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Abstract

Context awareness, dynamic reconfiguration at runtime and heterogeneity are key char-
acteristics of future distributed systems, particularly in ubiquitous and mobile computing
scenarios. The main contributions of this dissertation are theoretical as well as architectural
concepts facilitating information exchange and fusion in heterogeneous and dynamic distrib-
uted environments. Our main focus is on bridging the heterogeneity issues and, at the same
time, considering uncertain, imprecise and unreliable sensor information in information
fusion and reasoning approaches. A domain ontology is used to establish a common vocabu-
lary for the exchanged information. We thereby explicitly support different representations
for the same kind of information and provide Inter-Representation Operations that convert
between them. Special account is taken of the conversion of associated meta-data that ex-
press uncertainty and impreciseness. The Unscented Transformation, for example, is applied
to propagate Gaussian normal distributions across highly non-linear Inter-Representation
Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of
Evidence as it allows explicit modelling of partial and complete ignorance. We also show how
to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes
such as Hidden Markov Models in order to be able to consider the uncertainty of sensor
information when deriving high-level information from low-level data. For all these concepts
we provide architectural support as a guideline for developers of innovative information
exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic
environments. Two case studies serve as proof of concept. The first case study focuses on
heterogeneous autonomous robots that have to spontaneously form a cooperative team in
order to achieve a common goal. The second case study is concerned with an approach for
user activity recognition which serves as baseline for a context-aware adaptive application.
Both case studies demonstrate the viability and strengths of the proposed solution and em-
phasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability
theory in applications involving non-linear Inter-Representation Operations.
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Zusammenfassung

Kontextbewusstsein, dynamische Rekonfiguration zur Laufzeit und Heterogenitit sind
wesentliche Charakteristiken von zukiinftigen verteilten Systemen, insbesondere in den
Bereichen Ubiquitous Computing und Mobile Computing. Der Hauptbeitrag dieser Disser-
tation besteht aus generischen theoretischen Konzepten und den sich daraus ergebenden
architekturellen Implikationen, die den Austausch und die Fusion von Informationen in
heterogenen und dynamischen verteilten Umgebungen ermoglichen. Unser Hauptaugenmerk
liegt hierbei in der Uberbriickung von Heterogenitit und zugleich in der Beriicksichtigung von
unsicherer, unpréziser und unzuverldssiger Sensorinformation in verschiedenen Fusions- und
Reasoningverfahren. Eine Ontologie wird dazu benutzt, um ein allgemeines Vokabular fiir die
auszutauschende Information zu etablieren. Dabei werden explizit verschiedene Représenta-
tionen fiir denselben Informationstyp unterstiitzt und entsprechende Inter-Reprisentations-
Operationen definiert, die eine Konvertierung zwischen den verschiedenen Représentationen
erlauben. Spezielles Augenmerk erfordert hierbei die Transformation der assoziierten Metad-
aten, die zur Angabe der Unsicherheit und der Prizision der Information herangezogen
werden. Beispielsweise wird die Unscented Transformation dazu verwendet, um multivariate
Normalverteilungen iiber nichtlineare Transformationsfunktionen hinweg zu propagieren.
Zur Fusion von unsicheren Informationen wird die Dempster-Shafer-Evidenztheorie einge-
setzt, da diese eine explizite Modellierung von partieller und totaler Unwissenheit ermog-
licht. Es wird auch gezeigt, wie die Dempster-Shafer-Evidenztheorie in probabilistische
Reasoningverfahren, wie zum Beispiel in Hidden-Markov-Modelle, integriert werden kann,
um Unsicherheiten auch bei der Ableitung von High-level-Informationen aus Low-level-
Informationen beriicksichtigen zu kénnen. Fiir all diese theoretischen Konzepte wird eine
abstrakte Architektur beschrieben, die Entwicklern von innovativen Infrastrukturen fiir den
Austausch und die Fusion von Informationen in dynamischen und heterogenen Umgebungen
als Richtlinie dienen soll. Zwei Fallstudien dienen als Proof of Concept. Die erste Fallstudie
befasst sich mit unabhingig entwickelten und heterogenen autonomen Robotern, die sich
zur Laufzeit spontan zu einem kooperierenden Team formieren sollen. Die zweite Fallstudie
beschaftigt sich mit einem Ansatz zur Erkennung von Aktivitdten, welche die Grundlage fiir
eine kontextbewusste, adaptive Anwendung darstellt. Beide Fallstudien zeigen die Stérken
unseres Ansatzes auf und verdeutlichen, dass die Dempster-Shafer-Theorie der Wahrschein-
lichkeitstheorie bei der Modellierung von Unsicherheiten vorgezogen werden sollte, wenn
moglicherweise nicht-lineare Inter-Reprasentations-Operationen notwendig sind.
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1.1

Introduction

Motivation

‘Heterogeneity of hardware and software is a fact in most distributed computing environments’,
as Geihs and Hollberg have written in an article on the DACNOS project in 1990 [47]. The
focus of DACNOS was to provide a network operating system that enables resource sharing
between heterogeneous autonomous computers in a distributed environment consisting
of hardware and software from different vendors. Since then, a number of middleware
platforms [96, 44], communication protocols [149, 157] and platform-independent data
exchange formats [151, 69] have been developed to efficiently communicate and share
resources in heterogeneous distributed environments.

Today, computing environments impose even more challenges compared to the target
environment of DACNOS [46, 48]. Information providers and consumers dynamically appear
and disappear in the environment and not all of them are known at design time. Besides,
the involved software components and systems must be expected to be independently
developed with minimal or no interaction between the different development teams. The
resulting heterogeneity issues have to be handled at runtime in order to allow the dynamic
integration of information providers and consumers into a single system. Furthermore,
dynamic reconfiguration, context awareness and incorporation of imprecise, uncertain
and unreliable sensor information are additional key characteristics of current distributed
computing environments.

For example, Ubiquitous Computing [147] involves a potentially high number of diverse com-
puting devices ranging from large computers to small invisible processing units contained
in objects we use in activities of our daily life. These devices communicate and exchange
data over a wireless network and may utilize services available in the environment. Mobility,
context awareness and dynamic reconfiguration are inherent problems in such a scenario.
Mobility of the user implies confrontation with different context situations and different
properties of the computing environment, the devices and applications have to cope with by
dynamic reconfiguration in order to always provide an appropriate quality of service. All the
context changes, either with regard to the user or with regard to the computing environment,
have to be detected by appropriate sensors or derived by reasoning approaches. Context
sensors may be running on the mobile device itself or may be available as services in the en-
vironment. Sensor information for real-world entities, however, is often imprecise, uncertain
and unreliable. Bridging heterogeneity issues of the involved sensors and reasoning with
heterogeneous information is difficult in such dynamic environments, as the involved devices
and context services may not be known at design time, and thus, interoperability has to be
achieved at runtime. Therefore, an appropriate context management and reasoning system
is required which facilitates the dynamic integration of context providers and consumers
available in the environment, which is able to cope with the heterogeneity issues at runtime,
and which considers the imperfect nature of context information, all at the same time.
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Coming from a completely different direction, another example for a heterogeneous dis-
tributed computing environment, which also shows the characteristics and requirements
identified above, is a cooperating team of heterogeneous autonomous mobile robots for
large-scale search and rescue scenarios. In such scenarios a great number of robots with
different physical and cognitive capabilities may be required. However, it is impractical
to develop large teams or teams of expensive robots at a single site. Thus, we have to
assume that a number of different and independently developed robot platforms have to
form a team and cooperate in order to achieve the overall goal. Here too, heterogeneity
issues have to be handled at runtime as in an emergency situation there may be insufficient
time to hand-engineer information exchange and fusion before task execution. In order
to successfully cooperate in a team of robots, it is not only necessary to communicate the
current goals and tasks performed by a robot but also to establish a common view on the
world. Thus, the robots also have to exchange sensor data, e.g. on observed objects. Fusion
and reasoning approaches have to be realized that are able to incorporate heterogeneously
represented sensor information. Dynamic reconfiguration is also required as communication
links may become available or unavailable, robots break down or new robots enter the team.
Here too, a framework is needed which facilitates the information exchange between a priori
unknown information providers and consumers dynamically appearing in the environment
and which enables a fusion of and the reasoning with heterogeneously represented sensor
data.

Problem Statement

The general objective of the work presented in this thesis is to provide a comprehensive
approach for information exchange and fusion in dynamic heterogeneous distributed environ-
ments which consist of dynamically appearing/disappearing and independently developed
information providers and consumers. This comprises theoretical concepts as well as ar-
chitectural support that can serve as guidelines for the implementation of a corresponding
framework. The focus of the work also lies on providing approaches to reason with hetero-
geneous, imprecise, uncertain and unreliable information. Dynamic reconfiguration has to
be addressed due to the dynamic nature of the computing environment, which has impact
on the availability or quality of the information required as input for the corresponding
reasoning tasks. However, reconfiguration of applications or adaptation of team strategies is
out of the scope of this thesis. As a basis for our work, we assume an underlying commu-
nication protocol [157] or communication infrastructure [3, 6] that allows the integration
of information providers and consumers realized on different platforms and in different
programming languages to a distributed application. In this respect, heterogeneity issues
with regard to the involved platforms and basic communication are already considered to be
resolved. Nevertheless, there are many remaining challenges that form the work plan for
this thesis:

* Semantic discovery and dynamic integration of independently developed infor-
mation providers and consumers. The key challenge to deal with in a dynamic
heterogeneous distributed computing environment is the dynamic appearance and
disappearance of devices and services, which act as information providers and con-
sumers. Not all the devices and services constituting the computing environment may
be known at design time. Thus, runtime mechanisms are required to reason about
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and to perform the mediation tasks that are needed to handle the heterogeneity issues
arising from the independent development of the involved services.

Heterogeneity of data representations. The independent development of informa-
tion providers and consumers implies that each development team utilizes the most
suitable platform and technology for its task, but also names and represents the data
according to its needs. Even if platform-independent data exchange formats, e.g.
based on XML, are used, this results in naming conflicts and in heterogeneous rep-
resentations of the data to be exchanged. For example, the location of the user in a
ubiquitous computing environment may be given in GPS Coordinates or as Address of a
Building. A common vocabulary has to be defined that allows to semantically interpret
the meaning and representation of the data. This is a prerequisite to reason about the
needed mediation tasks to achieve interoperability. In particular, this also comprises
the conversion between different data representations, as for example the conversion
of GPS Coordinates to an Address of a Building.

Expressing information offers and needs. In order to establish communication links
between information consumers and providers in a dynamic fashion, information offers
and needs also have to be expressed based on a common vocabulary as mentioned in
the previous bullet point. Language support is required to allow elaborate specification
of information needs, to filter out inappropriate information offers and to establish
only those communication links that provide the information actually needed.

Competitive fusion of heterogeneous sensor information. The dynamic appear-
ance and disappearance of information providers not only implies that actually re-
quired information may not be available all the time but also that several services
may provide the requested information. In the case of sensors for real-world entities,
which are often imprecise, uncertain and unreliable, conflicting information has to
be expected in such a situation. Competitive sensor fusion schemes based on prob-
abilities and belief functions to resolve conflicts and to come to a coherent value
are widely available [115, 125, 124, 89, 82]. However, new challenges arise from
the heterogeneity issues of the involved sensors that have to be resolved at runtime.
In particular, runtime mechanisms are needed that are able to reason about and to
automatically perform the mediation tasks that are required to maintain the meta-data
expressing the impreciseness, uncertainty and unreliability of sensor data across the
conversion of representations. For example, the impreciseness of an object’s location
estimation given through a covariance matrix has to be maintained across maybe
highly non-linear representation conversions.

