"Modellbasierte Diagnose

am Beispiel der Zylinderdrucksensorik von Ottomotoren"

Dissertation zur Erlangung des akademischen Grades

eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)

im Fachbereich Elektrotechnik der Universität Kassel

vorgelegt von

Dipl.-Ing. Gerald Rämisch

aus Isenbüttel

Tag der mündlichen Prüfung: 27.2.2009
1. Gutachter: Prof. Dr.-Ing H. Theuerkauf
2. Gutachter: Prof. Dr.rer.nat. L. Brabetz

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter und Angestellter der Forschung der Volkswagen AG.

Mein erster Dank gilt Herrn Prof. Dr.-Ing H. Theuerkauf, dem Leiter des Fachgebiets Antriebstechnik, für die Betreuung und Förderung dieser Arbeit durch seine wissenschaftliche Betreuung.

Herrn Prof. Dr.rer.nat. L. Brabetz danke ich für die Durchsicht der Arbeit und die Übernahme des Korreferats.

Bedanken möchte ich mich weiterhin bei den Mitarbeitern der Antriebselektronik-Forschung der Volkswagen AG, insbesondere bei Herrn Wehling und Herrn Dr. Henn, für die Anregungen und die fachliche Unterstützung bei den Untersuchungen zu dieser Arbeit.

An dieser Stelle danke ich auch den von mir betreuten Studenten für die im Rahmen ihrer Diplomarbeiten geleistete Unterstützung.

Meiner Familie danke ich für die moralische Unterstützung und verständnisvolle Rücksichtnahme bei der Anfertigung dieser Arbeit.

Isenbüttel, im Februar 2009

Gerald Rämisch

Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbständig und ohne unerlaubte Hilfe angefertigt und andere als die in der Dissertation angegebenen Hilfsmittel nicht benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen sind, habe ich als solche kenntlich gemacht. Kein Teil dieser Arbeit ist in einem anderem Promotions- und Habilitationsverfahren verwendet worden.

Veröffentlichungen über den Inhalt der Arbeit sind nur mit schriftlicher Genehmigung der Volkswagen AG zugelassen.

Die Ergebnisse, Meinungen und Schlüsse dieser Dissertation sind nicht notwendigerweise die der Volkswagen AG.

Inhaltsverzeichnis

Abkürzungsverzeichnis	VII
1. Einleitung	1
1.1 Aufgabenstellung	1
1.2 Stand der Technik	4
1.2.1 Diagnoseverfahren im Automobilsektor	4
1.2.2 Zylinderdruckgeführte Motorsteuerung	5
1.3 Ziele der Arbeit	8
2. Der ottomotorische Antrieb	11
2.1 Arbeitsweise des Ottomotors	11
2.2 Thermodynamische Grundlagen des Verbrennungsprozesses	16
2.2.1 Grundgrößen	16
2.2.2 Approximation des Zylinderdruckverlaufs	24
2.3 Motormechanik	32
2.3.1 Die Bewegungsgleichung der Kurbelwelle	32
2.3.2 Zahnfehlerkorrektur des Drehzahlsignals	34
2.3.3 Analyse der Drehungleichförmigkeit	38
2.4 Regelung und Steuerung von Ottomotoren	45
2.4.1 Grundfunktion der Motorsteuerung	45
2.4.2 Zylinderdruckbasierte Motorsteuerung	50

3.	Diagnose einer zylinderdruckgeführten Motorsteuerung	53
	3.1 Diagnoseverfahren für technische Prozesse	53
	3.2 Eigenschaften und Fehlerarten von Zylinderdrucksensoren	62
	3.3 Redundante Approximation des Drehmomentes	72
	3.4 Fehler-Symptom Kausalität	77
	3.5 Adaption der Empfindlichkeit eines Zylinderdrucksensors	88
4.	Erprobung der Diagnosefunktion am Versuchsträger	91
	4.1 Versuchsaufbau	91
	4.2 Algorithmus zur Diagnose und Adaption	94
	4.3 Ergebnisse	98
5.	Zusammenfassung	108
6.	Literaturverzeichnis	110
7.	Anhang	124

Abkürzungsverzeichnis

A	Zustandsmatrix eines Systems in Zustandsraumdarstellung
Aeff	Effektive Drosselklappenquerschnittsfläche
Ак	Kolbenfläche
ASP	Arbeitsspiel
a1,. a4,,aj	Parameter einer empirischen Funktionsapproximation
<u>a</u>	Parametervektor einer empirischen Funktionsapproximation
αz	Zündwinkel
В	Eingangsmatrix eines Systems in Zustandsraumdarstellung
b	Biaswert (Offset) eines Neuronalen Netzes (MLP)
С	Ausgangsmatrix eines Systems in Zustandsraumdarstellung
CD	Verbrennungsdauer (Combustion Duration)
C0,C1,C2	Parameter für empirisches Abgasgegendruckmodell
cd1,,cd4	Parameter zur Approximation der Verbrennungsdauer CD
Ср	Amplituden des tangentialdrucks p⊤ nach
dı	Parameter für empirische Übergangsfunktion des
d2	Parameter für empirische Übergangsfunktion des
DFT	Diskrete Fourier Transformation
$\Delta \phi$ ref	Kurbelwinkelverschiebung des OT-Bezuges
E(e _j)	Empfindlichkeit in Abhängigkeit eines Fehlertyps e _j

e _j	Fehlertyp (z.B. Verstärkungsfehler)
е	Gesamtsummenfehler bei Modellvalidierung
f, f1, f2,fi	Funktion
G1,G2	Regelungstechnische Übertragungsglieder (Regler, Strecke)
η	Fehlerdetektionsschwelle
η_{Vol}	Volumetrische Effizienz
η_{λ}	Lambdawirkungsgrad
η_{ZW}	Zündwinkelwirkungsgrad
Fz	Kraft auf Kolbenoberfläche
Fs	Kraft auf Kolbenoberfläche, Komponente in Pleuelrichtung
FN	Kraft auf Kolbenoberfläche, Querkomponente
F⊤	Kraft an der Kurbel, Komponente in Tangentialrichtung
Fr	Kraft an der Kurbel, Komponente in Radialrichtung
FFT	Schnelle Fouriertransformation (Fast Fourier Transform)
F _n {n _{mot} }	Fouriertransformierte n-ter Ordnung der Motordrehzahl
F _n {M _{gas} }	Fouriertransformierte n-ter Ordnung des Gasdrehmomentes
F ₁ {n _{mot} }	Betrag (Amplitude) der Fouriertransformierten 1.Ordnung
γ	Verhältnis der spezifischen Wärmen
h	Spezifische Enthalpie
HCCI	Homogeneous charge compression ignition
HiL	Hardware-in-the-loop
J	Mittleres Massenträgheitsmoment der Kurbelwelle

kk	Korrelationskoeffizient aus der Kreuzkorrelation
Км	Empirischer Proportionalfaktor OT-Fehler zu Moment
k p	Emp. Proportionalfaktor OT-Fehler zu Füllungsequivalent
κ	Polytropenexponent
κο, κι	Parameter zur empirischen Berechnung des
кw	Kurbelwelle
λ	Luft-/Kraftstoffverhältnis λ
λs	Schubstangenverhältnis
Lst	Stöchiometrisches Massenverhältnis Luft zu Kraftstoff
М	Parameter der Vibe-Funktion
m1,,m2	Vibe-Parameter
m 11, , m 24	Parameter zur Approximation der Vibe-Parameter m1, m2
m∟	Luftmasse
m _{L,zyl}	Luftmasse (im Zylinder)
m⊥, zyl	Luftmassenstrom vom Saugrohr in den Zylinder
ṁ iрк	Luftmassenstrom über die Drosselklappe
m _K	Kraftstoffmasse (im Zylinder)
mr.zvl	Restgasmasse (im Zvlinder)
mzvl	Gesamtmasse (im Zvlinder)
Me	Gasdrehmoment an der Kurbelwelle
IVIL	Lastmoment
Mr	Reibmoment

Mm	Massendrehmoment
Mi	Indiziertes Drehmoment
M i,opt	Indiziertes Drehmoment bei optimalem Wirkungsgrad
Mi1,, Mi4	Approximationen 14 des indizierten Drehmomentes
MPI	Multi-Point-Injection, zylinderselektive Saugrohreinspritzung
Nmot	Motordrehzahl, Mittelwert über 1 Kurbelwellensegment
NW	Nockenwelle
O.T.	Oberer Totpunkt des Kolbens
OBD	On-Board-Diagnose
ω	Kurbelwellenwinkelgeschwindigkeit
ψ	Psi-Funktion (Durchflussfunktion einer Drosselstelle)
PR	Druckverhältnis (Pressure Ratio)
Pf_R1 Pf_R6	Wahrscheinlichkeit einer Fehldetektion bei Residuen R1R6
Δр	Füllungsequivalent (Druckanstieg der Kompressionsphase)
Δρν	Druckabfall am Einlassventil
Δp_r	Restgaspartialdruck im Zylinder
PAbg	Abgasgegendruck
PAtm	Umgebungsdruck (Atmosphärendruck)
рт	Tangentialdruck (an der Kurbelwelle)
рs	Saugrohrdruck
pz	Zylinderinnendruck
Pz,mot	Zylinderinnendruck bei geschlepptem (ungefeuertem) Betrieb

pz'	Fehlerbehafteter Zylinderinnendruck
po	Umgebungsdruck
pz,evs	Zylinderinnendruck bei soeben geschlossenem Einlassventil
φ	Kurbelwinkel
Φ Q50	Kurbelwinkel bei 50% des Energieumsatzes
феос	Kurbelwinkel bei Verbrennungsende (End of Combustion)
фѕос	Kurbelwinkel bei Verbrennungsbeginn (Start of Combustion)
φevö	Kurbelwinkel beim Öffnen des Einlassventils
φavs	Kurbelwinkel beim Schließen des Auslassventils
φavö	Kurbelwinkel beim Öffnen des Auslassventils
φ	Phase einer komplexen Zahl in Polardarstellung
φ(n)	Phase n-ter Ordnung der Fouriertransformierten
QHV	Unterer Heizwert des Kraftstoffes
ľĸ	Kurbelradius
R	Residuum (Rest) aus der Differenz zweier Ausgangsgrößen
Rg	Allgemeine Gaskonstante
R1,,R6	Residuen 16, gebildet aus Momentenapproximationen
R1Z1_U	Fehlerbit Residuum 1, Zylinder 1, untere Schwelle
R1Z1_0	Fehlerbit Residuum 1, Zylinder 1, obere Schwelle
S	Signal-Geräuschabstand
SPL	Schwerpunktlageregelung
σ	Standardabweichung

XI

Tab	Abtastzeit
Ta	Ansauglufttemperatur
Tz	Gastemperatur im Zylinder
T _{z,evs}	Gastemperatur im Zylinder bei soeben geschlossenem
Ts	Gastemperatur im Saugrohr
Tm	Mechanische Zeitkonstante des Motors
Tıs	Gasdynamische Zeitkonstante des Saugrohres
Tt	Totzeit des Motors
U	Innere Energie
U.T.	Unterer Totpunkt des Kolbens
<u>u</u>	Eingangsgrößenvektor eines Systems / technischen
u(t)	Eingangsgröße (skalar) eines Systems
Vz(φ)	Zylindervolumen in Abhängigkeit des Kurbelwinkels
Vc	Kompressionsvolumen (Zylindervolumen im O.T.)
Vн	Hubvolumen
Vz,evs	Zylindervolumen bei soeben geschlossenem Einlassventil
Vs	Saugrohrvolumen
Verr	Multiplikativer Fehler der Sensorverstärkung
wi	i-te Wichtung eines Neuronalen Netzes (MLP)
w	Arbeit
Wi	Indizierte Arbeit (Hub- Volumenarbeit auf Basis einer
x(t)	Zustandsgrößenvektor

x'	Normierte Kolbengeschwindigkeit
Xi	i-ter Eingang eines Neuronalen Netzes
Xb	Normierte Durchbrennfunktion
Y	Ausgangsgrößenvektor eines Systems / technischen
y(t)	Ausgangsgröße (skalar) eines Systems
$\hat{\mathbf{y}}_{0},\hat{\mathbf{y}}_{1},,\hat{\mathbf{y}}_{k}$	Schätzgröße, Approximation der Ausgangsgröße

1. Einleitung

1.1 Aufgabenstellung

Die Elektronik zur Regelung und Steuerung von Ottomotoren hat in den vergangenen 20 Jahren eine sehr dynamische Entwicklung vollzogen. Beschränkte sich in der Zeit vor 1980 die Elektronik im Ottomotor im wesentlichen auf die Zündanlage, so umfasst die heutige Motorelektronik eine sehr umfangreiche Anzahl an elektrischen Mess- und Stellgliedern (Sensoren und Aktoren), die von einer digitalen Rechnereinheit (Motorsteuergerät) koordiniert werden [MM7][MM8].

Bild 1-1: Anzahl der Sensoren/Aktoren [MM5], [MM6]

Als Meilenstein dieser Entwicklung kann die Einführung des geregelten Drei-Wege-Katalysators mit Lambda-Sonde (λ -Sonde) bei Ottomotoren angesehen werden. Diese stellte einen Betrieb des Motors mit ausgeglichenem (stöchiometrischen) Luft-/Kraftstoffverhältnis sicher (λ -1geregelter Motorbetrieb). Die sich infolge der europäischen und amerikanischen Abgasgesetzgebung verschärfenden Grenzwerte [OBD1]

1

führten dazu, dass auch die Ansteuerung des Zündwinkels zusammen mit der Einspritzung in einem kompakten Motorsteuergerät integriert wurde [MM1].

In den kommenden Jahren setzte durch die weitere Verschärfung der Abgasgrenzwerte eine stetige Weiterentwicklung der Motorsteuergeräte ein, die neben der Erweiterung der elektrischen Sensoren und Aktoren am Ottomotor. wie z.B. externe Abgasrückführung oder Sekundärlufteinblasung, eine massive Ausweitung der Software-Funktionen zur Folge hatte. Aus einer kennfeldbasierter Vorsteuerung entwickelte sich eine teilweise modellbasierte Motorsteuerung, die die Zustände im Motor nachbildet, um zu jedem Zeitpunkt eine abgasoptimale Ansteuerung des Ottomotors zu erreichen [REG2]. Das grundsätzliche Motorenkonzept des Ottomotors mit λ -1-geregeltem Motorbetrieb wurde überwiegend beibehalten.

Einen wesentlichen Anteil an der Ausweitung der Software-Funktionen hatte die Einführung der On-Board-Diagnose (OBD) in den 90er Jahren in den USA. Sie machte eine Erkennung von fehlerhaften Bauteilen im laufenden Betrieb erforderlich, die eine Auswirkung auf die Emissionen des Ottomotors haben [OBD8]. Diese Vorgabe bedeutet gleichzeitig für zukünftige Motorenkonzepte und zusätzliche Sensoren/Aktoren, dass eine Plausibilisierung und Diagnose sichergestellt werden muss.

Gegen Ende der 90er Jahre rückte die Verringerung des Kraftstoffverbrauchs bei Ottomotoren zunehmend in den Blickpunkt. Dies war zum einen durch den Anstieg an Dieselfahrzeugen mit entsprechend geringem Verbrauch begründet. Zum anderen hatte sich die europäische Automobilindustrie (ACEA) zu einer Reduzierung des CO₂ Ausstoßes auf 140 g/km im Jahre 2008 verpflichtet, was einer Reduktion von 25% bezogen auf den durchschnittlichen Flottenverbrauch des Jahres 1995 entspricht. Dies führte zu einer intensiven Forschung an komplexen

2

Brennverfahren und Motorkonzepten wie Benzin-Direkteinspritzung mit Schichtladung, variable Ventilsteuerung oder Hubraumreduzierung mit Aufladung [MOT1],[MOT2]. Die Beherrschbarkeit dieser immer komplexeren Brennverfahren mit Umschaltung zwischen verschiedenen Betriebsarten stellt eine zusätzliche Herausforderung dar. Hinzu kommt, dass mit der Einführung der Abgasnorm Euro4 ab 2005 die Einhaltung der Emissionsgrenzen auch über eine längere Lebensdauer des Automobils (100.000 km) gewährleistet werden muss und somit die Alterung und die individuelle Ausprägung jedes Motors stärker zu berücksichtigen ist.

Eine Möglichkeit hierzu besteht in der Erfassung und Auswertung des Zylinderinnendrucks mit Hilfe eines Zylinderdruck- oder Brennraumdrucksensors. Diese Verwendung der Zylinderdruckinformation, auch als Indizierauswertung bezeichnet, ist bereits ein gängiges Verfahren bei der Motorenentwicklung [ZY17], jedoch ist nur in Nischenanwendungen, z.B. dem Magermixmotor, eine Umsetzung in Serienmotoren erfolgt [ZY30].

Als Haupthindernis für einen breiten Einsatz ist die zusätzliche Anforderung an die Rechenleistung des Motorsteuergerätes zu nennen, die neben der eigentlichen Zylinderdrucksensorik die Systemkosten erhöht. Die Weiterentwicklung bei leistungsfähigen Mikroprozessoren und kostengünstiger Zylinderdrucksensorik, wie dem fiber-optischen Sensor [ZY29], heben diese Kostennachteile zum Teil auf. Die komplexeren Brennverfahren und die erforderliche Berücksichtigung von Exemplarstreuung und Alterung eines Motors lassen die zylinderdruckgeführte Motorsteuerung als vielversprechende Option für den Ottomotor erscheinen.

Infolge der OBD-Gesetzgebung ist die Diagnostizierbarkeit des Zylinderdrucksensors eine zusätzliche Anforderung, die bei der Einführung einer entsprechenden Motorsteuerung berücksichtigt werden muss.

1.2 Stand der Technik

1.2.1 Diagnoseverfahren im Automobilsektor

Die Diagnose von technischen Prozessen hat nicht nur im Bereich der Motorsteuerung sondern auch in anderen Technikfeldern durch die zunehmende Komplexität der Systeme stark an Bedeutung gewonnen. In [OBD 19] wird ein umfassender Überblick über Diagnoseverfahren zur Erkennung von Instrumentenfehlanzeigen von 1970 bis 1984 aus den Bereichen der Luft- und Raumfahrt sowie der Reaktortechnik gegeben. Erst seit den 90er Jahren treten die Diagnoseverfahren aus dem Automobilsektor infolge der bereits erwähnten OBD-Gesetzgebung stärker in den Vordergrund. Diese fordert eine Erkennung von fehlerhaften Komponenten, die eine Auswirkung auf die Abgaszusammensetzung haben.

Die Anfangsphase der Entwicklung von Diagnosefunktionen war bestimmt durch rechenzeiteffiziente Auswerteverfahren, die meist mit direkter Signalkontrolle oder signalbasierten Auswerteverfahren durchgeführt wurden. Die Erkennung von Aussetzern sei hier als Beispiel angeführt [LU4], [LU32].

Modellbasierte Verfahren basieren auf physikalischen oder empirischen Gesetzmäßigkeiten eines technischen Prozesses. Die Rekonstruktion von physikalisch interpretierbaren Parametern oder Größen tritt erst in den letzten Jahren verstärkt auf, da sie einen höheren Rechenaufwand bedeutet. Werden interne Parameter rekonstruiert, spricht man vom Parameterschätzverfahren. In der Veröffentlichung von Fritz [OBD22] wurden an einer elektromechanischen Bremse die Reibparameter und die viskose Dämpfung eines solchen Systems rekonstruiert und über den Vergleich mit den Nominalwerten plausibilisiert.

4

Ebenso kann eine Rekonstruktion von Ausgangs- oder Zustandsgrößen bei dynamischen oder statischen Systemen mittels verschiedener Schätzgleichungen erfolgen. Die Differenz zweier Schätzgrößen deutet bei Abweichungen von Null auf mögliche Fehler hin. Anwendungsbeispiele sind die Diagnose von Einspritzsystemen bei Dieselmotoren [OBD7],[OBD21] oder die Leckerkennung im Saugrohr von Ottomotoren mittels neuronaler Approximatoren [OBD10].

Wird durch mehrere Schätzgrößen dasselbe Merkmal überbestimmt, spricht man in diesem Fall von analytischer Redundanz. In [OBD16] werden mit der Methode der analytischen Redundanz fahrdynamische Sensorgrößen eines elektronischen Bremssystems diagnostiziert. Aus insgesamt 8 Sensorinformationen werden die Modellgrößen Gierrate, Querbeschleunigung und Lenkwinkel mit verschiedenen Algorithmen bei gleichzeitiger Variation der Modelleingangsgrößen rekonstruiert.

Nyberg [OBD17] nutzt das Verfahren zur Fehlererkennung im Ansaugtrakt eines Ottomotors. Bei einem Ansaugsystem mit Luftmassenmesser, Saugrohr- und Umgebungsdrucksensor werden Paritätsgleichungen als Differenz aus Modell und Sensorgrößen gebildet, die unterschiedliche Empfindlichkeit gegenüber Sensorfehlern aufweisen. Diese Differenzen werden auch als Residuen bezeichnet [OBD23].

1.2.2 Zylinderdruckgeführte Motorsteuerung

Die Idee der zylinderdruckgeführten Motorsteuerung reicht bis in die 70er Jahre zurück, wo eine Regelung des Zündwinkels mit dem Kriterium der Lage des Spitzendrucks vorgestellt wurde [ZY13]. Da die Messung und Verarbeitung des Zylinderdrucksignals mit einem hohen Rechenaufwand verbunden ist, war die vollständige physikalische Auswertung in den damaligen Steuergeräten nicht realisierbar. Die Verfahren zur optimalen Regelung des Zündwinkels oder des Luft-/Kraftstoffverhältnisses λ waren daher eng verknüpft mit der echtzeitfähigen Extraktion geeigneter Merkmale aus dem Zylinderdrucksignal, die eine hohe Korrelation zu den Kenngrößen der vollständigen physikalischen Auswertung aufweisen.

