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Vorwort

Die Fachgruppe AFS (früher Fachgruppe 0.1.5) der Gesellschaft für Informatik veranstal-
tet seit 1991 einmal im Jahr ein Treffen der Fachgruppe im Rahmen eines Theorietags, der
traditionell eineinhalb Tage dauert, und auf dem auch die jährliche Fachgruppensitzung
durchgeführt wird. Das erste solche Treffen fand 1991 in Magdeburg statt. Die weite-
ren Theorietage wurden in Kiel (1992), in Dagstuhl (1993), in Herrsching bei München
(1994 und 2003), auf Schloß Rauischholzhausen (1995), in Cunnersdorf in der Sächsischen
Schweiz (1996), in Barnstorf (1997), in Riveris bei Trier (1998), in Schauenburg-Elmshagen
bei Kassel (1999), in Wien (2000 und 2006), in Wendgräben (2001), in der Lutherstadt Wit-
tenberg (2002 und 2009), in Caputh bei Potsdam (2004), in Lauterbad bei Freudenstadt
(2005), in Leipzig (2007) und in Wettenberg-Launsbach bei Giessen (2008) ausgerichtet.
Seit dem Jahr 1996 wird dem eigentlichen Theorietag noch ein eintägiger Workshop zu
speziellen Themen der theoretischen Informatik vorangestellt.

In diesem Jahr wird der Theorietag vom Fachgebiet “Theoretische Informatik” im Fach-
bereich Elektrotechnik/Informatik der Universität Kassel organisiert. Er findet statt vom
29.9. bis 1.10.2010 in Baunatal bei Kassel. Der Workshop am 29.9. steht in diesem Jahr
unter dem allgemeinen Thema “Ausgewählte Themen der Theoretischen Informatik”. Als
Vortragende konnten

• Carsten Damm aus Göttingen,

• Markus Holzer aus Giessen,

• Peter Leupold aus Kassel,

• Martin Plátek aus Prag und

• Heribert Vollmer aus Hannover

gewonnen werden. Das Programm des eigentlichen Theorietags am 30.9. und 1.10. besteht
aus 20 Vorträgen sowie der Sitzung der Fachgruppe AFS. In diesem Band finden sich
die Zusammenfassungen aller Vorträge sowohl des Workshops als auch des Theorietags.
Desweiteren enthält er das Programm und die Liste aller Teilnehmer.

Wir danken der Gesellschaft für Informatik für die finanzielle Unterstützung dieses Theo-
rietags. Desweiteren danken wir Frau Djawadi ganz herzlich für ihre Hilfe bei der Organi-
sation. Wir wünschen allen Teilnehmern einen interessanten und erfolgreichen Theorietag
sowie einen angenehmen Aufenthalt in Baunatal.

Kassel, den 20.9.2010 Friedrich Otto
Norbert Hundeshagen
Marcel Vollweiler
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Sitzung 1 Leitung: Friedrich Otto
Heribert Vollmer (Hannover):

10:00 – 11:00
Complexity of Satisfiability Problems

11:00 – 11:30 Kaffeepause

Sitzung 2 Leitung: Markus Holzer

Carsten Damm (Göttingen):
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On Applications of Information Theory in Molecular Phylogenetics
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Sitzung 3 Leitung: Martin Kutrib

Markus Holzer (Giessen):
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Descriptional Complexity of Regular(-Like) Expressions
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Its Formal Tools
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Sitzung 4 Leitung: Bianca Truthe

Peter Leupold (Kassel):
16:45 – 17:45
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Norbert Hundeshagen:
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Sitzung 3 Leitung: Peter Leupold

Anna Kasprzik:
14:00 – 14:30

Generalizing over Several Learning Settings
Dominik Freydenberger:

14:30 – 15:00 Inklusionsprobleme für Patternsprachen mit beschränkter Variablen-
zahl

Markus Schmid:
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Common Supersequences with Minimum Scope Coincidence Degree

15:30 – 16:00 Kaffeepause
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On Applications of Information Theory in

Molecular Phylogenetics

Extended Abstract

Carsten Damm

Institut für Informatik, Universität Göttingen

damm@informatik.uni-goettingen.de

Abstract

Molecular phylogenetics tries to infer evolutionary relationships on base of DNA and
other molecular data. The resulting phylogenetic tree hopefully reflects the common
ancestry of the species or individuals under consideration. So-called distance based
methods first compute distances between the data and then search for a tree that gives
a plausible explanation for the distance matrix. While the latter is an algorithmic
problem of its own, already the distance measure is an issue. We discuss some of the
mainstream approaches and then survey more recent approaches from the literature
based on computational and statistical information theory. Finally we introduce an
experimental web server implementation of these concepts.

There is strong scientific indication that all living on earth grew out of a single “primordial
form” in an evolutionary process ([10, 28]). A phylogenetic tree depicts the resulting phy-
logenetic relatedness between extinct and extant life forms. Phylogeny construction is an
unsupervised learning problem. Research in the field is nowadays mainly based on molecu-
lar data like DNA or protein sequences. The art of assembling and managing phylogenetic
trees has become a broad and active field of research (sometimes dubbed “phyloinformat-
ics”, [9]). We survey only very few of it’s many aspects. We shortly summarize character
based methods of phylogeny construction and then concentrate on distance based methods.

1 Character based methods

Consider a set S of n taxa (e.g., species) whose phylogenetic history is to be estimated
on base of assigned discrete string-shaped data items, called characteristics. These can
be some typical DNA sequences or even vectors indicating presence/absence of certain
morphological properties. Following [10] we consider the taxa as being the result of a
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On Applications of Information Theory in Molecular Phylogenetics

(probably binary) branching process starting from the “primordial form”. Taxa appear as
leaves of a tree with unknown inner nodes corresponding to the extinct ancestors. Putting
all biology away we state the structure of the problem like this: Given s = (s1, ..., sn),
where si ∈ Σm are characteristics1 of the taxa, construct a binary tree T (s) with n leaves
and si assigned to leaf i that “best explains” the data si, when interpreting edges as
character changing events.

Maximum Parsimony (MP) is applicable to discrete characteristics of any kind.
Given some pre-designed T (s) one determines a most parsimonious labeling of inner nodes
by hypothetical characters. Hereby the cost is the overall number of necessary character
changes along edges. Fitch’s algorithm ([14]) solves this small parsimony problem in time
O(n ·m · k), where k = alphabet size. The big parsimony problem consists of finding the
most parsimonious among all trees and is NP-hard but admits polynomial time approxi-
mations ([15, 3]). A weakness of MP is that it almost certainly fails, when the amount of
evolutionary change along edges significantly varies in the tree ([13]).

Maximum Likelihood (ML) phylogeny was introduced in [12]. Under certain opti-
mistic technical assumptions it is statistically consistent2 (see, e.g., [25]). ML is a gen-
eralization of MP in that character changes occur with certain probabilities governed by
some statistical model of evolution. For a pre-designed T (s) with symmetric probabilities3

p assigned to character changes along edges let L(T, s,p) denote the likelihood score =
likelihood of observing s at the leaves. Small ML consists of determining a probability
vector p that maximizes L(T, s,p). Big ML consists of finding T (s) and p maximizing the
score over all trees. [7] proved this to be NP-hard. Further, by [6] the problem allows no
arbitrary good polynomial time approximation schemes and remains NP-hard even under
the assumption of a molecular clock (see below). The complexity of Small ML is still
unknown.

2 Distance based methods

The idea was described in [4]: Given an appropriate distance measure d(., .) between
characters and the matrix M of pairwise distances between taxa in S, construct a tree TM

with leaves set S and edge weights λ such that d equals or at least approximates distance
in TM , induced by λ. Thus TM gives a plausible explanation for the distances.

The distance measure biologists aim for is evolutionary distance de. For molecular data

1using an alignment with gaps we can assume same-length characteristics
2with growing data sets the estimated tree statistically converges to the true one
3e.g., an ’X for U’ change is as probable as an ’U for X’ change
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strings x, y this is the number of substitution events that have lead from their common an-
cestor string z to x and to y. This number is clearly unknown, so we look for a reasonable
replacement. The main observation is that de is additive in the following sense: If edges
in the true phylogenetic tree where weighted by evolutionary distance then for all nodes
x, y of the tree de(x, y) is the weight sum on the path x � y. More general, given a tree
T with positive edge weights λe, the induced additive metric on its vertices is defined by
dT (x, y) :=

∑
e∈E(x,y) λe, where E(x, y) is the edge set along the path x � y. As proved

in [5] a metric d on a finite set coincides with the additive metric of a weighted tree if and
only if
(1) ∀x, y, z, t : d(x, y) + d(z, t) ≤ max{d(x, z) + d(y, t), d(x, t) + d(y, z)} (four-point condi-
tion).
Moreover, if entries in the n × n distance matrix M satisfy (1), there is (up to isomor-
phism) a unique weighted tree TM on n leaves such that d coincides on S with dTM

. TM

can be computed in time O(n2). This time bound is also achieved by Neighbor Joining
(NJ) introduced by [26].

In an evolution model without insertions and deletions Hamming distance h(x, y) (=
number of symbol mismatches) looks like a nice approximation to evolutionary distance
between x, y ∈ Σm. But since repeated changes in one place are not charged h is not
additive. One remedy is to transform a given distance measure into an “almost” additive
one. Under certain statistical assumptions on the evolution process it can be proved that
the corrected distance transformation λ(x, y) := −k−1

k ln(1− k
k−1h(x, y)/m)) converges to

an additive metric as m increases ([31]). This may also motivate techniques that simply
apply NJ to distance matrices obtained from a heuristic approximation to evolutionary
distance, even if it is not provably an approximation in the mathematical sense. A second
group of heuristics is based on replacing the original distance matrix M by a nearest (e.g.,
in L∞-norm) additive distance matrix and reconstruct the tree with that one instead. The
exact solution is NP-hard but polynomial time approximable ([11, 1]).

NJ produces non-rooted trees. A widely-used method to find a root consists of iden-
tifying an outgroup g in S, i.e., a taxon on which by biologic reasoning is less related to
the rest of S than any other pair in S. The root is inserted as a splitting node of the edge
connecting g to the rest. If we assume that in a statistical sense evolution proceeded at
the same pace along every edge (this molecular-clock assumption is under dispute), then
all leaves (= extant species, i.e., living today) must have the same distance to the common
ancestor (= root). Such trees are called ultrametric ([16, 17]) and their induced distances
are characterised by:
(2) ∀x, y, z : d(x, y) ≤ max{d(x, z), d(y, z)}, (three-point condition—a strengthening of

11



On Applications of Information Theory in Molecular Phylogenetics

(1)).
Similar as for additive distances, to any ultrametric distance matrix M there is a unique
weighted rooted tree TM , such that dTM

coincides with d on the taxa. Several heuristics
construct near-ultrametric trees from matrices that are not perfect ultrametric (as is the
case for most distance measures in use), e.g., UPGMA [27]. Again, finding the nearest
ultrametric tree is NP-hard, while polynomial time approximations are possible [2].

3 Information Distance and Compression Distance

As discussed above, Hamming distance is probably not an appropriate distance notion
for string data. Variants of edit distance ([19]) are considered better alternatives. The
dynamic programming approach to compute the edit distance between x ∈ Σm, y ∈ Σn

requires time and space O(nm) ([22]). As the space requirement is prohibitive in molecular
biology applications, currently some linear space heuristics are in heavy use to compute so-
called alignment scores by Clustal ([32, 18]). However, by the very nature of edit distance
all these methods have difficulties to detect relatedness of strings that differ by large scale
substring rearrangements instead of small edits (substitution, insertion, deletion). As a
consequence, people seek for more appropriate notions of string distance ([30]).

It is essential to note that reasonable variants of string distance are related to similarity :
The more similar strings x, y are in a certain sense, the smaller is their distance. By taking
similarity as an unspecified but cognitive concept the following approach makes sense: x, y

are considered similar (or close to each other) if low “effort” E(x, y) is needed, to compute
x given y and vice versa. This idea from [20] can be appropriately formalized by means
of Kolmogorov complexity (algorithmic information theory), as we sketch now.

Let U be a fixed universal Turing machine. KU (x) denotes the length of the shortest
program, such that starting it on U produces x on the empty input. The shortest length
changes by at most an additive constant independent of x, when U is replaced by an other
universal Turing machine V ([21]). So we simply fix U once and for all and speak of
the Kolmogorov complexity K(x) as being the length of the shortest program producing
x etc. The relative Kolmogorov complexity K(x|y) is the length of the shortest program
producing x on input y. To any given string z let z∗ denote a shortest program for z. Then
dK(x, y) := max{K(x|y∗),K(y|x∗)}/max{K(x),K(y)} is called normalized information
distance (NID) between x and y. The normalizing denominator was chosen to capture
desirable technical properties4. This is not necessary, if the data are of similar length.
In [20] it is shown that d(x, y) is a normalized metric “up to a vanishing additive term”,

4e.g.: long strings differing in t positions should be more similar than short strings differing in t positions
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i.e. it is between 0 and 1 and satisifies positivity, definiteness and symmetry and the
triangle inequality for strings x, y, z is satisfied up to an additive error O(1/k), where k

is the maximum involved Kolmogorov complexity, in this case max{K(x),K(y),K(z)}.
Moreover, d(x, y) has the following universality property: d(x, y) minorizes every “upper
semi-computable” normalized distance measure f(x, y) up to a vanishing additive term:
d(x, y) ≤ f(x, y) +O((log k)/k). This can be interpreted as saying that, if x, y are similar
in any computable way, they are at least as similar in terms of NID.

Thus, NID is a most natural distance function for strings. The problem is: Nei-
ther Kolmogorov complexity itself nor NID is computable. However, up to an addi-
tive constant, Kolmogorov complexity of a string x is majorized by the compression
length C(x) (length of the result of compressing x by some fixed lossless data com-
pressing algorithm). This motivates to replace NID by a corresponding term using C

instead of K. [8] suggest the normalized compression distance defined by NCDC(x, y) =
(min{C(xy), C(yx)} − min{C(x), C(y)})/max{C(x), C(y)}. Under certain technical as-
sumptions on the compression algorithm (satisfied by standard stream compressors on
typical data samples) the resulting NCD falls into the class of “similarity distances” advo-
cated by the authors as well-founded basis for general purpose clustering based phylogeny
constructions. This is supported by a large variety of successful experimental results,
ranging from genomic data, via music samples to images of handwritten letters etc.

The same idea was in a slightly different and less formal setup also used in [23], where
in place of C(x) Lempel-Ziv-complexity (LZ) c(x) was used. There are several slightly
different definitions for c(x). We define it to be the number N in the unique decomposition
x = x1 · x2 · ... · xN into phrases, characterized by the following property: For each i <

N holds xi �∈ {x1, ..., xi−1} and there is some ji, 1 ≤ ji < i and some ending symbol
αi ∈ Σ, such that xi = xjiαi. Hence, the new phrase xi can be referred to as 〈ji, αi〉.
This phrase decomposition is used in dictionary based compressors like gzip: Instead of
x = x1x2x3, ... the encoder sends x1, 〈j2, α2〉, 〈j3, α3〉..., which in the long run leads to
considerable compression. Among others the authors consider dc(x, y) := max{c(xy) −
c(x), c(yx)− c(y)}/max{c(x), c(y)} as a distance measure and use it do derive biologically
accepted phylogenies of a selection of mammals based on their mitochondrial genome data.

The approach taken in [29] is related to the latter. Here string distance is not directly
measured by using a particular compression algorithm. Using ideas from statistic informa-
tion theory the distance between strings is expressed by an statistical estimation for the
compression performance of a dictionary build to optimally compress one string when us-
ing it to compress the other. This estimation is expressed in terms of the average common
substring (ACS) length of two strings x, y: This is the average over all start positions i of
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the length of the longest match of the substring xixi+1... in y. Using the NJ algorithm the
authors apply dACS among others to the same data set as [23] and obtain slightly better
results.

4 Implementation and simulation results

To demonstrate the simplicity and at the same time effectiveness of information theory
based phylogeny constructors we set up a web server5 that implements the methods of
Otu&Sayood and Ulitsky et al. ([23, 29]). The engine to compute LZ and ACS measures
is the gdist library developed in our group. It uses suffix arrays as the underlying data
structure which enables to compute the distance in linear time. The computation of a
meaningful phylogeny (using the PHYLIP implementation6 of NJ) from 20 mitochondrial
genomes, each of length ≈ 16.000 bases, is a matter of seconds in our webserver environ-
ment. For larger requests (essentially longer and/or more sequences) it is more appropriate
to use a desktop version which is also available.

As we cannot ask eyewitnesses of evolution, simulation experiments are important to
validate phylogenetic tree construction methods. So we set up an “in vitro” version of
string evolution based on random singular mutations (substitutions/insertions/deletions)
occuring with probability p at every location and measured how well a depth 5 full binary
tree can be reconstructed. The quality of reconstruction was measured by a version of the
Robinson-Foulds tree distance ([24]). We observed that accuracy

• is satisfying already for string length of about 1000 symbols,

• increases with larger alphabets,

• decreases when p is too small or too large (resulting in random reconstructed tree
structures)

[precise statements have to be postponed to the full version]. We did not observe essential
differences between various “compression based distances” (CBD), instead we observed
a strong correlation between any of the mentioned distance measures to mutation prob-
ability p and also to edit distance. By construction CBD should be robust under large
scale substrings rearrangements, and indeed we measured this effect in a separate setup.
In comparison, as expected, edit distance as computed by Clustal turned out to behave

5http://gdist-test.informatik.uni-goettingen.de/ and in a relaunched version with slightly different fea-

tures http://gdist-test.informatik.uni-goettingen.de/n/
6http://evolution.genetics.washington.edu/phylip/general.html
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chaotic under such changes. So CBD would detect if genomes are related by simple gene
rearrangement, edit distance would probably not.

The latter is becoming more important, as more and more completely sequenced
genomes become available. In summarizing, CBD seem adequate to quickly compute
phylogenetic trees of string data, but the relevance to biological facts is still under inves-
tigation.
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Regular expressions (RE) were originally introduced in [29] and allow a lovely set-
theoretic characterization of languages accepted by deterministic (DFA) or nondetermin-
istic finite automata (NFA). Compared to automata, regular expressions are better suited
for human users and therefore are often used as interfaces to specify certain pattern or
languages. For example, in the widely available programming environment Unix, regular(-
like) expressions can be found in legion of software tools like, e.g., awk, ed, emacs, egrep,
lex, sed, vi, etc., to mention a few of them. The syntax used to represent them may vary,
but the concepts are very much the same everywhere.

Since the regular languages are closed under several more operations, the approach
to add operations like intersection (∩), complementation (∼), or squaring (2) does not
increase the expressive power of regular expressions. However, the descriptional power,
that is, the succinctness of such regular-like expressions can be increased. On the other
hand, growing succinctness of the expressions can increase the computational complexity of
decision problems. This motivates the investigation of regular and regular-like expressions
(even with a set of operations capturing subregular language families only). In general
RE(Σ, ϕ), where ϕ is a set of (regularity preserving) operations, denotes all regular(-like)
expressions over alphabet Σ using only operations from ϕ. Hence RE(Σ, {∪, ·, ∗}) refers
to the set of all ordinary regular expressions, which is sometimes also denoted by RE(Σ)
or simply RE, while, for example, RE(Σ, {∪, ·,∼}) defines the star-free languages.

This gives rise to a tour on the following subjects of problems related to the descrip-
tional and computational complexity of regular-like expressions: first we summarize some
important measures on regular expressions [1, 4, 9, 10, 17, 22, 27, 31], since there is no
general agreement in the literature about the proper measure. Then we focus on the

∗This is an abstract of: M. Holzer and M. Kutrib. The complexity of regular(-like) expressions. In

Y. Gao, H. Lu, S. Seki, and S. Yu, editors, Proceedings of the 14th International Conference Developments in

Language Theory, number 6224 in LNCS, pages 16–30, London, Ontario, Canada, August 2010. Springer.
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descriptional complexity of the conversion of regular expressions to equivalent finite au-
tomata [2, 3, 7, 15, 17, 23, 24, 25, 27, 30, 36] and vice versa [5, 8, 9, 10, 14, 18, 22, 31, 35],
to the computational complexity of problems on regular-like expressions [6, 11, 26, 32, 33,
34, 37, 38] such as, e.g., membership, inequivalence, and non-emptiness of complement,
and finally on the operation problem [9, 10, 12, 13, 14, 16, 18, 19, 20, 21, 28, 38] mea-
suring the required size for transforming expressions with additional language operations
(built-in or not) into equivalent ordinary regular expressions. Our tour on a fragment of
the literature obviously lacks completeness and we give our view of what constitute the
most recent interesting links to the considered problem areas.
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[11] M. Fürer. The complexity of the inequivalence problem for regular expressions with
intersection. In International Colloquium on Automata, Languages and Programming
(ICALP 1980), number 85 of LNCS, pages 234–245, 1980. Springer.

[12] W. Gelade. Succinctness of regular expressions with interleaving, intersection and
counting. In Mathematical Foundations of Computer Science (MFCS 2008), number
5162 of LNCS, pages 363–374, 2008. Springer.

[13] W. Gelade. Foundations of XML: Regular Expressions Revisited. PhD thesis, School
voor Informatietechnologie, University of Hasselt, Belgium, and University of Maas-
tricht, the Netherlands, 2009.

[14] W. Gelade and F. Neven. Succinctness of the complement and intersection of regular
expressions. In Symposium on Theoretical Aspects of Computer Science (STACS
2008), volume 08001 of Dagstuhl Seminar Proceedings, pages 325–336. IBFI, Schloss
Dagstuhl, Germany, 2008.

[15] V. M. Glushkov. The abstract theory of automata. Russian Math. Surveys, 16:1–53,
1961.

[16] H. Gruber. On the Descriptional and Algorithmic Complexity of Regular Languages.
PhD thesis, Institut für Informatik, Universität Giessen, Germany, 2010.

[17] H. Gruber and S. Gulan. Simplifying regular expressions. A quantitative perspective.
In Language and Automata Theory and Applications (LATA 2010), number 6031 of
LNCS, pages 285–296, 2010. Springer.

[18] H. Gruber and M. Holzer. Finite automata, digraph connectivity, and regular expres-
sion size. In International Colloquium on Automata, Languages and Programming
(ICALP 2008), number 5126 of LNCS, pages 39–50, 2008. Springer.

[19] H. Gruber and M. Holzer. Provably shorter regular expressions from deterministic
finite automata. In Developments in Language Theory (DLT 2008), number 5257 of
LNCS, pages 383–395, 2008. Springer.

[20] H. Gruber and M. Holzer. Language operations with regular expressions of polynomial
size. Theoret. Comput. Sci., 410:3281–3289, 2009.

[21] H. Gruber and M. Holzer. Tight bounds on the descriptional complexity of regular
expressions. In Developments in Language Theory (DLT 2009), number 5583 of LNCS,
pages 276–287, 2009. Springer.

19



The Complexity of Regular(-Like) Expressions

[22] H. Gruber and J. Johannsen. Optimal lower bounds on regular expression size using
communication complexity. In Foundations of Software Science and Computational
Structures (FoSSaCS 2008), number 4962 of LNCS, pages 273–286, 2008. Springer.

[23] S. Gulan and H. Fernau. An optimal construction of finite automata from regular
expressions. In Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2008), volume 08002 of Dagstuhl Seminar Proceedings, pages 211–222. IBFI,
Schloss Dagstuhl, Germany, 2008.
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Abstract

This is an introduction to the general architecture of Computing by Observing and
an overview over the central results about this model of computation.

1 From Experiments to Computations

In recent years, much of the work in Formal Language Theory has stood in some rela-
tion to biochemistry. The original motivation for of this were hopes of building actual
biocomputers based on the theoretical models that have been developed. So far, however,
it has been mainly the theoretical side that has profited from this meeting by the way of
numerous new formal mechanisms and models that were inspired by processes observed
in nature or in laboratories. A very rich arsenal of devices has been defined. For just a
glimpse one may consult for example the book by Păun et al. [6] or the article by Dassow
et al. [5].

Nearly all of these models in the area of DNA computing follow the classical computer
science paradigm of processing an input directly to an output, which is the result of the
computation. Only the mechanisms of processing are different from conventional models;
instead of a finite state control or a programming language it is biomolecular mechanisms
that are used, or rather abstractions of such mechanisms.

However, in many experiments in biology and chemistry the setup is fundamentally
different. The matter of interest is not some product of the system but rather the change
observed in certain, selected quantities. To cite two simple examples that might be well-
known from High School biology and chemistry classes: In the predator-prey relationship,
it is not of much use to know the numbers of predators and prey in one single moment. The
interesting feature here is how the increase or decrease in one of the two populations affects
the other population. A chemical reaction with a catalyst often has the same product as
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without, but the energy curves during the reactions are different. So rather than an output,
the interesting result of an experiment is the protocol of one or more quantities over a
period of time.

