = [trp?] ", (3.22)

was introduced, with p being one of the two single-particle density matrices of the
wave function. Basically, K expresses the number of significant terms in the product
expansion of the wave function.

Of course, this measure can be applied to any wave function, and to parts of a wave
function as well. Since application to a large area of the grid would simply give one
number K, describing to total correlation between electron and ion, not much is learned.
So far, we could observe a correlation between kinetic energy of the photoelectron and
vibrational state of the ion. Since K will work for any matrix, it can of course also
be applied to the momentum-space wave function. This seems more natural, since
the electron momenta p, correspond to the kinetic energy of the electron, and the
vibrational states will still be well represented by their momentum distribution in pg.
The correlation K will be calculated for all values pr within a small window of p,,
sliding over the complete momentum spectrum of the electron. This will yield a plot of
“local correlation” (local in p,) within the momentum space wave function. Of course,
the window size is crucial, since it determines, how local the correlation is. As taking
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Figure 3.21: Correlation K between electronic and nuclear momentum for photoelec-
trons (U, = 3.63 w) more than 30 a.u. away from the core. The plot shows different
window sizes of the sliding window scanning along the electron momentum. The sizes
are given in grid points within the plot.
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the full spectrum as one big piece was found as not interesting, so would be a window
size of one grid point. This would always give a K value of 1: There would be no
matrix to decompose, hence there is but one “product of states”, with the electronic
state being simply the unit scalar. Fig. 3.21 shows a plot of K for different window
sizes of 2, 5, 10, 20 and 100 grid points in width, where one grid point corresponds to
about 1072 a.u. of momentum. The plot was drawn such that the middle of the window
gives the point of observation and the window was shifted by one grid point only in each
step. The intensity in this case corresponds to U, = 3.63 w. Obviously, the window size
has influence on the plot, but still all curves share many features. The general trend
is very similar for the plots of 10 and 20 grid points (and also up to 50, not shown
here), and also the peak structure appears for all window sizes, however becoming less
for the largest windows. The peak spacing corresponds to the photon energy. This
is not surprising, since this structure is contained within the electron spectrum. The
steep descent at about 1.8 a.u. is common for almost all window sizes as well. This
will now be further investigated in comparing the change in correlation K with the
course of the momentum spectrum. See Fig. 3.22 for four different laser intensities
corresponding to U, = 3.13 w, 3.93 w, 4.73 w and 5.43 w. The K-plot is compared to
the full momentum spectrum of the electron. The window size was fixed at ten grid
points, since this seems to give the richest collection of features, i.e., clear peak structure
and huge level changes. Is is clearly visible that in all four cases, the K rate drops at
the end of each spectral hump. Low K does however not mean that the (momentum
space) wave function contains only few vibrational states. It only means that it contains
not many product terms in the expansion of canonical basis states within the scanning
window. In the ideal case of a constant distribution of nuclear momenta within the
scanning window, K would be unity. The same applies to the situation where for all
nuclear momenta an identical distribution of electron momenta occurs. This is because
in these two cases a product expansion would consist of only one term. K takes large
values at those momenta where the ATI peaks reside, i.e., where (for high-order ATT)
re-scattered electrons are responsible for the spectral yield. Since inelastic scattering
between electron and ionic core should produce strong correlations between the two,
it seems counter-intuitive why strong correlation should be found at ATI peaks, which
correspond mainly to elastic scattering. Modulo this rapid oscillation following the
ATT structure of the spectrum, there is a general trend of K rising steadily up to the
end of the first big hump of the spectrum, dropping immediately afterwards. This
drop repeats at every end of a spectral hump, after a short rise stretching out over the
complete hump. Hence, correlation is always a bit larger within those clearly separated
humps, corresponding to different re-scattering events. Up to now, not much more can
be said about the meaning of this rise and fall of spectral correlation. However, it will
be shown in the following chapter, that this fact finds its counterpart in a peculiar
behaviour of the Wigner spectra investigated in the next chapter. If there is really a
definite connection between these two findings remains up to now an open question.
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Figure 3.22: Comparison between correlation K of electronic and nuclear momentum
(black) and the full electronic momentum spectrum (grey) of the ionised electron. The
four plots show four different laser intensities corresponding to U, = 3.13 w, 3.93 w,
4.73 w, and 5.43 w from left to right, top to bottom.