Reasoning with heterogeneous, imprecise, uncertain and unreliable information.
In many cases, required information cannot be directly sensed but has to be derived
from other sensor information by appropriate reasoning mechanisms. For example,
consider the situation of a user in a ubiquitous computing environment. There are
no sensors available to directly determine whether the user is currently working,
shopping or having dinner. Instead, logical or probabilistic reasoning schemes are
applied to derive such high-level information from low-level sensor data. Here too,
the heterogeneous nature of the involved sensors entails further challenges. Before
providing appropriate input for the reasoning schemes, representation conversions
and competitive sensor fusion have to be performed. Or viewing it from another
perspective, reasoning schemes are required that are able to deal with information
resulting from the applied representation conversion and sensor fusion steps.
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1.3 Solution Approach

Figure 1.1 provides an overview of the proposed approach. The baseline of the overall
approach is an Information Model in terms of an ontology specified in OWL [155]. It defines
the basic semantic concepts Entity Types, Scopes and Representations. Entities represent real
or logical objects of the world that are characterized by a piece of information. As with the
usual typing concept, an Entity Type abstracts over a set of Entities, which are considered
as instances or individuals of an Entity Type. A Scope defines a semantic concept for the
type of the provided information and the Representation specifies how the information is
represented. Apart from these basic concepts, the ontology also defines Inter-Representation
Operations (IROs) [135] that describe the conversion of one representation of a certain scope
to another representation of the same scope. With the help of these concepts, a common
vocabulary is established that allows to interpret the meaning and representation of the
exchanged data and to reason about the availability of appropriate IROs for the conversion
between different representations.

Information Model (Ontology)

4 N\

> Discovery and Matching <

Reasoning Results

\ 4

Inter-Representation Operations

Converted Datal

SJI9JJO UOoITewWw ou]

Data

Information Fusion

Information Requests

Fused Data

\ 4

Information Consumer 0..* Information Provider 0..*

Reasoner 0..*

Figure 1.1: Overview of the Solution Approach

As highlighted in the previous section, the focus of our work is also on reasoning with
heterogeneous information. We assume that there is an arbitrary number of reasoning tasks
to be performed. Each reasoner acts as information consumer and as information provider.
The required and offered information is specified on the common vocabulary defined by
the ontology utilizing the newly developed Information Offer and Request Language (IORL).
It supports elaborate filter mechanisms to precisely define and constrain the offered and
requested information. The corresponding semantic definitions serve as input for the Discov-
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ery and Matching approach. Matching of information offers and requests already includes
reasoning about potentially required mediation tasks in terms of IROs to be performed for
bridging mismatches in the provided and requested representations.

The reasoning results of the Discovery and Matching approach are used to establish com-
munication links to (and maybe activate) the corresponding information providers. There
may be multiple providers for the same requested Scope, but they are likely to provide the
information in a different representation as requested. However, by means of the previ-
ous reasoning step it is ensured that only links to such providers are established, where
mismatches between offered and requested information can be resolved. When applying
the corresponding IROs, special care has to be taken to maintain the meta-data expressing
the impreciseness, uncertainty and unreliability. As a developer should not be bothered to
deal with such meta-data but should only be required to develop a simple value-to-value
conversion routine, we employ sampling mechanisms like the Unscented Transformation [70]
for maintaining the associated meta-data.

When the different pieces of information are given in the same representation, the Dempster-
Shafer Theory of Evidence (DST) [126, 27] is utilized to fuse the different sensor inputs.
The DST was selected as underlying sensor fusion scheme as it allows to specify partial or
complete ignorance and is well-suited to combine information of very different granularity,
e.g. User Location in GPS Coordinates and User Location in a Building.

As Dempster-Shafer belief assignments are the result of the information fusion step, reasoning
schemes are required which integrate the DST as well. In scenarios as depicted above,
common reasoning schemes are based on logics or on Bayesian probability theory. Examples
for the latter case are Naive Bayes Classifiers, Hidden Markov Models or Polytree Bayesian
Networks. These reasoning schemes can be integrated with the DST based on the Transferable
Belief Model (TBM) [130] in a straight-forward manner.

Contribution

The research work presented in this document has led to a number of contributions to the
state of the art. Although the proposed approach is designed to be generally applicable to
dynamic heterogeneous environments, in which fusion of and reasoning with imprecise,
uncertain and unreliable sensor information is required, in particular contributions have
been made in the area of Context Management and Reasoning in Ubiquitous Computing and
in the area of Cooperative Teams of Heterogeneous Mobile Robots. In this respect, these two
target environments have not been selected arbitrarily but from the observation that the
two areas can profit from each other by combining the strengths of both to a comprehensive
solution approach. Concretely, we see four major contributions:

1. A comprehensive solution for information exchange and fusion in dynamic heteroge-
neous distributed environments has been designed, combining a number of ingredients
available in the areas of Context Management and Reasoning and Autonomous Mobile
Robots.

2. An elaborate context modelling approach with focus on heterogeneity of context
sensors and reasoners is presented in terms of the ontology-based Information Model
and the associated IORL. The corresponding concepts form the basis of the context
model utilized in the European research project MUSIC [90].
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3. A new generally applicable context aggregation and reasoning method is pro-
posed which is focused on the incorporation of heterogeneous sensor information and
is based on well-established theories.

4. New concepts for the dynamic formation of cooperative teams of heterogeneous
autonomous robots are presented that allow bridging heterogeneity at the informa-
tion representation level.

All the claimed contributions will be justified when we analyze related work (Chapter 6)
and present the solution approach (Part II).

Structure of the Thesis

This document is structured into three parts. The foundations of the proposed solution are
discussed in the remainder of the first part. This includes information exchange in hetero-
geneous environments (Chapter 2), fusion of (Chapter 3) and reasoning with imprecise,
uncertain and unreliable sensor information (Chapter 4), basic concepts of an ontology-based
specification of application domains (Chapter 5) as well as the analysis of related work
(Chapter 6).

The main contribution of this thesis is contained in Part II of the document. In Chapter 7, we
introduce the underlying Information Model along with the associated IORL. The realization
of IROs and the applied techniques to maintain the measures for impreciseness, uncertainty
and unreliability across the transformations is described in Chapter 8. Chapter 9 presents our
fusion method for heterogeneous sensor information based on the DST. The corresponding
reasoning schemes that are able to make use of the results of the sensor fusion step are
presented in Chapter 10. The combination of the proposed theoretical concepts to a
comprehensive framework leads to a number of implications for its architectural design.
These implications are elaborated in Chapter 11.

The general purpose of Part III of the document is to evaluate and to critically assess the
proposed concepts. Two case studies are provided to evaluate its practical feasibility. The first
real-world case study presented in Chapter 12 is centered around a dynamically composed
team of autonomous soccer robots, where the different team members communicate the
information of their world models involving heterogeneous representations. We show how
this team of robots can come to a coherent estimation of the ball position on the field
incorporating imprecise, uncertain and unreliable sensor information. Such a coherent
estimation of the ball position is the prerequisite to coordinate team play within a soccer
game. Chapter 13 presents the second case study, which is based on a simulated scenario for
ubiquitous computing environments. User activity recognition has to be performed to adapt
the applications on a mobile device according to the current user situation. In particular,
the impact of different quality levels of the incorporated sensor information and the effects
of using the DST instead of traditional probabilities on the reasoning result is investigated.
Finally, Chapter 14 concludes this dissertation and presents an outlook to future work.
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2.1

Information Exchange in Heterogeneous
Environments

Information and Heterogeneity

The term information, derived from Latin informare in the meaning to give form (to the
mind), is widely used in our daily life and plays an important role in basically all areas of
research: physics, computer science, cybernetics, electrical engineering, business economics,
social sciences, etc. Dependent on the particular perspective, different characteristics of
information are highlighted and consequently its definitions vary to some extent. Thus, the
term information is difficult to capture and it is important to clarify our understanding in the
context of this thesis. For this purpose, we start with a list of characteristics of information,
which are collected from [127], [94], and [148] and reflect our understanding.

« information reduces uncertainty' and thus leads to new knowledge about real or
logical entities, events, processes or states of the world.

* information can be transmitted/communicated in the form of signals or data.

* perception of information may lead to a change of the receiver’s state comprising
its knowledge, decisions, actions.

It is noteworthy here that in information theory [127] the mean mutual information of two
random variables is always greater or equal to zero and thus reduces uncertainty or has
no influence on it. As people usually do not refer to the mean mutual information of two
random variables, however, this does not necessarily correspond to the common intuitive
understanding, where information contained in a message may also cause an increase of
uncertainty. From this consideration and the characteristics above, we derive the following
definition of the term information as used in this thesis.

Definition 1 Information is a metaphor for everything that is encoded in the data of a message
transmitted /communicated from a sender to a receiver, influences uncertainty of a certain
estimate and may lead to new knowledge at the receiver’s site useful to derive decisions, actions
or new state estimates. Propagation between different levels of abstraction is also considered as
transmission /communication between a sender and receiver.

Information about real entities, events and processes of the world is usually provided by
some kind of sensors. These encode the information contained in (accustic, electromagnetic,
etc.) signals in a machine-processable representation. Possible representations range from

! A measure of variety which is zero when all elements are in the same category and increases with both the
number of categories and their equiprobability [146].
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a pure voltage level to more abstract data representations, possibly involving a number of
basic preprocessing and feature extraction steps. In our work we focus on information which
is already given in such a kind of abstract data representation. This leads us to the following
understanding of sensor information as used in this thesis.

Definition 2 Sensor information is information that characterizes real entities, events and
processes of the world and is provided by devices (sensors) which measure physical quantities,
transform them in signals and encode the signals in a data representation (possibly performing
some basic preprocessing and feature extraction steps).

In contrast to information, the term heterogeneity can be captured much easier. Heterogeneity
is the noun derived from heterogeneous (from Greek heteros ‘other’ and genos ‘a kind’), which
means diverse in character or content.? However, for the purpose of this thesis it has to be
clarified what kind of heterogeneity with regard to a distributed computing environment
we aim to address. In the following list, which is not claimed to be exhaustive, we have
identified different characteristics of today’s distributed computing environments that impose
additional challenges due to heterogeneity.

* A distributed computing environment may comprise a number of different physical
devices, which implies heterogeneity with regard to the properties of the involved
physical platforms.

* The nodes may run different operating systems and the corresponding software com-
ponents, modules or services, may be realized using different programming languages,
which results in heterogeneity issues with regard to the basic software platform.

* Communication in a distributed computing environment can impose heterogeneity
issues due to the usage of various networking technologies.

* Additional challenges may also be implied by heterogeneous communication proto-
cols and serialization/deserialization schemes utilized by the software components,
modules and services.

* Independent development of software components, modules and services may result
in mismatches in the expected and provided representation of the information. This
involves, for example, the names used for entities and/or information types as well as
the employed coordinate systems and units of measure.

The focus of this thesis is on bridging heterogeneity of the utilized data representations that
result from the independent development of the involved components, modules and services
as described in the last bullet point. Heterogeneity issues resulting from different software
platforms, network technologies, and communication protocols are assumed to be already
solved by an underlying communication framework.

Communication in Heterogeneous Distributed Environments

Dependent on the type of heterogeneity issues to be addressed, different possibilities are
available to realize the communication among the nodes consituting a distributed computing

2In Compact Oxford English Dictionary, http://www.askoxford.com/ (accessed 2010-04-23).
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environment. Heterogeneity with regard to network technologies, underlying software plat-
forms and programming languages is often bridged by employing a standard communication
protocol, which is expected to be supported by all the involved software systems and network
technologies.

