
1

On the relationship between the
Method of Least Squares and

Gram-Schmidt orthogonalization

Hilmar Drygas, University of Kassel, Germany

Summary The method of Least Squares is due to Carl Friedrich Gauss. The Gram-Schmidt

orthogonalization method is of much younger date. A method for solving Least Squares

Problems is developed which automatically results in the appearance of the Gram-Schmidt

orthogonalizers. Given these orthogonalizers an induction-proof is available for solving Least

Squares Problems.
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1 Introduction

The method of Least consister in the following problem. Given vectors y, x1, . . . xk ∈ Rn find

numbers β1, . . . , βk such that

‖ y −
k∑
i=1

βixi ‖ (1)

is minimized. The underlying linear model is y = x1β1 + . . . + xkβk + ε , where ε is a

disturbance term. Mostly, it is assumed that ε is a random vector with expectation 0 and

covariance-matrix σ2In , where σ > 0 is unknown parameter. The method of Least Squares

is therefore also desaribed by

‖ ε ‖= Min . (2)

The simplest linear model is y = a 1n + ε , where 1n is the all one-vector. The Least Squares

Problem for estimating a can be solved by Steiners theorem.

1.1 Steiners Theorem:
n∑
i=1

wi(yi − a)2 =
n∑
i=1

wi(yi − ywgh)2 + (
n∑
i=1

wi)(a− ywgh)2 , where wi ≥ 0 ,
n∑
i=1

wi > 0 .

ywgh = (
n∑
i=1

wi)
−1(

n∑
i=1

wiyi) .



2

The proof follows from Pythagoras theorem since

n∑
i=1

wi(yi − ywgh)(a− ywgh) = 0 . (3)

Thus a = ywgh solves the Least Squares Problem
n∑
i=1

wi(yi − a)2 = Min .

This theorem can also be used to solve the regression model

yi = α + βxi + εi , i = 1, . . . , n , y = α1n + βx+ ε . The task consists in minimizing

Q =
n∑
i=1

(yi − α− βxi)2 . (4)

By Steiners Theorem we get the solution

α̂ = y − βx , x =
1

n

n∑
i=1

xi , y =
1

n

n∑
i=1

yi . (5)

By plugging in we get

Q =
n∑
i=1

(
yi − y − β(xi − x)

)2

=
∑

i=xi 6=x

(xi − x)2

(
yi − y
xi − x

− β
)2

+
∑
i:xi=x

(yi − y)2 . (6)

According to Steiners theorem the minimizing β is a weighted mean of the slopes yi−y
xi−x , namely

β̂ =

∑
i=xi 6=x

(xi − x)2 (yi−y)
(xi−x)∑

i=xi 6=x
(xi − x)2

=

n∑
i=1

(xi − x)yi

n∑
i=1

(xi − x)2

. (7)

If all xi are equal to x , then β is arbitrary since Q does not depend on β .

This method of successive solution and plugging in can be extended to the general case

as will be shown in the next section.
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2 Generalization of successive estimation

2.1 Generalized Steiner Theorem:

‖ y − ax ‖2=‖ y − (y,x)
(x,x)

x ‖2 + ‖ x ‖2
(
a− (x,y)

(x,x)

)2

if x 6= 0 .

Proof:
(
y − (y,x)

(x,x)
x
)

and x are orthogonal. Pythagoras Theorem therefore yields the

result. �

2.2 Corollary:

a = (y,x)
(x,x)

is the Least Squares-solution of ‖ y − ax ‖= Min. and a = 0 yields a proof of the

Cauchy-Schwarz inequality.

