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Abstract

The present dissertation is devoted to the construction of exact and approximate

analytical solutions of the problem of light propagation in highly nonlinear media. It

is demonstrated that for many experimental conditions, the problem can be studied

under the geometrical optics approximation with a sufficient accuracy. Based on the

renormalization group symmetry analysis, exact analytical solutions of the eikonal

equations with a higher order refractive index are constructed. A new analytical

approach to the construction of approximate solutions is suggested. Based on it,

approximate solutions for various boundary conditions, nonlinear refractive indices

and dimensions are constructed. Exact analytical expressions for the nonlinear self-

focusing positions are deduced. On the basis of the obtained solutions a general rule

for the single filament intensity is derived; it is demonstrated that the scaling law

(the functional dependence of the self-focusing position on the peak beam intensity)

is defined by a form of the nonlinear refractive index but not the beam shape at the

boundary. Comparisons of the obtained solutions with results of experiments and

numerical simulations are discussed.
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Chapter 1

Introduction

The problem of theoretical description of the light propagation in nonlinear media

emerged in physics in the early 1960s. Already in experiments with first lasers such

nonlinear effects as self-focusing and filamentation were discovered Refs. [38, 64],

i.e. it was observed that the diameter of an intense laser light beam dramatically

decreased upon propagation with the peak intensity strongly increasing. A first

theoretical explanation of these effects was performed based on the assumption that

the refractive index, representing the media response, becomes a function of light

intensity Refs. [28, 3, 86]. Due to moderate light intensities available at that time,

the material response could be modeled by the Kerr-type refractive index, that is

a refractive index linearly depending on the laser beam intensity, n(I) = n0 + n2I.

If n2 > 0, it leads to the spatial beam compression and its subsequent collapse at

some point if the initial power of the beam exceeded a certain critical value. In the

opposite case n2 < 0 a beam broadening was predicted.

The effect of nonlinear self-focusing currently plays a key role in all scientific

and technological applications related to the propagation of intense light beams [34]

like material processing [35], environmental sciences [106, 30], femtochemistry in

solutions [126], macromolecule chromatography [32], medicine [92] etc. Therefore,

it is of great importance to have rather simple analytical formulae able to predict if

the self-focusing takes place and if this is the case, its exact position.

The first results in this direction were obtained by Akhmanov et. al. in Ref. [4]

from the exact solution of the eikonal equations for spatial boundary conditions and

under the geometrical optics approximation. Later, an empirical expression for the

nonlinear self-focusing position was derived by Marburger via fitting the results of

extensive numerical simulations [86]. The latest analytical results were obtained by

Kovalev in Refs. [68, 67], when analytical solutions to the light propagation equa-

tions were constructed making use of the renormalization group symmetry analysis.

Subsequently, explicit analytical formulae for the self-focusing length were obtained.

Here we have to note that all exact analytical solutions obtained so far were
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Figure 1.1: Normalized laser beam peak intensity versus the propagation distance

from Ref. [12]. Solid curve is the result of a numerical solution of the light propaga-

tion equations; dashed curve represents a semi-analytical solution for this equations

constructed on the basis of the variational approach.

constructed only for the Kerr’s form of the refractive index. However, modern exper-

imental pulse laser facilities allow one to achieve electric field intensities comparable

with the intensity of the atomic field [21, 34, 30, 15] what allowed one to observe

many new nonlinear optical phenomena. In particular, self-guiding versus collapse

in air [11, 12], filament formation in fused silica [110, 116, 31], splitting of a filament

into several ones [14], their stability and features of their interactions [119, 124] were

investigated. The linear approximation to the function n(I) turns out to be inade-

quate for a theoretical description of such experiments, and more complicated forms

of the refraction index must be considered [56, 16, 20]. Unfortunately, up to now

there were no solid analytical results obtained from exact or approximate analytical

solutions of the light propagation equations with a highly nonlinear refractive index.

All analytical deductions on the solutions behavior in case of a higher nonlinearity

were made only on the basis of either some general estimates as in Refs. [66, 16],

or an artificial assumption that the beam keeps its initial shape upon propagation

and only the beam radius, phase and intensity amplitude are function of the prop-

agation distance (so called variational approach). However, this assumption is too

restrictive to provide a good accuracy what can be seen from a comparison between

a numerical simulation and a solution obtained on the basis of the semi-analytical

variational method from Ref. [12] presented in Fig. 1.1. Therefore, analytical ex-

pressions capable to accurately describe intensity distribution in case of the highly

nonlinear media response are very desirable.

In the present dissertation we construct analytical solutions to the problem of

light propagation in nonlinear media in case of arbitrary (higher order) nonlinear

media response avoiding any artificial assumptions on the beam profile. In com-

parison to the semi-analytical methods used previously, the approach suggested in

the dissertation allowed us to get explicit analytical expressions for the nonlinear

self-focusing positions. These expressions are exact under the geometrical optics
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approximation. Their accuracy can be easily controlled in contrast to the accuracy

of the empirical Marburger formula and predictions of the variational approach.

The dissertation is organized as follows: In Chapter 2, mainly following Ref. [21,

15, 103], we discuss the derivation of model equations. A mathematical model com-

monly accepted nowadays for light intensities below 1014 W/cm2 is considered. The

obtained light propagation equation is usually referred to as a nonlinear Schrödinger

equation (NLSE). We demonstrate the derivation of this equation starting from the

wave equations and discuss possible approximations and ranges of their applica-

bility. The basic model equation (2.51) still remains rather complicated from the

mathematical point of view. Therefore, in the next Chapter 3, further possible

simplifications of the model equations (2.51) are discussed. We demonstrate that

in many physical situations the geometrical optics approximation is still capable of

providing a good accuracy of the constructed solutions. The ranges of beam param-

eters for which the geometrical optics approximation remains valid are presented in

Fig. 3.1.

In Chapter 4 the most widely known analytical results obtained so far in

the field are collected. First, we present exact analytical solutions obtained by

Akhmanov et al. in Refs. [3, 4] and Zakharov and Shabat in Ref. [125]. Another

set of approximate analytical solutions constructed by Kovalev in Refs. [69, 68] on

the basis of the renormalization group symmetries (RGS) analysis is also mentioned.

We also discuss a case of boundary conditions of the special form, so called Townes

profile, first found in Ref. [28]. This solution is very important due to the fact that

before its collapse the beam reaches the intensity distribution given by the Townes

formula (see e.g. Ref. [39]) and this solution also defines a critical power which is a

minimum power necessary to provide the self-focusing of the beam. Unfortunately,

all these accurate results were obtained for the Kerr form of refractive index only. For

more complicated media response the situation changes dramatically: the majority

of analytical results was obtained only making use of an artificial assumption about

a fixed functional dependence of the intensity on the radius and phase of the beam.

The crucial point of such an approach lies in the proper choice of a trial function

(e.g. Eqs. (4.23, 4.30)). This problem is discussed in Chapter 4 as well.

In order to obtain exact analytical solutions for the light propagation equa-

tions with higher order nonlinear refractive index, a modern method of mathematical

physics - the renormalization group symmetry (RGS) analysis was employed in the

dissertation. This method was introduced into mathematical physics by Shirkov

and Kovalev. Its outlines are presented in the Chapter 5 of the dissertation closely

following the Ref. [102]. Making use of the RGS we construct an exact analytical

solution to the light propagation equations with refractive index which is a saturat-

ing function of the electric field intensity. Properties of the obtained solution are

discussed in details.
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Unfortunately, the renormalization group symmetry analysis is not able to

provide us with an exact solution for any physically interesting form of both the

refractive index and the boundary conditions. Moreover, the RGS approach requires

at least a basic knowledge of Lie symmetry analysis which usually does not constitute

a part of university courses for physicists.

Therefore, in the present dissertation we formulated our own approach to the

analytical investigation of the light propagation equations. It is outlined at the be-

ginning of the Chapter 6. It does not require knowledge of any special mathematical

technique or trial functions and is applicable to any nonlinear refractive index and

boundary conditions. The basic result of this chapter is the solutions (6.5, 6.6) in

(1+1) dimensions and solutions (6.71) in (1+ν) dimensions where ν ≥ 2. These

solutions were obtained for initial Gaussian beam profile and arbitrary nonlinear

refractive index whose contribution is via ϕ ≡ ∂In(I). In Sec. 6.3, the solutions

are constructed for an arbitrary initial beam profile in (1+1) dimensions and Kerr

nonlinearity.

General analytical expressions obtained in this chapter enable us to study the

light propagation in media described by various forms of refractive indices. In par-

ticular, the cases of power, saturating and polynomial nonlinearities are considered

in detail. Based on our analytical solution we are able to deduce a general law

Eq. (6.28) for intensity definition in a single light channel. This expression corrects

the previous one (see e.g. reports [30, 15]) obtained from the fixed-shape semi-

analytical methods and fitting results of numerical simulations; we demonstrated

that the scaling law (functional dependence of the nonlinear self-focusing position

on the beam intensity) is defined by the form of the nonlinear refractive index but

not the beam shape (noise in the beam) at the boundary as it was assumed previ-

ously (e.g. in Refs. [48, 30]). Experimentally observable change of the scaling law

for the hight beam intensity was observed in Ref. [48] and is presented in Fig. 1.2.

We provide an explanation of this result in the dissertation.

The Chapter 7 is devoted to a theoretical explanation of the fused silica ab-

lation experiments from Refs. [35, 36]. The most unusual feature observed in these

experiments is a presence of a small inner hole inside the ablation crater. The re-

sults of the experiment are presented in Fig. 1.3. We suppose that this result can be

explained within the frame of the theory of Refs. [58, 51]. From the Fig. 7.4 one can

conclude that such an explanation is in a good agreement with experimental results

of Refs. [35, 36].

Finally, the results are summarized in the Conclusion.
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Figure 1.2: Change of the scaling law for high beam power. Nonlinear self-

focusing position (collapse distance) versus the beam power. Experimental date

from Ref. [48]. Different slope of the lines for moderate and hight power exhibit a

change of the scaling law.

Figure 1.3: Diameter of the ablation crater: triangles and circles stand for the inner

and outer hole diameters respectively. Experimental date from Ref. [35].
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Chapter 2

Model equations

The present chapter of the dissertation is devoted to a derivation of the equations

describing propagation of intense light radiation in nonlinear media. These equations

will be based on some approximations and, as a result, will be applicable to particular

physical situations, as a rule related to propagation of a laser beam in transparent

dielectrics. All approximations and the range of their applicability will be discussed

at every derivation step.

2.1 Propagation equations

Since we are going to study propagation of light, we have to start our consideration

from the Maxwell equations:

∇ · E = ǫ−1
0 (−∇P + ρ), (2.1)

∇ · B = 0, (2.2)

∇×E = −∂B
∂t
, (2.3)

∇×H = J + ǫ0∂tE + ∂tP, (2.4)

where, as usual, E and H are strengths of electric and magnetic fields, P is a

polarization, B is an induced magnetization B ≃ µ0H, ρ and J are carrier and

current densities respectively. ǫ0, µ0 denote the electric permittivity and magnetic

permeability respectively. ∂t stands for a partial derivative with respect to time, ∇,
as usually, is a vector of first order spatial derivatives.

A simple combination of Maxwell equations (2.1-2.4) yields [2, 21]

∇2E−∇(∇ · E) − c−2∂ttE = µ0(∂ttP + ∂tJ), (2.5)

∇ · E = (ρ−∇ ·P)/ǫ0, (2.6)

where c is the speed of light in vacuum c = 1/
√
ǫ0µ0.
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For the sake of convenience we shall also list here the standard Fourier trans-

formations for the fields

Ẽ(r, ω) =

∫ ∞

−∞
E(r, t)e−iωtdω/2π, (2.7)

J̃(r, ω) =

∫ ∞

−∞
J(r, t)e−iωtdω/2π, (2.8)

P̃(r, ω) =

∫ ∞

−∞
P(r, t)e−iωtdω/2π, (2.9)

The current density J describes the motion of free electrons created by the ionization

of atoms. The dynamics of the ions is discarded. Polarization vector P is responsible

for the bound electron response driven by the laser radiation. It is usually decom-

posed into a linear part PL ≡ P(1) related to the first-order susceptibility tensor χ̂(1)

and a nonlinear one PNL satisfying |P(1)| ≫ |PNL|. For isotropic, homogeneous, non

magnetizable media and spectral ranges far from any material resonance, P can be

expressed as a power series in E:

P̃ = P̃(1)(r, ω) + P̃(3)(r, ω) + P̃(5)(r, ω) + . . . (2.10)

with scalar components given by

P̃ (j)
µ = ǫ0

∑

α1...αj

∫
...

∫
χ(j)

µα1...αj
(−ωσ;ω1, . . . , ωj)

× Êα1(r, ω1) . . . Êαj
(r, ωj)δ(ω − ωσ)dω1 . . . dωj, (2.11)

where ωσ = ω1 + . . . + ωj . All susceptibility tensors χ̂(j) with even indices j vanish

due to inversion symmetry. The subscript µ enumerates vector field components in

Cartesian coordinates and the indices αj have to be summed up over x, y and z.

The tensor χ̂(1) is diagonal: χ(1)
µα = χ(1)δµα, so that

P̃(1)(r, ω) = ǫ0χ
(1)(ω)Ẽ(r, ω), (2.12)

and the scalar dielectric function, defined by

ǫ(ω) = 1 + χ(1)(ω), (2.13)

enters the wave number of the electromagnetic field k(ω) =
√
ǫ(ω)ω/c. Since χ(1)(ω)

is complex-valued, the dielectric function ǫ(ω) contains not only the information

about material dispersion but also about linear losses specified by the imaginary

part of χ(1)(ω). When these losses are negligible, ǫ(ω) is approximately real and can

be represented as ǫ(ω) = n2(ω) where n(ω) denotes the linear refractive index of the

medium, which can in certain frequency ranges (far from resonances) be described

by e.g. a Sellmeier formula [99].

n2(λ) = 1 +
∑

i

Biλ
2

λ2 − Ci
.
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Here Bi and Ci are experimentally determined coefficients unique for every material.

By convention, n0 ≡ n(ω0) for the central frequency ω0 = 2πc/λ0 of a laser

operating at a wavelength λ0 and k0 ≡ k(ω0). Without any specification ω = 2πc/λ,

w⊥ = 2π/k⊥ is the waist of the optical wave packet in the plane (x, y) and k⊥ is the

corresponding extent in the transverse Fourier space.

In what follows it will be convenient to use a complex version of the electric

field

E =
√
c1(E + E∗), E =

1√
c1

∫
Θ(ω)Ẽe−iωtdω, (2.14)

where ∗ stands for the complex conjugate, c1 ≡ ω0µ0/2k0 and Θ(x) denotes a Heav-

iside function.

Let us in the following section discuss the nature of variables P, ρ and J in

equations (2.1–2.4). Here, the first one is related to the bound electron response,

and ρ and J describe the ionization of the medium by the applied laser field.

2.2 Bound electron response

For centrally symmetric materials, only one relevant component of the tensor χ re-

mains in the cubic contribution P (3), e.g. χ(3) = χ
(3)
xxxx [2]. Let us first for simplicity

assume χ(3) being a constant in a spectral domain centered around ω0. Eq. (2.11)

then simplifies with a single remaining component denoted χ
(3)
ω0 and in time domain

one finds P (3)(r, t) = ǫ0χ
(3)
ω0E

3. This expression remains valid, as long as an in-

stantaneous response of the medium and the contribution of molecular vibrations

and rotations to χ(3) can be neglected. However, if the laser field interacts with

anisotropic molecules, a phenomenon of Raman scattering comes into play.

This interaction can be schematized by a three-level system built upon rota-

tional states of a molecule. Assume that the molecular scatterer has two rotational

eigenstates, the ground state (level 1) with energy h̄Ω1 and an excited one (level 2)

with energy h̄Ω2 where h̄ is the Planck constant and Ωm stands for the frequency

of the state m = 1, 2, 3. Far above these levels, there lies an electronic (or transla-

tional) state with energy h̄Ω3 ≫ h̄Ω2 − h̄Ω1. This molecule interacts with the laser

field whose photon frequency ω0 fulfills a following condition: Ω13,Ω23 ≫ ω0 ≫ Ω21,

[Ωnm ≡ Ωn − Ωm], so that the state |3〉 cannot be populated. Because of the de-

fined parity of these molecular states the dipole matrix element µ12 associated with

the transition |1〉 → |2〉 via a single photon vanishes, and the rotational state |2〉
can only be excited via transition through a virtual state |3〉 [µ13 ≃ µ23 ≡ µ 6= 0].

Following this path, a Stokes photon with energy h̄ωs = h̄ω0 − h̄Ω21 is emitted and

the corresponding polarization vector involves the density matrix element associated

with the states |1〉 and |2〉 as PRaman = χ(1)[ρ12e
iωRt + c.c.]E. Here, ωR = Ω21 is the

9



fundamental rotational frequency and ρ12 is found to satisfy [93]

∂tρ12 ≃ −ρ12

τ2
− i

µ2E2

h̄2Ω31

e−it/τ1 , (2.15)

where τ1 = 1/ωR and τ2 is the dipole dephasing time. From Eq. (2.15) the Raman

response:

PRaman =
2χ(1)µ2

Ω31h̄
2 E

∫ t

−∞
e
− t−t′

τ2 sin(
t− t′

τ1
)E2(t′)dt′ (2.16)

can be derived, which originates from nonresonant nonlinear couplings.

With the latter expression rewritten in terms of the rescaled complex field E
(2.14) and appropriate normalizations [15], the full expression for cubic polarization

reads

P(3) = 2n0n2ǫ0
√
c1

∫ +∞

−∞
R̄(t− t′)|E(t′)|2dt′E +O(E) + c.c., (2.17)

where R̄(t) = (1 − xK)δ(t) + xKΘ(t)h(t), and

h(t) =
2

3

τ 2
1 + τ 2

2

τ1τ 2
2

e−t/τ2 sin(t/τ1), (2.18)

with the definition of the nonlinear refractive index n2 = 3χ
(3)
ω0 /(4n

2
0cǫ0). In subse-

quent exposition the term O(E3) in Eq. (2.17) is omitted, because it is responsible

for the generation of third-harmonics, and this process is not taken into account in

this dissertation. Expression (2.17) possesses both retarded and instantaneous com-

ponents in the ratio xK . The instantaneous part ∼ δ(t) describes the response of

bound electrons upon a few femtoseconds or less. The retarded part ∼ h(t) accounts

for nuclear responses, namely the Raman contribution, in which fast oscillations in

E2 give negligible contributions as τ1 and τ2 by far exceed the optical period ∼ ω−1
0 .

Let us briefly discuss values of parameters contributing into Eq. (2.17). For

example, for propagation of λ = 800 nm laser pulse in air, in Ref. [104] the authors

suggested τ1 ≃ 62 fs, τ2 ≃ 77 fs and xK = 1/2. This choice is consistent with the

one proposed in experimental publications [89, 98]. When τ1 ∼ τ2, the function

h(t) ≃ (1/τ1)e
−t/τ1 can also be used in the ratio xK = 1/2 Ref. [29]. In Refs. [127, 2]

the parameter ranges τ2/τ1 = 2−4, τ2 = 30−50 fs with xK = 0.15−0.18 have been

suggested for condensed materials. Values of the nonlinear Kerr index n2 normally

lie in between 10−19 cm2/W for gases and 10−16 cm2/W in dense media (see e.g.

Refs. [15, 30]). The exact value may vary by a factor of the order of unity depending

on the procedure used for its evaluation (polarization spectroscopy, self- or cross-

phase modulated spectra or time-resolved interferometry), as well as on the laser

wavelength and pulse durations at which measurements are performed.

Besides, the susceptibility tensor has nonlinear components χ(j>3) satisfying

the ordering [21]
P (k+2)

P (k)
=
χ(k+2)

χ(k)
· E

k+2

Ek
≈ |E|2

|Eat|2
, (2.19)
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where Eat ≃ 3 × 1010 V/m is the characteristic atomic electric field strength with

intensity Iat > 1014 W/cm2. Normally the estimate χ(5)/χ(3) ∼ 10−12 remains valid

for nonresonant interactions in, e.g. gases. Despite the exact sign of χ(5) is not yet

known it is often assumed that the quintic susceptibility saturates Kerr focusing

and should therefore have a negative sign Ref. [15]. Since the relation of Eq. (2.19)

suggests that χ(j) is rapidly decreasing with the order j, the Taylor series with respect

to the electric field is usually truncated at the 5th order. Quintic polarization can

then be derived following the same procedure as above with χ(5) assumed constant

in the frequency domain. Expressing E5 in terms of (E , E∗) Eq. (2.14), the quintic

contribution of the polarization vector can be rewritten as (see Ref. [15])

P(5) = −2n0n4ǫ0
√
c1

(
|E|4 +

1

2
|E|2 E2 +

1

10
E4

)
E + c.c. (2.20)

where n4 = 5|χ(5)
ω0 |/(4n3

0c
2ǫ20).

2.3 Free electron response

As we see from Eq. (2.5), both bound and free electrons contribute to the light

intensity distribution in media. The origin of free electrons lies in the ionization of

media via intense light propagation. The free electrons, moving in a material, induce

a current density J = qeρve, where qe = −1.6 × 10−19 C is the electron charge, ρ is

the electron density and ve is the electron velocity. The free electron current J can

be computed from the fluid equations Ref. [128]:

∂tρ+ ∇ · (ρve) = S, (2.21)

∂tve + (ve · ∇)ve =
qe
me

(
E +

ve × B

c

)
− νeve − Sve/ρ. (2.22)

Here, S represents external plasma sources and νe is the effective electron collision

frequency. These equations can be combined to yield

∂tJ + νeJ =
q2
eρ

me
E + G, (2.23)

where

G =
qe
mec

J × B − J

ρqe
(∇ · J) − (J · ∇)ve (2.24)

represents ponderomotive forces acting on a slowly-varying time scale.

In case of linearly-polarized electromagnetic fields E and B oscillating at a high

frequency ω0, the driving term G admits envelope components containing gradients

of the field intensity, radiation pressure due to electron collisions and changes in

the electron density. Due to the low plasma currents induced by the ponderomotive

forces, the electromagnetic pulses will be generated providing sources of coherent
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sub-THz radiation Refs. [26, 27]. On the other hand, numerical simulations in

Refs. [105, 93] have shown that for 100-fs pulses reaching intensities of 1014 W/cm2

and free electron densities ρ ∼ 1016 cm−3 in the atmosphere, the efficiency conver-

sion to electromagnetic pulse is of the order of 10−9 with local intensities attaining

only 10 kW/cm2. In dielectrics, the plasma generates electromagnetic pulse in-

tensities remaining about ∼ MW/cm2 for peak laser intensities of ∼ 1013 W/cm2.

Thus the ponderomotive terms can be ignored, as long as peak intensities are below

1015 W/cm2. Plasma density perturbations due to Langmuir wave oscillations and

relativistic increase of the electron mass can also be neglected at these intensities.

Therefore, the equation for the current density reduces to Eq. (2.23) with

G = 0. Neglecting the higher orders in ve, the growth of the electron density reads

∂tρ = S = W (I)(ρnt − ρ) +
σ

Ui

ρI − f(ρ), (2.25)

i.e. it only depends on the source term S involving photo-ionization processes with

rate W (I), collisional ionization with cross-section σ, and a function describing

electron recombination or attachment with neighboring ions denoted by f(ρ). ρnt

and Ui in the above equations stand for the density of neutral species and the

ionization potential respectively, while ρ ≪ ρnt. The recombination function in

gases is typically written as f(ρ) = βrecombρ
2 with βrecomb[cm

3/s] ∼ 2 × 10−8 at

electron temperatures Te = 1 eV Ref. [104]. Typical recombination times in gases

belong to the nanosecond scale. In solid dielectrics, the recombination function is

linearly decreasing: f(ρ) = ρ/τrecomb Ref. [15] and much shorter recombination times

of the order 50 − 150 fs are expected.