Web Services

The realization of distributed applications using Web services exactly follows this idea. Web
services are software applications, which are uniquely identified by a Uniform Resource
Identifier (URI) and whose interfaces are described in a platform-independent language,
usually in WSDL [158]. Direct interaction with other software components, agents or
applications is realized through the exchange of messages, which are also represented
in a standard platform-independent language, via standard internet protocols. Here, the
most frequently used message representation is SOAP [157] and the usually employed
protocol is HTTP. In fact, Web services can be realized on top of arbitrary data exchange
protocols. However, HTTP and other internet based protocols have the advantage that
communication is usually allowed also across networks protected through firewalls without
additional configuration effort. In this respect, Web services support the interoperability
between different applications realized on various software platforms and frameworks. The
usage of heavy-weight XML-based standards, however, requires extensive message parsing
and leads to a big message size. Although this is partly avoided by Web services that are
based on REST (REpresentational State Transfer) [35] which does not rely on XML, Web
services are not the first choice in scenarios where real-time or soft real-time capabilities of
the communication framework are required. An example for such a scenario is a team of
heterogeneous autonomous mobile robots.

Common Object Request Broker Architecture (CORBA)

Several middleware frameworks for autonomous mobile robots [141, 142, 17] are based on
the Common Object Request Broker Architecture (CORBA) [96]. CORBA is a specification
for an object-oriented middleware that defines platform-independent protocols and services.
One of its central concepts is the so-called Object Request Broker (ORB), through which
the application interacts with other locally or remotely available objects. The Interface
Definition Language (IDL) allows for a formal specification of the interfaces that a server
application provides for local or remote access. The corresponding IDL definitions are then
translated by an IDL Compiler in an object model of the used programming language, which
results in source code containing stubs and skeletons. The stubs of the generated classes
can now be used from the client application in the same way as local objects hiding all the
complexity of the remote method calls. The CORBA specification is not bound to a specific
programming language or a specific platform. For example, there exist implementations
in C, C++ and Java, and standard mappings from IDL to these programming languages
are available. Communication within a CORBA implementation was usually realized with a
developer-specific protocol. With CORBA 2.0, the General Inter-ORB Protocol (GIOP) was
introduced, which supports communication among different CORBA implementations. Here,
most widely used is the Internet Inter-ORB Protocol (IIOP), which is a mapping of GIOP to
internet protocols. In this respect, CORBA enables the integration of heterogeneous software
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components written in different programming languages and running on different platforms
to a distributed application.

In comparison to Web services, CORBA not only prescribes a standard message representa-
tion scheme and communication protocol for bridging heterogeneity issues, but also a rather
complete architecture. In a similar way, FIPA specifications (see also Section 6.2.1) define
an Abstract Architecture Specification (FIPA-AAS) [37] along with an Agent Communica-
tion Language (FIPA-ACL) [38], message content languages and message representation
schemes to guarantee interoperability among heterogeneous agents if the corresponding
agent frameworks are implemented according to these standards.

SPICA

The SPICA development framework [3, 6, 4, 5] is based on the model-driven software
development (MDSD) [144] paradigm and allows an automatic generation of communication
infrastructures enabling the integration of heterogeneous software modules in a distributed
environment from abstract specifications. Here, heterogeneity is caused through independent
development of the software modules in different programming languages.

In general, MDSD prescribes the specification of the software component or system to
be realized in an abstract and platform-independent model (PIM) using general purpose
or domain-specific modelling languages. The PIM is then transformed by appropriate
transformation tools in one or more steps to a platform-specific model (PSM) that takes
into account the special characteristics and properties of the target platform. In a second
transformation, source code for the specified software component/system is generated from
the PIM. In this respect, MDSD exhibits a general mean to cope with heterogeneity between
various platforms by providing a platform-independent model that can be transformed in
different implementations tailored to each of the involved platforms. Here, the type of
heterogeneity issues addressed obviously depends on the definition of what is understood by
the term platform: e.g. operating system, middleware or programming language. In CORBA,
the specification of service interfaces in IDL and the generation of platform-specific stubs
and skeletons from these definitions with the help on an IDL compiler can be considered as
a kind of MDSD approach as well.

An overview of the SPICA development framework is shown in Figure 2.1. SPICA provides a
very lightweight approach and is tailored to support modularity, efficiency, heterogeneity
and robustness of the communication infrastructure to be developed. Its central parts are the
SPICA modelling language (SPICA ML) and the Aastra model transformation tool. SPICA ML
provides specification means to define the messages, the modules constituting the modular
architecture of the envisaged system, their data management capabilities and the data flow
between the modules. With regard to message definition, SPICA ML allows the modelling of
hierarchically structured network messages similar to but much more application domain-
oriented than ASN.1 or IDLs. It supports a type concept with strong typing and inheritance.
References to an ontology are envisaged in order to base the message and field definitions
on a common vocabulary. However, there is no concrete ontology or ontology meta-model
provided, and thus an underlying information model is missing.

The modules are defined by their provided and required message types and their data
management containers (DMCs). DMCs are for example ring buffers, arrays or queues, and
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Figure 2.1: Overview of the SPICA Development Framework

used to store asynchronously received messages. Here, SPICA allows to define callback
methods, which are invoked when a message is received. DMCs for provided message types
can be configured to send the data periodically or a transmission is triggered if a new element
is inserted into the corresponding DMC. The data flow between the modules is implicitly
defined by the provided and required message types of the modules and established by
the resource discovery and matching component Geminga. Geminga is a component of the
SPICA framework and contained in the Castor library. Castor provides implementations of
the required communication capabilities as well as the SPICA data management framework
(SpicaDMF) and is available in different programming languages such as C++ and C#.

Model transformation and code generation in SPICA are realized with the help of the ANTLR
parser generator [1] and the String Template template engine [105]. The code generation
results in data structures for the messages along with their serialization and deserialization
methods as well as in skeletons for the modules in the desired programming languages.
The skeletons serve as proxies on top of existing modules and allow an easy integration of
heterogeneous modules with minimal manual programming effort by providing easy-to-use
interfaces to exchange data with the DMCs.

In principle, the approach for information exchange and fusion proposed in this dissertation
can be realized on top of a Web service-based infrastructure, or using CORBA or SPICA. In
Chapter 7, we will shortly discuss how our information model integrates with the SPICA
development framework, in particular with SPICA ML. A SPICA-based communication
infrastructure will also serve as baseline for our real-world case study (see Chapter 12) that
evaluates the feasibility of our approach for a cooperative team of autonomous robots.
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3 Fusion of Imprecise and Uncertain

3.1

Information

The Imperfect Nature of Sensor Information

Sensors measure physical quantities and convert them into signals serving as input for further
processing steps to derive state estimates for the observed entities. Due to physical limitations
of the sensors (e.g. the resolution, color depth/format or frame rate of a camera), sensor
malfunction, noise, latencies and interferences, sensor information is usually imperfect. In
this dissertation, we address the imperfect nature of sensor information with respect to the
following four aspects:

* Uncertainty: Processing of sensor data often results in several disjunct hypotheses for

an entity’s state. For example, if a camera is used to locate an arbitrarily colored soccer
ball on a soccer field, several regions in the image may show nearly round shapes
with approximately the size that can be expected for the ball. In this case, the sensor
provides different hypotheses for the ball position on the field. Uncertainty among
the hypotheses is often expressed by assigning probabilities to the hypotheses. In this
dissertation, we also address the case where these probabilities are partly or totally
unknown.

Impreciseness: Even if there is only one hypothesis for an entity’s state, the estimate
is usually imprecise due to inherent measurement errors, noise and interferences. For
example, a temperature sensor may tell 19°C for temperatures from 18.5°C to 19.4°C
due to limited resolution and measurement errors. In this case, the impreciseness
could be described by a value range. However, it is also very common to express
impreciseness with the help of probability density functions, e.g. a Gaussian defined
by its mean and covariance matrix.

Unreliability: A sensor may also provide wrong estimates caused by malfunction
and/or bad conditions in the environment which disturb the measurements. Therefore,
the information provided by a sensor can only be assumed to be reliable to a certain
extent. Reliability is often expressed through a confidence value or probability the
sensor is expected to work properly and thus to provide a feasible estimate. As argued
in [84], the reliability of a sensor may vary in different contexts, i.e. conditionally on
different hypotheses regarding the entity state of interest.

Outdatedness: Sensor information may be outdated due to the limited frequency
of the performed measurements and/or latencies in signal or data transmission. In
particular, if the state of the observed entity, event or process is highly dynamic, the
estimates provided by a sensor are more unreliable the older they are.

In Chapter 9, we show how all these characteristics can be considered in an information
fusion approach based on Dempster-Shafer belief functions.
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3.2 Complementary and Competitive Information Fusion

In dynamic distributed computing environments as envisaged in this dissertation, information
providers dynamically appear and disappear. This means that actually required information
may not be available all the time, and also that several services may provide the requested
information at the same time. In this case, a single information provider has to be selected
or information fusion approaches have to be applied. Here, information fusion is understood
in the following way:

Definition 3 Information fusion is concerned with combining information from different
sources with the objective to obtain more precise, less uncertain, more reliable or new state
estimates.

In this dissertation, information fusion is mainly considered with regard to data which
originate from sensors, i.e. we are mainly concerned with sensor fusion.

Definition 4 Sensor fusion is a specialization of information fusion where the information to
be combined is directly provided by or originates from sensors.

In the literature, different proposals have been presented for the categorization of sensor
fusion approaches [15, 55, 75]. Here, the applied criteria include functionality [15], the
addressed information level [55] or architectural properties [75]. From the perspective
of functionality, Brooks and Iyengar [15] distinguish between competitive, complementary,
cooperative and independent fusion approaches.

* Competitive sensor fusion schemes combine sensor data that represent the same
perspective on or measurement of an entity’s state and provide the same type of
information with the objective to reduce uncertainty and to resolve conflicts. This
is the basic sensor fusion type and is often regarded as the ‘traditional’ or ‘classical’
sensor fusion technique.

* Complementary sensor fusion methods aim at creating a more complete model by
combining sensor information that represent complementary perspectives and do not
depend on each other directly.

* Cooperative sensor fusion takes into account the fact that no single sensor but only
a combination of multiple sensors may be able to provide the required information.
The difference to complementary sensor fusion is that in cooperative sensor fusion the
sensors directly depend on each other. An example for cooperative sensor fusion is a
sterovision system to realize three-dimensional object recognition. Here, the pixels of
the two images depend on each other in pairs from which the object distances can be
derived.

* Independent sensor fusion is performed if information from multiple sensors is used
for some purposes in different places in the system. This is a special case and actually
does not represent sensor fusion schemes strictly referring to its definition as the
information from different sensors is just used in the same system but not necessarily
combined.
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In conclusion, competitive sensor fusion aims at improving the quality of state estimates,
whereas complementary and cooperative sensor fusion schemes are used to derive new,
possibly more high-level state estimates. In this dissertation, we restrict ourselves to com-
petitive and complementary sensor fusion. As competitive sensor fusion is considered as
the traditional form, the general term sensor fusion is used in the meaning of competitive
sensor fusion in the remainder of the document, whereas complementary sensor fusion is
captured by the terms reasoning with, aggregation of or integration of sensor information.
In the following sections (Section 3.3 to Section 3.5), different approaches for competitive
sensor fusion are presented. Methods for reasoning with uncertain, imprecise and unreliable
information are presented in Chapter 4.

Fuzzy Logic

Fuzzy logic [165, 166] has mainly been developed to accommodate impreciseness and
uncertainty of descriptive terms used by humans in daily life and to allow reasoning with
them. For example, the temperature of a room is often referred to as ‘cold’, ‘warm’ or ‘hot’.
However, there are no crisp boundaries between these three descriptive terms. For example,
19°C can be considered to a certain degree as ‘cold’, but also interpreted as ‘warm’. Thus,
fuzzy logic provides methods to deal with (sensor) information which cannot easily be
separated into discrete segments, and consequently is difficult to model with conventional
mathematical or rule-based systems.

Fuzzy logic is based on fuzzy sets, membership functions that establish a mapping of values
to fuzzy sets, as well as appropriate logical operations for these sets and production rules for
inference. In practical applications, also methods for fuzzification and de-fuzzification have
to be incorporated, i.e. methods to convert values and interrelationships into a fuzzy logic
representation and back.