Matekunas [ZY7] leitet zur Zündwinkelregelung ein Merkmal ab, welches das Druckverhältnis $PR(\phi)(,,Pressure Ratio")$ aus gemessenem Zylinderdruck $p_z(\phi)$ zum Schleppdruck $p_{z,mot}(\phi)$ als Maß für den Energieumsatz verwendet.

$$PR(\phi) = \frac{p_z(\phi)}{p_{z,mot}(\phi)}$$
(1-1)

Küssell [ZY28] gewinnt ein vergleichbares Merkmal unter Berechnung eines Differenzdruckintegrals, welches den Druck nach dem oberen Totpunkt (OT) von dem Wert vor OT subtrahiert und die Differenz integriert. Der Kurbelwinkel bei der 50%-Lage (Hälfte des gesamten Integrals) dient als Merkmal für die Zündwinkelregelung, ist aber nicht identisch mit der Schwerpunktlage der Verbrennung, die aus einer physikalischen Energieumsatzrechnung gewonnen wird (siehe Abschnitt 2.2, Bild 2.6).

Bild 1-2: Differenzdruckintegral

Beim Magermix-Ottomotor von Toyota wird in ZY[30] aus einzelnen Druckmesswerten über eine empirische Formel auf das indizierte Drehmoment geschlossen. Durch statistische Auswertung der Streuung dieses Drehmomentes wird anschließend die Magerlaufgrenze des Motors bestimmt. Zur Approximation des Luft-/Kraftstoffverhältnisses λ sind in [ZY3],[ZY4] empirische Ansätze dargestellt, die zur Kraftstoffmengenregelung eingesetzt werden können.

Aufgrund der gestiegenen Rechenleistungen der Steuergeräte findet die Berechnung und Verwendung der realen physikalischen Kenngrößen in neueren Untersuchungen zunehmende Verbreitung. Bargende [ZY24]

7

stellt ein Verfahren zur echtzeitfähigen Berechnung des Heizverlaufs (schnelle Heizverlaufsrechnung) vor, welches die Kurbelwinkellage bei 50% der umgesetzten Energie als Eingang einer Zündwinkelregelung zur Verfügung stellt. Die Berechnung der indizierten Arbeit und des Momentes anhand der physikalischen Definition der Hub-Volumenarbeit ist mit heutigen Steuergeräten in Echtzeit möglich und wird in Müller [ZY27] zur Adaption des Momentenmodells verwendet.

Zur Bestimmung der Frischluftmasse im Zylinder, auch als Füllung oder Zylindermasse bezeichnet, sind physikalisch basierte Ansätze mit empirischen Anteilen in den Veröffentlichungen von Veit [ZY8], Jippa [ZY22] und Küsell [ZY28] vorgestellt.

Schwerpunkt der bisherigen Veröffentlichungen Thema zum zylinderdruckbasierte Motorsteuerung ist die Nutzung des Zylinderdrucksignals zur Steuerung und Regelung. Die Diagnose spielt eine eher untergeordnete Rolle. In [OBD2] ist die Erkennung von Fehlern im Einspritzsystem eines Dieselmotors mit Merkmalen des Zylinderdrucks dargestellt. Bezüglich der Plausibilisierung und Fehlerkorrektur von Sensorfehlern des Zylinderdrucksensors wird in [ZY14] eine Methode zur Thermoschockkorrektur eines entsprechend verfälschten Drucksignals vorgestellt.

1.3 Ziele der Arbeit

Die zylinderdruckgeführte Motorsteuerung ist in der Lage, Alterungserscheinungen und individuelle Eigenschaften des Motors zu erfassen. da sie direkte Information über den eigentlichen Verbrennungsablauf liefert. Betrachtet man beispielsweise die Zündung, so stellt der Zündwinkel die vom Steuergerät berechnete Ausgabegröße dar. Sein Einfluss auf die Verbrennung kann durch eine Vorsteuerung daher nur für einen Motor im mittleren Streuband abgebildet werden. Die dabei nicht erfasst. Mit Hilfe individuelle Streuuna wird von Zylinderdrucksensorik entsprechende die kann durch Adaption Ansteuerung angepasst und eine optimale Verbrennung des Ottomotors gewährleistet werden [ZY27].

Voraussetzung hierfür ist die Zuverlässigkeit bei der Erfassung des Zylinderdrucks. Neben den bei Ottomotoren auftretenden zyklischen Schwankungen und Exemplarstreuungen können jedoch auch beim Zylinderdrucksensor unerwünschte Nebeneffekte auftreten, die sehr detailliert von Küsell [ZY28] beschrieben werden. Hierzu zählen die in Abschnitt 3.2 näher ausgeführten Hystereseeffekte sowie Verstärkungsfehler, auch als Drift der Empfindlichkeit bezeichnet. Hierbei wurden bei einem piezoelektrischen Zylinderdrucksensor Empfindlichkeitsänderungen von bis zu 24% und Hystereseeffekte von bis zu 8% nachgewiesen [ZY28]. Beim piezoresistiven Sensor betrugen die Empfindlichkeitsänderungen 4,2% und die Hysterese 5% [ZY28]. Treten solche Sensorfehler auf, dies SO hat Auswirkungen auf die zylinderdruckbasierten Regelalgorithmen. Wird beispielsweise eine Momentengleichstellung der Zylinder mit einem einzelnen fehlerhaften Drucksensor betrieben, so wird u.U. ein Momentenunterschied aufgrund einer Empfindlichkeitsänderung detektiert und ausgeregelt, der nicht auf physikalisch unterschiedlichen Momenten beruht und somit zu einer Komfortverschlechterung führen kann.

Nach der OBD-Gesetzgebung ist die Diagnostizierbarkeit des Motorsteuerungssystems vorgeschrieben, daher müssen bei Einsatz von Zylinderdrucksensoren auch Verfahren zur Diagnose dieser Sensoren verfügbar sein. Da man gleichzeitig das Ziel verfolgt, die physikalische Streuung des Motors zu adaptieren, ist eine Trennung zwischen Fehlern in der Zylinderdrucksensorik und dieser physikalisch motivierten Abweichung des Motorverhaltens zwingend erforderlich. Das Ziel dieser Arbeit ist daher die Untersuchung eines Verfahrens, welches die Plausibilisierung des Signals eines Zylinderdrucksensors durchführt. Diese Diagnosefunktion soll damit einen sicheren Betrieb von zylinderdruckgeführten Motorsteuerungssystemen gewährleisten und kann als Ergänzung zu den vorgestellten Ansätzen zur Regelung und Steuerung angesehen werden.

2. Der ottomotorische Antrieb

2.1 Arbeitsweise des Ottomotors

Seit seiner Erfindung im 19. Jahrhundert hat der Ottomotor als Antrieb für den Pkw eine unverändert hohe Bedeutung, auch wenn der Dieselmotor den letzten Jahren eine zunehmende Konkurrenz darstellt. in Hauptunterscheidungsmerkmal für Otto- und Dieselmotor ist der verwendete Kraftstoff und die daraus resultierenden Unterschiede im Verbrennungsprozess. Während Dieselkraftstoff aufgrund seiner Reaktionswilligkeit sehr stark zur Selbstzündung neigt und explosionsartig der Ottokraftstoff eher reaktionsträge verbrennt. ist und der Verbrennungsprozess muss durch Fremdzündung mit einer Zündkerze initiiert werden. Auch wenn bei modernen Brennverfahren, wie dem homogen selbstzündenden Ottomotor (HCCI), die Zündkerze zur Entflammung nicht mehr erforderlich ist, spricht man aufgrund des verwendeten Ottokraftstoffs von einem Ottomotor.

Die Unterteilung der Ottomotoren wird in Pischinger [ZY16] nach verschiedenen Kriterien durchgeführt, wie beispielsweise der Bauform (Boxer-Motor, Reihenmotor, V-Motor) oder der Taktzahl (2-Takt-Motor, 4-Takt-Motor). Hier soll eine Eingrenzung auf die nach dem heutigen Stand der Technik gängigste Ausführung des Ottomotors als 4-Takt Hubkolbenmotor erfolgen, dessen Arbeitstakte und resultierender Zylinderinnendruck im Folgenden kurz dargestellt sind:

Bild 2-1: Arbeitstakte des Ottomotors

Für das im Rahmen dieser Arbeit dargestellte Diagnoseverfahren stellen die Unterscheidungsmerkmale Drehmomenterzeugung, auch als

Laststeuerung oder Lastregelung bezeichnet, sowie die Art der Gemischbildung eine wichtige Randbedingung dar. Sie haben entscheidenden Einfluss auf die Modellbildung und die in Abschnitt 3.4 beschriebenen Auswirkungen möglicher Fehler.

Bild 2-2: Unterteilung der Ottomotoren

Die Form der Gemischaufbereitung wird nach interner und externer Gemischaufbereitung unterschieden [ZY16]. Beim homogenen Saugrohreinspritzer findet eine externe Gemischaufbereitung im Saugrohr statt, in das vor dem Ansaugtakt der Kraftstoff eingespritzt wird. Dort erfolgt weitestgehend die Kraftstoffverdampfung und Homogenisierung (Gleichverteilung) des Gemisches, bevor es angesaugt, verdichtet und verbrannt wird. Beim homogenen Direkteinspritzer wird der Kraftstoff bereits während der Ansaugphase direkt in den Zylinder gespritzt (innere Gemischaufbereitung), wodurch ein homogenes Gemisch im Brennraum entsteht. Der geschichtete Direkteinspritzer arbeitet ebenfalls mit innerer Gemischaufbereitung, spritzt den Kraftstoff jedoch erst in der Kompressionsphase ein und verbrennt mit einer lokal um die Zündkerze verteilten Gemischwolke.

Verfahren Das zur Bereitstellung des Drehmomentes des Verbrennungsmotors stellt ein weiteres wichtiges Differenzierungsmerkmal dar. Pischinger unterscheidet in [ZY16] zwischen Quantitäts- und Qualitätsregelung. Im ersten Fall wird die Gemischzusammensetzung Luft-Kraftstoffverhältnis bzw. das konstant gehalten und die Drehmomentenanforderung über die Menge des homogen verteilten Gemisches im Zylinder sichergestellt. Das Verhältnis von Luftmasse m∟ zu dem Produkt aus Kraftstoffmasse mk und stöchiometrischem Luft-Kraftstoffverhältnis L_{st} wird durch den dimensionslosen Faktor λ beschrieben:

$$\lambda = \frac{m_L}{L_{st} \cdot m_K} \tag{2-1}$$

Das stöchiometrische Luft-Kraftstoffverhältnis variiert je nach Kraftstoffart und ist insbesondere vom Sauerstoffgehalt des Kraftstoffes abhängig. Bei einer stöchiometrischen Verbrennung erfolgt eine vollständige Reaktion des Gemisches ohne Sauerstoff- oder Kraftstoffrestbestandteile und der Faktor λ beträgt in diesem Fall 1. Dieser λ -1-geregelte Motorbetrieb wird beim homogenen Saugrohr- und Direkteinspritzer aus Emissionsgründen überwiegend angewandt, da ein 3-Wege-Katalysator die entstehenden Schadstoffkomponenten, wie Stickoxide oder Kohlenwasserstoffe, in dieser Betriebsart optimal konvertiert. Der im Hinblick auf den Kraftstoffverbrauch günstigere Magerbetrieb mit Luftüberschuss (λ >1) hat beim Saugrohreinspritzer als Mager-Mix-Motor in den 80er Jahren aufgrund der höheren Stickoxidemissionen nur eine geringe Verbreitung gefunden. Bei der Qualitätsregelung wird die Gemischzusammensetzung verändert, i.d.R. wird der Motor mit hohem Luftüberschuss ($\lambda >>1$) betrieben und das Drehmoment allein über die Kraftstoffmenge eingeregelt. Neben dem geschichteten Otto-Direkteinspritzer mit spezieller Abgasnachbehandlung wird dieses Verfahren beim Dieselmotor angewendet.

Im Rahmen dieser Arbeit wird ein homogener Saugrohreinspritzer mit λ -1geregeltem Motorbetrieb untersucht. Diese Randbedingungen der quantitätsbasierten Lastregelung weist – wie im Abschnitt 3 erläutert wird eine Relevanz für das Diagnoseverfahren auf. Speziell das in Abschnitt 3.5 dargestellte Adaptionsverfahren setzt diese Randbedingungen voraus.

2.2 Thermodynamische Grundlagen des

Verbrennungsprozesses

2.2.1 Grundgrößen

Die Messung des Zylinderinnendrucks durch entsprechende Sensoren ermöglicht eine direkte Auswertung des im Zylinder stattfindenden Verbrennungsprozesses. In diesem Abschnitt sollen die thermodynamischen Zusammenhänge und Größen kurz beschrieben werden, soweit sie für das Verständnis des modellbasierten Diagnoseverfahrens erforderlich sind. Ausführliche Darstellungen finden sich in [ZY17, ZY22].

Indizierte Arbeit, indiziertes Moment

Bei Kenntnis der geometrischen Abmessungen (Kompressionsvolumen Vc, Kolbenfläche Ak, Kurbelradius rk und Schubstangenverhältnis λ_s) kann für einen einfachen Kurbeltrieb ohne Schränkung und Kolbendesachsierung [MTM5] das Volumen im Zylinder Vz zu jedem Kurbelwinkel ϕ bestimmt werden:

$$V_{z}(\phi) = V_{c} + A_{k} \cdot r_{k} \cdot \left(1 - \cos(\phi) + \frac{1}{\lambda_{s}} - \frac{1}{\lambda_{s}} \cdot \sqrt{1 - \lambda_{s} \cdot \sin^{2}(\phi)}\right)$$
(2-2)

Der gemessene Zylinderdruck pz und das Volumen Vz können so als Trajektorie im p-V-Zustandsdiagramm dargestellt werden.

Bild 2-3: p-V-Zustandsdiagramm

Eine zentrale thermodynamische Kenngröße für einen Verbrennungsmotor stellt die Berechnung der Hub-Volumenarbeit, auch als indizierte Arbeit bezeichnet, dar. Sie ergibt sich aus der eingeschlossenen Fläche im p-V-Zustandsdiagramm:

$$W_i = \int p_z \, dV_z \tag{2-3}$$

Das im Arbeitstakt erzeugte mittlere indizierte Drehmoment ist definiert als:

$$M_i = \frac{W_i}{4\pi} \tag{2-4}$$

Füllungsäquivalent

Neben der Kenntnis des Drehmomentes ist auch die Kenntnis der Luftmasse im Zylinder mL,zyl von Bedeutung, da diese bei einer Quantitätsregelung die zentrale Regelgröße darstellt.

Bild 2-4: Zylindermasse beim Schließen des Einlassventils

Betrachtet man das System im Zylinder bei soeben geschlossenem Einlassventil, also genau zwischen den Arbeitstakten Ansaugen/Kompression, so lässt sich die gesamte Gasmasse im Zylinder m_{zyl} mit Hilfe der allgemeinen Gasgleichung beschreiben als:

$$m_{zyl} = \frac{p_{z, \, evs} \cdot V_{z, \, evs}}{R_g \cdot T_{z, \, evs}}$$
(2-5)

mit den Größen Zylinderdruck, -volumen und -temperatur bei soeben geschlossenem Einlassventil (pz,evs, Vz,evs, Tz,evs) sowie der allgemeinen Gaskonstanten Rg. Die Gesamtzylindermasse setzt sich aus Frischluftmasse mL,zyl, verdampfter Kraftstoffmasse mk,zyl und Restgasmasse mr,zyl zusammen:

$$m_{zyl} = m_{L, zyl} + m_{k, zyl} + m_{r, zyl}$$
(2-6)

Die bei einigen Ottomotorkonzepten über ein Ventil ins Saugrohr zurückgeführte Abgasmasse (externe AGR) wird in diesem Anwendungsfall nicht berücksichtigt, müsste ansonsten ebenfalls zur Gesamtzylindermasse dazugerechnet werden. Bei λ -1-geregeltem Motorbetrieb stehen Luft- und Kraftstoffmasse in einem festen Verhältnis, so dass die Kraftstoffmasse in Gleichung 2-1 substituiert werden kann.

$$m_{zyl} = m_{L, zyl} \left(1 + \frac{1}{L_{st}}\right) + m_{r, zyl}$$
 (2-7)

Eingesetzt in Gleichung 2-5 ergibt sich:

$$m_{L, zyl} = \frac{L_{st}}{1 + L_{st}} \left(\frac{p_{Z, evs} \cdot V_{Z, evs}}{R \cdot T_{Z, evs}} - m_{r, zyl} \right)$$
(2-8)

Die Frischluftmasse im Zylinder ist also linear vom Zylinderdruck zum Zeitpunkt des soeben geschlossenen Einlassventils pz,evs abhängig, wenn die sonstigen Einflussgrößen als konstant angenommen werden können.

Das Zylindervolumen V_{z,evs} kann bei Kenntnis der Motorgeometrie aus der Volumenfunktion in Abhängigkeit des Kurbelwinkels ϕ berechnet werden und ist bei Motoren ohne variable Verdichtung konstant. Das stöchiometrische Luftverhältnis L_{st} variiert je nach Kraftstoffsorte von 14,2 bis 14,7 [ZY17] und ist demzufolge eine langsam veränderliche Größe.

Die Temperatur im Zylinder T_{z,evs} stellt eine Störgröße dar, die insbesondere bei kaltem Motor sowie bei Schwankungen der

Ansauglufttemperatur variiert und durch entsprechende Modelle [ZY8],[ZY27] abgebildet werden kann.

Die Restgasmasse variiert gemäß den FVV-Untersuchungen [ZY32] je nach Drehzahl, Saugrohrdruck und Abgastemperatur und kann demzufolge nicht als konstant angenommen werden.

Um nun diese Störeinflüsse beim Versuchsmotor abzuschätzen, wurde mit einem Luftmassenmesser die Frischluftmasse im Zylinder bei Variation der Luftzufuhr über die Drosselklappe bestimmt und über der zylinderdruckbasierten Größe pz,evs aufgetragen:

Bild 2-5: Messung der Frischluftmasse im Zylinder

Wie aus Gleichung 2-8 hervorgeht, ist die Frischluftmasse im Zylinder näherungsweise proportional zum Zylinderdruck zum Zeitpunkt des soeben geschlossenen Einlassventils , p_{z,evs} . Die Störeinflüsse von Restgasmasse m_{r,zyl} und Zylindertemperatur T_{z,evs} führen zu keiner nennenswerten Verzerrung der Charakteristik.

Jippa führt in [ZY22] das Füllungsäquivalent ∆p ein, welches einen Druckanstieg im Zylinder als Maß für die Gesamtmasse im Zylinder ermittelt:

$$\Delta p = \sum_{\phi=\phi_0}^{\phi=\phi_1} p_z(\phi) - p_z(\phi_0)$$
(2-9)

Über die Annahme einer polytropen Zustandsänderung

$$\frac{\rho z(\phi)}{\rho z, evs} = \left(\frac{Vz, evs}{Vz(\phi)}\right)^{\kappa}$$
(2-10)

während der Kompression kann der proportionale Zusammenhang von ∆p zum Zylinderdruck bei soeben geschlossenem Einlassventil p_{z,evs} nachgewiesen werden.

$$\Delta \boldsymbol{p} = \boldsymbol{p}_{\boldsymbol{z}, \, \boldsymbol{evs}} \cdot \sum_{\phi=\phi_0}^{\phi=\phi_1} \left(\frac{\boldsymbol{V}_{\boldsymbol{z}, \, \boldsymbol{evs}}}{\boldsymbol{V}_{\boldsymbol{z}}(\phi)} \right)^{\kappa} - \left(\frac{\boldsymbol{V}_{\boldsymbol{z}, \, \boldsymbol{evs}}}{\boldsymbol{V}_{\boldsymbol{z}}(\phi_0)} \right)^{\kappa}$$
(2-11)

Dieses Füllungsäquivalent ∆p weist den Vorteil auf, dass es gegenüber Schwankungen des Absolutniveaus des Zylinderdrucksignals unempfindlich ist, der insbesondere bei piezoelektrischen Sensoren auftritt. Das vom Fahrer geforderte Drehmoment wird somit bei festem Luft-/ Kraftstoffverhältnis über die Frischluftmasse im Zylinder eingestellt, die näherungsweise dem Δp entspricht.

Energieumsatz und Schwerpunktlage

Eine näherungsweise lineare Abhängigkeit zwischen indiziertem Moment und der Gasmasse im Zylinder ergibt sich nur dann, wenn der Energieumsatz der Verbrennung in einem bestimmten Kurbelwinkelfenster abläuft, das einem optimalen Wirkungsgrad entspricht.