Chapter 4

Coulomb Correction of Kinetic
Energy Spectra

4.1 The Wigner Distribution Function (WDF)

In 1932, Eugene Paul Wigner introduced [53] his celebrated distribution function as an
attempt to map a quantum state into the quantum-equivalent of classical phase space.
It is defined as

W)= [~ 0o+t - )ty (1.1
This specific choice leads to the following properties:
1. it is real for all  and p,
2. integrated over p, it gives the probability distribution of x, and vice versa,
3. correct behavior under Galilei transformations,
4. correct behavior under time reversal,

5. transition probabilities can also be written as

'/¢*(w)¢(w)dw T 277/ Wy (2, p)We (2, p)dadp, (4.2)

6. in the force-free case the equation of motion is the classical one.

In fact, Wigner showed that the average of an observable g(ﬁ, q), quantum mechanically
usually written as

(A) = tr(Ap), (4.3)

where p is the density matrix operator, can also be written in an analogous way to
classical physics as

(4) = /_C: dg /_Z dp A(q,p)W (g, p), (4.4)
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where W(q, p) is the most general WDF and given by

— 1 [ N :
W(q,p)=;/ (g —ylplg + y)e*?V, (4.5)

— 00

and A(q, p) is the classical function corresponding to the operator A\(q, p). If the system
is in a pure state, this expression reduces to Eq. (4.1). Still this is not the only form of
P(q,p) one could think of. Yet it is the only one fulfilling all properties listed above.
This is also beautifully explained in his initial work cited above.

As a consequence of the Heisenberg uncertainty principle, it is of course not possible
to exactly determine position and momentum of a quantum particle simultaneously.
The WDF reflects this fact by its local negativity. Hence it is not exactly a probability
distribution. However, it can be proven that if integrated over phase space volumes of
the order of 1, it will always be non-negative.! This also holds for convolutions with
a smooth kernel (in contrast to a step function) of the corresponding size. The most
famous approach in this sense is due to Husimi [54], who smoothed the WDF with a
Gaussian, for which AgAp > 1/2. This in fact leads to a non-negative distribution
function. However, it does not have the last property 6 listed above.

4.2 Application: Spatially Resolved Electron Energy

Technically speaking, the WDF is the Fourier transform of the “autoconvolution” of the
wave function,

W(e,0) = [ Culy)edy = FICl(a.0), (4:5)

with
Caly) = ™ (x + y)v(z —y), (4.7)

projecting on ¢ = 2p, being two times the momentum of z. It more or less reflects the
properties of a local Fourier transform, i.e., one gets a spatially resolved momentum
distribution. It is this fact that allows us to compensate for Coulomb defects within
kinetic-energy spectra of photoelectrons: Simple Fourier analysis of a wave function
partially residing in regions of non-constant negative potential always leads to a sys-
tematic over-estimation of kinetic energy. The electrons would still have to climb the
hill until they finally reach a detector, losing energy on their way.

The simplest approach to overcome this situation is to propagate the wave function
further on, up to times when most of the electrons are already at distances of almost
vanishing Coulomb potential. Not only does this mean long propagation times, but it
also forces the use of large grids, since the fast electrons already far out of the Coulomb
well still propagate further into the continuum and might get lost if reaching the grid
boundary.

Since the Coulomb potential as a function of x is known, it is possible to correct
momentum contributions according to their position in space by letting

Ekin ~M Ekin + V(I’), or, P~y p2 + QV('%') (48)

'In general, it has to be of the order of i, f being the number of degrees of freedom of the system.
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For each electron position x, the Wigner function W (z,p) is calculated. Each time,
all kinetic momenta are corrected according to the prescription above, adding the z-
dependent Coulomb term. In summing all contributions belonging to the same effective
momentum, the coordinate z is integrated out. This integration is a non-coherent
summation and therefore in principle an approximation. This should be kept in mind,
although the results look very reasonable and meet the expectations.

With this we take into account that the electron will lose “all” its remaining Coulomb
energy V(z) before hitting a real-world detector. This gives us the opportunity of
calculating kinetic-energy spectra very early, although this means that a significant
portion of the wave function still resides in regions of non-negligible Coulomb potential.
There is still a problem connected with early momentum measurements, which will be
addressed later.