Now we want to minimize

‖ y −
k∑
i=1

βixi ‖2 . (1)

If x1 = 0 , then β1 does not appear in (2.1) and it is therefore arbitrary. If x1 6= 0 , then

according to theorem 2.1

β̂1 =

(y −
k∑
i=2

βixi, x1)

(x1, x1)
. (2)

By plugging in we get the new minimization problem

‖ y(2) −
k∑
i=2

βix
(2)
i ‖= Min , (3)

where

y(2) = y − (y, x1)

(x1, x1)
x1 = P{x1}⊥y, x

(2)
i = xi −

(xi, x1)

(x1, x1)
x1 = P{x1}⊥xi . (4)

If x
(2)
2 6= 0 - otherwise β2 is arbitrary - we obtain

β̂2 =

(y(2) −
k∑
i=3

βix
(2)
i , x

(2)
2 )

(x
(2)
2 , x

(2)
2 )

=

(y −
k∑
i=3

βixi, x
(2)
2 )

(x
(2)
2 , x

(2)
2 )

. (5)

and again by plugging in we get a new problem with y(3), x
(3)
i , i = 3, . . . , k . Continuing we

get successively the solutions (j = 3, . . . , k)

β̂j =

(y −
k∑

i=j+1

βix
(j)
i , x

(j)
j )

(x
(j)
j , x

(j)
j )

, if x
(j)
j 6= 0 (6)

and finally

β̂k =
(y, x

(k)
k )

(x
(k)
k , x

(k)
k )

, if x
(k)
k 6= 0 . (7)
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In order to simplity the notation we define

q1 = x1 , qj = x
(j)
j , j = 2, . . . , k . (8)

Then

x
(l)
i = x

(l−1)
i − (x

(l−1)
i , ql−1)

(ql−1, ql−1)
qi−1

= P{ql−1}⊥x
(l−1)
i , i = l, . . . , k , l = 1, . . . , ki (9)

where, of course, x
(1)
i = xi , i = 1, . . . , k . Therefore

ql = P{qi−1}⊥x
(l−1)
i (10)

and

x
(l)
i = P{ql−1}⊥P{ql−2}⊥ . . . P{q1}⊥xi (11)

ql = P{ql−1}⊥ . . . P{ql}⊥xl , l = 2, . . . , k . (12)

The next step consists in proofing that

i−1∏
j=1

P{qi−j}⊥ = P{q1,...,qi−1}⊥ . (13)

By Achieser/Glasmann, 1981, p. 97 pp. the product of projections is a projector iff the

projectors commute. By page 189 in Rao/Mitra, 1971, the projection onto the intersection

of the subspaces M and N is given by

2P (P +Q)−Q (14)

where P is the projection onto M and Q the projection onto N . There must be a simple

formula for the generalized inverse of (P +Q) , namely (P +Q)+ . This formula will be given

by the following theorem:

2.3 Theorem:

If PQ = QP , then (P +Q)+ = P +Q− 3
2
PQ .

Proof: The proof follows from verification. An alternative is that P and Q are jointly

diagonalizable if PQ = QP . P = C diag(λ1, . . . , λn)C ′ , Q = C diag(µ1, . . . , µn)C ′ and the

λi and µi are either 0 or 1 . Then P +Q = C (diag(λ1 + µi), . . . , (λµ + µn))C ,

(P +Q)+ = C diag((λ1 + µ1)
+, . . . , (λn + µn)+)C ′ . But

(λi + µi)
+ = λi + µi −

3

2
λiµi (15)

in all possible cases. �
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2.4 Theorem:

PQ is the projection onto im (P )∩ im (Q) iff QM⊥ ⊆M⊥ . Sufficient for this isM⊥ ⊆ N .