Die Ermittlung des Energieumsatzes erfordert eine thermodynamische Analyse des Verbrennungsvorgangs. Hierbei wird die Umwandlung der im Kraftstoff enthaltenen Energie dQ in innere Energie dU und mechanische Energie dW beschrieben. Bei geöffneten Ventilen findet in den Arbeitstakten Ausstoßen und Ansaugen (vgl. Bild 2.1) aufgrund des Massenstromes dm mit der spezifischen Enthalpie h zusätzlich ein Energieaustausch mit der Umgebung statt.

$$\frac{dU}{d\phi} = \frac{dQ}{d\phi} + \frac{dW}{d\phi} + h\frac{dm}{d\phi}$$
(2-12)

Eine entsprechende Umformung (siehe Anhang C) führt zu der Energieumsetzung im Zylinder in Abhängigkeit des Kurbelwinkels $Q(\phi)$. Normiert auf die umgesetzte Gesamtenergie Q_{max} ergibt sich der normierte differentielle Energieumsatz dX_b(ϕ) :

$$\frac{dX_b}{d\phi} = \frac{\gamma}{\gamma - 1} \cdot p_z \cdot \frac{dV_z}{d\phi} + \frac{1}{\gamma - 1} \cdot V_z \cdot \frac{dp_z}{d\phi}$$
(2-13)
Durch Integration erhält man den normierten Energieumsatz X_b, der bei dem zugrunde liegenden Ottomotor den folgenden Verlauf aufweist:

Bild 2-6: Energieumsatz

Die Berechnung des normierten Energieumsatzes X_b setzt die Messung des Zylinderdrucks p_z voraus. Soll aus einem vorgegebenen Energieumsatz ein Zylinderdruck berechnet werden, kann X_b durch eine spezielle Exponentialfunktion (Vibe-Funktion) angenähert werden [ZY17]:

$$X_{b} = 1 - \exp\left(-m\left(\frac{\phi - \phi_{SOC}}{CD}\right)^{m_{2}+1}\right)$$
(2-14)

Die Vibeparameter m₁ und m₂ sowie die Verbrennungsdauer CD hängen vom jeweiligen Betriebspunkt des Motors ab. Für den Kurbelwinkel bei Verbrennungsbeginn ϕ soc wird unter Vernachlässigung des Zündverzuges näherungsweise der Zündwinkel angenommen. Der Kurbelwinkel bei 50% des Energieumsatzes (ϕ _{Q50}) wird auch als Schwerpunktlage der Verbrennung bezeichnet und stellt eine wichtige Kenngröße dar.

2.2.2 Approximation des Zylinderdruckverlaufs

Für den Versuchsmotor wurden Untersuchungen zur echtzeitfähigen Approximation des Zylinderdrucks durchgeführt [DIP3]. Das Ziel war die Integration einer Zylinderdrucksimulation in eine bestehende HiL-Simulationsumgebung. Dies gestattet den Test von Diagnosealgorithmen bereits im Labor, beispielsweise durch Variation von Sensorparametern im Simulationsmodell.

Die Approximation soll anhand der in Bild 2-3 dargestellten 4 Arbeitstakte des Ottomotors (Ausstoßen, Ansaugen, Verdichten, Verbrennen) erläutert werden:

Ausstoßen

Die physikalische Berechnung des Zylinderdrucks in der Ausstoßphase führt Pischinger [ZY17] basierend auf dem 1.Hauptsatz der Thermodynamik aus. Ein vereinfachender empirischer Ansatz findet sich in Bargende [ZY32]. Hier wird der Abgasgegendruck p_{Abg} über die folgende Polynomgleichung berechnet:

$$pAbg = pAtm + C_0 + C_1 \cdot (mL + m\kappa)^2 \cdot nmot^2 + C_2 \cdot (mL + m\kappa)^4 \cdot nmot^4$$
(2-15)

Da der Zylinderdruck in der Ausstoßphase vom Motorsteuergerät nicht zur Berechnung von Merkmalen herangezogen wird, wird aus Gründen der Echtzeitfähigkeit auf die aufwändige Modellierung der hinteren Terme (C₀,C₁,C₂) verzichtet. Der Zylinderdruck p_z im Kurbelwinkelintervall wird vom unteren Totpunkt bis zum Öffnen des Einlassventils dem Abgasgegendruck p_{Abg} bzw. dem Umgebungsdruck p_{Atm} gleichgesetzt:

$$p_{Z}(\phi)|_{\phi UT}^{\phi E V \ddot{O}} \approx p_{Abg} \approx p_{Atm}$$
 (2-16)

Der Modellierungsfehler am verwendeten Versuchsmotor beträgt hierbei maximal 15% (vgl. [DIP3]).

Bild 2-7: Simulation des Ausstoß und Ansaugtaktes

Der Übergang des Zylinderdrucks vom Öffnen des Auslassventils bis zum unteren Totpunkt des Kolbens wird durch eine anhand von Messdaten parametrierbare Übergangsfunktion beschrieben:

$$p_{Z}(\phi)\Big|_{\phi A V \ddot{O}}^{\phi U T} = p_{Z}(\phi A V \ddot{O}) + \left(p_{A t m} - p_{Z}(\phi A V \ddot{O}) \cdot \left(1 - \exp(-d_{1} \cdot \left(\frac{\phi - \phi A V \ddot{O}}{\phi U T - \phi A V \ddot{O}}\right)^{d_{2}}\right)\right)$$

$$(2-17)$$

Ansaugen

In der Ansaugphase fließt durch das geöffnete Einlassventil Luft in den Zylinder, dessen Druck sich in etwa auf dem Niveau des Saugrohrdrucks einstellt [ZY20]. Aus Gründen der Echtzeitfähigkeit werden die geringen Druckverluste am Einlassventil vernachlässigt und der Zylinderdruck in der Ansaugphase durch den Saugrohrdruck angenähert. Beim Übergang zwischen Ausstoß- und Ansaugphase finden zusätzlich Gaswechselvorgänge statt, auf deren Modellierung verzichtet wird, da sie für die Berechnung der Merkmale (z.B. Füllungsäquivalent) keine Relevanz haben.

Verdichten

Der Druckanstieg in der Kompressionsphase vor der Verbrennung kann als polytrope Zustandsänderung gemäß Gleichung 2-10 beschrieben werden.

Der Polytropenexponent κ beschreibt hierbei den Wärmeverlust über die Zylinderwand, der gegenüber einer adiabaten Zustandsänderung auftritt. Schleppmessungen am Versuchsmotor (siehe Anhang A) haben gezeigt, dass bei höheren Drehzahlen ein größerer Polytropenexponent angesetzt werden muss.

Bild 2-8: Zylinderdruckverläufe im Schlepp

Die abweichenden Kompressionsverläufe bei gleichem Saugrohrdruck und unterschiedlichen Drehzahlen sind durch größere Wandwärmeübergänge bei niedrigen Drehzahlen begründet. Anstatt ein für Echtzeitanwendungen zu aufwändiges Zylinderwandmodell zu verwenden, kann der wirksame Polytropenexponent mit hinreichender Genauigkeit durch eine empirische lineare Näherung beschrieben werden:

$$K(n_{mot}) = K_0 + K_1 \cdot n_{mot}$$
(2-18)

mit $\kappa_0=1,32$ und $\kappa_1=2,2*10^{-5}$ beim verwendeten Zylinderdruckmodell.

Verbrennung

Bei der Verbrennung im Zylinder erfolgt eine Umsetzung der chemischen Energie des Kraftstoffes in thermische und mechanische Energie, die zu einem signifikanten Druck- und Temperaturanstieg führt.

Hierzu wurde durch eine entsprechende Energieumsatzrechnung mittels 1-Zonen-Modell (siehe Anhang C) der normierte Brennverlauf dX_b nach Gleichung 2-13 ermittelt. Durch nichtlineare Optimierungsverfahren wurde die Vibe-Funktion an verschiedenen Betriebspunkten parametriert. Mit der Annahme von λ =1 wurden die Vibe-Parameter m₁, m₂ sowie die Verbrennungsdauer CD durch eine empirische Funktion in Abhängigkeit der Haupteinflussgrößen Drehzahl n_{mot}, Saugrohrdruck p_s und Zündwinkel α_z approximiert:

$$m_{1} = m_{14} \cdot \left(Ps^{m11} \cdot n_{mot}^{m12} \cdot (20 + \alpha_{z})^{m13} \right)$$

$$m_{2} = m_{24} \cdot \left(Ps^{m21} \cdot n_{mot}^{m22} \cdot (20 + \alpha_{z})^{m23} \right)$$

$$CD = cd_{4} \cdot \left(Ps^{cd1} \cdot n_{mot}^{cd2} \cdot (20 + \alpha_{z})^{cd3} \right)$$

(2-19a-c)

Die Vorgabe des Energieumsatzes gestattet wiederum die Rückrechnung auf den Zylinderdruck und ist im Anhang ausführlich dargestellt. Der Zusammenhang für den Zylinderdruck mit dem unteren Heizwert des Kraftstoffes Qhv, der Kraftstoffmasse mk und dem Verhältnis der spezifischen Wärmen γ lautet:

$$\frac{dp_z}{d\phi} = Q_{hv} \cdot m_k \ \frac{dX_b}{d\phi} \cdot \frac{(\gamma - 1)}{V_z} - \frac{\gamma \cdot p_z}{V_z} \frac{dV_z}{d\phi}$$
(2-20)

$$p_z(\phi) = p_z(\phi - 1) + \frac{dp_z}{d\phi}$$
(2-21)

Simulationsergebnisse

Beim stationären Betrieb des Ottomotors treten auch bei konstanten Einflussgrößen sogenannte zyklische Schwankungen auf. Die Simulation Zylinderdruck nur im kann den Mittel ohne diese zyklischen Schwankungen nachbilden. Ergebnis zeigt Das einen mittleren Druckverlauf bei konstanten Randbedingungen (Motordrehzahl = 2000 U/min, Saugrohrdruck 500 mbar, Zündwinkel = 24.375°v.OT):

Bild 2-9: Zylinderdruckverläufe, simuliert und gemessen

Diese Approximation des Zylinderdruckverlaufs erlaubt bereits in einer Offline-Simulation einige Abschätzungen bezüglich Sensorfehler des Zylinderdrucksensors. So soll die Annahme überprüft werden, dass bei λ -1-geregeltem Motorbetrieb das indizierte Moment über die Menge der Luft-/ Kraftstoffmasse im Zylinder eingestellt werden kann. Hierzu wird der

normierte Energieumsatz mit identischen Vibe-Parametern konstant gehalten. Der Druck bei soeben geschlossenem Einlassventil wird durch Variation des Saugrohrdrucks erhöht und mit diesen Einflussgrößen der Zylinderdruck approximiert. Anschließend werden die Kenngrößen indiziertes Moment M_i und Füllungsäquivalent Δp aus dem Zylinderdruckverlauf berechnet:

Bild 2-10: Simulation von Mi und Δp

2.3 Motormechanik

2.3.1 Die Bewegungsgleichung der Kurbelwelle

Nach der thermodynamischen Betrachtung der Vorgänge im Zylinder soll die Umsetzung der translatorischen Bewegung des Kolbens über den Kurbeltrieb in eine rotierende Bewegung der Kurbelwelle erläutert werden. Der im Zylinder erzeugte Druck wirkt als Kraft F_z auf die Kolbenoberfläche und wird beim Hubkolbenmotor über die Pleuelstange und Kurbel auf die Kurbelwelle übertragen:

Bild 2-11: Kraftzerlegung am Kurbeltrieb

Aus der Abbildung ist ersichtlich, dass lediglich die tangentiale Kraftkomponente F⊤ ein Moment an der Kurbelwelle erzeugen kann. Dieses Gasdrehmoment MG kann bei bekannter Kurbelgeometrie und gegebenem Zylinderdruck zu jedem Kurbelwinkel berechnet werden. Im Gegensatz zu dem mittleren indizierten Drehmoment ergibt sich hierbei ein hochauflösender Verlauf des Drehmomentes an der Kurbelwelle [ZY1].

$$MG = F_{T} \cdot r_k \tag{2-22}$$

Nach Maass/Klier [MTM5], Fehrenbach [ZY1] berechnet sich das Gasdrehmoment zu:

$$MG(\phi) = A\kappa \cdot r_k \cdot x'(\phi) \cdot [p_z(\phi) - p_0]$$
(2-23)

mit der Kolbenfläche Ak, dem Kurbelradius rk und der normierten Kolbengeschwindigkeit x'

$$x' = \sin(\phi) \cdot \frac{\lambda \cdot \sin(\phi) \cdot \cos(\phi)}{\sqrt{1 - \lambda^2 \cdot \sin^2(\phi)}}$$
(2-24)

Um auf die Kurbelwellendrehzahl schließen zu können, ist aufgrund des variablen Massenträgheitsmomentes die einfache Betrachtung der Bewegungsgleichung für rotierende Systeme nicht anwendbar. Die rotierende Bewegung des Kurbeltriebs kann über eine Leistungsbilanz [LU37] dargestellt werden:

$$\frac{d}{dt}\left(\frac{1}{2}J\cdot\omega^{2}\right) = (MG - Mr - ML)\cdot\omega$$
(2-25)

Mr ist hierbei das Reibmoment des Motors inklusive der Ventilbetätigung und ML das Lastmoment, welches auch die Momentenanteile der Nebenaggregate berücksichtigt. Durch Differentiation, Substitution der zeitlichen Ableitung mit der Ableitung nach dem Kurbelwinkel sowie der Einführung des Massendrehmomentes Mm [MTM5] ergibt sich

$$J \cdot \dot{\omega} = M_G - M_r - M_L - M_m \tag{2-26}$$

Selbst bei Betrieb mit konstanter mittlerer Motordrehzahl n_{mot} treten im Motorbetrieb Drehzahlschwankungen auf, die auch als Laufunruhe bezeichnet werden. Diese sind in der starken Ungleichförmigkeit des an die Kurbelwelle abgegebenen Gasdrehmoments M_G begründet. Die Drehmomentenanteile sollen daher auf ihren Wechsel- und Gleichanteil untersucht und aufgespalten werden. Das abgegebene Lastmoment M_L wird hierbei als konstant angenommen. Das Reibmoment besteht aus einem konstanten Anteil, der von Drehzahl und Motortemperatur abhängt sowie einem Wechselanteil, der als viskose Reibung angenommen wird und von der Kolbengeschwindigkeit als Funktion des Kurbelwinkels abhängt. Das Massendrehmoment M_m besteht aus einem reinen Wechselanteil, so dass sich aus Gleichung (2-26) ergibt:

 $\overline{M}_G = \overline{M}_r - \overline{M}_L$ (Konstantanteil) (2-27)

 $J \cdot \dot{\omega} = \tilde{M}_G - \tilde{M}_r - \tilde{M}_m \text{ (Wechselanteil)}$ (2-28)

2.3.2 Zahnfehlerkorrektur des Drehzahlsignals

Auf Basis einer Indiziermessung kann aus dem Zylinderdruck gemäß Gleichung (2-23) das Gasdrehmoment berechnet werden. Durch anschließende Integration ergibt sich eine ideale Winkelgeschwindigkeit des Motors wideal:

Bild 2-12: Gasdrehmoment und idealer Drehzahlverlauf

Bei gleichzeitiger Aufnahme eines hochaufgelösten Drehzahlsignals umess kann bei stationären Bedingungen mit konstantem Lastmoment und konstanter mittlerer Drehzahl auf die Momentenanteile Mm- und Mrzurückgerechnet werden [LU38]. Außerdem enthält das Differenzsignal die Zahnteilungsfehler für den verwendeten Winkelmarkengeber sowie Fehler durch unzentrische Lagerung.

Bild 2-13: Verfahren zur Bestimmung der Drehzahlkorrektur

Bei der Messung des Drehzahlsignals im Steuergerät kann dieser Korrekturfaktor aus einer Tabelle ausgelesen und zur multiplikativen Korrektur des Drehzahlsignals verwendet werden. Dies stellt eine entscheidende Verbesserung der Signalqualität dar:

Bild 2-14: Drehzahlsignal mit Zahnfehlerkorrektur

2.3.3 Analyse der Drehungleichförmigkeit

Nach erfolgter Korrektur soll die Drehungleichförmigkeit an der Kurbelwelle analysiert werden, um anhand einzelner Kenngrößen pro Verbrennung das mittlere indizierte Drehmoment gemäß Gleichung 2-4 zu bestimmen. Zur Berechnung des Drehmomentes aus der Drehungleichförmigkeit des Motors sind verschiedene Ansätze in der Literatur dargestellt.

In Fehrenbach [ZY1] wird anhand der Gleichungen 2-23 und 2-26 vom Drehzahlverlauf auf den Zylinderdruckverlauf zurückgerechnet. Zu diesem Zweck wurden zusätzliche Versuche durchgeführt. So werden beispielsweise Schleppversuche mit ausgebauten Kolbenringen durchgeführt, um die Reibung der Kolbengruppe zu bestimmen. Diese Vorgehensweise ist sehr aufwändig und zudem bei einer Online-Identifikation im laufenden Betrieb nicht möglich. Für die Berechnung des Reibmomentes sind außerdem empirische Modellansätze in Abhängigkeit von mittlerer Motordrehzahl und Kühlmitteltemperatur beschrieben [HIL1],[OBD15].

Ein weiterer Unsicherheitsfaktor besteht in der ungenauen Kenntnis des Lastmomentes ML, in das auch die Momente der Nebenaggregate eingehen. Es ist also bei der Analyse der Drehungleichförmigkeit von einem ungenau bekannten Prozess auszugehen [NN17].

Um die Drehungleichförmigkeit einzelnen Verbrennungen und Zylindern zuordnen zu können, werden, wie bei Schneider [LU37] et al. beschrieben, Kurbelwinkelfenster bzw. Segmente definiert. Die Drehungleichförmigkeit dieses Segmentes wird dann dem gerade in der Kompressions- und Expansionsphase befindlichen Zylinder zugeordnet.

Bild 2-15: Segmenteinteilung und Zylinderzuordnung

Bei Maass, Klier ist die harmonische Analyse des Gasdrehmomentes MG bzw. des daraus abgeleiteten Tangentialdrucks p⊤

$$p\tau = \frac{MG}{A_k \cdot r_k} \tag{2-29}$$

als Kriterium für die mechanische Beanspruchung und Auslegung des Kurbeltriebes ausgeführt. Hierbei wird über die diskrete Fouriertransformation des abgetasteten Gasdrehmomentes Fn{MG}

$$F_{n_{n}}\left\{M_{G}(k)\right\} = \frac{1}{N} \sum_{k=0}^{N-1} M_{G}(k) \cdot e^{\frac{j2\pi kn}{N}} = |M_{G}(n)| e^{j\varphi(n)} \quad (2-30)$$

der Signalverlauf des Gasdrehmomentes aus einer Überlagerung einzelner Sinusanteile unterschiedlicher Kurbelwinkelfrequenz (vgl. Kessel [NN3]) dargestellt.

$$MG(k) = \sum_{n=0}^{N/2} MG(n) | \cdot \sin(\frac{2\pi kn}{N} + \varphi(n))$$
(2-31)

Die Ordnung n beschreibt das Vielfache der Grundfrequenz innerhalb eines Segmentes (vergleiche Bild 2-15). Aufgrund des Shannon-Theorems können nur die Ordnungen bis zur Hälfte der Abtastfrequenz (N/2) verwendet werden. In Polardarstellung beschreibt $|M_{G(n)}|$ hierbei die Amplitude, $\varphi_{(n)}$ die Phase der jeweiligen Ordnung n.

Die Höhe dieser Amplituden $|M_{G(n)}|$ hängen u.a vom mittleren indizierten Moment Mi (siehe Gleichung 2-4) ab. Entsprechende Untersuchungen finden sich bei Maass, Klier [MTM4]. Anstelle der momentenbasierten Größen $|M_{G(n)}|$ über Mi sind als analoge Größen die Amplituden des Tangentialdrucks cp über dem mittleren indizierten Druck pi aufgetragen (vergleiche Maass,Klier [MTM4], S. 181, Abb.6.17).

40

Bild 2-16: Trend: Amplituden zu mittlerem Drehmoment

Aus dem mittleren indizierten Moment Mi kann über den Hubraum Vh der mittlere indizierte Druck pi berechnet werden:

$$p_i = \frac{4\pi}{V_h} \cdot M_i \tag{2-32}$$

Im Folgenden soll nun untersucht werden, inwiefern von dem mittleren Drehmoment Mi auch auf die Höhe der Amplituden der Motordrehzahl geschlossen werden kann. Die Fouriertransformierte des Drehzahlsignals wird analog zu Gleichung 2-30 berechnet

$$F_{n_{\pi}}\left\{n_{mot}(k)\right\} = \frac{1}{N} \sum_{k=0}^{N-1} n_{mot}(k) \cdot e^{\frac{j2\pi kn}{N}} = |n_{mot}(n)| e^{j\varphi(n)} \quad (2-33)$$

Anhand einer numerischen Simulation wurde der Einfluss des Motorlastmomentes auf die Amplituden der Motordrehzahl untersucht. Die Gleichung für das Gasdrehmoment (Gleichung 2-23) wurde mit der Simulation des Zylinderdrucks (vgl. Abschnitt 2.2.2) unter Verwendung realer Eingangsdaten (Saugrohrdruck, Zündwinkel) verknüpft. Über die Bewegungsgleichung der starren Kurbelwelle (Gleichung 2-26) kann aus dem Gasdrehmoment ein idealer Drehzahlverlauf berechnet werden:

Bild 2-17: Simulation des Drehzahlverlaufs

Man erkennt in der Simulation, dass die Amplitude der Drehzahlschwankungen mit dem Lastmoment (38Nm und 106Nm) zunehmen, analog zu der Darstellung in Bild 2-16. Diese Simulation setzt eine idealisierte, störungsfreie Übertragung des Gasdrehmomentes auf die Drehzahl voraus. Dies beinhaltet eine vollständige Kompensation der Geberradfehler, des Massendrehmomentes, der Wechselanteile der Reibung durch den bereits in Abschnitt 2.3.2 beschriebenen Korrekturfaktor (vergleiche Bild 2-14).

Weitere Quereinflüsse wie Fertigungstoleranzen bei den bewegten Massen, Drehelastizitäten im Antriebsstrang sind in [LU37], [MTM4] beschrieben. Der Störeinfluss der aufgrund der Elastizitäten hervorgerufenen Torsionsschwingungen des Antriebsstranges ist in [OBD5], [OBD15] beschrieben und wird dort durch eine kurbelwinkelsynchrone Tiefpassfilterung gedämpft.