In contrast to sets in the traditional understanding, where an element is either included
in the set or not, in fuzzy set theory it is also possible that elements are included in a set
only to a certain extent. The degree to which a value is part of a fuzzy set is described by
the membership function of the fuzzy set, which assigns each element of the domain a real
number of the interval [0, 1].

The well-known logical operations ‘and’, ‘or’ and ‘not’ as well as the set operations ‘union’,
‘intersection’, and ‘complement’ are defined for fuzzy sets based on a t-norm and its corre-
sponding t-conorm. A t-norm shows by definition the properties of commutativity, associativ-
ity, monotonicity and has the identity element ‘1’. Usually the logical operations are defined
based on the Godel t-norm [50], which results in the following combination scheme:

notx = 1-—truth(x)
xand y = min{truth(x),truth(y)}
xory = max/{truth(x),truth(y)} (3.1

where x and y are fuzzy variables and truth(x) corresponds to the truth value of the variable
x. If the logical operators are defined as in Equation 3.1 they are also called Zadeh operators.
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Based on fuzzy sets and fuzzy logic, competitive sensor fusion can now be realized by
intersecting the state estimates of the involved sensors represented as fuzzy sets. Logic
inference is specified based on so-called production rules in the form of IF-THEN statements.
This is also often referred to as fuzzy associative matrices.

Fuzzy logic provides a simple sensor fusion method, is well-suited to represent impreciseness
and uncertainty inherent to terms used in humans’ daily life, and thus also facilitates the
integration of knowledge from human experts. However, we do not consider it as first
choice for a sensor fusion scheme to be integrated in a generic framework applicable to a
wide range of applications, as membership functions, production rules, and methods for
fuzzification and de-fuzzification are often highly domain- and problem-specific.

Bayesian Inference

Bayesian inference is the most widely used sensor fusion scheme and is the starting point for
many new methods [159]. Thus, it is often referred to as the ‘classical’ sensor fusion method.
In Bayesian inference, a belief in a hypothesis before evidence has been collected (prior
belief) is updated to a belief estimate after evidence has been observed (posterior belief).
This process can be repeated when additional evidence is obtained using the posterior belief
of the previous step as new prior. Usually, Bayesian inference works on degrees of belief
or subjective probabilities in the induction process, and consequently does not necessarily
provide an objective method of induction.

Probabilities are adjusted when new evidence becomes available according to the theorem
of Bayes:

p(iiE) = oD (3.2)

Here, H represents a certain hypothesis and P(H) the prior probability inferred before the
new evidence E was obtained. P(E|H) depicts the conditional probability for observing the
evidence E if the hypothesis H happens to be true. If it is considered as a function of H with
fixed E it is also referred to as likelihood function.

The marginal distribution of E, P(E), is the a priori probability of obtaining the evidence
E considering all possible hypotheses. It can be calculated by summing up the products of
the probabilities of a complete set H of mutually exclusive hypotheses and the conditional
probabilities of E given the corresponding hypothesis:

P(E)= Y P(E|H;)-P(H,) (3.3)

H;eH

In practice, however, the calculation of P(E) can often be avoided as the conditional
probabilities of the hypotheses given the evidence have to sum up to one. In this case,
1/P(E) is often abstracted through a normalization factor a. The conditional probability
P(H|E) corresponds to the posterior probability of H after the observed evidence has been
considered.
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In this update step the factor P(E|H)/P(E) can be interpreted as a measure for the impact
of the evidence E on the belief in the hypothesis H. If it is likely that E can be obtained if H
is true, but unlikely that E can be observed at all, this factor will be quite large resulting in
a higher posterior probability of the hypothesis. Conversely, in the case of a quite unlikely
observation of E given H, but a high marginal probability for E, the factor is small and causes
a reduction of the posterior probability of H.

As already mentioned above, this update step can be performed iteratively using the pos-
terior of the previous step as new prior, if the evidences are marginally and conditionally
independent of each other given the hypotheses. Iteratively applying Bayes’ theorem for two
pieces of evidence yields:

P(E,|H) - P(E|H) - P(H)
Yt.en P(E1|H;) - P(E3|H) - P(H,)

P(H|E;NE,) = (3.4

Although Bayesian inference served as baseline for and has proven its viability in a great
number of sensor fusion tasks [159], it still shows a number of disadvantages. For example,
it is often difficult to define a priori probabilities or to consider multiple potential hypotheses
and multiple conditionally dependent events. Furthermore, the approach requires mutual
exclusivity for competing hypotheses and, as it is based on probability theory, it is not able
to account for general uncertainty and partial or total ignorance.

Dempster-Shafer Theory of Evidence

The Dempster-Shafer Theory of Evidence (DST) [126, 27] is a generalization of the classical
Bayesian probability theory and is also known as the theory of belief functions. In contrast to
the classical Bayesian probability theory, DST allows explicit modelling of partial and total
ignorance.

Central to DST is the concept of belief functions, which are based on basic belief assign-
ments. Let Q be a finite and non-empty set called frame of discernment. The mapping
bel : 2% — [0, 1] is a belief function iff there exists a basic belief assignment m : 2% — [0,1]
with the following properties:

m (@) =0 (3.5)
Zm(A)zl (3.6)
ACQ

bel (A) = Z m(B) (3.7)

BCA,B#0D

The values of m(A) (A C Q) are called basic belief masses (or shortly masses) and are
assigned to all elements of the power set of £2. A mass assigned to a subset A of Q with |A| > 1
is interpreted as belief mass, which can be given to the whole set, but for which no further
justification exists to divide the belief mass into masses of more elementary subsets of A. Note
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that Shafer in his original model asserts m (@) = 0 and hence, bel (2) = 1. As described later
on, this assertion has consequences for the rules for combination and conditioning of belief
functions: the results are normalized by division with appropriate scaling factors. Smets
argues that m (@) > O can be justified under the open-world assumption and consequently
drops the assertion of Shafer’s model. The nature of m (@) > 0 and the differences between
the two definitions are discussed by Smets in [131].

Belief functions are in one-to-one correspondence with plausibility functions, which de-
scribe a mapping pl : 2% — [0, 1] where pl (#) =0 and for allAC Q , A # 0:

pl)= > m(B) (3.8)

BIANB#0

The relation between belief functions and plausibility functions is also given through:

pl(A) = bel () — bel(A) (3.9

Interpreting the belief of an A € Q as belief masses that have to be assigned to A, and
the plausibility of A as the belief masses that can potentially be assigned to A, belief and
plausibility form the upper and lower bound of the probability (in the classical sense) of A:

bel (A) < P (A) < pl (A) (3.10)

Competitive sensor fusion deals with the problem to fuse competing information for the
same question but from different sources. In the Dempster-Shafer model, competitive sensor
fusion is realized through Dempster’s Rule of Combination. It allows to combine two
independent evidences given as two independent basic mass assignments m; and m, on the
same frame of discernment. The joint mass assignment m, , is calculated with:

my (@) =0 (3.11)
1
my 2 (A) = (my @ my) (A) = T— > mi(B)-my(C) (3.12)
BNC=A#0
K= Y m(B) -my(C) (3.13)
BNC=0

Dempster’s Rule of Combination is based on the idea to minimize conflict by assigning the
masses of two subsets B and C of Q to the intersection B N C, and to multiply the masses
m; (B) and m, (C). K corresponds to the sum of masses that have to be assigned to § and
hence provides a measure for the remaining conflict. Forcing Equation 3.11 and maintaining
the requirement given through Equation 3.6 results in a normalization with ﬁ, which
actually means ignoring the conflict. This has led to serious criticism of the rule when a
significant conflict is encountered in the mass assignments. As mentioned above, the model
of Smets drops the assertion m (@) = 0 and thus does not require the normalization. The
corresponding rule without normalization is called Conjunctive Rule of Combination.
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In Bayesian probability theory the concept of conditional probability is very important.
This gives rise for considering the concept of conditioning also within the Dempster-Shafer
model and the introduction of conditional belief functions. Assume bel quantifies the
belief on the frame of discernment 2 and we learn that A C  is false. Then, the resulting
conditional mass assignment and the corresponding conditional belief function is obtained
by Dempster’s Rule of Conditioning:

1
m(BIA)=ﬁZm(BUX) ifBCACQ (3.14)
XCA

m(B|A) =0 otherwise

K = bel(A)

Analogously to conditional probabilities, bel (B|A) is considered as the belief of B given A or
in a context where A holds. One interpretation of Dempster’s Rule of Conditioning is that a
mass m(B) given to B is transferred by conditioning on A to AN B. In this respect, Dempster’s
Rule of Conditioning can be obtained without the concept of combination of distinct pieces
of evidence and hence does not require any definition for distinctness, combination or
probability. Just as for Dempster’s Rule of Combination, in the model of Smets with an
open-world assumption the normalization is also omitted for the rule of conditioning.

Dubois and Prade [32] proved the following relations for the combination of a conditional
belief or mass assignment given by m; and another mass assignment m:

mip(4) = D my(AB)m,(B) (3.15)
BCQ

bel5(4) = Y bel, (AlB)m,(B)
BCQ

pliz(4) = > pli(AB)m,(B)

BCQ

There are several proposals for decision making using Dempster-Shafer belief functions, e.g.
[162, 136]. However, so far the theory of belief functions still lacks a coherent theory to
guide the choices of lotteries in which uncertainty is described using belief functions [24]. A
possible solution to this problem is to translate a belief function model to a probability model
and then to apply the Bayesian decision theory for decision making. Such a transformation
calculates a probability value for each element (singleton) w € Q.

Smets has suggested [129] to apply this strategy and to use the pignistic transformation
to derive probability functions from belief functions. The pignistic transformation is defined

by:

lwnNAl m(A)
BetP,,(w) = (3.16)
A; Al 1—m®)
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where in case of m(@)) > 0 the value of 1 — m()) acts as normalization coefficient. Intuitively,
in the pignistic transformation the masses of subsets of 2 are evenly distributed among its
constituting singletons w € Q.

Although the pignistic transformation is the most commonly used method for translating
from belief function models to probability models, Cobb and Shenoy [24] are concerned
that this transformation is not consistent with Dempster’s Rule of Combination. Hence, they
propose the method of the plausibility transformation, which is defined in [24] as:

pl(w)
Z’UGQ pl(v)

Bayesian probability theory and Dempster-Shafer Theory of Evidence are the two most
popular multi-sensor fusion approaches in a number of different domains. One important
reason for this is that both approaches are commutative and associative with respect to the
incorporation of competing sensor information.

Pl P,(w)= (3.17)

Both, the Bayesian inference method and the Dempster-Shafer method, support the update
of a priori estimates with new observations to obtain a posteriori estimates. However, the
Dempster-Shafer method relaxes the restriction on mutually exclusive hypotheses of the
Bayesian method as it allows to assign belief to propositions, i.e. subsets of 2. Partial
ignorance can be modelled by assigning masses to subsets of {2, complete ignorance can be
expressed by assigning a mass to the whole frame of discernment.
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4.1

4.1.1

Reasoning with Uncertain Information

Numerous different approaches for reasoning with uncertain information based on fuzzy
logic [76, 115], probabilistic logic [115], Bayesian probability theory [115, 124, 125] or
DST [89, 82] have been proposed in the literature. In the following sections, we focus on
reasoning schemes utilizing probability theory and DST, as these have been identified as
the most suitable approaches for competitive sensor fusion in the previous chapter and thus
fit best into a comprehensive solution providing support for fusion of and reasoning with
heterogeneous and imperfect sensor information.

Probabilistic Reasoning Schemes

Bayesian Networks

A Bayesian network [109] is a probabilistic graphical model that provides a compact repre-
sentation of the joint probability density function of a set of random variables via a directed
acyclic graph (DAG) by exploiting conditional independencies among the random variables.