Proof: PQ ist the projection onto M ∩N iff it is the identity on N ∩M and vanishes

on (M ∩ N)⊥ = M⊥ + N⊥ Since the other properties are obvious only PQM⊥ = 0 must

be considered. This is equivalent to QM⊥ ⊂M⊥ . This condition met if M⊥ ⊆ N . �

2.5 Theorem:

i−1∏
j=1

P{qi−j}⊥ = P{q1,...,qi−1}⊥ and qi ∈ {q1, . . . , qi−1}⊥ . (16)

Proof: Mathematical induction. The first assertion of the theorem is correct for i = 2

and q2 = P{q1}⊥x2 ∈ {q1}⊥ . Let by induction assumption

i−1∏
j=1

P{qj}⊥ = P{q1,...,qi−1}⊥ and qi ∈ {q1, . . . , qi−1}⊥ . (17)

Then

i∏
j=1

P{qi−j}⊥ = P{qi}⊥P{q1,...,qi−1}⊥ . (18)

Since qi ∈ {q1, . . . , qi−1}⊥ it follows from theorem (M = {qi}⊥ , M⊥ = {λqi ; λ ∈ R}) that

i∏
j=1

P{qj}⊥ = P{qi}⊥P{q1,...,qi−1}⊥ = P{qi}⊥∩{q1,...,qi−1}⊥ = P{q1,...,qi}⊥ . (19)

Since qi+1 = P{q1,...,qi}⊥xi+1 ∈ {q1, . . . , qi}⊥ also the second assertion is proved. �

2.6 Corollary:

If q0 = 0 , then qi = P{q0,...,qi−1}⊥xi,i=1,...,k and x
(l)
i = P{q0,q1,...,ql−1}⊥xi .

Since

qi = P{q0,...,qi−1}⊥xi = xi − Pspan{q1,...,qi−1}xi = xi −
i−1∑
j:qj 6=0

(qj, xi)

(qj, qj)
qj (20)

the qi desoribe the Gram-Schmidt orthogonalization procedure. It follows that from the

principle of Least Squares the Gram-Schmidt orthogonalization procedure could be invented.
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3 An induction proof

Since the Gram-Schmidt orthogonalization procedure is well-known now the Least Squares

Solutions can also be proved by mathematical induction. The induction ist on the number

m of linear independent vectors among x1, . . . , xk . We assume that x1, . . . , xm are linearly

independent and Rank {x1, . . . , xk} = m . There fore xm+1, . . . , xk are linear combinations

of x1, . . . , xm . As we habe seen in the last section

β̂1 =

(y −
k∑
i=2

βixi, x1)

(x1, x1)
(1)

and by plugging in we get the new minimization problem

Minimize ‖ y(2) −
k∑
i=2

βix
(2)
i ‖2 (2)

where

y(2) = P⊥{x1}y , x
(2)
i = P⊥{x1}xi , i = 2, . . . , k . (3)

3.1 Lemma:

Let Rank (x1, . . . , xk) be equal m and let x1, . . . , xm be linearly independent. Then x
(2)
i ,

i = 2, . . . ,m are linearly independent and the x
(2)
i , i > m are linear combinations of the

x
(2)
i , i = 2, . . . ,m .

Proof:

a) From
m∑
i=2

λix
(2)
i = P (

m∑
i=2

λixi) = 0 – we write P for short instead of

P{x1}⊥ – it follows that
m∑
i=2

λixi ∈ span{x1} and hence λ2 = . . . = λm = 0 from the

linear independence of x1, . . . , xm .

b) For i > m we get x
(2)
i =

m∑
j=2

λijx
(2)
j if xi =

m∑
j=1

λijxj . �

3.2 Theorem:

Let Rank (x1, . . . , xk) = m and let, moreover, x1, . . . , xm be linearly independent. Futhermo-

re, let q1, . . . , qm be the pairwise orthogonal vectors obtained from (x1, . . . , xm) by applying

the Gram-Schmidt orthogonalization procedure. Then the Least Squares solutions β̂1, . . . , β̂m

are recursively given by

β̂m =

(qm, y −
k∑

i=m+1

βixi)

(qm, qm)
(4)
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β̂i =

(qi, y −
m∑

j=i+1

β̂jxj −
k∑

j=m+1

βjxj)

(qi, qi)
(5)

i = m− 1 , m− 2, . . . , 1 . Here βm+1, . . . , βk are completely arbitrary.

