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PREFORMAL PROVING: EXAMPLES AND

REFLECTIONS l

ABSTRACT. The starting point of our reflections is a classroom situation in grade 12 in
which it was to be proved intuitively that non-trivial solutions of the differential equation
l' = f have no zeros. We give a working definition of the concept of preformal proving, as
well as three examples of preformal proofs. Then we furnish several such proofs of the
aforesaid fact, and we analyse these proofs in detail. Finally, we draw some conclusions for
mathematics in school and in teacher training.

I. A CLASSROOM SITUATION AND RESULTING PROBLEMS

In a school practical course in January 1988 (supervised by the first author)
a student teacher introduced the exponential function in a grade 12 class of
a Kassel school (l8-year-olds) as the solution of the differential equation
f' =f(withf(O) = 1). The class had been previously introduced to differen­
tial calculus in the classical school way (i.e. geometrically oriented) and had
dealt with some intra-mathematical applications, especially curve sketching,
with polynomial functions.

After the idea of directional field was acquired in that lesson, the field to
f' =f was plotted (the lower half plane was excluded; see Fig. 1). The
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trivial solution f = 0 was soon found by the students, and non-trivial
solutions were sketched in the directional field. After only a short while,
students asked: "Is it possible for such a (non-trivial) function to have
zeros?"

In his lesson plan, the teacher had intended to play down this problem.
Hence he gave the students only the following intuitive argument: "Imagine
us being on the x-axis. There, the slope is equal to 0 everywhere. When we
now move to the right in the directional field, we are always forced to move
horizontally, i.e. we can never get away from the x-axis. Therefore ... ".
Most of the students were satisfied with these arguments.2 With some
students, though, a certain unease remained, which resulted in various
inquiries. The teacher, however, succeeded then in reassuring the students
(essentially by repeating his arguments) and in turning the students'
attention towards a new question, namely how to find numerically a
concrete (approximate) solution off' = f

On the day after that lesson, as it happened, we attended a lecture given
by E. Wittmann at Paderborn University entitled "When is a proof a
proof?" ("Wann ist ein Beweis ein Beweis?"; see Wittmann/Miiller, 1988).
In accordance with Branford (1908), Wittmann distinguishes between three
levels of proving:

- Experimental "proofs"
- "Inhaltlich-anschaulich"3 (Branford: "intuitional") proofs
- Formal ("scientific") proofs

In characterizing the second step, Branford stated (p. 97): "This kind of
evidence establishes general and accurate truths, but appeals implicitly to
postulates of sense-experience whenever necessary: founds the truth on an
independent basis of its own by direct appeal to first principles." Wittmann
stresses once again that the borderline between "proofs" (which are none)
and (real) proofs does not run between the second and the third level, i.e.
between "inhaltlich-anschaulich" and "purely logical" proofs, but between
the first and the second, i.e. between a mere "verification of a finite number
of examples" and substantial argumentation on a non-formal basis.

With convincing arguments (see also Wittmann, 1989), he pleads for an
emphasizing of "inhaltlich-anschaulich" proofs in school and in teacher
training. We too have demanded several times that in mathematics instruc­
tion students should "practise and develop the ability to argue. Here we do
not think primarily of formal proofs but of a meaningful arguing which, by
all means, should be correct and intellectually honest" (Blum/Kirsch 1979,
p. 7).
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The intuitive argumentation of the teacher described above seems to be
(and also seemed to Wittmann in the discussion after his lecture) a good
example of how to redeem such demands.

However, the problematic nature of the example (and thereby the heart
of the students' unease as described) suddenly becomes clear on transfer­
ring literally the argumentation to (for instance) the differential equation
f' = jj (or, more generally, to f' = fl - 8 with 0< e < 1). (Again we
confine ourselves to y ~ 0, i.e. to the upper half plane including the first
axis.) The directional field looks quite similar here (see Fig. 2), in particular
the slope on the x-axis is again equal to zero everywhere. But now, as is
known, the non-trivial solutions also have zeros. In fact, for each CE~

f(x) = {o if x < C

~(X-C)2 ifx~c

(more generally4: (e(x - c» 1/8) is a solution, and these are all non-trivial
ones. Therefore all points of the x-axis are branching points. From there
solutions do indeed come away from the x-axis.

The existence of branching points shows that the intuitive understanding,
that the directional field uniquely indicates how to continue, is not viable.
The quoted "proof" is not in order, and this not only in the sense that a
formally arguing mathematician could given pathological counterexamples.
Nor can the "proof" in any way be justified to a physicist, for instance,
arguing with common sense, who would classify such counterexamples as
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irrelevant. 5 And our counterexample is not pathological, rather it is geo­
metrically evident (and not only formally verifiable) that the described
(quadratic) solutions fit the new directional field.
Herewith we are faced with the following tasks:

- To describe more accurately the concept of non-formal proving.
- To find a "real" non-formal proof of our assertion that a non-trivial

solution of f' = f has no zeros.