The objective of Computing by Observing was to formalize this approach in a paradigm
for computation. The resulting architecture consists of an underlying system, which
evolves in discrete steps from one configuration to the next. The second element is an
observer, which reads these configurations and transforms them into single letters; a type
of classification, if we take the finite number of letters to represent a finite number of
classes. In this way, a sequence of configurations is transformed into a simple sequence of
symbols, i.e. a string. This corresponds to the protocol of an experiment in biology or
chemistry, and for us it is the result of the computation. Figure 1 depicts this setup.

Figure 1: The Computing by Observing architecture.

With the motivation for Computing by Observing in mind, one might think that the
most appropriate candidates for the underlying systems are models of biochemical systems,
because these are closest to possible applications. And indeed several models of this type
have been used, for example Membrane Systems [1].

However, at the current early stage of research, it seems most important to identify
key features in the underlying system that make the whole system more powerful. Equally
it would be useful to find out if certain features appear to be useless in this context. For
such general questions, it seems very appropriate to use a system that is as general and
elemental as possible. This is why we use string-rewriting systems as underlying systems
here. Their very basic rules work on a very simple data structure, on strings.

23



Computing by Observing (Beobachtersysteme)

2 Computing by Observing

Computing by Observing has been investigated in different variants. Here we will focus on
the two main architectures with string-rewriting systems as underlying, evolving systems.
On the one hand, there is a variant that generates languages: beginning from a specified
starting symbol, a derivation runs until it reaches an irreducible string. Every intermediate
string is mapped to one symbol, and the sequence of these symbols is the generated word
[2]. Figure 1 depicts exactly this setup.

On the other hand, there are accepting observer systems [3]. The string-rewriting
starts on an input word instead of a start symbol. This input is accepted, if the observed
string belongs to a fixed regular language.

Technical details on these systems can be found in the referenced articles. Here we
only want to give an idea of the power that derives from the interaction between the two
components in an informal way. Instead of exact theorems we give these ideas in verbose
statements.

Thus far, the standard observers have basically been deterministic regular automata.
After reading the current configuration, they output one symbol according to the state that
they have reached. These devices are called monadic transducers. The component that
is varied to obtain observer systems of different power is the underlying string-rewriting
system. If these systems contain rules of the form a→ bc that allow the expansion of the
working space and to some extent loops in a symbol, then the resulting systems generate
or accept all recursively enumerable languages.

Statement 1. With context-free string-rewriting and regular observers, observer systems
are computationally complete in both the generating and the accepting variant.

Thus the question is how to bound the resources that the systems have. If we only
use rules of the form a → b, then obviously no more space than that of the input word
can be used. This means that only context-sensitive languages can be accepted. On the
other hand, all languages of this type can be accepted, since a Turing Machine can still
be simulated, only with a constant space bound.

Statement 2. With only rules of the form a→ b and regular observers, accepting observer
systems have the same computational power as Linear Bounded Automata.

For generating observer systems it is somewhat more complicated to bound the working
space. Rules of the form a→ b are not really an option, because here we start from a single
symbol. Thus the entire system would only have a finite number of possible configurations.
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A different idea is to oblige the observer to write in every step. Thus even with context-
free rules we impose a linear space bound. Even more than that, there is a linear time
bound, too. Therefore it is probable though not clear that less than all context-sensitive
languages can be generated in this way.

Statement 3. With context-free string-rewriting and regular observers that always write,
generating observer systems only generate context-sensitive languages.

Numerous further variants have been investigated. We only mention one more way
of restraining the observer’s power. Reading the entire configuration of unbounded size
in every step does not seem to be a realistic feature. Instead, one could possibly detect
what is changed, or more exactly: what type of change has occurred to the configuration.
In our terms, this means to see which rule has been applied without seeing the current
string. This variant has been called observing change [4]. Of course, some control over the
derivation process is lost, if the position where a rule is applied is not known. However,
with inverse context-free rules still all the languages generated by matrix grammars can
be accepted.

Observing only change seems to be a restriction that takes Computing by Observing
closer to a model that might actually be implementable in reality. Exploring more restric-
tions of this type and their effects on the computational power is an interesting task for
the future.
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Introduction

Formal modeling of syntactic structure of a natural language, its syntactic analysis as well
as synthesis, has an important impact on an insight into the characteristic features of the
language and into the needs of its explicit description.

In this talk we focus on the basic tasks and methods developed within the Functional
Generative Description of Czech (FGD), beginnings of which – connected with the name
of Petr Sgall – date back to the 1960s. Both the ‘classical’ model based on pushdown
automata (Section 1) as well as the current model adopting the framework of restarting
automata (Section 2) are discussed.

1 The ‘classical’ model of Functional Generative Descrip-

tion

Functional Generative Description, as proposed by Petr Sgall in [12] and further developed
by the Group of algebraic linguistics at Charles University in Prague, can be characterized
as a stratificational and dependency based descriptive system for the Czech language.1

The language description is split into layers, each layer providing a complete description
of a (disambiguated) sentence and having its own vocabulary and syntax. Further, it
adopts dependency formalism – syntactic information (both at the underlying and surface
layers) is captured in a form of dependency trees: words are represented as nodes of

∗The paper reports on the research supported by the grants of GAČR No. P202/10/1333 and

405/08/0681. It is carried under the project of MŠMT ČR No. MSM0021620838.
1This section is based on [6], which describes the experiments with testing the theoretical adequacy of

FGD. The text can be found at the DBLP Bibliography Server.
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the respective trees, each node being a complex unit with the lexical, morphological and
syntactic features; relations among words are represented by oriented edges.

FGD was designed for generating correct Czech sentences. The ‘classical’ model con-
sists of two components, a generative component and a transducing component.

The generative component

The generative component generates tectogrammatical representations (TR(s) in the se-
quel), i.e., “underlying representations on the level of linguistic meaning representing a
specific patterning of extra-linguistic, ontological content, the set of generated strings sur-
passing only moderately the set of context-free languages”, see [6, 11]. This component
was originally based on a context free grammar combined with elements of dependency
approach; later it was reformulated using exclusively pushdown store automata [12, 11].

This ‘classical’ model of FGD does not consider coordination and appositional con-
structions as these constructions go significantly beyond the straightforward concept of
purely dependency-based approaches and require a more general formal model. A possible
extended model (still based on pushdown store automaton) was introduced in [7].

The model imposes a significant constraint on a projectivity of a dependency tree,
which allows for linearized representation of a dependency tree. Although this constraint
conforms to the theoretical assumption on projectivity of TRs in FGD, it does not allow
an adequate description of frequent non-projective surface constructions in Czech [1].

TRs describe all the linguistically relevant semantic information. These representations
are disambiguated and identical for all synonymous surface variants. Thus the transducing
component captures the relations of synonymy and ambiguity – it is able to generate
all synonymous variants of a sentence from their common TR; on the other hand, an
ambiguous sentence has several different TRs (one for each meaning).

The transducing component

The transducing component, which serves for translating the tectogrammatical represen-
tations of sentences to the lower layers of the language system, has the form of a sequence
of pushdown store automata; the translation is split into steps that more or less corre-
spond to the layers of language system (underlying and surface syntax, morphemics and
phonemics/graphemics).

In [6], the model is described as follows: “The mathematical apparatus used for the
transduction components of FGD is a sequence of pushdown store automata, transducing
the TR into the surface representations (dependency trees) and the latter into morphemic
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ones (strings); then follows a finite automaton transducing the representation into the
graphemic output form. [...]”

“Each transduction of the representation of the structure of the sentence to the adjacent
level needs a pair of automata. The conditions constraining the transduction to the next
level can be characterized as follows:

(a) In a given step only a single dependency syntagm (the governing word and its
modification) is processed [...].

(b) A single pass through the sentence (in the text-to-rule order) is sufficient for every
transducer.

(c) The process of transduction is based on the governing unit being handled by every
pushdown automaton earlier that its modifications (dependent words). [...]”

The theoretical adequacy of the generative system and its practical usefulness were
tested in an experimental implementation – a set of TRs of Czech sentences (mostly
grammatically correct, though their meaningfulness could be doubted) were gained as a
result of the procedure of random generation at the computer EC 1040, see esp. [6].

In 1980s a new system of translation schemes was designed, which made the interpre-
tation in both directions possible; i.e., it worked as both a generative and an analytical
system [8]. This model was based purely on dependency constructions.

2 The current framework for modeling FGD

Here we present our effort to formalize a basic linguistic method, an analysis by reduction,
a method based on a stepwise simplification of an analyzed sentence. This method makes
it possible to define formal dependency relations between particular sentence members –
the (in)dependencies are obtained by correct reductions of Czech sentences – as well as
to describe properly the complex word-order variants of a language with a high degree
of free word order, including non-projective surface constructions. If we allow for rewrit-
ing analysis by reduction is also able to partially capture coordination and appositional
constructions [4].

Analysis by reduction provided a crucial motivation for a new formal model of FGD
based on the novel concept of restarting automata [2, 5]. Restarting automaton is a non-
deterministic machine with a finite-state control unit, a finite characteristic vocabulary
and a head which can read and process the symbols (words) of the sentence on a flexible
working tape, marked by special symbols (the end-markers). This type of automaton
starts its computation over an input sentence in the initial state with its head placed on
the left end of the tape. A computation of a restarting automaton consists of cycles; the
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input sentence is processed – according to the transition relation of the automaton – until
the sentence is accepted / rejected or until a restart operation is performed. Then the
position of the head as well as the inner state of the control unit are ‘forgotten’ and the
automaton starts processing the (already shortened) sentence from the beginning in a new
cycle.

Modeling analysis by reduction (and consequently also syntactic analysis) with the use
of restarting automata reflects the paradigm of FGD better than earlier models based on
pushdown automata:

• Restarting automaton models adequately the syntactic relations determined by va-
lency characteristics of lexical words. It makes it possible to perform several rewrite
steps in a single cycle and thus to process a single verb (or noun, adjective or ad-
verb) and all its valency complementations (as e.g., subject and object(s)) in a single
computational cycle [4]. Therefore the restarting automaton reflects the complete
valency structures as it is understood in the concept of dependency valency syn-
tax; that distinguishes this model significantly from the models based on pushdown
automata, which model syntactic pairs consisting of a governing and a dependent
word.

• Restarting automaton makes it possible to capture the concept of lexicalization – the
approach characteristic for dependency-based language description, which collects
essential linguistic information in a lexicon.

• Restarting automaton reflects non-local behavior of languages with free word order –
rewrite steps in such general models of automata are not restricted to the continuous
substring of an input sentence; they can reduce several symbols with distant word-
order positions (stored as discontinuous substrings on a working tape). Thus it can
process words (and their complementations) with unbounded positions in a sentence
as well as words forming non-projective (surface) constructions.

• Restarting automaton working in cycles models recursive properties of a natural
language appropriately – first, the deepest embedded language constructions are
processed, which results in the simplification of an analyzed sentence; then the lan-
guage constructions embedded in such simplified sentence are processed. After each
simplifying operation, a new cycle starts (i.e., the automaton restarts). The compu-
tation proceeds until the so-called core predicative structure is reached and accepted
without any further restart or until the simplified sentence is rejected as an ill-formed
sentence.
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• The recent models of FGD based on restarting automata capture explicitly tree struc-
tures [9, 10] – restarting automaton is able to assign a set of parallel dependency
structures to every reduction of an input sentence; these structures capture the cor-
respondence of dependency trees on different layers of linguistic description, namely
the tectogrammatical representation and the surface syntactic representation.

The talk at the TheorieTag will focus on the following issues:
(i) A linguistic background of FGD,
(ii) Formal tools connected with FGD and their adequacy,
(iii) A comparison between FGD and the ‘Abhängigkeitsgrammatik’ (developed by the

group around Jürgen Kunze) [3], and
(iv) Current tasks in formal models of natural languages.

References
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Satisfiability problems are ubiquitous in computer science. The satisfiability problem
for propositional formulae, SAT, is the historically first and most important NP-complete
problem [Coo71, Lev73]. In more practical areas, extensions of propositional logic are
used for various tasks: For instance, modal and temporal logics are used for modeling and
verification of finite state hardware or software systems [CGP99]. In artificial intelligence,
non-monotonic logics are used for the representation of knowledge and modeling of rea-
soning of intelligent agents [MT97, CS93]. Different dialects of description logics(which
are, again, generalizations of propositional modal logic) are used in the semantic web
[BCM+03].

Since all these logics are more or less direct generalizations of propositional logic, their
corresponding satisfiability problems are NP-hard. Their use in practice, however, makes
a search for restrictions of the used propositional languages very interesting that on the
one hand are still expressive enough to talk about “real” problems, but on the other hand
allow a more efficient satisfiability problem.

Research in this direction started with the seminal paper by Harry Lewis [Lew79]. Fix
a finite set of Boolean functions B, and let SAT(B) denote the satisfiability problems
restricted to propositional formulae with connectives from B only. That is, SAT(∧,∨), for
example, is Monotone-SAT. Lewis proved that SAT(B) is NP-complete, if with connectives
from B we can define or “implement” the Boolean function x ∧ ¬y, i. e., the negation of
implication. An important tool in Lewis’ proof is an exploitation of the structure of Post’s
lattice. For this, let [B] denote the minimal set of all Boolean functions that can contains
all functions from B, all projections, i. e., all functions In

k for 1 ≤ k ≤ n defined by
In
k (x1, . . . , xn) = xk, and is closed under arbitrary functional composition. The set [B]

is called the clone generated by B, and B is called a basis for [B]. Emil Post [Pos41]
identified the lattice of all clones and exhibited a finite basis for each of them, see Table 1.
A quick discussion of the lattice can be found, e. g., in [Sip05] or [BCRV03]; a detailed
account is [Lau06].
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Clone Definition Base

BF all Boolean functions {x ∧ y,¬x}
R0 {f ∈ BF | f is 0-reproducing} {x ∧ y, x ⊕ y}
R1 {f ∈ BF | f is 1-reproducing} {x ∨ y, x ↔ y}
R2 R0 ∩ R1 {x ∨ y, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotone} {x ∧ y, x ∨ y, 0, 1}
M0 M ∩ R0 {x ∧ y, x ∨ y, 0}
M1 M ∩ R1 {x ∧ y, x ∨ y, 1}
M2 M ∩ R2 {x ∧ y, x ∨ y}
S0 {f ∈ BF | f is 0-separating} {x → y}
Sn

0 {f ∈ BF | f is 0-separating of degree n} {x → y, dual(Tn+1
n )}

S1 {f ∈ BF | f is 1-separating} {x � y}
Sn

1 {f ∈ BF | f is 1-separating of degree n} {x � y, Tn+1
n }

Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ ¬z), dual(Tn+1
n )}

S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn

01 Sn
0 ∩ M {dual(Tn+1

n ), 1}
S01 S0 ∩ M {x ∨ (y ∧ z), 1}
Sn

00 Sn
0 ∩ R2 ∩ M {x ∨ (y ∧ z), dual(Tn+1

n )}
S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
Sn

12 Sn
1 ∩ R2 {x ∧ (y ∨ ¬z), Tn+1

n }
S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
Sn

11 Sn
1 ∩ M {Tn+1

n , 0}
S11 S1 ∩ M {x ∧ (y ∨ z), 0}
Sn

10 Sn
1 ∩ R2 ∩ M {x ∧ (y ∨ z), Tn+1

n }
S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D {f ∈ BF | f is self-dual} {(x∧y) ∨ (x∧¬z) ∨ (¬y∧¬z)}
D1 D ∩ R2 {(x∧y) ∨ (x∧¬z) ∨ (y∧¬z)}
D2 D ∩ M {(x∧y) ∨ (x∧z) ∨ (y∧z)}
L {f ∈ BF | f is affine} {x ⊕ y, 1}
L0 L ∩ R0 {x ⊕ y}
L1 L ∩ R1 {x ↔ y}
L2 L ∩ R2 {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
E {f ∈ BF | f is constant or a conjunction} {x ∧ y, 0, 1}
E0 E ∩ R0 {x ∧ y, 0}
E1 E ∩ R1 {x ∧ y, 1}
E2 E ∩ R2 {x ∧ y}
V {f ∈ BF | f is constant or a disjunction} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
N {f ∈ BF | f is essentially unary} {¬x, 0, 1}
N2 N ∩ D {¬x}
I {f ∈ BF | f is constant or a projection} {id, 0, 1}
I0 I ∩ R0 {id, 0}
I1 I ∩ R1 {id, 1}
I2 I ∩ R2 {id}

Table 1: List of all clones with definition and bases
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Lewis’ result can now be rephrased as follows: SAT(B) is NP-complete, if x∧¬y ∈ [B]
(equivalently: S1 ⊆ [B]); and SAT(B) is polynomial-time solvable in all other cases.

Lewis’ approach has been taken up by Reith and Wagner [RW05] in the context of
problems for Boolean circuits, and by different groups of authors in the context of satisfi-
ability problems or similar algorithmic problems for generalizations of propositional logic,
many of them in the area of nonmonotonic logic and artificial intelligence; we append a
hopefully up to date list:

– Satisfiability for modal logic [HSS10] and hybrid modal logic [MMS+09, MMS+10]

– Satisfiability for linear temporal logic LTL [BSS+09] and branching time logic CTL
and CTL∗ [MTVM09]

– Model checking for linear temporal logic [BMS+10] and branching time logic
[BMM+09]

– Extension/expansion existence problem (a variant of satisfiability) and credulous
and skeptical reasoning problems (variants of tautology) for default logic [BMTV09]
and autoepistemic logic [CMTV10]

– Satisfiability and inference for propositional circumscription [KK01, Tho09]

– Propositional abduction [CST10] and logic-based argumentation [CSTW10]

– Satisfiability for modal dependence logic [LV10]

– Satisfiability for description logic [MS10]

Finally we would like to mention that many similar results have been obtained for
classes of formulas restricted syntactically in a different way, namely for conjunctions
of Boolean constraints. This leads into the context of so called (Boolean) constraint
satisfaction problems. We do not aim to summarize the many results that have been
published in the past few years in this research direction but refer the reader instead to
[CKS01, CKV08].
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Abstract

We study aspects of determinism and reversibility in P systems with one mem-
brane using specific control mechanisms or no control on the rules, and we show
(non-)universality for specific variants of P systems working in the maximally parallel
or in the sequential transition mode.

1 Introduction

P systems (e.g., see [13], [14]) with one membrane can be seen as a computational model
of simple multiset processing. As further ingredients we use singleton promotors and
inhibitors as well as priorities for the rules (we refer to [4] for the mechanisms of regulating
rewriting). We say that systems are without control if none of these ingredients is used.

If a fixed enumeration of the elements of the alphabet is assumed, then multisets
are isomorphic to vectors. In that sense, multiset processing in P systems with only
one membrane also corresponds to vector addition systems (see, e.g., [6]). Alternatively,
adding and removing symbols can be viewed as incrementing and decrementing counters,
i.e., vector addition systems may be viewed as a variant of stateless counter machines,
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where for every instruction it is specified for each counter which integer is to be added to
it. Such a variant is also equivalent to multiset processing systems (in this case, testing
for zero corresponds to using inhibitors).

The main goal of this paper is to consider such properties of multiset processing mech-
anisms as determinism and reversibility as well as their strong versions. Reversibility
is an important property of computational systems and has been well studied for cir-
cuits of logical elements ([5]), circuits of memory elements ([10]), cellular automata ([11]),
Turing machines ([3], [12]), and register machines ([9]). Reversibility essentially is back-
ward determinism. Reversible P systems have been considered in [7], in the energy-based
model, simulating Fredkin gates and thus reversible circuits. For the features of (strong)
reversibility and (strong) determinism, the case of P systems working in the maximally
parallel transition mode was considered in [1], the case with the sequential mode in [2].

2 Definitions

N is the set of natural numbers (non-negative integers). Given a finite alphabet O, a
multiset M over O is a mapping M : O → N; it may be represented by any string w ∈ O∗

such that |w|a = M(a) for a ∈ O.

A (cooperative) multiset rewriting rule is given by r : u → v, where u → O+ and
v → O∗. This rule can be applied to a multiset w if |w|a ≥ |u|a for a ∈ O, and the result
is w′ if |wv|a = |w′u|a for every a ∈ O; the sequential transition is written as w =⇒s w′.
In the case of maximal parallelism, a non-extendable set of such multiset rewriting rules
is applied in parallel, and we write w =⇒mp w′. If a rule has a promoter a, we write it as
u→ v|a. If a rule has an inhibitor a, we write it as u→ v|¬a. The priority relationship is
denoted by >.

A P system with one membrane (a multiset rewriting system) – for short we shall
simply speak of a P system in the following – is a tuple (O,T,w0, R), where O is the
alphabet, T is the terminal (input or output) alphabet, w0 is the starting multiset, and
R is a finite set of multiset rewriting rules. Throughout the rest of the paper, P systems
working in the sequential mode and the maximally parallel mode will be called sequential
and parallel, respectively. The space C of configurations (i.e., of multisets over O) essen-
tially is an |O|-dimensional space with non-negative integer coordinates. The transition
relations =⇒s and =⇒mp each induce an infinite graph on C. The halting configurations
(and only these) have out-degree zero. By reachable we mean reachable from the initial
configuration. The strong variants of the properties reversibility and determinism are ob-
tained by extending them from reachable configurations to all configurations, i.e., whereas
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the properties deterministic and reversible refer to the actual computations of the system,
the strong variants do not depend on the initial configuration. In case of accepting sys-
tems, the initial configurations are obtained by adding arbitrary multisets over a fixed
subalphabet to a fixed multiset.

Definition 1. A P system Π is called strongly reversible if every configuration has
in-degree at most one; Π is called reversible if every reachable configuration has in-degree
at most one. We call Π strongly deterministic if every configuration has out-degree
at most one; Π is called deterministic if every reachable configuration has out-degree at
most one.

A computation is a sequence of transitions, starting in the initial configuration, and
ending in some halting configuration. The result of a halting computation is the num-
ber of terminal objects inside the system when it halts (or the number of input objects
when the system starts, in the accepting case). The set Ng(Π)/Na(Π) of numbers gener-
ated/accepted by a P system Π is the set of natural numbers generated/accepted in any of
its computations. The family of number sets generated by reversible P systems with fea-
tures α and transition mode β is denoted by NgROP1(α, β), where α ⊆ {coo, pro, inh, Pri},
with coo, pro, inh, and Pri meaning that we use cooperative rules, promotors, inhibitors,
and priorities on the rules, respectively, as well as β ∈ {s,mp} denoting the transition
mode (sequential, maximally parallel). In the case of accepting systems, we write Na

instead of Ng. For strongly reversible systems, we replace R by Rs. For deterministic
(strongly deterministic) systems, we replace R by D (Ds, respectively).

We denote the family of recursively enumerable sets of non-negative integers by NRE,
and we call a class of systems generating or accepting it universal. NREG is the family
of regular sets of non-negative integers. A linear number set of natural numbers is a set S

that can be defined by numbers p0, p1, · · · , pk as S = {p0 +
∑k

i=1 nipi | ni ≥ 0, 1 ≤ i ≤ k}.
Linear sets are a subclass of NREG. We call a class of sets sublinear if it is a proper
subclass of linear sets.

Proving universality for classes of deterministic and reversible P systems is based on
the simulation of deterministic and reversible register machines see [8] and [9].

3 Examples

Example 1. The parallel P system Π0 = ({a, b}, {a, b}, a, {a → ab}) is strongly reversible
(for a preimage, remove as many copies of b as there are copies of a); as no halting
configuration is reachable, ∅ ∈ NgRsOP1(coo,mp).
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Example 2. Any sequential P system Π1 = (O,O,w0, {u → v}) with only one rule is
strongly reversible (to obtain a preimage, remove v and add u) and also strongly deter-
ministic (there is no choice). If both w0 and v contain u, then no halting configuration is
reachable, otherwise a singleton (u or v) is generated. Therefore, ∅ as well as {n} for any
n ∈ N are in NgRsOP1(coo, s).

Example 3. The sequential P system Π2 = ({a, b, c}, {b}, a, {a → ab, a → c}) generates
the set of natural numbers since the reachable halting configurations are cb∗, and it is
reversible (for the preimage, replace c with a or ab with a), but not strongly reversible
(e.g., aab =⇒ cab and ca =⇒ cab). Hence, N ∈ NgROP1(coo, s).

Example 4. Any parallel P system with some erasing rule u→ λ is not reversible. Any
sequential P system containing some erasing rule u→ λ is not reversible unless all other
rules are never applicable.

Example 5. Any sequential or parallel P system containing two rules x1 → y and x2 → y

that may apply at least one of them in some computation is not reversible.

4 Reversibility

Theorem 1. NgROP1(coo, Pri, β) = NgROP1(coo, inh, β) = NRE, β ∈ {s,mp}.

Corollary 1. It is undecidable whether a (sequential or parallel) P system from the class
of P systems with either inhibitors or priorities is reversible.

Theorem 2. NgRsOP1(coo, β) = {∅} ∪ {{n} | n ∈ N}, β ∈ {s,mp}.