4.3 Numerical Implementation

The most efficient way of computing the WDF numerically is via the Fast Fourier
Transform (FFT). Hence, for each space coordinate x, the autocorrelation function
C.(y) is computed for all relative shifts y. Then, an FFT algorithm is applied to
compute the Wigner Distribution Function at position x. This is repeated for all
coordinates x. However, there are two slight caveats:

1. Obviously, the Fourier transform contained in the definition of the WDF, see
Eq. (4.1), projects on the momentum state with twice the momentum p. This
has to be taken care of when plotting the data. However, no information is lost,
since the discrete correlation function C,(y) is computed over all possible relative
shifts of ¢ with respect to itself, positive and negative. This means double array
length of C,(y) as compared to 1 and thus double momentum resolution.

2. Due to the fact that the Fourier transform contained in Eq. (4.1) is executed
with respect to y, reaching from negative to positive relative shifts of up to full
array length, the transformation array C,(y) does not start at y = 0, but is
symmetrically extended around y = 0 as the centre coordinate, i.e., y € [—yo, Yo]-
Therefore, each Fourier component will gather a phase exp(iyp¢) that will have
to be compensated for before further applications of the WDF can be carried
out. See Fig. 4.1 for a sketch: The FFT routine assumes zero phases (and hence
y = 0) at the beginning of the array. And this is how it projects the arrays onto
exponentials. A shift in one domain always leads to a phase factor in the other
domain. This is an intrinsic property of the Fourier transformation:

Ao +dn)(p) = [ 5o +do) expl(-ipa)da
= /f(y) exp[—ip(y — dz)]dy

= exp(ipde) / £() exp(—ipy)dy
= F[f(x)](p) exp(ipdzx).
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Figure 4.1: Sinusoidal waves coinciding at zero will gather a relative phase on their
way. Assuming zero relative phase at the beginning of a computational array, the FFT
is able so assign a position in space to the function being analysed in frequencies. If
the array does not start at zero coordinate, the Fourier components will carry a phase
which has to be corrected.

If smoothing the WDF is considered, one should not underestimate the computational
effort and memory requirements for this procedure! Since a numerically feasible con-
volution is only possible via application of the Convolution Theorem, i.e., via multi-
plication in reciprocal space instead of convolving function and kernel explicitly, it is
necessary to store the full WDF in memory. Depending on the grid sizes necessary to
collect all interesting data at once, a huge amount of memory might be required. If
computational time does not play a role, it is of course possible to store only a slab of
the WDF in memory extending over the spacial width of the convolution kernel. The
convolution has then to be executed explicitly.

4.4 Results

In Fig. 4.2, low-kinetic-energy spectra of ATI electrons for the 1D hydrogen atom
described by the hamiltonian (3.15) are shown. The laser intensity corresponds to
Up = 3.63 w and the pulse length was 9 optical cycles. The pulse shape corresponds to
that utilised for the molecular calculations, i.e., it shows a 1.5-cycles sin?-shaped ramp
at the beginning and at the end.

The upper panel presents spectra calculated via simple Fourier transform, the lower
panel shows Coulomb corrected Wigner spectra. The different curves correspond to
different observation times after the laser pulse, going from zero to ten optical cycles,
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Figure 4.2: Kinetic-energy spectra of (right-going) ATT electrons in the case of the 1D
hydrogen atom for a laser intensity corresponding to U, = 3.63 w. The spectra have
been calculated via Fourier transform (upper panel) and Wigner Distribution Function
plus Coulomb correction (lower panel) and correspond to electrons between 30 and
5500 a.u. away from the core. Plots are shown for observation times between zero and
ten optical cycles after the laser pulse, in multiples of half-cycles (from bottom up).
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Figure 4.3: Same as Fig. 4.2 for an observation interval from 0 to 5500 a.u.



4.4. Results 73

in multiples of half-cycles. In both cases, one clearly sees how all peaks grow, i.e.,
more electrons enter the observation area with time. But in the case of the Fourier
spectra, the peaks additionally shift to lower energies, because while moving outwards,
the electrons lose Coulomb energy. This shift is strongest for electrons with low energy,
corresponding to the fact that they mainly reside close to the nucleus. With increasing
time, the peaks seem to converge towards a somewhat final position and height. Yet
they still contain lots of Coulomb energy they did not get rid of within the time of
observation.