2. AIMS OF THIS PAPER

More precisely, we have three essential aims in this paper.
First, our reflections and examples are meant to be a plea for doing

mathematics on a preformallevel. For, like many others, we too deplore the
fact that all too often in the classroom a formalistic understanding of
mathematics prevails, and we too keep on making suggestions as to how
mathematics should be learned and taught in a sensible and meaningful
way. Here, it should also become clear once again that working on a
preformallevel is not intended to make mathematics easier for students in
a superficial way. Certainly, our preformal proofs are meant to be as
obvious and natural as possible especially for the mathematically less
experienced learner. They require, however, a substantial engagement in the
topic in question, for instance by referring to geometric-intuitive basic
conceptions or to basic ideas meaningful in reality. In this respect, these
preformal proofs are not "simpler" than the usual formal proofs, in
particular for the experienced mathematician. To give such formal proofs,
moreover the shortest and most elegant possible ones, is by no means our
aIm.

Second, we wish to point to certain didactical problems in connection
with preformal proofs, which seemingly are not seen in the same way by
some of those who support such proofs. Of course, we do not wish to argue
against working on a preformallevel. We think, however, that teachers as
well as learners should be aware of these problems, and that they should
also have consequences for instruction.

Third, we wish to indicate through the example mentioned in section I
what we mean by preformal proving. In doing so, we do not aspire to give
a definition of this concept which is substantiated according to scientific
theory. Rather we wish to contribute to the didactical discussion on doing
mathematics at school on a preformal level, as it has been conducted,
especially in the German speaking area, for a long time (essential aspects of
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this discussion can be found, for example, in Kirsch, 1977 or Wittmann,
1989). Such tasks can, in our opinion, neither be completed by a scientist
who is purely a mathematician nor by a psychologist or a pedagogue.
Rather, such activities genuinely belong to the heart of mathematics
education.

3. ON THE CONCEPT OF PREFORMAL PROVING

Without any claim to a methodological substantiation we shall try to give
a pragmatic working definition of the concept of proof discussed here.

In accordance with Z. Semadeni's concept of "action proofs" (see
Semadeni, 1984), we mean by a preformal proof6 a chain of correct, but not
formally represented conclusions which refer to valid, non-formal premises.
Particular examples of such premises include concretely given real objects,
geometric-intuitive facts, reality-oriented basic ideas, or intuitively7 evident,
"commonly intelligible", "psychologically obvious" statements (the latter
in loose accordance with Thorn 1973). The conclusions should succeed one
another in their "psychologically natural" order. For us - in contrast to
Semadeni - , inductive arguments ("etc.") and indirect arguments ("imag­
ine that ..." or "what would happen if ...") should not be excluded in this
context. The conclusions must be capable of being generalized directly from
the concrete case. If formalized, they have to correspond to correct
formal-mathematical arguments. To accept a preformal proof it is, how­
ever, not necessary for such a formalization to be actually effected or even
recognizable. Occasionally, the consensus within the mathematical scientific
community is quite sufficient. (For this, formal rigour is by no means
necessary, as has been conclusively shown by Hanna, 1983, for example;
compare also Hanna, 1989.)

What are "intuitive" or "obvious" bases for argumentation, has to be
decided in each individual case by the persons involved on the basis of their
knowledge. Such bases can, of course, be changed in course of time, in
particular by learning or experience. So far "preformal" is necessarily not
a precisely defined property. In any case, however, preformal proofs have
to be valid, rigorous proofs. Thus we wish to emphasize explicitly that for
us "rigorous" is by no means equivalent to "formal".

According to how the premises or the conclusions are represented, we
get different kinds of preformal proofs. In the following we give three
examples.

An action proof (in a narrow sense) consists, in short, of certain concrete
actions (actually carried out or only imagined) with a concretely given
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paradigmatic, generic example, where the actions correspond to correct
mathematical arguments. An example is the "red wine proof" of the
theorem "The hexagon generated by the centres of the edges of a cube is
planar and regular" (formulations according to Heidenreich, 1987). Here,
a hollow cube is set up, so that one spatial diagonal is perpendicular, and
is filled completely with red wine. Then one lets the wine slowly flow out on
an opening at the bottom of the cube, and observes the surface of the wine.
In doing so, one can comprehend immediately (and not only verify by
experiment) that the hexagon in question is planar and regular (for details
see Heidenreich, 1987). Further examples of action proofs can be found in
Kirsch (1979).