It is known that (e.g, see [6]) the generative power of sequential P systems equals
PsMAT , hence, even without requiring additional properties like reversibility we cannot
reach universality; it is an open problem to specify the exact generative power of this class.

Corollary 2. Reversible sequential P systems without priorities and without inhibitors
are not universal.

5 Determinism

The concept of determinism as considered in the area of membrane computing essentially
means that such a system, starting from a fixed configuration, has a unique computation;
obviously, in this section we only deal with accepting systems.
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Theorem 3. NaDsOP1(coo, Pri, β) = NaDOP1(coo,mp) = NRE, β ∈ {s,mp}.

Corollary 3. It is undecidable whether a system from the class of (sequential or parallel)
P systems with priorities is deterministic.

Theorem 4. NaY OP1(coo, β) = {∅, N} ∪ {{k | 0 ≤ k ≤ n} | n ∈ N}, (Y, β) ∈
{(D, s) , (Ds, s) , (Ds,mp)}.

Corollary 4. A sequential P system (without control) is not strongly deterministic unless
it has only one rule.

6 Conclusions

We outlined the concepts of reversibility, strong reversibility, determinism, and strong
determinism for sequential and parallel P systems. The results elaborated in [1] and [2]
are summed up in Table 1.

Property pure Pri inh

D(acc) L U U
Ds(acc) L U ?
R(gen) N U U
Rs(gen) L ? ?

Property pure Pri inh pro, inh

D(acc) U U U U
Ds(acc) L U ? U
R(gen) C U U U
Rs(gen) L C C C

Table 1: The power of sequential (left) and parallel (right) P systems with different prop-
erties, depending on the features. U - universal, N - non-universal, L - sublinear, ? - open,
C - conjectured to be non-universal.
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Millstream Systeme [2, 3] sind ein formales generisches Modell für die Beschreibung
natürlicher Sprache und bieten die Möglichkeit den Zusammenhang zwischen verschiede-
nen sprachlichen Ebenen wie Phonologie, Morphologie, Syntax und Semantik zu beschrei-
ben.

Die Motivation der Millstream Systeme liegt in modernen linguistischen Theorien, die
sich von der Tradition Chomsky distanzieren, in der sprachliche Ebenen als hierarchisch
geordnet angesehen werden und wo die syntaktische Ebene die zentrale Rolle innehat. Die
Autoren in [4, 5], zum Beispiel, schlagen vor, linguistische Ebenen als autonome Module
zu betrachten, die miteinander durch Schnittstellen (Interfaces) verknüpft sind, welche die
Interaktion und Interdependenz zwischen verschiedenen sprachlichen Ebenen beschreiben.

Ein Millstream System besteht aus verschiedenen Modulen, die Baumsprachen L1,. . .,
Lk beschreiben, und einer logischen Schnittstelle, welches die Bäume, die durch die Module
erzeugt werden, miteinander verbindet. Eine Konfiguration ist ein Tupel (t1, . . . , tk) ∈
L1 × . . .× Lk mit Verknüpfungen (links), die von der Schnittstelle spezifiziert sind.

In diesem Vortrag betrachten wir algorithmische Eigenschaften von Millstream Syste-
men, die reguläre Baumgrammatiken als Module und Monadische Logik zweiter Stufe
(MSO) als Interface-Logik haben [1]. Wir untersuchen das sogenannte Vervollständi-
gungsproblem (completion problem): Gegeben Bäume die von einer Teilmenge der Module
erzeugt wurden; können diese in eine Konfiguration des Millstream Systems vervollständigt
werden?
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Zusammenfassung

Parallel communicating finite automata (PCFAs) are systems of several finite state
automata which process a common input string in a parallel way and are able to
communicate by sending their states upon request. We consider deterministic and
nondeterministic variants and distinguish four working modes. It is known that these
systems in the most general mode are as powerful as one-way multi-head finite auto-
mata. It is additionally known that the number of heads corresponds to the number
of automata in PCFAs in a constructive way. Thus, undecidability results as well as
results on the hierarchies induced by the number of heads carry over from multi-head
finite automata to PCFAs in the most general mode. Here, we complement these un-
decidability and hierarchy results also for the remaining working modes. In particular,
we show that classical decidability questions are not semi-decidable for any type of
PCFAs under consideration. Moreover, it is proven that the number of automata in
the system induces infinite hierarchies for deterministic and nondeterministic PCFAs
in three working modes.

In ihren Entstehungsjahren stützte sich die Informatik hauptsächlich auf die von-
Neumann-Architektur, in der alle Prozesse aus einer sequentiellen Folge von Aktionen
bestehen. Dieser Ansatz spiegelte sich in den ursprünglichen Modellen der Automaten-
theorie wider. Mit der stetig anwachsenden Bedeutung paralleler und verteilter Prozesse
setzte auch ein Wandel in der theoretischen Informatik ein. So wurden in [19] endliche Au-
tomaten zu Mehrkopfautomaten verallgemeinert, bei denen mehrere Leseköpfe auf einem
gemeinsamen Eingabeband die Eingabe lesen und von einer zentralen endlichen Kontrolle
gesteuert werden. Endliche Mehrkopfautomaten wurden später u.a. zu Zweiweg- oder
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Pushdownautomaten modifiziert [11, 9]. Daneben gab es auch eine Reihe von Arbeiten
zu Systemen von Automaten, deren Definitionen von nebenläufigen Programmen oder
Netzwerkprotokollen inspiriert waren [3, 4, 7, 8, 13].

Eine ähnliche Entwicklung setzte auch auf dem Gebiet der formalen Grammatiken ein,
wo Systeme von Grammatiken in kooperativer Weise eine gemeinsame Sprache erzeugen.
Einen Überblick über die verschiedenen Modelle findet sich z.B. in [6]. So besteht etwa ein
parallel kommunizierendes Grammatiksystem aus einer festen Anzahl von (regulären oder
kontextfreien) Grammatiken, die parallel aber synchronisiert Ableitungsschritte ausführen
und auf Anfrage (nach Einführung eines ausgezeichneten Nichtterminals) die Satzform
einer der anderen Grammatiken erhalten und in ihre eigene Satzform integrieren. Dieses
Konzept, das an das so genannte Classroom-Modell der Künstlichen Intelligenz angelehnt
ist, wurde im Jahr 2002 auf endliche Automaten übertragen und führte zum Begriff des
parallel kommunizierenden endlichen Automaten (PCFA) [18].

Ein PCFA ist ein System aus einer gewissen Anzahl endlicher Automaten, im all-
gemeinen nichtdeterministisch mit spontanen Übergängen, die ein und dieselbe Eingabe
unabhängig voneinander lesen, wobei ihre Transitionen einer globalen Uhr entsprechend
synchronisiert sind. In speziellen Zuständen wird ein Kommunikationsschritt initiiert.
Solche Zustände richten eine Anfrage an einen dem Zustand zugeordneten Automaten des
Systems, der daraufhin seinen eigenen Zustand an den anfragenden Automaten sendet,
mit dem dieser dann weiterrechnet. Hinsichtlich des Nachfolgezustandes der sendenden
Komponente werden zwei Betriebsmodi unterschieden. Entweder ändert sich dort der Zu-
stand nicht oder der Automat wird in seinen Anfangszustand zurück gesetzt, nachdem er
die Anfrage beantwortet hat. Der erste Betriebsmodus wird “non-returning” genannt, der
zweite heißt “returning” und ist vom Classroom-Modell inspiriert, wonach jede Kompo-
nente des Systems Teilaufgaben bearbeitet, bis die erreichten Ergebnisse, hier in Form des
Zustandes, abgefordert werden und danach mit der Bearbeitung einer neuen Teilaufgabe,
hier das Lesen der restlichen Eingabe, von Neuem begonnen wird. Daneben werden noch
zentralisierte von nicht zentralisierten Systemen unterschieden, wobei in zentralisierten
PCFAs nur ein ausgezeichneter Automat Anfragen an andere Komponenten des Systems
richten darf, während in nicht zentralisierten Systemen alle Automaten Anfragezustände
annehmen und somit Kommunikationsschritte einleiten dürfen. Somit unterscheiden wir
insgesamt vier verschiedene Betriebsmodi, die zudem in Systemen deterministischer oder
nichtdeterministischer endlicher Automaten betrachtet werden.

Eines der grundlegenden Resultate aus [18] ist die Äquivalenz von nicht zentralisierten
non-returning PCFAs zu endlichen Mehrkopfautomaten, sowohl im deterministischen als
auch im nichtdeterministischen Fall. In den Nachfolgearbeiten [5, 1] wurde gezeit, dass
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diese Äquivalenzen auch für nicht zentralisierte returning PCFAs gelten. In [1] wurden
darüber hinaus einige Resultate zur Berechnungsstärke von zentralisierten PCFAs gezeigt.
Es gelten die in Abbildung 1 dargestellten Inklusionsbeziehungen.

DCSL

NL

L (RPCFA) = L (PCFA)

L (CPCFA)L (DRPCFA) = L (DPCFA)L (RCPCFA)

L (DCPCFA)L (DRCPCFA)

REG

Figure 1: Inklusionsdiagramm

Dabei stellen Pfeile Inklusionen dar, wobei Pfeile mit durchgezogenen Linien echte
Inklusionen repräsentieren; L (PCFA) ist die Familie der von PCFAs erkennbaren Spra-
chen; die Zusätze D, C und R bezeichnen die Einschränkung auf deterministische, zen-
tralisierte bzw. returning PCFAs. Diese Ergebnisse werden in diesem Beitrag um zwei
Gruppen von Resultaten ergänzt:

1. Die Anzahl der Komponenten, das heißt der Automaten im System, induziert un-
endliche, echte Hierarchien für PCFAs die nicht zentralisiert oder nicht returning
sind.

2. Folgende Entscheidbarkeitsprobleme sind für die Klasse der PCFAs und alle hier be-
trachteten Unterklassen nicht semi-entscheidbar: Leerheit, Universalität, Inklusion,
Äquivalenz, Endlichkeit, Unendlichkeit, Regularität und Kontextfreiheit.

Insbesondere sind die Ergebnisse für die zentralisierten Systeme neu. Erste Unentscheid-
barkeitsergebnisse bezüglich Universalität, Inklusion und Äquivalenz für nichtdetermi-
nistische zentralisierte non-returning PCFAs aus [17] konnten hinsichtlich des Grades der
PCFAs, d.h. bezüglich der Anzahl der Komponenten, verbessert werden. Alle Resul-
tate konnten bereits für Systeme mit zwei Komponenten (mit drei Komponenten im Falle
von zentralisierten returning PCFAs) nachgewiesen werden. Hierzu wurden die Entscheid-
barkeitsprobleme auf nicht semi-entscheidbare Probleme für OCAs (one-way cellular au-
tomata) reduziert.

Es bleibt offen, ob die Anzahl der Komponenten echte, unendliche Hierarchien für
zentralisierte returning PCFAs induziert. Eine andere weiterführende Frage ist die nach
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sinnvollen Teilklassen von PCFAs, für die einige der betrachteten Entscheidbarkeitsfragen
entscheidbar sind. Für die zustandslose Variante der eng verwandten endlichen Mehrkopf-
automaten wurden in [12] Entscheidbarkeitsresultate nachgewiesen.

Für eine formale Definition von PCFAs und die Beweise verweisen wir auf [2].
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Zusammenfassung

Wir betrachten das Inklusionsproblem für Patternsprachen, die von Pattern mit
einer beschränkten Zahl von Variablen erzeugt werden. Diese Arbeit schließt an
eine Arbeit von Freydenberger und Reidenbach (Information and Computation 208
(2010)) an und überträgt die dort gewonnenen Unentscheidbarkeitsresultate für all-
gemeine Patternsprachen auf die Sprachen die von Pattern mit beschränkter Vari-
ablenzahl erzeugt werden. Allerdings bewegen sich diese Schranken im vierstelligen
Bereich; daher bringen wir außerdem das Inklusionsproblem für stärker beschränkte
Klassen von Patternsprachen mit der Collatz-Vermutung in Verbindung. Zusätzlich
dazu präsentieren wir den ersten Beweis für die Unentscheidbarkeit der Inklusion für
NE-Patternsprachen, der (im Gegensatz zu früheren Beweisen) nicht auf der Nicht-
entscheidbarkeit der Inklusion für E-Patternsprachen aufbaut.

1 Einleitung

Pattern, d. h. endliche Wörter aus Variablen und Terminalsymbolen, stellen eine kompakte,
elegante und natürliche Methode dar, gewisse kontextsensitive Sprachen zu repräsentieren.
Ein Pattern erzeugt ein Wort durch eine Substitution, die alle Variablen im Pattern durch
beliebige endliche Wörter über einem festen Terminalalphabet ersetzt. Die Patternsprache
eines Pattern ist somit die Menge aller Wörter, die durch die Substitution des Pattern
gebildet werden können; etwas formaler ist eine Patternsprache also die Menge aller Bilder
des Pattern unter beliebigen terminalerhaltenden Homomorphismen. Wenn wir beispiels-
weise das Pattern α := x1 ax2 bx1 (mit Variablen x1, x2 und Terminalsymbolen a, b)
betrachten, so liegen folglich u. a. w1 := aabbba, w2 := abababab und w3 := aaabaa in der

∗Eine ausführlichere Darstellung dieser Arbeit findet sich in [2].
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von α erzeugten Patternsprache, wohingegen die Beispielwörter w4 := ba, w5 := babbba

und w6 := abba nicht von α erzeugt werden können.

In der Literatur werden grundsätzlich zwei verschiedene Arten von Patternsprachen
betrachtet: NE-Patternsprachen (eingeführt von Angluin [1]), bei denen die Variablen stets
mit nichtleeren Wörtern substituiert werden müssen, und E-Patternsprachen (erstmals
untersucht von Shinohara [11]), bei denen auch die Substitution mit leeren Wörtern erlaubt
ist. Im obigen Beispiel ist somit das Wort w3 zwar in der E-Patternsprache, nicht jedoch
in der NE-Patternsprache von α enthalten.

Aufgrund ihrer einfachen Definition Patternsprachen besitzen Patternsprachen vielfäl-
tige Verbindungen zu anderen Konzepten in der Welt der formalen Sprachen (s. Mateescu
und Salomaa [9]). Insbesondere ist das Inklusionsproblem von entscheidender Bedeutung
(s. Freydenberger und Reidenbach [3]). Die vorliegende Arbeit untersucht daher dieses
Entscheidungsproblem eingehender.

2 Definitionen

Wir bezeichnen das leere Wort als λ. Sei Σ ein Alphabet sogenannter Terminalsymbole,
und X eine unendliche und zu Σ disjunkte Menge von Variablen. Ein Homomorphismus
σ : (Σ∪X)∗ → Σ∗ ist eine Σ-Substitution, wenn σ(a) = a für alle a ∈ Σ, und nichtlöschend,
wenn σ(x) �= λ für alle x ∈ Σ ∪X. Wir bezeichnen Wörter aus (Σ ∪X)∗ als Pattern und
die Menge aller Pattern über Σ als PatΣ. Für jedes Pattern α ∈ PatΣ bezeichnet v(α)
die Menge der in α vorkommenden Variablen. Ein Pattern α ∈ PatΣ erzeugt die E-
Patternsprache LE,Σ(α) := {σ(α) | σ ist eine Σ-Substitution} und die NE-Patternsprache
LNE,Σ(α) := {σ(α) | σ ist nichtlöschende Σ-Substitution}.

Die Collatzfunktion C ist für alle n ≥ 1 definiert durch C(n) := 1
2n falls n gerade,

und C(n) := 3n + 1 falls n ungerade. Die Iteration der Collatzfunktion sei definiert durch
C0(n) := n und Ci+1(n) := C(C(n)) für alle n ≥ 1 und i ≥ 0. Es hat sich herausgestellt,
dass die Iteration der Collatzfunktion bei allen bisher überprüften Werten in den trivialen
Zyklus 1, 4, 2, 1,. . .gerät. Die Collatzvermutung besagt, dass zu jedem n ≥ 1 ein i ≥ 0 mit
Ci(n) = 1 existiert (dass also jeder Startwert die Collatziteration in den trivialen Zyklus
führt). Diese Vermutung wurde zwar für viele Werte experimentell bestätigt, aber immer
noch nicht bewiesen (s. Lagarias [6] und [7]). Stark vereinfacht ausgedrückt besteht außer-
dem nach Margenstern [8] begründeter Verdacht, dass jede Klasse von Turingmaschinen,
die die Iteration der Collatzfunktion simulieren kann, ein nichtentscheidbares Haltepro-
blem hat.
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3 Das Inklusionsproblem für Patternsprachen

Laut Jiang, Salomaa, Salomaa und Yu [5] ist das allgemeine (alphabetunabhängige) Inklu-
sionsproblem für Patternsprachen unentscheidbar:

Satz 1 (Jiang et al. [5]). Sei Z ∈ {E,NE}. Es gibt keine totale berechenbare Funktion
χZ, die für jedes Alphabet Σ und jedes Paar von Pattern α, β ∈ PatΣ entscheidet, ob
LZ,Σ(α) ⊆ LZ,Σ(β).

Jiang et al. zeigen dies, indem zunächst sie das unentscheidbare Leerheitsproblem
für 2-Zählerautomaten (2ZA, s. Ibarra [4]) auf das allgemeine Inklusionproblem für
E-Patternsprachen reduzieren. Dies geschieht durch Angabe einer effektiven Konstruk-
tionsvorschrift, die zu einem 2ZA A ein Alphabet Σ sowie Pattern α, β ∈ PatΣ erzeugt, so
dass LE,Σ(α) ⊆ LE,Σ(β) genau dann, wenn A bei keiner Angabe anhält. Der Beweis für
die Unentscheidbarkeit des Inklusionsproblems für NE-Pattern erfolgt über eine Reduk-
tion des alphabetspezifischen Inklusionsproblems für E-Patternsprachen über Alphabeten
der Größe n auf das alphabetspezifische Inklusionsproblem für NE-Patternsprachen über
Alphabeten der Größe n + 2.

Für den von Jiang et al. verwendeten Ansatz ist die Unbeschränktheit von Σ von
essentieller Bedeutung – Σ enthält einen Buchstaben für jeden Zustand von A sowie sechs
zusätzliche Sondersymbole. Eine Beschränkung von |Σ| würde daher unmittelbar zu einer
endlichen Menge von simulierbaren 2ZA und somit zu trivialer Entscheidbarkeit führen.
Die meisten Anwendungen verwenden allerdings Klassen von Patternsprachen über festen
Alphabeten (s. [3]), so dass Satz 1 dort keine Anwendung finden kann. Dieses Problem
wurde schließlich durch das folgende Resultat behoben:

Satz 2 (Freydenberger und Reidenbach [3]). Sei {Z ∈ E,NE} und sei Σ ein endliches
Alphabet mit |Σ| ≥ 2 falls Z = E, oder |Σ| ≥ 4 falls Z = NE. Dann existiert keine totale
berechenbare Funktion χZ,Σ, die für jedes Paar von Pattern α, β ∈ PatΣ entscheidet, ob
LZ,Σ(α) ⊆ LZ,Σ(β).

Die Autoren zeigen hierbei die Untentscheidbarkeit alphabetspezifischen Inklusions-
problems für E-Patternsprachen über allen endlichen, nicht-unären Alphabeten durch eine
Modifikation des Beweises von Jiang et al., indem sie für jedes (endliche, nicht-unäre)
Alphabet Σ eine effektive Konstruktionsvorschrift angeben, die bei Eingabe eines 2ZA A
Pattern α, β ∈ PatΣ konstruiert, so dass LE,Σ(α) ⊆ LE,Σ(β) genau dann gilt, wenn A bei
keiner Eingabe hält. Hierbei werden sämtliche Zustände von A unär codiert, während
die sechs Sondersymbole der Konstruktion von Jiang et al. binär codiert bzw. durch
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Kodierungstricks überflüssig gemacht werden. Dies beweist Satz 2 für den E-Fall, der
NE-Fall folgt direkt mittels der Reduktion von Jiang et al.

Allerdings benötigen beide Konstruktionen eine unendliche Zahl von Variablen im
Pattern β. Wir betrachten daher die Frage als naheliegend, ob auch Pattern mit einer
beschränkten Zahl von Variablen zu unentscheidbaren Inklusionsproblemen führen, und be-
fassen uns daher mit dem alphabetspezifischen Inklusionsproblem für Pattern mit beschränk-
ter Variablenzahl. Wie unser erstes Hauptresultat zeigt, existieren obere Schranken, die
dennoch zu Unentscheidbarkeit führen:

Satz 3. Sei Σ ein binäres Alphabet, sei Z ∈ {E,NE} und seien m,n ≥ 2. Es existiert
kein χZ,m,n, das bei Eingabe von α, β ∈ PatΣ mit |v(α)| ≤ m, |v(β)| ≤ n entscheidet, ob
LZ,m,n(α) ⊆ LZ,m,n(β), falls eine der folgenden Bedingungen erfüllt ist:

1. Z = E, m ≥ 2, n ≥ 2860; oder

2. Z = E, m ≥ 3, n ≥ 2854; oder

3. Z = NE, m ≥ 2, n ≥ 3549; oder

4. Z = NE, m ≥ 3, n ≥ 3541.

Für beide Fälle von Z basiert der Beweis auf einer Modifikation des Beweises des E-
Falls von Satz 2. Anders als die vorhergehenden Beweise verwenden wir allerdings keine
Reduktion des Leerheitsproblems von 2ZA, sondern eine Reduktion des Halteproblems
der universellen Turingmaschine U2,15 von Neary und Woods [10]. Die verschiedenen
Startwerte von U2,15 werden hierbei im Terminalteil von α codiert, während β bei allen
möglichen Eingaben stets das gleiche Pattern ist.

Es ist außerdem besonders hervorzuheben, dass der Beweis des NE-Falls ebenfalls
nach diesem Prinzip verfährt und durch mehrere Kodierungstricks sämtliche Probleme
umgeht, die daraus resultieren, dass bei NE-Pattern keine Variable gelöscht wird. Im
Gegensatz zu den bisherigen Beweisen ist also keine Reduktion des Problems für den E-Fall
notwendig, so dass keine zusätzlichen Buchstaben benötigt werden. Dies schließt die Lücke
für den Beweis der Nichtentscheidbarkeit des alphabetspezifischen Inklusionsproblems für
NE-Patternsprachen über binären und ternären Alphabeten.

Die in Satz 3 angegebenen Schranken sind zwar nicht scharf, lassen sich aber mit den
uns bekannten Beweismethoden nicht signifikant senken. Allerdings ist es uns gelungen,
durch eine geringfügige Modifikation der Konstruktion zu zeigen, dass sich mit deutlich
geringerer Variablenzahl die Iteration der Collatzfunktion in der Inklusion von Pattern-
sprachen simulieren lässt:
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Satz 4. Sei Σ ein binäres Alphabet und sei Z ∈ {E,NE}. Jeder Algorithmus, der bei
Eingabe von α, β ∈ PatΣ mit

1. Z = E, |v(α)| ≤ 2, |v(β)| ≤ 74; oder

2. Z = NE, |v(α)| ≤ 2, |v(β)| ≤ 145

entscheidet, ob LZ,Σ(α) ⊆ LZ,Σ(β), lässt sich in einen Algorithmus konvertieren, der für
beliebige N ≥ 1 entscheidet, ob ein i ≥ 0 existiert, für das Ci(N) = 1.

Satz 4 zeigt, dass sich bereits mit einer deutlich kleineren Zahl von Variablen als in
Satz 3 komplexe Fragestellungen ausdrücken lassen. Mit einer geringfügigen Modifikation
dieses Beweises kann das folgende überraschende Resultat erzielt werden:

Satz 5. Sei Σ ein binäres Alphabet und sei Z ∈ {E,NE}. Jeder Algorithmus, der bei
Eingabe von α, β ∈ PatΣ mit

1. Z = E, |v(α)| ≤ 4, |v(β)| ≤ 80; oder

2. Z = NE, |v(α)| ≤ 4, |v(β)| ≤ 153

entscheidet, ob LZ,Σ(α) ⊆ LZ,Σ(β), kann verwendet werden, um zu entscheiden, ob ein
N ≥ 1 existiert, so dass die Folge Ci(N) in einen nichttrivialen Zyklus gerät.

Wäre eines dieser Inklusionsprobleme entscheidbar, so könnte der Algorithmus verwen-
det werden, um in endlicher Zeit eine Hälfte der schweren und seit langem offenen Col-
latzvermutung zu beweisen oder die gesamte Vermutung zu widerlegen. Wir betrachten
Satz 5 daher als Indiz, dass auch diese Inklusionsprobleme unentscheidbar, oder zumindest
nicht effizient entscheidbar, sind. Vergleichbare Resultate konnten auch für alle größeren
endlichen Terminalalphabete gewonnen werden.

Literatur

[1] D. Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21:46–62, 1980.