Aufgrund dieser einschränkenden Randbedingungen ist es erforderlich, die Korrelation des Betrags |n_{mot(n)}| der Fouriertransformierten des Drehzahlsignals zum indizierten Drehmoment Mi durch Fahrzeugmessungen zu überprüfen. Der Korrelationskoeffizient kk der Kreuzkorrelation dieser beiden abgetasteten Signale mit den Mittelwerten |n_{mot(n)}|,mw und Mi,mw aus einer Messung mit N Werten wird hierbei berechnet gemäß:

$$kk = \frac{\sum_{j=1}^{N} (Mi(j) - Mi, mw)(| nmot(n) | (j) - | nmot(n) |, mw)}{\sqrt{\sum_{j=1}^{N} (Mi(j) - Mi, mw)^{2} \sum_{j=1}^{N} (| nmot(n) | (j) - | nmot(n) |, mw)^{2}}}$$
(2-34)

Hierzu wurden bereits in [DIP1] Untersuchungen an einem 1,8I-92kW Motor durchgeführt, die eine hohe Relevanz der Amplitude 1.Ordnung zum indizierten Moment ausweist. Diese Ergebnisse wurden durch Messungen an dem für diese Arbeit verwendeten 2,0I-85kW Motor validiert:

Bild 2-18: Korrelationsanalyse Drehzahlmessung

Die Korrelationsanalyse wurde zylinderselektiv durchgeführt und die Koeffizienten aller Zylinder gemittelt. Es zeigt sich, dass der Betrag bzw. die Amplitude 1.Ordnung die größte Korrelation zum indizierten Drehmoment aufweist. Entsprechende Untersuchungen finden sich auch bei Schneider[LU37] und Taraza[LU16].

2.4 Regelung und Steuerung von Ottomotoren

2.4.1 Grundfunktion der Motorsteuerung

Der Betrieb moderner Ottomotoren erfordert zwingend eine elektronische Regelung und Steuerung. Dieses wird durch die Bereitstellung von Messsignalen durch die Sensoren, ihre Echtzeitverarbeitung im Steuergerät und die Ausgabe durch Stelleinheiten (Aktoren) gewährleistet. Die wichtigsten Sensoren und Aktoren sind im unteren Bild dargestellt :

Bild 2-19: Motorsteuergerät mit Sensoren/Aktoren [MM9]

Die Einbindung dieser Sensoren/Aktoren in die wesentlichen Funktionen der Motorsteuerung soll im Folgenden erläutert werden. Aufgrund der

Komplexität der Motorsteuerungsfunktionen wird dies auf die wesentlichen Prinzipien beschränkt.

Bei dem in dieser Arbeit verwendeten saugrohreinspritzenden Ottomotorkonzept kommt das in Abschnitt 2.1 beschriebene Prinzip der quantitätsbasierten Laststeuerung zum Einsatz. Das anhand der Fahrpedalstellung berechnete Solldrehmoment M_{i,soll} (vgl. [MM1, MM2] wird für die aktuelle Motordrehzahl n_{mot} in eine erforderliche Luftmenge im Zylinder m_{L,zyl,soll} umgerechnet und mit der Drosselklappe als Aktor eingestellt [MM2]:

Bild 2-20: Drehmomentensteuerung über Luftmenge

Der Einfluss des Zündwinkels α_z und des Luft-Kraftstoffverhältnisses λ auf das Drehmoment wird über die Wirkungsgrade η_{zw} und η_{λ} mit eingerechnet. Diese Wirkungsgrade werden im Rahmen der in dieser Arbeit vorgenommenen Untersuchungen für einen definierten Arbeitspunkt fest vorgegeben.

Zur Ermittlung der aktuellen Frischluftmasse im Zylinder wird ein Saugrohrdrucksensor eingesetzt. Wie bei Kiencke [REG2] oder Lenz [NN18] beschrieben, kann diese Frischluftmasse anhand von Saugrohrdruck und Motordrehzahl berechnet werden. Dieses erfolgt über eine empirische Funktion – auch als Volumetrische Effizienz oder Schluckfunktion bezeichnet - ,die aus Messungen ermittelt wird:

Bild 2-21: Schluckfunktion

Der Saugrohrdruck als Maß für die Frischluftmasse wird in der Funktion zur Kraftstoffeinspritzung für die Vorsteuerung der Einspritzzeit $t_{i,bas}$ benötigt, der der Regeleingriff des Lambda-Reglers $\Delta t_{i,reg}$ überlagert ist [REG2]:

Bild 2-22: Funktion zur Kraftstoffeinspritzung

Das aktuelle Luft-Kraftstoffverhältnis λ_{ist} wird bei diesem Versuchsmotor aus einer Lambda-Sonde mit Zweipunktcharakteristik gewonnen, die ihren Umschaltpunkt bei stöchiometrischen Luft-Kraftstoffverhältnis (λ =1) aufweist und demzufolge nur für λ -1-geregelten Motorbetrieb verwendet werden kann. Für Betriebsfälle außerhalb von λ =1 muss die Regelung deaktiviert und der Vorsteuerwert t_{i,bas} entsprechend eingestellt werden.

Als zusätzlicher Einfluss wirkt, wie in Abschnitt 2.2 beschrieben, der innere Wirkungsgrad der Verbrennung, der durch die Lage des 50%igen Energieumsatzes gemäß Bild 2-6 charakterisiert werden kann. Das Einstellen dieses Wirkungsgrades wird durch den Zündwinkel erreicht. Bei konstanter Drehzahl und konstantem Saugrohrdruck, der als Maß für die Frischluftmasse im Zylinder dient, wird zu diesem Arbeitspunkt ein Zündwinkel aus einem Kennfeld ausgelesen.

Bild 2-23: Arbeitspunktabhängige Zündwinkelvorsteuerung

Mit dem optimalen Zündwinkel wird in dem betreffenden Arbeitspunkt der günstigste Wirkungsgrad erreicht, der eine maximale Hub-Volumenarbeit Wi (siehe Gleichung 2-3) bedeutet. Untersuchungen bei Bargende [ZY24] haben gezeigt, dass diese Voraussetzung dann gegeben ist, wenn der Kurbelwinkel der 50% igen Energieumsatzlage doso (Schwerpunktlage der Verbrennung) bei 8° KW n.OT liegt (siehe Bild 2.6). Dieser optimale Zündwinkel ist arbeitspunktabhängig im Kennfeld anzupassen, um die günstigste Schwerpunktlage von 8° KW n.OT einzustellen. Im Regelfall versucht man, den Motor in der Nähe dieses optimalen Zündwinkels zu betreiben. Ausnahmen bilden der Leerlauf, der Motorwarmlauf und die Volllast. Bei einem Ottomotor mit Motorsteuerung ohne Zylinderdruckinformation wird in der Entwicklungsphase der Zündwinkel einmalig am Motorprüfstand arbeitspunktabhängig eingestellt und fest parametriert. Dabei werden die an diesem speziellen Motor auftretenden Randbedingungen bezüglich des optimalen Wirkungsgrades berücksichtigt, eine Anpassung im laufenden Betrieb des Motors kann mit der einfachen Funktion nach Bild 2-23 jedoch nicht erreicht werden.

2.4.2 Zylinderdruckbasierte Motorsteuerung

Bei einem Motor mit Zylinderdrucksensoren kann die zusätzliche Information genutzt werden, um den Zündwinkel im laufenden Betrieb, z.B. bei Änderung der Kraftstoffqualität oder infolge Alterung, nachzuregeln. Bei dem verwendeten Versuchsmotor wurde eine Regelung des Zündwinkels anhand des Kriteriums der Schwerpunktlage gemäß Bild 2.6 durchgeführt, die einen wirkungsgradoptimalen Motorbetrieb bedeutet.

Bild 2-24: Schwerpunktlageregelung

Die folgende Messung zeigt aus einem Ausschnitt des MVEG-Fahrzyklus den Zündwinkel α_z und die Schwerpunktlage ϕ_{Q50} von Zylinder 1 (rot) und Zylinder 2 (schwarz) mit und ohne Schwerpunktlageregelung (SPL):

Bild 2-25: Schwerpunktlageregelung (SPL)

Bei nicht aktivierter Schwerpunktlageregelung (mittleres Bild) ergibt sich ein einheitlicher Zündwinkel für beide Zylinder, der jedoch nicht zu optimalen Schwerpunktlagen führt. Bei aktiver Regelung (unteres Bild) wird die optimale Schwerpunktlage in der Betriebsart Teillast (Versuchszeit: 56-63, 65-93 sec.) zylinderselektiv geregelt, was zu unterschiedlichen Zündwinkeln bei Zylinder 1 und 2 führt.

51

Hierbei zeigt sich, dass die einfache Zündwinkelvorsteuerung gemäß Bild 2-22 den Motor nicht dauerhaft bei optimalem Zündwinkelwirkungsgrad betreibt, da Quereinflüsse (z.B. Änderung der Kraftstoffqualität, Alterungseffekte) auf die Schwerpunktlage bei einer Vorsteuerung nicht berücksichtigt werden können. Die Schwerpunktlageregelung bietet hingegen die Möglichkeit, den Zündwinkel stets bei optimalem Wirkungsgrad zu betreiben, da sowohl zylinderselektive Unterschiede als auch sonstige Quereinflüsse mit eingerechnet werden.

Ein weiteres Einsatzgebiet für zylinderdruckbasierte Motorsteuerungsfunktionen ist die Momentengleichstellung der Zylinder. Hier kann alternativ zu drehzahlbasierten Verfahren [LU9] das indizierte Moment der einzelnen Zylinder zur Komfortverbesserung abgeglichen werden. In jedem Fall ist ein fehlerfreies Zylinderdrucksignal erforderlich, um die tatsächlichen Informationen zur Regelung und Steuerung des Motors zu verwenden. Voraussetzung hierfür ist eine Plausibilisierung der Sensorsignale, die beispielsweise bei einer Momentengleichstellung unterscheiden kann, ob das geringere Moment eines Einzelzylinders aus einem Fehler des Zylinderdrucksensors oder aus innermotorischen Unterschieden herrührt.

3. Diagnose einer zylinderdruckgeführten Motorsteuerung

3.1 Diagnoseverfahren für technische Prozesse

Die Diagnose des technischen Prozesses bei Ottomotoren hat infolge der bereits erwähnten OBD-Gesetzgebung stark an Bedeutung gewonnen. Es wird dabei unterschieden zwischen Fehlererkennung, die zunächst eine Generierung relevanter Information beinhaltet und der Fehlerdiagnose, die die Information auswertet und ggf. einem Fehlertypus zuordnet [OBD15].

Bild 3-1: Diagnose technischer Prozesse

Unter Fehlererkennung versteht man die Extraktion fehlerrelevanter bzw. fehlersensitiver Information aus dem Prozess, auch Merkmalsextraktion genannt. Ein Merkmal kann die Mess- oder Schätzgröße einer physikalisch interpretierbaren Prozessausgangsgröße y sein. Beim Merkmalsvergleich werden mehrere Merkmale in geeigneter Art und Weise kombiniert, um ein Kriterium für die Fehlerbeurteilung zu gewinnen.

Zur Überprüfung dieser Residuen und deren Zuordnung zu einem bestimmten Fehlertypus können auf Expertenwissen basierende Fehlerbaum- oder Strukturbaumdiagramme [OBD23] verwendet werden. Als Methoden zur Fehlerdiagnose oder Symptomentscheidung kommen außerdem Klassifikationsverfahren zum Einsatz.

Der wesentliche Aufwand einer Diagnose liegt jedoch in dem vorhergehenden Schritt der Fehlererkennung und Merkmalsextraktion. Die hierfür verwendeten Verfahren lassen sich in Anlehnung an [OBD5] wie folgt unterteilen:

Bild 3-2: Methoden der Fehlererkennung

Die direkte Signalkontrolle ist die einfachste Form der Fehlererkennung. In diesem Fall wird bei einem Sensor die elektrische Messgröße auf ihren gültigen Bereich hin untersucht, der durch einen begrenzten Wertebereich der Übertragungskennlinie zur physikalischen Zielgröße definiert ist (Grenzwertabfrage).

Eine andere einfache Form der direkten Signalkontrolle stellt die Trendbeobachtung So wird bei der dar. Diagnose des Motortemperatursensors eines Verbrennungsmotors nach dem Start ein Ansteigen der Temperatur innerhalb eines vorgegebenen Toleranzbandes erwartet, andernfalls wird auf einen Fehler geschlossen. Mit dieser einfachen Form können jedoch nur gravierende Fehler wie Kurzschluss erkannt werden. Die Detektion einer Sensordrift, Alterung oder die Überlagerung einer Störung können mit diesen einfachen Methoden nicht zuverlässig erreicht werden.

Eine Alternative stellen die signalbasierten Verfahren zur Analyse von Prozessen dar. Hier werden beispielsweise durch statistische Auswerteverfahren Kenngrößen ermittelt, die dann als Merkmal für eine herangezogen Beispiele Plausibilisierung werden. für derartige Kenngrößen ist die Varianzanalyse zur Ermittlung von Streuung oder Standardabweichung, die als Maß für bestimmte Fehler wie das Erreichen der Magergrenze herangezogen werden kann.

Als modellbasierte Verfahren können diejenigen Verfahren angesehen werden, bei denen der Prozess mit Hilfe analytischer oder empirischer Modelle beschrieben werden kann und Größen bzw. Merkmale mit physikalischer Interpretierbarkeit generiert werden. Hier werden sowohl physikalische als auch empirische Modelle zur Beschreibung des Verbrennungsprozesses und zur Berechnung der Ausgangsgrößen y genutzt. Das im Rahmen dieser Arbeit verwendete Paritätsraumverfahren bildet aus der Differenz zweier Merkmale - hier: y_0 als Mess- und \hat{y}_1 als Schätzgröße - das Residuum R nach Isermann [OBD15],[OBD23].

$$R = y_0 - \hat{y}_1 \tag{3-1}$$

Werden weitere Schätzgrößen \hat{y}_k (k = 1,2...,q) gebildet, spricht man von analytischer Redundanz (vgl. Frank [OBD 19]) Durch unterschiedliche Kombination von jeweils zwei Merkmalen entsteht ein Residuenvektor :

$$\underline{R} = \begin{bmatrix} R_1 \\ R_2 \\ \dots \\ R_q \end{bmatrix} = \begin{bmatrix} y_0 - \hat{y}_1 \\ y_0 - \hat{y}_2 \\ \dots \\ y_0 - \hat{y}q \end{bmatrix}$$
(3-2)

Die Lage des Residuenvektors im Raum kann dann in der anschließenden Fehlerdiagnose ausgewertet werden, die auch als Symptomentscheidung oder Symptomerkennung bezeichnet wird [OBD20].

Bild 3-3: Residuen bei verschiedenen Fehlertypen

Zur Schätzung der Ausgangsgröße y eines dynamischen oder statischen Systems können neben dem Zustandsraumansatz für lineare Differentialgleichungen auch empirische Modellansätze verwendet werden. Ein Ansatz der Form

$$y = \sum_{i=1}^{N} a_i \cdot f_i(u) \tag{3-3}$$

mit zu bestimmenden Parametern ai und vorzugebenden Funktionsansätzen fi wird als linear in den Parametern bezeichnet. Die Berechnung dieser Parameter erfolgt bei gegebenen Messreihen z.B. durch lineare Optimierungsverfahren (Least-Square).

$$\underline{a} = \left[\underline{f}^T \underline{f} \right]^{-1} \underline{f}^T \mathbf{y}$$
(3-4)

Hier wird in einem Berechnungsschritt der Parametersatz für das Fehlerminimum bei vorgegebenen Funktionen ermittelt. Die Gleichverteilung der hierzu verwendeten Messdaten ist durch Vergleich des Medianwertes mit dem arithmetischen Mittelwert zu überprüfen.

Im Rahmen dieser Arbeit sind entsprechende Untersuchungen zur Approximation von Ausgangsgrößen mit Least-Square-Ansätzen nach Gleichung (3-3) durchgeführt worden [DIP4]. Die Einschränkung auf statische Systeme erwies sich hierbei als ausreichend. Für Funktionsansätze mit reinen Polynomfunktionen nach dem Ansatz

$$y = \sum_{i=1}^{N} a_i \cdot u^i \tag{3-5}$$

konnten nur unbefriedigende Ergebnisse erzielt werden. Polynome 2.Ordnung (N=2) wiesen Approximationsfehler bei Arbeitspunkten im Randbereich auf, Polynome höherer Ordnung (N >=3) zeigten bei höherer
Modellgüte ungünstige Interpolationseigenschaften, die auch in anderen Untersuchungen [NN6] festgestellt wurden. Die Kombination aus Polynomund Logarithmusfunktion mit dem Ansatz in der allgemeinen Form

$$y = \sum_{i=1}^{N} a_i \cdot \log(u)^i$$
(3-6)

wies eine hohe Modellgüte mit Fehlern <5% bei guten Interpolationseigenschaften auf. Aufgrund der ungünstigen Extrapolationseigenschaften ist ein Einbeziehen der Randpunkte der Eingangsdaten in den Trainingsdatensatz zwingend erforderlich. Die konkreten Approximationsansätze mit den Arbeitspunkten des Trainingsdatensatzes sind in Anhang D, die Simulationsergebnisse in Abschnitt 4.3 dargestellt.

Alternativ dazu finden sich auch komplexere Verfahren wie neuronale Netze [NN2], wo bei einem einzelnen Neuron der Ausgang y in Abhängigkeit der Eingänge ui und der zu bestimmenden Wichtungen wi und Biaswerte b approximiert wird.

$$y = sig\left(\sum_{i=1}^{R} w_{i} \cdot u_{i} + b\right) = \frac{1}{1 + \exp^{-\left(\sum_{i=1}^{R} w_{i} \cdot u_{i} + b\right)}}$$
(3-7)

Der Ausgang y kann dann wiederum als Eingang einer weiteren Schicht des neuronalen Netzes dienen, so dass sich ein mehrschichtiges Netz (Multi-Layer-Perceptron, MLP) ergibt. Die Anzahl der Neuronen dieser weiteren Zwischenschicht wird abhängig von der Komplexität der zu approximierenden Funktion gewählt.

Bild 3-4: Neuronales Netz (Multi-Layer-Perceptron)

Die Berechnung der optimalen Wichtungen stellt ein nichtlineares Optimierungsproblem dar, welches iterativ gelöst werden muss, während bei Least-Square-Ansätzen das Optimum in einem Berechnungsschritt gemäß Gleichung 3-4 ermittelt werden kann.

Als Approximationsverfahren wurde daher ein Ansatz nach Gleichung 3-6 gewählt, da er bei einer gegebenen Anzahl von Trainingsdaten Vorteile bezüglich der Interpolationseigenschaften aufwies (siehe Abschnit 4.3 und Anhang E). Außerdem kann ein robustes Least-Square-Verfahren zur Parametrierung (siehe Gleichung 3-4) verwendet werden. Die bei neuronalen Netzen zu verwendenden nichtlinearen Optimierungsverfahren weisen bei ungünstiger Wahl des Lernverfahrens oder der Lernparameter die Gefahr des Verfehlens des globalen Optimums auf [NN14].

Nachteil des gewählten Approximationsansatzes ist allerdings der Aufwand, aus dem allgemeinen Ansatz (Gleichung 3-6) die geeigneten Funktionsterme zu extrahieren. Diese auch als Skalierbarkeit bezeichnete Eigenschaft kann hingegen als Vorteil neuronaler Netze angesehen werden. Die Vor- und Nachteile der einzelnen Verfahren sind zusammenfassend in der folgenden Tabelle dargestellt:

	Approximatoren mit Polynomfunktionen 2.Ordnung (Gleichung 3-5)	Approximatoren mit Polynom- Logarithmus-Funktionen (Gleichung 3-6)	Neuronale Netze mit R=3 Zwischenschichtneuronen (Gleichung 3-7)	Neuronale Netze mit R>=8 Zwischenschichtneuronen (Gleichung 3-7)
Interpolationsfähigkeit	+	++	+	-
Extrapolationsfähigkeit	+	-	+	0
Parametrierverfahren	++	++	0	-
Skalierbarkeit	-	-	++	++

Bild 3-5: Vor- und Nachteile untersuchter Approximationsverfahren

3.2 Eigenschaften und Fehlerarten von

Zylinderdrucksensoren

Zur modellbasierten Diagnose von Zylinderdrucksensoren ist es erforderlich, den Prozess näher zu charakterisieren. In Anlehnung an Kiencke [REG2] kann der Ottomotor als Regelstrecke in der folgenden vereinfachenden Form dargestellt werden:

Bild 3-6: Der Ottomotor als Regelstrecke

Der linke Teil des Blockschaltbildes beschreibt das dynamische Verhalten des Saugrohres. Der über die Drosselklappe ins Saugrohr fließende Luftmassenstrom wird über die Drosselgleichung

$$\dot{m}_{L, DK} = A_{eff} \cdot p_{u} \cdot \sqrt{\frac{2}{R \cdot T_a}} \psi(p_{u}, p_{s})$$
 (3-8)

63

mit den Eingangsgrößen effektive Querschnittsfläche A_{eff}, Umgebungsdruck p_u und Ansauglufttemperatur T_a sowie der sog. ψ -Funktion berechnet [ZY17],[NN18]. Der vom Saugrohr in den Zylinder fließende Luftmassenstrom wird durch das Schluckverhalten des Motors (vergleiche Bild 2-21) beschrieben:

$$\dot{m}_{L, zyl} = f_{s}(n_{mot}, p_{s}) \tag{3-9}$$

Durch Integration der Massenstromdifferenz ins Saugrohr ergibt sich unter Berücksichtigung der Integrationskonstanten Tis der Saugrohrdruck ps.

Der rechte Teil beschreibt die Berechnung der Motordrehzahl nmot aus der mechanischen Bewegungsgleichung der Kurbelwelle (siehe Abschnitt 2.3).