A geometric-intuitive proof refers to basic geometric conceptions and to
intuitively evident facts such as areas and their properties (see Kirsch 1977,
p. 109). An example: If definite integrals are interpreted as areas, then the
monotonicity of the integral function of a non-negative integrand can - as
is well-known - be proved by immediately obvious geometric arguments
(see Fig. 3): For functions / ~ 0 we have

(a ~)x ~ y =rf ~ J:f
In a reality-oriented proof, basic ideas meaningful in reality and easily

accessible for learners are used, such as the derivative as a local rate of
change. A well-known example: The theorem "If /1 = 0 in I then / = const
in [" can be made evident immediately by interpreting / as a distance-time­
function and /1 as the instantaneous velocity. ("If the speedometer is
showing zero all the time then the car has always been standing still".)

The examples just mentioned are meant to make the concept of prefor­
mal proving somewhat clearer. We do not claim that we have succeeded in
accomplishing that task satisfactorily. We even doubt whether it is possible
at all - at least in the given framework - to make this concept more

Fig. 3.



PREFORMAL PROVING 189

precise, for ultimately we believe (to paraphrase Semadeni) 8 that it requires
a competent mathematician to judge whether a given preformal proof is
acceptable. By "competence" we mean here possessing a certain mathemat­
ical maturity and sophistication - notions which defy attempts to define.

From preformal proofs we must separate, on the one hand, merely
experimental verifications or merely heuristic argumentations guided by
isolated cases, or "incomplete induction" after a confirmation in special
cases, and, on the other hand, purely formal proofs (or - even continuing
further in this direction - calculized proofs in the sense of formal logic and
proof theory; this is not of importance for our purposes). So we distin­
guish - like Wittmann does - between three levels of proving9

: "Proofs";
Preformal proofs; Formal proofs. Of course, these levels cannot be strictly
separated from one another, rather there are fluent transitions. Of particu­
lar interest is the question as to how far the borderline between "proofs"
and proofs is shifted towards the first level by the possibilities of experi­
menting with computers. 10

Now, what could a preformal proof for our problem of section 1 look
like? In the next section we give different proofs which we regard as
geometric-intuitive or as reality-oriented.

4. PREFORMAL PROOFS OF THE POSITIVENESS OF NON-TRIVIAL

SOLUTIONS OF If =1

In the following again we will confine ourselves to the upper half plane
including the first axis, i.e. we will consider only solutions f of /' = f with
f(x) ~ 0 for all x E~. This is justified by the fact that there are certainly no
solutions having both positive and negative values. (This fact is immedi­
ately clear after extending the directional field to the whole plane ~2: The
part of the graph above the x-axis would have to be increasing, the part
below the x-axis would have to be decreasing.)

Because f(x) ~ 0 we also have f'(x) ~ 0 for all x E~, i.e. all solutions are
increasing, in any case (at least weakly); cf. Fig. 1. Thus it is clear: If a
solution is somewhere positive, i.e. above the x-axis, then all the more so
on the right; if a solution is somewhere zero, i.e. on the x-axis, then all the
more so on the left. We shall now show, independently of each other:

A: If a solution f of f' = f is somewhere positive, then it can never have
been zero; i.e. if a solution is somewhere above the x-axis, then it can never
come down to it on the left either. Formally; If f(x) > 0 for x = X o (thus
for x ~ xo) then also for x < Xo and therefore for all x E~.
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B: If a solution f of fl = f is somewhere zero, then it can never become
positive; i.e. if a solution is somewhere on the x-axis, then it can never
come off on the right either. Formally: If f(x) = 0 for x = Xo (thus for
x ~ xo) then also for x > Xo and therefore for all x E IR.

4.1. Two Geometric-Intuitive Proofs

From the directional field it is obvious at once that all solution curves are
convex, above the x-axis even strictly convex, i.e. left-hand curves. This
immediately follows from f"(x) = fl(X) = f(x) ~ 0 resp. f(x) > o.