The electron collisional rate is also depending on the electron energy distri-

bution function and temperature versus the ionization potential Ui. Making an

assumption of Maxwell distribution for the electron velocity, one arrives at a linear

expression for the rate variation σ |E|2 /Ui which remains valid as long as the elec-

tron thermal energy is small compared to Ui. Here σ is the inverse bremsstrahlung

cross-section Refs. [30, 15]. Neglecting the Ohmic heating the solution of the current

density Eq. (2.23) in terms of Fourier transforms reads:

J̃ =
q2
e

me(ν2
e + ω2)

(νe + iω) ˜(ρE). (2.26)

The current density term in Eq. (2.5) transforms as

µ0∂tJ → [−iωn0σ(ω)

c
+

ω2
0

c2ρc(1 + ν2
e/ω

2)
] ˜(ρE), (2.27)

after introducing the critical plasma density

ρc ≡
ω2

0meǫ0
q2
e

≃ 1.11 × 1021

λ2
0[µm]

cm−3, (2.28)

12



at which the laser wave number vanishes. Then, for the cross-section one gets

σ(ω) =
q2
e

meǫ0n0cνe(1 + ω2/ν2
e )

(2.29)

This expression is usually referred to as a ”Drude” model. It determines the energy

losses via plasma (cascade) ionization.

In Eq. (2.25) W (I) denotes the photo-ionization rate. Generally speaking, this

function must be found from the solution of the Schrödinger equation describing

ionization of an atom (molecule) in a strong electromagnetic field. This problem is

quite difficult and is mostly approached numerically (Refs. [65, 96]). However, an

analytical solution can sometimes also be found, e.g. in two limiting cases depending

on the value of the Keldysh parameter of ”adiabaticity” Refs. [63]:

γ = ω0

√
2meUi

|qe|Ep
. (2.30)

The limit γ ≫ 1 corresponds to the case of the multiphoton ionization (MPI),

while the limit γ ≪ 1 is related to the tunnel ionization when, for high intensities,

the Coulomb barrier becomes low enough to allow an electron to tunnel out. Here,

Ep denotes the peak optical amplitude Ep =
√

2c1I.

For laser intensities I = |E|2 < 1013 W/cm2, the MPI dominates and gives the

following ionization rate:

WMPI = σKI
K , (2.31)

where K = mod(Ui/h̄ω0) + 1 is the number of photons necessary to liberate one

electron.

For higher intensities the tunnel ionization starts to contribute as well, because

of electrons tunneling out within one optical cycle. The first formula for tunnel

ionization was obtained by Keldysh in Ref. [63]:

Wtunel =
4
√

3√
πEp

exp

( −2

3Ep

)
,

where E is the stress of electric field taken in atomic system of units (qe = me =

h̄ = 1).

This result was further improved by Perelomov, Popov and Terent’ev in Ref. [94],

and Ammosov, Delone and Krainov in Ref. [6]. Since both of these formulae are

rather complicated and not relevant for intensities below 1013 W/cm2 considered in

this dissertation, we do not present these expressions here.

In order to take energy losses related to ionization processes into account in

Eq. (2.5), Kandidov et al. in Ref. [59] suggested a following scheme: the temporal

evolution of the energy density w should be determined by a local version of the

Poynting theorem, i.e.
d

dt
w(r, t) = J(r, t) ·E(r, t), (2.32)
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from which one can compute the energy lost by the pulse to extract electrons via

single ionization process. The amount of energy per time and volume units is then

given by J ·E = Ui∂tρPI where ∂tρPI ≡ W (I)(ρnt − ρ). Using complex-valued fields,

the current associated with photo-ionization losses is easily found to be

Jloss =

√
k0

2ω0µ0
Ui
W (I)

I
(ρnt − ρ)(E + E∗), (2.33)

After the above discussion on J and P dependence on the electric field, let us

now turn back to the derivation of pulse propagation equations.

2.4 Back to the propagation equations. Nonlinear

Schrödinger equation (NLSE)

The direct substitution of all the expressions derived above into Eq. (2.5), yields

an equation which is extremely difficult to solve. That is why, a following sequence

of steps Refs. [21, 30, 15] can be performed in order to bring the nonlinear wave

equation (2.5) to a tractable form.

First, performing a Fourier transformation of Eqs. (2.5) we get

(
∂2

z + k2(ω) + ∇2
⊥
)
Ẽ = −µ0ω

2 ~̃FNL + ∇(∇ · Ẽ), (2.34)

which should be supplemented by the gauge fixing condition (2.6):

∇ · Ẽ = (ǫ0ǫ)
−1(ρ̃−∇ · P̃NL), (2.35)

where ∇2
⊥ ≡ ∂2

x + ∂2
y and

F̃NL ≡ P̃NL + iJ̃/ω. (2.36)

Now the most fundamental assumption allowing us to simplify the Eq. (2.34)

is that for k(ω) located around ω0 the transverse waist of the beam always fulfills

k2
⊥/k

2(ω) ≪ 1, (2.37)

The second assumption is on small nonlinearities, i.e.

F̃

ǫ0ǫ(ω)
≪ 1. (2.38)

These conditions make vectorial effects negligible. Then, from Eqs. (2.34) combined

with the continuity equation ∂tρ+∇ · J = 0 expressed in Fourier variables one gets

(
∂2

z + k2(ω) + ∇2
⊥
)
Ẽ = −µ0ω

2

(
F̃NL +

∇(∇ · ~̃FNL)

k2(ω)

)
. (2.39)
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If we project the vectors E = (E⊥, Ez), PNL = (PNL,⊥, PNL,z), J = (J⊥, Jz),

∇ = (∇⊥, ∂z) onto the transverse and longitudinal axes with unit vectors ~e⊥ and

~ez respectively, Ẽz can be found to scale as O(k⊥/k). This follows from a direct

Fourier transformation of Eq. (2.35) for weak nonlinearities Eq. (2.38). The vector

~e⊥ embraces x- and y-components: ~e⊥ = (~ex, ~ey).

Expressed in Fourier space, the nonlinear coupling of transversal/longitudinal

components described by the last term in Eq. (2.39) behaves as O(k2
⊥/k

2) [15, 21],

thus only becoming important in the limit k⊥ → k(ω). As it was demonstrated

in Ref. [15], the compression processes are stopped before k⊥ becomes comparable

with k (by e.g. chromatic dispersion or plasma generation) and, that is why the last

term in the right-hand side of Eq. (2.39) is close to zero, implying thereby Ez ≃ 0.

As a result, the field remains transversally polarized along the propagation axis,

making the influence of ∇(∇ · FNL)/k2 negligible. Hence, as long as the nonlinear

polarization and current density preserve the conditions (2.37) and (2.38), vectorial

effects can be ignored for purely optical or weakly-ionized materials as well. This

result allows us to confine ourselves to a scalar description for linearly-polarized

beams having, e.g. Ey = 0.

Let us now represent the electric field as a superposition of forward and back-

ward propagating waves

Ẽ = Ũ+eik(ω)z + Ũ−e−ik(ω)z, (2.40)

where Ũ+ and Ũ− stand for the Fourier components of the forward and backward

running waves correspondingly. In case we study the wave reflection from a me-

dia interface (e.g. fused silica - air) or remote sensing experiments [60], which

spectrally analyze the photons returning towards the laser source, backscattering

process should be taken into account. For all these cases one normally assumes

|∂zU±| ≪ |k(ω)U±| and U+ ≫ U−.

Substituting the Eq. (2.40) into Eq. (2.39) and keeping the conditions above

in mind, we get

e2ik(ω)z [∂2
z + 2ik(ω)∂z + ∇2

⊥ + µ0ω
2F̃ ]Ũ+

+[∂2
z − 2ik(ω)∂z + ∇2

⊥ + µ0ω
2F̃ ]Ũ− = 0. (2.41)

Following [43] we shall also assume that F̃ = Fδ(ω). The Eq. (2.41) can then

be integrated in an interval z − π/2k ≤ z ≤ z + π/2k (one fast oscillation). Let us

also Taylorize Û±(z) in order to evaluate:

2ik(ω)∂zŨ− ∼ −e2ik(ω)z

2ik(ω)
∂z[∇2

⊥ + µ0ω
2F ]Ũ+. (2.42)

Since ∇2
⊥ ∼ −k2

⊥ in Fourier space, the backscattered component has a weak influence

on the beam dynamics provided that k2
⊥ ≪ k2(ω) and as long as the longitudinal

variations of the nonlinearities remain small.
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The limit Eq. (2.37) moreover implies that the wave components, forming the

angle θ = arcsin (k⊥/k) between the transverse and longitudinal directions, mostly

propagate forwards since θ ≪ π/2 [15]. Because the propagation physics is mainly

described by the forward component, one has Ũ− → 0 and Ẽ ≃ Ũ+eik(ω)z. As a

result we obtain a unidirectional pulse propagation equation [21, 15]:

∂zẼ =
i

2k(ω)
∇2

⊥Ẽ + ik(ω)Ẽ +
iµ0ω

2

2k(ω)
F̃NL (2.43)

Validity of this model explicitly requires that the second-order derivative in z

of the envelope function Ũ+ is small as compared with |k(ω)∂zŨ+|. This inequality,

more often expressed in the form |∂zŨ+| ≪ |k(ω)Ũ+|, is usually referred to as the

”paraxiality” assumption. If the field envelope U+ does not change considerably

over the propagation distances of the order of λ for all wavelengths, this condition

is valid.

Let us now use again the notation of Eq. (2.14). Since E satisfies the condition

Ẽ∗(ω) = Ẽ(−ω)∗ it is sufficient to consider the Eq. (2.43) in the frequency domain

ω > 0 only. The field intensity can be defined by E2 averaged over at least one

optical period for a given central frequency ω0. This quantity usually follows from

the modulus of the time averaged Poynting vector.

In such a way, the propagation equation (2.43) in Fourier space reads

∂zẼ =

[
i

2k(ω)
∇2

⊥ + ik(ω)

]
Ẽ +

iµ0ω
2

2k(ω)
√
c1

Θ(ω)P̃NL

− ik2
0Θ(ω)

2ǫ(ω0)k(ω)(1 + ν2
e

ω2 )

(
ρ̃E
ρc

)
− Θ(ω)

2

√
ǫ(ω0)

ǫ(ω)
L(ω), (2.44)

where

L(ω) =
Ui

2π

∫
E
[
W (I)

I
(ρnt − ρ) +

σ(ω)

Ui
ρ

]
eiωtdt. (2.45)

The next step in the derivation of the pulse propagation equation is the so-

called slowly varied envelope approximation

When a central frequency ω0 is imposed, the nonlinear envelope equation ear-

lier derived by Brabec and Krausz in Ref. [22] is restored from Eq. (2.43). Making

use of the Taylor expansion

k(ω) = k0 + k′ω̄ + D̃, D̃ ≡
+∞∑

n≥2

k(n)

n!
ω̄n, (2.46)

where ω̄ = ω−ω0, k
′ = ∂k/∂ω|ω=ω0 , k

(n) = ∂nk/∂ωn|ω=ω0 and substituting Eq. (2.46)

into Eq. (2.43), one gets

∂zE =

∫ [
i∇2

⊥
2k(ω)

+ i(k0 + k′ω̄ + D̂)

]
Ê(ω)e−iωtdω

+ i
µ0

2

∫
ω2

k(ω)
F̃NL(ω)e−iωtdω. (2.47)
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Here the property that Ẽ(ω) is the Fourier transform of E(t)eiω0t in ω̄ was used, and

terms containing k(ω) in their denominator are expanded up to the first order in ω̄.

Let us now introduce a complex valued representation

E = Ueik0z−iω0t, (2.48)

involving a novel envelope function U . As a next step, the new time variable t →
t − z/vg can be utilized in order to place the pulse into a frame moving with the

group velocity vg = k′−1. Thus, from Eq. (2.47) we arrive at

(i∂z + D)U ≃ −T
−1

2k0

(∇2
⊥U) − µ0ω

2
0

2k0
√
c1
TF env

NL (U), (2.49)

where

D ≡
+∞∑

n≥2

(k(n)/n!)(i∂t)
n, T = (1 +

i

ω0
∂t), (2.50)

whenever |k0−ω0k
′|/k0 ≪ 1. This condition is met if the relative deviation between

group and phase velocities is small, which is fulfilled in a wide range of propaga-

tion phenomena. The operator T−1 introduces a space-time focusing in front of

the diffraction term. The nonlinearities of the envelope function F env
NL (U) are also

affected by the operator T corresponding physically to a self-steepening.

For dispersion relations truncated at some finite order n < +∞ the derived

model equation (2.49) is applied to optical fields with sufficiently narrow spectral

bandwidths.

If the dispersion relation admits a Taylor expansion around ω0 and retaining

only waveforms oscillating at ω0 the nonlinear envelope equation for the forward

component U can be directly obtained from Eqs. (2.49, 2.17, 2.20, 2.33):

∂zU =
i

2k0
T−1∇2

⊥U + i
ω0

c
n2T

[
(1 − xK) |U |2 + xK

∫ t

−∞
h(t− t′) |U(t′)|2 dt′

]
U

+ iDU − i
ω0

c
n4T |U |4U − i

k0

2n2
0ρc

T−1ρU − σ

2
ρU − βMPA(|U |)

2
U, (2.51)

∂tρ = W (I)(ρnt − ρ) +
σ(ω0)

Ui
ρ|U |2 − f(ρ), (2.52)

where t stands for the retarded time variable t − z/vg. The function βMPA(|U |) =

(ρnt−ρ)UiW (I)/|U |2 takes the losses caused by photo-ionization into account. In the

MPI limit (2.31) this dissipative function takes the form βMPA(|U |) → β(K)|U |2K−2

where β(K) ≡ Kh̄ω0σKρnt is the coefficient of multiphoton absorption (MPA). The

first term of the operator D corresponds to a group-velocity dispersion (GVD) with

a coefficient k′′ = ∂2k/∂ω2|ω=ω0 . Equations (2.51) describe wave diffraction, Kerr

focusing response, plasma generation, chromatic dispersion with a self-consistent ac-

tion of deviations from the classical slowly-varying envelope approximation through
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space-time focusing and self-steepening operators (T−1∇2
⊥E) and (T |E|2E) respec-

tively.

Evidently, equations (2.51, 2.52) must be supplemented with initial and bound-

ary conditions. For Eq. (2.52) it is usually chosen in the form ρ(0) = 0 what physi-

cally corresponds to the absence of free charges in the media before the laser pulse

propagation.

Usually the intensity distribution at the boundary is given by either Gaussian

or super-Gaussian beam shapes

U(x, y, z = 0, t) = U0 exp

(
− r2N

w2N
0

− ik0
r2

2f
− t2

t2p
− iC

t2

t2p

)
, (2.53)

which may be focused through a lens of focal length f and be temporally chirped if

C 6= 0. Here, r =
√
x2 + y2, w0 is the beam waist and tp (the 1/e2 pulse half-width)

is such that its full-width-at-half-maximum (FWHM) equals ∆t =
√

2 ln 2tp. For

Gaussian beams (N = 1), U0 =
√

2Pin/πw2
0 including the input power Pin. In the

next sections we shall discuss some most important properties of the obtained model

equation (2.51).

2.5 Properties of the nonlinear pulse propagation

equation

Let us now briefly describe basic properties of Eq. (2.51, 2.52). For the sake of

simplicity, following Bergé et al. Ref. [15], first of all it is convenient to convert the

Eqs. (2.51, 2.52) into dimensionless form.

As it has been discussed above, the main contribution into the ionization

processes under moderate intensity (I < 1013W/cm2) comes from MPI, therefore,

the plasma kinetic equation (2.52) can be approximately written as ∂tρ = Γ|ψ|2K ,

where the rescaled MPI coefficient reads Γ = (2z0k0/n
2
0ρc)σKρnttpc

K
2 and c2 ≡

λ2
0/8π

2n0n2w
2
0. Then, assuming an instantaneous response (xK = 0), the nonlin-

ear Schrödinger equation in dimensionless form reads

i∂zψ + ∇2
⊥ψ + |ψ|2ψ + F(ψ) = 0, (2.54)

All processes whose influence on the beam propagation is small in comparison to

the Kerr nonlinearity are included in the so-called ”perturbation function”:

F = −δ∂2
t ψ − ρψ − ǫ|ψ|4ψ + iν|ψ|2K−2ψ +

i(|ψ|2ψ −∇2
⊥ψ)t

tpω0
,

Here we used the approximation T−1 ≃ 1 − (i/ω0)∂t supposing ω0tp ≫ 1, neglected

the recombination and only treated the plasma coupling term driven by MPI and
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subject to the limit T−1 → 1. Equations (2.51) are then rescaled in dimensionless

form by using the substitutions r → w0r, t → tpt, z → 4z0z (z0 = πn − 0w2
0/λ0

is the diffraction length of the collimated beam), U → √
c2ψ, ρ → (n2

0ρc/2z0k0)ρ,

δ ≡ 2z0k
′′/t2p and ν = 2z0β

(K)cK−1
2 respectively. Quintic saturation is taken into

account through ǫ = n4c2/n2. For Gaussian beams, the incident amplitude (2.53)

reduces to

|ψ(z = 0)| =

√
16πn0n2Pin

λ2
0

e−r2−t2 . (2.55)

Wave collapse in nonlinear media: F = 0. In this case Eq. (2.54) describes

wave self-focusing at a certain point zsf . This causes a compression of the beam

in the diffraction plane, which leads to ”wave collapse” when the Kerr nonlinearity

is not saturated. A necessary condition for the collapse is that the input power

Pin =
∫
|E|2d~r exceeds some critical value,

Pcr ≃
3.72λ2

0

8πn0n2
, (2.56)

computed on the Townes mode1. The beam waist decreases more and more as the

field amplitude |U | diverges. The distance, also termed as nonlinear self-focusing

position locates the point at which the beam amplitude diverges along the optical

path. One of the first results defining the position of the nonlinear self-focusing as a

function of the beam power was obtained by Marburger in Ref. [86]. The obtained

empirical formula (also referred to as the Marburger formula) reads

zsf = 0.367z0

(
(
√
Pin/Pcr − 0.852)2 − 0.0219

)−1/2

. (2.57)

We have to note that taking a delayed Kerr response xK 6= 0 into account

leads to a shift of the self-focusing position. In other words in that case Pcr in the

Marburger formula should by replaced by an effective critical power P eff
cr = PcrxK

Ref. [116].

However, in real physical systems a whole beam collapse is newer observed:

for low intensity, the nonlinear beam compression is arrested by diffraction; for high

light intensity, additional nonlinear effects, leading to the collapse arrest, appear in

the system.

Collapse arrest by higher order material polarization: F = −ǫ|ψ|4ψ. As

it has been demonstrated in many papers (e.g. Refs. [30, 15] an references therein)

an introduction of additional defocusing quintic nonlinearities produce stable soli-

tons in continuous-wave (cw) media. This property follows from a balance between

diffraction, Kerr focusing and nonlinear saturation.

1More closely we consider this case in Chapter 4.
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At sufficiently high values of n4 the high-order saturation can prevail over

ionization and induces a soliton-like dynamics before the occurrence of an electron

plasma Ref. [15]. Whether the higher-order optical nonlinearities are relevant is

governed by the ionization rate: e.g. in air, if the laser intensity saturates above

1014 W/cm2 by plasma generation alone, then even weak values of n4 can noticeably

soften this peak intensity. At lower intensities the quintic saturation has a more

limited role.

Collapse arrest by plasma defocusing: F = −ρψ. Because of MPI the pulse

temporal profile gets depleted through the sudden emergence of an ionization front

near the focus point zsf . In the absence of time dispersion and nonlinear losses,

the plasma equation ∂tρ = Γ|ψ|2K can be integrated as ρ ≃ Γ|ψ|2Ktp. This term in

equation (2.51), similar to the case considered previously, leads to the beam collapse

arrest.

The fact that the beam collapse can be prevented by the media ionization

was demonstrated in many papers, like Refs. [56, 11, 5, 12] to mention only first

ones. In all of them this result was obtained on the basis of the variational approach

(see. Chapter 4) and numerical simulations. Instead of the beam collapse the

authors observed intensity saturation: upon propagation the beam radius decreased

and achieved a certain nonzero magnitude. On-axial beam intensity Isat which

corresponds to this beam radius was suggested to be found from a rule (see Refs.

[30, 15]):

n(Isat) = 0, (2.58)

where n(I) is as usual the refractive index of the model.

Collapse arrest by group velocity dispersion: F = −δ∂2
t ψ. Besides wave

focusing in the transverse direction the Kerr nonlinearity also causes defocusing in

time for k′′ > 0 (normal dispersion) and temporal compression for k′′ < 0 (anomalous

dispersion) by mixing GVD and spatial diffraction in case T ≃ 1. In case of normal

GVD the interplay of these processes leads to symmetric splitting of the pulse along

the time axis. In contrast, an anomalous GVD yields a spatiotemporal collapse.

In addition, when ultrashort pulses develop sharp temporal gradients, the operator

T in front of the Kerr term (self-steepening) induces a shock dynamics: the field

develops a singular profile with |ψt| → +∞ in the trail (t > 0) of the pulse [7]. This

dynamics is reinforced by space-time focusing [15].

To understand it, one can consider ultrashort pulses as being stacked along

the temporal direction into different time slices having each their own power, e.g.,

P (t) = Pine
−2t2 for Gaussian profiles. Slices located at times t < 0 correspond to the

front (or leading) pulse; those at t > 0 constitute the back (trailing) pulse. Each time
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a slice self-focuses at its respective singularity point, zsf(t), according to Eq. (2.57) in

which the ratio Pin/Pcr must be replaced by Pine
−2t2/Pcr. This scenario is known as

the ”moving-focus” model [85] and yields simple comprehension elements to figure

out the pulse distortions. Here, the central time slice focuses at the shortest distance

zsf(t = 0). Furthermore, żsf(t) is positive for t > 0 and negative for t < 0 [żsf(0) = 0],

whereas z̈sf(t) always remains positive. Normal GVD transfers power towards non-

zero instants, symmetrically located with respect to t = 0. Self-steepening and

space-time focusing moreover produce a transfer of power from the leading (żsf < 0)

to the trailing portion of the pulse (żsf > 0). Normal GVD alone ”splits” a focusing

pulse into two regular, symmetric spikes at powers < 2Pc. For higher powers, the

peak edges develop shock profiles and disintegrate into ripplelike cells [47].

At powers moderately above critical the normal GVD (k′′ > 0) and plasma

formation constitute two competing processes to halt the wave collapse. Generally,

the stronger the GVD coefficient is, the larger is the power interval required for

collapse arrest by pulse splitting. By solving the cubic NLS equation with normal

GVD, a boundary δcrit(p̄) being a function of the ratio of input power over critical,

p̄ = Pin/Pcr, it can be shown that initial conditions fulfilling δ > δcrit(p̄) will limit

the Kerr self-focusing through GVD splitting not giving rise to solutions describing

divergences into a singular state. Involving higher order dispersion together with

steepening effects (T, T−1) into consideration modifies this curve by ”delaying” the

self-focusing threshold to higher powers. In particular, third-order dispersion tends

to delocalize the pulse by pushing the temporal centroid to the back [41].

In contrast, for anomalous GVD (k′′ < 0) power is transferred to center. Ultra-

short pulses thus collapse both in space and time. A mapping |δ| > δcrit(p̄) can again

be constructed on the basis of virial-type arguments [13]. As the result one obtains

that the pulse spreading will take place when the dispersion length ∼ t2p/|k′′| is short

enough to prevail over diffraction and Kerr nonlinearity. Again as in the previous

paragraph the theoretical boundaries are to some extent influenced by higher-order

dispersion and steepening terms in the equation.
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Chapter 3

Model equations. The geometrical

optics approximation.

As we demonstrated in Chapter 2, the basic mathematical model for intense light

propagation in the media is the nonlinear Schrödinger equation (2.51). Taking into

account the simplification discussed in the end of the previous chapter, the Eq.

(2.51) can be rewritten as follows:

i∂zE +
1

2k0
∇2

⊥E +
k′′

2
∂ttE + k0n(|E|2)E = 0. (3.1)

Here E is the slowly-varying envelope of the electric field, z is the propagation length,

k0 is the wave number k0 = n0ω0/c, ω0 is the carrier frequency of the laser irradiation

and c is the velocity of light, k′′ is the dispersion coefficient, k′′ ≡ ∂2k
∂ω2 |ω=ω0. If k′′ > 0,

the dispersion is assumed to be normal, and anomalous in opposite case. n = n(|E|2)
is a nonlinear refractive index in a general form.

Equation (3.1) is a basic mathematical model for many physical situations.

For example in case of (1+1) dimensions, Eq. (3.1) describes propagation of a laser

pulse in the fiber, where radial intensity variation is small in comparison to the

fiber radius, and the second term in Eq. (3.1) can be neglected. Further, we shall

refer to this case as a dispersive one. Another situation is a continuous wave laser

beam propagation in a planar geometry in a media where dispersion, i.e. the third

term in Eq. (3.1), is negligible. If we consider the propagation of a laser beam

in a cylindrical geometry, which is more typical for experimental conditions, the

Laplace operator ∇2
⊥ will describe diffraction in two dimensions, and we arrive at

(1+2) dimensional problem. Both these cases, with the Laplace operator taking

diffraction into account, will be referred to as diffractional cases.