This is contrasted by the Wigner spectra, that take the Coulomb energy of the
electrons into account and therefore show peaks of constant position over time. As in
the case of the Fourier spectra, the peaks grow due to additional electrons entering
the scene. Convergence is obvious as well, but slightly faster for the very low-energy
peaks and much faster for the main 2 eV-ATI peak. As a feature, it is very obvious
that the position of the Fourier peaks is by far off the correct energy, which is found
for the Wigner peaks. Even the first strong ATI peak at around 2 eV should lie below
2 eV but is found slightly above 2 eV in the Fourier case even ten optical cycles after
the end of the laser pulse. Of course, this effect vanishes rapidly for peaks of higher
order, since the corresponding electrons are much faster and therefore will reach low
Coulomb potential much earlier, which has been confirmed and can be seen in Fig. 4.4
for spectra taken immediately after the end of the laser pulse.

As was expected, it is possible to calculate kinetic energy spectra of photoelectrons
far earlier (in terms of propagation time) than is the case for simple Fourier transforma-
tion if the WDF method is applied. Also, the result is far more accurate for regions of
space where the Coulomb potential is significantly non-vanishing. Since usually in this
area mostly slow electrons are found, a clear shift of the lowest few ATI peaks can be
identified when comparing both methods. However, due to the fact that electrons very
close at the nuclear core behave much more according to their quantum nature as those
already far away from the centre of force, the WDF acquires negative values within
this region of phase space. When adding up all the momentum components of the
spatially resolved and Coulomb-corrected spectra, this “interference” appears as a zig-
zag on top of otherwise smooth energy spectral curves. Since this is not desirable and
also the whole technique does not make sense under these circumstances, one should
restrict oneself to regions of space where the electrons are clearly ionised already and
far enough away from the core to behave more or less like a classically moving charge.

When doing this, one will encounter another problem connected to propagation
time: In our example, we chose 30 a.u. as the beginning of the area of examination.
All electrons still closer at the nuclear core, but with energies high enough to escape
into the continuum, will eventually enter the examination region with time, as was
mentioned above. This can be seen in Fig. 4.3, where the same plots as in Fig. 4.2 are
shown, but for electron distances between 0 and 5500 a.u., i.e., taking also electrons
into account that reside between 0 and 30 a.u. away from the core. Obviously, the
peaks are higher already for the earliest curves and also they converge faster. But as
a payoff, the distortion is stronger due to more contributions from electrons extremely
close to the nuclei. Therefore, if the lowest few ATI peaks within the spectrum are of
interest for a certain observation, one has to check convergence of the peaks in question
before stopping the simulation. However, already from very low ATI orders on, the
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Figure 4.4: Kinetic-energy spectra of (right-going) ATI electrons in the case of the
1D hydrogen atom for a laser intensity corresponding to U, = 3.63 w. The spectra
have been calculated via Fourier transform (grey) and Wigner Distribution Function
plus Coulomb correction (black) and correspond to electrons between 30 and 5500 a.u.
away from the core. Plots are shown for an observation time directly after the laser
pulse.
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peaks converge rapidly.

In Fig. 4.5, the energy range around the re-scattering plateau is shown for four
different observation times of zero, two, four and six optical cycles after end of the laser
pulse. Again we compare the Fourier spectra (upper panel) with the Coulomb-corrected
Wigner spectra (lower panel). In the right two thirds of the plot, the big hump of the
re-scattering plateau that was investigated in the previous chapter is identified. It is
exactly in front of this big hump that the Wigner spectra behave unfortunate. They
show strong distortions of fast oscillations similar to the distortions close to the very
low energy peaks. As they vanish with time, it might be that they have in fact the
same origin and are Wigner artifacts resulting from non-classical particle motion. There
might be a connection to the findings of the strong drop of correlation of electrons and
nuclei within this energy region. The correlation is low also at the very beginning of
the spectrum, where the WDF shows the same behaviour.