[2] J. Bremer and D.D. Freydenberger. Inclusion problems for patterns with a bounded
number of variables. In DLT 2010, LNCS. Accepted.

[3] D.D. Freydenberger and D. Reidenbach. Bad news on decision problems for patterns.
Inform. and Comput., 208(1):83–96, 2010.

56



Joachim Bremer, Dominik D. Freydenberger

[4] O. Ibarra. Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM, 25:116–133, 1978.

[5] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns. J.
Comput. Syst. Sci., 50:53–63, 1995.

[6] J.C. Lagarias. The 3x+1 problem: An annotated bibliography (1963–1999), Aug 2009.
http://arxiv.org/abs/math/0309224.

[7] J.C. Lagarias. The 3x+1 problem: An annotated bibliography, II (2000–2009), Aug
2009. http://arxiv.org/abs/math/0608208.

[8] M. Margenstern. Frontier between decidability and undecidability: a survey. Theor.
Comput. Sci., 231(2):217–251, 2000.

[9] A. Mateescu and A. Salomaa. Patterns. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 4.6, pages 230–242. Springer, 1997.

[10] T. Neary and D. Woods. Four small universal Turing machines. Fundam. Inform.,
91(1):123–144, 2009.

[11] T. Shinohara. Polynomial time inference of extended regular pattern languages. In
Proc. RIMS Symposia on Software Science and Engineering, Kyoto, volume 147 of
Lecture Notes in Computer Science, pages 115–127, 1982.

57



Die Columbo-Architektur

Jens Doll

jens.doll@uni-hamburg.de

Zusammenfassung

Columbo ist die Bezeichnung für eine Architektur mit formalsprachlichen Schnitt-
stellen, die sukzessive zu einem Rahmenwerk für fehlerfreie Software ausgebaut werden
soll. Im Wesentlichen besteht sie aus Sprachen der Chomsky-Ebenen 1 bis 3 sowie
aus zwei Termersetzungssystemen, welche die Korrektheit von While-Programmen
berechnen. Es soll der aktuelle Stand der Entwicklung und die evolutionäre Idee des
Gesamtkonzeptes dargestellt werden.
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Abstract

Quantitative aspects of systems like consumption of resources, output of goods,
or reliability can be modeled by weighted automata. Recently, objectives like the
average cost or the longtime peak power consumption of a system have been modeled
by weighted automata which are not semiring weighted anymore. Instead, operations
like limit superior, limit average, or discounting are used to determine the behavior
of these automata. Here, we introduce a new class of weight structures subsuming a
range of these models as well as semirings. Our main result shows that such weighted
automata and Kleene-type regular expressions are expressively equivalent both for
finite and infinite words.

Recently, a new kind of weighted automata was established by Chatterjee, Doyen, and
Henzinger [3, 4, 5, 6] which compute objectives like the long-run average cost or long-
run maximal reward. These models enrich the automata toolbox for the modeling of
quantitative aspects of systems which may be the consumption of some resource like time,
power, or memory, or the production of some output like goods or pollution. Objectives like
average or longtime peaks cannot be modeled by classical semiring weighted automata [1,
7, 16, 17, 21] or lattice automata [18]. Therefore, the theory of semiring weighted automata
does not carry over to those new weighted automata.

Finite automata and regular expressions describe the same class of languages [15].
This result by Kleene was transfered by Schützenberger [22] to the semiring-weighted
setting over finite words. For infinite words, the respective equivalence for ω-languages
was shown by Büchi [2] and for the weighted setting by Ésik and Kuich [13, 14] for
semiring-semimodule pairs, by Droste and Kuske [8] for discounting, and by Droste and
Vogler [11] for bounded lattices. Here, we will establish that regular weighted expressions
are expressively equivalent to the new kind of weighted automata computing average and
longtime behavior.
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In the weighted automata considered here, the weight of a finite run is calculated in
a global way by means of a valuation function val : D+ → D where D is the basic set of
the weight structure. For finite runs, examples of valuation functions are the average, the
supremum, or the last value. As usual, non-determinism is resolved by a monoid operation
+ (with a neutral element �). Our automata model has features of classical finite automata
and of the weighted automata from [3]. The use of a valuation function is due to [3]. But,
moreover, we allow acceptance conditions like final states in the case of finite words and
a Büchi condition for non-terminating behavior. The computation of the weight of an
infinite run is realized by three ingredients: (i) the Büchi condition, (ii) a valuation
function val : D+ → D for finite sequences, and (iii) an ω-indexed valuation function
valω : (N×D)ω → D for infinite sequences. Hereby, the finite sequences of weights between
two consecutive acceptance states are evaluated by the valuation function and then these
infinitely many intermediate results are combined by the ω-indexed valuation function
where also the lengths of the finite sequences can be taken into account. This procedure
guarantees the necessary link between finite and ω-automata in order to establish a Kleene-
like result also for infinite words. In this way, we may model for infinite runs the limit
superior of the weights, the limit average, i.e., the longrun average weight, or a discounted
sum.

Our main results are as follows. For finite words we show that weighted automata
and regular weighted expressions are expressively equivalent. The weights are taken from
Cauchy valuation monoids D which have, besides the sum and the valuation function, a
family of products. Such a product is parameterized by two natural numbers representing
the length of two words to be concatenated. By these products we can define the Cauchy
product and the iteration of functions S : Σ+ → D mapping a finite word over Σ to a
weight from D. Cauchy valuation monoids generalize the valuation functions considered
in [3], semirings, and more. Now the class of regular weighted expressions over an alphabet
Σ and a Cauchy valuation monoid D is given by the grammar

E ::= d.a | E + E | E · E | E+

where d ∈ D and a ∈ Σ, cf. [22, 7]. Now we have

Theorem 1. Let D be a Cauchy valuation monoid and S : Σ+ → D.
Then S is recognizable by a weighted finite automaton A if and only if S = [[E ]] for

some regular weighted expression E.

For infinite words, we present by Cauchy ω-indexed valuation monoids also a unified
setting for the weight structure. They comprise a complete sum operation, a valuation and
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an ω-indexed valuation function, as well as a family of parameterized products. Now we
have also products where the first parameter is a positive integer but the second one is ω

which will be used for the concatenation of a finite and an infinite word. Moreover, we have
to impose more restrictions on the interaction of the different operations. This is not sur-
prising because one has to do so also in other settings, cf. [14]. However, instantiations of
Cauchy ω-indexed valuation monoids are the structures with limit superior, limit average,
or discounting as considered in [3] as well as the complete star-omega-semirings [13, 14]
or the semirings used in [10, 20]. Using these parameterized products and the ω-indexed
valuation function, we can define a Cauchy product and the ω-iteration and, thus, the
semantics [[E ]] of ω-regular weighted expressions E which are given by the grammar

E ::= E + E | F · E | Fω

where F is any regular weighted expression.
Now we show that over Cauchy ω-indexed valuation monoids, every ω-regular weighted

expression can be translated into an equivalent weighted Büchi automaton.

Theorem 2. Let D be a Cauchy ω-indexed valuation monoid. For any ω-regular weighted
expression E over D, the ω-series [[E ]] is ω-recognizable by a weighted Büchi automaton
A.

Conversely, under an additional assumption called the partition property, which governs
the computation of an infinite sequence by using different partitions of the sequence, the
behavior of every weighted Büchi automaton can be described by an ω-regular expression.

Theorem 3. Let D be a Cauchy ω-indexed valuation monoid satisfying the partition
property and let S : Σω → D be ω-recognized by a weighted Büchi automaton over D.
Then there is an ω-regular weighted expression E with [[E ]] = S.

Our setting for infinite words owes some ideas to the case of discounting [8]. The
main difference to the setting of Ésik and Kuich [13, 14] is the absence of an infinitary
associativity for the ω-indexed valuation function. But we have to drop this property in
order to include the new models like limit superior or limit average [3].

Our results were published recently in [9].
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In this talk, we consider the operations of insertion and deletion working in a graph-
controlled manner. We show that like in the case of context-free productions, the computa-
tional power is strictly increased when using a control graph: computational completeness
can be obtained by systems with insertion or deletion rules involving at most two symbols
in a contextual or in a context-free manner and with the control graph having only four
nodes.

1 Insertion-deletion systems

An insertion-deletion system is a construct ID = (V, T,A, I,D), where V is an alphabet;
T ⊆ V is the set of terminal symbols (in contrast, those of V − T are called non-terminal
symbols); A is a finite language over V , the strings in A are the axioms; I,D are finite
sets of triples of the form (u, α, v), where u, α (α �= λ), and v are strings over V . The
triples in I are insertion rules, and those in D are deletion rules. An insertion rule
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(u, α, v) ∈ I indicates that the string α can be inserted between u and v, while a deletion
rule (u, α, v) ∈ D indicates that α can be removed from between the context u and
v. Stated in another way, (u, α, v) ∈ I corresponds to the rewriting rule uv → uαv, and
(u, α, v) ∈ D corresponds to the rewriting rule uαv → uv. By =⇒ins we denote the relation
defined by the insertion rules (formally, x =⇒ins y if and only if x = x1uvx2, y = x1uαvx2,
for some (u, α, v) ∈ I and x1, x2 ∈ V ∗), and by =⇒del the relation defined by the deletion
rules (formally, x =⇒del y if and only if x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D

and x1, x2 ∈ V ∗). By =⇒ we refer to any of the relations =⇒ins,=⇒del, and by =⇒∗ we
denote the reflexive and transitive closure of =⇒.

The language generated by ID is defined by

L(ID) = {w ∈ T ∗ | x =⇒∗ w for some x ∈ A}.

The complexity of an insertion-deletion system ID = (V, T,A, I,D) is described by
the vector (n,m,m′; p, q, q′) called size, where

n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},
m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},
m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.

By INSm,m′
n DELq,q′

p we denote the families of insertion-deletion systems having the
size (n,m,m′; p, q, q′).

If one of the parameters n,m,m′, p, q, q′ is not specified, then instead we write the
symbol ∗. If one of numbers from the pairs m, m′ and/or q, q′ is equal to zero (while the
other one is not), then we say that the corresponding families have a one-sided context.
Finally we remark that the rules from I and D can be put together into one set of rules
R by writing (u, α, v)ins for (u, α, v) ∈ I and (u, α, v)del for (u, α, v) ∈ D.

1.1 Graph-controlled insertion-deletion systems

Like context-free grammars, insertion-deletion systems may be extended by adding some
additional controls. We discuss here the adaptation of the idea of programmed and graph-
controlled grammars for insertion-deletion systems.

A graph-controlled insertion-deletion system with k components is a construct

Π = (k, V, T,A,H, i0, if , R) where

• k is the number of components,

• V, T,A,H are defined as for graph-controlled insertion-deletion systems,
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• i0 ∈ [1..k] is the initial component,

• if ∈ [1..k] is the final component, and

• R is a finite set of rules of the form l : (i, r, j) where r is an insertion or deletion rule
over V and i, j ∈ [1..k].

The set of rules R may be divided into sets Ri assigned to the components i ∈ [1..k],
i.e., Ri = {l : (r, j) | l : (i, r, j) ∈ R}; in a rule l : (i, r, j), the number j specifies the target
component where the string is sent from component i after the application of the insertion
or deletion rule r. A configuration of Π is represented by a pair (i, w), where i is the
number of the current component (initially i0) and w is the current string. We also say
that w is situated in component i. A transition (i, w) � (j, w′) is performed as follows:
first, a rule l : (r, j) from component i (from the set Ri) is chosen in a non-deterministic
way, the rule r is applied, and the string is moved to component j; hence, the new set
from which the next rule to be applied will be chosen is Rj . More formally, (i, w) � (j, w′)
if there is l : ((u, α, v)t , j) ∈ Ri such that w =⇒t w′ by the rule (u, α, v)t; we also write
(i, w) �l (j, w′) in this case. The result of the computation consists of all terminal strings
situated in component if reachable from the axiom and the initial component, i.e.,

L(Π) = {w ∈ T ∗ | (i0, w′) �∗ (if , w) for some w′ ∈ A}.

We define the communication graph of a graph-controlled insertion-deletion system
with k components to be the graph with nodes 1, . . . , k having an edge from node i to
node j if and only if there exists a rule l : ((u, α, v)t , j) ∈ Ri.

By GCLk(insm,m′
n , delq,q′

p ) we denote the family of languages L(Π) generated by graph-
controlled insertion-deletion systems with at most k components and insertion and deletion
rules of size at most (n,m,m′; p, q, q′). We replace k by ∗ if k is not fixed. Some results
for the families of graph-controlled insertion-deletion systems TCLk(insm,m′

n , delq,q′
p ) can

directly be derived from the results presented in [1, 3] for the corresponding families of
insertion-deletion P systems ELSPk(insm,m′

n , delq,q′
p ), yet the results we present in the suc-

ceeding section either reduce the number of components for systems with an underlying
tree structure or else take advantage of the arbitrary structure of the underlying commu-
nication graph thus obtaining computational completeness for new restricted variants of
insertion and deletion rules.
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2 Main results

For all the variants of insertion and deletion rules considered in this section, we know that
the basic variants without using control graphs cannot achieve computational complete-
ness (see [1], [2]). The computational completeness results from this section are based on
simulations of derivations of a grammar in the special Geffert normal form. These simu-
lations associate a group of insertion and deletion rules to each of the right- or left-linear
rules X → bY and X → Y b. The same holds for (non-context-free) erasing rules AB → λ

and CD → λ. We remark that during the derivation of a grammar in the special Geffert
normal form, any sentential form contains at most one non-terminal symbol from N ′.

We start with the following theorem where we even obtain a linear tree structure for
the underlying communication graph.

Theorem 1. GCL4(ins1,0
1 , del0,0

2 ) = RE.

The next theorem uses one-sided contextual deletion rules.

Theorem 2. GCL4(ins1,0
1 , del1,0

1 ) = RE.

The result elaborated above also holds if the contexts for insertion and deletion rules
are on different sides.

Theorem 3. GCL4(ins1,0
1 , del0,1

1 ) = RE.

Finally, we show a similar result that also holds in the case of context-free insertions.

Theorem 4. GCL4(ins0,0
2 , del1,0

1 ) = RE.

3 Conclusions

In this article we have investigated the application of the mechanism of a control graph
to the operations of insertion and deletion. We gave a clear definition of the corre-
sponding systems, which is simpler than the one obtained by using P systems. We in-
vestigated the case of systems with insertion and deletion rules of size (1, 1, 0; 1, 1, 0),
(1, 1, 0; 1, 0, 1), (1, 1, 0; 2, 0, 0) and (2, 0, 0; 1, 1, 0) and we have shown that the correspond-
ing graph-controlled insertion-deletion systems are computationally complete with only
four components, i.e., with the underlying communication graph containing only four
nodes. The case of rules of size (2, 0, 0; 2, 0, 0) is investigated in [1], where it is shown that
such systems are not computationally complete.
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We suggest two directions for the future research. The first one deals with the number
of components needed to achieve computational completeness. The natural question is if
it is possible to obtain similar results with only three components. The second direction
is inspired from the area of P systems. We propose to further investigate systems where
the communication graph has a tree structure as in Theorem 1. The only known results
so far are to be found in [1], but there five nodes were used. Hence, the challenge remains
to decrease these numbers of components.
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[3] G. Păun. Membrane Computing. An Introduction. Springer-Verlag, 2002.

68



Classifying Regular Languages via Cascade

Products of Automata

Marcus Gelderie

RWTH Aachen University

Lehrstuhl für Informatik 7

Ahornstr. 55, 52056 Aachen, Germany

marcus.gelderie@rwth-aachen.de

Abstract

This abstract reports on ongoing work for the diploma thesis [6]. We characterize
families of regular languages in terms of the cascade decompositions of the minimal auto-
mata accepting those languages. Our basis is the classical work of Krohn and Rhodes [5],
Ginzburg [1] and Meyer [4] as well as similar work on the wreath and block product in
[3, 2]. In [4] the decomposition results of [5] were used to characterize star-free languages
and to give a proof of the celebrated Schützenberger Theorem.

We consider the cases of R-trivial languages (i.e. languages L for which the syntactic
monoid M(L) is R-trivial), piecewise testable languages and commutative languages.

Biased Reset Automata

Call a 2-state reset automaton (2-RA) R = ({0, 1},Σ, δ), δ : Σ → QQ, 1-biased if the
set Σ0 = {σ ∈ Σ|δ(σ) ≡ 0} of all reset inputs inducing the constant 0 function is empty.
Similarly, call R 0-biased if Σ1 = ∅. We show (not surprisingly):

Theorem. A language L is R-trivial iff L is recognized by a cascade product of biased
resets.

We call a cascade product A := R1
◦ · · · ◦ Rn of 1-biased 2-RAs Ri = ({0, 1},Σi, δRi)

strictly locally 1-triggered, if for every i = 2, . . . , n and every ((x1, . . . , xi−1), σ) ∈ Σi =
{0, 1}i−1×Σ1 we have δRi((x1, . . . , xi−1), σ) = id if xi−1 = 0 and δRi((x1, . . . , xi−2, 1), σ) =
δRi((y1, . . . , yi−2, 1), σ) for all (y1, . . . , yi−2, 1), σ), (y1, . . . , yi−2, 1), σ) ∈ Σi. In other words:
every 2-RA in the product A reacts only on inputs, which are read when the immediately
preceeding 2-RA is in state 1. Furthermore, the state of all other preceeding automata is
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irrelevant. Call A locally 1-triggered if A is a direct product of strictly locally 1-triggered
cascade products. We show:

Theorem. A language L is piecewise testable iff L is recognized by a locally 1-triggered
cascade product of 1-biased 2-RAs.

It is of course not essential that the resets are 1-biased, since by renaming the states we
could just as well make them 0-biased. What is essential, however, is that if the resets are
i-biased, the product is locally i-triggered.

Call a semiautomaton 1-semilinear, if there exists exactly one input σ ∈ Σ, such that
δ(σ) �= id. 1-semilinear automata recognize commutative languages, which are defined
by the number of occurrences of a single letter. We call a grouplike automaton G =
(QG,Σ, δG) with associated group G ∼= M(G) cyclic if G is cyclic. Furthermore, we call
|QG| the order of G. We show:

Theorem. A language L is commutative iff L is recognized by a direct product of the form:(
n×

i=1

Ri
1
◦ · · · ◦ Ri

ni

)
×
(

m×
i=1

Gi

)

where the Ri
j are 1-semilinear biased 2-RAs and the Gi are 1-semilinear cyclic grouplike

automata. The 1-semilinear cyclic grouplike automata can in turn be decomposed into
direct products of cascade products of cyclic grouplike automata of prime order.

The Scope of Cascade Products

We introduce the notion of the scope of a cascade product. Consider the cascade product
A := A1

◦ · · · ◦ An, where A1 = (Q1,Σ, δ1) and Ai = (Qi, Q1 × · · · × Qi−1 × Σ, δi) for
i = 2, . . . , n. We say A has scope k ∈ {1, . . . , n}, if for i ≥ k:

δi+1((q1, . . . , qi−k, qi−k+1, . . . , qi), σ) = δi+1((q′1, . . . , q
′
i−k, qi−k+1, . . . , qi), σ)

for all (q1, . . . , qi) ∈ Q1 × · · · × Qi, (q′1, . . . , q′i−k) ∈ Q1 × · · · × Qi−k and all σ ∈ Σ. In
other words: every automaton in the cascade is sensitive only to the states of the first k

automata immediately preceeding it.

The scope of a cascade product seems interesting because it describes a certain locality
in the cascade product. The “pace” by which information spreads through the cascade is
bounded, which makes the product easier to handle in proofs. Furthermore, the “fan-in”
of a given automaton is bounded by a constant.
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The scope of a cascade product occurs naturally in some settings. Let Σ = {a, b} and
define

Ln = {w ∈ Σ∗|∀x � w : 0 ≤ |x|a − |x|b ≤ n ∧ |w|a = |w|b}

It can be shown that Ln ∈ Vn \ Vn−1 for all n ≥ 1, where Vn is the n-th level of the
Straubing Hierarchy. We prove:

Theorem. Every cascade product of 2-RAs recognizing Ln has at least n + 1 factors.

A very natural way to implement such a product with the minimal number of factors
is to use n resets to count the excess in a’s over b’s, ∆(w) = |w|a−|w|b, and one additional,
biased 2-RA to permanently memorize if ∆(u) < 0 or ∆(u) > n for some prefix u of w.
We prove for all 0 < n ∈ N:

Theorem. The language Ln can be recognized by a scope n cascade product of n+1 2-RAs.

Spending more 2-RAs, however, one can sometimes reduce the scope. We show:

Theorem. All R-trivial languages are recognized by a scope 2 cascade product of 2-RAs.

This raises the question of how the number of factors and the scope of a cascade product
are related. Presently, we study this tradeoff between the scope and the number of factors.
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Zusammenfassung

Die Klasse SPS erweitert die der gerichteten seriell-parallelen Graphen durch das
Hinzufügen von Schleifen bzw. Kreisen. Elemente aus SPS lassen sich eindeutig
umkehrbar auf reguläre Ausdrücke abbilden. Die verwendeten Konstruktionen werden
um Kantenmarkierungen erweitert, was zu einer Kodierung endlicher Automaten mit
derartger Struktur durch sprachäquivalente reguläre Ausdrücke führt. Dabei verhalten
sich die Größen von Automat und Ausdruck linear zueinander. Zuletzt wird eine
Charakterisierung von SPS durch verbotene Teilgraphen vorgestellt.

1 Notation

Ein (gerichteter) Graph ist ein Tupel (V,A, h, t) mit Knotenmenge V , Kantenmenge A und
Abbildungen t : A → V und h : A → V . Zu einer Kante a ist t(a) der Schwanz und h(a)
der Kopf, eine xy-Kante hat Schwanz x und Kopf y. Eine x-Schleife ist eine xx-Kante.
Der Eingangsgrad eines Knotens x im Graphen G, wird d−

G(y), der Ausgangsgrad d+
G(x)

notiert. Ein Graph ist 2-terminal wenn er zwei verschiedene Knoten s, die Quelle, und
t, die Senke besitzt, so dass zu jedem Knoten x ein sx- und ein xt-Pfad existiert. Die
Klasse der 2-terminalen Graphen wird mit T T bezeichnet und wir schreiben (G, s, t) für
G ∈ T T mit Quelle s und Senkte t. In (G, s, t) ist der Knoten x eine Pforte des Knotens
y, wenn x auf jedem Pfad von s nach y und von y nach t liegt. Weiter ist x eine Pforte
der yz-Kante a wenn x Pforte von y und z ist.

Syntax und Semantik von (regulären) Ausdrücken folgen [HU79]. Die Klasse der
Ausdrücke über Σ ist Reg(Σ), immer sind r und s Ausdrücke. Die von r beschriebene
Sprache wird L(r) bezeichnet. Ein erweiterter endlicher Automat (FA) ist ein Tupel
A = (Q,Σ, δ, I, F ) mit Zuständen Q, Alphabet Σ, Transitionen δ ⊆ Q × Reg(Σ) × Q,
Startzuständen I und Endzuständen F . Die Relation �A ist auf Q × Σ∗ definiert durch
(q, vw) �A (q′, w) gdw. (q, r, q′) ∈ δ und v ∈ L(r). Die von A akzeptierte Sprache ist

L(A) = {w | (qi, w) �∗A (qf , ε), qi ∈ I, qf ∈ F}
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Ein EFA ist normalisiert falls |I| = |F | = 1, I �= F und jeder Zustand erreichbar und
co-erreichbar ist. Ein (herkömmlicher) endlicher Automat (FA) ist ein EFA der δ ⊆
Q× (Σ ∪ ε)×Q erfüllt.

2 Seriell-Parallele Graphen mit Schleifen

x x yy z
s⇒ xx yy

p⇒ x y [x, y]
�⇒

(a) serielle Expansion (b) parallele Expansion (c) Schleifenexpansion

Figure 1: Expansion einer xy-Kante

Definition 1. Eine xy-Kante a kann wie folgt expandiert werden:

1. Serielle Expansion: Entferne a und füge einen neuen Knoten z sowie eine xz- und
eine zy-Kante ein.

2. Parallele Expansion: Füge eine neue xy-Kante ein.

3. Schleifenexpansion: Gilt d+(x) = d−(y) = 1, vereine x und y.

Wir schreiben G
s⇒ H, G

p⇒ H und G
�⇒ H, wenn H aus G durch serielle, parallele oder

Schleifenexpansion einer Kante entsteht und sagen, dass G zu H expandiert. Ausgehend
von P1 := ({x, y}, {a}, {(a, x)}, {(a, y)}), dem Axiom, konstruieren wir die Klasse SPS:

Definition 2 (SPS).

• P1 ∈ SPS

• Mit G ∈ SPS und G
s⇒ H oder G

p⇒ H gilt H ∈ SPS

• Mit G ∈ SPS \ {P1} und G
�⇒ H gilt H ∈ SPS

s⇒s⇒s⇒p⇒ �⇒

Figure 2: Konstruktion eines SPS-Graphen aus P1.