The nodes of the DAG represent random variables, e.g. observable quantities, latent vari-
ables, hypotheses, and the edges describe the conditional dependencies. Every variable
corresponding to a certain node depends on the variables that are represented by the re-
spective parent nodes, i.e. there is a directed edge from each parent node to its child
nodes. Conversely, nodes which are not connected through edges depict variables that are
conditionally independent of each other. Every node is assigned with a probability density
function P(X |parents(X)) which is called conditional probability table (CPT) and quantifies
the influence of the parent variables on the variable X. If a node has no parent nodes,
the probability density function corresponds to the a priori probability of the variable. All
variables together represent the full joint probability density function of the variables and
thus provide a model for the uncertain knowledge. The full joint probability density function
represented by a Bayesian network is given by:

n
PX;=x1,...,X,=Xx,) = l_[P(Xi = x;|X; = x; for each X; being parent of X;)  (4.1)
i=1

Based on this joint probability density function it is possible to do inference on the data
represented by the Bayesian network, i.e. to calculate the conditional probability density
function for a set of query variables given certain observations which result in an allocation of
values to a set of evidence variables. Here, the simplest method is inference by enumeration,
which is explained using the Bayesian network shown in Figure 4.1. Variable elimination
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Figure 4.1: Simple Example for a Bayesian Network
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is based on the same ideas and can be considered as a more efficient implementation of
inference by enumeration.

Consider for example a query on the variable X; while X, and X5 have been observed. This
means, we would like to calculate the conditional probability P(X; = x;|X4 = x4,X5 = X3).
The starting point forms the definition of conditional probability which yields to:

P(Xl = xl,X4 = X4,X5 = XS)
P(X4 = x4,X5 = Xs5)

P(X; = x1|X4 = x4,X5 = x5) = (4.2)

As the denominator on the right side is independent of X, i.e. constant for all values of X,
and it has to be ensured that the conditional probabilities of variable X; given the observed
values for X, and X5 sum up to 1, the denominator can be subsumed by a normalization
factor a. Considering also the marginalization over the hidden variables (non-evidence
variables and non-query variables) this results in:

P(X1=x1|X4 = x4,X5 =x5) = QZZP()Q =x1,X5 = x9,X3 = x3,X4 = x4,X5 = X5)
X X3

4.3)

Exploiting Equation 4.1 and rewriting the equation using the distributive law yields to:

P(X, = x1|X4 =X4,X5 = Xs) =aP(X; = xl)ZP(Xz =X5)"
X2
ZP(Xs = x3|X1 = x1,X5 = x2)P(Xy = x4|X3 = x3)P(X5 = x5]|X3 = x3) (4.4)

X3

Another approach for inference in Bayesian networks is Pearl’s belief propagation algorithm
[109, 88]. In its original version [108], it allows to calculate the marginal distribution of
unobserved nodes given the observed nodes in Bayesian networks that are trees. Later,
this algorithm was extended for polytrees [74] and also provides useful approximations for
general DAGs, as shown in [109].
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The basic idea of the algorithm is to base inference mainly on local computations performed
for the nodes of the network and then to propagate belief updates via messages to the
corresponding child nodes (7-messages) and to the parent nodes (A-messages). Here,
the observation that a node X separates the network into two disjoint parts is crucial.
Causal evidence that is accessible through the parents of X (denoted as Ex~+) is forwarded
‘downwards’ in mw-messages and diagnostic evidence coming from the child nodes of X
(denoted as Ex-) is propagated ‘upwards’ in the A-messages. Exploiting the independence
assumption of the evidences, the marginal distribution for node X can now be calculated

EISZ1

P(X|Ex+,Ex-) = aP(X|Ex+)P(Ex-|X) = an(X)A(X) (4.5)

where 7(X) = P(X|Ex+) and A(X) = P(Ex-|X). According to [88], 7(X) calculates as:

p
mx(0)= Y PX =xuy,..., ) [ [rux() (4.6)
U,eeslp j=1
where Uy, ..., U, denote the parents of X and Tyx are the -messages sent from node U; to

X. For roots it holds 7y (x) = P(X = x), which is just the prior probability independent of
the evidence. A(X) can be calculated as (see [88]):

A () =] JAvx () 4.7)
j=1

where Y3, ...,Y, are the children of X and kij denotes the A-message from node Y; to node
X. Now the missing part for completion of the algorithm is the computation of the messages
passed between the nodes. For the messages we have:

My, () = amy () | [ Ay () (4.8)
k#j

Mg @) =Py 2x() D P =xlup..u) | [y (4.9)

U, lj_15Ujg 150005 up k#l

In an initialization step, 7y (x) is assigned with the prior of X, i.e. P(X = x), if X has no
parent node, and Ay(x) = 1 for all values x if node X has no child nodes. If evidence is
available for X, then 7y (x) and Ax(x) are initialized with:

nx(x;) =1 if x; has been observed for X, 0 otherwise
Ax(x;) =1 if x; has been observed for X, 0 otherwise (4.10)

A detailed derivation of the following equations is out of the scope of this dissertation, and the reader is
referred to [88].

4.1 Probabilistic Reasoning Schemes 25



4.1.2

After this initialization step, the following four steps are repeated until no change occurs:

1. VX, if X has received all w-messages from its parent nodes, 7y (x) is calculated.
2. VX, if X has received all A-messages from its child nodes, Ay (x) is calculated.

3. VX, if my(x) has been calculated and X has received the A-messages from all children
except Y, then myy (x) is calculated and sent to Y.

4. VX, if Ax(x) has been calculated and X has received the w-messages from all parents
except U, then Ay (x) is calculated and sent to U.

Finally, P(X|Ex+, Ex-) is calculated by multiplying A(X) and 7(X) and is normalized with
the factor a.

In this dissertation, the belief propagation algorithm described above will serve as baseline
for performing inference in polytree Bayesian networks, with Naive Bayes Classifiers and
Hidden Markov Models. Later on, we also consider the propagation of belief using the
Transferable Belief Model described in Section 4.2 in order to allow the incorporation of
Dempster-Shafer belief functions into these reasoning schemes.

Naive Bayes Classifiers

A Naive Bayes Classifier is a simple probabilistic classifier assuming that the features used for
discriminating between the classes are independent of each other. This means, the presence
or absence of a particular feature of a class is not correlated to the presence or absence of
the other features, and thus all features contribute independently to an object’s probability
for belonging to a class. As apparently over-simplified assumptions are used, the classifier
has to be considered as ‘naive’ to some extent. Still, Naive Bayes Classifiers have proved to
work quite well for a number of real-world problems [167].

o
7\
@6 5@

Figure 4.2: Naive Bayes Classifier as Bayesian Network

Figure 4.2 shows a Naive Bayes Classifier represented as a Bayesian network. A classification
of a feature set consists of calculating the conditional probability P(C|F,..., F,) and assign-
ing the class c to the feature set that maximizes this conditional probability. This decision
rule corresponds to a maximum a posteriori classification. Viewing the Naive Bayes Classifier
from the perspective of the belief propagation algorithm described in the previous section,
the conditional probability can be calculated as:

P(C=c|F,=f,....F,=f)=aP(C=0)] [P(F,=fiIC=c) (4.11)
i=1
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where 7(c) is set to the prior P(C = ¢) and A.(c) is calculated as the product of the A-
messages from the feature nodes to the class node, which can be derived from Equation 4.9
simply as P(F; = f;|C = c¢). Equation 4.9 contains also a normalization factor 8 for
each message. However, all normalization factors are subsumed by the single factor a in
Equation 4.11.

It is also noteworthy here that training of Naive Bayes Classifiers, which often consists of
determining the means and the variances of the conditional probability distributions P(F;|C),
can be performed with quite a small amount of training data. As independence between the
different feature variables is assumed, it is sufficient to estimate the mean and variance for
each class. An estimation of the entire covariance matrix is not required.

Hidden Markov Models

Markov models or Markov chains are used to model discrete random processes showing
the Markov property. Here, a discrete random process refers to a system which can be in a
number of different states and changes its state according to a probability model (transition
probabilities) in discrete steps. Due to the Markov property the probability of future states
only depends on the current state and is independent of the states of the system in previous
steps.

In contrast to a regular Markov model, where the state of the system can directly be observed,
in a Hidden Markov Model (HMM) the state is not directly visible. However, the output
of the system depends on the state of the system and each state has a probability density
function for the possible output symbols. Thus, a sequence of observations generated by the
HMM provides some information about the sequence of states.

HMNMs are characterized by three parameters: the initial state probabilities at step 1, the
transition probabilities describing the conditional probabilities of reaching a state given the
previous state and the observation probabilities representing the conditional probabilities of
the output symbols given the current state. HMMs can also be considered as very simple
dynamic Bayesian networks, i.e. a Bayesian network that models sequences, often time-series
of random variables with interdependencies between the different steps. Figure 4.3 shows
the representation of a HMM as dynamic Bayesian network.

HMMs have been used for a number of temporal pattern recognition tasks, such as speech
recognition [113], activity recognition [123, 168, 98, 114] or human motion analysis [114].
Here, the inference tasks to be performed include calculation of the probability a HMM
generates an observation sequence, determining the probability of a system of being in a
particular state at a certain step, or finding the state sequence with highest probability.

As a HMM is a simple (dynamic) Bayesian network, the probability density function for the
state of a system at step t = k given an observation (evidence) sequence E; =eq,..., E, =e,,
i.e. P(Xx|E; = ey,...E, = e,), can be calculated with the belief propagation algorithm
introduced in Section 4.1.1. The corresponding instance of the algorithm used for HMMs is
called Forward-Backward-Algorithm.

For classification of observation sequences, usually a HMM is created for each of the classes
under consideration and for each of these models the probability to generate the observation
sequence is computed. The sequence is then assigned to the class that corresponds to the
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Figure 4.3: Hiddon Markov Model as Dynamic Bayesian Network

model with the highest generation probability. According to [113], P(E; =ey,...,E, =¢e,|A)
or P(E|A), i.e. the probability of the observation sequence given the HMM A calculates as:

P(EIA) = Y P(EIQ=q,A)-P(Q=qlA)
q

= Z P(X; =q1)P(E; = e1|X1 = q1)P(Xy = qo|X1 = q1)P(E; = e5]Xy = q3) ...

'P(Xn = qnlxn—l = qn—l)P(En = en|Xn = qn) (4.12)

Rewriting this equation using the distributive law, an inductive solution for the calculation
of P(E|A) can easily be derived:

* Initialization:
a,(i)=P(X, =i)P(E; =e;|X; =1i) 1<1i<m,wherem the number of possible states

¢ Induction:

m
a41() =P(Ery = €1 lXp1 = 1) 20 @i (DP(X4q = jIX, = 1)
=1

wherel<t<nand1<j<m.
e Termination:

PEIA) =231, au(D)

Within this inductive solution, a,(i) corresponds to the probability of observing e,..., e,
and being in state X, =i at step t, i.e., a,(i) = P(E; = ey,...,E; = ¢;,X, = i|A). Here, it
holds:

P(X,=ilE;=eq,....,E,=e,A)=aP(E;=eq,....,E, =e, X, =1|A) (4.13)
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This means the a, can also be calculated successively by applying the belief propagation
algorithm and just ignoring all normalization factors. Indeed, by inspecting Equation 4.5 to
Equation 4.9 this direct correspondence becomes obvious. In [113], it is also shown that
P(E|A) can be written as:

P(E|A) ﬁ ! ith ! (4.14)
= — wi = —=— .
=1 Ct t Z:il at(i)

if a;(i) to a,_,(i) have already been scaled with c¢; to ¢,_; to sum up to 1. Thus, we
can simply calculate the probability by applying the belief propagation algorithm and just
multiplying the corresponding normalization factors.