Proof of A: Let the solution f of fl = f be somewhere positive: f(xo) > O.
The tangent of f at (xol!(xo» has the slope fl(XO) = f(xo). It therefore
intersects the x-axis at Xo - 1, regardless of the value f(xo) (Fig. 4).
Because f is a left-handed curve it runs strictly above the tangent every­
where except at xo. Consequently fis positive in the whole interval [xo - 1;

xo]. Now we repeat this argumentation until Xo - 2, then until Xo - 3, "and
so on". Herewith assertion A is proved. 11

Proof of B: Let the solution f of fl = f initially be zero: f(x) = 0 for
x ~ X o. We imagine that somewhere it becomes positive. Then we deter­
mine the smallest integer n where this is the case: fen) > 0, fen - 1) = O.
For the sake of simplicity we take n - 1 as the new zero point of the
x-axis,12 so we have f(O) = 0 <f( 1). Now the slope fl( 1) of the graph at

the right end of the interval [0; 1] is certainly bigger than the slope f(I)/1
of the chord over this interval (Fig. 5). For the slope fl(O) = f(O) at the left

end is smaller than this slope of the chord, so the convex graph of f
between these two points runs strictly below the chord and intersects it (in
the narrow sense, i.e. does not touch it). Therefore

(1) fl(l) >f(l)

x

Fig. 4.
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must be the case, which from the premise I' = f is impossible. Herewith
assertion B is proved.

Both proofs remain valid after slight modification even for the analogous
statement for the solutions of the more general differential equationI' = kf
with k > O. Then in case of A the tangent in (xol!(xo» intersects the x-axis
at Xo - Ilk, and we consider the intervals [xo - nlk; xo] (n = 1,2,3, ...)
instead of [xo- n; xo]. In case of B we determine the smallest number nlk
with integer nand f(nlk) > 0, and instead of (1) we get (after a suitable
translation of the zero point) the inequality1'( Ilk) > f( Ilk) I( Ilk) = kf( Ilk).

4.2. A Further Geometrical Proof

The following proof of B leads us by another way to our goal. It was found
many years ago (in 1946) during lessons and - perhaps because of its
preformal character - has not been forgotten over the years. Its intrinsic
connection with the proof given in 4.1 will become visible in 4.3.

We consider continuous and monotonic functions f~ 0 which initially,
but not everywhere, are zero. So we can assume as discussed that
1(0) = 0 <f( I) holds. Now obviously the content JU of the area below the
graph of fin [0; 1] is less than the rectangular area 1'/(1) (Fig. 6).
Therefore, if a function of the described type rises from the x-axis, then

(2) f(1» If
must hold. Now, however, one sees immediately that this is impossible for
solutions ofI' =f (which are continuous and monotonic). For I' =fleads
from (2) - becausef(O) = 0 - tof(1) > SAl' = f(I) which obviously cannot
be the case. Herewith assertion B is once more proved.
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--------------

o
Fig. 6.
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The intuitive ideas which at that time after some efforts led to this proof
can only be reconstructed rather vaguely: The function / is an antideriva­
tive of itself, i.e. its value equals (because /(0) = 0) at each point the
content of the area to its left. Why can such a function never come up?
Because the small area which it would generate beside itself upon coming
up, would from the first moment on have to have the same content as the
rectangle of the same height on the right and the width 1. This, however,
is obviously impossible. Very roughly speaking: The function does not
succeed in coming up, because it has to "drag its whole past history along
with it", so to speak.

Of course, from (2) and I' = / it also follows at once that
1'(1) > J~I' = /(1) and thus (1), which has already been seen in 4.1 to be
impossible.

4.3. Kinematic Interpretations

The proofs in 4.1 and 4.2 can also be interpreted kinematically and then
require no previous geometric knowledge. Also our assertions then appear
in a new light. This is elaborated only for B. 13

Let s ~ 0 be the distance covered as a function of the time t, and v = S
the velocity. For reasons of dimension we now consider the more general
differential equation oS = k . s, with a constant k > 0 of the dimension
l/time. For every solution we then have v ~ 0, v continuous and v increas-
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o
Fig. 7.

Ilk

ing just like s. The equation says that the respective terminal velocity is
proportional to the distance covered, and our assertion B says that under
these conditions a vehicle, standing still at some time (at the initial point of
distance measuring, s(O) = v(O) = 0), can never really move off.

In order to prove this, let us again imagine that the vehicle does move
off. This now leads, by geometric arguments as in 4.1 (see Fig. 7), to

( I') .( I/k) > s( I/k)
s I/k '

in words: The terminal velocity at t = I/k is greater than the quotient
distance/time, i.e. than the average velocity in the time interval [0; I/k]. But
this is impossible from the premises s= k . s = s/( I/k) and therefore proves
the assertion B as in 4.1.

Now, however, if the concepts involved are familiar, the preceding
statement (1') is immediately evident because of its kinematic meaning,
without reference to the geometric argumentation in 4.1. Thus, the kine­
matic interpretation has provided a third proof of our assertion B, now a
reality-oriented one instead of a geometric one.