Let us now represent electric field E in the eikonal form: E =
√
I exp(ik0S) in

diffractive and E =
√
I exp(iω0S) in dispersive cases, respectively. Then, starting
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from Eq. (3.1), after some algebraic manipulations we obtain

∂zS = −κ1

2
(∂xS)2 + κ2n(I) + κ3

(
x1−ν

√
I
∂x(x

ν−1∂x

√
I)

)
, (3.2)

∂zI = −κ4∂x(I∂xS) − (ν − 1)
I∂xS

x
, (3.3)

where ν = 1 and ν = 2 correspond to the (1+1) and (1+2) dimensional cases

respectively.

For the diffractive case x corresponds to the spatial variable and κ1 = 1, κ2 = 1,

κ3 = 1/2k2
0 and κ4 = 1; for the dispersive case x denotes time t, and κ1 = k′′ω0,

κ2 = k0n2/ω0, κ3 = k′′/ω0, and κ4 = k′′ω0.

Let us differentiate the first equation with respect to x and introduce a new

variable v ≡ ∂xS. For the sake of convenience, we introduce dimensionless variables

Ĩ ≡ I/I0, x̃ ≡ x/win, t̃ ≡ t/tp, where I0 is an initial peak intensity of the beam, win

is an initial beam radius, and tp is an initial pulse duration (tFWHM =
√

2 ln 2tp).

For the propagation distance we use the following normalization: z̃ ≡ z|k′′|ω0/tp in

dispersive and z̃ ≡ z/win in diffractive cases, correspondingly. Further we shall al-

ways use dimensionless variables, omitting tilde for the sake of simplicity. Moreover,

let us introduce new dimensionless variables α and θ as being α = k0n2I0/|k′′|ω2
0,

θ = (2ω2
0t

2
p)

−1 in dispersive case and α = n2I0, θ = (2k2
0w

2
in)

−1 in diffractive case.

Thus, finally we get the following equations:

∂zv + v∂xv − αϕ∂xI − θ∂x

(
x1−ν

√
I
∂x(x

ν−1∂x

√
I)

)
= 0, (3.4)

∂zI + v∂xI + I∂xv + (ν − 1)
vI

x
= 0. (3.5)

Evidently, Eqs. (3.4, 3.5) must be supplemented with a boundary conditions. In

case of collimated Gaussian beam these read

v(0, x) = 0, I(0, x) = exp(−x2). (3.6)

Let us now make some estimates. For example, in the case of (1+2) dimensions, the

last term in Eq. (3.2) describes diffraction. Typical values of the parameters in mod-

ern experiments are: λ = 800nm, initial beam radius ω0 = 3mm Ref [14]. Using these

values, we get θ2 ≃ 2× 10−9. For pulse propagation in air n2 = 3.19× 10−19cm2/W,

I0 = 1012W/cm2 α = 3 × 10−7. This means that the diffraction term in (1+2)

dimensions can be neglected and that the geometrical optics approximation should

give a reasonable description of the problem of intense laser beam propagation in

gases. Typically, solid media have refractive indices of the order n2 ∼ 10−16cm2/W ,

and, consequently the geometrical optics approximation will provide a good accu-

racy in this case as well. In (1+1) dimensions, when this term is responsible for

the dispersion, a validity of the semi-classical approximation is discussed in detail

in Ref. [123].
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Figure 3.1: (Color online.) Accuracy L ≡ Lnl/Ldiff of the geometrical optics approx-

imation for different media as a function of the laser pulse power Pin. The green,

black and blue curves refer to water, air and fused silica, respectively. The pulse

wavelength is assumed to be 800nm. Pin is given in units of TW for air, and of GW

for water and fused silica.

Another argument in favor of geometrical optics approximation can be deduced

via comparison of the magnitudes of diffraction contributions and the nonlinear

effects to the beam propagation. They can be estimated through the comparison of

the characteristic distances: the diffractional length Ldiff , and the nonlinear length

Lnl, at which the beam suffers considerable changes [30]. Then, L ≡ Lnl/Ldiff can

serve as a measure of the accuracy of the geometrical optics approximation: if L≪ 1,

diffraction can be neglected.

The main contribution to n(|E|2) is usually given by the Kerr cubic term n2|E|2.
Therefore it is natural to define a nonlinear length Lnl = 1/(k0n2I0), where I0 is the

intensity of the beam at the entry plane of the nonlinear medium. The diffraction

length is defined as Ldiff = n0k0w
2
0/2, where w0 is the initial beam radius [30]. In

Fig.3.1 we plot L as a function of the initial beam power Pin (Pin = I0w
2
0π/2) for

different media and λ = 800 nm. In many recent experiments L ∼ 0.05 or smaller

(see [30] and Refs. therein), thus making the geometrical optics approximation valid.

For propagation of X-ray laser radiation in future experiments Ref. [37], the

geometrical optics approximation will provide an even better accuracy. This fact

enables us to omit the last higher order derivative term in Eq. (3.7), and search for

the solution under the geometrical optics approximation.

In such a way, in case when diffraction (dispersion) can be neglected, we have

24



the following equations:

∂zv + v∂xv − ϕ∂xI = 0, (3.7)

∂zI + v∂xI + I∂xv + (ν − 1)
Iv

x
= 0. (3.8)

Further simplification of these equations can be achieved in (1+1) dimensions if we

notice that in this case the system (3.7-3.8) is linear with respect to the first order

derivatives. Therefore, it is convenient to use the hodograph transformation [17] in

order to transform it into a linear system of partial differential equations.

The key point of the hodograph transformation is exchange of dependent and

independent variables. In order to perform this trick, let us first write down the

total derivatives:

dv = vxdx+ vzdz, dI = Ixdx+ Izdz. (3.9)

Dividing both of the Eqs. (3.9) by dv and dI, we obtain a system of four equations

1 = vx
∂x

∂v
+ vz

∂z

∂v
, 1 = Ix

∂x

∂I
+ Iz

∂z

∂I
, (3.10)

0 = vx
∂x

∂I
+ vz

∂z

∂I
, 0 = Ix

∂x

∂v
+ Iz

∂z

∂v
. (3.11)

Resolving system of algebraic Eqs. (3.10-3.11) with respect to vx, vz, Ix and Iz, we

get

vx =
1

J

∂t

∂I
vz = − 1

J

∂x

∂I
(3.12)

Ix = − 1

J

∂t

∂v
Iz =

1

J

∂x

∂v
, (3.13)

where J is the Jacobian of the transition

J =
∂x

∂v

∂z

∂I
− ∂x

∂I

∂y

∂v
(3.14)

Let us now introduce the new variables τ ≡ Iz, χ ≡ x− vz, w ≡ v/α. Then, we get

J =
∂wχ∂Iτ

αI
− ∂wτ∂Iχ

αI
− τ∂wχ

αI2
+
τ∂Iτ

I2
− τ 3

I3
. (3.15)

∂t

∂I
=
∂Iτ

I
− τ

I2

∂x

∂v
=

1

α
∂wχ+

τ

I
+
w

I
∂wτ etc. (3.16)

Substituting Eqs. (3.13, 3.15, 3.16) into Eqs. (3.7, 3.8), in (1+1) dimensions we

arrive at

∂wτ −
I

ϕ(I)
∂Iχ = 0, (3.17)

∂wχ+ α∂Iτ = 0. (3.18)
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In (1+ν) dimensions the Eqs. (3.7-3.8) read

∂wτ −
I

ϕ(I)
∂Iχ = 0, (3.19)

∂wχ+ α∂Iτ +

(ν − 1)αw

χI + ατw

[
∂wχ∂Iτ − ∂wτ∂Iχ− τ∂wχ

I
+
ατ∂Iτ

I
− ατ 3

I2

]
= 0, (3.20)

The boundary conditions are transformed as follows: for w = 0

τ = 0, χ = H(I). (3.21)

Evidently, for example in case of the Gaussian beam we have χ =
√

ln(1/I).
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Chapter 4

Review of Analytical Results

Let us now present a short review of analytical results and approaches in the problem

of light propagation in nonlinear media. Because of the immense number of papers

devoted to this issue, we can only mention some here which are more often cited in

the literature and/or important for our further exposition.

4.1 Exact analytical solutions

4.1.1 Geometrical optics approximation

One of the first reviews devoted to analytical studies of the nonlinear optics equation,

was published by Akhmanov et al. Ref. [4]. In this paper, the authors presented

the solutions constructed by them under the geometrical optics approximation for

Kerr nonlinear refractive index. For this situation Eqs. (3.7-3.8) read

∂zv = −v∂xv + α∂xI, (4.1)

∂zI = −∂x(Iv) − (ν − 1)
Iv

x
, (4.2)

where ν is equal to dimensionality of the problem: ν = 1 in (1+1) dimensions, ν = 2

in (1+2) etc.

In Ref. [3] it was shown that in (1+1) dimensions, equations (4.1,4.2) allow an

exact solution:

v = −2αIz tanh(x− vz), αI2z2 = I cosh2(x− vz) − 1, (4.3)

which, evidently, corresponds to the boundary conditions: I(0, x) = cosh2(x),

v(0, x) = 0.

The solution Eq. (4.3) exhibits a singularity at the point zsf = 1/2
√
α. At

this point the derivative ∂zI(z)|zsf
goes to infinity, but on-axial intensity magnitude

remains finite and equal to Iext = 2.
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In (1+2) dimensions, Eqs. (4.1, 4.2) admit the solution

v =
−2αz

1 − 2αz2
, I =

1

1 − 2αz2

(
1 − x2

1 − 2αz2

)
, (4.4)

which describes the propagation of an initially parabolic laser beam, I(0, x) = 1−x2.

The solution becomes singular at the point zsf = 1/
√

2α.

4.1.2 Exact solutions beyond the geometrical optic approx-

imation

At the moment, there are only two known exact analytical solutions for the nonlinear

Schrödinger equation (3.1) with physically interesting boundary conditions. Both

of them were constructed for Kerr nonlinearity in (1+1) and (1+2) dimensions.

Exact solution in (1+1) dimensions. Inverse scattering method

In (1+1) dimensions for Kerr refractive index, the Eq. (3.1) in dimensionless form

reads

i∂tψ(x, t) + ∂xxψ(x, t) + κ|ψ(x, t)|2ψ(x, t) = 0. (4.5)

In order to find a solution to Eq. (4.5), one takes ψ(x, t) in the form Ref. [1]:

ψ(x, t) = A(x− vt) exp(iφξ + ivx). (4.6)

Substituting Eq. (4.6) into Eq. (4.5), we get

−φA+
1

2
Axx −

1

2
v2A+ A3 = 0. (4.7)

Introducing B ≡ φ+v2/2, and substituting this expression into Eq. (4.7) one obtains

1

2
Axx −BA + A3 = 0,

which, after multiplication by Ax and subsequent integration reads

(Ax)
2 = 2AB − A4, (4.8)

where we took into account that both function A and its derivative Ax must vanish

for |x| → ∞. Equation (4.8) admits a solution:

A(x) =
√

2B cosh−1[
√

2B(x− x0)]. (4.9)

Then, returning to the original variables, we get a result:

ψ(x, t) = η
√

2κ
exp(−4i(ξ2 − η2)t− 2iξx+ iϕ)

cosh(2η(x− x0) + 8ηξt)
. (4.10)
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This formula is referred to as a soliton solution. It describes evolution of a localized

symmetric intensity distribution and is characterized by four constants: η, ξ, x0

and ϕ which can be independent and arbitrary. However, we see that initial radius,

amplitude of the soliton and the nonlinearity parameter κ are related to each other.

In its turn, the velocity of the soliton can be arbitrary.

A generalization of this solution for multiple soliton case has been performed

in Ref. [125]. Zakharov and Shabat found the solution to Eq. (4.5) making use of

the inverse scattering method. They demonstrated that Eq. (3.1) can be rewritten

in the form of a so-called Lax equation:

∂tL̂ = L̂Â− ÂL̂, (4.11)

where L̂, Â is the Lax pair.

L̂ = i

(
1 + p 0

0 1 − p

)
∂x +

(
0 ψ∗

ψ 0

)

Â = −p
(

1 0

0 1

)
∂xx +

(
|ψ|2/(1 + p) iψ∗

x

−iψx −|ψ|2/(1 − p)

)

and p related to κ as κ = 2/(1 − p2).

The method requires the eigenvalues and the continuous spectrum of L̂ to be

independent of t. Then, as a first step, named a direct scattering problem, one

needs to find the time evolution of eigenfunctions of the operator L̂. The eigenvalue

equation, L̂ψ = λψ, turns into a system of ordinary differential equations containing

a solution ψ0 at the boundary which can be described as a potential:

φ1
x + iζφ1 = i

ψ0√
1 − p2

φ2, (4.12)

φ2
x − iζφ2 = −i ψ∗

0√
1 − p2

φ1. (4.13)

Now we have to do some a priori assumptions about the spectrum of the problem.

If ζ ≡ λp/(1 − p2) is real (in this case we denote it as ξ), then a solution can

be represented as a superposition ϕ = a(ξ)ψ + b(ξ)ψ, where the overline denotes

Hermitian conjugation, and condition |a(ξ)|2 + |b(ξ)|2 = 1 has to be satisfied. If ζ is

a complex number, ζj, j = 1, ..., N should be determined as the points on the upper

half complex plane ℑζ > 0 where a(ζ) = 0. The solution then can be written as

ϕ(x, ζj) = cjψ(x, ζj) (for details see Ref. [125]).

From Eq. (4.11) it follows that eigenfunctions of the operator L̂ are governed

by equation:

i∂tψ = Âψ,
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which defines the temporal evolution of the coefficients:

b(ξ, t) = b(ξ, 0)e4iξ2t, cj(t) = cj(0)e4iζ2t, (4.14)

and a(ξ) does not depend on time.

The next step is referred to as the inverse scattering problem, when we have

to reconstruct the solution ψ(x, t) on the basis of obtained coefficients a(ξ), b(ξ, t),

−∞ < ξ < +∞; cj(t), j = 1, ..., N . As we have seen, the values of these functions

at t = 0 were defined by the initial conditions ψ(x, 0); their subsequent evolution is

defined by Eq. (4.14). Therefore, it is sufficient to define ψ(x) as a function of a(ξ),

b(ξ), and cj . Calculation of this function can be done via integration of so-called

Gelfand-Levitan-Marchenko integral equation. Let

F (x) =
1

2π

∫ +∞

−∞

b(ξ)

a(ξ)
eiξxdξ +

N∑

k=1

cke
iζkx,

then the solution to Eq. (4.5) is ψ(x) = iq(x)
√

2/κ, where q(x) = −2K1(x, x),∫∞
−x

|q(s)|2ds = −2K2(x, x) and K1(x, x), K2(x, x) are defined from the equations:

K1(x, y) = F ∗(x+ y) +

∫ ∞

x

K∗
2 (x, s)F ∗(s+ y)ds,

K∗
2 (x, y) = −

∫ ∞

x

K1(x, s)F (s+ y)ds.

In general, exact solution is a superposition of a number N of solitons (4.10)

with 4N arbitrary constants ηi, ξi, x0i and ϕi. Mathematically, an evolution of the

system (3.1) can be modeled as a process of N soliton scattering.

As it was demonstrated in Ref. [125], under the semi-classical limit all eigen-

values ζ lie at the imaginary axis, and the initial multisoliton solution is unstable.

The solution obtained by Zakharov and Shabat is exact. However, for a major-

ity of actual cases the mathematical models corresponding to real physical situations

belong to the class of the so-called unintegrable systems for which stable soliton so-

lutions do not exist and the method of inverse scattering turns out to be no longer

applicable [66]. For example, the method does not yield results already in the case

of light propagation in (1+2) dimensions, typical for all experiments with nonlinear

self-focusing and filamentation.

In their seminal paper [125], Zakharov and Shabat studied the stability of soli-

ton solutions. They demonstrated that a singe soliton solution is stable. However,

this result was obtained under the assumption that the so-called nonsolitonian part

(deviation on the solution from the singe soliton profile) is negligible, and it hardly

can be expanded to the case when the amplitude of the solution considerably exceeds

the value η
√

2κ.
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Townes profile and beam collapse

In case of (1+2) dimensions, Eq. (3.1) has solutions of the form ψ = eiλzRλ(r),

where Rλ(r) = λR(λr), and R is the solution of equation

R′′(r) +
1

r
R′ −R +R3 = 0, R′(0) = 0, R(∞) = 0. (4.15)

Equation (4.15) has an infinite number of solutions. Of most interest, however, is

the ground-state solution, known as the Townes profile, which is positive, symmetric

and monotonically decreasing to zero under |x| → ∞.

The Townes-profile solution was firstly introduced in Ref. [28]. Further, it was

demonstrated that this solution is unstable: if the initial condition is perturbed,

ψ0 = (1 + ǫ)R(r), where 0 < ǫ ≪ 1, then the corresponding solution will collapse

after a finite propagation distance. The Townes solution is very important for the

NLSE theory, since it provide the magnitude of the critical power for the beam

collapse, and since it is universal, self-similar profile of collapsing beam in case of

Kerr nonlinear refractive index.

In Ref. [121], the author proved that a necessity condition for the beam collapse

is that the input power exceed the power of the Townes profile, i.e. that P ≥ Pcr,

where

PcrT =

∫
R2dxdy ≈ 11.70. (4.16)

Later, Merle in Refs. [87, 88] proved that for other beam profiles the critical

power for the beam collapse should be strictly above the critical one calculated for

the Townes profile Eq. (4.16). For example, for the Gaussian beam, the critical

power is 2 % above PcrT , and for super-Gaussian - 9%PcrT . For the elliptic input

profile ψ0 = cF (
√

(x/a)2 + (y/b)2), the critical power defined as Pcr ≈ (0.2(g +

1/g) + 0.6)Pcr0, where a, b, c are constants, g = b/c, and Pcr0 is the critical power

for the input profile ψ0 = cF (
√
x2 + y2) [39].

Thus, the stronger is deviation of the input beam from the Townes profile, the

bigger is the power of the beam required for the beam collapse.

In Ref. [39] Fibich emphasized that the amount of power that collapses into

the singularity is independent on the initial conditions and always is given by PcrT

Eq. (4.16). This means that part of the power equal to PcrT absorbed by the media

at the collapse point whiles other part Pin − PcrT continues to propagate forward.

The lens transformation

Concluding the part devoted to the exact solution we want to mention the lens

transformation. It is based on the symmetry properties of the cubique Schrödinger

equation (3.1) in (1+2) dimensions, which allow to transform results obtained for a
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collimated beam to a beam focused by the lens with a focal length, f. In Ref. [111] it

is demonstrated that, if at the boundary, the solution to the nonlinear Schrödinger

equation (3.1) is given by function

ψ(0, x, y) = ψ0 exp

(−i(x2 + y2)

4f

)
,

where x and y are radial variables, then at a certain point z the solution reads

ψ(z, x, y) =
1

L(z)
ψ(ζ, ξ, η) exp

(
iL(z)z(x

2 + y2)

L(z)4

)
, (4.17)

where

L(z) = 1 − z

f
, ζ =

∫ z

0

L−2(s)ds, ξ =
x

L(z)
, η =

y

L(z)
. (4.18)

As a consequence of this transformation, we get the lens rule

1

zsf
+

1

f
=

1

zsf,f
(4.19)

where zsf,f is a self-focusing position which is a sum of the nonlinear self-focusing

and focusing by the lens at the boundary.

4.2 Approximate Results. Quasi self-similar meth-

ods

Existence of exact solutions for Kerr nonlinear refractive index motivated many

authors for searching approximate solutions in a quasi self-similar form.

4.2.1 Variational approach

For the first time, variational approach was applied to the Nonlinear Schrödinger

equation with Kerr nonlinearity by Anderson in Ref. [7]. Later, in great number of

papers (see e.g. [30, 8, 5, 103, 12]) this idealogy was applied to NLSE with a more

complicated form of the refractive index. In many interesting situations, the model

equation has form (see Chapter 2):

∂E

∂z
=

i

2k

(
∂2

∂r2
+

1

r

∂

∂r

)
E + ik0n2T |E|2E

−
(
σn

2
+
ik0

2ρc

)
ρatτrσK |E|2KE − βK

2
|E|2K−2E, (4.20)

where K is a number of photons required for a simultaniouse ionization, and all

other notations are similar to Chapter 2.
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It is easy to verify that equation (4.20) is the Euler-Lagrange equation of

motion

∂

∂z

∂L

∂
(

∂E∗

∂z

) +
∂

∂r

∂L

∂
(

∂E∗

∂r

) − ∂L

∂E∗ = Q,

with Lagrangian

L =
i

2

(
E
∂E∗

∂z
− E∗∂E

∂z

)
r +

r

4k

∣∣∣∣
∂E

∂r

∣∣∣∣
2

− k0n2r

2
|E|4 +

αKr

2(K + 1)
|E|2K+2, (4.21)

and dissipative right hand side

Q = −iβKr

2
|E|2K−2E − i

γKr

2
|E|2KE, (4.22)

where asterisk means the complex conjugation. We introduced notations: αK =

στrσKρat, γK = k0τrσnρat/ρc.

Let at the boundary intensity distribution is given by the Gaussian profile:

E(0, r, t) = W0 exp
−r2

2a2
0

.

Then, at the next step one assumes that upon propagation, the beam profile will

keeps its Gaussian shape, but the average radius, intensity and phase of the beam

will be functions of the propagation distance z. Thus, one search for the solution in

the form:

E(z, r) = W exp(−r2/2a2 + ibr2 + iφ), (4.23)

where W = W (z), a = a(z), b = b(z), and φ = φ(z) are variational parameters.

Substituting the trial solution (4.23) into (4.21,4.22) and integrating over the

transverse coordinate, we obtain the reduced Lagrangian

LR =
1

2

∂b

∂z
W 2a4 +

1

2

∂φ

∂z
W 2a2 +

W 2

8k
+
b2a4W 2

2k
− k0n2W

4a2

8
− αW 2K+2a2

4(K + 1)2
. (4.24)

Equation of motion for the variational parameters could be obtained from

Ref. [25] and read

∂

∂z

∂LR

∂
(

∂µj

∂z

) − ∂L

∂µj
= 2Re

∫
Q
∂E∗

∂µj
dr,

where µj has meaning W, a, b, and φ for j = 1..4, correspondingly. Then, after

some algebra, we get the final analytical result in form of a set of ordinal differential

equations:

∂a

∂z
= ab+

PK−1

a2K−3

(
βKP

K−1
cr

2Ka2K−4
0

)(
1 − 1

K

)
+

PK

a2K−1

(
γKP

K
crK

2(K + 1)2a2K−2
0

)
,

∂b

∂z
= −b2 +

1

4a4
− P

2a4
− PK

a2K+2

(
αKKk

2(K + 1)2a2K−2
0 πK

)
, (4.25)

∂P

∂z
= − PK

a2K−2

(
βKkP

K−1
cr

Ka2K−4
0 πK

)
− PK−1

a2K

(
γKP

K
cr

(K + 1)a2K−2
0 πK+1

)
.
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Where we introduce dimensionless variables P = 2π
∫
|E|2rdr/Pcr, a = a/a0, b = ba2

0

and z in units of ka2
0; Pcr = λ2

0/2πn0n2 is the critical power for self focusing for laser

beam.

Finally, the used approach allowed to reduce initial partial differential equa-

tions (4.20) into a system of nonlinear ordinal differential equations (4.25). From

the mathematical point of view, the new problem is evidently rather simple in com-

parison to the original one. However, Eqs. (4.25) must still to be solve numerically

and give no explicit/implicit expressions for the self-focusing position and value of

intensity along the propagation.

The most important shortcoming of the method is the fact that it is based on

an assumption of a fixed (Gaussian) shape of the beam upon the propagation, that

is normally not the case as was demonstrated in many papers, e.g. in Refs. [67, 52].

Consequently, the approach is not able to provide a sufficient accuracy of theoretical

results.

In spite of this problem, up to now, the variational approach with its numerous

corrections are extremely popular. The reason for this is a flexibility of this method.

It is applicable to NLSE with any nonlinear response and any dimensionality of the

problem. This method allows to predict a qualitative behavior of the solutions. In

particular, based on this method in Refs. [56, 11], the authors demonstrated that

multiphoton ionization leads to the self-focusing collapse arrest in a media with

original Kerr responce.