Die Klasse SPS liegt echt zwischen den seriell-parallelen und den 2-terminalen Graphen.
Um zu entscheiden, ob ein 2-terminaler Graph in SPS liegt, werden zu den Expansionen
duale Operationen eingeführt.
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Definition 3. Sei G ∈ T T . Dann gilt

• G
s⇐ H, falls ein Knoten x in G lediglich inzident zu einer yx- und einer xz-Kante

ist, und H aus G durch Löschen von x und Einfügen einer yz-Kante hervorgeht.

• G
p⇐ H, falls a eine von mehreren xy-Kanten in G ist und H aus G durch Entfernen

von a hervorgeht.

• G
�⇐ H, falls a eine x-Schleife in G ist, wobei x Pforte keiner Kante ausser a ist, und

H aus G hervorgeht indem ein Knoten y zugefügt wird, welcher neuer Kopf von a,
und neuer Schwanz aller aus x ausgehenden Kanten wird.

Die Relationen s⇐,
p⇐ und �⇐ heissen serielle Reduktion, paralllele Reduktion und

Schleifenreduktion, und G wird zu H reduziert, wenn G und H in einer der Relationen
stehen. Die Pforten-Bedingung der Schleifenreduktion ist notwendig für

Lemma 2.1. G ∈ SPS genau dann wenn G auf P1 reduzierbar ist.

Tatsächlich ist keine besondere Reduktionsstrategie nötig, da gilt

Lemma 2.2. Das Ersetzungssystem 〈T T ,
∫⇐,

√
⇐,

�⇐〉 ist konfluent.

Damit ist G ∈ SPS wie folgt entscheidbar: Zunächst wird Zugehörigkeit zu T T getestet,
dazu muss G genau einen Knoten s mit d−(s) = 0 und einen Knoten t mit d+(t) = 0 enthal-
ten, welche Quelle bzw. Senke sind (Tiefensuche). In dem Fall terminiert jede erschöpfende
Reduktionsfolge von G in einem eindeutigen Graphen R(G) und es gilt

G ∈ SPS gdw. R(G) = P1.

Der Linearzeit-Algorithmus für seriell-paralle Reduktion [VTL81], kann einfach um Schlei-
fenreduktion erweitert werden. Der Test, ob eine x-Schleife reduzierbar ist, also ob x

Pforte ist, ist linear, was quadratische Gesamtlaufzeit bedingt.

2.1 Kantenmarkierte Graphen

Die betrachteten Graphen bzw. die Expansions- und Reduktionsregel werden um Kan-
tenmarkierungen erweitert, was zu markierter Reduktion führt. Als Markierung werden
Ausdrücke gewählt; dabei folgen wir der Intuition, dass ein Produkt seriellen Charakter,
eine Summe parallelen Charakter und eine Iteration Schleifencharakter hat.

Vollständige markierte Reduktion von G ∈ SPS mit Markierungen aus M (wobei
M ∩ {+, ∗} = ∅) ergibt das Axiom, welches mit einem Ausdruck c(G) ∈ Reg(M) markiert
ist.
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���������������� ��
r s rss⇐ �������� ���� ����

r

s

r + sp⇐

(a) markierte serielle Reduktion (b) markierte parallele Reduktion

���� ������

r
r∗�⇐

(c) markierte Schleifenreduktion

Figure 3: Reduktionen mit Ausdrücken als Kantenmarkierung

Lemma 2.3. Zu G ∈ SPS ist der Ausdruck c(G) modulo Assoziativität und Kommuta-
tivität der regulären Operatoren eindeutig bestimmt.

Kehrt man die markierten Reduktionen um, ergeben sich markierte Expansionen. Ex-
pandiert man derart das mit c(G) markierte Axiom bis in keiner Markierung Operatoren
vorkommen, ergibt sich wieder G.

Die inneren Knoten im Syntaxbaum von c(G) kodieren die Struktur von G ∈ SPS,
während Blätter die Kantenmarkierungen enthalten. Unmarkierte SPS-Graphen lassen
sich als Ausdrücke über beliebigen nichtleeren Alphabeten kodieren, etwa über {ε} oder der
Kantenmenge des Graphen. Beispielsweise kodiert ε+(ε(εε)∗ε) den in Abb. 2 konstruierten
Graphen.

Ein normalisierter FA A mit Startzustand q0 und Endzustand qf lässt sich als 2-
terminaler Graph mit Quelle q0, Senke qf und Markierungen aus Σ auffassen. Dieser
lässt sich unter Erhalt der akzeptierten Sprache zu einem eindeutig bestimmten EFA
R(A) reduzieren; liegt der A zugrundeliegende Graph in SPS , so ergibt sich ein einzelner
Ausdruck c(A) als Markierung von R(A) = P1 und es gilt

L(c(A)) = L(A)

Markierte Expansion von P1 mit c(A) als Markierung ergibt wieder A. Beide Richtungen
der Konstruktion ergeben eine eindeutige Zuordnung von Transitionen in A und Literal-
vorkommen in c(A). Demnach ist die Größe von A linear in der von c(A) und umgekehrt.

Mit etwas Mehraufwand lässt sich markierte Expansion auf beliebige Ausdrücke, die
zunächst keinen FA mit SPS-Struktur kodieren, erweitern. In einem Ausdruck werden
dazu alle — ohnehin redundanten — Vorkommen von r∗∗, εr, rε und ε∗ entfernt. Bei
Schleifenexpansion einer xy-Kante werden abhängig von d+(x) und d−(y) zusätzlich ε-
Transitionen eingeführt. Die dabei auftretenden Fälle entsprechen den in [GF08] beschrie-
benen.
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3 Charakterisierung durch verbotene Minoren

Eine Unterteilung von F entsteht durch eine Folge serieller Expansionen aus F . F ist ein
Minor von G, wenn G eine Unterteilung von F als Teilgraphen enthält. Weiter ist F ein
freier Minor von G, wenn F Minor von G ist und je zwei innendisjunkten Pfaden zwischen
Knoten einer F -Unterteilung in G zwei verschiedene Kanten in F entsprechen.

In Erweiterung der Minorencharakterisierung seriell-paralleler Graphen [VTL81] lässt
sich SPS über die Mengen F = {C,CR,N,Q} und B = {Φ,Ψ,ΨR} vollständig charak-
terisieren (Abbn. 4, 5).

(a) C (b) CR (c) N (d) Q

Figure 4: Menge F verbotener Minoren

(a) Φ (b) Ψ (c) ΨR

Figure 5: Menge B verbotetener freier Minoren

Satz 3.1. G ∈ SPS genau dann wenn G ∈ T T und

1. kein F ∈ F ist Minor von G, und

2. kein B ∈ B ist freier Minor von G
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RaceTrack is a popular multi-player simulation pencil-paper game of car racing. The
origin of the game is not clear, but most people remember this game from high school,
where great effort and time was spent to become the RaceTrack champion, even at the
expense of the said champion’s school results. Variants of the game appeared all over the
world under various names like, e.g., Le Zip in France or Vektorrennen in Germany. Here
is the game description, literally taken from Gardner [2]:

The game is played on math-paper where a racetrack is drawn. Then the cars
are lined up at a grid position at the start line, and at each turn a player moves
his car along the track to a new grid position subject to the following rules:

1. The new grid point and the straight line segment joining it to the preced-
ing grid point must lie entirely within the track.

2. No two cars may simultaneously occupy the same grid point, i.e., no
collisions are allowed.

3. Acceleration and deceleration are simulated as follows: a car maintains
its speed in either direction or it can change its speed by only one distance
unit per move—see Figure 2 for illustration. The first move following this
rule is one unit horizontally or vertically, or both.

∗This is an extended abstract of: M. Holzer and P. McKenzie. The computational complexity of

RaceTrack. In P. Boldi and L. Gargano, editors, Proceedings of the 5th International Conference on

FUN with Algorithms, number 6099 in LNCS, pages 260–271, Ischia Island, Italy, June 2010. Springer.
†Part of the work was done while the author was at the Département d’I.R.O., Université de Montréal,

C.P. 6128, succ. Centre-Ville, Montréal (Québec), H3C3J7 Canada, and the Institut für Informatik, Tech-

nische Universität München, Boltzmannstraße 3, D-85748 Garching bei München, Germany.
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The first car to cross the finish line (point) wins. A car that collides with
another car or leaves the track is out of the race.

A sample game—taken from Gardner [2]—is depicted in Figure 1 and shows a race
of two cars. In his collection of Scientific American columns Gardner [3] described a
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Figure 1: A sample RaceTrack game of two cars—red wins against blue in 35 moves.

variety of modifications to the original RaceTrack game such as, e.g., fast acceleration
and power braking moves, allowing cars to occupy the same point at the same time, etc.
Even more complicated modifications like for instance patches representing oil slicks that
require cars to move at a constant speed and direction were suggested.

Here we investigate the complexity of RaceTrack when played as a 1-player or 2-
player game. Before describing our results, we note that the shape of the racetrack border
is a priori arbitrary. Thus, in some far-fetched settings, merely verifying whether a move
is valid, i.e., merely checking whether the new grid point and the straight line segment
joining it to the preceding grid point lies entirely within the track, could be undecidable.
To avoid such complications, we stick to a discrete version of the racetrack border, where
the track is drawn along grid lines—see Figure 2. This is a reasonable restriction, which
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does not change the practical appeal of the game.

current position

choices for new position

red
green
blue

Figure 2: (Left:) The arrow depicts the last move of the car—two squares east and three
squares south—on the racetrack (drawn in white); the gray shaded area is outside of the
racetrack. If the car maintains its speed it will follow the dashed line and go two squares
east and three squares south again, but it can also reach one extra square north, south,
east, or west of this point by changing speed. These extra points are marked by black
dots. (Middle:) One out of nine legal moves are shown. (Right:) Discrete version of the
RaceTrack game. Observe that certain movements of the car are not possible anymore
if the border is not allowed for driving.

Solitaire RaceTrack will refer to the problem of deciding whether a single player can
reach the finish line within an input-specified number of legal moves. By RaceTrack

reachability, we will mean the simpler problem of deciding whether the single player can
reach the finish line at all. First we reduce the touching variant of RaceTrack reach-
ability (i.e., with the track border considered part of the driving area) to the undirected
grid graph reachability problem (UGGR). More precisely we show the following result:

Theorem 1. RaceTrack reachability, where the track boundary can be used for driving,
is equivalent to UGGR under AC0 reducibility.

From [1] we deduce that this touching variant is NC1-hard and can be solved in deter-
ministic logarithmic space. By contrast, and to our initial surprise, we then show that the
non-touching reachability variant is NL-complete, hence that the complexity of the Race-

Track reachability problem crucially depends on whether the car is allowed to touch the
racetrack border or not.

Theorem 2. RaceTrack reachability, where the track boundary cannot be used for driv-
ing, is NL-complete. Moreover, solitaire RaceTrack is NL-complete, too, regardless of
whether the track boundary can be used for driving or not.

Finally, we turn to the 2-player game and prove that checking whether the first player
has a winning strategy is P-complete.

Theorem 3. Deciding if the first player has a winning strategy in the 2-player Race-

Track game, regardless of whether the track boundary can be used for driving or not, is
P-complete.
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In particular, the 2-player game is efficiently solvable (in polynomial time). Consider
the following “popular conjecture:”

Conjecture. All “fun and interesting” (2-player) games are NP-hard.

This “conjecture” attempts to capture when a “game” makes a game and it is wildly
accepted in the algorithmic game theory community: in order to be interesting, a game
purportedly needs enough complexity to be able to encode interesting (NP-hard) compu-
tational problems. And a game in P supposedly becomes boring because a player can
quickly learn “the trick” to perfect play. The 2-player RaceTrack game, being fun and
interesting to play, yet polynomial time solvable, is a rare example of a game that violates
the implication of this conjecture.
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It is well-known that, given some n-state nondeterministic finite automaton (NFA), one
can always construct an equivalent deterministic finite automaton (DFA) with at most 2n

states [15]. This so-called powerset construction turned out to be optimal, in the sense that
for an arbitrary n there is always some n-state NFA which cannot be simulated by any DFA
with less than 2n states [11]. On the other hand, there are cases where nondeterminism
does not help for the succinct representation of a language compared to DFAs. A decade
ago a very fundamental question on the well known subset construction was raised in [4]:
Does there always exist a minimal n-state NFA whose equivalent minimal DFA has α

states, for all n and α with n ≤ α ≤ 2n? A number α not satisfying this condition is
called a magic number for n. The answer to this simple question turned out not to be
so easy. For NFAs over a two-letter alphabet various non-magic numbers were identified
in [2, 4, 5, 7, 8, 13], but the range from n to 2n is not totally classified yet. The problem
becomes easier if one allows more input letters. First it was shown that for exponentially
growing alphabets there are no magic numbers at all [7]. This result was improved to
constant alphabets of size four [6], and very recently to three-letter alphabets [10]. Magic
numbers for unary NFAs were recently studied in [3]. In the same paper also a brief
historical summary of the magic number problem can be found. Further results on the
magic number problem (in particular in relation to the operation problem on regular
languages) can be found, for example, in [8, 9].

To our knowledge the magic number problem was not systematically studied for sub-
regular languages families (except for unary languages). Several of these subfamilies are

∗This is an abstract and slightly extended version of: M. Holzer, S. Jakobi and M. Kutrib. The

Magic Number Problem for Sugreagular Language Families. In I. McQuillan and G. Pighizzini, editors,

Proceedings of the 12th Annual Workshop on Descriptional Complexity of Formal Systems, pp. 110–119,

Saskatoon, Canada, August 2010.
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well motivated by their representations as finite automata or regular expressions: finite
languages (are accepted by acyclic finite automata), star-free languages or regular non-
counting languages (which can be described by regular-like expressions using only union,
concatenation, and complement), star languages (which are expressed by the Kleene star of
a regular language), definite languages (can be realized by a register and a combinational
circuit), suffix-free languages (are accepted by non-returning automata, that is, automata
where the initial state does not have any in-transition), prefix-free languages (are accepted
by non-exiting automata, that is, automata where all out-transitions of every accepting
state go to a rejecting sink state), infix-free languages (are accepted by non-returning and
non-exiting automata, where these conditions are necessary, but not sufficient), prefix-
closed, suffix-closed and infix-closed languages (are accepted by automata where all states
are accepting, initial and both accepting and initial, respectively).

We study all mentioned families with respect to the magic number problem, and show—
except for finite languages, where only some partial results will be presented—that there
are only trivial magic numbers, whenever they exist. That is, given n and α, we construct
a minimal n-state NFA whose equivalent minimal DFA has α states. The basis for most of
our constructions is an automaton from [6] by Jirásek, Jirásková, and Szabari that solves
the general magic number problem using a four letter alphabet. In the following their
automaton will be refered to as the JJS-automaton. We adapt this construction to show
that in the aforementioned language families, up to their specific upper bounds for the
NFA to DFA conversion [1], there are no magic numbers.

An observation from [1] shows that the magic number problem for elementary and
combinational languages is trivial, since automata accepting such (non-trivial) lanugages
always need two or three states. For star-free languages we obtain the following result:

Theorem 1. For all integers n and α such that n ≤ α ≤ 2n, there exists an n-state
nondeterministic finite automaton accepting a star-free language whose equivalent minimal
deterministic finite automaton has exactly α states.

This is shown by proving the deterministic JJS-automaton to be permutation-free,
which is a characterization of star-free languages given in [14]. By some minor modifica-
tions for the JJS-automaton, we show that also for star languages, all numbers from n

to 2n are non-magic, which generalizes to (two-sided) comets, since these contain the star
languages.

For some variants of definite language families, we show that from n up to the language
families’ specific upper bounds for the NFA to DFA conversion, there are no magic numbers.
Numbers above the bounds are trivially magic. According to [1], these bounds are 2n−1 for
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ultimate definite languages, 2n−1+1 for reverse ultimate definite languages and 2n−2+1 for
central definite languages. Furthermore, for symmetric definite languages, which contain
all previous three language families, we prove a tight upper bound of 2n−1 + 1 states for
the NFA to DFA conversion, which can be improved to 2n−1 when considering symmetric
definite but not reverse ultimate definite languages. This solves an open problem from [1].

For subword-specific languages, there are also only trivial magic numbers which are
either n or greater than the language families’ upper bounds for the NFA to DFA con-
version. In detail, the numbers from n + 1 to 2n−1 + 1 are non-magic for prefix-free and
suffix-free languages, while for infix-free languages the upper bound is 2n−2 + 2. If n > 1,
then n is a magic number for prefix-closed and infix-closed languages, and for the latter
and for suffix-closed languages, the numbers from 2n−1+2 to 2n are magic due to the upper
bounds for the NFA to DFA conversion in these language families. All this is proven by
suitable modifications of the JJS-automaton.

The magic number problem for finite languages is more challenging. First notice that
n is magic for every nonempty finite language, since any DFA needs a sink state to accept
a finite language and the NFA does not. Further we get the following results:

Theorem 2. For all integers n and α such that n + 1 ≤ α ≤ (n
2 )2 + n

2 + 1 if n is even,
and n + 1 ≤ α ≤ (n−1

2 )2 + n + 1 if n is odd, there exists an n-state nondeterministic finite
automaton accepting a finite language over a binary alphabet whose equivalent minimal
deterministic finite automaton has exactly α states.

And finally by adapting results from [12] we obtain the following:

Theorem 3. For all integers n and α such that α = 3 · 2(n/2)−1 + β if n is even and
α = 2(n+1)/2 + β if n is odd, with β = 2i − 1 for some integer 1 ≤ i ≤ �n−1

2 �, there exists
an n-state nondeterministic finite automaton accepting a finite language over a binary
alphabet whose equivalent minimal deterministic finite automaton has exactly α states.

References

[1] H. Bordihn, M. Holzer & M. Kutrib (2009): Determinization of Finite Automata
Accepting Subregular Languages. Theoret. Comput. Sci. 410, pp. 3209–3222.

[2] V. Geffert (2005): (Non)determinism and the size of one-way finite automata. In:
Descriptional Complexity of Formal Systems (DCFS 2005), Universita degli Studi di
Milano, pp. 23–37.

83



The Magic Number Problem for Subregular Language Families

[3] V. Geffert (2007): Magic numbers in the state hierarchy of finite automata. Inform.

Comput. 205, pp. 1652–1670.

[4] K. Iwama, Y. Kambayashi & K. Takaki (2000): Tight bounds on the number of states
of DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237, pp. 485–494.

[5] K. Iwama, A. Matsuura & M. Paterson (2003): A family of NFAs which need 2n −α

deterministic states. Theoret. Comput. Sci. 301, pp. 451–462.
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Abstract

We associate a transduction (that is, a binary relation) with the characteristic language
of a restarting automaton, and we prove that in this way monotone deterministic
restarting automata yield a characterization of pushdown transductions. Then we
study the class of transductions that are computed by parallel communicating systems
(PC-systems) of monotone deterministic restarting automata. We will see that this
class includes all transductions that are computable.

1 Introduction

Automata with a restart operation were introduced originally to describe a method of
grammar-checking for the Czech language (see, e.g., [5]). These automata started the
investigation of restarting automata as a suitable tool for modeling the so-called analysis
by reduction, which is a technique that is often used (implicitly) for developing formal
descriptions of natural languages based on the notion of dependency [6, 12]. In particular,
the Functional Generative Description (FGD) for the Czech language (see, e.g., [7]) is
based on this method.

FGD is a dependency based system, which translates given sentences into their under-
lying tectogrammatical representations, which are (at least in principle) disambiguated.
Thus, the real goal of performing analysis by reduction on (the enriched form of) an input
sentence is not simply to accept or reject this sentence, but to extract information from
that sentence and to translate it into another form (be it in another natural language or
a formal representation). Therefore, we are interested in transductions (that is, binary
relations) and in ways to compute them by certain types of restarting automata.

∗This work is a summary of a paper presented at CIAA 2010.
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Here we study two different approaches. First we associate a binary relation with the
characteristic language of a restarting automaton, motivated by the way in which the
so-called proper language of a restarting automaton is defined. In this way we obtain a
characterization for the class of pushdown transductions in terms of monotone determinis-
tic restarting automata. Then we introduce parallel communicating systems (PC-systems,
for short) that consist of two monotone deterministic restarting automata, using them to
compute transductions. In this way we obtain a characterization for the class of all com-
putable transductions. In addition we consider the input-output transductions computed
by these two types of restarting automata.

2 Transductions Computed by Restarting Automata

A large variety of types of restarting automata has been developed over the years. Here we
are only interested in the deterministic RRWW-automaton. Such an automaton consists
of a finite-state control, a single flexible tape with end markers, and a read/write window
of fixed size. Formally, it is described by an 8-tuple M = (Q,Σ,Γ, c, $, q0, k, δ), where Q is
a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet containing Σ,
the symbols c, $ �∈ Γ are used as markers for the left and right border of the work space,
respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size of the read/write window, and δ

is the transition function.
Without looking at details (an overview can be found in [10]) different languages can

be associated with these types of automata: LC(M) denotes the characteristic language
of M (roughly speaking: the language of words over Γ), while the set L(M) = LC(M)∩Σ∗

of all input sentences accepted by M is the input language recognized by M . Further,
LP(M) = PrΣ(LC(M))1 is the proper language of M .

We study transductions that are computed by RRWW-automata. Let M = (Q,Σ,Γ, c,
$, q0, k, δ) be an RRWW-automaton with tape alphabet Γ, which contains the input alpha-
bet Σ and the output alphabet ∆. Here we assume that Σ and ∆ are disjoint. With M we
associate two transductions, where sh(u, v) denotes the shuffle of the words u and v:

Rio(M) = { (u, v) ∈ Σ∗ ×∆∗ | LC(M) ∩ sh(u, v) �= ∅ },
RP(M) = { (u, v) ∈ Σ∗ ×∆∗ | ∃w ∈ LC(M) : u = PrΣ(w) ∧ v = Pr∆(w) }.

Here Rio(M) is the input-output transduction of M , and RP(M) is the proper transduction
of M . ByRelio(RRWW) (RelP(RRWW)) we denote the class of input-output transductions
(proper transductions) of RRWW-automata.

1If Σ is a subalphabet of an alphabet Γ, then by PrΣ we denote the projection from Γ∗ onto Σ∗. For a

language L ⊆ Γ∗, PrΣ(L) = {PrΣ(w) | w ∈ L }.
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3 Transformations Computed by PC-Systems of

Monotone Deterministic RRWW-Automata

Instead of computing a transduction R by a single restarting automaton, we propose to
compute it by a pair of restarting automata that have the ability to communicate with each
other. To formalize this idea, we introduce the so-called parallel communicating system of
restarting automata (or PC-RRWW-system, for short). A PC-RRWW-system consists of a
pair M = (M1,M2) of RRWW-automata Mi = (Qi,Σi,Γi, c, $, q(i)

0 , k, δi), i = 1, 2. Here
it is required that, for each i ∈ {1, 2}, the set of states Qi of Mi contains finite subsets
Qreq

i of request states of the form (q, req), Qres
i of response states of the form (q, res(l)),

Qrec
i of receive states of the form (q, rec(l)), and Qack

i of acknowledge states of the form
(q, ack(l)). Further, in addition to the move-right, rewrite and restart steps, M1 and M2

have so-called communication steps.

Different types of transductions are associated with PC-RRWW-systems similar to the
definitions used for restarting automata. Here RC(M) is the characteristic transduction
ofM, Rio(M) = RC(M)∩(Σ∗

1×Σ∗
2) is the input-output transduction ofM, and RP(M) =

{ (PrΣ1(w1),PrΣ2(w2)) | (w1, w2) ∈ RC(M) } is the proper transduction of M.

4 Results

The definitions above lead to the results shown in the figure below, where arrows denote
proper inclusions.

Pushdown Transductions Computable Transductions

RelP(det-mon-RRWW) �� RelP(det-mon-PC-RRWW)

Relio(det-mon-RRWW)

��

Relio(det-mon-PC-RRWW)

��

RatRel

�������������

�������������

Fig. 1. Taxonomy of classes of transductions computed by various types

of monotone deterministic restarting automata. Here RatRel denotes

the class of rational transductions.
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Introduction. We recapitulate inference from membership and equivalence queries, pos-
itive and negative samples. Regular languages cannot be learned from one of those infor-
mation sources only [12, 3, 4]. Combinations of two sources allowing regular (polynomial)
inference are MQs and EQs [2], MQs and positive data [1, 6], positive and negative data
[16, 8]. We sketch a meta-algorithm fully presented in [14] that generalizes over as many
combinations of those sources as possible. This includes a survey of pairings for which
there are no well-studied algorithms.

Definition 1. T = 〈S,E, obs〉 (S,E ⊆ Σ∗) is an observation table if S is prefix-closed
and obs(s, e) = 1 if se ∈ L, 0 if se /∈ L, ∗ if unknown. Let row(s) := {(e, obs(s, e))|e ∈ E}.
S is partitioned into red and blue. We call r, s ∈ S obviously different (OD; r <> s)
iff ∃e ∈ E with obs(r, e) �= obs(s, e) and obs(r, e), obs(s, e) ∈ {0, 1}. T is closed iff ¬∃s ∈
blue : ∀r ∈ red : r <> s.