The kinematic interpretation suggests representing graphically (as a
function of time) not the distance s, but the velocity s = v, which under the
given conditions is proportional to s. Thus, we come to Fig. 8, where, as
well-known from physics, the distance s( I/k) covered by time t = I/k is
represented by the area below the graph in [0; I/k]. Now, the geometric
argumentation from 4.2 leads to

(2') I/k . v( Ilk) > s( Ilk),

in words: The product of time and terminal velocity is greater than the
distance covered. But this essentially means nothing else but the kinematic
statement just discovered, and naturally this is just as immediately evident.
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-------------
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Fig. 8.

In formal respects also, the inequalities (1') and (2') are apparently
equivalent, for both say that s(ljk»k·s(ljk). So, just like (I'), (2')
provides a kinematic proof of the assertion B.

Thus at the same time the close connection between (1) and (2) and
thereby between the two geometric proofs of B becomes clear.

4.4. Supplement: Drive-Off Processes

In other words, we have showed in 4.3: A drive-off process with terminal
velocity proportional to the distance covered is impossible. 14-

This fact was pointed out in another context in Stahel (1985). The
author rightly criticizes an advertisement of the BMW company (see Fig. 9)
in which different drive-off processes are compared. In these, the velocity is
initially proportional to the distance, which gives a line through zero in the
distance-velocity diagram. To prove the impossibility of such drive-off
processes, Stahel presupposes the well-known unique solvability of s= ks,
s(O) = 0 (as just now proved by us).

Further he asks about the form of possible drive-off processes, in which,
consequently, the vehicle really starts moving at a time t = to: v(t) = 0 for
t ~ to, vet) > 0 for t > to. (Such a time to always exists for continuous and
monotonic v ~ 0, v "# 0 with v(O) = O. This is intuitively clear and can be
proved formally, e.g. with Dedekind cuts.) Without loss of generality we
can set to = O. Stahel now remarks that each such drive-off process is
reflected in the distance-velocity diagram as a curve having a vertical
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tangent at the zero point. After our preceding considerations, this likewise
is evident at once. Because for all t > 0 we have

thereforet . v(t) > s(t),
v(t) 1
->­
s(t) t

(notice that now s(t) > 0 for all t > 0), and immediately it follows that
limt_o+v(t)/s(t) = + 00.

Stahel gives a formal proof of this by means of the rule of de l'Hospital
and derivatives of any high order, which is not valid, however. He uses,
namely, the assertion that one of the derivatives of iJ is positive ("because
our vehicle is to move off"). However it is known that there are functions
that increase from zero even though all their derivatives vanish at zero (e.g.
f with /(t) = e -1/P for t -# 0 and /(0) = 0). So in this case the preformal
mode of arguing has even protected us from making a mistake.
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5. ANALYSIS OF THE PROOFS PRESENTED

In what respect are the proofs presented in section 4 preformal? In the
answer to this question following, it will at the same time become clear
what mathematics instruction in our opinion should achieve inter alia,
namely that the basic conceptions and ideas used in these proofs are
actually obvious and familiar to learners.

The two proofs in 4.1 are geometric-intuitive in so far as they are built up
in quite a natural way (we will come back to this shortly) and use only the
well-known geometric interpretations of the basic concepts of differential
calculus as well as evident facts expressed by these, such as the monotonic­
ity criterion in the form "If all tangents go upwards then the graph goes
uphill" .

An important role is played by the convexity criterion: "If the tangents
become steeper and steeper then the graph curves to the left". \\That is
essential here is the use of evident but formally not very easily provable
properties of convex curves. In A: The tangent to a strictly convex curve
runs completely on one side of the curve, except for the tangential point. In
B: The chord of a convex curve intersects the curve (in the narrow sense)
at both extreme points, unless they coincide.

The inductive argumentation ''f(xo) > 0, thus f(x) > 0 in [xo - 1; xo],

thus f(x) > 0 in [xo - 2; Xo - 1], and so on" then following in A may
certainly be termed obvious and natural and requires no formalization as
mathematical induction.

The same holds for the indirect argumentation in B. There we presume
as known that every solution f ~ 0 of f' == f is differentiable and convex.
Then we show, geometrically and without referring to f' == f, that for every
differentiable convex function f ~ 0 with f( 0) == 0 <f( 1) the inequality (1)
f'e 1) </( 1) holds,15 hence /' == I cannot be fulfilled. This shows in quite a
natural way that there cannot be a solution / ~ 0 of f' == f with
1(0) == 0 </( 1), that is a non-trivial solution with zeros.

The proof in 4.2 is geometric-intuitive, too. It again uses the well-known
geometric interpretations of the basic concepts of calculus, now particularly
the area of the ordinate set of a non-negative function as an interpretation
of the definite integral (which is calculated in the usual manner by means
of the fundamental theorem of calculus) and the absence of leaps in the
graph as a property of continuous functions.