4.2.2 Berge’s variational approach

Disadvantage of the variational approach described above is as following: this for-

malism does not take care about conservation laws. In order to improve this, Berge

et at. [12, 103] suggested the following modification of the method: They considered

dimensionless nonlinear Schrödinger equation in (1+3) dimensions [103]:

i∂zψ + r−1∂r(r∂rψ) − δ∂ttψ + |ψ| = 0, (4.26)

and the boundary conditions

ψ0 =
√

8p exp(−r2 − t2) (4.27)

Here p is related to the beam perimeters as 8p = 2Pin/πw0, r is normalized into the

initial beam radius w0, t is normalized into the pulse duration tp, δ ≡ 2z0k”/tp, and

z0 is the Rayleigh distance z0 = πn0w
2
0/λ0.

Integration of Eq. (4.26) gives the moment equations:

d2
z

∫
r2|ψ|2drdt = 8

∫
|∂rψ|2drdt− 4

∫
|ψ|4drdt, (4.28)

d2
z

∫
t2|ψ|2drdt = 4δ

(
2δ

∫
|∂tψ|2drdt+

1

2

∫
|ψ|4drdt

)
. (4.29)
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As a next step, the authors made assumption about a fixed Gaussian form of

the solution in both space and time. They suggested the following trial substitution:

ψ =

√
I(z)

R(z)
√
T (z)

exp

( −r2

2R2(z)
− t2

2T 2(z)
+
iRz(z)r

2

4R(z)
− iTz(z)t

2

4δT (z)

)
. (4.30)

One can see that it is different from Eq. (4.23), in spite on the bigger dimensionality,

it contains a smaller number of variational parameters. Reduction of number of

parameters was achieved by taking into account conservation laws Ref. [12].

Substitution of Eq. (4.30) into Eqs. (4.28-4.29) gives a system of ordinal dif-

ferential equations:

1

4
R3Rzz = 1 − p

2T
,

1

4
T 3Tzz = δ

(
δ +

Tp

2R2

)
. (4.31)

These equations, generally speaking, must be again solved numerically. However, us-

ing the empirical Margurger formula Eq. (2.57), and a fact that for realistic physical

system pT/2R2δ ≃ const. the authors managed to get a critical value of δ

δ =

√
p2 − 1

√
(
√

2 − 0.852)2 − 0.0219

1.835
(4.32)

above which the self-focusing would be arrested by the normal group velocity dis-

persion, δ > 0.

If the plasma response is taken into account in Eq. (2.51), then the reduced

equations read Ref. [12]

1

4
R3Rzz = 1 − P

2T
+ χ(K, p)

pK

R2K−2TK−1
,

1

4
T 3Tzz = δ

(
δ +

Tp

2R2

)
, (4.33)

where χ(K) = γ0ω0τ

2K+1
√

2Kβ2K
0

√
πK

(K+1)2
1+ω2

0τ2

ω2
0τ2 , as usually, K is a number of photons re-

quired for a simultaniose ionization, and all other parameters are discussed in Chap-

ter 2.

Based on this approach (supplemented with numerical simulations) the authors

shown that the electron density produced by photo-ionization defocuses the beam

and arrests the self-focusing promoted by the Kerr response of the gas. Such a de-

scription of the self-guided beams emphasize the distortions caused by multiphoton

sources in the temporal pulse profiles.

4.2.3 Fibich’s quasi self-similar method

All previously mentioned semi-analytical methods were based on assumption about a

self-similarity of the initial beam profile. In their papers Fibich and Papanicolaou see
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Ref. [39] used an opposite assumption: It is proven that in vicinity of the collapsing

point, the solution achieves the Townes profile. Therefore, these authors used the

trial function in the form:

ψR =
1

L(z)
R(ρ) exp (iS) , ρ =

r

L
,

S = τ(z) +
Lz

L

r4

4
, ∂zτ = 1/L2,

and R(r) is the Townes solution Eq. (4.16).

Since deviation from the Townes profile assumed to be small, the key parameter

of the problem

β(z) ≡ −L3Lzz (4.34)

is small.

They considered NLSE with a small perturbation |ǫ| ≪ 1

i∂tψ + ∆ψ + |ψ(x, t)|2ψ(x, t) + ǫF (ψ, ψz,∇ψ, ...) = 0, (4.35)

and |ǫF | ≪ |∆ψ|, |ǫF | ≪ |ψ|3.
Then, to the leading order, one can arrive at the following system:

∂zβ +
ν(β)

L2
=

ǫ∂zf1

2M
− 2ǫf2

M
,

∂zz = − β

L3
,

where

f1(z) = 2Lℜ
∫
F (ψR)e−iS[R(ρ) + ρR′(ρ)]dxdy, (4.36)

f2 = ℑ
∫
F (ψR)ψ∗

Rdxdy,

ν(β) ∼ 4πA2
R exp(−π/

√
β) if β > 0, and ν(β) = 0 if β ≤, and M = ‖rR‖2

2/4
∼= 3.46,

AR = limr→∞R(r)
√
r exp(r) ∼= 3.52.

This approach allowed the authors to get expression for the intensity distribu-

tion in neighbourhood of singularity, 2(zsf − z)
√
β(z) = L2(z), and expression for

the nonlinear self-focusing position [39]:

zsf ∼
√
MPcrT

Pin − 1

(∫ ∞

0

|∇⊥ψ0|2rdr
)−1

. (4.37)

Details of application of this method to modifications of Eq. (4.35) are given in

Refs. [40, 42, 44, 45, 46].
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4.3 Renormalization group symmetry analysis

A special chapter of the present dissertation is devoted to construction of the solution

for the light propagation equations make in use the renormalization group symmetry

(RGS) analysis. Therefore, in this part, we only briefly review main results in

nonlinear optics achieved with RGS method.

The key point in construction of the solution is to construct the RGS. For that

purpose, following the general RGS theory Refs. [102] one uses the Lie-Bäcklund

symmetries admitted by both original differential equations and boundary condi-

tions. This symmetry is determined by the group operator X. This operator serves

as a tool for finding solution of the boundary value problem.

Usually the constructed symmetry operator has form: X = ξi(x1, x2, ..., xn)∂xi
,

where xi denote both independent and depend variables, i = 1, ..., n, then one can

obtain the solution via integration of the Lie equations Ref. [57]:

dx1

ξ1
= ... =

dxn

ξn
.

Advantage of the method is an exitance of the formal step-by-step schema

(see Chapter 5) which can be apply to any equations (which, of course, does not

guaranty exitance of the appropriate symmetry group). If such group of symmetry

can be constructed exactly (approximately) the boundary value problem can be

solved exactly (approximately) without any artificial assumptions such as e.g. fixed

beam form upon propagation.

4.3.1 RGS results in (1+1) dimensions

Application of the RGS method to the LNSE with Kerr nonlinearity and in (1+1)

dimensions was done in Ref. [69]. In this case, Eq. (3.1) turns into a linear system

of partial differential equations (see Chapter 2):

τw − IχI = 0, χw + ατI = 0, (4.38)

τs(0, I) = 0, χ(0, I) = χ0(I),

where index s denotes derivative of arbitrary order with respect to I.

For a Gaussian beam, χ0 =
√

ln(1/I), Eqs. (4.38) admit an approximate

symmetry group with generator:

X = −2χ∂w + 2ατ∂I + (1 + ατ 2/I)∂τ . (4.39)

this symmetry operator gives an approximate analytical solution to Eq. (4.38) [69]

x2 = (αIz2 − ln I)[1 − P (
√
αIz2)]2, v = −x

z

P (
√
αIz2)

[1 − P (
√
αIz2)]

,
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where P (h) = 2he−h2/2
∫ h

0
et2/2dt.

If parameter α is involved into the symmetry transformation as an independent

variable, the symmetry operator reads

X = 2τ∂w + 2Iχ∂I + 2αχ∂α − ∂χ (4.40)

and provides the solution:

−x2

(1 − 2αz2I)2
= ln

(
I[1 − αz2I]

)
,

v = − 2αzxI

1 − 2αz2I
. (4.41)

For the boundary condition I0 = cosh−2(x), Eqs. (4.38) admit an approximate

symmetry

X =

(
1 +

ατ 2

I cosh2(χ)

)
[∂τ − 2 tanh(χ)∂w] +

2ατ

cosh2(χ)∂I

(4.42)

with the solution

v = −2αIz tanh(x− vz), αI2z2 = I cosh2(x− vz) ln(I cosh2(x− vz)), (4.43)

An exact symmetry group

X =

(
2I(1 − I)τ2 − Iτ1 − 2Iw(χ1 + Iχ2) +

αIw2τ2
2

)
∂τ

+

(
2I(1 − I)χ2 + (2 − 3I)χ1 + αw(2Iτ2 + τ1) +

αw(Iχ2 + χ1)

2

)
∂χ,

provides the exact solution Eq. (4.3).

Both solutions Eq. (4.43) and Eq. (4.3) are singular at the points zsf,approx =

1/
√

eα, and zsf,exact = 1/2
√
α, respectively.

4.3.2 RGS results in (1+2) dimensions

For a parabolic laser beam at the boundary χ0 =
√

1 − I, Eq. (4.1,4.2) are invarian

with respect to the action of infinitesimal symmetry operator

X = −2χ∂w + 4ατ∂I + I(1 + 2ατ 2/I2)∂τ − αw∂χ (4.44)

which gives exact solution (4.4).

Approximate solution for Kerr nonlinearity and arbitrary initial beam profile

was obtained in Refs. [68, 67]. The infinitesimal RGS operator for this case reads:

X =

((
1 − z

R

)2

+ z2Sχχ

)
∂z +

( r

R2
+
v

R

(
1 − z

R

)
+ Sχ

)
∂v

+
(
− r

R

(
1 − z

R

)
+ zSχ + vz2Sχχ

)
∂r

+

(
2I

R

(
1 − z

R

)
− Iz

(
1 +

vz

r

)
Sχχ − Iz

r
Sχ

)
∂I . (4.45)
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where

S(χ) = αN(χ) +
θ

χ
√
N(χ)

∂χ

(
χ∂χ

√
N(χ)

)
(4.46)

Integration of the Lie equation determined by operator (4.45) provides the

solution Ref. [67]:

v(z, r) =
r − χ

z
, I(z, r) = N(µ)

(
1 − z

R

)−1 χ

r

∂χ2S

∂µ2S
, (4.47)

where the dependence of two functions χ and µ on z and r is defined by the following

relations:

r = χ
(
1 − z

R

)(
1 +

2z2∂χ2S

(1 − z/R)2

)
, S(µ) − S(χ) =

z2(∂χS)2

2(1 − z/R)2
(4.48)

The solution Eq. (4.47) allowed to study important features of the beam prop-

agation. In the model equations (4.1,4.2) there are two parameters α = n2I0 and

θ = 1/(2k2
0w

2
0) which are represents magnitude of the nonlinearity and the diffrac-

tion, respectively.

If α < θ, the diffraction is dominating, and the position of nonlinear focal

plane is defined as

znl = R/(1 + 2(θ − α)R2). (4.49)

Under the limit α = 0, expression (4.49) turns into zl = R/(1 + 2θR2) which define

position of the linear focal plane where the rays become parallel to the beam axis,

and the beam radius achieves its minimum equals to wmin = 1/
√

1 + 1/2θR2. In

the focal plane, v = 0, is a turning plane for the rays.

In case of Kerr nonlinearity, points where v = 0 can be found from equation:

r2
v=0 = ln

(
αz

θz − (1 − z/R)/2R

)
. (4.50)

This formula defines the curve on which the beam rays turn. The positivity condi-

tions rv=0 > 0 provides a constraint on the interval z, where curve (4.50) is defined

R

1 + 2θR2
< z <

R

1 + 2(θ − α)R2
(4.51)

for α > θ, there are no upper restriction for the value of z.

If α > θ, the nonlinearity dominates the diffraction. In this case in Ref. [67]

was demonstrated that there was a minimal value of the wave front radius at the

boundary Rmin = 1/
√

2(α− θ). If R > Rmin, there was one nonlinear self-focusing

point, its position was defined as zsf = R/(1 + R
√

2(α− θ). Otherwise, a second

nonlinear self-focusing point appeared at zsf,2 = R/(1 − R
√

2(α− θ).
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In such a way, application of RGS to the problem provided a quantitative

description of the beam electric field everywhere in a nonlinear media and allowed to

defined the global self-focusing characteristics in a more accurate way. Constructed

solution indicated also that the singularity at the beam intensity shown up at low

powers, before the whole beam started to converge, and the asymptotic behavior of

the light intensity near the singularity depended on the incident beam profile. The

RGS solution allowed to derive a parametric scaling for self-focusing. It predicted the

dependence of the trapped power and the length of self-focusing on the nonlinearity

α, diffraction θ, and the initial wave-front curvature R.

40



Chapter 5

Renormalization group symmetry

analysis. Exact solutions

5.1 Introduction

In Chapters 2, 4 we discussed that for many situations typical for modern exper-

iments, the refractive index has a rather complicated dependence on the electric

field. Nevertheless, all exact analytical solutions were up to now obtained only for

the Kerr-type refractive index n = n0 + n2I. In the present chapter we shall for

the first time construct an exact analytical solution for the light propagation equa-

tions in case of a more complicated dependence of the refractive index on intensity.

Generally speaking, exact analytical solutions have already been constructed in sev-

eral papers (See e.g. Refs. [49, 50] ), however these solutions do not correspond

to any physically based boundary value problem. Indeed, for physical reasons the

solution must provide a positive (symmetric) bell-like intensity distribution upon

propagation distance. Moreover, the refractive index must be a nonsingular sat-

urating function of intensity. In order to find an exact solution fulfilling both of

these (from the technical point of view rather difficult) requirements, we shall use a

special mathematical formalism called a renormalization group symmetry analysis.

The renormalization group symmetry (RGS) analysis was introduced in math-

ematical physics in the beginning of the 1990s as a result of combining the quan-

tum field theory Stueckelberg-Bogoliubov [109, 19, 18] renormalization group (RG)

generalized in a form of functional self-similarity [100] with the Sophus Lie group

formalism. Here, the central idea is tightly connected with Bogoliubov RG method

[19] of improving an approximate solution of a QFT problem in the vicinity of a

solution singularity.

The RG concept was transferred to mathematical physics having the same

pragmatic goal in mind: to improve the solution behavior in the vicinity of a sin-

gularity. For the boundary value problems (BVPs) based on differential equations
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(DEs), a RG algorithm was developed (see, e.g., [74, 102]) that unites the RG ide-

ology of the quantum field theory with a regular symmetry construction procedure

for BVP solutions. This algorithm gave rise to the concept of the RGS for BVP

solutions: these symmetries result from a calculation procedure similar to the one

used in modern group analysis. The algorithm of construction of renormalization-

group symmetries can also be applied to problems involving differential and integral

equations (see, e.g. Refs. [78, 79]).

Before proceeding any further, let us make a short review of results already ob-

tained on the basis of the formulated scheme. The first application of RG-approach

to a particular problem of laser plasma was announced in [72]. The problem, namely

a nonlinear interaction of a powerful laser radiation with inhomogeneous plasma, has

been detailed in subsequent publications [71, 76, 77]. A mathematical model was

given by a system of nonlinear DEs for components of electron velocity, electron den-

sity and the electric and magnetic fields. The presence of small parameters (such

as weak inhomogeneity of the ion density, low electron thermal pressure and small

incident angles of a laser beam on plasma surface) in the initial system of equations

provided a way to construct a RG-manifold, based on approximate group methods.

Application of the method to an initial value problem was done for the mod-

ified Burgers equation in Ref. [75]. This example yielded a detailed illustration of

the method of constructing RG-symmetries when a basic RG-manifold is given by

an original DE with parameters included in the list of independent variables. It

was argued that the exact solution can be reconstructed from the perturbative so-

lution with the help of any of the admitted RG-symmetry operators which form

an eight-dimensional algebra. Two illustrative examples were given, dealing with

perturbation theory in time and in nonlinearity parameter.

To demonstrate the method of constructing Lie-Bäcklund RG-symmetries, the

initial value problem for a linear parabolic equation was considered in Ref. [73]. It

was shown that appending Lie-Bäcklund RG-symmetries to point RG-symmetries

extends the algebra of RG-symmetries up to an arbitrary order.

In Refs. [69, 68, 67] the RGS algorithm was applied in nonlinear optics to

the problem of propagation and self-focusing of a wave beam in a medium with

Kerr nonlinearity. It was revealed that RG-symmetries are related to formal sym-

metries that are constructed in the form of infinite series in medium nonlinearity

parameter. For a specific form of boundary data infinite series are truncated with

RG-symmetries presented by finite sums. Generally, this is not the case for arbitrary

boundary data and in that event a finite sum describes approximate RG-symmetry

for small nonlinearity parameter.
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5.2 Renormgroup analysis: General scheme

The general idea of the algorithm is to find a specific renormgroup manifold RM
that contains the desired solution of BVP. The subsequent construction of a RGS,

leaving this solution unaltered, is performed by standard methods of a group analysis

of DEs.

Let us now following Ref. [102] present here the regular algorithm of construct-

ing RGS as a step-by-step procedure. First of all, we emphasize that the desired

regular approach to constructing RG-symmetries turns out to be possible for those

mathematical models of physical systems that are based on differential or, in some

particular cases, integro-differential equations. The key idea uses the fact [73, 101]

that such models can be investigated by algorithms of modern group analysis.

A formal scheme can be presented as a sequence of steps:

First. A specific renormgroup manifold RM for the given BVP should be con-

structed. This manifold is identified with a system of the kth-order differential

equations

Fσ(x, u, u(1), . . . , u(k)) = 0 , σ = 1, . . . , s . (5.1)

which define surfaces in the space of independent, xi, i = 1, . . . , n and depen-

dent uα, α = 1, . . . , m variables and their derivatives, uα
i (x) ≡ ∂uα/∂xi, uα

ij(x) ≡
∂2uα/∂xi∂xj , . . . .

Following Refs.[102] and notations of differential algebra, we shall treat all

uα, uα
i , u

α
ij , . . . as variables as well. Thus we shall be dealing with an infinite number

of variables

x = {xi}, u = {uα} , u(1) = {uα
i }, u(2) = {uα

i1i2
}, . . . ; (i, i1, . . . = 1, . . . , n) .

(5.2)

A locally analytic function f(x, u, u(1), . . . , u(k)) of variables (5.2), with the highest

kth-order derivative involved, is called a differential function of order k. The set of

all differential functions of a given order form a space of differential functions Ak,

the universal space of the approach [90, 57].

Second. The next step of the scheme consists in calculation of a most general

symmetry group G leaving the manifold RM intact. The term “symmetry group”,

along the similar lines with the classical group analysis, means the property of the

system (5.1) to admit a local Lie group of point transformations in the space Ak.

The Lie algorithm of finding such symmetries is based on a construction of

tangent vector fields defined by operators

X = ξi∂xi + ηα∂uα , ξi , ηα ∈ Ak , (5.3)
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with the coordinates, ξi , ηα being functions of group variables that have to be

determined by a system of equations

X Fσ
∣∣∣Fσ(x,u,u(1),...,u(k))=0

= 0 , σ = 1, . . . , s , (5.4)

following from the invariance of RM.

Here the symbol |(5.1) means calculated on the frame (5.1) and X is extended

to all derivatives involved in Fσ: X = ξi∂xi + ηα∂uα + ζα
i ∂uα

i
+ ζα

i1i2
∂uα

i1i2
+ ..., where

the first, second etc prolongations defined as ζα
i = Di(η

α − ξjuα
j ) + ξjuα

ij, ζ
α
i1i2

=

Di1Di2(η
α − ξjuα

j ) + ξjuα
ji1i2

, Ref. [57].

The system of linear homogeneous PDEs (5.4) for coordinates ξi , ηα known

as determining equations is, as a rule, overdetermined. Its solution defines a set of

infinitesimal operators (5.3) (also known as group generators), which correspond to

the admitted vector field and form a Lie algebra.

In case when the general element of this algebra

X =
∑

j

AjXj , (5.5)

where Aj are arbitrary constants, contains a finite number of operators, 1 ≤ j ≤
l, the group is called finite-dimensional (or simply finite) with the dimension l.

Otherwise, for unlimited j the group is called infinite.

The use of the infinitesimal criterion (5.4) for calculating the symmetry group

makes the whole procedure algorithmic and can be carried out not only “by hand”

but using modern symbolic packages of computer algebra (see, e.g., Vol.3 in [57]) as

well.

The generator (5.3) of the group G is equivalent to the canonical Lie–Bäcklund

operator

Y = κα∂uα , κα ≡ ηα − ξiuα
i , (5.6)

known as a canonical representation of X. It will play an essential role in subsequent

RGS construction.

However, the group defined by the generators (5.3) and (5.6) cannot yet be

referred to as a renormgroup, as it is not related to a partial BVP solution of interest.

Third. To arrive at a RGS, the restriction of the group G on particular BVP

solution is to be made. Mathematically, this procedure means imposing a vanish-

ing condition on a linear combination of coordinates κα
j of the canonical operator

equivalent to (5.5) on a particular approximate (or exact) BVP solution Uα(z)

{
∑

j

Ajκα
j ≡

∑

j

Aj
(
ηα

j − ξi
ju

α
i

)
}

∣∣∣uα = Uα(z)

= 0 . (5.7)
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Evaluating (5.7) on a particular BVP solution Uα(z) transforms the system of DEs

for group invariants into algebraic relations.

Firstly, it gives relations between Aj thus “combining” different coordinates of

group generators Xj admitted by the RM (5.1). Secondly, it eliminates (partially

or entirely) the arbitrariness that may appear in coordinates ξi, ηα in the case of an

infinite group G.

Generally, the restriction procedure reduces the dimension of G. It also “fits”

boundary conditions into the operator (5.5) by a special choice of coefficients Aj . In

case of infinite group, the restriction procedure can be done by choosing a particular

form of arbitrary functions in coordinates ξi, ηα. Hence, the general element (5.5)

of the group G after the fulfillment of a restriction procedure can be expressed as a

linear combination of new generators Ri with the coordinates ξ̃i, η̃α,

X ⇒ R =
∑

j

BjRj , Rj = ξ̃i
j∂xi + η̃α

j ∂uα , (5.8)

where Bj are arbitrary constants.

The set of RGS generators Ri each containing the desired BVP solution in

its invariant manifold, define a group of transformations that we also refer to as

renormgroup.

In a particular case, when RG is constructed from a Lie group admitted by the

original system of DEs, it turns out to be a subgroup of this group and a solution

of the BVP appears as an invariant solution with respect to the point RG obtained

(compare with [91]). Generally, not only the Lie point group, but also Lie-Bäcklund

groups, approximate groups, nonlocal transformation groups, etc. (see, e.g. [57]),

are employed as basic groups which are then to be restricted on the solution of a

BVP.

Fourth. On this step the RGS generators are used to find analytical expressions for

the solution of BVP. Mathematically, this is achieved by solving a combined system

of (5.1) and the vanishing condition for the linear combination of coordinates κ̃α
j of

the canonical operator to (5.8),

∑

j

Rj κ̃α
j ≡

∑

j

Bj
(
η̃α

j − ξ̃i
ju

α
i

)
= 0 . (5.9)

One can see that conditions (5.9) are similar to (5.7). However, in contrast to

the previous step, the differential variables u in (5.9) should not be replaced by

an approximate expression for the BVP solution U(z), but be treated as usual

dependent variables.

For the one-parameter Lie point renormgroup, RG invariance conditions lead

to the a first order PDE that gives rise to so-called group invariants arising as
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solutions of associated characteristic equations. A general solution of the BVP can

then be expressed in terms of these invariants (see below).

However, as we shall see later, in a general case of arbitrary RGS the group in-

variance conditions obtained for BVP do not necessarily coincide with characteristic

equations for the Lie point group operator. They may appear in a more complicated

form, e.g. as a combination of PDE and higher order ODE. Nevertheless, the general

idea of finding solution of the BVP as RG invariant solutions remains valid.

Finally, let us consider in more details a case of approximate RGS. In the

case when BVP contains a small parameter α, the desired RM can be obtained by

simplification of these equations and making use of “perturbation methods of group

analysis” (see Vol.3, Chapter 2, in Ref. [57]). The main idea here is to consider a

simplified (α = 0) model, admitting a wider symmetry group in comparison with

the case α 6= 0. This symmetry is inherited by boundary equations and after the

contributions from small α are taken into account additional power corrections with

respect to α appear in the RGS generator.