Let r ≡L s iff re ∈ L⇔ se ∈ L for all r, s, e ∈ Σ∗. Let IL := |{[s0]L|s0 ∈ Σ∗}|. Due to
the Myhill-Nerode theorem there is a unique total state-minimal DFA AL with IL states,
each recognizing an equivalence class.
From a closed and consistent (see [2]) table T = 〈S,E, obs〉 with ε ∈ E we derive a DFA
AT = 〈Σ, QT , qT , FT , δT 〉 with QT = row(red), qT = row(ε), FT = {row(s)|s ∈ red,
obs(s, ε) = 1}, and δT = {(row(s), a) �→ q|¬(q <> row(sa)), s ∈ red, a ∈ Σ, sa ∈ S}.
AT has at most IL states (see [2]).

Definition 2. A finite X ⊆ L is representative for L with min. DFA A = 〈Σ, Q, q0, F, δ〉
iff [∀(q1, a) �→ q2 ∈ δ : a ∈ Σ ⇒ ∃w ∈ X : ∃u, v ∈ Σ∗ : w = uav ∧ (q0, u) �→ q1 ∈
δ] ∧ [∀q ∈ F : ∃w ∈ X : (q0, w) �→ q ∈ δ]. A finite X ⊆ Σ∗ \ L is separative iff
∀q1 �= q2 ∈ Q : ∃w ∈ X : ∃u, v ∈ Σ∗ : w = uv ∧ [δ(qL, u) = q1 ∨ δ(qL, u) = q2] ∧ ∃(q1, v) �→
qa, (q2, v) �→ qb ∈ δ : [(qa ∈ F ∧ qb ∈ (Q \ F )) ∨ (qb ∈ F ∧ qa ∈ (Q \ F ))].

All learning algorithms we consider can be seen to start out with a provisional set of classes
and converge to the partition by ≡L by splitting or merging them according to obtained
information. In a table S contains strings whose rows are candidates for states in the
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minimal DFA, and E experiments (‘contexts’) proving that two strings belong to distinct
classes and represent different states.

Algorithm GENMODEL. The input is a tuple IP = 〈EQ ,MQ ,X+,X−〉 with Boolean
values stating if EQs or MQs can be asked, a positive, and a negative finite sample of
L. After initializing T we enter a loop checking if T is closed and, if it is, if we can still
find states that should be split up, until there is no more information to process. The
algorithm is composed of the following procedures:
INIT initializes the oracle (MQORACLE returns a blackbox for L if MQ = 1 and other-
wise the prefix automaton for X+ as an imperfect oracle improved during the process) and
T . The set red contains candidates that were fixed to represent a state in the output, and
is initialized by ε (start state), and blue contains candidates representing states to which
there is a transition from one of the states in red. white is the set of remaining candidates
from which blue is filled up. The set of (initial) candidates is given by POOL: If X+ �= ∅
POOL returns Pref (X+), otherwise all strings up to length 2. If X− �= ∅∧MQ = 1 POOL
builds X+ from X−: Let n− := |Suff (X−)|. In a worst case, every suffix in a separative
X− distinguishes a different of the (I2

L − IL)/2 pairs of states. From n− ≤ (I2
L − IL)/2

we compute an upper bound for IL and take all strings up to that length as X+ as the
longest shortest representative of a state in AL is at most of length IL. Note that |X+|
can be exponential with respect to |X−|.
We also have UPDATE which clears the elements that were moved to blue out of white

and fills in the cells of T if we have a perfect membership oracle which for MQ = 1 is true
at any time and for MQ = 0 when we have processed all available information, provided
that it was sufficient. For the cases with empty samples but MQ = 1 we fill up white

with all one-symbol extensions of blue.
CLOSURE is straightforward, it successively finds all elements preventing the closedness
of T , moves them to red, and calls UPDATE to fill the table.
NEXTDIST calls FINDNEXT to look for a candidate to be fixed as another state of
the output. Then T is modified by MAKEOD such that CLOSURE will move this string
to red. If no such candidate is found FINDNEXT returns 〈ε, ε〉 (this can be seen as a
test for the termination criterion). In that case white is emptied if we use queries only,
for all other cases the remaining candidates are moved to blue in order not to lose the
information contained in the pool.
If MQ = 1 FINDNEXT exploits a counterexample. EQ = 1 : c is given by the oracle.
Else if X+ �= ∅ the learner tries to build c from Text = 〈S ∪ white, E ∪ Suff (X+), obs〉.
This succeeds if X+ is representative (see [14]). At least one prefix of c must be a distinct
state of the output, but as it may not be in blue MINIMIZE is called to replace the blue
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prefix of c until it finds s′e′ with s′ ∈ blue and e′ distinguishes s′ from all red elements:
FINDNEXT returns 〈s′e′〉. If MQ = 0 we continue merging states unless there is infor-
mation preventing it. After the call of MERGENEXT either all blue strings correspond
to states resulting from a merge or there is s which is a non-mergeable state. FINDNEXT
returns 〈s, ε〉 as s should be a distinct state of the solution. In cases not covered by these
distinctions we cannot reliably find another candidate to move and return 〈ε, ε〉.
MAKEOD is called if FINDNEXT returns 〈s, e〉 with s �= ε, i.e., s is to be moved to
red by CLOSURE. If MQ = 1 there is a single r ∈ red not OD from s (red elements
are pairwise OD, and rows of S are complete), and e separates s from r, so add e to E.
If MQ = 0 row (s) consists of ‘∗’s – we have to make s OD from all r ∈ red “by hand”:
Find c ∈ X− preventing the merge of qr and qs via PREVENTMERGE and a suffix er of
c leading from qr or qs to a final state (X− �= ∅ as FINDNEXT returns 〈ε, ε〉 for MQ = 0
otherwise). As c should not be accepted er separates s from r. Add er to E and fill the
two cells of T with differing values – note that they do not have to be correct as they are
used only once by CLOSURE, and T will be updated completely just before termination.

GENMODEL is intended as a generalization of algorithms for settings where polyno-
mial one-shot inference is possible, which also implies that it is deterministic and does not
guess/backtrack. However, note that it behaves in an “intuitively appropriate” way when
(polynomial) inference is not possible as well.

An information source is non-void for queries if MQ = 1/EQ = 1 , for a positive
sample if it is representative, for a negative sample if it is separative.

Theorem 1. (a) Let L be the regular target. GENMODEL terminates for any input after
at most 2IL − 1 main loop executions and returns a DFA.
(b) For any input that includes at least two non-void information sources except for
〈1, 0,X+,X−〉 with X+ or X− void the output is a minimal DFA for L.

See [14] for the proof. Note that Theorem 1b can also be seen from the proofs of the
algorithms in [2, 6, 8]. We comment on the following three cases because to our knowledge
there are no such well-studied algorithms for these settings.

〈0, 1, ∅,X−〉: As 〈0, 1,X+, ∅〉. We build a positive sample from X− (see above) which
however may be exponential in size with respect to |X−| so that the number of MQs is
not polynomial with respect to the size of the given data.

〈1, 0,X+, ∅〉: Suppose we wanted to handle this case analogously: We would have to test
state mergeability in O via EQs. For X+ representative a positive counterexample reveals
the existence of states that should be merged, a negative one of states that should not
have been. When we query the result of a merge (even without repairing non-determinism
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by further merges) and get a positive counterexample we could either repeat the EQ and
wait for a negative one but the number of positive ones may be infinite. Or we could query
the next merge but when (if) we eventually get a negative one we do not know which of
the previous merges was illegitimate. So this strategy is no less complex than ignoring all
counterexamples and asking an EQ for the result of every possible set of merges, of which
there are exponentially many. Therefore, since we cannot proceed as in the cases where
inference is possible with a polynomial number of steps or queries this case is eclipsed from
GENMODEL by the corresponding case distinctions.

〈1, 0, ∅,X−〉: If X− is separative negative counterexamples do not carry new informa-
tion, and the number of negative counterexamples may be infinite. The set of positive
counterexamples so far may not be representative so that we cannot reliably detect an
illegitimate merge as there may be final states that are not even represented in the current
O such that a compatibility check is too weak. If we make the merge we might have to
undo it because of another positive counterexample, a situation we want to avoid. Hence
we eclipse this case as well.

Note: For input with more than two non-empty sources the algorithm chooses one
of the two-source options according to the priority hierarchy MQs&EQs > MQ&X+ >

X+&X−.

Conclusion. We have aimed to design GENMODEL as modular as possible as an inven-
tory of the essential procedures in existing and conceivable polynomial one-shot regular
inference algorithms of the considered kind. This may help to give clearer explanations
for the interchangeability of information sources. Practically, an extended GENMODEL
(see below) could be used as a template from which individual algorithms for hitherto
unstudied scenarios can be instantiated. We have chosen observation tables as an abstract
and flexible means to perform and document the process, from which various descriptions
can be derived.

GENMODEL offers itself to be extended in several directions. We could try to gener-
alize over the type of objects, such as trees (see [9, 6, 15, 13]), graphs, matrices, or infinite
strings. Then there are other kinds of information sources which might be integratable,
such as correction queries [18], active exploration [17], or distinguishing functions [11].
The third direction concerns an extension of the learned language class beyond regularity
(for example by using strategies as in [10] for even linear languages, or [5] for languages rec-
ognized by DFA with infinite transition graphs) and even beyond context-freeness [10, 19].
The development of GENMODEL may be of use in the concretization of an even more
general model of learning in the sense of polynomial one-shot inference as considered here
– also see the very interesting current work of Clark [7].
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Abstract

We investigate synchronous systems consisting of two finite automata running in
opposite directions on a shared read-only input. The automata communicate by send-
ing messages. The communication is quantitatively measured by the number of mes-
sages sent during a computation. It is shown that even the weakest non-trivial devices
in question, that is, systems that are allowed to communicate constantly often only,
accept non-context-free languages. We investigate the computational capacity of the
devices in question and prove a strict four-level hierarchy depending on the number of
messages sent. The strictness of the hierarchy is shown by means of Kolmogorov com-
plexity. For systems with unlimited communication several properties are known to be
undecidable. A question is to what extent communication has to be reduced in order
to regain decidability. Here, we derive that the problems remain non-semidecidable
even if the communication is reduced to a limit close to the logarithm of the length
of the input. Furthermore, we show that the border between decidability and unde-
cidability is crossed when the communication is reduced to be constant. In this case
only semilinear languages can be accepted.

Introduction

Watson-Crick automata were introduced in [3] as a formal model for DNA computing.
Their definition has been inspired by processes observed in nature and laboratories. The

∗Summary of a paper presented at CIAA 2010, Winnipeg, Canada.
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idea is to have an automaton with two reading heads running on either strand of a double
stranded DNA-molecule. Since in nature enzymes that actually move along DNA strands
may obey the biochemical direction of the single strands of the DNA sequence, so-called
5′ → 3′ Watson-Crick automata have been introduced in [9] after an idea presented in [10].
Basically, these systems are two-head finite automata where the heads start at opposite
ends of a strand and move in opposite physical directions. If the complementarity relation
of the double stranded sequence is known to be one-to-one, no additional information is
encoded in the second strand. Then 5′ → 3′ Watson-Crick automata share a common
input sequence.

Whenever several heads of a device are controlled by a common finite-state control,
one may suppose that the heads are synchronous and autonomous finite automata that
communicate their states in every time step. Here we add a new feature to 5′ → 3′

Watson-Crick automata. It seems to be unlikely that in reality enzymes moving along and
acting on DNA molecules communicate in every time step. So, we consider 5′ → 3′ Watson-
Crick systems where the components may but don’t need to communicate by broadcasting
messages. We are interested in the impact of communication in such devices, where the
communication is quantitatively measured by the total number of messages sent during a
computation. The role of message complexity in conventional one-way and two-way multi-
head finite automata has been studied in [4, 5], where deep results have been obtained.
According to the notations given there and in order to differentiate the notation from
‘conventional’ 5′ → 3′ Watson-Crick automata we call the devices in question two-party
Watson-Crick systems. Recently, deterministic Watson-Crick automata have been studied
from a descriptional complexity point of view in [2].

The idea of another related approach is based on so-called parallel communicating fi-
nite automata systems which were introduced in [7]. In this model, the input is read and
processed in parallel by several one-way (left-to-right) finite automata. The communica-
tion is defined in such a way that an automaton can request the current state from another
automaton, and is set to that state after receiving it whereby its former state is lost. One
can distinguish whether each automaton which sends its current state is reset to its initial
state or not. The degree of communication in such devices was studied in [8]. Without
considering the message complexity, the concept of one-way parallel communicating finite
automata systems was investigated for conventional Watson-Crick automata in [1].

Definitions

We denote the set of nonnegative integers by N. We write Σ∗ for the set of all words over
the finite alphabet Σ. The empty word is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal
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of a word w is denoted by wR and for the length of w we write |w|. We use ⊆ for inclusions
and ⊂ for strict inclusions.

A two-party Watson-Crick system is a device of two finite automata working inde-
pendently and in opposite directions on a common read-only input data. The automata
communicate by broadcasting messages. The transition function of a single automaton
depends on its current state, the currently scanned input symbol, and the message cur-
rently received from the other automaton. Both automata work synchronously and the
messages are delivered instantly. Whenever the transition function of (at least) one of the
single automata is undefined the whole systems halts. The input is accepted if at least
one of the automata is in an accepting state. A formal definition is as follows.

Definition 1. A deterministic two-party Watson-Crick system (DPWK) is a construct
A = 〈Σ,M,�,�, A1, A2, 〉, where Σ is the finite set of input symbols, M is the set of
possible messages, � /∈ Σ and � /∈ Σ are the left and right endmarkers, and each Ai =
〈Qi,Σ, δi, µi, q0,i, Fi〉, i ∈ {1, 2}, is basically a deterministic finite automaton with state
set Qi, initial state q0,i ∈ Qi, and set of accepting states Fi ⊆ Qi. Additionally, each Ai

has a broadcast function µi : Qi× (Σ∪{�,�})→M ∪{⊥} which determines the message
to be sent, where ⊥ /∈ M means nothing to send, and a (partial) transition function
δi : Qi × (Σ ∪ {�,�}) × (M ∪ {⊥}) → Qi × {0, 1}, where 1 means to move the head one
square and 0 means to keep the head on the current square.

The automata A1 and A2 are called components of the system A, where the so-called
upper component A1 starts at the left end of the input and moves from left to right, and
the lower component A2 starts at the right end of the input and moves from right to
left. A configuration of A is represented by a string �v1

−→p xv2y q←−v3�, where v1xv2yv3 is
the input and it is understood that component A1 is in state p with its head scanning
symbol x, and component A2 is in state q with its head scanning symbol y. System A
starts with component A1 in its initial state scanning the left endmarker and component
A2 in its initial state scanning the right endmarker. So, for input w ∈ Σ∗, the initial
configuration is−→q0,1�w�q0,2←−

. A computation of A is a sequence of configurations beginning
with an initial configuration. One step from a configuration to its successor configuration
is denoted by �. Let w = a1a2 · · · an be the input, a0 = �, and an+1 = �, then we
set a0 · · · ai−1

−→p ai · · · aj q←−aj+1 · · · an+1 � a0 · · · ai′−1
−→p1ai′ · · · aj′ q1←−aj′+1 · · · an+1, for 0 ≤ i ≤

j ≤ n + 1, and
a0 · · · aj q←−aj+1 · · · ai−1

−→p ai · · · an+1 � a0 · · · aj′ q←−aj′+1 · · · ai′−1
−→p ai′ · · · an+1,

for 0 ≤ j ≤ i ≤ n + 1, iff δ1(p, ai, µ(q, aj)) = (p1, d1) and δ2(q, aj , µ(p, ai)) = (q1, d2),

i′ = i + d1 and j′ = j − d2. As usual we define the reflexive, transitive closure of � by �∗.
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A computation halts when the successor configuration is not defined for the current
configuration. This may happen when the transition function of one component is not
defined. The language L(A) accepted by a DPWK A is the set of inputs w ∈ Σ∗ such
that there is some computation beginning with the initial configuration for w and halting
with at least one component being in an accepting state.

In the following, we study the impact of communication in deterministic two-party
Watson-Crick systems. The communication is measured by the total number of messages
sent during a computation, where it is understood that ⊥ means no message and, thus, is
not counted.

Let f : N → N be a mapping. If all w ∈ L(A) are accepted with computations where
the total number of messages sent is bounded by f(|w|), thenA is said to be communication
bounded by f . We denote the class of DPWKs that are communication bounded by f by
DPWK(f).

In general, the family of languages accepted by devices of type X is denoted by L (X).

Lemma 2. The language { anbncn | n ≥ 1 } belongs to L (DPWK(2)).

Computational Capacity

First we note that any DPWK can be simulated by a two-way two-head finite automaton
in a straightforward manner. Therefore, the family L (DPWK) is a proper subclass of
the complexity class L. From Lemma 2 we can immediately derive the construction of
a DPWK(1) that accepts the non-regular language { anbn | n ≥ 1 }. Together with
the obvious inclusion of the regular languages in L (DPWK(1)) we obtain that just one
communication suffices to accept all regular languages and, additionally, also some non-
regular languages, whereas two communications allow to accept non-context-free languages.
However, the witness languages are semilinear. In [6] it has been shown that DPWKs that
communicate in every time step accept non-semilinear languages. So, the question arises
how much communication is necessary to accept a non-semilinear language.

Lemma 3.

1. Language Lexpo = { a20
ba22

b · · · ba22m
ca22m+1

b · · · ba23
ba21 | m ≥ 1 } belongs to

L (DPWK(O(log(n)))).

2. Language Lpoly = { aba5ba9b · · · ba4m+1ca4m+3b · · · ba11ba7ba3 | m ≥ 0 } belongs to
L (DPWK(O(

√
n))).

3. Language {wcwR | w ∈ {0, 1}∗ } belongs to L (DPWK(O(n))).
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By definition we have a finite hierarchy of language classes as follows. Furthermore,
the inclusions can be shown to be strict by using arguments from Kolmogorov complexity.

L (DPWK(O(1))) ⊂ L (DPWK(O(log(n)))) ⊂
L (DPWK(O(

√
n))) ⊂ L (DPWK(O(n)))

Decidability Problems

Theorem 4. The problems of testing emptiness, finiteness, infiniteness, inclusion,
equivalence, regularity, and context-freeness are not semidecidable for DPWK(log(n) ·
log log(n)).

Theorem 5. For all k ≥ 0 there are constants r and s such that any DPWK(k) can
effectively be simulated by a deterministic two-way 4-counter machine which performs in
every accepting computation at most r reversals of the input head and at most s turns in
each counter.

Theorem 6. Let k ≥ 0 be a constant. Then the problems of testing emptiness, finiteness,
inclusion, and equivalence are decidable for DPWK(k).
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1 Introduction

Context-free languages (CFL) are an important formalism for the specification of the syn-
tax of programming or natural languages. However, the class of context-free languages
lacks some important closure properties, namely determinisability and closure under com-
plement and intersection. The class of deterministic context-free languages (DCFL) triv-
ially admits determinisability and is therefore closed under the complement operation but
still not under intersections.

Recently, a subclass of CFL and in fact also DCFL has been introduced which does
possess all of these three properties and which is therefore particularly useful in the spec-
ification of runs of recursive programs: visibly pushdown languages (VPL) [1]. These are
recognised by visibly pushdown automata (VPA) which are nondeterministic pushdown
automata (PDA) in which the input letter determines the type of stack action that the
automaton carries out when reading this letter.

VPA have very quickly become on interesting object of study because of their nice
algorithmic properties. For instance, they can be used in Propositional Dynamic Logic [4]
instead of regular expression whilst retaining decidability [8] which is not true for DCFL
for instance [5].

Disclaimer. This extended abstract describes work in progress which is partially done
together with Friedrich Otto, University of Kassel, and Markus Latte, University of Mu-
nich.
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2 Visibly Pushdown Automata and Languages

A visibly pushdown alphabet is an alphabet Σ in the usual sense, which is then partitioned
into three parts (Σpush,Σint,Σpop). These are the letters which, respectively, force a VPA
to push a stack symbol, leave the stack untouched, and pop a stack symbol. The size of
the alphabet Σ is a triple (|Σpush|, |Σint|, |Σpop|). When comparing alphabet sizes we use
the pointwise order.

A VPA is a tuple A = (Q,Σ,Γ, q0, δ, F ) where Q is a finite set of states, Σ as above, Γ
is a finite stack alphabet containing the special bottom-of-stack symbol ⊥, q0 ∈ Q is the
designated initial state, and F ⊆ Q is a set of final states. The transition relation δ is
partitioned into three parts δ = δpush ∪ δint ∪ δpop where

δpush ⊆ Q× Σpush ×Q× (Γ \ {⊥})
δint ⊆ Q× Σint ×Q

δpop ⊆ Q× Σpush × Γ×Q

A configuration is a (q, γ, w) ∈ Q× Γ∗ ×Σ∗. The computational behaviour of the VPA A
is explained by a relation � on configurations. It is defined as follows. Let q ∈ Q, γ ∈ Γ∗,
a ∈ Σ, w ∈ Σ∗, B ∈ Γ with B �= ⊥.

(q, γ, aw) � (q′, Bγ,w) if (q, a, q′, B) ∈ δpush

(q, γ, aw) � (q′, γ, w) if (q, a, q′) ∈ δint

(q,Bγ, aw) � (q′, γ, w) if (q, a,B, q′) ∈ δpop

(q,⊥, aw) � (q′,⊥, w) if (q, a,⊥, q′) ∈ δpop

As usual, let �∗ be the reflexive-transitive closure of �. Also, we write �n to denote the
n-fold iteration of this relation. The language accepted by A is then

L(A) := {w ∈ Σ∗ | ∃q ∈ F. ∃γ ∈ Γ∗. (q0,⊥, w) �∗ (q, γ, ε)}

It is very easy to see that the language {anbn | n ∈ N} for instance is a VPL over
the visibly pushdown alphabet ({a}, ∅, {b}). Equally, every Dyck language is a VPL over
a suitable partitioning of the alphabet. On the other hand, {anban | n ∈ N} is not a
VPL over any alphabet since a PDA would ultimately have to perform push actions when
reading the first a’s, and pop actions when reading the latter a’s.

Finally, consider the alphabet ({a}, {b}, {c}) and the language L0 over this alphabet,
given by the following context-free grammar.

S → ε | bS | aScS
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Again, it is not difficult to see that this is a VPL.

3 The Emptiness Problem

Since every VPA is also a PDA, upper bounds on decision problems for PDA trivially
carry over to VPA. For instance, the emptiness problem or the membership problem are
solvable in deterministic polynomial time [7]. In case of CFL, this is also known to be
optimal: the emptiness problem for CFL is P-hard. This result seems to be folklore and is
indeed easy to prove by a reduction from the alternating graph reachability problem which
is an abstracted version of the word problem for alternating, logarithmic space bounded
Turing Machines. This is one of the standard P-hard decision problems [2].

A natural question to ask is whether or not the emptiness problem for VPA is P-hard
already. The answer is “yes”. It is possible to reduce the alternating graph reachability
problem to the emptiness problem for VPA (instead of PDA).

Proposition 1. The emptiness problem for VPL is P-complete.

The lower bound already holds for visibly pushdown alphabets of size (1, 0, 1) [6].

4 The Universal Word Problem

Another interesting problem is the (universal) word problem: given a VPA A and a word w

over the same visibly pushdown alphabet, is w ∈ L(A)? For PDA this is simply a generali-
sation of the emptiness problem. Context-free languages are closed under homomorphisms
with logspace reductions, therefore this problem reduces to the question whether or not
the empty word ε belongs to a given context-free language. However, if the description
of the CFL does not use any alphabet symbols then this is the same as the emptiness
problem.

Visibly pushdown languages are not closed under homomorphisms though, and there-
fore the universal word problem requires an explicit study. It is unlikely to be P-hard
because it can be shown to belong to LOGCFL.

Proposition 2 (Otto). The universal word problem for VPL is in LOGCFL.

Proof. It is known that a language belongs to LOGCFL iff it can be recognised by a nonde-
terministic auxiliary pushdown automaton using a logarithmic worktape and polynomial
time [10]. Such a machine can easily decide the word problem for a given VPA A and
an input w. It simulates A on w using the worktape in order to memorise the current
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position in the word and the current state of the VPA A, and its stack in order to sim-
ulate A’s stack. Nondeterminism is used to follow the nondeterministic choices made by
A. Polynomial runtime is guaranteed by the fact that A accepts w iff it accepts w after
exactly |w| many steps.