Further, all essential and equally apparent property of area is used: If
M 1 , M 2 are (measurable) point sets in the plane with M} ~ M 2 and if
M 2\M} contains inner points, then the content of the area of M} is less
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than that of M 2 • The last-mentioned fact exists if for M 1 we take the
hatched ordinate set of f and for M 2 the sketched rectangle in Figure 6.
For, the continuous functionJ cannot leap immediately from the value 0 at
x = 0 to the value 1 and therefore leaves blank a part of the area (with
inner points) in the upper left corner.

All the facts used here (including the fundamental theorem) are intu­
itively accessible. Their formalization is quite obvious for the expert
(probably easier than in 4.1) but not necessary for a substantial compre­
hension of the proof - which therefore turns out to be typically preformal
just at this point.

The indirect argumentation in the proof in 4.2 is analogous to that in
4.1. Now we only presume as known that every solution / ~ 0 off' = f is
continuous and monotonic. Then we show, here also geometrically and
without referring to /' = f, that for every continuous and monotonic
function/~ 0 with 1(0) = 0 </(1) the inequality (2)J(I) > SAJholds. The
way to the recognition that f' = f cannot be fulfilled then is now somewhat
longer (insertion off' = I and use of the fundamental theorem) than with
the indirect conclusion in 4.1. This small disadvantage is confronted with
the advantage that inequality (2) can probably be inferred even easier from
Figure 6 than (1) from Figure 5, since the comparison of areas is certainly
even more directly evident than are statements about convexity.

We consider the indirect argumentation in both proofs analyzed as
natural, too, since the chain of reasoning goes like this:
First step: We realize what form the solutions of the differential equation
f' = f have to have.
Second step: We imagine that a function of this form rises from the first
axis and reach a conclusion
Third step: ... which proves to be incompatible with the differential
equation.

In the proof in 4.3, the concepts used in 4.1 and 4.2 and there geometri­
cally interpreted, are now interpreted kinematicall~, that is

x as time t

f(x) as distance set), f'ex) as velocity set) (Fig. 7), resp.

g(x) = j'(x) as velocity v(t), rg as distance l' v (Fig. 8).

If substantial, appropriate conceptions are now linked to these kinematic
concepts, the statements (1 ' ) and (2' ) prove to be immediately evident
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(under the premises there). In this sense the proof is now reality -oriented.
For the concluding indirect argumentation, the above holds in the same way.

All the proofs just analyzed are, in our opinion, typically preformal. The
use of symbols like f' or Jf should by no means be misunderstood as
formalism. Such signs serve primarily here for better communication. In
any case, the accompanying concepts and the argumentations conducted
with these, always have a meaning related to the content, as has been
shown.

Let us briefly consider how the preformal proofs for assertion B in 4.1 to
4.3 can be made more precise: We move away from the geometric or
kinematic interpretations of the quantities x, f(x), f'(X), J~f and prove the
inequality (1) or the formally equivalent inequality (2) merely by the
well-known tools of calculus. With (2), this is obvious just by using known
properties of the Riemann integral of continuous functions.

For the proof of (1), on using the above preconditions f ~ 0, f differen­
tiable, f' increasing (convexity), and f(l) >O=f(O) (hence f'(O) =0)
alone, for the experienced mathematician the use of the mean value
theorem suggests itself, for instance as follows: Because f'(O) = 0 there is a
number c with 0 < c < 1 and 0 ~f(c)/c <f(l)/l. This yieldsf(l) -uf(c) >
(l-c)f(I), hence (f(l)-f(c))/(I-c»f(I). Further, according to the
mean value theorem there is a number d with c < d < 1 and f'ed) =
(f(l) - f(c))/(1 - c). Because of the monotonicity of f' we now deduce
f'(I) ~lcd) > f(l).

Here - in order to preserve the structure of the indirect argumentation -
we have formalized only the second step (proof of (1) from the identified
geometric properties of f) of the three-step proof of assertion B in 4.1. This
turned out to be rather complicated. The proof of B becomes far shorter
and more elegant if, starting from the precondition f' = f, f ~ 0,

f(O) = 0 <f(l), we aim directly for a contradiction. This is done in the
following proof which was recommended to us as a simplification of our
proofs and which we look upon as typically formal - in contrast to the
proofs analyzed above:

According to the mean value theorem, there is a number c E (0;1) with
f'(C) ==(f(l) -f(0))/(1-0) ==f(l), hencef(c) =f(l) becausef'=f As a
result of the monotonicity off, f must be constant on [c; 1], which (because
of the differentiability of f) implies especially f'e 1) = O. From f' = f we
conclude f( I) == 0 which is contradiction to the precondition.