5.3 Renormalization group solutions for the eikonal

equations with a saturating nonlinearity

Let us now apply the developed formalism to the problem of light propagation in

(1+1) dimensions. In this case, as we discussed in Chapter 3, the equations of

motion read

τv − ψ(I)χI = 0, χv + τI = 0, (5.10)

where ψ = I/(αϕ), (ϕ = ∂In). As a boundary condition, we take a collimated

continuous wave beam with a localized symmetric intensity distribution at the entry

plane

τ(I, 0) = 0, χ(I, 0) = χ0(I). (5.11)

Our goal is now to construct an exact analytical solution to the system of

equations (5.10) with a nonlinear function ψ(I) that corresponds to a saturating

dependence of the refractive index on the intensity. For this goal, we take ψ =

ebI/I0/n2I0. The refractive index corresponding to this form of ψ is presented in

Fig. 5.1.

Let us first sketch the broad outlines of our solution: first, we construct a

Lie symmetry group admitted by Eqs. (5.10). Second, following a formal scheme

discussed above, the obtained group shall be restricted to the surface of boundary

conditions: v = 0, τ = 0. All derivatives of τ with respect to I have to vanish too.

Third, based on the requirement of vanishing of group coordinates on the boundary,
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Figure 5.1: Nonlinear refractive index corresponding to ψ = ebI/I0/n2I0 as a function

of the normalized intensity I/I0.

we shall construct such a linear superposition of them, which provides a localized

intensity distribution. Finally, the integration of the constructed superposition shall

yield a desired solution to Eqs. (5.10).

5.3.1 Recursion operators and Lie-Bäcklund symmetries of

the second order

We start from the search for the Lie-Bäcklund symmetry group admissible by Eqs. (5.10).

It is generated by the canonical infinitesimal operators [57]

Xi = f s
i ∂τ + gs

i ∂χ, (5.12)

with coordinates f s and gs. For the Lie-Bäcklund symmetry of arbitrary order s > 1

the coordinates f s and gs depend on v, I, τ , χ and corresponding derivatives of τ

and χ up to the s-th order with respect to I

f s = f s(v, I, τ, χ, ..., τ s
I , χ

s
I), gs = gs(v, I, τ, χ, ..., τ s

I , χ
s
I),

Here, the index s stands for the order of the derivatives: τ s
I ≡ ∂sτ/∂Is etc. The

coordinates f s and gs must be found from the determining equation which in the

case of Eqs. (5.10) reads [70]:

Dv(f
s) − ψDI(g

s) = 0,

Dv(g
s) +DI(f

s) = 0, (5.13)

where DI and Dv are operators of the total differentiation with respect to I and v:

DI ≡ ∂I +
∞∑

s=0

(τIs+1∂τs
I

+ χIs+1∂χs
I
), (5.14)
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Dv ≡ ∂v +
∞∑

s=0

(τvs+1∂τs
v

+ χvs+1∂χs
v
). (5.15)

Derivatives with respect to v in Eq. (5.15) in brackets should be excluded in accor-

dance with Eqs. (5.10): τv = ψχI , τvv = ψχIv = −ψτII and so on.

In order to solve the Eqs. (5.13), it appears more convenient to use a recursion

operator [70]. The latter is defined as 2×2 matrix operator transforming any linear

solution of the determining equation (5.13) of the order s to the solution of these

equations of higher order (s+ 1)

L

(
f s

gs

)
=

(
f s+1

gs+1

)
, L =

(
L11 L12

L21 L22

)
, (5.16)

Substitution of Eq. (5.16) into the determining equation (5.13) yields the fol-

lowing system of equations for the elements of L

(DvL
11 − ψDIL

21)f s + (DvL
12 − ψDIL

22)gs = 0

(DIL
11 +DvL

21)f s + (DIL
12 +DvL

22)gs = 0, (5.17)

which should be valid for any solutions f s and gs.

Explicit formulae for the recursion operators (5.16) obtained from Eqs. (5.17)

were found in Ref. [70] and read

L1 =

(
0 −ψDI/α

DI 0

)
, L2 =

(
2σDI − 1 −ψ(1 − 2σI)vDI

(1 − 2σI)vDI 2σDI

)
,(5.18)

L3 =

(
2σvDI − (1 − σI)v −ψqDI − σ

qDI + ψ−1
I 2σvDI + vσI

)
, (5.19)

where σ ≡ ψ/ψI and q ≡ (1 − 2σI)v
2/2 + 2

∫
ψ−1

I dI. The formula for the recursion

operator L1 is valid for arbitrary nonlinearity function ψ(I), while operators L2 and

L3 arise for those functions ψ(I) that fulfill the condition [70]:
(
ψ

ψI

)

II

= 0. (5.20)

The last requirement defined our choice of the function ψ(I) in initial Eqs. (5.10).

For this form of ψ we have:

ϕ = Ie−bI , σ = b−1, q = v2/2 − 2αe−bI/b2.

In this particular case, the recursion operators read:

L1 =

(
0 −ebIDI/α

DI 0

)
, L2 =

(
2DI/b− 1 −ebIvDI/α

vDI 2DI/b

)
,

L3 =

(
2vDI/b− v −ebI

(
v2/2 − 2αe−bI/b2

)
DI/α− 1/b(

v2/2 − 2αe−bI/b2
)
DI + e−bIα/b 2vDI/b

)
,
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Let us proceed with constructing the Lie-point symmetry group admitted by Eqs. (5.10)

on the basis of these operators.

An evident solution of the determining equation (5.13) is

f 0
0 = τ, g0

0 = χ. (5.21)

The action of three recursion operators Li, i = 1, 2, 3 on the vector with coordinates

given by Eq. (5.21) in accordance with Eq. (5.16) generates the symmetry group

given by

f 1
1 = −ebIχI/α, (5.22)

f 1
2 =

2τI
b

− τ − ebIvχI

α
, (5.23)

f 1
3 =

2vτI
b

− vτ − ebI

α

(
v2

2
− 2αe−bI

b2

)
χI −

χ

b
, (5.24)

g1
1 = τI , (5.25)

g1
2 = vτI + 2χI/b, (5.26)

g1
3 =

(
v2

2
− 2αe−bI

b2

)
τI +

αe−bIτ

b
+

2vχI

b
, (5.27)

Admissible for arbitrary nonlinearity ψ(I), the symmetries f 0
0 , g0

0 describe the di-

latation of τ and χ; f 1
1 and g1

1 generate translations along v-axis.

As it was formulated in Refs. [70, 102], an invariant solution to the boundary

value problem, in particular the one, given by Eqs. (5.10), must be found from the

constructed Lie-Bäcklund symmetries under the invariance conditions

f = 0, g = 0. (5.28)

In Eqs. (5.28) the functions f and g being arbitrary linear combinations of coordi-

nates fi and gi of the group generators Eqs. (5.27) and must be chosen to satisfy

the boundary conditions what in the actual case provide a localized intensity distri-

butions.

Unfortunately, the point group Eqs. (5.27) are not sufficient in order to choose a

linear superposition able to satisfy a localized intensity distribution at the boundary.

Therefore, we shall continue using the discussed approach with operators Li given

by Eqs.(5.16) and vectors with coordinates of Eq. (5.27) in order to find the Lie-

Bäcklund symmetries of the higher order. However, since the further calculations

are quite cumbersome, for the sake of simplicity we shall first find the symmetry

coordinates at the boundary where they have the simplest form. Afterwards, we

completely reconstruct only such of them that will be included into the chosen

linear superposition.
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Table 5.1: Coordinates of the symmetry operators on the boundary.

fi gi

i = 0 0 χ

i = 1 −ebIχI/α 0

i = 2 0 2χI/b

i = 3 2χI/b
2 − χ/b 0

i = 4 −2ebIχII/αb 0

i = 5 0 −bebIχI/α− ebIχII/α

i = 6 0 2χII/b
2 − χI/b

i = 7 0 4χII/b
2

i = 8 −2ebIχII/αb− ebIχI/α 0

i = 9 4χII/b
3 − 4χI/b

2 + χ/b 0

i = 10 4χII/b
3 − 2χI/b

2 0

i = 11 0 2χII/b
2 + χI/b

i = 12 0 −4αe−bIχII/b
4 + 4αe−bIχI/b

3 − αχe−bI/b2

Thus, at the boundary τ = 0, v = 0 the recursion operators read

L1 =

(
0 −ebIDI/α

DI 0

)

, L2 =

(
2DI/b− 1 0

0 2DI/b

)

, (5.29)

L3 =

(
0 2/b2DI − 1/b

−2αe−bI/b2DI + e−bIα/b 0

)

, (5.30)

Action of these operators on Eqs. (5.21) gives 9 symmetry operators xi which coor-

dinates fi gi are listed in the Table 5.1.

Based on the operators presented in the Table 5.1, one can construct a linear

superposition providing a localized intensity distribution. For instance, the equation

(2 − ebI−1)χII + b(1 − ebI−1)χI = 0 (5.31)

has a particular solution χ =
√

2e−bI+1 − 1. Resolving I as a function of χ, we get

a convex symmetric on x intensity distribution

I =
1

b

(
1 − ln

(
χ2 + 1

2

))
, (5.32)

which is presented by the black curve in Fig. 5.2.

From the Table 5.1 one can see that Eq. (5.31) corresponds to the following

symmetry operators’ superposition

α

e
g2
5 +

b2

2
g2
7 +

b2

2
g1
2 = 0, (5.33)
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which, evidently, shall be supplemented by the equation:

α

e
f 2

5 +
b2

2
f 2

7 +
b2

2
f 1

2 = 0. (5.34)

It is easy to see that in order to find an invariant solution satisfying Eqs. (5.10)

and the boundary conditions of Eq. (5.32), we have to reconstruct a complete form

of the symmetry coordinates f 2
5 , g2

5 and f 2
7 , g2

7. Acting by the operator L1 on the

couple f 1
1 , g1

1, we get

(
f 2

5

g2
5

)
≡

(
−ebIτII/α

−bebI(χII + bχI)/α

)
. (5.35)

The similar procedure applied to the operator L2 and coordinates f 1
2 , g1

2 yields:

(
f 2

7

g2
7

)

≡
(

(4α− ebIv2b2)τII/αb
2 − 4τI/b− ebIvχI/α− 4ebIvχII/αb+ τ

4vτII/b− vτI − ebIbv2χI/α + (4α− ebIv2b2)χII/αb
2

)

.

(5.36)

These equations together with Eq. (5.27) represent the list of symmetry operators

required for construction of analytical solutions.

5.3.2 Invariant solutions

Equations (5.33-5.34) with expressions substituted from Eq. (5.35,5.36) represent a

system of partial differential equations

2bvτII +

(
2 − ebI−1 − v2b2ebI

2α

)
χII + b

(
1 − ebI−1 − v2b2ebI

2α

)
χI = 0, (5.37)

−2vbebI

α
χII −

vb2ebI

α
χI +

(
2 − ebI−1 − v2b2ebI

2α

)
τII − bτI = 0. (5.38)

The first integral to the equation (5.37) can be easily found:

2bvτI +

(
2 − ebI−1 − v2b2ebI

2α

)
χI + bχ = J(v). (5.39)

J(v) in the above formula should be found from the comparison with Eq. (5.38).

Differentiating Eq. (5.39) with respect to v, taking Eqs. (5.10) into account and

comparing obtained expression with Eq. (5.38), one can see that J(v) should be

a constant. In view of a symmetric initial intensity distribution with respect to

x → −x reflections we are bound to choose J = 0. Then, substituting τI = −χv

into Eq. (5.39), we arrive at the following first order partial differential equation

−2bvχv +

(
2 − ebI−1 − v2b2ebI

2α

)
χI + bχ = 0, (5.40)
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which can be integrated with a standart technique.

Integration of Eq. (5.40) gives two first integrals,

J1 =
χ2

√
p
, J2 =

1√
p

(
2e1−bI − 1 +

b2e

2α
p

)
(5.41)

where we introduced a new variable
√
p = −v in order to keep in mind that negative

value of v corresponds to the focusing beam for the positive values of x.

Now we are finally in a position to find a particular solution χ(v, I) for the

Eqs. (5.10) satisfying the boundary conditions Eq. (5.32). Let us first notice that

from the system of equations (5.10) it follows the linear second order partial differ-

ential equation

αχvv + (ebIχI)I = 0,

which in new variables
√
p = −v (consequently, ∂p/∂v = −2

√
p) can be rewritten

as:

α2χp + 4pχpp + (ebIχI)I = 0. (5.42)

Based on the result obtained in Eqs. (5.41), one can search for the solution to

Eq. (5.42) based on the following Ansatz

χ2 =
√
pH2(J2), (5.43)

Substituting Eq. (5.43) into Eq. (5.42) we get

χp =
1

4
p−3/4H + p1/4HJ2J2

p ,

χpp = − 3

16
p−7/4H +

1

2
p−3/4HJ2J2

p + p1/4HJ2J2(J2
p )2 + p1/4HJ2J2

pp,

χI = p1/4HJ2J2
I ,

χII = p1/4HJ2J2(J2
I )2 + p1/4HJ2J2

II .

After some calculations the following linear equation on H can be obtained

(1 + s2)Hss + sHs −H/4 = 0, s = J2/
√

2b2e/α. (5.44)

Eq. (5.44) can be easily solved using the substitution s = sinh µ. Indeed, Hs =

Hµµs = Hµ/
√

1 + s2, Hss = Hµµ/(1+s2)−Hµs/(1+s2)3/2, and after the substitution

one gets

Hµµ −H/4 = 0. (5.45)

Eq. (5.45) has an evident general solution

H = C1e
−µ/2 + C2e

µ/2,

52



where C1 and C2 are constants which should be found from the boundary conditions.

Taking the Eq. (5.43) into account we get the expression for χ:

χ = p1/4[C1e
−µ/2 + C2e

µ/2] , (5.46)

where eµ/2 should be found from the equation:

sinhµ =

√
α

2b2e

1√
p

(
2e1−bI − 1 +

b2e

2α
p

)
. (5.47)

Now we can now express eµ from Eq. (5.47)

eµ = K/2 ±
√
K2/4 + 1 , (5.48)

where

K ≡
√

2α

b2e

1√
p

(
2e1−bI − 1 +

b2e

2α
p

)
.

Summarizing, we get the following formula

χ =
C1

√
p

(α/b2e2)1/4
√

Θ
+ C2(α/b

2e2)1/4
√

Θ =
C̃1

√
p√

Θ
+ C̃2

√
Θ, (5.49)

where

Θ ≡






(
2e1−bI − 1 +

b2ep

2α

)
+

√(
2e1−bI − 1 +

b2ep

2α

)2

+
2b2ep

α




 . (5.50)

From the boundary conditions Eq. (5.32) and v(z, 0) = 0 it is easy to see that C̃1

should be zero, and C̃2 = 1/
√

2. In such a way, one of the solutions to the systm of

equations (5.10) is:

χ =
1√
2

√√√√
(

2e1−bI − 1 +
b2ep

2α

)
+

√(
2e1−bI − 1 +

b2ep

2α

)2

+
2b2ep

α
. (5.51)

In order to find the second function τ(I, v), we shall integrate the original

equation (5.10) keeping the result (5.51) in mind. From Eqs. (5.10) we have

τ =
1

α

v∫

0

dvebIχI . (5.52)

For the sake of convenience, let us introduce a new variable ξ:

cosh(ξ) ≡ 2e1−bI + b2ep
2α

+ 1√
8e1−bI

. (5.53)
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Then

p =
2α

b2e

[
2
√

2e
1−bI

2 cosh(ξ) − 2e1−bI − 1
]
, (5.54)

Θ = 2
√

2 exp

(
ξ +

1 − bI

2

)
− 2 ,

dv =

(
∂v

∂p

)(
∂p

∂ξ

)
dξ =

−1√
p

2
√

2α

b2e
e

1−bI
2 sinh(ξ)dξ. (5.55)

Differentiating Eq. (5.51) with respect to I, in new variables we get

χI =
b

4
√

Θ

e
1−bI

2 −
√

2eξ+1−bI

sinh(ξ)
.

The expression for τ becomes:

τ =
1

b

∫ ξ

ξ0

(aeξ − 1)1/2

√
p

dξ =

√
e

2α
ln



2eξ

a
− 1 +

√(
2eξ

a
− 1

)2

− 1





∣∣∣∣∣∣

ξ

ξ0

,

where a ≡
√

2 exp(1−bI
2

). Considering the boundary conditions, the final solution

reads:

τ =

√
e

2α
ln
(
ebI−1(χ2 + 1) − 1 +

√
(ebI−1(χ2 + 1) − 1)2 − 1

)
. (5.56)

After direct substitution of Eqs. (5.51,5.56) into Eqs. (5.10) and a tedious calculation

it is possible to verify that the obtained functions χ(I, v) and τ(I, v) are indeed exact

analytical solutions for the formulated boundary value problem. In Fig. 5.2 we plot

intensity beam distribution at different propagation distances calculated on the basis

of the found solutions Eqs. (5.51, 5.56).

Let us now examine the obtained result a little more closely. Firstly let us

find the total radius of the beam as a function of the propagation distance z. For

this goal, we find where the intensity, which is implicitly given by Eqs. (5.51,5.56),

intersects the surface x = 0. Putting I = 0 in Eq. (5.56), we find χ|I=0 = ±
√

2e − 1.

Substituting this number into Eq. (5.51) one can find that v = 0 and, consequently,

x = ±
√

2e − 1. Thus, the phase gradient at the beam edge is equal to zero, the

total radius of the beam is a constant and does not depend on the propagation

length. By the numerical integration of the solutions Eqs. (5.51, 5.56) one can

verify their consistence with the energy conservation:
∫
I(x, z)dx from x =

√
2e − 1

to x = −
√

2e − 1 is a constant.

The fact that, for the considered case, the total radius of the beam is a constant

and does not depend on z is a new one and completely different from all exact

analytical results obtained so far. It was demonstrated earlier [4, 69] that for the Kerr

nonlinearity the total beam radius decreases upon beam propagation. In the present
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Figure 5.2: (Color online.) Beam profile at different propagation distances. α = 3,

b = 1 Black curve - z = 0, blue curve - z = 0.5 w0, green curve - z = 0.64 w0.

case, the beam shape and peak intensity are thus the only parameters depending on

the propagation distance.

Evolution of the beam peak intensity, which for the symmetry resons is situated

at the beam axis, can be easily found from Eq. (5.56). Putting x = 0, v = 0 we have

z =
1

I

√
e

2α
ln
(
ebI−1 − 1 +

√
(ebI−1 − 1)2 − 1

)
. (5.57)

On-axial intensity distribution versus the propagation distance is presented in Fig. 5.3.

We see that the intensity monotonically increases and tends to infinity for z ap-

proaching a critical value denoted as a self-focusing position zsf . Its exact value can

be found from direct analysis of the Eq. (5.57). Considering Eq. (5.57) in the limit

I → ∞, we obtain

zsf = b

√
e

2α
. (5.58)

We notice that this result is different from all cases considered previously in

Refs. [69, 113]. Previously one saw only such cases when the nonlinear self-focusing

manifests itself by the fact that the derivative of the function I(z) goes to infinity

at the point zsf . We see that in the present case the point zsf is achieved only

asymptotically.
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Figure 5.3: (Color online.) Onaxial intensity distribution as a function of the prop-

agation length. α = 1 Black curve - b = 1, green curve - b = 0.6 blue curve b = 0.2.
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Chapter 6

Approximate analytical results

In the previous Chapter we succeeded in construction of exact analytical solutions

for Eqs. (3.19-3.20) for a special form of refractive index and initial conditions. For

this goal a special mathematical technique known as RGS analysis was used. Unfor-

tunately an exact solution cannot be found for every problem under investigation,

and often the problems allowing an exact solution do not correspond to interesting

physical situations.

Therefore, it is very desirable to suggest a rather simple analytical approach

in order to be able to construct an approximate analytical solution to a bigger set

of physical situations. A review of existing approaches was given in Chapter 4. We

see that only one of these methods RGS is able to provide a solution without the

artificial assumption on a fixed beam shape Eq. (4.23,4.30) in the media. In presence

of small parameters, analytical solution can be found based on RGS via construction

of an approximate symmetry group. However, making use of this method requires

an experience in Lie symmetry technique such as e.g. solution of the determining

equation (5.4) which normally goes far beyond the university courses.

In the present chapter of the dissertation, we suggest our own approach to

construction of approximate analytical solutions to the light propagation equations

(4.2,4.1). Our approach, on one hand, is free from any assumption on the functional

form of the solution in media, and on another hand it does not require knowledge of

any special techniques. It is based on the following assumption: consider a dynamical

system of the form

∂tf1 = J1(f1, f2), (6.1)

∂tf2 = αJ2(f1, f2), (6.2)

where α is a small parameter. Then the dynamics of variable f2 is significantly

”slower” in comparison with dynamics of f1, and one can assume that f2 in Eq. (6.1)

does not depend on t explicitly. Then, the Eq. (6.1) can be integrated yielding

a functional dependence f1 = f1(f2). Substituting this result into Eq. (6.2), we
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get a closed differential equation, which can be finally integrated analytically or

numerically. Such an approach is well-known in problems of physical and chemical

kinetics (see e.g. Refs. [80, 55]).

6.1 Analytical solutions in case of (1+1) dimen-

sions

First, let us construct solutions for the case of (1+1) dimensions. Then the Eqs.

(3.19-3.20) take a simple linear form Eqs. (3.17-3.18)

∂wτ −
I

ϕ(I)
∂Iχ = 0,

∂wχ+ α∂Iτ = 0,

with boundary conditions

τ(0, I) = 0, χ(0, I) = H(I).

Taking into account that, e.g. for I0 = 1010 W/cm2 and the light propagation in air

(n2 = 3.2 × 10−19 cm2/W) α can be considered as a small parameter. Due to its

smallness we can construct an approximate solution to the system (3.17-3.18) step-

by-step distinguishing between two stages in the dynamics of the system [80, 55].

At the first stage we assume that ∂wχ = 0 and find τ = τ(χ, I, w) via integration of

Eq. (3.17). The result reads

τ =
−w
2χϕ

. (6.3)

As a second step, we substitute Eq. (6.3) into Eq. (3.18) and arrive at a first order

partial differential equation

∂wχ+
αw

2χ2ϕ
∂χI +

αw

2χϕ2
∂Iϕ = 0, (6.4)

the integration of which gives two integration invariants

χϕ = Ψ1 (6.5)

αw2

4
− χ2ϕ2

∫
dI

ϕ
= Φ2, (6.6)

Accounting for Eq. (6.3), we rewrite this result as

χϕ = Ψ1,

∫
dI

ϕ
− ατ 2 = Ψ2. (6.7)

Now the desired solution for the boundary value problem Eqs. (3.7-3.8) (in case

when ϕ(I) 6= I) can be found in a standard way: i) we express I and χ as functions

of integration invariants I = I(Ψ1,Ψ2) and χ = χ(Ψ1,Ψ2) at the boundary τ = 0,

and construct the following relation between the integration invariants I(Ψ1,Ψ2) =

exp(−χ(Ψ1,Ψ2)
2); ii) substituting expressions (6.7) into this relation, we arrive at

the desired solution to the boundary value problem.
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6.1.1 An exact solution

First of all, we test approach suggested by as on the well-known analytical solution

for the problem. In case of the semi-classical approximation, the Kerr nonlinearity

and in (1+1) dimensions, the exact analytical solution exists for the initial inten-

sity distribution given by the expression I(x, 0) = cosh2(x). Applying suggested

formalism, we get

τ = −w
2

cosh(χ), (6.8)

consequently, τI = w∂Iχ sinh−2(χ)/2. From Eq. (3.18) we have

∂w +
αw

2

∂Iχ

sinh2(χ)
= 0.

Integrating this equation and returning to the original variables, we get αI2z2 =

I cosh2(x− vz)− 1, that coincides with the the exact solutions Eqs. (4.3). The first

one, evidently, follows from Eq. (6.8) after transition to the original variables.

In such a way, we conclude that approach suggested by us allows find ap-

proximate solution with a good accuracy, and even reconstruct the known exact

solution.

6.1.2 Accuracy of the approximate solutions

Let us consider parabolic intensity distribution at the boundary I = 1−χ2. Differen-

tiating the initial distribution with respect to time, we get χI = −1/2χ. Substituting

this expression into Eq. (3.19), we get ∂wτ = −I/2χ and integrating

τ = −Iw
2χ

.