Determining the state sequence with the highest probability is very similar to the inductive
solution described above. However, the summation is replaced by a maximization step
[122]:

max P(xq,...x,,Xp1le1,--,0401) =
X500y X¢

aP(etHlXtH)n}Cax (P(Xt+1|xt)xme§cx P(xl,...,xt_l,xtlel,...,et)) (4.15)
t 1 —

----- t—1

For retrieving the actual state sequence with the highest probability and not only to calculate
its probability, a pointer from a state back to the best previous state has to be stored. This
approach for determining the state sequence with the highest probability is also known as
the Viterbi algorithm [113].

The Transferable Belief Model

The Transferable Belief Model (TBM) [130, 133] is an elaboration of DST, which is designed
as a normative model and based on Dempster-Shafer belief functions, but is built without
ever introducing explicitly or implicitly any concept of probability [130, 133]. One of its
most important contributions with respect to this are justifictions for Dempster’s Rule of
Combination and Dempster’s Rule of Conditioning without relying on probabilities or a
similar concept. As already mentioned above, in [131] also the difference between an open
world assumption and the closed world assumption is discussed, and it is shown that an
open world assumption leads to the ‘unnormalized’ versions of these two rules.

The core concepts of the TBM also include the Disjunctive Rule of Combination (DRC)
and the Generalized Bayesian Theorem (GBT) [132], which are important ingredients
for establishing reasoning approaches based on DST. Whereas the Conjunctive Rule of
Combination allows the combination of belief functions corresponding to two distinct pieces
of evidence E; and E, that hold at the same time, the Disjunctive Rule of Combination
enables combination of two belief functions if it is only known that the first or the second
piece of evidence holds, i.e. the disjunction E; U E,. The Disjunctive Rule of Combination is
given as:
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(my @ m)(C)= Y, mi(A)-my(B) (4.16)

AUB=C

Furthermore, the Disjunctive Rule of Combination shows the following property:

pla(x|0)=1- [1-pla(x|6) VO ce,¥xcQ (4.17)
6,6

where Q and © are two frames of discernment.

As it is obvious from its name, the Generalized Bayesian Theorem constitutes a generalization
of the well-known Bayesian theorem for Dempster-Shafer belief functions. It allows to
propagate beliefs in a Directed Evidential Network [163] from a node back to its parent
node. The Disjunctive Rule of Combination and the Generalized Bayesian Theorem are
connected through the relation:?

pla(x]0) =plg(Blx) VO CO,VxCQ (4.18)
Thus, with Equation 4.17 the Generalized Bayesian Theorem is given as:
plo(0lx)=1-] [1-pla(x|6) VOco,¥xCQ (4.19)
0;,€6

In Section 10.1 we show how the Generalized Bayesian Theorem can be exploited to allow
DST-based reasoning in the probabilistic schemes described above with the help of a message
passing approach according to the belief propagation algorithm.

2It is important to note here that this relation only holds if we allow unnormalized belief functions and
mass assignments, i.e. the masses not necessarily have to sum up to 1. In particular, we use unnormalized mass
assignments if we propagate belief from a node back to its parent node.
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5.1

Ontology-based Specification of Application
Domains

The work presented in this thesis targets distributed applications in dynamic heterogeneous
environments that need to process the contents of the exchanged information. This has to be
seen in contrast to applications which are designed only to store the content of exchanged in-
formation or to present it to humans. Whereas in the latter case communication middleware
frameworks or standard communication protocols would suffice, in our work a common
and formally represented vocabulary on the application domain is required, allowing the
involved software components to semantically interpret the exchanged information.

A formal representation of an application domain is usually based on a conceptualization,
which consists of the objects, concepts, and other entities that are presumed to exist in the
area of interest and the relationships that hold between them [49]. Here, a conceptualization
is considered to be an abstract, simplified view of the world that we wish to represent for
some purpose. In our work, every application, or more precisely, every exchanged message
has to be related to a conceptualization.

An explicit specification of such a conceptualization is called an ontology [53]. Here, the
term ontology is borrowed from philosophy, where it represents a systematic account of
existence. For distributed applications as we target, what exists exactly corresponds to what
can be represented. If an application domain is represented using a declarative formalism,
the set of entities that can be represented is called the Universe of Discourse and comprises
classes, relations, functions, or other objects.

Ontology Languages

For the construction of ontologies, formal specification languages are required allowing to
encode the knowledge about a specific application domain. As an ontology can be considered
as a special case of a knowledge representation, in principle all kinds of formal knowledge
representation languages can be used to specify ontologies. Guided by high-level knowledge
representations in artificial intelligence which are commonly based on logics, ontology
languages are usually declarative languages, which in most cases are generalizations of
frame languages, and are commonly based on either first-order logic or on description logic.
This allows to utilize the reasoning mechanisms of the underlying logic to check consistency
and also to infer new knowledge that can be deduced from the defined objects and their
relationships.

In the past a number of ontology languages has been developed. Here, the authors of
[26] distinguish between traditional ontology languages, like Ontolingua [53], LOOM [79],
OCML [86] and FLogic [72, 73], and Web-based ontology languages as e.g. RDF/RDE-S
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[81, 14], DAML4OIL [62], WSML [138], and OWL [155]. Whereas the traditional ontology
languages have mainly been established to achieve interoperability of knowledge-based
systems in artificial intelligence, the Web-based ontology languages are designed to facilitate
the interchange of ontologies across the World Wide Web (WWW) and the cooperation
among heterogeneous agents placed on it. Web-based ontology languages build on Web
standards such as XML and RDF and aim at representing the knowledge contained in an
ontology in a simple and human-readable way.

In recent years, OWL has been established as de facto standard for the specification of
ontologies for a number of applications. Therefore, we also have decided to use OWL for the
specification of application domains. However, the general concepts presented in this thesis
are not particularly tailored to OWL and can be specified in other ontology languages with a
corresponding expressiveness as well.

Web Ontology Language (OWL)

The Web Ontology Language (OWL) [155] is an ontology language, or more precisely a
family of ontology languages, endorsed by the World Wide Web Consortium (W3C) [150].
OWL is based on RDF and a revision of the DAML+OIL Web ontology language incorporating
lessons learned from the design and application of DAML+OIL. From a formal point of
view, OWL semantics are based on description logics, which are a family of logics that
are decidable fragments of first-order logic. In this respect, OWL provides a syntax for
describing and exchanging ontologies and at the same time has a formally defined semantic
corresponding to the SHOZN (D) description logic. However, these semantics are enhanced
by additional concepts, in order to provide compatibility with RDE-S.

Whereas earlier ontology languages have been used to develop tools and ontologies for
specific user communities, they were not designed to meet the requirements of an ontology
language for the WWW in general. In order to provide a further step to ontologies generally
applicable to the WWW, OWL is designed to explicitly facilitate:

* Ability to be distributed across many systems
* Scalability appropriate to WWW needs
* Compatibility with established Web standards for accessibility and internationalization

* Openness and extensibility

The OWL Use Cases and Requirements Document [156] of the W3C provides more details on
ontologies, presents six use cases in order to further motivate the need for a Web ontology
language, and formulates design goals and requirements. One of the six use cases is about
Ubiquitous Computing and highlights the challenge to achieve interoperability of a priori
unknown, dynamically appearing and disappearing devices in an ad-hoc manner. Devices
should be enabled to discover and understand other devices on a semantic basis. This reflects
quite well part of the challenges subject of our research.

In OWL, ontologies are defined in terms of classes, properties, instances and operations. User-
defined classes are subclasses of the root class owl:Thing. A class may contain individuals,
which are instances of the class, as well as other subclasses. Properties are binary relations
specifying the characteristics of the classes. They mainly correspond to attributes of class

32 Ontology-based Specification of Application Domains



instances and sometimes represent data values or links to other instances. Two types of sim-
ple properties are distinguished: datatype and object properties. Datatype properties reflect
relations between the instances of classes and RDF literals or XML schema datatypes. Object
properties are relations between the instances of two classes. Instances are individuals that
belong to defined classes, where a class may have any number of instances. Instances are
used to define the relationship among different classes through the corresponding properties.
Operations in OWL express union, intersection and complement of classes and facilitate
class enumeration, cardinality and disjointness.

Furthermore, OWL provides a number of language constructs to express equality/inequality
of classes, properties and instances, to define property characteristics (symmetric prop-
erties, transitive properties, inverse properties, etc.) and to specify property restrictions
describing how properties can be used by instances of a class. Examples of these restrictions
are all values from class, some values from class, maximum cardinality, minimum cardinality.

It is noteworthy here that OWL adopts an Open World Assumption in contrast to Prolog [13],
for example, which uses a Closed World Assumption. This means that if a statement cannot
be proved to be true using current knowledge, in OWL the conclusion that the statement is
false cannot be drawn.

The OWL ontology language family provides three increasingly expressive (sub-)languages
designed for use by specific communities of developers and users. These sub-languages
differ with regard to what can be legally expressed and with regard to what can be validly
concluded.

* OWL Lite was originally designed to support users which primarily need to specify
classification hierarchies and simple constraints. While it supports cardinality con-
straints, it only permits cardinality values of O or 1. The rationale behind was the
hope that it would be simpler to provide tools for OWL Lite in comparison to the more
expressive successors, allowing a quick migration path for systems utilizing thesauri
and other taxonomies. In practice, however, most of the constraints available in the
successor OWL DL can be expressed using complex combinations of OWL Lite features,
and thus the expressiveness constraints imposed on OWL Lite result only in little more
than syntactic inconveniences.

* OWL DL is designed to provide the maximum expressiveness possible while retaining
computational completeness, decidability, and the availability of practical reasoning
algorithms. In general, OWL DL already includes all OWL language constructs, but
they can only be used under certain restrictions. OWL DL was named due to its
correspondence with description logic, a field of research that has studied the logics
that form the formal foundation of OWL. As already stated above, OWL DL corresponds
to the SHOZN (D) description logic.

* OWL Full is designed to retain some compatibility with RDF-S. In this respect, OWL
Full is meant for users who want maximum expressiveness and the syntactic freedom
of RDF with no computational guarantees. Consequently, OWL Full is based on a
different semantics in comparison to OWL Lite or OWL DL. For example, OWL Full
permits that a class can be treated as a collection of individuals and at the same time
as an individual in its own right, which is not allowed in OWL DL. OWL Full allows
an augmentation of the pre-defined OWL vocabulary. However, it is unlikely that
reasoning engines will be able to support the complete reasoning for OWL Full.
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At the First OWL Experiences and Directions Workshop’ held in Ireland in November 2005,
several restrictions of OWL were identified which have caused problems in many applications
and have been rendered unnecessary considering the advances in logic-based knowledge
representations: syntactical inconveniences, limited expressiveness and no guarantees with
regard to reasoning time. Consequently, an extension of OWL-DL, called OWL 1.1, was
proposed as result of the workshop and became a W3C Member Submission [152]. Since
October 2007, a new W3C working group has been concerned with extending OWL by
several new features as proposed in the OWL 1.1 Member Submission. This new version,
called OWL 2 [153], was announced on 27 October 2009.

OWL 2 enhances OWL-DL with several new features including syntactic enhancements
to simplify specifications of some commonly used statements and increased expressive
power for properties corresponding to the SROZQ(D) logic. Besides, extended support for
datatypes, simple meta-modelling capabilities, extended annotation capabilities and other
minor features have been added. Similar to OWL, OWL 2 also defines language subsets,
called profiles, which are intended to meet certain performance requirements or to reduce
implementation effort. In profiles some expressive power is traded for the efficiency of
reasoning. In [154], three OWL 2 profiles are described:

* OWL 2 EL is intended to be useful for applications employing ontologies with a
very large number of properties and classes. This profile is designed to capture the
expressive power used by a number of such ontologies and comprises a subset of
OWL 2 features for which reasoning can be performed in polynomial time with respect
to the size of the ontology. Corresponding reasoning algorithms for this profile are
available, which can be implemented in a highly scalable way. EL refers to the basis
of the profile in the EL family of description logics, which only provide existential
quantification.