Der mittlere Teil des Blockschaltbildes kann als Teilsystem "innere Verbrennung" angesehen werden. Aus Saugrohrdruck und Motordrehzahl kann das optimale indizierte Moment

$$M_{i, opt} = f_1(n_{mot}, p_s) \tag{3-10}$$

über einen empirischen Funktionsansatz berechnet werden. Mit einem Approximationsansatz nach Gleichung 3-5 ergibt sich

$$M_{i, opt} = \sum_{i=1}^{N} a_i \log(n_{mot})^i \cdot \log(p_s)^i$$
(3-11)

Unter Berücksichtigung der Zündwinkel- und Lambdawirkungsgrade η_{zw} und η_{λ} (siehe auch Bild 2-20) ergibt sich dann das indizierte Moment Mi.

Bild 3-7: Indiziertes Moment bei Zündwinkel- und λ -Variation

Die Motortotzeit Tt beinhaltet den aufgrund der Arbeitstakte Ansaugen und Verdichten (siehe Bild 2-1) entstehenden Kurbelwinkelverzug. Wird dieser deterministische Kurbelwinkelverzug bei der Zuordnung von Ein- und Ausgangsgrößen herausgerechnet (siehe auch Bild 4-2) kann der Zusammenhang als diskretes Ereignis pro Arbeitsspiel des Zylinders betrachtet und über eine statische Gleichung ausgedrückt werden. Dieser Ansatz des Mittelwertmodells findet sich in zahlreichen Veröffentlichungen [NN16], [OBD20].

Die Information des Zylinderdrucksensors kann diesem Teilprozess der inneren Verbrennung zugeordnet werden und liefert ebenfalls

65

Kenngrößen, die dem jeweiligen Arbeitsspiel des Zylinders zugeordnet werden können. Die modellbasierte Diagnose von Zylinderdrucksensoren kann also auf den Bereich statischer Modelle eingeschränkt werden. Dynamische Ansätze wie das Zustandsraummodell werden daher nicht weiter berücksichtigt.

Sind diesem Teilprozess Störungen oder Exemplarstreuungen des Motors überlagert, sollen diese im Folgenden als physikalisch basierte Fehler bezeichnet werden. Gleichzeitig können jedoch auch Fehler des Zylinderdrucksensors auftreten, die sich diesen physikalisch bedingten Schwankungen überlagern oder alternativ dazu auftreten können. Ebenso können auch die übrigen, zur Systemplausibilisierung herangezogenen Sensoren fehlerhaft sein.

Einige der in Betracht kommenden Fehlerarten sind in der folgenden Übersicht kurz dargestellt:

	Fehlerart	Beschreibung
te Fehler	Zylinderselektive Momentenunterschiede	Durch Kompressionsänderung oder unterschiedliche Luftfüllung der Einzelzylinder resultierende Momentenunterschiede
Physikalisch basier	Zylinderselektive λ- Abweichungen	Durch falsche Zumessung oder Toleranzen der Einspritzaktorik bedingte Abmagerung einzelner Zylinder (bei globalem λ-1- Betrieb)

⁻ ehler des Zylinderdrucksensors	Verstärkungsfehler (Drift der Empfindlichkeit)	Änderung der Sensorempfindlichkeit einzelner Drucksensoren, dadurch lineare Verfälschung des gemessenen Drucksignals	
	Hysterese der Druckkennlinie	Gegensinnige Änderung der Sensorverstärkung bei Druckanstieg / Druckabfall einzelner Drucksensoren, dadurch nichtlineare Vertrimmung des gemessenen Drucksignals	
	Thermoschock	Bei großen Wandtemperaturänderungen auftretender Fehler des Drucksignals. Stark nichtlinear, aber kurbelwinkelsynchron	
Sonstige	Sensorfehler	Verschiebung OT- Referenzmarke des Drehzahlgebers	Falsche Zuordnung von Zylinderdrucksignalen zum oberen Totpunkt. Nichtlineare Verfälschung der Zylinderdruckmerkmale

Bild 3-8: Fehlerarten

Der Effekt einiger Zylinderdrucksensorfehler auf die hieraus berechneten Kenngrößen soll im Folgenden untersucht werden.

Verstärkungsfehler

Die Auswirkung der Drift des Verstärkungsfaktors bei einem sensorfehlerbehafteten Zylinderdruck pz' kann deduktiv betrachtet werden:

$$M_{i} = \frac{1}{4 \cdot \pi} \int_{-\pi}^{+\pi} pz' \, dV$$
 (3-12)

Der Verstärkungsfehler V_{err} kann nach Küsell[ZY28] über ein Arbeitsspiel als konstant angesehen und somit vor das Integral gezogen werden. Es ergibt sich:

$$\mathsf{M} \coloneqq \frac{\mathsf{V}_{\mathsf{err}}}{4 \cdot \pi} \int_{-\pi}^{+\pi} \mathsf{p}_z \, \mathsf{dV} \tag{3-13}$$

Das indizierte Drehmoment verhält sich also proportional zum Verstärkungsfehler Verr.

Das fehlerbehaftete Füllungsäquivalent ∆p berechnet sich nach Gleichung 2-9:

$$\Delta \rho = \sum_{\phi=\phi_0}^{\phi=\phi_1} \rho z'(\phi) - \rho z'(\phi_0)$$
(3-14)

Beim fehlerbehafteten Zylinderdruck pz' läßt sich der Verstärkungsfehler Verr heraustrennen und vor den Summationsterm ziehen.

$$\Delta p = \operatorname{Verr} \cdot \sum_{\phi=\phi_0}^{\phi=\phi_1} p z'(\phi) - p z'(\phi_0)$$
(3-15)

Hysteresefehler

Wie bei Küssell [ZY28] beschrieben, bewirkt die Hysterese der Druckkennlinie in der Kompressionsphase eine nichtlineare Empfindlichkeitserhöhung und eine Absenkung während der Expansionsphase.

Bild 3-9: Hysterese einer Druckkennlinie

Die maximale Abweichung des Hysteresedruckverlaufs von der idealen Sensorkennlinie (Hysteresefaktor) wird in der folgenden Simulation variiert. Dadurch ergibt sich eine Verzerrung der Druckverlaufes, aus dem die Kenngrößen indiziertes Moment Mi und Füllungsäquivalent Δp bestimmt werden:

Bild 3-10: Hysteresefehler

Im Gegensatz zum Fall des fehlerhaften Verstärkungsfaktors sind indiziertes Moment und Füllungsäquivalent negativ korreliert.

69

Verschiebung der OT-Referenzmarke

Ein ähnlicher Zusammenhang zeigt sich bei Fehlern des Winkelmarkengebers. Bei der folgenden Fehlersimulation wurde der Referenzmarkengeber für den Kurbelwinkelbezug um $\Delta \phi = 1..7^{\circ}$ KW verschoben, so dass bei korrekt gemessenem Zylinderdruck Fehler in der Merkmalsberechnung auftreten. Beim Füllungsäquivalent Δp erfolgt gemäß Gleichung 2-9 eine Verschiebung des Kurbelwinkelbezugs ϕ_0 hin zu niedrigen Druckanstiegen und somit kleineren Werten.

$$\Delta \boldsymbol{\rho}' = \sum_{\phi=\phi_{0-\Delta\phi}}^{\phi=\phi_{1-\Delta\phi}} \boldsymbol{\rho} \boldsymbol{z}(\phi - \Delta\phi) - \boldsymbol{\rho} \boldsymbol{z}(\phi_{0} - \Delta\phi)$$
(3-16)

Beim indizierten Moment Mi erfolgt durch die Verschiebung der Volumenfunktion (siehe Gleichung 2-2) um $\Delta \phi$

$$M_i = \int p_z \, dV_z(\phi + \Delta \phi) \tag{3-17}$$

eine Vergrößerung des Wertes, da sich die negative Kompressionsarbeit verringert und die positive Expansionsarbeit vergrößert:

Bild 3-11: Kenngrößen bei fehlerhafter OT Bezugsmarke

Die unterschiedlichen Auswirkungen dieser Fehler lässt sich mit einem mehrdimensionalen Merkmalsraum bzw. Residuenraum untersuchen (siehe Bild 3-3). Hierzu werden im Folgenden die Approximationsansätze zur Schätzung des indizierten Drehmomentes vorgestellt.

3.3 Redundante Approximation des Drehmomentes

Das in Abschnitt 3-1 dargestellte Prinzip der analytischen Redundanz soll auf den Fall der Diagnose von Zylinderdrucksensoren angewendet werden. In diesem Fall wird das indizierte Moment durch 5 unterschiedliche Modellansätze approximiert, die in diesem Abschnitt näher erläutert werden. Anschließend werden ausgewählte Modellansätze durch Differenzbildung in Residuen überführt (siehe Gleichung 3-2).

Bild 3-12: Analytisch redundante Momentenapproximation

Das indizierte Drehmoment wird zunächst gemäß der Definitionsgleichung der indizierten Arbeit aus dem Zylinderdruck berechnet (Gleichung 2-4).

Dieser Ansatz dient zugleich als Referenz zur Kalibrierung der übrigen Modellansätze.

$$M_i = \frac{1}{4\pi} \int p_z \, dV_z \tag{3-18}$$

Als Modellansätze zur empirischen Bestimmung der indizierten Momente wurden analytische Funktionen mit Polynom- und Logarithmusfunktionen gemäß Gleichung 3-6 verwendet, die alle linear in den Parametern sind und durch lineare Optimierungsverfahren gelöst werden können [DIP4]. Als Kriterium zur Modellauswahl wurde der Gesamtsummenfehler e über den Testdatensatz mit N Messwerten herangezogen :

$$e = \sum_{j=1}^{N} (Mi(j)_{model} - Mi(j)_{gemessen})^2$$
(3-19)

Die Parametrierung der Modelle erfolgte anhand von Messungen am Rollenprüfstand bei stationären Arbeitspunkten zwischen 1500 U/min und 3000 U/min. Hierzu wurden die aus neu kalibrierten Zylinderdrucksensoren gewonnenen Signale zur Bestimmung des Referenzdrehmomentes genutzt. Die Ergebnisse für die einzelnen Modellgleichungen sowie die Arbeitspunkte sind in Anhang D aufgeführt.

Approximationsansatz Mi1

Ein Modellansatz zur Approximation des indizierten Drehmomentes als empirisches Modell ist bereits in Bild 3-6 mit den Haupteinflussgrößen Saugrohrdruck, mittlerer Motordrehzahl Zündwinkel- und Lambdawirkungsgrad dargestellt worden.

$$M_i = f_1(n_{mot}, p_s) \cdot \eta_{ZW} \cdot \eta_{\lambda}$$
(3-20)

Der Saugrohrdruck dient hierbei als Maß für die im Zylinder befindliche Frischluftmasse (siehe Bild 2-21). Der Einfluss des Luft-Kraftstoffverhältnisses auf das Drehmoment kann bei Einschränkung auf λ -1-geregelten Motorbetrieb ($\eta_{\lambda} = 1$ = konstant) vernachlässigt werden.

$$M_{i1} = f_1(n_{mot}, p_s) \cdot \eta_{zw} \tag{3-21}$$

Mit einem Approximationsansatz nach Gleichung 3-6 und 3-11 ergibt sich

$$M_{i1} = \eta_{zw} \cdot \sum_{i=1}^{N} a_i \log(n_{mot})^i \cdot \log(p_s)^i$$
(3-22)

Approximationsansatz Mi2

Wie bei Müller [ZY27] ausgeführt wird, kann anstelle des Zündwinkelwirkungsgrads η_{zw} ein aus der aktuellen Schwerpunktlage der Verbrennung ϕ_{Q50} (siehe Abschnitt 2-2, Bild 2-6) ermittelter Wirkungsgrad η_{spl} verwendet werden

$$M_{i2} = f_2(n_{mot}, p_s) \cdot \eta_{spl} \tag{3-23}$$

Dieser Modellansatz wird jedoch im Folgenden nicht weiter betrachtet, da er bezüglich seiner Fehlercharakteristik keine zusätzlichen Differenzierungsmerkmale bietet.

Approximationsansatz Mi3

Wie in Abschnitt 2.2 ausgeführt, kann die Luftmasse im Zylinder über Information aus dem Zylinderdrucksignal ausgedrückt werden. Anstelle des Saugrohrdrucks als Eingangsgröße wird das aus dem Zylinderdrucksignal abgeleitete Füllungsäquivalent ∆p verwendet (Gleichungen 2-9 und 2-11):

$$M_{i3} = f_3(n_{mot}, \Delta p) \cdot \eta_{ZW}$$
(3-24)

Mit einem Approximationsansatz gemäß Gleichung 3-6 ergibt sich

$$M_{i3} = \eta_{zw} \cdot \sum_{i=1}^{N} a_i \log(n_{mot})^i \cdot \log(\Delta p)^i$$
(3-25)

Die Abschnitt 2.2, Bild 2-9 durchgeführte Simulation legt einen einfachen linearen Funktionsansatz

$$M_{i3} = a_i \Delta p \tag{3-26}$$

zugrunde, der den Zusammenhang allerdings zu ungenau modelliert. Auch in diesem Fall müssen Referenzbedingungen für Ansaugluft- und Motortemperatur sichergestellt werden, damit der Temperatureinfluss vernachlässigt werden kann.

Approximationsansatz Mi4

Ein weiterer Ansatz zur Drehmomentmodellierung besteht in der alleinigen Auswertung der Motordrehzahl. Wie in Abschnitt 2.3 beschrieben, wird von den Zylindern ein ungleichförmiges Drehmoment erzeugt, welches sich in einem um die mittlere Motordrehzahl schwankenden Drehzahlverlauf niederschlägt.

Besteht die Möglichkeit einer hochaufgelösten Drehzahlmessung und –auswertung, so kann diese Sensorinformation ebenfalls zur Momentenapproximation verwendet werden. Aus den korrigierten Drehzahlrohdaten (siehe Abschnitt 2.3.2) wird mittels diskreter Fouriertransformation die Amplitude 1.Ordnung |F₁{n_{mot}}| gemäß Gleichung 2-33 berechnet. Der zusätzliche Quereinfluss der mittleren Motordrehzahl [MTM5] muss im Modell ebenfalls berücksichtigt werden.

$$M_{i4} = f_4(n_{mot}, |F_1\{n_{mot}\}|)$$
 (3-27)

$$M_{i4} = \sum_{i=1}^{N} a_i \log(n_{mot})^i \cdot \log(|F_1\{n_{mot}\}|)^i$$
(3-28)

Bei dem verwendeten Versuchsmotor war aufgrund des ungünstigen Signal-Rausch-Abstandes eine Approximation oberhalb von 3000 U/min nicht sinnvoll. Trotz dieser Einschränkung deckt der Drehzahlwertebereich den vom europäischen Gesetzgeber vorgeschriebenen MVEG-Testzyklus ab.

Das aufgrund der Drehzahlungleichförmigkeit nach Gleichung 3-28 geschätzte Motormoment ist unabhängig von Sensorfehlern des Zylinderdrucksensors, wird aber von physikalischen Randbedingungen des Motors wie Alterung oder Kompressionsverlust beeinflusst. Auch Rückwirkungen vom Antriebsstrang oder der Straße können sich störend auswirken, so dass die Diagnosefunktion bei ungünstigen Betriebszuständen (Schlechtwegerkennung) ausgeblendet werden muss.

Durch Einschränkung des Diagnoseverfahrens auf betriebswarmen Motor kann der Temperatureinfluss der Reibung vernachlässigt werden. Systematische Störeinflüsse wie Torsionsmomente werden durch kurbelwinkelsynchrone Filterung reduziert [OBD5]. Des Weiteren ist der Modellansatz Mi4 lediglich im eingekuppelten Zustand gültig, so dass Kupplungsvorgänge und Leerlauf ebenso ausgeblendet werden müssen.

3.4 Fehler-Symptom Kausalität

Die Approximation des indizierten Drehmomentes anhand der Modellansätze Mi, Mi1, Mi3, Mi4 (siehe Gleichungen 2-4, 3-22, 3-25, 3-27 sowie Anhang D) kann nun zur Residuengenerierung und anschließenden Fehlerklassifikation genutzt werden. Die Modelle und Residuen werden jeweils zylinderselektiv betrachtet und ausgewertet.

Nach dem Ansatz der analytischen Redundanz ist die Systematik bei der Berechnung der Residuen Ri so zu wählen, dass diese eine unterschiedliche Empfindlichkeit (Sensitivität) gegenüber j Fehlertypen aufweist. Bei Frank [OBD19] ist die Sensitivität E über die partiellen Ableitungen definiert mit

$$E(\mathbf{e}_j) = \frac{\partial R_i}{\partial \mathbf{e}_j} \tag{3-29}$$

Sie lässt sich aber nur bestimmen, wenn wie in Gleichung 3-13 der Einfluss des Verstärkungsfehlers V_{err} analytisch beschrieben werden kann. Ansonsten muss der Zusammenhang R_i(f_j) empirisch ermittelt werden.

Im Fall eines beliebigen Fehlers in der Zylinderdrucksensorik können aufgrund der Kollinearitätsbedingung zwei der folgenden Residuen (z.B. R₂, R₃) zur Fehlerdetektion verwendet werden:

Residuum	Berechnung	Sensitivität bei Sensorfehlern
R1	Mi — Mi4	Verstärkung Zylinderdrucksensor, Hysterese Zylinderdrucksensor, OT-Lagefehler Winkelmarkengeber
R2	Mi — Mi1	Verstärkung Zylinderdrucksensor, Hysterese Zylinderdrucksensor, OT-Lagefehler Winkelmarkengeber
R3	Mi1 — Mi4	-

Bild 3-13: Residuen R1-R3

Eine zentrale Bedeutung zur Detektion von Sensorfehlern des Zylinderdrucksensors hat das Residuum R₃. In die Berechnung gehen die Modellansätze M_{i1} und M_{i4} ein, die nicht auf Basis des Zylinderdrucks berechnet werden und somit keine Abhängigkeiten aufweisen. Die Empfindlichkeit gegenüber einem Verstärkungsfehler V_{err} beträgt also

$$E(V_{err}) = \frac{\partial R_3}{\partial V_{err}} = 0$$
(3-30)

Für das Residuum R₂ gilt hingegen bei einem Verstärkungsfehler gemäß den Gleichungen 3-13, 3-21 :

$$E(V_{err}) = \frac{\partial R_2}{\partial V_{err}} = \frac{\partial (\frac{V_{err}}{4\pi} \int p_z dV_z - f_1(n_{mot}, p_s) \cdot \eta_Z w)}{\partial V_{err}}$$

$$= \int p_z dV_z \neq 0$$
(3-31)

Liefert der Motor ein für den Arbeitspunkt plausibles Moment ab, welches durch fehlerbehaftete Zylinderdrucksensoren verfälscht wird, so beträgt das Residuum R₃ Null während die anderen Residuen von Null abweichen.

Bei Erkennung eines Zylinderdrucksensorfehlers kann durch Berechnung zusätzlicher Residuen eine weitere Differenzierung nach Verstärkungsund Hysteresefehlern des Drucksensors sowie OT-Lagefehlern des Winkelmarkengebers erfolgen:

Residuum	Berechnung	Sensitivität bei Sensorfehlern
R4	Mi — Mi3	Hysterese des Zylinderdrucksensors, OT-Lagefehler Winkelmarkengeber
R5	Σ(Mi — Mi,zyl24)	Verstärkung Zylinderdrucksensor, Hysterese Zylinderdrucksensor,

Bild 3-14: Residuen R4-R5

Das Residuum R4 ist unempfindlich gegenüber einem Verstärkungsfehler des Zylinderdrucksensors, obwohl in die Momente Mi und Mi3 Informationen aus dem Zylinderdruck eingehen.

79

$$E(V_{err}) = \frac{\partial R_4}{\partial V_{err}} = \frac{\partial (\frac{V_{err}}{4\pi} \int p_z dV_z - f_3(n_{mot}, \Delta p) \cdot \eta_{ZW})}{\partial V_{err}} = 0$$
(3-32)

Nach Gleichung 3-15 hängt das Füllungsäquivalent ∆p linear vom Verstärkungsfehler V_{err} ab. Setzt man für das indizierte Moment M_{i3} näherungsweise einen linearen Zusammenhang an (siehe auch Gleichung 3-26), erhält man:

$$E(V_{err}) = \frac{\partial R_4}{\partial V_{err}} = \frac{\partial (\frac{V_{err}}{4\pi} \int pz dV_z - a_1 \cdot V_{err} \cdot \Delta p)}{\partial V_{err}}$$
$$= \frac{\partial V_{err} \cdot (\frac{1}{4\pi} \int pz dV_z - a_1 \cdot \Delta p)}{\partial V_{err}}$$
$$= 0 \quad wenn \quad \frac{1}{4\pi} \int pz dV_z = a_1 \cdot \Delta p$$
(3-33)

In diesem Fall zeigt das Residuum R4 keinen Effekt, da sich die Fehlerauswirkung der beiden Drehmomente gegenseitig aufheben. Da der lineare Ansatz nur näherungsweise gilt, ergibt sich bei der Verwendung eines Modellansatzes gemäß Gleichung 3-25 ein empirisch zu ermittelnder Restfehler der bei der Fehlerdiagnose als Schwellwert zu berücksichtigen ist.

Bild 3-15: Restfehler des Residuums R4 bei Verstärkungsfehler

Momenteneingriffe über den Zündwinkel verfälschen das Residuum R4 zusätzlich und sind bei der Diagnose entsprechend auszublenden.