This expression gives us v = −2αxz/(1 − 2αz2), and

I =
1√

1 − 2αz2

(
1 − x2

1 − 2αz2

)
. (6.9)

Substitution of these solutions into Eq. (3.8 gives zero, substitution of these solutions

into Eq. (3.7) leads to the rest term

2αx(1 −
√

1 − 2αz2)/(1 − 2αz2)2, (6.10)

which accuracy can be estimated. Since α ≡ I0n2 is a small parameter, and x is

normalized into the radius of the beam w0, we see that the error of the approxima-

tion is of order w0I0n2. We see that at the beam axis the solution is exact, at the

distance equals to the beam radius from the axis (e.g. for air n2 = 3× 10−19w/cm2,

I0 = 1010W/cm2) the error of the solution is 3× 10−9. At the distance of 10w0 from
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the beam axis, evidently, the error is 3× 10−9, we notice that for the Gaussian dis-

tribution magnitude of the intensity at this distance is 4×10−42 from its magnitude

at x = 0.

However, the fact that in Eq.(6.10) the denominator turns to zero under z doing

to zsf excites some apprehension. We do an estimate: for the same magnitudes of

n2 and I0 and z = 0.99zsf , the error is 1.6 × 10−4x In such a way, we conclude that

the used approach provides the result with a good accuracy.

6.1.3 Kerr nonlinearity

For the case of cubic Kerr nonlinearity, ϕ = 1, we get

τ =
−w
2χ

. (6.11)

Substituting this result into Eq. (3.18), we obtain a first order partial differential

equation ∂wχ+ (αw/2χ2)∂Iχ = 0. Its’ solution reads (αw2/4χ2)− I = F (χ), where

F (χ) is an arbitrary function which should be constructed in a way to fulfill the

boundary condition (3.21). We have

ln(I − ατ 2) = −χ2 (6.12)

Returning to the original variables in Eq. (6.11) and Eq. (6.12), we obtain

−x2

(1 − 2αz2I)2
= ln

(
I[1 − αz2I]

)
,

v = − 2αzxI

1 − 2αz2I
. (6.13)

This result was previously obtained by Kovalev on the basis of the Lie and renor-

malization group symmetries analysis [69, 102]. Differentiating these expressions by

x and z, resolving the obtained system of four algebraic equations with respect to

∂xI, ∂zv etc. and substituting the resulting expressions into (3.7-3.8), one can verify

that the solutions (6.13) are exact on the beam axis (x = 0, v|x=0 = 0). All the

solutions studied further have been probed in a similar way as well.

One can see that the solution (6.13) becomes singular at the point zsf =

1/(2
√
α) that provides the self-focusing distance of a Gaussian beam. The ex-

pressions for zsf for Kerr nonlinearity and another initial intensity distribution are

presented in Ref. [69]. We notice that all of them scale as 1/
√
α, (α = I0n2) as

functions of the initial beam intensity. In such a way, a particular form of the initial

intensity distribution changes only prefactor for 1/
√
I0. The functional dependence

on the I0 reminds.

Let us now start an investigation of the higher order nonlinearities.
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6.1.4 Power nonlinearity

We consider the refractive index which in the original (dimensional) form reads

n(I) = n2kI
k, k being arbitrary integer positive number (k 6= 2, as we will see later,

the present approach is not applicable to the case k = 2, and solution must be

found with an another method). Then ϕ = kIk−1, and α = n2kI
k
0 . On the basis of

Eq. (6.7) we obtain

Ψ1 = kIk−1χ, Ψ2 =
I2−k

k(2 − k)
− ατ 2. (6.14)

At the entry plane of nonlinear medium τ = 0 we express n and χ as functions of

these integration invariants:

n = Ψ2(2k − k2)1/(2−k), χ =
Ψ1

(Ψ2(2k − k2))
k−1
2−k k

(6.15)

Taking the boundary conditions into account, one gets

Ψ2(2k − k2)1/(2−k) = exp

(
−Ψ2

1

(Ψ2(2k − k2))
k−1
2−kk2

)

,

that together with (6.14), gives

[I2−k + (k2 − 2k)αI2z2]
1

2−k = exp

(
−X2I2k−2

[I2−k + (k2 − 2k)αI2z2]
2k−2
2−k

)

,

v = −2αzXkIk, (6.16)

where X = x(1− 2αz2kIk)−1. Similarly to the previous case, it is possible to verify

that this solution is exact at the beam axis.

The on-axial intensity distribution is given by the expressions:

I2[I−k + k(k − 2)αz2] = 1, (6.17)

and presented in Fig. 6.1 for α = 1 and various values of k.

For a negative α, Eq. (6.17) describes nonlinear defocusing with monotonic

decrease of the on-axial intensity. For a positive α the expression (6.17) exhibits

a singularity at a certain point zsf : for each k derivative ∂zI goes to infinity, for

a finite value of I(z). This point corresponds to the beam collapse, or nonlinear

self-focusing. Beyond this point the beam no longer propagates. We find zsf in the

following way: first, express z(I) explicitly

z = ±
√
I−2 − I−k

αk(k − 2)
. (6.18)

Differentiate Eq. (6.18) with respect to I and using condition ∂z(I)|Iext = 0, we de-

termin the magnitude of intensity captured in the beam collapse Iext = (2/k)1/(2−k).
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Figure 6.1: (Color online.) On-axial intensity distribution I/I0 as a function of the

propagation distance z/w0 for the refractive index of the form n(I) = n2kI
k and

various k. α = n2kI
k = 1: black curve (a) k = 1; blue curve (b) k = 3; red curve (c)

k = 4. For each k, the beam propagates only up to certain point, both its coordinate

zsf/w0 and the value of intensity Iext/I0 at this point are discussed in the text.

Substituting this value into Eq. (6.18), we obtain the self-focusing position for

the given form of the refractive index:

zsf =

[
(2/k)

2
k−2 − (2/k)

k
k−2

αk(k − 2)

]1/2

.

An increase of the power k leads to a decrease of the self-focusing distance. As

expected, an increase of the incident intensity of the beam (α = n2kI
k
0 ) leads to a

decrease of the self-focusing distance.

In several publications (see e.g. [30, 69]) it has been demonstrated both nu-

merically and analytically that for the Kerr nonlinearity the self-focusing position

scales as ∼ 1/
√
I. From the presented result one can see that this scaling law is

valid only for this particular nonlinearity. For an arbitrary k, zsf , however scales as

zsf ∼ I
−k+1/2
0 for power nonlinearities. We demonstrate in the following, that for

other forms of nonlinearity the scaling law becomes even more complicated.

6.1.5 Saturating nonlinearities

From the physical point of view, the latter form of refractive index does not have

many applications. It is mostly considered in papers devoted to the general problem

of the wave collapse [95, 66]. A more physical form of the nonlinearity has to manifest
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a saturating behavior: for example, refraction indices of the form n = n2I/(1+nsI)

or n = n2/(1 + nsI) appear in problems of the laser beam propagation in vapors of

metals and dielectrics [16, 10]

Let us consider the first case. Then ϕ = 1/(1 + βI)2, β = nsI0, α = n2I0 and

from Eqs. (6.5,6.6) we have

Ψ2 = (1 + βI)3/3β − ατ 2, Ψ1 =
χ

(1 + βI)2
.

The boundary conditions provide us with the following relation:

(3βΨ2)
1/3 − 1 = β exp(−Ψ2

1(3βΨ2)
4/3),

the solution being

[(1 + βI)3 − α3βI2z2]1/3 − 1 =

β exp

(−x2((1 + βI)3 − 3αβz2I2)4/3

[(1 + βI)2 − 2αIz2]2

)
,

v =
−2αIzx

(1 + βI)2 − 2αIz2
. (6.19)

As it was expected, these expressions turn into Eq. (6.13) under the limit β → 0.

At the beam axis we have an expression for the intensity distribution

[(1 + βI)3 − α3βI2z2]1/3 − 1 = β. (6.20)

The expression (6.20) can be analyzed similarly to the case considered above. Re-

solving z as a function of I we obtain

z = ±
√

(1 + βI)3 − (1 + β)3

αβ3I2
. (6.21)

In contrast to the case considered above, the equation ∂Iz(I) = 0 gives us now

three complex values of Iext, (except for the case β = −1 when only one complex

root exists). Obtained values of Iext do not depend on α. Substitution of each

value Iext into (6.21) yields, generally speaking, a complex quantity. Obviously, if

the obtained value of zsf is not purely real, no beam collapse takes place for the

chosen set of parameters. However, if the value of zsf is real, a singularity at this

point will be observed. In case of two positive real roots z1 and z2, the intensity

monotonically increases from z = 0 to the point z2 and at z2 = zsf the self-focusing

will be observed. The intensity distribution in between the points z1 to z2 is not

unique. This uncertainty corresponds to the developing beam instabilities before the

self-focusing at the point z2. Due to this uncertainty, under the same experimental

conditions, one can either observe appearance of several light channels before zsf

with their subsequent merging into a single filament, or only beam self-focusing at

the point z2 [30].
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Figure 6.2: (Color online.) On-axial intensity distribution versus the propagation

distance for nonlinear refractive index of the form n = n2I/(1+nsI), α = n2I0 = 0.2,

β = nsI0: black curve (a) β = −0.1; blue curve (b) β = 0.25; red curve (c) β = 0.5.

The behavior of the intensity under the limit z → ∞ is discussed in the text.

In Fig. 6.2 we present all these cases. The curve c corresponds to the absence

of the self-focusing: there are no points where ∂Iz(I) vanishes. The curve b is

constructed for a single positive value zsf ∼ 1.6. Curve a represents a case of two

critical values z1 ∼ 0.3, and z2 ∼ 1. The segment [z1, z2] corresponds to the region

of the beam instability before the self-focusing point z2 ∼ 1.

The fact that the on-axial intensity goes to infinity and, consequently, the

diameter of the beam approaches zero under z → ∞ originates from the semiclas-

sical approximation. In reality, infinite beam compression will be arrested by the

diffraction.

Position where intensity increase is arrested could be estimated from the as-

sumption that this happens when the beam radius to be comparable to the wave

length λ. The rough estimate give us that for laser beam with waste w0 = 1 mm

and λ = 800 nm the arrest occurs at the point where intensity increases about 100

times with respect to its initial value.

6.1.6 Two-terms nonlinearity

Now let us apply obtained results to the case of refractive index consisting of two

terms; usually the first one is related to the Kerr nonlinearity and reads as n2I

whilst the second one is a higher order power function of intensity. Physically this

term can be attributed to the fifth order nonlinear susceptibility n4I
2 or the material
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ionization σKI
K , where K is the number of photons required for the simultaneous

absorption.

Consider the case n(I) = n2I − n4I
2 first. Then dimensionless ϕ = 1 − βI,

where β ≡ 2n4I0/n2. Substituting ϕ into (6.7) one gets

Ψ2 = − 1

β
ln(1 − βI) − ατ 2, Ψ1 = χ(1 − βI). (6.22)

From the boundary conditions it follows

1 − exp(−βΨ2) = β exp
(
−Ψ2

1e
2βΨ2

)
(6.23)

1 − (1 − βI)eαI2z2β = β exp
(
−χ2e−2αβI2z2

)
,

v = −2αIzX(1 − βI),

where X = x(1 − 2αIz2(1 − βI))−1.

On-axial intensity distribution is given by the implicit expression:

αI2z2 =
1

β
ln

[
1 − β

1 − βI

]
, (6.24)

and is presented in Fig. 6.3 for a positive α and several positive values of β.

Let α be positive, then for the self-focusing we obtain

zsf =

√
β(−4L(h) − 2)

α

L(h)

2L(h) + 1
(6.25)

where h ≡ e−1/2/(2β − 2), and L(h) denotes the Lambert function.

Looking on Eq. (6.25) and keeping in mind that the dimensionless coefficients

α = n2I0 and β = 2n4I0/n2 are function of the initial beam intensity, we see that

functional dependence of the self-focusing position on the beam intensity is again

rather complicated and differs from the scaling law 1/
√
I0.

Similar to the case of saturating nonlinearity, the following three subcases can

be distinguished depending on the magnitude of β: i) there is no beam collapse:

intensity monotonically achieves a saturated value (curve a at the Fig. 6.3); ii)

one critical point (curve b at the Fig. 6.3); iii) solution is not unique at a certain

interval. This means that the self-focusing is prevented by a distance where the

beam is unstable and can decay into several filaments (curve c at the Fig. 6.3). Let

us study the cases above in detail.

The function z(I) in Eq. (6.24) has only one critical point ∂Iz(I) = 0 if β =

βc ∼ 0.175. For β < 0.175, two critical points z1 and z2 exist and a region of

beam instability before the self-focusing appears. For β > 0.175, the Eq. (6.24)

has no special points, the on-axial intensity monotonically increases approaching a

saturation value Isat. The self-focusing position zsf as a function of β for various
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Figure 6.3: (Color online.) On-axial intensity distribution versus the propagation

distance obtained for the refractive index n = n2I −n4I
2, β = 2n4I0/n2 α = n2I0 =

0.4: black curve (a) β = 0.1; blue curve (b) β = 0.125; red curve (c) β = 0.4.

Figure 6.4: (Color online.) The self-focusing position as a function of β = 2n4I0/n2

for various α = n2I0: black curve (a) α = 0.2; blue curve (b) α = 0.02;red curve (c)

α = 1. All curves end at the point βc = 0.175, for the value of β bigger then βc the

is no self-focusing collapse: derivatives ∂zI does not turn into infinity.
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α is presented in Fig. 6.4. We see that for the value of β bigger then βc the is no

self-focusing collapse: derivatives ∂zI does not turn into infinity.

By studying the asymptotic behavior of I = I(z) one finds that Isat = 1/β.

Note that the saturated value fulfills the condition 1 − βIsat = ϕ(Isat) = 0.

Another case for which an explicit expression for I = I(Ψ2) can be found at

the boundary corresponds to the third power dependence of the refractive index on

intensity n(I) = n2I − n6I
3. We have ϕ = 1 − βI2, β = 3n6I

2
0/n2 and

Ψ2 =
arctanh(

√
βI)√

β
− ατ 2,

Ψ1 = χ(1 − βI2) (6.26)

whose solution reads

tanh
(
arctanh(

√
βI) − αI2z2

√
β
)

=

√
β exp

( −χ2(1 − βI2)2

(1 − tanh[arctanh(
√
βI) − αI2z2

√
β])2

)
,

v = −2aIzX(1 − βI2),

where X = x(1 − 2aIz2(1 − βI2)−1, with the on-axial intensity

2 arctanh(
√
βI) − αI2z2

√
β = 2 arctanh(

√
β). (6.27)

The features of these solutions are similar to the cases considered before. The value

of the saturating intensity is equal to Isat = 1/
√
β.

Notice that the values of Isat for K = 2 and 3 obtained here are different from

previous theoretical estimates [30, 15, 112], which were obtained assuming that the

intensity in the filament saturates when the nonlinear terms in n(I) compensate

each other [30]. From the present results we see, however, that this is not the case.

Upon propagation the beam tends to reach the on-axial value of the intensity which

maximizes the index of refraction at the beam axis. In other words, not the nonlinear

refractive index itself but its variation should be zero:

∂In(I)|Isat = 0. (6.28)

This condition on the saturated filament intensity is general, and independent

of the nonlinear medium. It can serve as a basis for future calculations. Note

that such a general mathematical condition cannot be obtained from the numerical

simulations.

6.2 An example: influence of the Taylor series

truncation

Taylor series expansion in the power of a small parameter is one of the basic tech-

niques in theoretical physics. In this context, the nonlinear optics is not an exception
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[21, 34]. Since in real physical situations the refractive index can be a rather com-

plicated function if the intensity, one construct solution only for the first term of the

Taylor series expansion n(I) = n2I. In the present section, based on the approach

developed above, we construct analytical solutions for the eikonal equation with

refractive index given by function n = 1 − e−nsI , afterwards, we assume that ns is

small enough to give rise a Taylor expansion in its power. We construct analyti-

cal solutions with this form of the refractive index. Further, we construct series of

solutions to this equation with refractive indexes, n0 = nsI, n1 = nsI − n2
sI

2/2,

n2 = nsI−n2
sI

2/2+n3
sI

3/6, which are Taylor approximations to the original function.

For the present form of the refractive index we have ϕ = e−βI . For the initial

Gaussian shape, integration of Eq. (3.17-3.18) gives:

ln
(
eβI − τ 2β2

)
= β exp(−χ2(1 − τ 2β2e−βI)2),

τ =
−w
2χ

eβI .

Returning to the original variables, we arrive at the result

ln
(
eβI − z2β2I2

)
= β exp

(−x(1 − z2I2β2eβI)

1 − 2z2IβeβI

)2

,

v =
−2zxIβe−βI

1 − 2z2Iβe−βI
. (6.29)

On-axial intensity distribution for this form of the refractive index as a function

of the propagation distance is given by the implicit expression:

eβI − β2z2I2 = eβ . (6.30)

and is presented in Fig. 6.5. We see that around certain point the intensity sharply

increases and, afterwards, tends to infinity. Physically, this unrestricted intensity

increase can be arrested by the diffraction or dispersion which are not included into

the eikonal equations (3.7-3.8). The point where the beam stops to compress due to

these processes can be estimated from the condition that the beam radius cannot be

smaller then the wave length. A rough estimate for real physical parameters gives

that intensity should increases in this point about 20 times. From the Fig. 6.5, we

see that the solution is not everywhere unique. Such a behavior is similar to the

case of a saturating nonlinearity considered is the previous section. In order to find

zsf , it is more convenient to investigate the inverse function z(I)

z = ±
√

eβI − eβ
1

βI
.

Investigating extremum of this function in a standard way, we get

zsf =
−1√

L(−eβ−2)

[
L(−2eβ−2) + 2

]3/2
,
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Figure 6.5: (Color online.) On-axial intensity distribution versus the propagation

distance obtained for the refractive index n = n2I −n4I
2, β = 2n4I0/n2 α = n2I0 =

0.4: black curve (a) β = 0.1; blue curve (b) β = 0.125; red curve (c) β = 0.4.

where L(h) denotes the Lambert function satisfying the equation L(h)eL(h) = h.

Let us now investigate a convergence of the Taylor series to the obtained

results.

First order approximation. This case corresponds to the well-studied Kerr non-

linearity, ϕ = 1. For the Gaussian beam the result was obtained in Ref. [69]. In

particular, the on-axial intensity and the self-focusing positions are given by formu-

lae

I[1 − βz2I] = 1, zsf = 1/(2
√
β). (6.31)

Second order approximation. ϕ = 1 − βI. Substituting ϕ into (5.33) one gets

1 − (1 − βI)eβ2I2z2

= β exp
(
−χ2e−2β2I2z2

)
,

v = − 2βIzx(1 − βI)

(1 − 2βIz2(1 − βI))
.

On-axial intensity distribution is given by the implicit expression:

β2I2z2 = ln

[
1 − β

1 − βI

]
, (6.32)

then for the self-focusing we obtain

zsf =
√

(−4L(h) − 2)
L(h)

2L(h) + 1
(6.33)

where h ≡ e−1/2/(2β − 2), and L(h) denotes the Lambert function.
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Figure 6.6: (Color online.) Comparison solutions obtained for exact refractive index

and its Taylor approximations. On-axial intensity distribution constructed for exact

(red curve) refractive index. Blue curve is the first, black curve is the second, and

green curve is the third approximation to n(I), respectively.

Third order approximation. To this order of approximation we have ϕ = 1 −
βI + β2I2/2. Thus, the approximate analytical solution reads

tan(arctan(βI − 1) − β2I2z2/2) + 1 =

β exp

( −χ2(1 − βI + β2I2/2)24

[tan2(arctan(βI − 1) + β2I2z2/2) + 1]2

)
,

v = − 2βxIz(1 − βI + β2I2/2)

1 − 2β(1 − βI + β2I2/2)Iz2
(6.34)

Consequently, at the beam axis intensity distribution is given by the implicit ex-

pressions:

arctan(βI − 1) − β2I2z2/2 = arctan(β − 1) (6.35)

Let us now compare and discuss the obtained results. Comparison between

obtained solutions is presented in Fig. 6.6 for β = 0.2. On-axial intensity distribution

obtained for the original function n(I) is presented by the red curve. We see that

around z = 1.3w0 intensity sharply increases and, afterwards, tends to infinity.

Solution corresponding to the first order Taylor approximation of the refractive

index is presented in Fig. 6.6 with the blue curve. This is a collapsing solution:

the beam propagate no longer that zsf ≃ 1.1w0, the maximal value of intensity is
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achieved in this point and equals to Imax ≃ 2I0. Before the point zsf , one can observe

an intensity fluctuation due to the fact that the solution is not unique at the interval

from z = 0 to z = zsf . We see that the first order approximation to n(I) provides the

shorter value of zsf in comparison with the value obtained for the original function

n(I).

The next order approximation consists of ”defocusing” term, −n2
sI

2/2, and, as

a result increases the self-focusing distance. This is represented by the black curve

in Fig. 6.6. This curve starts to significantly increase around z ≈ 1.4w0 and goes to

the saturating value Imax = 5I0. For this particular value β, the solution is unique

and increases monotonically.

The third order approximation is presented by the green curve. It provides

already very close value of zsf with respect to the original one, presented by the

turning of the red curve. However, we have to notice that beyond the self-focusing

point, behavior of the solutions obtained for different order of approximation are

very different.

We summarize. From the results presented in this section, we see that the Tay-

lor series expansion of the refractive index provides the magnitude of the self-focusing

position within a good accuracy. Moreover, increase of the order of approximation

leads to a convergence of the value zsf to the value obtained for the original function

n(I). However, beyond the positions where intensity increases significantly, even if

the beam intensity reminds finite, the behaviors of the curves, found for different

order of the Taylor power expansion, become completely different. In such a way,

several term Taylor expansion of n(I) cannot serve for a decision on the asymptotic

intensity distribution for long distances.

6.3 Propagation on the laser pulse with arbitrary

initial intensity distribution

One of the physical situations which is modeling with the nonlinear Schrödinger

equation in (1+1) dimensions is propagation of the laser pulse of a certain profile

and duration in fiber. It is known that the temporal beam shape can be easily

variated in experiments (see e.g. [35]). Therefore this is interesting to get analytical

expressions for the intensity distribution in a general case: in case of arbitrary initial

beam profile.

As before, we start from equations (3.17,3.18):

∂wτ −
I

ϕ(I)
∂Iχ = 0, (6.36)

∂wχ+ α∂Iτ = 0, (6.37)

with the boundary conditions τ(0, I) = 0, and assume that the intensity distribution
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at the boundary is defined as I = exp(F (χ)), where F is an arbitrary function.

Evidently, H(I) is the inverse function to F. As usually, due to smallness of α, we

construct an approximate solution to the system (6.36-6.37) in two steps.

At the first step we assume that ∂wχ = 0. Differentiate the boundary condition

I = exp(F (χ)) with respect to I, we get χI = 1/(FχI), where Fχ means ∂χF (χ).

Substituting χI into Eq. (6.36), we get

τ = wF−1
χ . (6.38)

Substituting this function into Eq. (6.37) after integration and taking boundary

conditions into account, we get

ατ 2

2
Fχχ + I = exp(F ).

In such a way, returning to the original variables, we get the result:

αI2z2

2
Fχχ + I = exp(F ),

v = αIzFχ. (6.39)

We notice that, if F (χ) is a polynomial function, and for physical reasons is a convex

and positive, the highest term should be negative.

Expressing I from both of Eqs. (6.39), we arrive at the implicit expression for

v:

−1 −
√

1 + 2αz2Fχχ exp(F )

zFχχ
=

v

Fχ
. (6.40)

Let at the boundary we have a two-peak profile I = exp(−x4 + bx2). Then in

new variables, we get an approximation

τ = w/(2bχ− 4χ3), (6.41)

Substituting this approximation into Eq. (3.18), after integration, we get

I + aI2z2(b− 6(x− vz)2) = exp(−x4 + bx2),

v = 2aIz(b(x − vz) − 2(x− vz)3).

Function I(x) has three extremes for x = 0, x = ±
√
b/2. For x = 0 the

intensity distribution is given by an implicit expression at2I2b = 1 − I, and on-

axial value of the intensity monotonically decreases. At the points x = ±
√
b/2 the

intensity increases up to the point

zsf =
eb/8

2
√

2αb
, (6.42)

where the singularity arrears. We see that if initial intensity distribution exhibits

several maxima, each of these maxima collapse independently. Moreover, the func-

tional dependence of the collapse position Eq. (6.42) for each peak is 1/
√
I0, and,

in such a way, the scaling law does not depend on the initial beam shape.
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6.4 Generalization in (1+1) dimensions

In the previous section we suggested a general approach for construction of analyt-

ical solution, and discussed many particular cases of dependence of the refractive

index on intensity. The problem however remains: the system of equations (6.5-6.6)

cannot be resolved explicitly for any nonlinear function n(I), in other words, we

cannot construct an explicit function I = I(Ψ2) at the boundary for any desired

nonlinearity. As a way to overcome this difficulty, one can try to use any approach

to construct an approximate expression for I, e.g. construct a resolvable approxima-

tion to the integral in Eq. (6.6). As an another way, in Ref. [112], an approximate

RG symmetries admitted by Eqs. (3.17-3.18) were constructed.