* OWL 2 QL was defined having applications in mind which use large volumes of in-
stance data and where query answering is the predominant reasoning task. In this
profile, conjunctive query answering can be realized with conventional relational
database systems. Actually, the QL acronym reflects the fact that in this profile query
answering can be realized by rewriting the queries in a standard relational query lan-
guage. If a suitable algorithm is employed, reasoning can be performed in LOGSPACE
with respect to the size of the data. Furthermore, polynomial time algorithms are
available for ontology consistency checking and class expression subsumption reason-
ing. Although the expressive power of the profile is quite limited, it covers the main
features of conceptual models like UML class and ER diagrams.

* OWL 2 RL is intended for usage in applications which require scalable reasoning and
expressive power at the same time, but can trade the full expressiveness of the OWL 2
for efficiency. Besides, RDF-S applications requiring some additional expressiveness
are supported as well. Reasoning can be implemented on top of rule-based reasoning
engines using a standard Rule Language, which is reflected by the RL acronym.
Ontology consistency checking, instance checking, class expression satisfiability, class
expression subsumption and conjunctive query answering reasoning can be realized in
polynomial time with respect to the size of the ontology.

It is noteworthy here that there are many other possibilities to define profiles of OWL 2.
Due to backward compatibility of OWL 2 with respect to OWL, all OWL Lite and OWL DL
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ontologies are OWL 2 ontologies. Therefore, OWL Lite and OWL DL can be viewed as profiles
of OWL 2 as well.

The information model presented in this dissertation (see Chapter 7) was originally specified
using OWL DL as it guarantees computational completeness and decidability. Later on, we
have additionally used Property Chain Inclusions in order to simplify the incorporation of
already available ontologies and to fit them to our scheme (see Section 7.2.4). Thus, from a
formal perspective we use OWL 2 in a profile corresponding to OWL DL with the extension
of property chain inclusions.
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6 Related Work

The main objective of this work is to provide a comprehensive approach for information
exchange and fusion in heterogeneous distributed environments. This means, we simultane-
ously target a number of different challenges ranging from semantic discovery of information
providers and consumers to fusion of heterogeneous sensor data. Consequently, we touch
several different research areas, where valuable work has already been performed. It is not
possible to discuss related work in all these areas as part of this thesis. Instead, we focus
on Context Management and Reasoning in Ubiquitous Computing and Cooperative Teams of
Heterogeneous Mobile Robots where we see our main contributions to the state of the art.

For a comprehensible discussion of the related works, we first present the criteria that serve
as a baseline for our evaluation. These criteria correspond to a list of requirements that can
directly be derived from the challenges presented in Section 1.2.

1.

Dynamic integration of a priori unknown information consumers and providers.

An approach for information exchange and fusion has to deal with the dynamic nature
of the computing environment and to allow integration of independently developed
and a priori unknown components, modules or services into a single system.

. Establishment of a common vocabulary.

Independent development of information consumers and providers implies a kind of
common vocabulary established through an onotology or a similar mechanism which
allows to resolve naming conflicts.

. Mechanisms for the semantic interpretation of data structures.

Different development teams may utilize those representations for the data which are
most suitable for their purposes. Thus, the representation of the information including
the meta-data to describe the imperfect nature of sensor data has to be semantically
interpretable.

Support for conversion between data representations.

In order to bridge heterogeneity with respect to data structures, elaborate mechanisms
are required to convert between different representations of a piece of information.

. Expression of information offers and needs.

For semantic discovery and matching of information providers and consumers, a kind
of language is required that facilitates detailed specification of offered or needed
information.

. Support of competitive sensor fusion.

Due to the imprecise and unreliable nature of sensor information, conflicts in the
provided information have to be expected if more than one sensor is available for the
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same piece of information. Competitive sensor fusion schemes are required in order to
resolve the conflicts and to improve the quality of the provided information.

7. Provisioning of reasoning schemes that consider the imperfect nature of sensor
data.

In many cases, information is required that cannot directly be sensed by sensors.
Instead, reasoning mechanisms are required to aggregate low-level sensor data to
high-level information.

In the list presented above, we have focused on the functional requirements that can directly
be derived from our envisaged scenarios. At this point, it is important to note that these
requirements have not been identified with a particular application in mind as we aim for a
generic approach which is applicable for a wide range of problems. Particular applications
might have additional requirements. Besides, we are aware that non-functional requirements
like extensibility, scalability or ease of development are also of high importance, as for software
systems in general. Still, we will base our review of related works mainly on the functional
requirements as these form a kind of work plan for the work presented in this thesis.

Context Management and Reasoning

The ASC Model

Strang and Linnhoff-Popien evaluate in [134] the most relevant context modelling ap-
proaches based on the data structures used for representing and exchanging context informa-
tion: key-value, markup scheme, graphical, object-oriented, logic-based and ontology-based
models. According to their evaluation the most promising assets for context modelling for
ubiquitous computing environments are found in ontology-based models. In these models,
the semantic context information is represented using an ontology markup language, for
example OWL (Web Ontology Language) [155]. We share their opinion and consider ontolo-
gies as an appropriate way to deal with the heterogeneity implied by ubiquitous computing
environments. A corresponding ontology defines a common vocabulary which makes it
possible to reason about various context types, thanks to machine-interpretable definitions
on basic concepts in the domain and relations among them.

There are several projects that also apply ontologies as a central concept for modelling
context information. For instance, Chen et al. [23, 22] defined a context ontology based
on OWL to support ubiquitous agents in their Context Broker Architecture (CoBrA). Their
approach applies sensor information detection and context awareness in a home area
intelligent environment as a way of taking decisions, dealing with users’ activities, intentions
and movements between different home areas.

The Service-Oriented Context-Aware Middleware (SOCAM) [145, 160] is an architecture for
building context-aware services based on a two-level context model. Their context ontology
is divided into a two-level hierarchy, distinguishing between common and specific context
information. The upper level describes global concepts of the ontology and captures general
knowledge. The lower level is divided into several pervasive computing sub-domains, each
one of which defines specific details and properties for each scenario. Depending on the
situation and the available devices, an appropriate sub-domain is selected from the lower
level and the corresponding ontology is dynamically plugged into the upper ontology.
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In [135], Strang et al. describe a context modelling approach which uses ontologies as
a formal foundation and is based on the Aspect Scale Context (ASC) model. The Context
Ontology Language (CoOL) is derived from the model, which is used to enable context
awareness and contextual interoperability during service discovery and execution in a
distributed architecture. Aspects are considered to be dimensions of the situation space
and to be sets of one or more scales. Likewise, scales aggregate one or more elements of
context information and correspond to what we call representations. An example for an
aspect is GeographicCoordinateAspect and two corresponding scales could be WGS84Scale
or GaussKruegerScale. In this respect, the work of Strang et al. stands out from all other
analyzed approaches, as it also captures different representations for a type of context
information. Besides, transformations between different representations are covered by
IntraOperations and InterOperations. IntraOperations just convert between two scales of one
aspect, whereas InterOperations also involve information corresponding to other aspects.

Major contributions: The ASC model and CoOL provide a context modelling approach
based on ontologies and explicitly address heterogeneity with regard to different represen-
tations of context information. Transformations between different scales of an aspect are
also envisaged. Similar to our work, they propose no concrete ontology but a language or
meta-model that can be utilized to construct appropriate ontologies. In this respect, the ASC
model and CoOL serve as a sound basis for our work.

Weaknesses: The ASC model prescribes meta-data attributes for context information like
timestamp, minError, meanError and other quality attributes, but no hint is given how these
attributes are handled when performing conversions between different scales. In general,
no concrete description is provided how conversions are performed in a corresponding
framework. Besides, with the ASC model it is not possible to express uncertainty among
several hypotheses of a concrete context information, e.g. the location of a user. Thus, it is
only of limited use to cover the real characteristics of sensor data.

Context Modeling Language and PACE

Henricksen and Indulska [56, 57, 59] introduced the Context Modeling Language (CML) in
order to support designers with the task of exploring and specifying the context requirements
of context-aware applications. CML is a graphical modelling approach utilizing Object-Role
Modelling (ORM) as a formal foundation and provides concepts to define types of context (i.e.
fact types) and a classification of these context types (static, sensed, derived, or profiled). In
addition, CML allows to associate meta-data attributes and to define dependencies between
different context types. With the situation abstraction, support for reasoning on context
information is provided. The proposed context modelling approach can also deal with
special characteristics of context information, such as its temporal nature, incompleteness,
ambiguity, etc., and it even incorporates ontologies to address particular aspects like privacy.

A big advantage of enhancing ORM is the availability of a mapping to a relational model,
which in turn enables a straight-forward representation in relational databases. Thus, it
is obvious to realize the context management system on top of a corresponding database
system, which opens up to use SQL [64] as a flexible way to access context information.

The authors of [57] not only proposed the CML but also the Pervasive Autonomic Context-
aware Environments (PACE) middleware [58], which is intended to help managing the
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complexity arising from a heterogeneous distributed environment. The middleware system
allows to seamlessly bind together the different involved sensors, actuators, application
components and context processing components. It provides aggregation and storage of
context information, performs query evaluation and contains a distributed set of context
repositories, each of which manages a collection of context models. To facilitate interaction
between application components and the context management system, a programming
toolkit is defined and implemented in Java using Remote Method Invocation (RMI) interfaces
for communication.

The approach is complemented by a model-driven development approach and an associated
set of tools assisting with the generation of components and with the development and
deployment of context-aware systems, starting from context models specified in the context
management system.

Major contributions: The main objective of the CML approach is ease of development.
In this respect, the CML was a pioneering approach. Henricksen and Indulska have also
identified the need for an easy but flexible way to access context information and integrated
support in the PACE middleware similar to what we understand of querying context informa-
tion. Furthermore, a lot of different aspects have been investigated as part of the CML/PACE
approach, as e.g. the imperfect nature of context information, context reasoning and privacy
aspects.

Weaknesses: Although the PACE middleware supports a distributed environment, distribu-
tion is mainly considered from a static perspective. The dynamic nature of a ubiquitous com-
puting environment with appearing and disappearing information providers and consumers
is only addressed to a limited extent. The same is true for the independent development
of the involved services and heterogeneous data representations. Although the imperfect
nature of context information was taken into account in their work, no real solution was
provided for considering the impreciseness of low-level context data in reasoning approaches
applied to derive high-level context information.

Context Toolkit

Today still widely referenced in the literature and at the time of its introduction a pioneering
approach is the Context Toolkit [29, 30]. Its main objective is to simplify the development of
context-aware applications by allowing the reuse of specialized components, which include
widgets, aggregators, interpreters, services and discoverers. Widgets are components mainly
responsible for gathering context information directly from the sensors. Aggregators are
a kind of meta-widgets showing all characteristics of a widget but additionally providing
the ability to aggregate context information of real-world entities. They can also act as
gateways between applications and widgets. Interpreters derive high-level information from
low-level data, services are utilized by applications to invoke actions and actuators, and
discoverers are used to locate the available widgets, aggregators, interpreters and services.
As the Context Toolkit utilizes the HTTP protocol for communication and an XML-based
content language, a wide range of components can be incorporated via the use of available
Web standards.

Several extensions have been developed for the Context Toolkit. For instance, Newberger
and Dey [93] proposed an extension for providing user control of context-aware systems. Wu
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et al. [159] have recognized the benefits of Dempster-Shafer Theory of Evidence (DST) to
fuse context information from different sources and developed a corresponding extension for
the Context Toolkit. As part of their work, they evaluated a number of variants of Dempster’s
Rule of Combination and showed the viability of their approach in a scenario where the
focus of attention of meeting participants has to be detected.