Note that – even though VPL can be recognised by deterministic VPA – this does not
necessarily yield inclusion of the universal word problem in LOGDCFL. The determini-
sation procedure for VPA incurs an exponential blow-up (for every NFA is also a VPA).
Thus, the universal word problem cannot necessarily be solved by a deterministic auxiliary
pushdown automaton using logarithmic space only.

On the other hand, the problem is clearly NLOGSPACE-hard which is inherited from
the word problem for nondeterministic finite automata. We will quickly give some intu-
itive evidence of why the problem is unlikely to be NLOGSPACE-complete or LOGCFL-
complete.

The problem is in NLOGSPACE for the subclass of VPA which use a singleton stack
alphabet. Since the stack cannot grow beyond the length of the word, a stack over a
singleton alphabet can be encoded binarily as a number of at most logarithmic length.
Then the word problem reduces to the reachability problem in a graph made up of the
product of the input word, the VPA’s state space, and a number encoding the stack height.
On the other hand, NLOGSPACE-completeness would entail that the word problem could
always logarithmically be reduced to the word problem for a VPA over a singleton stack
alphabet. This seems very unlikely, though.

Now for LOGCFL-hardness. There is another characterisation: a language belongs to
LOGCFL iff it can be recognised by an alternating Turing Machine with a logarithmic
worktape and polynomially sized computation trees [9]. This characterisation is indeed
very close to the proof of P-hardness of the emptiness problem. This is not surprising since
one characterises the complexity class P if the restriction on the size of the computation
trees is dropped [9]. The problem in proving LOGCFL-hardness using this characterisation
is then to construct deterministically a VPA and a word from such a given alternating
Turing Machine. It is natural and possible to construct the VPA such that it searches
for an accepting computation tree using its stack to back-track on branches in the tree.
However, the word to be recognised would have to encode the structure of the computation
tree, namely a depth-first traversal of the entire tree using push- and pop-symbols. But
note that all that is known about the tree is its overall size. Thus, it would be possible to
construct a word of polynomial length if the exact structure of the tree was known. Since
it is unknown, it seems like one can only construct a word of exponential length which
encodes an (exponential) overapproximation of this computation tree.
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A possibility to characterise the complexity more precisely is to introduce a new com-
plexity class for which the problem under consideration is trivially hard.

Definition 1. A language L ⊆ Σ∗ belongs to the class LOGVPL iff there is a logspace
computable function f : Σ∗ → ∆∗ and a VPA A over the visibly pushdown alphabet ∆ s.t.
for all w ∈ Σ∗ we have w ∈ L iff f(w) ∈ L(A).

This class clearly sits between the two classes mentioned above. Also, we can now use
determinisability of VPA and put this new class into the complexity hierarchy as follows.

Proposition 3. NLOGSPACE ⊆ LOGVPL ⊆ LOGDCFL ⊆ LOGCFL.

The third inclusion is trivial and of course well-known. The first inclusion follows from
the fact that the word problem for NFA is NLOGSPACE-hard under logspace reductions,
and every NFA is also a VPA. Thus, this inclusion is almost equally trivial. The second
inclusion is a consequence of the fact that the visibly or deterministic pushdown language
that some other language is reduced to in the definition of LOGVPL and LOGDCFL, is
existentially quantified. It need not be constructed by the reduction. Thus, if a language
can be reduced in logarithmic space to a VPL, then it can also be reduced in logarithmic
space to a DCFL. In other words: VPL ⊆ DCFL, therefore LOGVPL ⊆ LOGDCFL.

Furthermore, LOGVPL-hardness of the word problem for VPA is easy, too.

Proposition 4. The word problem for VPA is LOGVPL-hard.

Proof. Suppose L ∈ LOGVPL. By definition, there is a logspace computable f , and a
VPA A s.t. w ∈ L iff f(w) ∈ L(A). Now consider the function f ′ defined by f ′(w) =
〈f(w), enc(A)〉 for some suitable encoding function enc. Since the second component of
this pair is just a constant, f ′ is also logspace computable. But then f ′ realises a logspace
reduction to the word problem for VPA which is, hence, LOGVPL-hard.

The question of whether or not the word problem is complete for LOGVPL boils down
to finding – in some sense – a hardest visibly pushdown language in analogy to the ones
for CFL [3].

Another task is of course to find other complete problems or, equivalently, other char-
acterisations of this class.
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This paper reviews a series of works started with [2] (based on some ideas from [1]),
where, inspired by the DNA manipulation, a new formal operation on words, called hairpin
completion, was introduced. The initial work was followed by a series of related papers
([10, 11, 13, 14, 6, 12]), where the algorithmic properties of the hairpin completion, as well
as its inverse operation, the hairpin reduction, and two other variants of this operation
(bounded hairpin completion and hairpin lengthening) were further investigated.

Single-stranded DNA molecules (ssDNA) are composed by nucleotides which differ
from each other by their bases: A (adenine), G (guanine), C (cytosine), and T (thymine).
Therefore each ssDNA may be viewed as a finite string over the four-letter alphabet
{A,C,G, T}. Two single strands can bind to each other, forming the secondary structure
of DNA, if they are pairwise Watson-Crick complementary: A is complementary to T , and
C to G. The binding of two strands is also called annealing. Similarly, RNA molecules are
chains of nucleotides having the bases A, G, C and U (uracyl), with A complementary to
U , and C to G. An intramolecular base pairing, known as hairpin, is a pattern that can
occur in single-stranded DNA or RNA molecules. Hairpin or hairpin-free structures have
numerous applications to DNA-computing and molecular genetics. In many DNA-based
algorithms, these DNA molecules cannot be used in the subsequent computations. There-
fore, it is important to design methods for constructing sets of DNA sequences which are
unlikely to lead to such “bad” hybridizations. This problem was considered in a series of
papers, see e.g. [15, 4, 5, 8] and the references therein.

In [2] a new formal operation on words is introduced, namely the hairpin completion.
It consists of three biological principles. Besides the Watson-Crick complementarity and

∗This work was supported by the Alexander von Humboldt Foundation. The author is on leave from
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annealing, the third biological phenomenon is that of lengthening DNA by polymerases. In
our case the phenomenon produces a new molecule as follows: one starts with a hairpin -
which is, here, a single-stranded molecule, such that one of its ends (a prefix or, respectively,
a suffix) is annealed to another part of itself by Watson-Crick complementarity -, and a
polymerization buffer with many copies of the four basic nucleotides. Then, the initial
hairpin is prolongated by polymerases (thus adding a suffix or, respectively, a prefix),
until a complete hairpin structure is obtained (the beginning of the strand is annealed to
the end of the strand).

Further, two variants of the hairpin completion were considered, as they seem more
appropriate for practical implementation: hairpin lengthening and bounded hairpin com-
pletion. The first variant concerns the prolongation of a strand which forms a hairpin,
similarly to the process described above, but not necessarily until a complete hairpin
structure is obtained; the main motivation in introducing this operation is that, in prac-
tice, it may be a difficult task to control the completion of a hairpin structure, and it
seems easier to model only the case when such a structure is extended. The second vari-
ant, respectively the bounded hairpin completion, assumes that the length of the prefix
and suffix added by the hairpin completion is bounded by a constant.

As most of the unary operations on words, the hairpin completion/ lengthening oper-
ations can be extended canonically to operations on languages, and, then, their iterated
version can be defined. Nevertheless, the iterated hairpin completion (lengthening) has
also a biological motivation. Since such an operation can be seen as an operation by which
one single stranded molecule evolves into a new single stranded molecule, it is natural to
consider the situation when multiple evolution steps occur, thus the initial word is trans-
formed by multiple hairpin completion/ lengthening steps. In this context several natural
algorithmic questions appear: given two words, can we decide if the smaller one evolved
(by iterated hairpin completion/ lengthening) into the longer one, or, given two words,
can we decide if they both evolved from the same word - called usually common ancestor.
Moreover, one can be also interested in finding how many steps are needed to transform
one word into another by iterated application of hairpin completion, or, if we consider our
biological motivation, how many evolution steps are needed to transform a single stranded
molecule into another. In this way, the hairpin completion distance between two words
was defined as the minimum number of times we must iterate the hairpin completion op-
eration, starting from one of the two words, in order to obtain the other (of course, similar
definitions were given in the case of bounded hairpin completion and hairpin lengthening).
Further, one can also be interested in finding, for two words, a common ancestor that
minimizes, or respectively maximizes, the sum of the hairpin distances to the two words
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- called minimum, respectively maximum, distance common ancestor. Such common an-
cestors have also a biological motivation: they can be seen as extreme common ancestors
of the given single-stranded molecules. The maximum distance common ancestor of two
given molecules can be seen as the simplest (less evolved) molecule from which the given
molecules could have evolved; on the other hand, the minimum distance common ancestor
is the most complex (most evolved) molecule from which the both given molecules could
have evolved.

In the following we review some of the results regarding the problems mentioned above.

1 Preliminaries

Let Ω be a “superalphabet”, that is an infinite set such that any alphabet considered in
this paper is a subset of Ω. In other words, Ω is the universe of the languages in this paper,
i.e., all words and languages are over alphabets that are subsets of Ω. An involution over
a set S is a bijective mapping σ : S −→ S such that σ = σ−1. Any involution σ on Ω
such that σ(a) �= a for all a ∈ Ω is said to be, in this paper’s context, a Watson-Crick
involution (we prefer this terminology since the hairpin lengthening defined later is inspired
by the DNA lengthening by polymerases, where the Watson-Crick complementarity plays
an important role). Let · be a Watson-Crick involution fixed for the rest of the paper.
The Watson-Crick involution is extended to a morphism from Ω∗ to Ω∗ in the usual way.
We say that the letters a and a are complementary to each other. For an alphabet V , we
set V = {a | a ∈ V }. Note that V and V could be disjoint or intersect or be equal. We
denote by (·)R the mapping defined by R : V ∗ −→ V ∗, (a1a2 . . . an)R = an . . . a2a1. Note
that R is an involution and an anti-morphism ((xy)R = yRxR for all x, y ∈ V ∗). Note also
that the two mappings · and ·R commute, namely, for any word x, (x)R = xR holds.

Let V be an alphabet. For any w ∈ V + we define the k-hairpin completion of w,
denoted by (w →k), for some k ≥ 1, as follows:

w ⇀k = {γRw|w = αβαRγ, |α| = k, α, β ∈ V +, γ ∈ V ∗}
w ⇁k = {wγR|w = γαβαR, |α| = k, α, β ∈ V +, γ ∈ V ∗}
w→k = w ⇀k ∪w ⇁k

The hairpin completion of w is defined by: (w →) =
⋃

k≥1(w →k). This operation is
schematically illustrated in Figure 1. Clearly, (w →k+1) ⊆ (w →k) for any w ∈ V + and
k ≥ 1, hence (w →) = (w →1). The hairpin completion is naturally extended to languages
by (L→k) =

⋃
w∈L(w →k).
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Fig. 1: Hairpin completion
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For any w ∈ V + we define the k-hairpin lengthening of w, denoted by HLk(w), for
some k ≥ 1, as follows:

HLPk(w) = {δRw|w = αβαRγ, |α| = k, α, β, γ ∈ V + and δ is a prefix of γ},
HLSk(w) = {wδR|w = γαβαR, |α| = k, α, β, γ ∈ V + and δ is a suffix of γ},
HLk(w) = HLPk(w) ∪HLSk(w).

The hairpin lengthening of w is defined by HL(w) =
⋃
k≥1

HLk(w). Clearly, HLk+1(w) ⊆

HLk(w) for any w ∈ V + and k ≥ 1. The hairpin lengthening is naturally extended to
languages by HLk(L) =

⋃
w∈L

HLk(w).

This operation is schematically illustrated in Figure 2.
α

βαRγ
δ

R

Fig. 2: Hairpin lengthening

α

βαR
δ

R

γ

Finally, for any w ∈ V + we define the p-bounded k-hairpin completion of w, denoted
by pHCk(w), for some k, p ≥ 1, as follows:

pHC ←k (w) = {γRw|w = αβαRγ, |α| = k, α, β ∈ V +, γ ∈ V ∗, |γ| ≤ p}
pHC →k (w) = {wγR|w = γαβαR, |α| = k, α, β ∈ V +, γ ∈ V ∗, |γ| ≤ p}

pHCk(w) = pHC ←k (w) ∪ pHC →k (w).

The p-bounded k-hairpin completion is naturally extended to languages by pHCk(L) =⋃
w∈L

pHCk(w).

The iterated version of the hairpin completion is defined as usual by:
w(→k)0 = {w}, w(→k)n+1 = (w(→k)n)→k, w(→k)∗ =

⋃
n≥0 w(→k)n

and L(→k)∗ =
⋃

w∈L w(→k)∗.

The iterated version of the hairpin lengthening and of the p-bounded k-hairpin com-
pletion are defined similarly.

2 Results

In the following we present the main algorithmic results regarding the above defined op-
erations

First, the non-iterated version of the operations is analyzed.
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Theorem 1. ([10, 6, 12]) For every k ≥ 1 and every language L recognizable in O(f(n))
time, the k-hairpin completion, as well as the k-hairpin lengthening and the p-bounded k-
hairpin completion, of L are recognizable in O(nf(n)) time. If L is regular (context-free),
L(→k), HLk(L) and pHCk(L) are recognizable in O(n) (respectively, O(n3)) time.

We recall that the hairpin completion and the hairpin lengthening of a regular (context-
free) language are not necessarily regular (context-free), while the bounded hairpin com-
pletion of a regular (context-free) language is always regular (context-free). Also, the
algorithms used to show the above results are based on different strategies, depending on
the operation.

In the iterated case one can show that:

Theorem 2. ([10, 12, 9]) For every k ≥ 1 and every language L recognizable in O(f(n))
time, the iterated k-hairpin completion (or lengthening) of L is recognizable in O(n2f(n))
time. Also, the iterated k-hairpin completion (or lengthening) of L can be recognized in
O(max(f(n), n2)), provided that all the subwords of a word w (with |w| = n) contained in
L can be found also in O(f(n)) time; this is the case of context-free languages (if we take
f(n) = n3) and regular languages (for f(n) = n2). The iterated p-bounded k-hairpin com-
pletion of a regular (respectively, context-free) language L is regular (respectively, context-
free), thus it can be recognized in O(n) time (respectively, O(n3)).

Although the results are similar for all the three operations, there are major differences
between the algorithms used to show this in the case of the completion operations (both
bounded and unbounded) and in the case of the lengthening operations. Also, note that,
different from the case of bounded completion, the classes of regular and context-free
languages are not closed to hairpin completion (it is not known what happens in the case
of lengthening).

The k-hairpin completion distance between two words x and y is defined as the minimal
number of hairpin completions which can be applied either to x in order to obtain y or to
y in order to obtain x. If none of them can be obtained from the other by iterated hairpin
completion, then the distance is ∞. Formally, the k-hairpin completion distance between
x and y, denoted by HCDk(x, y), is defined by:

HCDk(x, y) =

{
min{p | x ∈ y(→k)p or y ∈ x(→k)p},
∞, if neither x ∈ y(→k)∗ nor y ∈ x(→k)∗

Similarly, one can define the k-hairpin lengthening distance (denoted HLDk) and the
p-bounded k-hairpin completion distance (denoted pHCDk) between two words.

We stress from the very beginning that the functions defined above, applied on pairs
of words, are not distance functions in the strict mathematical sense, since they do not
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necessarily verify the triangle inequality. Rather, they can be seen as similarity measures
between strings, or, if we consider our biological motivation, as measures that tell us how
many evolution steps are needed to transform a string into the other. However, we prefer
to call them distances for sake of uniformity, as many similar measures are called distances
in the literature.

Theorem 3. ([14, 12, 6]) Let x and w be two words, and n = max(|x|, |w|). The k-hairpin
completion distance between x and w can be computed in O(n2 log n), using O(n2) space.
The k-hairpin lengthening distance between x and w can be computed in O(n2), using
O(n2) space. The p-bounded k-hairpin completion distance x and w can be computed in
O(n2 log p) time and space.

Note, once again, that the algorithms used to obtain these bounds are different, in
each case. Although they are all based on a similar dynamic programming strategy, their
efficient implementation depends on particular strategies: the usage of efficient data struc-
tures (segment trees for the general completion and range minimum queries for bounded
completion) or greedy arguments (in the case of lengthening).

A word w is called k-hairpin completion ancestor of two words x and y if {x, y} ⊆
w(→k)∗. A word w is called minimum distance common k-hairpin completion ances-
tor of two words x and y if w is a k-hairpin completion ancestor of x and y, and
HCDk(w, x) + HCDk(w, y) ≤ HCDk(w′, x) + HCDk(w′, y), for all w′ such that {x, y} ⊆
w′(→k)∗. Similarly, one can define the maximum distance common k-hairpin completion
ancestors of two words. The above notions can be defined for hairpin lengthening and
bounded hairpin completion.

Theorem 4. ([14]) Let x and w be two words, and n = max(|x|, |w|). A minimum (maxi-
mum) distance common k-hairpin completion (k-hairpin lengthening, p-bounded k-hairpin
completion) ancestor of x and w can be computed in time O(n2 log n), using O(n2) space.
A common k-hairpin completion (k-hairpin lengthening, p-bounded k-hairpin completion)
ancestor of the words x and w can be computed in O(n2) time and space.
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1 Introduction

The Common Supersequence Problem is to construct a word w for a given finite set of
words {u1, u2, . . . , un} such that w contains every ui, 1 ≤ i ≤ n, as a (scattered) subword.
A word u is a scattered subword of a word v if we can obtain u by deleting symbols from
v, e. g. ab is a scattered subword of bcadcbd. The word w = u1 · u2 · . . . · un is obviously
a trivial and uninteresting solution to that problem, and therefore one usually requires
w to meet certain additional constraints. The most prominent example of the Common
Supersequence Problem is the variant where we look for the shortest word w that contains
every ui, 1 ≤ i ≤ n, which is called the Shortest Common Supersequence Problem. This
NP-complete problem has been thoroughly investigated (see, e. g., [6, 2, 4, 1]) and is a
topic of ongoing research (see, e. g., [3]).

The variant of the Common Supersequence Problem to be introduced in this paper is
mainly motivated by a problem of scheduling memory accesses. Let us assume we have
k processes and m values stored in memory cells, and all these processes need to access
the stored values at some points during their execution. A process does not necessarily
need all the m values at the same time, so a process might get along with less than m

memory cells by, for example, first using a memory cell for a value x and then, as soon
as x is not needed anymore, using the same cell for another, and previously unneeded,
value y. As an example, we assume that process w1 uses the values a, b and c in the order
abacbc. This process only needs two memory cells: In the first cell, b is permanently
stored, and the second cell first stores a until it is not required anymore and then stores

∗Corresponding author.
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value c. This is possible, since the part of w1 where a occurs and the part where c occurs
can be completely separated from each other. If we now assume that the k processes
cannot access the shared memory simultaneously, then the question arises how we can
sequentially arrange all memory accesses such that a minimum overall number of memory
cells is required. For example, if we assume that, in addition to process w1 = abacbc,
there is another process w2 := abc, then we can of course first execute w1 and afterwards
w2, which results in the memory access sequence abacbcabc. It is easy to see that this
requires a memory cell for each value a, b and c. On the other hand, we can first execute
aba of process w1, then process w2 = abc, and finally the remaining part cbc of w1. This
results in abaabccbc, which allows us to use a single memory cell for both values a and c

as before.

This scheduling problem can directly be formalised as a Common Supersequence Prob-
lem. To this end, we merely have to interpret each of the k processes as a word over an
alphabet of cardinality m, where m is the number of different values to be stored. Hence,
our problem of finding the best way to organise the memory accesses of all processes di-
rectly translates into a Common Supersequence Problem. Unfortunately, even for k = 2,
there is an exponential number of possible ways to schedule the memory accesses. How-
ever, we can present an algorithm solving this problem for arbitrary input words and a
fixed alphabet size in polynomial time.

Our practical motivation and the definition of this problem result from an application
of a new automata model with two input heads [5]. In our application, these two input
heads need to travel over factors of the input word; to this end, they need to know the
lengths of these factors. Thus, each input head movement can be interpreted as a process
that needs to access lengths of factors in a certain order. Within the scope of [5], the
overall number of values that need to be stored simultaneously does not only affect the
memory usage of the automaton, but it also has a significant impact on the runtime of its
computations. Thus, our variant of the Common Supersequence Problem is crucial in this
context.

Although we consider this nontrivial problem fundamental and believe that it might
occur in other practical situations as well, we are not aware of any related literature.

2 Basic Definitions

In the following, let Σ be a finite alphabet. A word (over Σ) is a finite sequence of symbols
from Σ, and ε stands for the empty word. The symbol Σ+ denotes the set of all nonempty
words over Σ, and Σ∗ := Σ+ ∪ {ε}. For the concatenation of two strings w1, w2 we write
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w1 · w2 or simply w1w2. We say that a string v ∈ Σ∗ is a factor of a string w ∈ Σ∗ if
there are u1, u2 ∈ Σ∗ such that w = u1 · v · u2. If u1 = ε (or u2 = ε), then v is a prefix
of w (or a suffix, respectively). The notation |K| stands for the size of a set K or the
length of a string K. The term alph(w) denotes the set of all symbols occurring in w and,
for each a ∈ alph(w), |w|a refers to the number of occurrences of a in w. If we wish to
refer to the symbol at a certain position j, 1 ≤ j ≤ n, in a word w = a1 · a2 · . . . · an,
ai ∈ Σ, 1 ≤ i ≤ n, we use w[j] := aj. Furthermore, for each j, j′, 1 ≤ j < j′ ≤ |w|,
let w[j, j′] := aj · aj+1 · . . . · aj′ and w[j,−] := w[j, |w|]. In case that j > |w|, we define
w[j,−] = ε.

In order to model the Common Supersequence Problem relevant to this paper, we use
the notion of a shuffle. The shuffle operation, denoted by !, is a binary operation on
words, defined inductively by

• u ! ε = ε ! u = {u}, for each u ∈ Σ∗,

• a · u ! b · v = a · (u ! b · v) ∪ b · (a · u ! v), for all u, v ∈ Σ∗ and a, b ∈ Σ.

We extend the definition of the shuffle operation to the case of more than two words in
the obvious way. Furthermore, for arbitrary words w1, w2, . . . , wk ∈ Σ∗, we call Γ :=
w1 ! w2 ! . . . ! wk the shuffle of w1 . . . , wk and each word w ∈ Γ is a shuffle word of
w1 . . . , wk. For example, bcaabac ∈ abc ! ba ! ca.

Finally, we introduce a special property of words that is important for our central
problem. For an arbitrary w ∈ Σ∗ and any b ∈ alph(w) let l, r, 1 ≤ l, r ≤ |w|, be chosen
such that w[l] = w[r] = b and there exists no k, k < l, with w[k] = b and no k′, r < k′,
with w[k′] = b. Then the scope of b in w (scw(b) for short) is defined by scw(b) := (l, r).
Note, that in the case that for some word w we have w[j] = b and |w|b = 1, the scope of
b in w is (j, j). Now we are ready to define the so called scope coincidence degree: Let
w ∈ Σ∗ be an arbitrary word and, for each i, 1 ≤ i ≤ |w|, let

scdi(w) := |{b ∈ Σ | b �= w[i], scw(b) = (l, r) and l < i < r}| .

We call scdi(w) the scope coincidence degree of position i in w. Furthermore, the scope
coincidence degree of the word w is defined by scd(w) := max{scdi(w) | 1 ≤ i ≤ |w|}. We
now illustrate this definition with a brief example.

Example 1. Let Σ := {a, b, c, d, e, f}. We consider the following word over Σ, w :=
acacbbdeabcedefdeff ∈ Σ∗. It can easily be verified that scd8(w) = scd9(w) = 4 and
scdi(w) < 4 if i /∈ {8, 9}. Hence, scd(w) = 4.
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We are now ready to state our central problem CSminSCDΣ, which is the problem of
finding a shuffle word w ∈ w1 ! . . .!wk, for arbitrary w1, w2, . . . , wk ∈ Σ∗, with minimum
scope coincidence degree.

3 Examples

In the following, we illustrate the problem CSminSCDΣ with the help of a few examples.
For all of these examples we use the alphabet Σ := {a, b, c, d, e, f, g, h}. First, we consider
the following two words over Σ: w1 := a · b · c · d · c · b · e · f and w2 := g · h · a. We
note that scd(w1) = 2 and scd(w2) = 0 which implies that scd(w′) ≥ 2 for all w′ ∈
w1!w2. Furthermore, all symbols in w2, except a, do not occur in w1, so in a shuffle word
w′ ∈ w1 ! w2 the position of the symbol a from w2 is crucial for scd(w′). A shuffle word
w′ ∈ w1 ! w2 that is minimal with respect to the scope coincidence degree can be easily
constructed. To this end, we consider the numbers scdi(w1), 1 ≤ i ≤ 8, and observe that
scdi(w1) ≤ 1, i �= 4, and scd4(w1) = 2. If we shuffle word w2 and w1, the only symbol
from w2 that can cause one of these numbers to increase is the symbol a. Consequently, to
obtain a minimal, shuffle word it is sufficient to make sure that scd4(w1) does not increase.
So we only have to assure that the a from w2 is located to the left of the single occurrence
of d in w1. In the following shuffle words we mark the symbols from w2 (i. e. instead of
a we write a etc.) to illustrate the way shuffle words are created. The marking does not
affect the scope coincidence degree. As pointed out before, the following shuffle word w′

of w1 and w2 is minimal with respect to the scope coincidence degree, i. e. scd(w′) = 2:

w′ = a · g · b · h · c · a · d · c · b · e · f .