First, we find the Lie symmetry group

X = f∂τ + g∂χ, (6.43)

where f and g are unknown functions of n, w, χ, τ, and their derivatives: ∂χ/∂n,

∂τ/∂n, etc. admitted by Eqs. (3.17-3.18).

In case of Eq. (3.17-3.18), determining equation reads:

Dw(g) + αDI(f) = 0, (6.44)

Dw(f) − I

ϕ(I)
DI(g) = 0,

where

DI ≡ ∂I +

∞∑

s=0

(τIs+1∂τIs + χIs+1∂χs
I
), (6.45)

Dw ≡ ∂w +

∞∑

s=0

(τws+1∂τws + χs+1
w ∂s

χw
) (6.46)

are total derivatives. Here, the index s stands for the order of the derivatives:

τ s
I ≡ ∂sτ/∂Is, etc. Derivatives with respect to w in Eq. (6.46) in brackets should be

excluded in accordance with Eqs. (3.17-3.18): τ 1
w = I/ϕχ1

I , τ
2
w = I/ϕχ1

Iw = −αI/ϕτ 2
I

and so on. As a result, the operator of Eq. (6.46) takes form of a series in powers of

the small parameter α.

To determine f and g we propose formal series in powers of α as well:

f =

∞∑

i=0

αif i, g =

∞∑

i=0

αigi, (6.47)

Substituting Eqs. (6.47) into Eqs. (6.44) and collecting terms with the same power

of α, we obtain up to the first order in α:

∂wf
0 − I

ϕ
DI(g

0) = 0, (6.48)

∂wg
1 −D′

w(g0) +DI(f
0) = 0, (6.49)

∂wf
1 −D′

w(f 0) − I

ϕ
DI(g

1) = 0, (6.50)
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where D′
w =

∑∞
s=0 τIs+1∂χIs . The system of differential equations (6.48-6.50) can be

solved sequentially starting from a given g0. The requirement that the symmetry

group fullfils the boundary conditions means that f and g vanish under substitution

of Eqs. (3.21) in each order of approximation. Therefore, the natural choice for the

first step in solving Eqs. (6.48-6.50) is to put g0 = 0. However, in Ref. [102], it was

demonstrated that, for initial Gaussian beam, the choice

g0 = 1 + 2IχχI . (6.51)

provides the better result, since it corresponds to a further iteration in the renor-

malization procedure.

Substituting Eq. (6.51) into Eq. (6.48), and solving Eqs. (6.48-6.50) step by

step, after some calculations, we obtain

g1 = 1 + 2IχχI + 2α

(
1 + I

ϕI

ϕ

)
χχα − 2αϕττI − 2αϕIτ

2, (6.52)

f 1 = 2I

(
χIτ + χτI +

ϕI

ϕ
χτ

)
+ 2αχτα

(
1 + I

ϕI

ϕ

)
. (6.53)

Based on these symmetries, one can write an approximate solution to Eqs. (3.7-3.8)

as follows

−x2

(1 − 2αz2Iϕ)2
= ln

(
I[1 − αz2Iϕ]

)
,

v = − 2αzxIϕ

1 − 2αz2Iϕ
. (6.54)

where, as everywhere above, ϕ is related to the arbitrary refractive index as ϕ ≡
∂In(I).

A comparison between the exact (Eq. (6.24)) and the approximate (Eq. (6.54))

solutions for ϕ = 1 − βI is shown in Fig. 6.7. It is easy to see that the expres-

sions (6.54) lead to exactly the same conditions for the saturating filament intensity

Eq. (6.28) and the self-focusing position zsf ≃ 1.2. The solutions are slightly differ-

ent at the finite interval where the exact solution increases more sharply in contrast

to the approximate one.

6.5 Nonlinear models in (1+ν) dimensions

6.5.1 Analytical solutions. Search for the best approxima-

tion

We see from Eqs. (3.19,3.20) that in case of (1+ν) dimensions, the hodograph

transformation is no longer convenient: it does not turn the initial equations into a

linear system. Nevertheless, an approximate solution can be constructed in a similar
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Figure 6.7: (Color online.) Comparison of the exact (red curve a) and the approxi-

mate (blue curve, b) solutions. On-axial intensity distribution versus the propagation

distance in case of the nonlinear refractive index n = n2I − n4I
2, α = n2I0 = 0.2,

β = 2n4I0/n2 = 0.1.
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way. We consider several approaches to construct solutions in this case. Fortunately,

several analytical solutions for the Kerr nonlinearity are known. We will use them

as test examples in order to find the best approximation.

Notice that the equation (3.17) does not depend on the dimension of the prob-

lem. Thus, an approximation (6.3) can be used not only in case of (1+1) but in

(1+ν) dimensions as well. Therefore, we rewrite (6.3) in original variables and

substitute the obtained function v(x, z, I) into Eq. (3.8).

6.5.2 The parabolic beam profile

We start from the Kerr nonlinearity and the parabolic beam, because in this case

an exact analytical solution is known (see Chapter 4).

At the first stage we assume that χ does not depend on w. At the boundary

we have I = 1 − χ2. Differentiating the initial distribution with respect to time, we

get χI = −1/2χ. Substituting this expression into Eq. (3.19), we get ∂wτ = −I/2χ
and integrating

τ = −nw
2χ

(6.55)

returning to the original variables, we get

v =
−2αxz

1 − 2αz2
. (6.56)

For derivatives of v we have

∂xv =
−2αz

1 − 2αz2
. (6.57)

Substituting (6.57) into Eq. (6.62), we get

(1 − 2αz2)∂zI − 4αIz − 2αzx∂xI = 0. (6.58)

Integration of Eq. 6.58) gives

I =
1

1 − 2αz2

(
1 − x2

1 − 2αz2

)
(6.59)

that is indeed coincides with solution Eq. (4.4) of Chapter 4 from Ref. [4].

6.5.3 Gaussian beam profile. First consideration

Applying the same idealogy to the case of the Gaussian beam 1 = −2Iχ∂Iχ, we find

an approximation

τ = − w

2χ
(6.60)
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From Eq. (6.60) one obtains

v =
−2ϕIzx

1 − 2ϕIz2
. (6.61)

Differentiating Eq. (6.61) with respect to x, and keeping only main terms of the

power of ϕ one obtains the first order partial differential equation

(1 − 2αϕIz2)∂zI = 2αIxz(2ϕ + ϕII)∂xI + 4αϕI2z. (6.62)

Eq. (6.62) can be integrated in a standard way for each particular form of nonlinear

refractive index.

Kerr nonlinearity. First of all, we are going to check the accuracy of the solutions

which we construct based on the suggested approach in (1+2) dimensions. To do

this, we consider case of Kerr nonlinear refractive index and compare the solutions

with already constructed in Ref. [68].

Substituting (6.61) into (3.8) and keeping only main terms in powers of ϕ we

obtain the following characteristic equation

dz

1 − 2ϕIz2
=

−dx
4Izx

=
dI

4I2z
. (6.63)

Integration of Eq. (6.63) gives

Ψ1 = 2Iαz2 − ln I, Ψ2 = Ix

what provides the intensity distribution

Ie−2Iαz2

= exp

( −x2

e−4Iαz2

)
(6.64)

and the self-focusing position given by

zsf = 1/
√

2αe. (6.65)

This is an approximate result different from the exact expression zsf = 1/
√

2α

obtained on the basis of the renormalization group analysis in Ref. [68]. One can

see that the approximate value of zsf is about two times shorter than the exact one.

However, from Ref. [12] one can see that our formula still yields significantly better

results than the ones provided by the variational approach.

6.5.4 Two-term nonlinearity

Let us consider the case of the cubic-quintic nonlinearity. Then ϕ = 1−βI, ϕI = −β.

Substituting these expressions into Eq. (6.62) after integration one obtains

Ψ1 = − ln

(
I

βI − 1

)
, Ψ2 = x2I2(βI − 1).
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Accounting for the boundary conditions, we obtain the intensity distribution

e−2αz2I

βIe−2αz2I + 1 − βI
=

exp
(
−x2(βIe−αz2I + 1 − βI)3e4αz2I

)
.

Consequently, the on-axial intensity is given by the approximate formula

2αz2I = ln

(
I − βI

1 − βI

)
. (6.66)

which provides

zsf =

√
−β

2αL(h)
(L(h) − 1),

where L(h) is the Lambert function and h = βe/(β − 1).

In general, the expression (6.66) is approximate. However, one can see that it

provides the same value of the saturated intensity Isat = 1/β as Eq. (6.24) in (1+1)

dimensions. Therefore, we conclude that the general condition for the saturated

intensity given by Eq. (6.28) does not depend on the dimension of the problem.

6.5.5 Gaussian beam profile. Second consideration

Let us now use an another approximation ∂Iχ = −1/2χe−χ2
. Then, substituting this

approximation into Eq. (3.19) we get

τ = − Iw

2ϕχe−χ2 . (6.67)

Now we assume that χ in the exponent is a parameter. Then for v we get

v =
−2αxzϕe−χ2

1 − 2αz2ϕe−χ2 . (6.68)

Now, neglecting hight order terms with in the power of α, we get an approximate

expression 1

∂xv =
−2αzϕe−χ2

1 − 2αz2ϕe−χ2 . (6.69)

Substituting this approximation into Eq. (3.8), we get the characteristic equation

(1 − 2αϕz2e−χ2

)∂zI − 2αxz(ϕ + ϕII)e
−χ2

∂xI − 2(ν + 1)αϕIze−χ2

= 0. (6.70)

1Advantage of the analytical approach is we can use any convenient approximation and after-

wards check accuracy of the obtained result.
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Integration of Eq. (3.8) gives

Iϕxν = Ψ1, 2αz2e−χ2

= Ψ2I
−2
ν +

2I
−2
ν

ν

∫
I

2−ν
ν

ϕ
dI (6.71)

The desired solution for the boundary value problem can be found in a standard

way: i) we express I and x as functions of integration invariants I = I(Ψ1,Ψ2) and

x = x(Ψ1,Ψ2) at the boundary t = 0, and construct the following relation between

the integration invariants I(Ψ1,Ψ2) = exp(−x(Ψ1,Ψ2)
2); ii) substituting expressions

(6.71) into this relation, we arrive at the desired solution to the boundary value

problem.

Kerr nonlinearity in (1+2) dimensions. In this case ϕ = 1 ν = 2 and from

Eq. (6.71) we have

Ix2 = Ψ1, I + Ψ2 = 0.

After taking the boundary conditions into account, the solution reads

v =
−2αxze−χ2

1 − 2αz2e−χ2 ,

I(1 − 2αz2e−χ2

) = exp

( −x2

(1 − 2αz2e−χ2)

)
(6.72)

At the beam axis this solutions

2αIz2 + I − 1 = 0 (6.73)

becomes singular at the point zsf = 1/
√

2α. This result coincides with the Kovalev

formula for the propagation of a Gaussian beam in the media with Kerr nonlinearity.

In contrast to the case of (1+1) dimensions, we see that in the collapsing point

zsf not the derivatives ∂zI, but the intensity goes to the infinity.

By the direct substitution of the constructed solutions into the original equa-

tions, we can see that the second approach to find the solution in (1+2) dimensions

provides a better accuracy in comparison with the previous one. At the moment we

are not able to emplane why one approximation is better then an another one. We

can only check its accuracy by the direct substitution.

Let us now to extend this approach into more complicated nonlinear models

and higher dimensions.

6.5.6 Power nonlinearity

Let us start consideration from the power nonlinearity ϕ = kIk−1, k 6= 2. In accor-

dance with Eqs. (6.71), we get

kIkx2 = Ψ1, 2αIz2e−χ2

+
I2−k

k(k − 2)
= Ψ2. (6.74)
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The solution reads

v =
−2αxzkIk−1e−χ2

1 − 2αz2kIk−1e−χ2 ,

(2αIz2k(k − 2)e−χ2

+ I2−k)1/(2−k)

= exp

( −x2Ik

(2αIk(k − 2)z2e−χ2 + I2−k)k/(2−k)

)
(6.75)

The on-axial intensity is given by expression

2αIk(k − 2)z2 + I2−k = 1, (6.76)

which, evidently, for k = 1 turns into Eq. (6.73) obtained for the Kerr nonlinearity.

The self-focusing position is defined as

zfs =

√
(k − 1)

−1
k−2 − (k − 1)

1−k
k−2

2αk(k − 2)
(6.77)

Similar to the case of (1+1) dimensions, we see that the higher is the power

of nonlinearity k, the shorter is the propagation distance.

6.5.7 Saturating nonlinearity

Let us consider a saturating nonlinearity with the refractive index n = 1 − e−βI .

Then, we put ϕ = e−βn, α = β. Substituting the present form of ϕ into Eqs. (6.71),

we get the solution

v =
−2αxze−βIe−χ2

1 − 2αz2e−βIe−χ2 ,

ln(F ) + βI − 2αβz2e−χ2

= β exp

( −βx2IF

ln(F ) + βI − 2αβz2Ie−χ2

)
.

where F = 1 − e−βI + e−βI+2αβIe−χ2

. Thereafter, at the beam axis we have

2αβIz2 − βI = ln

(
1 − eβI

eβ − 1

)
. (6.78)

The onaxial intensity distribution as a function of the propagation distance is similar

to the case of (1+1) dimensions.

6.5.8 Two-term nonlinearity

Firstly we consider the cubic-quintic model n = n2I−n4I
2. Then ϕ = 1−βI, where

β = n4I0/n2. Substituting this function into Eq. (6.71), we obtain

2αz2I +
1

β
ln(1 − βI) = Ψ2, x2I(1 − βI) = Ψ1 (6.79)
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Figure 6.8: (Color online.) On-axial intensity distribution versus the propagation

distance obtained for the refractive index n = n2I −n4I
2, β = 2n4I0/n2 α = n2I0 =

0.4: red curve (a) β = 0.4; green curve (b) β = 0.2; blue curve (c) β = 0.1.

The solution reads

1 − (1 − βI)e2αβz2Ie−χ2

= β exp

(
−βIx2

(1 − (1 − βI)e2αβz2Ie−χ2
)e2αβz2Ie−χ2

)
(6.80)

At the beam axis we have the intensity distribution given by the formula:

2αβz2I = ln
(1 − β)

(1 − βI)
. (6.81)

Analyzing Eq. (6.81) in a usual way, we get

zsf =

√

−L
(

e−1

β − 1

)
1

2α
, (6.82)

where L is the Lambert function (satisfying the equation L(h)eL(h) = h). Evidently,

under the limit β → 0, Eq. (6.82) turns into zsf = 1/
√

2α. On-axial intensity distri-

bution as a function of the propagation distance is presented in Fig. 6.8. It exhibits

the similar behavior as in case of (1+1) dimensions.

Let us consider case of n = n2I−n6I
3. Then ϕ = 1−βI2, where β = n6I

2
0/n2.

Substituting this function into Eq. (6.71), we obtain

2αz2I +
1√
β

arctan(
√
βI) = Ψ2, x2I(1 − βI2) = Ψ1. (6.83)

The solutions reads

tanh(Θ) =
√
β exp

( −I(1 − βI2)
√
βx2

tanh(Θ)(1 − tanh2(Θ))

)
, (6.84)
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where Θ = arctanh(
√
βI) − 2α

√
βz2I exp(−χ2). At the beam axis we have

arctanh(
√
βI) − 2αIz2 + tanh(

√
β) = 0.

Under limit z → ∞, this expression gives us Isat = 1/
√
β.

To summarize this part of the work, we discuss here some general results.

Explicit/implicit expressions for the self-focusing position for different form of the

refractive index were obtained. In case of (1+1) dimensions and (1+2) dimensions

for the same form of the refractive index, we got different results. This fact is in

agreement with results obtained previously by another authors (see e.g. Refs. [102,

67, 69]). In contrast, achieved by us law for the single filament intensity Eq. (6.28)

is general, and does not depend on the dimensionality of the problem.

6.6 Comparison with results of experiments and

numerical simulations

As an example, let us consider here problem of femtosecond pulse propagation in

air which is relevant due to a large number of applications and whose description

is still a subject of discussion (see, e. g. Refs. [30, 15] and Refs. therein). The

nonlinear refractive index of air is taken in the following widely used form (see. e.g.

reports. [30, 15])

n = n2[I +R(I)] + n4I
2 − ρ(I)

2ρc

, (6.85)

where the first term describes the Kerr response involving a delayed (Raman) con-

tribution R(I) = τ−1
K

∫ t

−∞ e−(t−t′)/τKI(t′)dt′. n2 and τK are known to be equal

to 3.2 × 10−19 cm/W2 and 70 fs [14], respectively. n4 ≡ χ(5)/2n0, where χ(5) is

the fifth order nonlinear susceptibility its exact value is a subject of some con-

troversy [15]. The most accepted estimates lie around ∼ 10−32 cm4/W2 [30]. In

the last term of Eq. (6.85), ρ(I) refers to the density of free electrons and ρc de-

notes the critical density above which the plasma becomes opaque. A rough esti-

mate yields ρ(I) ∼ σKI
Kρattp, where ρat is the atom density ρat = 2 × 1019 cm−3

and tp the pulse duration. K = 8 for the MPI with a pulse of 800 nm, and

σ8 = 3.7 × 10−96 cm16/W8/s [30].

A numerical solution of the NLSE for the focused beam with f = 2 m,

Pin ∼ 0.08 TW and w0 = 3 mm using n(I) given by Eq. (6.85) with n2 = 3.2 ×
10−19 cm/W2, n4 = 0 and R = 0 gives zsf,f = 128.2 cm Ref. [115]. Note that

if n(I) = n2I, the self-focusing distance is given by the Kovalev formula [68, 67]

zsf = win/
√

2n2I0, which is exact under the geometrical optics approximation and

for initially Gaussian beam shape. For the experimental conditions of Ref. [115] it
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Table 6.1: Comparison of the predictions for zsf and the filament fluence in air calcu-

lated using Eq. (6.81) and Eq. (6.28) with the results of experiments and numerical

simulations.
zsf (m) Fluence (J/cm2)

pulse duration 50fs 450fs 50fs

experiment [24] 3 5.5 0.6

numerical [24] 3 6.5 0.6 − 1.4

this work 3 6.2 0.66

yields zsf,f = 127.6 cm. This confirms our initial statement that for many experi-

ments diffraction (and in this case also the plasma defocusing) can be neglected.

Now we compare our results with the recent experiment and numerical results

of Refs. [24], where a collimated beam with FWHM diameter of d ∼ 4−5 mm (w0 =

d/
√

2 ln 2), with a pulse energy Ein ∼ 20 mJ and different pulse durations (FWHM)

was used. In Ref. [24], n2 was taken to be n2 = 2.5 × 10−19cm2/W for the pulse

duration 50 fs, and n2 = 6×10−19 cm2/W for 450 fs, n4 = −2.5×10−33 cm4/W were

fixed and independent on the pulse duration. Substituting this set of parameters

into Eq. (6.81) and estimating the delayed response as an integral over the pulse

duration, we obtain zsf and the on-axial fluence F (F =
∫
I(t)dt) which are presented

in Table 6.1.

From the Table 6.1, one can see that in spite of used simplifications, our results

are in a good agreement with experimental and numerical results.

Recently reported experimental results on air clearly indicate that zsf scales

as 1/
√
Pin for a relatively low initial pulse power Pin. However, for powers above

500 GW (I0 ∼ 5× 1012W/cm2) a qualitative change is observed and zsf depends on

the power as ∼ 1/Pin [48]. This behavior was attributed by authors to noise effects

in the beam. However, as we saw from our studies of the collapse of the beam

with arbitrary initial intensity distribution, each intensity peak collapsed indepen-

dently with scaling law 1/
√
I0. Modeover, on the other hand one can notice that

the value of 500 GW in the experiment of Ref. [48] corresponds to the case where

the terms n2I0 = 1.7 × 10−6 and n4I
2
0 ∼ 3.1 × 10−7 in the refractive index (6.85)

become comparable. Therefore, we believe that the change in the power dependence

is mainly driven by the contribution of the highly nonlinear terms (fifth order sus-

ceptibility). Moreover, from the analysis of the experiment of Ref. [48] within our

theoretical scheme we can draw important conclusions regarding the form of the

nonlinear refractive index.

Using the value of I0 given in Ref. [48], and assuming n4 ∼ ∓10−32 cm4/W2

[30], we get β ≃ ±0.35. Comparing this value with βc ∼ 0.175, we see that, if n4 < 0,

then no self-focusing would be observed. Since self-focusing is indeed observed, we

conclude that n4 > 0. The behavior of zsf as a function of the initial beam intensity
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Figure 6.9: (Color online.) Dependence of the self-focusing position on the beam

intensity. The blue curve refers to the dependence 1/
√
I (obtained for low intensi-

ties), whereas the black curve shows the deviation for high intensities due to influence

of the fifth-order nonlinearity n4 = 10−32cm4/W2. Inset: Experimental points for

zfs(Pin) from Ref. [48].

obtained from our theory is shown in Fig. 6.9 and is qualitatively compared to the

measured zsf . Note that one could use our results to find an accurate value of n4 by

performing a similar experiment with a controlled initial Gaussian beam profile (i.e.,

without noise) and fitting the measured curve zsf(I0) to the solution of Eq. (6.82).

It is important to point out that the values of all parameters in Eq. (6.85)

are subject of controversy. For example the magnitude of n2 is taken as n2 =

3.2 × 10−19 cm/W2 in Refs. [30] and as n2 = 4 × 10−19 cm/W2 in Ref. [15]. The

value σ8 = 2.9×10−99 cm16/W8/s from Ref. [15] is three orders of magnitude larger

than the one used in Ref. [30]. With such an uncertainty in these parameters and

fluctuations of the experimental data, a single experiment is probably not sufficient

in order to adjust all the parameters of the refractive index Eq. (6.85).

Therefore, and based on Eq. (6.81), we suggest the following scaling measure-

ment. In Fig. 6.9 we show our results for the dependence of zsf on the initial pulse

intensity. We obtain considerable qualitative (and quantitative) differences depend-

ing on the sign and magnitude of n4. One can use this result to design an experiment

with varying beam power to find accurate values of n2 and n4 by fitting the mea-

sured experimental curve zsf(I0) with zsf obtained from Eq. (6.81). Afterwards, the

Eq. (6.28) derived from the first principles can be used for determining the plasma

response by fitting the value of Isat.

Summarizing this part, we can conclude that our approach provides a good

accuracy for theoretical analysis of experimental date and can therefore, in some
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situations, replase an extensive numerical simulations. Obtained by us simple ana-

lytical expressions can serve as as a tool for determination of the highly nonlinear

media responce parameters from comparison theoretical predictions with results of

experiments.
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Chapter 7

Theoretical study of the fused

silica ablation

The present chapter of the dissertation is devoted to a theoretical explanation of

the experimental results obtained in fused silica ablation by Englert and co-workers

and published in Refs. [35, 36].

A considerable interest to ablation in the modern scientific literature is based

on two related problems: a wide range of existing applications including micro-

machining of materials, thin film production, nanoparticle production etc; and the

necessity to understand the physics of laser-material interactions at the extremely

short time and high intensity when some usual approximations do not work. From

the application point of view it is very important to get a clean ablation with min-

imal debris and thermal damage such as melting and cracking to the surrounding

area. For this goal, it is important to have a solid knowledge about influence of the

laser pulse parameters on the final ablation crater. From the fundamental point of

view, a necessity to model the ablation will lead to construction of new theoretical

models for systems far from equilibrium and without small parameters.

7.0.1 Short review of the ablation results

Because of a huge number of publications devoted to ablation, we can mention here

only some of them.

One of the first papers on the ablation was published by Stuart et al. Ref. [107,

108]. The authors reported extensive laser-induced damage threshold measurements

on dielectric materials at wavelengths of 1053 and 526 nm for pulse durations tp

ranging from 140 fs to 1 ns.

They observed a qualitative differences in the morphology of the ablated area

for tp < 10 ps and for tp > 50 ps. A decreasing threshold fluence associated with a

gradual transition from the long-pulse, thermally dominated regime to an ablative

regime dominated by collisional and multiphoton ionization, and plasma formation
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was mentioned in the paper. A theoretical model based on electron production via

multiphoton ionization, Joule heating, and collisional (avalanche) ionization was put

forward in order to explain experimentally observed features. This model provided

a quantitative agreement with the experimental results.