Bei Hysteresefehlern des Zylinderdrucksensors oder OT-Lage Fehlern des Winkelmarkengebers sind indiziertes Moment und Füllungsäquivalent negativ korreliert (vgl. Bild 3-10, Bild 3-11). Anhand der in Abschnitt 3.2 durchgeführten Simulation kann man für das indizierte Moment für einen OT-Lage Fehler $\Delta \phi_{ref}$ ansetzen:

$$M_{i}' = \frac{1}{4\pi} \int p_z \, dV_z (\phi - \Delta \phi_{ref}) \approx M_i + \Delta \phi_{ref} \cdot k_M \tag{3-34}$$

mit einem additiven Fehlerterm ($\Delta \phi_{ref} k_M$) und der Bedingung k_M >0 für den empirischen Proportionalfaktor. Bei einer Winkelverschiebung des Füllungsequivalentes Δp gilt nach Gleichung 2.9:

$$\Delta p' = \sum_{\phi=\phi_0 - \Delta \phi_{ref}}^{\phi=\phi_1 - \Delta \phi_{ref}} p_z(\phi) - p_z(\phi_0 - \Delta \phi_{ref}) \approx \Delta p - \Delta \phi_{ref} \cdot k_p$$
(3-35)

mit der Annahme kleinerer Druckanstiege zu Beginn der Kompression bei einer polytropen Zustandsänderung gemäß Gleichung 2-10 ($k_p>0$). Für die Empfindlichkeit des Residuums R₄ bei einer OT-Lageverschiebung um $\Delta \phi_{ref}$ ergibt sich näherungsweise:

$$E(\Delta \varphi ref) = \frac{\partial R_4}{\partial \Delta \phi ref}$$

= $\frac{\partial ((\frac{1}{4\pi} \int pz dVz + \Delta \phi ref \cdot kM) - (a_1 \cdot \Delta p - a_1 \cdot \Delta \phi ref \cdot kp))}{\partial \Delta \phi ref}$
= $\frac{(\Delta \phi ref \cdot (kM + a_1 \cdot kp)) - (a_1 \cdot \Delta p - a_1 \cdot \Delta p)}{\partial \Delta \phi ref}$
= $kM + a_1 \cdot kp$ wenn $\int pz dVz = a_1 \cdot \Delta p$

(3-36)

Während der Hystereseeinfluss i.d.R. nur bei einzelnen Zylindern auftritt, wirkt ein OT-Lage Fehler immer global auf alle Zylinder. Somit gilt bei einem Vergleich der Zylinder untereinander über das Residuum R₅:

$$E(\Delta\phi ref) = \frac{\partial R_5}{\partial \Delta\phi ref} = 0$$
(3-37)

Das folgende Diagramm zeigt die Residuen R₁ bis R₅ bei einer Fahrzeugmessung am Rollenprüfstand im stationären Arbeitspunkt mit verschiedenen Fehlerbeaufschlagungen. Neben einer Vertrimmung der Zylinderverstärkung um –10% wurden desweiteren die OT-Referenzlage des Winkelmarkengebers sowohl in positiver als auch in negativer Richtung um 2°KW verstellt:

Bild 3-16: Residuencharakteristiken

Das Diagramm zeigt ebenfalls, dass aufgrund von Streuungen, Modellungenauigkeiten oder sonstigen Störeinflüssen die vom Fehler nicht beeinflussten Residuen (z.B. R₃) nie exakt Null betragen. Für die Dimensionierung von Detektionsschwellen zur Fehlererkennung sind also Abschätzungen bezüglich der Modellstreuung vorzunehmen. In den folgenden Abbildungen sind die Streuung der Residuen R₂ und R₃ in einem konstanten Arbeitspunkt dargestellt.

83

Bild 3-17: Residuenstreuung R2

Das Residuum R₃ zeigt aufgrund des ungünstigeren Signal-Rausch-Verhältnis der Merkmals M_i4 eine größere Streuung:

Bild 3-18: Residuenstreuung R3

Für die gegebenen Messdaten kann die Standardabweichung σ berechnet und über eine Gauss-Verteilungsfunktion die Wahrscheinlichkeit einer Fehldetektion bei Festlegung einer Fehlerdetektionsschwelle η bestimmt werden. Bei einer Filterung der Residuen kann die Standardabweichung und somit die Wahrscheinlichkeit einer Fehldetektion verringert werden. Allerdings verschlechtert sich bei abrupt auftretenden Fehlern die Ansprechzeit der Diagnose.

Dies soll anhand der Empfängercharakteristik bei einem Verstärkungsfehler von -5% näher untersucht werden. Die Residuen R₃ und R₄ müssen hierbei näherungsweise Null betragen und die Residuen R₁ und R₂ einen signifikanten Ausschlag größer Null aufweisen. Anhand des Fehlerintegrals kann bei variabler Detektionsschwelle η die

Wahrscheinlichkeit einer fehlerhaften Erkennung – beispielhaft am Residuenpärchen R1 und R3 – betrachtet werden.

 P_{fR3} ist hierbei die Wahrscheinlichkeit, dass das Residuum R₃ unzulässigerweise einen Fehler detektiert (vergleiche Henn [LU38]), obwohl es bei einem Verstärkungsfehler des Zylinderdrucksensors um Null liegen müsste ($\Delta R_3=0$):

$$P_{fR3} = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\eta} \exp\left(-\frac{1}{2}\left(\frac{x-\Delta R_3}{\sigma}\right)\right)$$
(3-38)

1-P_{fR1} ist die Wahrscheinlichkeit einer Nichterkennung der Residualabweichung R1 trotz eines mittleren Fehlers ΔR_1 .

$$1 - P_{fR1} = \frac{1}{\sqrt{2\pi\sigma}} \int_{\eta}^{\infty} \exp\left(-\frac{1}{2}\left(\frac{x - \Delta R_1}{\sigma}\right)\right)$$
(3-39)

Bild 3-19: Wahrscheinlichkeit einer Fehldetektion

Das Diagramm zeigt, dass in dem vorliegenden Fehlerfall (Verstärkungsfehler von 5%) bei ungefilterten Residuen eine hohe Wahrscheinlichkeit für eine Fehldetektion (PfR3 bzw. 1-PfR1) besteht. In diesem Fall ist ein digitales Finite-Impulse-Response Filter 8.Ordnung ausreichend, um eine Fehldetektion zu vermeiden. Sollen noch kleinere Abweichungen (Verstärkungsfehler < 5%) zuverlässig erkannt werden, ist eine Erhöhung der Filterordnung erforderlich.

87

3.5 Adaption der Empfindlichkeit eines

Zylinderdrucksensors

Aufgrund der Eigenschaft des Diagnoseverfahrens, Verstärkungsfehler von sonstigen Fehlern des Zylinderdrucksensors zu trennen, kann bei erkanntem Verstärkungsfehler eine zylinderselektive Adaption des Verstärkungsfaktors während des Betriebs im Steuergerät erfolgen. Voraussetzung hierfür ist eine rechnergestützte Auswertung des Zylinderdrucksensors, die eine Anpassung der Verstärkungsfaktoren der einzelnen Zylinder entsprechend unterstützt.

Das folgende Ablaufdiagramm zeigt schematisch den Ablauf bei der Verstärkungsadaption.

Bild 3-21: Verfahren zur Verstärkungsadaption

Sobald eine Triggerung über die Diagnosefunktion erfolgt, kann der Adaptionsvorgang eingeleitet werden. Das Residuum R₂ des jeweiligen Zylinders fungiert dann als Regelabweichung, die über einen diskreten I-Regler auf den Verstärkungsfaktor einwirkt. Für die Adaptionsfreigabe sind entsprechende Schwellen zu definieren, die den Wert des Integrators bei kleinsten Regelabweichungen einfrieren. Aufgrund des z.T. ungünstigen Signal-Rauschverhältnisses der Modelle bzw. Residuen sowie stationärer Modellfehler in der Größenordnung von bis zu 5% ist ein vollständiges Ausregeln der Residuen nicht sinnvoll. Das dynamische Ansprechverhalten ist im Abschnitt 4.3 dargestellt.

Bei der Verstärkungsadaption handelt es sich um ein abgetastetes System das durch die Überführung der Laplace- in die z-Ebene mittels

$$z = e^{s \cdot Tab} \tag{3-40}$$

beschrieben werden kann. Der in Bild 3.19 dargestellte Regelkreis besteht aus einem diskreten I-Regler G₁(z)

$$G_1(z) = K_1 \frac{z}{z-1} \tag{3-41}$$

sowie der Strecke G₂(z). Diese enthält das Verstärkungsglied K₁, das den Zusammenhang zwischen dem Korrekturfaktors des Reglers und dem aus dem Zylinderdruck p_z berechneten indizierten Moment M_i darstellt (vergleiche Gleichung 3-13). Bei einer Normierung auf das maximale indizierte Moment beträgt die Verstärkung K₁ maximal 1. Außerdem enthält die Strecke zwei Totzeitglieder T_{t1} und T_{t2}, die durch die internen Rechenprozesse bedingt sind

$$G_2(z) = K_1 \cdot z^{-\frac{Tt1}{Tab}} \cdot z^{-\frac{Tt2}{Tab}}$$
(3-42)

und zur gesamten Streckentotzeit Tt,ges zusammengefasst werden können:

$$G_2(z) = K_1 \cdot z^{-\frac{Ttges}{Tab}}$$
(3-43)

Die charakteristische Gleichung der Übertragungsfunktion lautet:

$$1 + G_1(z) \cdot G_2(z) = 0 \tag{3-44}$$

$$1 + K_{I} \frac{z}{z-1} \cdot K_{1} \cdot z^{-\frac{T_{t,ges}}{T_{ab}}} = 0$$
 (3-45)

$$K_1 K_1 z^{1-\frac{Tt,ges}{Tab}} + z - 1 = 0$$
 (3-46)

Bei der gewählten Versuchsanordnung (siehe Abschnitt 4.1) wird ein einzelner Berechnungsschritt des I-Reglers und die Beeinflussung des Verstärkungsfaktors ereignisabhängig angestoßen, sobald ein neues Diagnoseergebnis mit entsprechender Momenten- und Residuenbildung vorliegt. Die Abtastschrittweite T_{ab} des Integrators ist somit gleich der gesamten Totzeit T_{t,ges}. Für die Streckenverstärkung wurde der ungünstigste Fall mit einer maximalen Streckenverstärkung von 1 angesetzt, so dass sich für Gleichung 3-46 ergibt:

$$K_{I}z^{0}+z-1=0$$
 (3-47)

mit der Nullstelle der charakteristischen Gleichung bei

$$z = 1 - K_l$$
 (3-48)

Die Stabilität der Adaption ist in diesem Fall gewährleistet, wenn die Integrationsverstärkung K_1 im Intervall [0..1] liegt und sich somit die Lösung für Gleichung 3-41 innerhalb des Einheitskreises befindet.

4. Erprobung der Diagnosefunktion am Versuchsträger

4.1 Versuchsaufbau

Die Messung und Erprobung der Diagnosefunktion und Verstärkungsadaption wurden an einem Versuchsfahrzeug VW Bora Variant durchgeführt. Als Versuchsmotor wurde ein Ottomotor mit Saugrohreinspritzung verwendet (MPI-Ottomotor, siehe Bild 2-2), dessen konstruktive Daten im Anhang dargestellt sind. Da der Motor weder über externe Abgasrückführung noch über eine Nockenwellenverstellung verfügt, kann eine Abhängigkeit der Frischgasfüllung im Zylinder von Saugrohrdruck bzw. Füllungsäquivalent sowie der Motordrehzahl angenommen werden.

Die Analyse der Drehzahlungleichförmigkeit im Lastbetrieb führt beim Motorprüfstand aufgrund der eingekuppelten E-Maschine zu anderen Ergebnissen. Daher waren Untersuchungen am Rollenprüfstand und auf der Straße erforderlich. Zur Voruntersuchung diente ein HiL-Simulator, dessen Mittelwertmodell auf den verwendeten Motor parametriert und um eine hochauflösende Zylinderdrucksimulation erweitert wurde [DIP3].

Der Betrieb von Funktionen des zylinderdruckgeführten Motormanagements wurde mit der folgenden Steuergeräteanordnung durchgeführt, um die Information der Zylinderdrucksignale in das Forschungssteuergerät zu integrieren:

Bild 4-1: Versuchsaufbau und Steuergeräteanordnung

Das Forschungssteuergerät übernimmt die Ansteuerung des Motors anhand der standardmäßig vorhandenen Sensoren und Aktoren (siehe Bild 2-19). Mittels einer Datenbusankopplung ist eine leistungsfähige Rechnereinheit (Booster) über einen bidirektionalen Schreib-Lese-(Dual-Port-RAM) eingebunden, die die zusätzlichen Speicher Zylinderdrucksignale auswertet und dem Forschungssteuergerät zur Verfügung stellt. So kann dort von einer konventionellen kennfeldbasierten Steuerung des Zündwinkels auf eine Schwerpunktlageregelung umgeschaltet werden. Die Leerlaufregelung kann durch zylinderselektive Auswertung des Drehmoments zusätzlich eine Momentengleichstellung der Zylinder vornehmen. Neben der Generierung von Merkmalen aus dem Zylinderdrucksignal übernimmt der Booster die Fourieranalyse des Drehzahlrohsignals, da er im Gegensatz zum Forschungssteuergerät über eine Fließkommaverarbeitung verfügt.

Durch ein Mess- und Kalibriersystem (INCA) werden die Daten motordrehzahlsynchron mit einer Abtastung von 180° Kurbelwinkel gemessen. Das Mess- und Kalibriersystem verfügt über eine Schnittstelle zu einem Auswerteprogramm unter MATLAB, welches Datenblöcke mit Modelleingangsdaten (mittlere Motordrehzahl, Saugrohrdruck, den Füllungsäquivalent, ..) in zeitlichem Abstand von ca. 200 ms überträgt. Mit dem Auswerteprogramm werden die Modelle und Residuen berechnet und die Fehlerdiagnose für den Messdatenblock durchlaufen. Bei erkanntem Verstärkungsfehler wird Korrekturfaktor die ein adaptiver an Rechnereinheit übertragen. Da die Residuen aufgrund der Modellstreuung ohnehin geglättet werden müssen und ein Adaptionsvorgang nur langsam vorgenommen werden kann, sind die Echtzeitbedingungen über die MATLAB-INCA-Schnittstelle für diesen Anwendungsfall ausreichend.

4.2 Algorithmus zur Diagnose und Adaption

Für die vorliegende Diagnoseaufgabe ist es erforderlich, zylinderindividuelle und zykluszugeordnete Modellberechnungen sicherzustellen. Dies erfolgt durch die Berücksichtigung der durch die Arbeitstakte des Motors (siehe Bild 3-6) und der Zylinderdruckauswertung (siehe Bild 3-21) bedingten Totzeiten.

Die sich daraus ergebenden Verzugsdauern bei den Modelleingangsdaten (z.B. Zündwinkel, Fourieramplitude, Füllungsäquivalent) können dann im Auswerteprogramm entsprechend berücksichtigt werden, so dass bei der Residuenbildung immer die Momente desselben Verbrennungsvorgangs betrachtet werden. Da die Verbrennungen sowie die Messdatenerfassung drehzahlsynchron erfolgen, ist es zweckmäßig anstelle von Totzeiten von Segmentverzügen zu sprechen, wobei 1 Segment beim 4-Zylindermotor 180°KW entspricht (siehe Bild 2-14).

Die folgende Abbildung zeigt diese Abläufe für ein Arbeitsspiel bezogen auf die Verbrennung von Zylinder 3. Die Datenfensterblöcke kennzeichnen den Messbereich. Hieran schließt sich die steuergeräteinterne Berechnung an. Nach der Größenberechnung erfolgt die Messung mit INCA zum nächsten Triggerzeitpunkt.

Bild 4-2: Zeitlicher Berechnungsablauf im Steuergerät

Die gestrichelten senkrechten Linien geben die Kurbelwinkel an, zu denen der Messtrigger ausgelöst wird. Beim Zündwinkel und beim Saugrohrdruck ist kein Segmentverzug zu berücksichtigen. Die in diesem Beispiel dargestellte Messung bei ca. 290° KW berücksichtigt die für die Verbrennung von Zylinder 3 relevanten Werte. Beim Füllungsäquivalent Δp wird der für Zylinder 3 relevante Wert erst bei ca. 480° KW erfasst, da zusätzlich zur Datenerfassung und Berechnung noch die Übertragung vom Booster zum Forschungssteuergerät zu berücksichtigen ist.

Bei der Fourieranalyse des Drehzahlsignals (KW-Signal) und beim indizierten Moment kann erst nach komplett erfolgter Verbrennung die Merkmalsberechnung erfolgen. Aufgrund der Übertragung der Daten kann die Messung der relevanten Werte erst bei ca. 660° KW erfolgen.

Aus der Analyse ergeben sich für die Modelleingangsdaten und das indizierte Moment Mi folgende zu berücksichtigende Segmentverzüge:

Größe	Segmentverzug
Saugrohrdruck ps	0
Zündwinkel αz	0
Fourieranteile des Drehzahlsignals F(n _{mot})	2
Mittlere Motordrehzahl nmot	0
Füllungsäquivalent ∆p	1
indiziertes Moment Mi	2

Bild 4-3: Segmentverzüge zum Messzeitpunkt

Durch die Bereinigung der Segmentverzüge können für jede Verbrennung zylinderindividuell die Merkmale Mi1, Mi3 und Mi4 berechnet werden. Anschließend erfolgt die Residuenbildung und die Glättung der Residuen, bevor die Auswertung und Diagnose vorgenommen wird. Bei Grenzwertüberschreitung eines Residuums werden zusätzlich Fehlerzähler hochgezählt, die bei Überschreiten eines Schwellwertes das entsprechende Fehlerbit setzen. Zusätzlich erfolgt eine Differenzierung nach oberem und unterem Schwellwert.

Bild 4-4: Ablaufdiagramm des Algorithmus

4.3 Ergebnisse

Vermessung am Rollenprüfstand

Zur Parametrierung der Approximationsansätze für das indizierte Drehmoment (siehe Gleichungen 3-22, 3-25, 3-28) wurden Messungen am Rollenprüfstand bei stationären Bedingungen (Betriebsart: Konstantfahrt) mit neu kalibrierten Zylinderdrucksensoren vom Typ Kistler 6125A durchgeführt. Das aufgrund der Zylinderdruckauswertung im Booster-Steuergerät gemäß Gleichung 3-18 ermittelte indizierte Moment wurde als Referenzgröße zur Parametrierung der übrigen Modelle verwendet.

Zur Korrektur der Geberradfehler des Drehzahlsignals wurden vorab anhand von Schleppmessungen die Korrekturwerte für die einzelnen Zähne des Geberrades in einer Offline Auswertung ermittelt. Diese wurden dann als Datenfeld im Steuergerät abgelegt und zur Korrektur des Drehzahlsignals herangezogen, auf dessen Basis dann die Fourieranalyse erfolgte (vgl. Abschnitt 2.3).

Für die Merkmale Mi1, Mi3 und Mi4 wurde ein analytischer Funktionsansatz, bestehend aus Polynomen und Logarithmusfunktionen die Anhang ausführlich verwendet. im dargelegt sind. Zur Charakterisierung der Modellgüte wird für jeden Arbeitspunkt der mittlere Modellfehler gemäß Gleichung 3-18 bezogen auf die Anzahl der Messwerte gebildet.

Das Ergebnis der Referenzmessung weist für das Merkmal Mi1 je nach Arbeitspunkt einen mittleren Modellfehler von 0 bis 4,7% bezogen auf den Mittelwert im Arbeitspunkt auf:

Bild 4-5: Validierungsergebnis des Modells Mi1

Das aus Füllungsäquivalent, Motordrehzahl und Zündwinkel ermittelte Merkmal M_{i3} weist je nach Arbeitspunkt einen mittleren Modellfehler von 0 bis 3,12 % auf:

Bild 4-6: Validierungsergebnis des Modells Mi3

Die Modellierung des Merkmals Mi4 stellt aufgrund der Vielzahl von Querempfindlichkeiten die anspruchsvollste Aufgabe dar. Hier sind in erster Linie die Rückwirkung vom Antriebsstrang sowie die Parameterschwankungen beispielsweise bei der Reibung zu nennen. Aufgrund der unterschiedlichen mechanischen Angriffspunkte der Zylinder an der Kurbelwelle wurden die Modelle zylinderselektiv parametriert. Der mittlere Modellfehler schwankt zwischen 0,2% und 7,1%.

Bild 4-7: Validierungsergebnis des Modells Mi4

Neben dem mittleren Modellfehler ist für das Diagnoseverfahren auch der Signal-Geräuschabstand von Interesse, da er - wie in Abschnitt 3.4 diskutiert – die Auslegung der Tiefpassfilterung beeinflusst. Er wurde für die einzelnen Modelle pro Arbeitspunkt gemäß

$$s = 10 \cdot \log\left(\frac{\overline{Mi}^2}{\sigma^2}\right) \tag{4-1}$$

ermittelt und ist mit seinen Minimal- und Maximalwerten s_{Min} und s_{Max} in der folgenden Tabelle dargestellt:

Modellansatz	S _{Min}	S _{Max}
Mi1	10 dB	39 dB
Міз	20,9 dB	78,8 dB
Mi4	23 dB	75 dB

Überprüfung bei dynamischer Fahrt am Rollenprüfstand

Nachdem die Modelle mit Daten aus stationären Arbeitspunkten parametriert wurden, erfolgte eine Überprüfung am Rollenprüfstand bei variabler Last und Drehzahl (sog. Betriebsart: Fahrwiderstand) und konstantem Gang:

Bild 4-8: Überprüfung bei Dynamik am Rollenprüfstand

Der Verlauf der Momente Mi, Mi1, Mi3 und Mi4 stimmen im gesamten sind Bereich überein auch bei dynamischen und Laststößen (Arbeitsspielindex: 1100, 1700, 2500) prinzipiell gültig. Die Modelle weisen zudem eine gute Interpolationsfähigkeit auf, da auch Last-/Drehzahlpunkte außerhalb des Trainingsdatenbereichs durchfahren werden. Da die Anteile mit starker Last- und Drehzahldynamik im realen Fahrbetrieb nur kurzzeitig auftreten, kann bei einer Residuenfilterung mit hoher Filtertiefe einer Fehldetektion entgegengewirkt werden. Zusätzlich ist für die Erkennung eines **Fehlers** eine bestimmte Anzahl von Schwellwertüberschreitungen der Residuen erforderlich.