We now consider the situation where a third word, namely w3 := e · f · g · h, has to
be shuffled with w1 and w2, i. e. we examine w1 ! w2 ! w3. Here, the problem of finding
a shuffle word with minimum scope coincidence degree becomes more complex, which is
caused by the fact that all the symbols in w3 also occur in either w1 or w2. If we try to
insert w3 somehow into w′ (which obviously results in a shuffle word of w1, w2 and w3),
we encounter the following problem. If e · f occurs to the left of d, then d is in the scope
of e and f. On the other hand, if they occur to the right of d, then so do the symbols g, h,
which implies that d is in the scope of g and h, and this increases the scope coincidence
degree of the resulting word by 2. So in this new situation, inserting the symbol a from
w2 to the left of d (in order to keep d out of the scope of a) is not a good idea anymore.
Inserting a from w2 to the right of d still puts d in the scope of a, but, at the same time,
allows us to keep d out of the scopes of e, f, g and h, which results in a shuffle word with
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smaller scope coincidence degree. We consider an optimal shuffle word for w1, w2 and w3

where the symbols from w3 are marked (i. e. ĝ instead of g):

w′′ := a · b · c · d · c · b · e · ê · f · f̂ · g · ĝ · h · ĥ · a .

It is easy to verify that scd(w′′) = 3. The following considerations demonstrate that this
is indeed a shuffle word with minimum scope coincidence degree. We assume that there
exists a v ∈ w1 ! w2 ! w3 with scd(v) = 2 (recall that 2 is a lower bound for the scope
coincidence degree). This implies that the complete word w2 occurs to the left of d. Now
consider the word w3. In order to ensure scd(v) = 2, the e · f factor of w3 must occur to
the right and the g · h factor of w3 must occur to the left of d. Clearly, by definition of a
shuffle word, this is not possible.

The previous example also points out that it seems inappropriate to solve CSminSCDΣ

on input w1, w2, . . . , wk by first computing a minimal shuffle word w′ of w1, w2 (ignoring
w3, . . . , wn) and then solve CSminSCDΣ on the smaller input w′, w3 . . . , wn and so on.

4 Outline of the Algorithm

Our algorithm is based on the observation that it is not necessary to search the whole shuf-
fle w1!w2!. . .!wk in order to solve CSminSCDΣ, on arbitrary input words w1, w2, . . . , wk ∈
Σ∗. It turns out that at least one shuffle word with minimum scope coincidence degree is
included in the set of so-called greedy shuffle words, which is a proper subset of the whole
shuffle w1 ! w2 ! . . . ! wk.

In general, we can construct any shuffle word by gradually cutting off prefixes of the
words w1, w2, . . . , wk, appending these prefixes to a new word w, and repeating this step
until all wi, 1 ≤ i ≤ k, are empty. So at each step of this method, we maintain a word
w, which is a prefix of the shuffle word that is constructed, and for each wi, 1 ≤ i ≤ k,
a (possibly empty) suffix of wi. A shuffle word is called greedy, if it can be constructed
from w1, w2, . . . , wk by this method with the following condition. In each step, we always
first cut off the longest prefixes of the wi, 1 ≤ i ≤ k, that only consist of symbols that
already occur in w. In other words, if a wi, 1 ≤ i ≤ k, starts with a symbol not occurring
in w, then we can only cut off a prefix of that wi and append it to w if all the words
wi, 1 ≤ i ≤ k, either start with such a symbol or are empty. This construction is then
considered greedy with respect to those symbols already occurring in w.

In order to solve CSminSCDΣ, we only need to consider all greedy shuffle words to find
one with minimum scope coincidence degree. The number of these greedy shuffle words is
polynomial with respect to the number and length of the input words.
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Abstract

Attributed tree transducers, an abstract form of attribute grammars, are a formal
model of syntax-directed semantics, that is, a model for specifying tree transformations.
Monadic datalog, a syntactically restricted fragment of standard datalog, is a means
of formally specifying node selection queries on trees.

We introduce a tree transducer model combining aspects of both attributed tree
transducers and monadic datalog, thereby allowing to specify in one rule information
transport for non-adjacent nodes. We show that our model is strictly more powerful
than attributed tree transducers, and we identify a large syntactic subclass which is
as powerful as attributed tree transducers. This is shown by an effective construction.
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Abstract

We investigate the descriptional complexity of limited propagating Lindenmayer
systems and their deterministic and tabled variants with respect to the number of
rules and the number of symbols. We determine the decrease of complexity when the
generative capacity is increased. For incomparable families, we give languages that
can be described more efficiently in either of these families than in the other.

1 Introduction

Several generating devices for formal languages have been studied in the literature with
respect to the size of their descriptions (e. g., [2]). For sequentially deriving grammars,
the measures number of productions, number of nonterminal symbols, and number of all
symbols have been investigated.

In 1968, Lindenmayer systems (L-systems) have been introduced ([4]). In order to
model the development of organisms, these devices work in parallel (in one derivation
step, not only one symbol is rewritten as in a sequential grammar but all symbols are
rewritten). For L-systems, the number of tables, the number of active symbols, and
the degree of nondeterminism have been studied as measures of complexity. In [1], the
measures number of rules and number of symbols were introduced for L-systems.

Twenty years after the introduction of L-systems, a restricted variant of L-systems
with a partially parallel derivation process has been proposed in [7]. In these so-called
k-limited L-systems, only k occurrences of each symbol are replaced according to some
rule. First results on the descriptional complexity of k-limited L-systems can be found in
[3].
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We continue this work and study the relations that were left open in [3] or that have
not been optimal yet. In this paper, we confine ourselves to propagating limited systems.

2 Definitions

We assume that the reader is familiar with the basic concepts of formal language theory
(see e. g. [5]). We recall here some notations used in the paper.

We denote the set of all positive integers by N and the set of all non-negative integers
by N�.

For an alphabet V (a finite set of symbols), we denote by V ∗ the set of all words over
V , by V + the set of all non-empty words over V , and by V n for a natural number n ∈ N�

the set of all words which have the length n. We denote the empty word by λ, the length
of a word w by |w|, and the number of occurrences of a letter a in a word w by |w|a.
Furthermore, we denote the cardinality of a set A by |A|.

Two sets X and Y are called incomparable, if neither X ⊆ Y nor Y ⊆ X holds. They
are called disjoint if the intersection is empty.

A tabled interactionless Lindenmayer system (L-system for short), abbreviated as T0L
system, is a triple G = (V,P, ω) where V is an alphabet, ω ∈ V + is called the axiom, and
P is a finite, non-empty set {P1, P2, . . . , Pn } where Pi (called a table), for 1 ≤ i ≤ n, is a
finite subset of V × V ∗ such that there is at least one element (a,w) ∈ Pi for each letter
a ∈ V . The elements (a,w) in some table are called productions or rules and are written
as a→ w.

A T0L system G = (V,P, ω) is called an 0L system if P contains only one table. It is
called a DT0L system if every table P contains only one rule for each letter in V and it is
called a D0L system if P contains only one table and the table consists of only one rule
for each letter in V .

Such an L-system is called propagating, if there is no erasing rule a→ λ in the system
(all rules have the form a→ w with a ∈ V and w ∈ V +).

A word v ∈ V + directly derives a word w ∈ V ∗ by a system G, written as v =⇒G w

(we omit the index if it is clear from the context), if v = x1x2 · · · xm with m ∈ N, xi ∈ V

for 1 ≤ i ≤ m and w = y1y2 · · · ym with yi ∈ V ∗ for 1 ≤ i ≤ m such that the system G

contains a table P which contains all the rules xi → yi for 1 ≤ i ≤ m. Hence, in parallel,
every letter of a word is replaced by a word according to the rules of a table. By =⇒∗, we
denote the reflexive and transitive closure of =⇒. The language generated by a system G

is defined as

L(G) = { z | ω =⇒∗
G z } .
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In [7], a limitation of the parallel rewriting was introduced. For a natural number k ∈ N,
a k-limited T0L system (shortly written as k�T0L system) is a quadruple G = (V,P, ω, k)
where (V,P, ω) is a T0L system. In a k-limited system, exactly min{k, |w|a} occurrences
of any letter a in the word w under consideration are rewritten in a derivation step (hence,
the number of occurrences of a letter that are replaced in each step is limited by k).

We only say a T0L system is limited (shortly written as �T0L system) if it is a k-limited
system for some number k ∈ N.

The class of all k-limited T0L systems is written as k�T0L. The restricted and propa-
gating variants thereof are denoted by k�PD0L, k�P0L, k�PDT0L, k�PT0L, and without
k if the limit is arbitrary. For a class X of L-systems, we write L(X) for the family of
languages that is generated by an L-system from X.

As measures of descriptional complexity, we consider the number of rules and the
number of symbols. For an L-system G over an alphabet V with tables P1, P2, . . . , Pn

with n ∈ N and an axiom ω, we set

Prod(G) =
n∑

i=1

|Pi| and Symb(G) = |ω|+
n∑

i=1

∑
a→w∈Pi

(|w|+ 2).

Let X be a class of L-systems. For a language L ∈ L(X), we set

ProdX(L) = min { Prod(G) | G ∈ X with L(G) = L } and

SymbX(L) = min { Symb(G) | G ∈ X with L(G) = L } .

Hence, the complexity of a language L with respect to a class X of L-systems is the
complexity of a smallest L-system G ∈ X that generates the language L. If we extend
a class X to a class Y then the complexity can only become smaller: If X ⊆ Y , then
KX(L) ≥ KY (L) for any language L ∈ L(X) and complexity measure K ∈ {Prod,Symb }.

We now define the complexity relations considered in this paper. Let X and Y be two
classes of L-systems such that the language families L(X) and L(Y ) are not disjoint and
let K ∈ {Prod,Symb } be a complexity measure. We write

(a) X =K Y if KX(L) = KY (L) holds for any language L ∈ L(X)∩L(Y ) (the complex-
ities are equal),

(b) X >K Y if there is a sequence of languages Lm ∈ L(X) ∩ L(Y ), m ∈ N, such that
KX(Lm)−KY (Lm) ≥ c ·m for a constant c ∈ N (the difference of the complexities
can be arbitrarily large),

(c) X "K Y if there is a sequence of languages Lm ∈ L(X) ∩ L(Y ), m ∈ N, such that
lim

m→∞
KY (Lm)
KX(Lm) = 0 (asymptotically, the complexity using X grows faster than using

Y ),
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(d) X ≫K Y if there is a sequence of languages Lm ∈ L(X) ∩ L(Y ), m ∈ N, and a
constant c ∈ N such that KY (Lm) ≤ c and KX(Lm) ≥ m.

From these definitions, we obtain that X ≫K Y implies X "K Y and that also X "K Y

implies X >K Y for K ∈ {Prod,Symb }.
For each natural number c, there are only finitely many L-systems G (upto renaming

the symbols) for which Symb(G) ≤ c holds. Hence, there is no class X of L-systems that
generates infinitely many languages Ln with SymbX(Ln) ≤ c. Thus, there are no two
classes X and Y with the relation Y ≫Symb X.

In all cases throughout this paper, we obtain the relation X "Symb Y whenever we
obtain X ≫Prod Y . Then, we also shortly write X ≫ Y . Further, if two classes X

and Y are in the same relation � with respect to both measures Prod and Symb, hence,
X �Prod Y and X �Symb Y for a symbol � ∈ {", >,=}, then we write X � Y .

3 Results

We first give some sequences of languages that are used as witnesses for the relations given
later.

For m ≥ 1, let

L(1)
m = {e} ∪ { anx1x2 · · · xmdn | n ≥ 1, xi ∈ {b, c}, 1 ≤ i ≤ m } ,

L(2)
m = { an1

1 an2
2 · · · anm

m | ni ≥ 1, 1 ≤ i ≤ m } ,

L(3)
m = {e} ∪

{
aknwdkn | n ≥ 1, w ∈ {b, c}km, |w|b = kj for 0 ≤ j ≤ m

}
,

L(4)
m = {c} ∪ { x1x2 · · · xkm | xi ∈ {a, bb}, 1 ≤ i ≤ km } ,

L(5)
m =

{
am+im2

b | i ≥ 0
}
∪
{

am+im2+1c | i ≥ 0
}
∪ { d } ,

L(6)
m = { d } ∪ {w | w = x1x2 · · · x2m, xi ∈ {a, bb, ccc}, 1 ≤ i ≤ 2m,

|w|a = 2n, 0 ≤ n ≤ m },
L(7)

m = {a5mk(1+nm) | n ≥ 0},
L(8)

m = { c } ∪ {w | w = x1x2 · · · x(k+1)m, xi ∈ {a, bb}, 1 ≤ i ≤ (k + 1)m,

|w|a = j(k + 1), 0 ≤ j ≤ m }.

Regarding 1-limited propagating L-systems, we obtain the hierarchy shown in the
following figure.

In brackets behind a relation, you find a witness sequence of languages or a link to the
corresponding proof in the literature.
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1�PT0L

1�P0L
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(1)
m )������

��������

≫ (L
(1)
m ) ��
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� [3]�������

���������

� (L
(2)
m )

��

1�PD0L

=Prod [3]
=Symb [6]�����

		�����
=Prod [3]
=Symb [6]�����



�����

Figure 1: Results for 1-limited systems

If a sequence of languages Lm is generated by 1�P0L systems or 1�PT0L systems with
a constant number of rules, then the languages Lm can also be generated by 1�PDT0L
systems with a constant number of rules. As a consequence, all relations mentioned above
are tight.

Regarding k-limited propagating L-systems with k ≥ 2, we obtain the hierarchy shown
in the following figure.

k�PT0L

k�P0L

≫ [3]�������

���������

≫ (L
(3)
m ) ��

k�PDT0L

≫ [3]�������

���������

≫ (L
(4)
m )

��

k�PD0L

=Prod [3]
=Symb [6]�����

		�����
=Prod [3]
=Symb [6]�����



�����

Figure 2: Results for higher limited systems

If one considers classes of limited propagating L-systems, one cannot only add nonde-
terminism when increasing the generative power but the limit of a minimal system can
change. This has especially an impact on the relations between the classes �PD0L and
�P0L or �PDT0L with respect to the number of symbols. For example, a minimal limited
PD0L-system for generating the language L

(5)
m for a number m ≥ 1 has the limit k = 1

and

Symb�PD0L(L(5)
m ) = m2 + m + 12

symbols. However, using an �P0L-system or an �PDT0L-system, the number of symbols
can be reduced to 3m + 17 or 2m + 26, respectively, while the limit is increased to m.

126



Bianca Truthe

The hierarchy obtained regarding limited propagating L-systems is shown in the fol-
lowing figure.

�PT0L
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≫ [3]������
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Figure 3: Results for arbitrarily limited systems

The relations between k-limited and arbitrarily limited propagating L-systems can be
seen in the following figure.
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Figure 4: Relations between k-limited and arbitrarily limited systems

Proofs of all relations presented here can be found in either [3] or [6].
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Abstract

Recently we introduced parallel communicating (PC) systems of restarting auto-
mata [5]. With regard to the communication structure a comparison between central-
ized and non-centralized versions seems obvious. In this contribution it will be shown
that in case of PC systems of restarting automata centralized and non-centralized
systems have the same computational power.

1 Introduction

The concept of parallel communicating (PC for short) components was already applied to
different kinds of formal models: PC grammar systems [8], PC systems of finite automata
[6], PC systems of pushdown automata [3], PC systems of Watson-Crick automata [4] etc.
Further, in [5] we introduced PC systems of restarting automata. Regarding distributed
computation the question of an appropriate communication structure seems obvious. One
crucial aspect is the issue of whether the communication is centralized or non-centralized.
All components of a centralized system are only allowed to communicate with a distin-
guished master component, whereas in a non-centralized communication structure each
component can communicate with all other components.
That non-centralized systems are at least as powerful as centralized systems seems clear
(see e.g., [3, 6]). But does the centralization as a restriction of the communication struc-
ture yield a proper decrease of computational power? For example, this holds true for
deterministic parallel communicating finite automata [1] and PC grammar systems with
regular components [2]. Within this contribution it will be shown that in case of PC
systems of restarting automata centralized and non-centralized systems have the same

129



Centralized Versus Non-Centralized Parallel Communicating Systems of
Restarting Automata

computational power independent of the component’s type.
Basic notations and definitions of restarting automata can be found in [7].

2 PC Systems of Restarting Automata

A system M of parallel communicating restarting automata (PCRA for short) of degree
n is an n-tuple

M = (M1,M2, . . . ,Mn),

where M1,M2, . . . ,Mn are restarting automata which are the components of the system:

M1 = (Q1,Σ,Γ1, |c, $, q1, s1, δ1),
M2 = (Q2,Σ,Γ2, |c, $, q2, s2, δ2),

...
Mn = (Qn,Σ,Γn, |c, $, qn, sn, δn).

Here Q1, . . ., Qn are the sets of states, Σ is an input alphabet, Γ1, . . ., Γn are tape alphabets,
|c and $ are the left and the right sentinels, q1, . . ., qn are the initial states, s1, . . ., sn are
the sizes of the read/write windows, and δ1, . . ., δn are the transition functions.

The communication between the components is realized by special kinds of communi-
cation states contained in Q1,Q2, . . . , Qn: request states (reqi

d), response states (resi
d,c),

receive states (reci
d,c), and acknowledge states (acki

d,c). The superscript i denotes the ad-
dressee (generally the index of the communication partner), the subscript d stands for an
optional local information, and the subscript c is the information that is exchanged during
the communication. Observe that d and c must be of constant length. The communica-
tion process is schematically illustrated in Figure 1 and formalized in the definition of a
computation step (see below).

A configuration K of a PCRA of degree n is an n-tuple, which contains a configuration
of each component:

K = (k1, k2, . . . , kn).

Here ki (1 ≤ i ≤ n) is of the form uiqivi where qi ∈ Qi, and ui = |cα and vi = β$, or ui = ε

and vi = |cβ$ (α, β ∈ Γ∗
i , ε denotes the empty word). For an input word w and initial

states qi (1 ≤ i ≤ n) the initial configuration of the system is:

K0 = (q1 |cw$, q2 |cw$, . . . , qn |cw$).
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M1 M2

send request

send response

send acknowledge

req2
d

res1
d′,c

rec2
d,c

ack1
d′,c

. . . . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭}

local
computation

communication
step

continue the local
computation

Figure 1: A communication between two components.

A computation step of the system M = (M1,M2, . . . ,Mn) can be described by the
binary relation �M. Let K and K ′ be two configurations with K = (k1, k2, . . . , kn) and
K ′ = (k′

1, k
′
2, . . . , k

′
n). Then K �M K ′ iff for all i ∈ {1, 2, . . . , n} one of the following

conditions holds:

1. ki �Mi k′
i (local computation step)

2. ∃j ∈ {1, 2, . . . , n} \ {i} : ki = uireq
j
di

vi, kj = ujres
i
dj ,cvj , k

′
i = uirec

j
di,c

vi,

k′
j = ujacki

dj ,cvj (communication)

3. ∃j ∈ {1, 2, . . . , n} \ {i} : ki = uires
j
di,c

vi, kj = ujreq
i
dj

vj , k
′
i = uiackj

di,c
vi,

k′
j = ujrec

i
dj ,cvj (communication)

4. ki = k′
i and no local operation (MV R, MV L, replacement, restart) or communica-

tion of Mi is possible.

The reflexive and transitive closure of the relation �M is expressed by �∗M and describes a
computation ofM. Then the accepted language of a PC systemM over an input alphabet
Σ is

L(M) = {w ∈ Σ∗ | (q1 |cw$, q2 |cw$, . . . , qn |cw$) �∗M (k1, k2, . . . , kn),
{k1, k2, . . . , kn} ∩ {Accept} �= ∅}
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where q1, q2, . . . , qn are the initial states of the components.

A PCRA is called nondeterministic if there is at least one component that is nonde-
terministic. If all components are deterministic, the system is called locally deterministic
and gets the prefix det-local. In general there is no restriction according to the accepting
component. That allows the system to accept the input with whatever component reaches
the accepting configuration. A more strict definition of determinism in PCRA is that the
system accepts if and only if the first component accepts. Such systems are called globally
deterministic and get the prefix det-global.

The types of the components determine the type of the system. If the components are
restarting automata of type RRWW , the system is of the type PC-RRWW .

3 Centralized Versus Non-Centralized PC Systems of

Restarting Automata

A centralized PC-RRWW -system (cPC-RRWW -system for short) is a PC-RRWW -
system in which every component is only allowed to communicate with the first com-
ponent (the master component). The set of languages accepted by cPC-RRWW -systems
is denoted by L(cPC-RRWW ).

Theorem 1. L(cPC-RRWW ) = L(PC-RRWW ).

Proof outline. L(cPC-RRWW ) ⊆ L(PC-RRWW ) is clear.
Consider L(PC-RRWW ) ⊆ L(cPC-RRWW ). The two main aspects for this proof are
the following. First a new component M (the master component) is inserted that controls
all communications, and then the original components are modified in a way that they
send all information about communication wishes, of being stuck, and acceptance to the
master. Observe that these are the only three situations that can appear at the end of a
component’s local computation.
To reach all components the master communicates cyclically with the components. Fur-
thermore it is important that the system does not get stuck if a single component is stuck
(if an appropriate transition for the current configuration of a component is missing). This
is realized by sending an according information to the master at the end of all local com-
putations. Hence the master knows at all times in which situation all components are
and can decide whether to communicate with a special component or not. If a component
sends the accepting information to the master, the latter and thus the system accepts
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like the original system. If there is no component within the original system that accepts,
then there is no component within the modified system sending the master the accepting
information. Hence the modified system does not accept, either. �

Theorem 2. L(cPC-RLWW ) = L(PC-RLWW )

Proof outline. MV L-operations together with MV R-operations can cause infinite loops
within a component’s computation. In the proof outline above this may lead to a deadlock
of the whole system, if the master communicates with a component being in such a loop
and hence cannot answer. To avoid this kind of situation a component communicates
with the master after every MV L-operation. Like before the master can now cyclically
communicate with all components, thus all components can continue their local compu-
tations, and if there is any component reaching the accepting configuration, the whole
system accepts. If there is no component that reaches the accepting configuration and
some component is catched in a loop, then the system is also in a loop and does not
accept the input just like the original non-centralized system. �

Theorem 3. For every PC-RLWW -system M there exists a cPC-RLWW -system M′

with L(M) = L(M′) such that M′ has the same number of components as M.

Proof outline. The centralized system considered in Theorem 1 and extended in Theorem
2 contains one additional component (the master component) in comparison to the non-
centralized system. But it can be constructed in a way that the master component applies
only communications but no local operations (no MV L, MV R, replacing, restart). In
other words the computation of the master component never depends on the content
of the tape. Thus, the idea seems obvious to merge the master component with some
other component and to build the product automaton in a broader sense. Then both
work mainly simultaneously. In the case of a restart of the product automaton a third
component is needed for storing the information and give it back after the restart of the
product automaton (observe that a system of degree one or two is already centralized per
definition). �

The system considered in Theorems 1, 2, and 3 is not only centralized but can be
constructed with the property that the system accepts iff the first component accepts.
Thus an interesting conclusion of Theorem 1, 2, and 3 is that for every locally deterministic
PCRA there exists an equivalent (centralized) globally deterministic system (the opposite
direction is clear):

Corollary 1. L(det-global-PC-X) = L(det-local-PC-X) for all X ∈ {R, RR, RW,

RRW, RWW, RRWW, RL, RLW, RLWW}.
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Wilhelmshöher Allee 71–73, D-34121 Kassel
hundeshagen@theory.informatik.uni-kassel.de

13 Jacobi, Sebastian
Universität Giessen, Institut für Informatik
Arndtstraße 2, D-35392 Giessen
Sebastian.Jacobi@informatik.uni-giessen.de

14 Kasprzik, Anna
Universität Trier, Fachbereich Informatik
Campus II, D-54286 Trier
kasprzik@informatik.uni-trier.de

15 Kogler, Marian
Universität Halle-Wittenberg, Institut für Informatik
Von Seckendorff Platz 1, D-06120 Halle (Saale)
kogler@informatik.uni-halle.de

16 Kutrib, Martin
Universität Giessen, Institut für Informatik
Arndtstraße 2, D-35392 Giessen
kutrib@informatik.uni-giessen.de

17 Lange, Martin
Universität Kassel, Fachbereich Elektrotechnik/Informatik
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