To summarise, the method of Coulomb-correcting kinetic-energy spectra applying
the WDF yields accurate spectra at early times at the cost of higher computational
effort as compared to simple Fourier analysis. Since for low-energy peaks, usually
involving electrons close at the core and thus being significantly Coulomb-shifted, the
Fourier-method makes large errors and over-estimates electron momenta, the WDF
method should be the only method applied to obtain trustworthy results. For high-
order ATI, the Coulomb potential usually does not play a role and the Fourier method
can safely be applied, which is much faster in computation and also does not show
artifacts close to the re-scattering plateau.
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Figure 4.5: Kinetic-energy spectra of (right-going) ATT electrons in the case of the 1D
hydrogen atom for a laser intensity corresponding to U, = 3.63 w. The spectra have
been calculated via Fourier transform (upper panel) and Wigner Distribution Function
plus Coulomb correction (lower panel) and correspond to electrons between 30 and
5500 a.u. away from the core. Plots are shown for observation times of zero, two, four
and six optical cycles after the laser pulse from bottom to top.
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Numerical Data in Detail

A.1 Laser Intensitiy and Ponderomotive Potential

The following table gives a conversion between laser intensity in 104 W/cm? and pon-
deromotive energy in units of w = 0.0569542 a.u., corresponding to a laser wavelength
of A = 800nm.

Up/w 313 | 323| 333 343| 353| 3.63
Int./(10 W/cm?) | 0.8132 | 0.8392 | 0.8653 | 0.8914 | 0.9174 | 0.9435
Up/w 373 ] 383] 393 4.03| 413] 423
Int./(10'* W/cm?) | 0.9696 | 0.9957 | 1.0213 | 1.0474 | 1.0710 | 1.0998
Up/w 433 | 443 | 453 | 463 | 473 | 483
Int./(10™ W/cm?) | 1.1240 | 1.1518 | 1.1780 | 1.2038 | 1.2298 | 1.2558
Up/w 493 5.03| 513 | 523| 533| 543
Int./(10'* W/cm?) | 1.2818 | 1.3079 | 1.3338 | 1.3598 | 1.3858 | 1.4118
Up/w 553 | 5.63

Int./(101" W/cm?) | 1.4379 | 1.4638

A.2 Vibrational Energies of H,™ and Dy"

The following tables give the vibrational energies obtained via the calculation of the
different vibrational states of Ho™ and Dy ™, respectively. The ground-state energies of
the model Hy and Do systems are

Ey? = —1.1645 a.u., Ep? = —1.1674 a.u.,
the ionisation potentials of both systems amount to

I* = —0.5671 au., ID? = —0.5685 a.u..
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| Hy ' |
v ]| B, (aun) | AEY (w) | AEY (au.) | AE (a.n) | AE (w) | Up/w =14 — (I, + AEY)/w |
0 | -0.5974 0.0000 0.0000 4.00
1] -0.5874 0.1751 0.0100 0.00998 0.1751 3.82
2| -0.5780 0.3402 0.0194 0.00941 0.1651 3.66
3 | -0.5692 0.4956 0.0282 0.00886 0.1554 3.50
4 1 -0.5608 0.6414 0.0366 0.00831 0.1459 3.36
5 | -0.5531 0.7779 0.0443 0.00778 0.1365 3.22
6 | -0.5458 0.9051 0.0516 0.00725 0.1272 3.09
7 | -0.5391 1.0232 0.0583 0.00673 0.1181 2.98
8 | -0.5329 1.1323 0.0645 0.00622 0.1091 2.87
9 | -0.5271 1.2325 0.0703 0.00571 0.1002 2.77
| Dy’ |
v ]| B (aun) | AEY (w) | AEY (au.) | AE (a.n) | AE (w) | Up/w =14 — (I, + AEY)/w |
0 | -0.5989 0.0000 0.0000 4.00
11 -0.5917 0.1259 0.0072 0.00718 0.1259 3.87
2| -0.5849 0.2468 0.0141 0.00689 0.1208 3.75
3 | -0.5782 0.3627 0.0207 0.00661 0.1159 3.64
4 1-0.5719 0.4738 0.0270 0.00634 0.1112 3.53
5 | -0.5659 0.5802 0.0331 0.00606 0.1063 3.42
6 | -0.5601 0.6817 0.0389 0.00579 0.1016 3.32
7 | -0.5545 0.7786 0.0444 0.00552 0.0968 3.22
8 | -0.5493 0.8707 0.0496 0.00525 0.0921 3.13
9 | -0.5443 0.9583 0.0546 0.00499 0.0876 3.04

Table A.1: Hy™ (upper table) and Do* (lower table): Vibrational energies for v

0,...9, offset to Ey, offset to next-higher energy, and predicted channel closings. Here,
w is the laser frequency corresponding to 800 nm wavelength. For the channel closings,
a photon number of n = 14 has been assumed in order to obtain the channel-closing
intensities around 10 W/cm? (U, = 3.85w).
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