Moreover

y −
m∑
i=1

β̂ixi −
k∑

j=m+1

βixi

does not depend on βm+1, . . . , βk .

Proof: Mathematical induction on m . If m = 1 , then

β̂1 =

(x1, y −
k∑
i=2

βixi)

(x1, x1)
(6)

and

y − β̂1x1 −
k∑
i=2

βixi = y(2) −
k∑
i=2

βix
(2)
i . (7)

But since xi ∈ span {x1} it follows that x
(2)
i = 0 , i = 2, . . . , k and therefore

y − β̂1x1 −
k∑
i=2

βixi = y(2) (8)

which does not depend on β2, . . . , βk .

We now arrive at the problem of minimizing

‖ y(2) −
k∑
i=2

βix
(2)
i ‖ . (9)

By the induction assumption using that x
(2)
2 , . . . , x

(m)
2 are linearly independent and Rank

(x
(2)
2 , . . . , x

(2)
k ) = m− 1 we get that the solutions are as follows:

(q(2)
m , q(2)

m ) β̂m = (q(2)
m , y(2) −

k∑
i=m+1

βix
(2)
i ) (10)

and

(q
(2)
i , q

(2)
i ) β̂i = (q

(2)
i , y(2) −

m∑
j=i+1

β̂jxj −
k∑

j=m+1

βjxj) (11)

i = m− 1, . . . , 2 Here βm+1, . . . , βk are arbitrary numbers and q
(2)
2 , . . . , q

(2)
m are obtained by

applying the Gram-Schmidt orthogonalization procedure to x
(2)
2 , . . . , x

(2)
m . Moreover,

y(2) −
m∑
i=2

β̂ix̂i −
k∑

i=m+1

βixi does not depend on βm+1, . . . , βk . From this it follows that

y −
m∑
i=1

β̂ixi −
k∑

j=m+1

βixi = y(2) −
k∑
i=2

β̂ix
(2)
i −

k∑
i=m+1

βix
(2)
i (12)
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as well does not depend on βm+1, . . . , βk .

We now prove by mathematical induction that q
(2)
i = qi , i = 2, . . . ,m . This is indeed

correct for i = 2 since x
(2)
2 = q

(2)
2 = x2− (x1,x2)

(x1,x1)
x1 = q2 and by using the induction assumption

we get

q
(2)
i = x

(2)
2 −

i−1∑
j=2

(x
(2)
i , q

(2)
j )

(q
(2)
j , q

(2)
j

q
(2)
j = xi −

(xi, x1)

(x1, x1)
x1 −

i−1∑
j=2

(x
(2)
i , qj)

(qj, qj)
qj . (13)

Since (x
(2)
i , qj) = (xi, qj) for j ≥ 2 , it follows indeed that q

(2)
i = qi , i = 2, . . . ,m .

From (qm, q1) = 0 for i ≥ 2 we finally get

β̂m =

(qm, y
(2) −

k∑
i=m+1

βix
(2)
i )

(qm, qm)
=

(qm, y −
k∑

i=m+1

βixi)

(qm, qm)
(14)

and for i = m− 1, . . . , 2

β̂i =

(qi, y
(2) −

m∑
j=i+1

β̂jx
(2)
j −

k∑
j=m+1

βjx
(2)
j )

(qi, qi)

=

(qi, y −
m∑

j=i+1

β̂jxj −
k∑

j=m+1

βjxj)

(qi, qi)
. (15)

This is completed by

β̂1 =

(x1, y −
m∑
j=2

β̂jxj −
k∑

j=m+1

βjxj)

(x1, x1)
=

(q1, y −
m∑
j=2

β̂jxj −
k∑

j=m+1

βjxj)

(q1, q1)
. (16)

�
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recent. Soc. Gött. 5 (1819 - 1822) oder Werke, Bd IV, Leipzig, 1879, p. 3 - 53. A German

translation under the title ”Abhandlungen zur Methode der kleinsten Quadrate” was edited
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