Überprüfung bei Straßenmessung

Insbesondere für das Merkmal Mi4, welches die Drehzahlschwankungen zur Approximation des Momentes auswertet, ist eine Überprüfung bei Straßenfahrt erforderlich. Die Messungen zeigen, dass die Übertragbarkeit des Modells vom Rollenprüfstand auf die Straße gegeben ist.

Bild 4-9: Ergebnisse bei Straßenmessung im 2. Gang

Die Momente Mi, Mi1, Mi3 und Mi4 stimmen auch hier überein und zeigen bei dynamischen Laststößen (ASP-Index: 1200, 1700, 2500) keine nennenswerten Abweichungen.

Neben den bisherigen Messungen im 2. Gang wurden zusätzlich Messungen im 3. und 4. Gang durchgeführt. Diese zeigen, dass eine

Anpassung des Merkmals Mi4 in Abhängigkeit des eingelegten Gangs nicht vorgenommen werden muss, wie die folgende Straßenmessung im 3. Gang zeigt:

Bild 4-10: Ergebnisse bei Straßenmessung im 3. Gang

Die Verläufe der ungefilterten Momente stimmen auch in dieser Messung prinzipiell überein. Die Laststöße (z.B. bei Arbeitsspiel-Index 450) sind allerdings schwach ausgeprägt, was an den flachen Drehzahlgradienten zu erkennen ist. Bei dem aus dem Drehzahlsignal ermittelten Mi4 zeigt sich eine im Rohsignal unterlagerte Schwingung, die durch entsprechende Filterung unterdrückt werden kann.

Adaption der Verstärkung

Um die Diagnosefunktion zu testen, wurde eine A-priori-Vertrimmung des Verstärkungsfaktors von Zylinder 1 vorgenommen. Anschließend wurde bei dynamischer Fahrt am Rollenprüfstand die Diagnosefunktion aktiviert.

Bild 4-11: Adaption der Verstärkung

Die gegenüber einem Verstärkungsfehler unempfindlichen Residuen R₃ und R₄ schwanken um den Nullpunkt, während die Residuen R₁ und R₂ einen signifikanten Ausschlag zeigen. Nach Erkennung des Fehlers wird der Verstärkungsfaktor des betreffenden Zylinders nachgeführt. Allerdings verbleibt eine Restabweichung, da aufgrund von Modellungenauigkeiten und sonstigen Störeinflüssen die Residuen in einem Toleranzband um den Nullpunkt nicht zur Fehlerdetektion herangezogen werden können. Die folgende Abbildung zeigt für den Adaptionsvorgang das Fehlerbit und den resultierenden Verstärkungsfaktor:

Bild 4-12: Fehlerbit, Verstärkungsfaktor bei Adaptionsvorgang

5 Zusammenfassung

Zylinderdrucksensoren eröffnen neue Möglichkeiten bei der Steuerung und Regelung von Verbrennungsmotoren, da sie eine direkte Information über den Verbrennungsvorgang beinhalten. Effekte wie Alterung oder Exemplarstreuung von Motoren können somit erfasst und berücksichtigt werden. Daneben können Sensorfehler des Zylinderdrucksensors auftreten, die aufgrund der Gesetzgebung zur On-Board-Diagnose diagnostiziert werden müssen.

Die Diagnose von Fehlern des Zylinderdrucksensors wurde anhand eines Ottomotors mit Saugrohreinspritzung (MPI) vorgestellt. Die physikalischen Zusammenhänge und die Einflussgrößen auf das Drehmoment des Motors wurden erläutert und Modellansätze zu dessen Approximation aufgezeigt.

Anhand des Verfahrens der analytischen Redundanz kann das indizierte Moment als Merkmal zur Diagnose einer zylinderdruckbasierten Motorsteuerung verwendet werden. Hierzu wurden sowohl verschiedene Modellansätze vorgestellt, als auch eine Variation der Modelleingangsgrößen durchgeführt. Die Empfindlichkeit der einzelnen Modelle und der daraus abgeleiteten Residuen gegenüber bestimmten Fehlertypen wurde aufgezeigt. Insbesondere ist eine Trennung von Fehlern des Zylinderdrucksensors gegenüber motorischen Toleranzen oder Driften möglich.

Handelt es sich bei dem verwendeten Motorkonzept um einen Ottomotor mit quantitätsbasierter Laststeuerung, d.h. bei gleichbleibender Gemischzusammensetzung (i.d.R. Luft-/Kraftstoffverhältnis λ =1), so kann bei erkanntem Fehler des Zylinderdrucksensors eine weitere Aufteilung nach verschiedenen Fehlertypen erfolgen. Auf diese Weise können Sensortoleranzen wie z.B. Verstärkungsfehler des Zylinderdrucksensors durch eine Adaption korrigiert werden, ohne den Sensor austauschen zu müssen.

Die Diagnosefunktion und die Verstärkungsadaption wurde erfolgreich an einem MPI-Ottomotor ohne externe Abgasrückführung (AGR) und kontinuierlicher Nockenwellenverstellung (KNWE) durchgeführt, wobei die erwähnten Einschränkungen in Bezug auf die Betriebsbereiche zu berücksichtigen sind. Anhand der Modellstreuungen und Modellungenauigkeiten sind die Grenzen der Diagnose und der Adaption aufgezeigt worden.

Die implementierten Algorithmen sind grundsätzlich echtzeitfähig, wenngleich für die Zylinderdruck- und Drehzahlauswertung eine hohe Rechenleistung erforderlich ist. Die im Rahmen der Merkmalsberechnung implementierten Modelle lassen sich in Kennfelder überführen, um die Echtzeitfähigkeit weiter zu verbessern.

6. Literaturverzeichnis

HIL1	Heinrich , A.	Systematische Optimierung instationärer Vorgänge am Ottomotor mit Hilfe der Echtzeitsimulation	1996	Dissertation, Gh Kassel
LU1	Fehrenb ach, H.	Drehmomentbestimmung bei Verbrennungsmotoren durch Auswertung der Kurbelwellen- Winkelgeschwindigkeit	1998	MTZ Motortechnische Zeitschrift 59, 5/98
LU2	Kao, M.	Nonlinear cylinder and intake manifold pressure observers for engine control&diagostics	1994	SAE Technical Paper Series No.940375
LU3	Lim, B.	Estimation of the cylinder pressure using variation of the crankshaft speed	1994	SAE Technical Paper Series No.940145
LU4	Mereter, T.	Konzept eines Borddiagnosesystems für Ottomotoren	1986	Interne Berichte der Volkswagen AG
LU5	Mihelc, W.P.	An on-line engine roughness measurement technique	1984	SAE Technical Paper Series No.840136
LU6	Ina, T. Obayas hi, H.	Lean limit A/F control system by using engine speed variations	1986	SAE Technical Paper Series No. 860413
LU7	Lenz, HP. Akhlagi, M.	Einflüsse auf die Laufunruhe von Ottomotoren	1978	MTZ, Motortechnische Zeitschrift 39, 1978, S. 313-317
LU8	Akhlagi, M.	Laufunruhe, Abgas- emissionen und Verbrauch eines Ottomotors bei Magerbetrieb	1978	Dissertation, TU Wien
LU9	Geiger, I. Wascha tz,U.	Laufunruhe als Eingangsgröße für Regelverfahren	1987	VDI-Fortschritt- Berichte Reihe 12, Nr.86, S.277-295
LU10	Bianchi, V. Latsch, R.	Meßverfahren für die Laufunruhe von Verbrennungsmotoren	1978	VDI- Fortschrittber.Reihe 12, Nr., S.387-398

LU11	Citron, S.J.	Cylinder by cylinder engine pressure pressure torque variation	1989	SAE Technical Paper Series No.890486
LU12	lida, Akishito	IMEP Estimation from instantaneous crankshaft torque variation	1990	SAE Technical Paper Series No. 900617
LU13	Drahno w, Rizzoni	ON-line-estimation of indicated torque in IC engines using nonlinear observers	1995	SAE Technical Paper Series No. 950840
LU 14	Nishimu ra, E. Ishihira, T.	Idle speed control device for engine	1999	European Patent Applic. EP0947682A2
LU 15	Heuer, K.	Verfahren zur Anpassung der Einspritzmenge einer Brennkraftmaschine zur Laufruheregelung	1998	Europäisches Patent-Nr: 98107909.8-2301
LU16	Taraza, D. Henein, N.A.	Determination of the gas pressure torque of a multicylinder engine from measurements of the crankshafts speed variation	1998	SAE Technical Paper Series No. 980164
LU17	Angerm aier, A.; Henn, M.	Adaptionsverfahren zur Korrektur von Toleranzen eines Geberrades	1999	Deutsche Patentschrift DE19540674C2
LU18	Marche guet, E. Fernand ez,F.	Procede de calcul du couple d'un moteur thermique a injection commandee electronique	1998	PCT, Organisation mondiale de propriete intellectuelle, Numero W0 98/29718
LU19	Chen, D. Roskilly, M.	A crank angular velocity based method for engine IMEP measurement for idle quality investigation and adaptive ignition time trimming to improve idle quality	1999	SAE-SP-1419 inElectonic,Engine, Controls 1999
LU20	Cavina, N. Ponti, F.	Fast algorithm for on-board torque estimation	1999	SAE-SP-1418 in Electonic,Engine, Controls 1999

LU21	Azzoni, P.M. Minelli, G.	Indicated and load torque estimation using crankshaft angular velocity measurement	1999	SAE-SP-1418 in Electonic,Engine, Controls 1999
LU22	Kimmich , F., Schwart e, A:	Modellgestützte präventive Diagnosemethoden für Dieselmotoren	2001	Abschlussbericht, FVV Vorhaben Nr. 709
LU23	Zimmer mann,U.	Verfahren zur zylinder- individuellen Bestimmung relativer Unterschiede ungleichförmiger Zylinder- momente einer Kolbenkraftmaschine	1997	Patent Nr.: DE 195 48 604 C1
LU24	Angerm aier, A.	Verfahren zur Momentenschätzung mittels Drehzahlauswertung an der Kurbelwelle einer Brennkraftmaschine	1997	Patent Nr.: DE 195 40 675 C1
LU25	Fehrenb ach,H.	Verfahren zur Ermittlung von Drehmomenten, Arbeiten und Leistungen an Verbrennungsmaschinen	1996	Patent-Nr: DE 4445684 A1
LU26	Gimmler , H.	Verfahren zur Bestimmung von Betriebsparametern einer Brennkraftmaschine durch Auswerten der Drehzahlinformation	1997	Patent-Nr.:DE 4407167 C2
LU27	Weylan d, M.	Verfahren zur Bestimmung des mitlleren Aktionsmomentes einer Verbrennungsmaschine	1989	Patent-Nr.: DE 3743066 A1
LU28	Harms, KC.	Verfahren zur Diagnose von Brennkraftmaschinen	1995	Europäisches Patent -Nr.: EP 0750 184 A2
LU29	Koegele r, HM.	Verfahren zur Motorlastmessung	1997	Europäisches Patent -Nr.: EP 0592 628 B1
LU30	Citron, S.J.	On-line engine torque and torque fluctuation mearurement for engine control utiliozing crankshaft speed fluctuations	1986	Europäisches Patent-Nr.: EP 0198 137 A2

			4000	
LU31	Reustle, A.	Verfahren zum Messen des Drehmomentes an einer mehrzylindrigen Brennkraftmaschine	1996	Deutsches Patent- Nr.: DE 4425 205 A1
LU32	Klenk, M.	Drehzahlerfassungsverfahren , insbes.zur Verbrennungs- aussetzererkennung	1999	Deutsches Patent Nr.: DE 198 14 732 A1
LU33	Przymu sinski, A.	Verfahren zur Zylindergleichstellung bei einer mit Direkteinspritzung arbeitenden Brennkraftmaschine	1999	Deutsches Patent Nr.: DE 198 14 155 A1
LU34	Guezen nec, Y.G. Gyan, P.	A novel approach to real-time estimation of the individual cylinder pressure for SI engine control	1999	SAE Technical Paper Series No. 1999-01-0209
LU35	Williams , J. Witter, M.C.	Individual cylinder IMEP estimation using crankshaft angulat velocity measurements	2001	SAE Technical Paper Series No. 2001-01-0990
LU36	Fehrenb ach,H.; Schultal bers, W.	Bestimmung des Motordrehmomentes aus dem Drehzahlsignal	2002	MTZ, Motortechnische Zeitschrift 63, 12/02,
LU37	Schneid er, A:	Fehlerfrüherkennung an Verbrennungsmotoren durch Analyse der Winkelgeschwindigkeit an der Kurbelwelle	1992	Dissertation TU Braunschweig
LU38	Henn, M.	On-Board-Diagnose der Verbrennung von Ottomotoren	1995	Dissertation TU Karlsruhe
LU39	Stone, R. McFadd en, P.	Torque estimation and misfire detection using block angular acceleration	2000	SAE Technical Paper Series No 2000-01-0560
LU40	Froschh ammer, F.	Identifikation und Kompensation von Sensorungenauigkeiten für die drehzahlgestützte On- Borad-Diagnose von Verbrennungsmotoren		Dissertation TU München

MM1	Bosch, R.	Ottomotor-Management	1998	Vieweg Verlag
MM2	Meisber ger, D. Albert, C.	Die neue Motorsteuerung ME7.2 von Bosch für den BMW V8-Motor	1998	MTZ Motortechnische Zeitschrift 12/98, S.826-834
MM3	Liebl, J. Munk, F. Hohenn er, H.	Die Steuerung der neuen Valvetronic Motoren	2001	MTZ Motortechnische Zeitschrift 7+8/2001 S. 516-531
MM4	Schmitt, M.	Untersuchungen zur Reali- sierungen mehrdimensionaler lernfähiger Kennfelder	1994	VDI-Fortschritt- Berichte Reihe 12 Nr.246
MM5	NN	Digifant im PkW,	1987	VW Kundendienst- Selbsstudien- programm Nr. 87
MM6	NN	Der 2,0I-110kW Motor mit Benzin-Direkteinspritzung	2002	VW Kundendienst- Selbsstudien- Programm Nr. 279
MM7	Denner, V.	Elektronikarchitektur für Motorsteuerungssysteme	1999	Konferenz Fortschritt und Zukunft der Automobilelektronik, Stuttgart
MM8	Steiger, W.	Anforderungen an zukünftige Motorsteuergeräte	2006	VDI Konferenz Autoreg 2006
MM9	NN	Der 2I-Motor	1999	VW Kundendienst- Selbsstudien- Programm Nr. 233
MOT1	Fraidl, G.K. ; Piock, W.	Fahrzeugklassen-spezifische Ottomotorkonzepte	1999	MTZ Motortechnische Zeitschrift 60, S. 692 – 698
MOT2	Kollman n, K. Niefer, H.	Wohin führt die Weiterentwicklung bei Ottomotoren	1998	MTZ Motortechnische Zeitschrift 59, S. 630 – 642
MOT3	Neuman n, KH	Zukünftige Fahrzeugkonzepte	2000	VDI Berichte Nr.1565, Innovative Fahrzeugantriebe

MTM1	Klier, H.	Einfluß der periodischen Schwankung des MTM's auf die Torsionsschwingungen des 4-Zyl-Motors	1978	MTZ, Motor- technische Zeitschrift 39, 1978, S. 341-345
MTM2	Kumishi ma, T.	Effects on motorcycle behaviour of the moment of inertia	1997	SAE Technical Paper Series No 971060
MTM3	Resh, W.F.	Effect of engine built options of powerplant inertias	1990	SAE Technical Paper Series No 900457
MTM4	Marek,S	Effect of load and other parameters on instantenous friction torque in reciprocating engines	1991	SAE Technical Paper Series No 910752
MTM5	Maass, H. Klier, H.	Kräfte, Momente und deren Ausgleich in der VKM	1981	Springer Verlag, Wien New York
MTM6	Fischer, G. Hohenb erg, G.	Ermittlung einer Formel zur Vorausberechnung des Reibmitteldrucks von Ottomotoren	1999	FVV-Bericht,Heft R 501
MTM7	Gerner, D.	Methode zur Trennung der Reibungsverluste von Kolben und Lagern im Motorversuch	1968	Wiss. Zeitschrift der TU Dresden, Heft 5 S.1367-1375
MTM8	Goll, S. Wagner, G.	Einfluß neuer Motorenentwicklungen auf Getriebekonzepte	1999	20. Int Wiener Motorensymposium. S.11-30
NN1	Nelles O. Iserman n, R:	Neuronale Netze zur Identifikation nichtlinearer, dynamischer Systeme	1997	at, Automatisierungstec hnik 45, 6/97
NN2	Ayeb, M. Winsel, Th.	SI Engine Modeling using Neural Networks	1998	SAE Technical Paper Series No. 980790
NN3	Kessel, J-A Iserman n, R.	Modellbasierte Motorsteuerung, -regelung, - überwachung	1998	MTZ Motortechnische Zeitschrift 59, 4/98
NN4	Asik, J.R.	Transient A/F estimation and control using Neural Networks	1997	SAE Technical Paper Series No. 970619
NN5	Shayler, P.J.	Transient A/F ratio control of an SI engine using Neural Networks	1996	SAE Technical Paper Series No. 960326

NN6	Theuerk	Zwischenbericht zum ACON-	1996	BMBF-
	auf. H.	Teilprojekt: Kombinjerte		Verbundprojekt.
	,	echtzeitfähige		Förder-Kennz.: 01
		Prozessmodelle		IN 510 E 3
NN7	Thomas	Engine knock detection using	1996	SAE Special Paper
	. J.H.	pattern recognition IN Control		Series No. 96A4061
	Dubuiss	and Diagnostics in		
	on, B.	Automotive Applications		
NN8	Weber,	Untersuchung des Potentials	1996	Diplomarbeit TU
	S.	neuronaler Netze und		Braunschweig /
		kennfeldbasierender		Volkswagen ÅG
		Strukturen zur Abbildung von		
		Reifeneigenschaften		
NN9	Hagan,T	Training feedforward	1994	IEEE Transactions
	.H.	networks with the marquardt		on neural networks
		algorithms		Vol.5, No6, Nov
				1994
NN10	Ayeb,	Zur modellbasierten	1998	Dissertation Uni Gh
	M.	Regelung technischer		Kassel
		Prozesse mit dynamischen		
		neuronalen Netzen		
NN11	Lenz, U.	Artificial intelligence for	1997	SAE Technical
	Schröde	combustion engine control		Paper Series No.
	r, D.			960328
NN12	Lenz, U.	Identifikation isolierter	1996	VDI-Berichte 1282,
	Schröde	Nichtlinearitäten mit		S.437-447
	r, D.	neuronalen Netzen		
NN13	Schäffn	Analyse und Synthese	1996	Dissertation IU
	er, C.	neuronaler De seeker seeverfelenen		Nunchen
	N I a u a u a lu	Regelungsverfahren	4000	
NN14	Narendr	Identification and control of	1990	IEEE I ransactions
	a, ĸ.s.	dynamical systems using		on neural networks
		neural networks		VOI. 1, NO 1, War
	Speakt	A Constal regression neurol	1001	1990
CINNI	Specni,	A General regression neural	1991	DEEE Transactions
	<i>D</i> .г.	network		
				1001
NN16	Lichtent	Improving real-time SL engine	1000	SAF Technical
	häler D	models by integration of	1000	Paper Series
	Aveh	neural approximators		No 1999-01-1164
	M			
NN17	Winsel	Stabile neuronale	2004	VDI-Fortschritt-
	Th.	Prozessmodelle		Berichte Reihe 12.
				Nr. 513

NN18	Lenz, U.	Lernfähige neuronale Beobachter für eine Klasse nichtlinearer dynamischer Systeme und ihre Anwen- dung zur intelligenten Rege- lung von Verbrennungsmot.	1998	Dissertation TU München
NN19	Fritz, H.	Neuronale Regelung am Beispiel der autonomen Fahrzeugführung	1997	Dissertation TU Stuttgart
NN20	Krüger, L.	Modellbasierte Regelungs- verfahren unter Verwendung stochastischer und neuronaler Modelle am Beispiel der Drehzahl- regelung einer Asynchronmaschine	1998	Dissertation TU Berlin
NN21	Firschin g, P.	Der Einsatz künstlicher neuronaler Netze in regelungstechnischen Anwendungen	1995	Dissertation Uni Erlangen-Nürnberg
OBD1	Spitzer, Ch.	Potentialstudie Neuro-Fuzzy für OBD	1997	Diplomarbeit TU Braunschweig / Volkswagen AG
OBD2	Leonhar dt, S.	Modellgestützte Fehlererkennung mit Neuronalen Netzen - Überwachung von Diesel- Einspritzanlagen	1996	VDI-Fortschr.ber. Reihe 12, Nr. 295
OBD3	Lee, M.	Automatic Analysis and Diagnosis of Automobiles using Neural Networks	1991	Fuzzy and Neural Systems and Vehicle Applications ,IEEE Roundtable Discussion at Uni Tokyo, paper#3
OBD4	Seabroc k, J.	Die Anwendung statistischer Verfahren in der Motorenentwicklung	1998	MTZ Motortechnische Zeitschrift 59, 4/98
OBD5	Schwart e, A. Kimmich , F.	Diagnosemethoden Dieselmotor 2	2003	FVV-Vorhaben Nr. 768 , Abschlussbereicht

- nik 46,
nik 46,
60
al
en und
smotor
tt-
ie 8,
e der
٩G
al
al
tt-
ie 12,
,
al
No.
3
ſU
03
Ingspra