Of course, this proof can be interpreted geometrically or kinematically
subsequently. By this, however, its character does not become preformal in
our sense. For, to us this proof seems not to be natural for learners, due to
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the use of the mean value theorem and to its logical structure. According
to our experiences, learners who are not formally trained scarcely come to
think of using the mean value theorem (in spite of its doubtless existing
geometric or kinematic substance). This is essentially due to the fact that
the mean value theorem is a pure, non-constructive existence theorem, the
relevance of which is, on the whole, legitimated intra-mathematically. (It is
well-known that it plays a crucial role in a deductive construction of real
analysis; J. Dieudonne has even characterized it as "probably the most
useful theorem in analysis".)

The last example in particular shows that it is presumably not possible to
characterize proofs as preformal or as formal without' presupposing a
certain conception of the desirable knowledge and abilities of learners as
well as of the learning of mathematical topics in general. We hope that our
didactical ideas have become a little clearer from the preceding examples
and explanations (for more details see Blum/Kirsch, 1979).

6. SOME DIDACTICAL CONCLUSIONS

The following questions are obvious.

1) How can learners judge for themselves the validity or non-validity of a
given or a self-discovered preformal proof?16

The conclusions and the premises in such proofs have to be correct after
all, and this can actually be judged only by someone who has at his
disposal "higher order" knowledge and abilities, i.e. who has enough
mathematical maturity (compare section 3) to recognize the correctness or
incorrectness, if necessary after a formalization (which is often obvious to
a mathematician). Such knowledge and abilities are, however, generally not
available to learners. Among others, H.-N. lahnke has pointed to that
problem. He has - referring to scientific theory according to Sneed - for­
mulated it as follows (cp. lahnke, 1978, p. 250ff.): Proving has always to
be understood also as "proving in terms of the future", i.e. from the point
of view of the "more elaborated system". In our opinion a difficulty in
principle comes to light here which appears with every acquisition of
knowledge and which possibly diminishes the didactical significance of
preformal proofs.

2) How can learners find for themselves preformal proofs?
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For this, it is certainly not sufficient to simply demonstrate several such
proofs to learners and to hope for transfer; of course, this also holds true,
by analogy, for formal proofs. Necessary (but presumably not sufficient)
preconditions for students to understand, judge, and in some cases even find
independently preformal proofs are l7

:

- to place value on manifold kinds of representations of mathematical
content, especially to stress reality-oriented basic ideas and to impart
geometric intuitive basic conceptions (for, as we pointed out in sections
3- 5, these ideas and conceptions can be essential constituents of prefor­
mal proofs).

- to frequently furnish preformal proofs in the classroom (in order to
convey a broad reservoir of experience and to develop the necessary
competence mentioned in section 3);

- to furnish examples of formal proofs, too (also and particularly as a
contrast to preformal proofs);

- to formalize non-formal arguments and to ikonicize or enactivize formal
arguments, or to interpret them in the real world (in our opinion, such
translation abilities also belong to this notion of necessary competence);

- to speak with students about proofs and proving, also and especially
about different levels thereby, i.e. to reflect upon what is going on in the
classroom (since the construction of such a meta-knowledge is surely an
indisputable precondition for a transfer of knowledge).

In doing so, it may be quite fascinating and profitable if - as in our
example - students pass through different levels which also contain incor­
rect arguments and which can then be judged in retrospect. This also
corresponds, as we know, to the development of knowledge from a
historic-genetic and an epistemological point of view as in Lakatos (1976).
In this sense, originally incorrect arguments by no means have to be
didactically disadvantageous,18 on the contrary: Mistakes may, for different
reasons (compare, for example, Fischer/Malle, 1985, p. 76ff.), play a
fruitful and constructive role in the learning process.

Everything said so far holds all the more for teacher training. In order to
enable the future teacher to realize the aforesaid aspects in his (or her)
instruction he himself has to be educated at university correspondingly,
i.e. - among other things - he has to get to know proofs on different levels,
and he has to learn to conduct such proofs for himself as well as to reflect
upon that. By no means would it be sufficient if - as is sometimes sug­
gested for the training of primary or lower secondary school teachers - a
total restriction to preformal proofs took place. Of course it is just as
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insufficient if - as is unfortunately the rule - future upper secondary school
teachers get to know almost exclusively formal proofs. Once again it
becomes apparent how demanding teacher training is or should be.