Later, in Ref. [83] Lenzner et al. presented measurements of the optical break-

down threshold and ablation depth in dielectrics with different band gaps for laser

pulse durations ranging from 5 ps to 5 fs at a carrier wavelength of 780 nm. The

authors pointed out that for the pulse duration tp < 100 fs, the dominant channel

for free electron generation was found to be either impact or multiphoton ioniza-

tion depending on the size of the band gap. Observed multiphoton ionization rates

turned out to be substantially lower than the ones predicted by the Keldysh theory.

The sub-10-fs laser pulses investigated in this paper opened up the way to reversible

nonperturbative nonlinear optics (at intensities greater than 1014 W/cm2 slightly

below damage threshold) and to nanometer-precision laser ablation (slightly above

threshold) in dielectric materials.

Glezer et al. in Ref. [54] first demonstrated that sub-micron dimensional mi-

croexplosions could take place in fused silica and other materials using 100 fs pulses.

These voxels (volume pixels) could be formed in a range from threshold energy to

three times above it. They appeared to consist of spherical damage regions with

diameter increasing with the increase of laser energy in this fluence range. Self-

focusing is believed to also contribute to the small voxel size. For higher energies, a

head and lament structure was described with a length of 20-40 microns. No crack-

ing was observed at energies up to 100 times threshold. In contrast, 200 ps and 10

ns pulses produced more cracking and larger damaged areas.

In Refs. [58, 51], a group of authors presented the experimental and theoretical

studies of a single femtosecond laser pulse interaction inside a bulk of transparent

media. Sapphire, glass, polymer were taken as media examples. Such interaction

lead to drastic transformations in a solid resulting in a void formation inside a

dielectric. The laser pulse energy was absorbed within a volume of approximately

∼ 0.15 µm3 creating a pressure and temperature comparable to that in the core

of a strong multi-kilo-tons explosion. The material within this volume was rapidly

atomized, ionized, and converted into a tiny super-hot dense cloud of expanding

plasma that generated strong shock and rarefaction waves which resulted in the

formation of a void, whose diameter was about 200 nm for a 100 nJ pulse in sapphire.

In order to model the process of these small voids formation, the authors

suggested a theoretical model based on high-temperature plasma hydrodynamics

equations. This model confirmed the fact that unique states of matter characterized

by temperatures 105 K, heating rates up to the 1018 K/s, and pressures more than

100 times the strength of any material were created using a standard table-top laser

in well-controlled laboratory conditions.
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Laser induced damage was noted in fs laser cutting and drilling of glasses in

Ref. [117]. Varel et al. in Ref. [118] have investigated the drilling of channels through

quartz samples. A lens with 75 mm focal length was used with 120 fs pulses at 790

nm to obtain channels with 21 micron diameter through 1 and 2 mm thick quartz

samples. These narrow channels were observed in vacuum but not in atmospheric

pressure N2. More cracking was observed around the entrance hole than the exit

hole with relatively little observable damage within the bulk. An increase of the

peripheral damage around the entrance was also mentioned.

In parallel to the experimental results on the ablation features, theoretical

models were constructed and developed as well.

Strictly speaking, a model describing electron-lattice energy transfer should

be based of the system of kinetic (Boltzmann) equations. Such model would take

involve the electron-lattice energy exchange into consideration by a set of collision

integrals and the heat-mass flux by the gradient terms. However, because of the

extreme difficulty of these equations from the mathematical point of view, up to

now the problem was not researched as a whole. Based only on properties of the

collision integral (without proper account of the transfer processes) the solutions

were found by Rethfeld with collaborators in Refs. [62, 96, 97].

In Ref. [96] the author developed a new model describing the free-electron

generation in transparent solids under high-intensity laser irradiation. The multiple

rate equation model unified key points of detailed kinetic approaches and simple rate

equations to a widely applicable description, valid on a broad range of time scales.

This model provided us with a nonstationary energy distribution of electrons on

ultrashort time scales as well as the transition to the asymptotic avalanche regime

for longer irradiation.

Mass and energy transfer with the use hydrodynamic equations was modeled by

Bulgakova et al. in Refs. [23]. In this paper the authors theoretically studied the role

of rapid electron transport in defining the characteristics of material removal with

ultrashort laser pulses. A strong electrostatic ion repulsion force caused the break-up

of the surface of charged dielectric materials, while for semiconductors and metals

due to efficient neutralization the ablation received a more thermal appearance.

Finally, we have to notice that when studying ablation in transparent mate-

rials, not only the thermodynamical properties of material have to be taken into

account but its optical properties as well. Position of the beam (nonlinear) focus in

the material, its dependence on the intensity, temporal profile of the beam etc, can

dramatically change the ablation picture. It is exactly the problem of influence of

the nonlinear self-focusing on the results of ablation that we devote ourselves to in

this part of dissertation. Our research is based on the experimental ablation results

produced in Baumert AG and published in Refs. [35, 36].
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Figure 7.1: (Color online) Scheme of the crater profile observed in experiments in

Ref. [35]. One can observe a small hole with diameter d inside of the bigger one

with diameter denoted as W .

7.0.2 Material processing below the diffraction limit with

the help of the femtosecond laser pulse

In the experiment of Ref. [35] the femtosecond pulse shaping techniques [120] were

combined with a microscope setup for material processing [9]. Laser pulses with

∆t = 35 fs full width at half maximum (FWHM) pulse duration (measured in the

interaction region) and a central wavelength of 790 nm were provided by an amplified

Ti:Sapphire laser system.

For material processing phase shaped femtosecond pulses were focused onto

fused silica. The single shot pulse energy was adjusted by a motor driven gradient

neutral density filter and recorded with a calibrated photodiode. The sample was

translated by a 3-axis piezo table to a new position for each shot. In a typical

measurement pattern the authors varied the spectral phase mask, energy and focal

z-position. The threshold for material damage was determined visually from the

scanning electron microscopy (SEM) images.

In Ref. [35] the authors reported observation of the ablation craters. The

typical profile of a crater is schematically presented in Fig. 7.1. Its most unusual

feature is a reported presence of a small inner hole inside the crater.

The authors observed the expected increase of the damage threshold energy
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due to a reduction of intensity caused by the increase of cubic phase. For a vanishing

cubic phase the damage threshold of the bandwidth limited pulse was obtained. The

observed threshold energy for fused silica was about 30 nJ that was consistent with

the values reported in the literature [107, 83, 84, 33, 114]. Comparing thresholds

for positive and negative cubic phase parameters the authors found out that the

threshold for positive cubic phase was always lower than for negative one in case their

absolute values were identical. Because the pulses had identical fluence, spectrum

and pulse durations the authors concluded that the different asymmetric temporal

shapes, i.e. the energy distribution in time, have a significant influence on the

material damage threshold.

7.0.3 Theoretical model

Let us now discuss the experimental results obtained for a single laser pulse and

suggest a possible explanation. First of all, we have to understand a physical nature

of the small hole formation in the ablation crater.

Because of insufficient experimental evidence that the experiment was actually

performed with a pulse focused at the surface, we have to theoretically describe two

distinct cases: i) with the focus situated at the surface and ii) with the focus situated

under the surface. In the first case, the (nonlinear) beam propagation effects are

neglectable due to both relatively small n2 in air and a small distance between

the laser lens and the sample surface. In this case formation of the smaller hole

can be attributed to the electrons generation at the surface and the subsequent

Coulomb explosion. In the second case, the smaller hole appearance is related

to the thermodynamical processes: material heating inside the bulk followed by a

formation of the void due to extremely high pressures in the focal point. The focus

position in this case is affected by the nonlinear optics effects (i.e. defocusing due

to material ionization).

The laser beam is focused exactly at the surface

Let us assume that the laser beam generates at the surface the electron dencity

with a narrow peak over a Gaussian distribution (see Fig. 7.2) due to the effects

of avalanche ionization when light intensity is hight. We assume that, in this case,

the central region of the beam (where density of exited electrons is big) provides a

small inner hole. Here we are using a standard model describing the process of glass

ionization (see e.g. Ref. [30, 103])

∂tρ = σKρntI
K + ηρI (7.1)
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Figure 7.2: (Color online.) A suggested electron distribution which could hypothet-

ically lead to a double-hole crater shape.

Integrating this equation with initial conditions ρ(0) = 0 one arrives at the solution

ρ(t, x) =

∫ t

0

(A exp((−5t21 − 1/2Bπ1/2t3perf(t1/tp))/t
2
p)dt1) exp(1/2Bπ1/2tperf(t/tp)),(7.2)

where erf is the error function and tp id the pulse duration, A = σKρntI
K
0 e−Kx2/w0,

B = ηI0e
−x2/w0 .

The electron density as a function of time and space is presented in Fig. 7.3.

We see that the electron dencity manifests a super-Gaussian spatial shape that is

different from the profile in Fig. 7.2. It implies that the avalanche ionization and

the Coulomb explosion from the surface cannot provide formation of the inner hole

with the diameter observable diameter (see Fig. 1.3).

The laser beam is focused under the surface

Let us now consider the case when the pulse is focused on a certain point below the

surface of the sample.

Outer hole. We shall first describe the formation of the outer hole with the object

of obtaining a relation between parameters of the beam and the damage area. For

the Gaussian beam the fluence is given by a formula:

F (r) = F0 exp

(−2r2

r2
0

)
, (7.3)

91



Figure 7.3: (Color online.) Density of the excited electrons at the surface as a

function of the space x, and the time t, obtained from the solution of Eq. (7.1).

where r0 is the beam radius. For the circular Gaussian beam the fluence F is related

to the pulse energy as F = 2E/(πr2
0). Assuming that the threshold energy Eth exists,

the damage area shall expand to the radius rth in case the local fluence exceeds Eth.

So Eq. (7.3) can be rewritten as

Eth = E0 exp

(−2r2
th

r2
0

)
. (7.4)

Inverting this relations one can express the diameter of damage/ablation crater as

a function of the pulse energy for spatially Gaussian beam:

Wout(E) =
d0√
2

√

ln

(
E

Eth

)
, (7.5)

where d0 is the beam diameter, and Eth is the pulse threshold energy. Experimentally

measured outer hole diameter W is presented in Fig. 7.4 by blue circles. Analytical

blue curve is constructed on the basis of Eq. (7.5). Coincidence of the theoretical

and experimental results are obtained for Eth = 31 nJ, that is in accordance with

result of Ref. [35].

Inner hole. The formation of the inner hole can be attributed to the mechanisms

responsible for the void formation in Refs. [58, 51] (as in the previous paragraph

we are assuming that the beam was focused under the surface of the bulk of silica).

This void appears as a result of the laser pulse energy concentration in a small closed
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volume what leads to ionization and a strong heating of the glass in this volume

followed by a propagation of the shock and rarification waves from the center of

irradiated volume to the peripheral areas. This small void becomes observable in

post mort electronic microscope photos due to the common ablation from the surface

discussed above. For the first time this simulation was described in Refs. [58, 51].

Let us now, following to these papers, consider this process in more detail.

First of all, we have to notice that one can produce some detectable struc-

ture inside the material with the following properties: i) absorption length should

be large enough to provide an energy deliver to the focal space in the bulk ii) the

energy needs to be focused to the smallest possible volume, with dimensions of the

order of the laser wavelength, where the optical properties should be changed (ab-

sorption increased) under the laser action. Two particular properties of transparent

dielectrics, the large absorption length and the low thermal conductivity, make them

very suitable for that purpose.

The major mechanism of absorption in the low-intensity laser-solid interaction

is the interband electron transition. Since the photon energy is smaller than the

band-gap energy, the electron transitions are forbidden in linear approximation,

which corresponds to a large real and small imaginary part of the dielectric function.

The optical parameters in these conditions are only slightly changed during the

interaction in comparison to those of the cold material. The absorption can be

increased for shorter wavelengths if the incident light intensity increases to the level

where the multiphoton (and avalanche) processes become important. Under such

conditions the properties of the material and the laser-material interaction change

rapidly during the pulse. As the intensity increases above the ionization threshold,

the neutral material transforms into plasma, which absorbs the incident light very

efficiently. A localized deposition of the laser light creates a region of high energy

density. A void in the bulk of material is created if the pressure in absorption volume

significantly exceeds the Young’s modulus of a solid.

A detailed description of the laser-matter interaction process and laser-induced

material modification from the fist principles is a very difficult task even for modern

supercomputers. Therefore, we present hare a theoretical analysis which is spited

into a sequence of simpler interconnected problems: the absorption of laser light,

the ionization and energy transfer from electrons to ions, the heat conduction, and

hydrodynamic expansion, which we are describing below.

Absorbed energy. The absorbed laser energy per unit time and per unit volume,

Eabs, is related to to the divergence of the Pointing vector Eabs = −c div E×H/4π.

Replacing the magnetic field in accordance with the Maxwell equations, calculating

averaging over the laser period, expression for the absorbed energy density through
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the incident laser field intensity reads (see. Ref. [51]):

Eabs =
4n

(n+ 1)2 + κ2

2ωκ

c
I(t) ≡ AI(t), (7.6)

where n+ iκ is the complex refractive index, and I is the incident laser flux intensity

I.

Since duration of the pulse 35 fs in Ref. [35] is shorter than the usual electron-

phonon and electron-ion collision times Ref. [51], the single electron energy ǫe as a

function of time can be found from equation:

d(ρeǫe)

dt
= AI(t),

its integration gives

ǫe =
a

ρe

∫ t

0

I(t)dt. (7.7)

Electrin density must be found from the kinetic equation that taking into account

the electron-ion recombination processes reds

∂tρe = Wionρe − βeρ
2
eρi, (7.8)

where ρi is the ion density and assumed that the recombination proceeds mainly by

three-body collisions with one electron acting as a third body [51]. Equation (7.8)

gives value ρe ∼ 3 × 1023 cm−3. Magnitudes of other parameters in Eq. (7.7) for

λ = 800 nm are n = 1.20, κ = 1.16, A = 0.014 nm−1.

Now we are in a position to estimate both the electron temperature and pres-

sure at the end of the laser pulse. Taking integral over the pulse duration in Eq. (7.7),

we get the energy deposited into the focal volume. The latest can be estimated in ac-

cordance with Refs. [58, 51] Vabs = lsπr
2
0, where ls = c/ωk, finally Vabs ∼ 1−−2 µm3.

Then for 150 nJ pulse we get Qdep ≃ 6MJ/cm3 and for 240 nJ, the absorbed energy

is Qdep ≃ 10MJ/cm3. Electron thermal energy ρeTe is difference between the de-

posited energy Qdep and the energy required for the ionization ρi(QSi+2Q0). Taking

the last values from Refs. [51], we get the pressure Pe = ρeTe varied from ∼ 6 TPa

to ∼ 12 TPa dependently on the pulse energy.

Energy transfer from electrons to ions. The hydrodynamic motion can start

after the electrons transfer the absorbed energy to ions. The following processes are

responsible for the energy transfer from electrons to ions: recombination, electron-

to-ion energy transfer in Coulomb collisions, ion acceleration in the field of charge

separation gradient of electronic pressure , and electronic heat conduction.

In Ref. [51] there was noted that in the dense plasma created by the tight

focusing inside a bulk solid the major processes responsible for the electronto-ion

94



energy transfer are different from those in the laser ablation. The fastest process of

the energy transfer from hot electrons to the ions is the electron-ion recombination

by three-body collisions with one electron acting as a third body. This process takes

1 fs. The ion acceleration by the gradient of the electron pressure and the electron-

to-ion energy transfer by the Coulomb collisions both comprise 1 ps. This is the

time of hydrodynamic motion. The electronic nonlinear heat conduction becomes

important much later, about 15 ps after the pulse end.

Hydrodynamical stage of the dynamics. The hydrodynamic motion starts,

that is, the shock wave emerges from the energy deposition zone, when the electrons

have transferred their energy to ions. The total deposited energy builds up the

pressure that drives the shock wave. This pressure in several order of magnotude

exceeds the Youngs modulus for the majority of materials for example, Y = 400 GPa

for sapphire, and Y = 75GPa for the fused silica. Therefore, a strong shock wave

emerges that compresses the material up to the density ρ ≃ ρ0(γ+1)/(γ−1), where

γ is the adiabatic constant for the majority of cold solids is 3.

The compressed material behind the shock wave front can then be transformed

to another phase state in such highpressure conditions. After unloading the shock-

affected material undergoes transformation into a final state at normal pressure.

The final state may possess properties different from those in the initial state. We

consider in succession the stages of compression and phase transformation, pressure

release, and material transformation into a postshock state.

The shock wave propagating in a cold material loses its energy due to dis-

sipation, and it gradually transforms into the sound wave due to the work done

against the internal pressure, Y that resists material compression. Let us consider

for simplicity a spherically symmetric motion. The distance at which the shock front

effectively stops defines the shock-affected volume. Actually at this point the shock

wave converts into a sound wave, which propagates further into the material with-

out inducing any permanent changes to a solid. This stopping distance, rstop, can

be estimated from the condition that the internal energy in the volume inside the

shock front is comparable to the absorbed pulse energy: 4πr3
stopY/3 ≈ Eabs. Then

the stopping distance reads

rstop ≈ (3Eabs/4πY )1/3. (7.9)

The void formation inside a solid is only possible if the mass initially contained

in the volume of the void was pushed out and compressed. Thus after the microex-

plosion the whole mass initially confined in a volume with radius rstop resides in

a layer in between rstop and d, which has a density ρ = ρ0δ with a compression

factor δ > 1. The inner hole radius can be expressed through the compression ratio

din = rstop/C, C = (1 − 1/δ)−1/3. In such a way, we arrive at expressions for the
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Figure 7.4: (Color online.) Diameter of outer and inner holes versus the pulse

energy. Blue points represent experimentally measured diameters of the inner holes

from Ref. [35], blue curve is the theoretical prediction according to the Eq. (7.5);

red points denote radiuses of the inner holes from Ref. [35], the red curve is given

by Eq. (7.10).

diameter of the inner hole:

din(E) = la(E(1 − 1/δ))1/3, (7.10)

where parameters δ should be found from numerical solution to the hydrodynamic

equations δ = 1.14; and la ≃ 80 nm for sapfire and la ≃ 140 nm for fused silica.

Comparison of the analytical (red) curve with experimental points is presented

in Fig. 7.4. One can see that experimentally measured diameters of the inner holes

as a function of the pulse energy display a reasonable agreement with the analytical

curve. Additional details related to the temporal pulse shape can slightly change

the analytical prediction. For example, change the threshold energy

We have to notice that formation of the inner hole is possible only in case when

the pressure achievable in the focal volume is greater then the Yung’s modulus of

the dielectric under consideration. In case of fused silica in means that the deposited

energy must be greater then 1 nJ.

Summarizing this chapter of the dissertation, we can conclude that a successful

explanation of the experimental results of Ref. [35] is suggested. Constructed by us

curves, based on analytical expressions (7.10,7.5), are in a good agreement with

results of experiments. As a further prolongation of this work a temporal laser

pulse shape manipulation can be included into the analytical model that can give a

promising opportunity for the inner hole parameters manipulations.
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Chapter 8

Conclusions

The present dissertation was devoted to the construction of analytical solutions to

the problem of light propagation in media with a highly nonlinear response.

• We presented in detail the derivation and the range of the applicability of the

model equations. We noticed that the model can be significantly simplified

under the geometrical optics approximation. Accuracy of this approximation

was estimated and experimental conditions capable to provide us with a sat-

isfactory accuracy were discused.

• In the presented work, for the first time, an exact analytical solution

Eqs. (5.51,5.56) for the eikonal equations with refractive index being a saturat-

ing function of the electric field intensity was constructed. We demonstrated

that, in this particular case, the fact that the refractive index is a saturat-

ing function of the intensity, cannot arrest the beam collapse. An explicit

analytical formula (5.58) for the beam collapse position was presented.

• In the case when the analytical solution cannot be found exactly, we formulated

an alternative approach which allowed us to construct approximate analytical

solutions for arbitrary nonlinearity and boundary conditions. The advantages

of our approach in comparison to previous ones are the follows: i) it is appli-

cable to the light propagation equations with arbitrary refractive index and

boundary conditions; ii) it does not require any assumptions about fixed beam

profile in the media. It was demonstrated that the approximate solutions to

the eikonal equations constructed in this part of the dissertation are exact at

the beam axis, and only give a small error on the distance.

• Several particular cases of the nonlinear refractive indices were considered. We

constructed an analytical solution to the eikonal equation for the refractive

index being a power-type function of the intensity n(I) = n2KI
K . We derived

an explicit formula Eq. (6.17) for the self-focusing position and demonstrated
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that propagation distance is decreasing with the increase of the power of the

nonlinearity. Different forms (saturating, polynomial) of the refractive index

were studied as well. For a saturating form of the refractive index n(I) = 1−
e−nsI analytical solutions were obtained as well. These results were compared

with the ones received by making use of the Taylor series expansion. The

problem of the Taylor series convergence for self-focusing position was also

discussed.

• The advantages of the obtained analytical expressions for the self-focusing po-

sition over empirical Marburger formula Eq. (2.57) traditionally used as an

estimate of the nonlinear self-focusing position (see e.g. the latest reviews

[15, 30]) are as follows: our results are deduced from the analytical solu-

tions whose accuracy can be easily evaluated via direct substitution into the

light propagation equations; the obtained formulae explicitly demonstrate the

influence of the higher order nonlinear terms in the refractive index on the

self-focusing position.

• A general rule for calculation of the single filament intensity Eq. (6.28) in case

of arbitrary refractive index is formulated.

• Analytical expressions describing intensity and phase distributions for Kerr-

type refractive index and arbitrary initial intensity distribution were obtained.

It was demonstrated that if the initial intensity distribution has several local

maxima, the initial beam splits into several light channels. The expression for

the self-focusing positions for each light channel (filament) was obtained. It

scales as 1/
√
I0 as a function of the initial beam intensity I0. Summarizing, in

such a way, we demonstrated that the scaling law is determined by the form

of the refractive index n(I) but not the initial shape of the beam.

• Applicability of the obtained analytical results to concrete experimental con-

ditions is discussed. Comparing our analytical expressions with results of

detailed numerical simulations of the nonlinear Schrödinger equations from

Refs. [115, 24] we observed that both approaches yield the same magnitudes

of the self-focusing distance and the filament intensity. In such a way, the

rather simple analytical expressions obtained in the dissertation can, in some

cases, replace tedious numerical simulations.

• The last chapter of the dissertation was devoted to the theoretical explanation

of the experimental results obtained in Ref. [35]. It was demonstrated that the

observed ”hole-in-hole” crater structure can be described within the frame of

the theory suggested in Refs. [58, 51]. From the Fig. 7.4 one can see that the

experimental results are in good agreement with theoretical prediction.
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Most important formulas of the

dissertation

• The eikonal equation with refractive index n =
∫ I

0
n2Ie

−bIdI, where I is the

light intensity, n2 and b are constants, in (1+1) dimension has an exact ana-

lytical solution:

x− vz =
1√
2

√√√√
(

2e1−bI − 1 +
b2ev2

2α

)
+

√(
2e1−bI − 1 +

b2ev2

2α

)2

+
2b2ev2

α
,

Iz =

√
e

2α
ln
(
ebI−1((x− vz)2 + 1) − 1 +

√
(ebI−1((x− vz)2 + 1) − 1)2 − 1

)
.

Here, and throughout the dissertation, α = n2I0, where I0 is an initial beam

intensity, z denotes the propagation distance, x is a coordinate orthogonal to

the propgation distance, v is a eikonal derivative v ≡ ∂xS.

• In case of arbitrary refractive index and initial collimated beam, the eikonal

equations in (1+1) dimensions have approximate analytical solutions:

χϕ = Ψ1,

∫
dI

ϕ
− αI2z2 = Ψ2, I(Ψ1,Ψ2) = exp(−χ(Ψ1,Ψ2)

2)

where χ ≡ x− vz, ϕ ≡ ∂In(I), and Ψ1, Ψ2 are constants. n(I) is a nonlinear

part of the refractive index.

• Under the same boundary conditions but in (1+2) dimensions, the solutions

reads

Iϕx2 = Ψ1, 2αIz2e−χ2

= Ψ2 +

∫
dI

ϕ
, I(Ψ1,Ψ2) = exp(−χ(Ψ1,Ψ2)

2).

• For arbitrary refractive index n(I), the single filament intensity Isat is defined

by the formula:

∂In(I)|Isat = 0.
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