OBD17	Nyberg, M.	Model based diagnosis for the air intake systemof the SI- engine	1998	SAE Technical Paper Series No.970209
OBD18	Frank, P.M.	Detektion von Sensorausfällen	1985	Industrie-Elektrik und Elektronik, 1985, Nr.4, S.42-50
OBD19	Frank, P.M.	Entdeckung von Instrumentenfehlanzeigen mittels Zustandsschätzung in technischen Regelsystemen	1984	VDI Fortschritt- Berichte Reihe 8, Nr. 80
OBD20	Lichtent häler, D.	Prozessmodelle mit integrierten neuronalen Netzen zur Echtzeitsimulation und Diagnose von Verbrennungsmotoren	2001	VDI-Fortschritt- Berichte Reihe 12, Nr.454
OBD21	Iserman n, R. Kimmich , F. Schwart e, A:	Fehlerdiagnosemethoden für Otto- und Dieselmotor	2003	12. Aachener Kolloquium für Fahrzeug- und Motorentechnik S.407-448
OBD22	Fritz, M.	Fehlererkennung an einem elektromechanischen Radbremsaktor mittels modellbasierter Methoden	2004	VDI berichte 1828, S. 175-184, Autoreg 2004
OBD23	Iserman n, R.	Überwachung und Fehlerdiagnose	1994	VDI Verlag, ISBN 3- 18-401344-8
REG1	Nesbit, C.	Adaptive Engine Control	1991	American Control conference ,Boston, p.2072-2076
REG2	Kiencke, U.	Regelverfahren in der elektronischen Motorsteuerung	1987 1988	Automobil Industrie 6/87, 2/88
REG3	Ding, X. Jeinsch, Th.	Empfindlichkeitsanalyse und Optimierung der beobachtergestützten Fehlerdiagnosesysteme	1998	AT, Automatisierungstec hnik 46, 7/98, S.333-342
REG4	Jensen, B. Olsen, M.B.	A new family of nonlinear observers for SI engine AF ratio control	1997	SAE Technical Paper Series No 970615
REG5	Iserman n, R. Jost, O.	Modellgestützte Reglerentwicklung für einen Abgasturbolader mit variabler Turbinengeometrie	2000	MTZ Motortechnische Zeitschrift 61, 2000,

ZY1	Fehrenbac	Berechnung des	1991	Dissertation TU
	h, H.	Brennraumdruckverlaufes		Karlsruhe /
	,	aus der Kurbelwellen-		Fraunhofer-Institut
		Winkelgeschwindigkeit		
		von		
		Verbrennungsmotoren		
ZY2	Müller. R.	Engine control using	1996	Proceed, 1st Conf.
	,	Neural Networks		On Control and
				Diagnostics in
				Automotive
				Applications.
ZY3	Gassenfeit,	Algorithms for Air Fuel	1989	SAE Technical Paper
	E.H.;	Ratio Estimation using		Series No 890300
	Powell	internal		
		comb.eng.cyl.pres.		
ZY4	Patrick,	A technique for the real-	1990	SAE Technical Paper
	R.S	time -estimation of A/F		Series No 900260
	Powell,	ratio using molecular		
	J.D.	weight ratios		
ZY6	Sawamoto,	Individual Cylinder Knock	1987	SAE Technical Paper
	K. ;	Control by Detecting		Series No 871911
	Kawamura	Cylinder Pressure		
ZY7	Matekunas	Engine combustion	1986	US-Patent-Nr
		control		4622939
		with ignition timing by		
		pressure ratio		
		management		
ZY8	Veit, H.	Ansätze für ein zylinder-	1994	15. Int. Wiener
	Schubert,	druckgeführtes Motor-		Motorensymposium,
	E.	managementsystem		S.116-128
ZY9	Gilkey,J.C.	Fuel-Air-Ratio	1985	Journal of Dynamic
		Determination from		Syst,Meas,
		Cylinder Pressure time		Control, 12/95, S.252-
		histories		257
ZY10	Hellring, M.	Spark advance control	1999	SAE Technical Paper
	Munther,	using the ion current and		Series No 99011162
	Th.	neural soft sensors		
ZY11	Powell,	Cylinder Pressure	1993	Proceedings of the
	B.K.	Feedback		American control
		control analysis model		conference San
				Francisco, S. 1756-
				1760

ZY12	Powell, J.D	Engine control using cylinder pressure (Past, Present, Future)	1993	Journal of Dynamic Systems,Measureme nts and control Vol.115, 6/93,S.343- 350
ZY13	Hubbard ,M.	Applications of automatic control to IC engines	1975	PhD thesis Stanford university
ZY14	Thiema nn, W.	Verfahren zur genauen Zylinderdruckmessung an Verbrennungsmotoren – Teil1+2	1989	MTZ Motortechnische Zeitschrift 50 1989
ZY15	Jippa, K.N.	Entwicklung und Bewertung von Verfahren zur Online- Bestimmung von Zylinder- druckdaten	1997	Diplomarbeit TU Braunschweig / Volkswagen AG
ZY16	Pisching er, S.	Verbrennungskraft- maschinen 1	2005	Vorlesungsumdruck RWTH Aachen
ZY17	Pisching er,R. Krassni g	Thermodynamik der Verbrenungskraftmaschine	1989	Springer-Verlag Wien, ISBN 3-211- 82105-8
ZY18	Seitzhof f, A Reinma nn, R.	In cylinder pressure measurements using the spark plug as an ionization sensor	1997	SAE Technical Paper Series 970857
ZY19	Matekun as, F.A et al.	Cylinder pressure based engine control using pressure ratio management and low-cost non-intrusive cylinder pressure sensors	2000	SAE Technical Paper Series 2000-01-0932
ZY20	Jeschke , J.	Konzeption und Erprobung eines zylinderdruckbasierten Motormanagements für PkW-Dieselmotoren	2001	Dissertation, Uni Magdeburg
ZY21	Gherghi u, V.	Simulationsmodelle von Verbrennungsm,otoren für Echtzeitanwendungen	1998	Haus der Technik, Tagung Nr.: E-30- 202-056-8
ZY22	Jippa, KN.	Onlinefähige, thermodynamikbasierte Ansätze für die Auswertung von Zylinderdruckverläufen	2003	Dissertation, Uni Stuttgart
ZY23	Müller, N.	Zylinderdruckbasiertes Motormanagement beim Ottomotor	2002	VDI-Berichte Nr. 1672, 2002, Autoreg2002

ZY24	Bargend e, M.	Schwerpunkt-Kriterium und automatische Klingelerkennung	1995	MTZ Motortechnische Zeitschrift 56, 1995
ZY25	Roth, K.J. Sobiesia k,A.	In-Cylinder Pressure Measurements with optical fiber and piezoelectric pressure transducers	2002	SAE Technical Paper Series 2002-01-0745
ZY26	Burkhar dt, C. Bargend e, M.	Thermoschockkorrektur bei Druckindizierungen mit Zünd- und Glühkerzenadaptern	1995	MTZ Motortechnische Zeitschrift 56, 1995
ZY27	Müller, N.	Adaptive Motorregelung beim Ottomotor unter Verwendung von Brennraumdruck-Sensoren	2003	VDI-Fortschritt- Berichte Reihe12, Nr 545
ZY28	Küsell, M.	Dimensionierung eines Brennraumdrucksensors für Regelungsaufgaben in Serienmotoren	1994	Dissertation TU Braunschweig
ZY29	Wlodarc zyk, M.T.	In-Cylinder Fiber-Optic Pressure Sensors for Monitoring and control of diesel engines	1998	SAE Technical Paper Series No.981913
ZY30	Inoue, T.	Toyota lean Combustion System – The third generation system	1993	SAE Technical Paper Series No.930873
ZY 31	Akoach ere, A., Noble, A., Truscott , A.	Implementierung eines modellbasierten Motorregelungskonzepts unter Verwendung von Zylinderdruckindizierung	2002	VDI Berichte Nr. 1672, Autoreg 2002
ZY32	Bargend e,M. Köhler, U., Spicher F.	Entwicklung eines allgemeingültigen Restgasmodells für Ottomotoren	2002	FVV Vorhaben Nr. 740, Abschlussbericht

Vom Verfasser betreute Diplomarbeiten zum Thema:

DIP1	Kubitza,	Modellierung des indizierten	2000	Diplomarbeit FH
	B.	Motormoments mittels		Gelsenkirchen /
		neuronaler Netze		Volkswagen AG
DIP2	Artieda,	Echtzeitprogrammierung	2000	Diplomarbeit Centro
	J.M.	von Neuronalen Netzen im		Politecnico de
		Motorsteuergerät zur		Zaragoza /
		Modellbildung		Volkswagen AG
		motorrelevanter Größen		
DIP3	Kaplan,	Approximation of cylinder	2003	Diplomarbeit TU
	C.	pressure in gasoline engines		Hamburg-Harburg /
		for real time purposes		Volkswagen AG,
DIP4	Zalloum,	Modelloptimierung und	2003	Masterarbeit TFH
	M.	Robustheitsanalyse bei		Berlin / Volkswagen
		nichtlinearen Teilsystemen		AG
		des Ottomotors		

Anhang A: Daten des Versuchsmotors

MPI-Ottomotor 2,0 I – 85kW			
Zylinderzahl	4		
Anzahl der Ventile	2		
Bohrung	0.0825 m		
Hub	0.0927 m		
Verdichtungsverhältnis	10		
Pleuellänge	0.144 m		
Kurbelradius	0.04637 m		

Anhang B: Kinematik des Kurbeltriebs

Bei Kenntnis der Geometriedaten kann anhand der Kinematik des Kurbeltriebs für den einfachen Kurbeltrieb ohne Schränkung und Desachsierung das Zylindervolumen in Abhängigkeit des Kurbelwinkels $V(\phi)$ als Summe aus Kompressionsvolumen VC und Hubvolumen VH berechnet werden.

Mit der Länge von Kurbelradius rk und Pleuelstange I kann der Kolbenweg $s(\phi)$ in Abhängigkeit des Kurbelwinkels berechnet werden nach:

$$s(\phi) = rk\cos(\phi) + \sqrt{l^2 - rk^2}\sin(\phi)$$

Das Zylindervolumen ergibt dann mit dem Kolbenfläche Ak und dem Kompressionsvolumen Vc zu:

$$V(\phi) = V_c + Ak \cdot \left[\left(l + rk \right) - s(\phi) \right]$$

wobei sich das Kompressionsvolumen aus dem Verdichtungsverhältnis ϵ und Hubvolumen VH berechnen lässt

$$\varepsilon = VC / (VC + VH)$$

Mit der Schubstangenverhältnis λs als Verhältnis von Kurbelradius rk zu Pleuellänge I ergibt sich bei entsprechender Umformung:

$$V(\phi) = V_{c} + A_{k} \cdot r_{k} \cdot \left(1 - \cos(\phi) + \frac{1}{\lambda s} - \frac{1}{\lambda s} \cdot \sqrt{1 - \lambda s \cdot \sin^{2}(\phi)}\right)$$

Anhang C: Approximation des Zylinderdrucks

Die Energieumsatzrechnung und die Zylinderdruckberechnung geht vom 1.Hauptsatz der Thermodynamik (Energiegleichgewicht) aus:

$$\frac{dU}{d\theta} = \frac{dQ}{d\theta} + \frac{dW}{d\theta} + h\frac{dm}{d\theta}$$

Die innere Energie dU kann weiter aufgeteilt werden nach:

$$\frac{dU}{d\theta} = \frac{dU_t}{d\theta} + \frac{dU_c}{d\theta}$$
$$\frac{dU_t}{d\theta} = m_{total} c_v \left[\cdot \frac{dT}{d\theta} + \frac{\partial U_t}{\partial \lambda} \cdot \frac{d\lambda}{d\theta} \right] + u_t \frac{dm}{d\theta}$$

$$\frac{dU_c}{d\theta} = -Q_{hv} \cdot m_{fuel} \cdot \frac{dX_b}{d\theta}$$

$$\frac{dW}{d\theta} = p \cdot \frac{dV}{d\theta}$$

Mit den Annahmen eines geschlossenen Systems (kein

Luftmassenänderung), eines konstanten Luft-/Kraftstoffverhältnisses λ und unter Vernachlässigung der Wandwärmeverluste ergibt sich:

$$Q_{CH} = Q_{hv} m_{fuel} \frac{dX_b}{d\theta} = \left(m_{total} c_v \frac{dT}{d\theta} + p \frac{dV}{d\theta} \right)$$

Aus der Differenzierung der allgemeinen Gasgleichung ergibt sich ferner:

$$V\frac{dP}{d\theta} + P\frac{dV}{d\theta} = mR\frac{dT}{d\theta}$$

Das Verhältnis der spezifischen Wärmen γ:

$$\gamma - 1 = \frac{R}{C_v}$$

eingesetzt in die Ausgangsgleichung führt auf die verwendete Endformel:

$$Q_{CH} = Q_{hv} m_{fuel} \frac{dX_b}{d\theta} = \left(\frac{\gamma}{\gamma - 1} P \frac{dV}{d\theta} + \frac{1}{\gamma - 1} \cdot V \cdot \frac{dP}{d\theta}\right)$$

Bei Vorgabe des Heizverlaufes durch eine Vibe-Funktion kann eine rekursive Berechnungsvorschrift für den Zylinderdruck aufgestellt werden:

$$\frac{dP}{d\theta} = Q_{hv} m_{fuel} \frac{dX_b}{d\theta} \cdot \frac{(\gamma - 1)}{V} - \frac{\gamma \cdot P}{V} \frac{dV}{d\theta}$$

und

$$P(\theta) = P(\theta - 1) + \frac{dP}{d\theta}$$

Anhang D: Modellgleichungen und Messprogramm

An dieser Stelle seien die in Abschnitt 3.3 verwendeten Modellansätze kurz dargestellt. Für das optimale indizierte Drehmoment Mi1 wurde folgender Approximationsansatz gewählt:

$$\begin{aligned} \mathsf{Mi1,opt} &= 0.5665324 \bullet (\mathsf{log}(\mathsf{nmot})^3) - 0.0741608 \bullet (\mathsf{log}(\mathsf{nmot})^4) \\ &- 6.5020784 \bullet ((\mathsf{Ps})^2) + 3.4632284 \bullet (\mathsf{log}(\mathsf{nmot}) \bullet ((\mathsf{Ps})^2)) \\ &+ 0.0245338 \bullet (\mathsf{log}(\mathsf{nmot})^2 \bullet \mathsf{Ps}) - 0.6914905 \bullet (\mathsf{log}(\mathsf{nmot})^2 \bullet \mathsf{Ps}^2) \\ &- 0.0078200 \bullet (\mathsf{log}(\mathsf{nmot})^3 \bullet \mathsf{Ps}) + 0.0613438 \bullet (\mathsf{log}(\mathsf{nmot})^3 \bullet \mathsf{Ps}^2) \\ &+ 0.0006378 \bullet (\mathsf{log}(\mathsf{nmot})^4 \bullet \mathsf{Ps}) - 0.0020401 \bullet (\mathsf{log}(\mathsf{nmot})^4 \bullet \mathsf{Ps}^2) \end{aligned}$$

Durch Multiplikation mit dem aktuellen Zündwinkelwirkungsggrad η_{zw} ergibt sich das indizierte Moment M_{i1}:

 $M_{i1} = M_{i1,opt} \eta_{zw}$

Zur Berechnung des indizierten optimalen Momentes für die Modellgröße Mi3 lautet der Approximationsansatz:

$$\begin{split} \mathsf{Mi3,opt} &= -7.08594979e5 + 2.47135012e5 \bullet \log(\mathsf{nmot}) \\ &- 2.8251727e4 \bullet \log(\mathsf{nmot})^2 + 1.0540377e3 \bullet \log(\mathsf{nmot})^3 \\ &- 1.9289818297e6 \bullet \log(\Delta p) - 1.514522612e6 \bullet \log(\Delta p)^2 \\ &- 3.67161445e5 \log(\Delta p)^3 + 7.021136587e5 \bullet \log(\mathsf{nmot}) \bullet \log(\Delta p) \\ &+ 5.61953575e5 \bullet \log(\mathsf{nmot}) \bullet \log(\Delta p)^2 + 1.37763737e5 \bullet \\ &\log(\mathsf{nmot}) \bullet \log(\Delta p)^3 - 8.4636116e4 \bullet \log(\mathsf{nmot})^2 \bullet \log(\Delta p) \\ &- 6.9261344e4 \bullet \log(\mathsf{nmot})^2 \bullet \log(\Delta p)^2 \end{split}$$
-1.7192507e4 •
$$\log(n_{mot})^2$$
 • $\log(\Delta p)^3$ + 3.3760423e3 • $\log(n_{mot})^3$
• $\log(\Delta p)$ + 2.83478426e3 • $\log(n_{mot})^3$ • $\log(\Delta p)^2$
+ 7.1353236e2• $\log(n_{mot})^3$ • $\log(\Delta p)^3$

Durch Multiplikation mit dem aktuellen Zündwinkelwirkungsggrad η_{zw} ergibt sich das indizierte Moment Mi3:

 $M_{i3} = M_{i3,opt} \eta_{zw}$

Der verwendete Funktionsansatz für das Modellansatz Mi4 lautet:

$$\begin{aligned} \mathsf{Mi4} &= 6.8668216e4 \bullet \log(\mathsf{nmot}) \ 1.772448e4 \bullet \log(\mathsf{nmot})^2 \ + \\ 1.1433838e3 \bullet \log(\mathsf{nmot})^3 + 8.40476057e5 \bullet \log(\mathsf{A}_{\mathsf{fft-1}}) \ - \\ 2.75594987e5 \bullet \log(\mathsf{A}_{\mathsf{fft-1}})^2 + 2.1551150e4 \bullet \log(\mathsf{A}_{\mathsf{fft-1}})^3 \\ -3.6631768e5 \bullet \log(\mathsf{nmot}) \bullet \log(\mathsf{A}_{\mathsf{fft-1}}) + 1.14471336e5 \bullet \log(\mathsf{nmot}) \\ \bullet \log(\mathsf{A}_{\mathsf{fft-1}})^2 \ - \ 8.7946834e3 \bullet \log(\mathsf{nmot}) \bullet \ \log(\mathsf{A}_{\mathsf{fft-1}})^3 + \\ 5.2548073e4 \bullet \log(\mathsf{nmot})^2 \bullet \log(\mathsf{A}_{\mathsf{fft-1}}) \ - 1.5771594e4 \bullet \log(\mathsf{nmot})^2 \bullet \\ \log(\mathsf{A}_{\mathsf{fft-1}})^2 + 1.1923598e3 \bullet \log(\mathsf{nmot})^2 \bullet \log(\mathsf{A}_{\mathsf{fft-1}})^3 \\ -2.4867128e3 \bullet \log(\mathsf{nmot})^3 \bullet \log(\mathsf{A}_{\mathsf{fft-1}}) + 7.211325e2 \bullet \log(\mathsf{nmot})^3 \\ \bullet \log(\mathsf{A}_{\mathsf{fft-1}})^2 \ - 5.371406e1 \bullet \log(\mathsf{nmot})^3 \bullet \log(\mathsf{A}_{\mathsf{fft-1}})^3 \end{aligned}$$

Die Modelle wurden anhand stationärer Messungen am Rollenprüfstand parametriert. Die Arbeitpunkte sind im der folgenden Übersicht dargestellt:

n _{mot}	Mi	Ps	Δр	F ₁ (n _{mot})	T _{mot}
[U/min]	[Nm]	[mbar]	[bar]	[-]	[°C]
1274	53	408	0.13949	386	86
1274	83	606	0.20519	605	89
1508	41	314	0.11379	190	85
1505	74	520	0.18227	339	88
1503	121	813	0.28005	628	91
1776	42	326	0.11054	119	85
1785	55	419	0.14241	165	88
1777	88	620	0.21025	285	88
1774	106	720	0.24336	349	89
2005	55	405	0.13855	113	86
2003	73	517	0.17495	159	87

2011	106	709	0.24049	237	88
2007	121	814	0.27506	277	91
2280	27	229	0.085056	35	82
2273	44	317	0.11549	59	84
2279	61	420	0.15166	86	86
2275	95	612	0.21757	139	86
2505	46	323	0.11612	46	83
2500	79	514	0.18749	86	86
2703	56	408	0.14275	48	85
2695	108	704	0.25021	98	87

Anhang E: Simulationsergebnisse bei neuronalen Netzen

Neuronale Netze niedriger Ordnung (3 Zwischenschichtneuronen) lieferten bei der Modellgüte vergleichbare Ergebnisse zu den Polynomen 2.Ordnung.

Neuronales Netz mit 3 Zwischenschichtneuronen

Lediglich bei einer Motordrehzahl von 3000 U/min (Arbeitsspielindex = 40000), der die obere Grenze dieser Eingangsgröße ist, zeigen sich bei diesem neuronalen Netz signifikante Approximationsfehler.

Eine Erhöhung der Anzahl der Zwischenschichtneuronen kann diese Approximationsgüte verbessern. Die folgende Simulation zeigt für Arbeitspunkte aus dem Trainingsdatensatz ein neuronales Netz mit 8 Zwischenschichtneuronen:

Neuronales Netz mit 8 Zwischenschichtneuronen

Verglichen mit dem Approximationsansatz nach Gleichung 3-6, wiesen neuronale Netze höherer Ordnung in den durchgeführten Untersuchungen ein ungünstigeres Interpolationsverhalten auf. Dies zeigt sich bei einer Fahrzeugmessung im 2.Gang, die auch auf Eingangsdaten außerhalb des Trainingsdatensatzes zurückgreift:

Neuronales Netz mit 8 Zwischenschichtneuronen

Bei Arbeitspunkten, die nicht im Trainingsdatensatz abgebildet waren, zeigen sich im Bereich zwischen Arbeitsspielindex 1000 und 1500 signifikante Modellfehler.