NOTES

1 Revised and extended version of a conference proceedings contribution in German: Warum
haben nicht-triviale L6sungen von 1/ = I keine Nullstellen? Beobachtungen und Bemerkungen
zum inhaltlich-anschaulichen Beweisen. In: Kautschitsch, H. and Metzler, W. (eds.): An­
schauliches Beweisen. Schriftenreihe Didaktik der Mathematik, Band 18. WienjStuttgart 1989,
pp. 199-209. We would like to thank Prof. K. Heidenreich (Reutlingen) as well as the editors
of ESM for several valuable hints.
2 As, by the way, were most of the students at our university, too, to whom we presented
those arguments. For many of these students this argumentation was particularly suggestive,
owing to the fact that they saw an analogy to the well-known intuitive proof of the theorem
"If f' = 0 in an interval I then f = const in ]" (see section 4) which was familiar to them.
3 Seemingly, this term cannot be translated into English in an adequate manner; compare T.
Fletcher's arguments in ESM 19 (1988), p. 269. A rough translation is "intuitive-meaningful"
proofs.
4 The case 1/ = I obviously is the limit case of1/ = 1 1

- e for 8 ~ O. The respective biggest zero
moves for 8 ~ 0 more and more to the left, and the limit function lime _ o (8X + 1) l/e = eX no
longer has a zero.
S Should one wish to reject the occurring of branching points as unnatural per se, as
contradicting a physical feeling of causality, for instance, then no proof at all would be
required for the non-existence of non-trivial solutions with zeros. For, the constant function
f = 0 obviously would be the only solution with zeros.
6 The term "preformal" is, in our opinion, better than "non-formal" or "informal" because
the prefixes "non" and "in" represent negations and therefore suggest something not of full
value, in sharp contrast to our intentions. By the way, Semadeni's original term was
"premathematical proofs", which is even further from what we intend.
7 "Intuitive" is meant as defined by Fischbein (1983), for example, i.e. intuitive knowledge as
immediate, self-evident, unquestionable, certain, coercive, global knowledge.
8 See Semadeni (1984, p. 33). Compare also Lakatos (1978, p. 65): "In a genuine low-level
pre-formal theory proof cannot be defined .... There is no method of verification."
9 Compare also with the levels (even more intensely oriented towards the learning process) in
Balacheff (1987), who distinguishes between "preuves pragmatiques", "preuves intellectuelles"
and "demonstrations", where the last-named kind means formal proofs in the usual codifica­
tion of mathematics.
10 According to a discussion statement by Dr. R. Schaper (Kassel).
11 By the way, we immediately see where and why this argumentation fails for 1/ =.jj, for
instance (more generally: f' = fl - e). But it holds all the more for f' = f2, for instance (more
generally: f' = 11 + e with 8 > 0), though in this case there are no solutions defined for all x
because f, for increasing x, goes too steeply upwards. So in this respect also 1/ = I is the limit
case (cf. footnote 4).
12 This is permissible, for a translation of the zero point does not alter the premise 1/ = f,
which means that at each point the slope of the tangent equals the value of the function. (This
is a preformal argument!) This simplification is dispensible for the following proof. It will,
however, effect a marked reduction of paperwork in later considerations.
13 Naturally, assertion A with proof is also kinematically interpretable, sensibly again for the
more general differential equation v = k . s. The obtained result is: If a distance has already
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been covered by a certain time to, then a distance must also have been covered already by the
time to - Ilk. In other words: If a vehicle runs in such a way that the distance covered is
proportional to the respective velocity, then it is impossible for it ever to have been standing
still (or: it has already covered a distance at any chosen time).
14 It is known that, in investigating the laws of free fall, Galileo initially made the formulation
attempt vet) = k . set) and later rejected it as being "false and impossible". In refutation
Galileo naturally starts from the ascertainment that all bodies (let go at a definite time) fall,
i.e. that there is a problem solution s with s(O) = 0, set) > 0 for t > O. His argumentation was
rejected by E. Mach as invalid and rehabilitated by G. Polya (see Polya, 1968, p. 208). In our
mode of expression it means that, if the law of free fall were vet) = k . set), then 2 . s(t) would
describe the same process of falling as set), which of course is impossible.
15 From f ~ 0, f(O) = 0 and differentiability it follows, by the way, without using f' = f, that
f'(O) = O.
16 Compare thereto the example in Kirsch (1979, p. 270).
17 Of course, each of the following suggestions can be found repeatedly, in this or a similar
way, in didactical publications, recently in Neubrand (1989), for example.
18 According to a discussion statement by Prof. R. Fischer (Klagenfurt), who further pointed
out that a system to exclude mistakes from the beginning would necessarily have formal
features, in marked contrast to the intentions of working on preformal levels.
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