Major contributions: The Context Toolkit facilitates the discovery of widgets, aggregators,
interpreters and services and enables easy integration via the HTTP protocol and Web stan-
dards. An extension of the Context Toolkit incorporates Dempster-Shafer Theory as a means
to fuse sensor information and to resolve conflicts among low-level context information.

Weaknesses: Although facilitating the discovery of components, heterogeneity issues like
different representations of context information due to independent development are not
considered. The Dempster-Shafer Theory is used to combine evidences from different sources
and to resolve conflict but only for individual fusion processes. Incorporating Dempster-
Shafer Theory in more elaborate reasoning approaches as envisaged in this thesis has not
been addressed so far.

Context Fusion Networks

The Context Fusion Networks (CFN) approach proposed by Chen et al. [20, 21] explicitly
targets the challenges arising from ubiquitous computing environments. Chen argues in [21]
that it is not acceptable that individual applications are required to maintain connections to
sensors and to process the raw data from scratch. This would increase the programmer’s
burden and the application would probably work poorly on a resource-constrained mobile
device. Likewise, it is not feasible to deploy one common context service that could meet the
needs of all possible applications. Thus, the CFN infrastructure model is proposed allowing
context-aware applications to select distributed data sources and to compose them with
customized data fusion operators into a directed acyclic information fusion graph. This
graph describes how an application computes high-level understandings of the execution
context from low-level sensory data.

The CFN infrastructure model has been realized in a prototype system called SOLAR [19].
This prototype was utilized to investigate and to propose new approaches for a number of
issues like buffer overflow, packet loss, dependency management, etc., in an infrastructure
for ubiquitous computing. SOLAR also provides a naming service supporting persistent
queries and context-sensitive resource discovery.

Major contributions: Chen et al. [21, 19] identify a number of important challenges arising
from the paradigm of ubiquitous computing and propose an infrastructure model along
with a prototype system, which explicitly address these challenges. With its concept for
context-sensitive resource discovery, the approach is well suited to handle environment
dynamics.

Weaknesses: Although named Context Fusion Networks, the approach of Chen et al. is
mainly concerned with sensor data fusion at the architectural level. Concrete approaches able
to deal with the imperfect nature of sensors are not in the focus of their work. Heterogeneity
is also claimed to be addressed in their work, but this mainly comprises heterogeneity
with respect to the used network and communication facilities. However, independent
development and heterogeneity of data representations are not addressed at all.
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ECORA

ECORA (Extensible Context Oriented Reasoning Architecture) [104] is a prototype framework
for building context-aware applications which are designed with a focus on reasoning about
context under uncertainty and addressing issues of heterogeneity, scalability, communication
and usability. The framework provides an agent-oriented hybrid approach combining
centralized reasoning services with context-aware, reasoning-capable mobile software agents.
The ECORA framework adopts the Context Spaces model [102, 103] to describe the context
and to apply reasoning over modelled information under uncertainty. The underlying
concepts use insights from geometrical spaces and the state-space model [97] hypothesizing
that geometrical metaphors such as states within spaces are useful to guide reasoning about
context.

In [104], the authors argue that ontology or logic-based models provide a way to uniformly
represent context, but the typically applied logic-based reasoning mechanisms are suitable
only for dealing with precise context information. On the other hand, most probability-based
approaches lack an underlying general-purpose context model. The context model is tailored
either to the specific inference algorithm or to a particular application domain. We share
their opinion and a major contribution of our work consists of providing a general-purpose
information model on top of which probability and Dempster-Shafer Theory-based reasoning
schemes can be applied.

Major contributions: With the Context Spaces model [102, 103] a general purpose context
modelling approach was proposed that is intended to consider the imperfect nature of
context information. A number of reasoning algorithms have been developed [101] that
are able to perform complementary data fusion and to infer context situations. By defining
situations containing states that can vary over time, even the temporal nature of context
information is considered.

Weaknesses: The authors of [104] showed that the proposed model and the corresponding
reasoning algorithms are suited for complementary data fusion. However, competitive data
fusion required to resolve conflicts in the available context information is not addressed and
can hardly be realized within the Context Spaces model without incorporating probability- or
Dempster-Shafer-based approaches. Besides, independent development and heterogeneity
issues are mostly neglected.

Gaia

Ranganathan et al. [115] developed a prototype pervasive computing infrastructure (Gaia)
to support context awareness for automated agents, which can be applications, services
and/or devices. The middleware aids the development of context-aware agents by supporting
context sensing and reasoning on context information, relieving the developers from many
implementation issues. A main objective of Gaia is also to support applications and services
to reason about uncertain context. For this purpose, a number of well-established approaches
have been utilized: probabilistic logic, fuzzy logic, and Bayesian networks.

From a formal perspective, any piece of information whose truth value is potentially uncertain
is represented as a predicate. The structure of predicates and their semantics are specified in
an ontology defining various context types as well as the arguments that the predicates must
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have. Each context type corresponds to a class in the ontology. The ontology is written in
DAML+OIL [62].

Apart from Context Consumers, Context Providers and Context Synthesizers, Gaia also pre-
scribes a Context History Service allowing to query for past context information and a Context
Provider Lookup Service enabling Context Providers to advertise what kind of information
they offer.

Major contributions: Gaia addresses many of the challenges we have identified for our
work. A general-purpose context model is defined, which is based on a common vocabulary
defined in an ontology. The imperfect nature of context data is considered in the context
representation and also in reasoning schemes for deriving high-level context information.
Furthermore, Gaia provides facilities to advertise and discover information offers and thus
also deals with the dynamic nature of a ubiquitous computing environment.

Weaknesses: Similar to ECORA (see Section 6.1.5), Gaia provides good support for comple-
mentary data fusion. However, competitive data fusion is addressed only to a limited extent.
Although a common vocabulary is defined via an ontology, independent development of
context components involving heterogeneous data representations is mostly neglected.

Context Integration and Abstraction Approach of University College Dublin

The research group around Dobson from University College Dublin has recently published a
series of papers on resolving uncertainty in context integration and abstraction [164, 83, 82].
In [164], a method is proposed that is able to consider the imperfect nature of context
information and also its temporal nature: the older context information is the more unreliable
it is. The approach involves concepts of traditional probability theory and shows similarities
to Dempster-Shafer Theory but has to be considered rather an ad-hoc solution. However,
the authors recognized that Dempster-Shafer Theory is a good candidate to avoid the
shortcomings of their previous approach and that it builds a sound formal basis.

Consequently, in [82] McKeever et al. have revisited their previous work and presented a
more formal approach based on Dempster-Shafer Theory, the viability of which is demon-
strated by an activity recognition system. Concretely, they represent different layers of
abstraction through a directed acyclic graph (DAG) and apply concepts like evidential
mapping and compatibility relations [78]. In our view, the DAGs used in their approach
correspond more or less to a hierarchy of Naive Bayes Classifiers but involving DST instead
of traditional Bayesian inference. In [82], it is argued that using DST for context integration
and abstraction is also useful for scenarios where it is difficult to collect a huge amount of
training data. Instead, domain knowledge can easily be integrated to compensate missing
training data.

Major contributions: It is recognized that Dempster-Shafer Theory builds a sound formal
basis for resolving uncertainty in context integration and abstraction. The approach also
demonstrates how the temporal nature of context information can be handled. Furthermore,
a number of alternatives for Dempster’s Rule of Combination [126, 87] are evaluated which
are useful for situations where much conflict is included in the evidences to be combined.

Weaknesses: The approach for situation inference based on DAGs seems to be quite limited,
as it mainly corresponds to the combination of evidences similar to what is done by a Naive
Bayes Classifier. It can be expected that it is difficult to apply this approach to recognize
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situations that involve a time series of states. Furthermore, to the best of our knowledge, this
approach has not been incorporated in a more general framework for context management
and reasoning. Thus, it is not shown how these concepts can be incorporated with approaches
for dynamic discovery and integration of context providers and consumers, with ontologies
or with heterogeneous data representations.

6.1.8 Summary

ASC/ CML/ Context CFN Gaia ECORA ucC
CoOl® PACE Toolkit Dublin?
Dynamic v v v X
Environment
Common v X v X X
Vocabulary
Interpretation of v X X X X X X
Data Structures
Conversion of X X X X X X
Data Structures
Expression of X v X
Offers and Needs
Competitive X v 4 v v
Fusion
Reasoning X v v v
Schemes
X = no support = very limited support = partial support v = full support
1 = focus on ontology model, not part of a comprehensive framework
2 = focus on fusion and reasoning, not part of a comprehensive framework
3 = selected as representative for the other ontology-based approaches

Table 6.1: Properties of Context Management and Reasoning Systems

In Section 6.1.1 to Section 6.1.7 we have reviewed a number of context management and
reasoning approaches and have highlighted their main contributions and their weaknesses.
The results of our evaluation with respect to the requirements identified above are presented
in Table 6.1.

Several projects (ASC/CoOL, ContextToolkit, CFN, and Gaia) do a fairly good job in ad-
dressing the challenges resulting from a dynamic pervasive computing environment with
appearing and disappearing context providers and consumers. There are also a number of
approaches (ASC/CoOL, SOCAM, CoBrA, Gaia) that facilitate independent development of
context components by establishing a common vocabulary based on ontologies. However,
the ASC/CoOL model stands out as it is, to the best of our knowledge, the only approach
in the literature that explicitly addresses the problem of heterogeneous representations of
context information and conversions between them. All other approaches neglect the issue
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of heterogeneous representations and thus fail to meet important requirements resulting
from the independent development of context components. Consequently, we use many
concepts of ASC/CoOL as baseline for our information model and enhance them to allow a
more elaborate specification of Inter-Representation Operations and a representation of un-
certainty, impreciseness and unreliability of context information in terms of Dempster-Shafer
belief functions.

The ContextToolkit, Gaia, ECORA, and the approach of UC Dublin are tailored to support
competitive context fusion and provide reasoning approaches, which are partially able
to consider the imperfect nature of context information. However, they are either based
on approaches like Bayesian inference, fuzzy/probabilistic logic (Gaia) or ContextSpaces
(ECORA), which lack the ability to represent partial or complete ignorance, or apply DST
(Context Toolkit, UC Dublin) but fail to incorporate it with well-established reasoning
schemes to derive high-level context information.

In this respect, the work presented in this dissertation has to be considered as a new
comprehensive approach for context modelling, fusion and reasoning, which is tailored to
meet the requirements resulting from independent development of context components and
to explicitly take into account the imperfect nature of context information.

Cooperative Teams of Autonomous Mobile Robots

FIPA Specifications

The Foundation for Intelligent Physical Agents (FIPA) [36] is a standards organization fostering
agent-based technology and the interoperability of its standards with other technologies.
FIPA originates from a Swiss-based organization established in 1996 with the aim to produce
software standards specifications for heterogeneous interacting agents and agent-based
systems. The Swiss organization was dissolved in 2005 and an IEEE standards committee
was set up to replace it.

In 2002, FIPA completed a process of standardizing a subset of all its specifications, which
are a collection of standards intended to promote the interoperation of heterogeneous
agents and the services they can represent. In total, 25 specifications have made it to the
standardization stage, which cover a number of different aspects of agent interaction. For
example, an Agent Communication Language [38] was standardized along with specifications
for Message Transport [42, 41], Message Representation schemes [39, 40] and a Content
Language [43] inspired by first-order and modal logics. Just as in our approach, it is assumed
that the contents of messages can be interpreted with the help of an ontology, which defines
the used symbols together with their relationships. All these concepts are complemented by
architectural support in terms of an Abstract Architecture Specification [37]. Here, abstract
means that no concrete architecture is proposed. Instead, architectural elements and their
relationships are identified and described in such a way that they can serve as a guideline
for the implementation of concrete systems.

Several agent platforms, as e.g. Jade [66] or JIAC [67], have adopted FIPA standards for
communication and the most widely accepted standard is the Agent Management and Agent
Communication Language (FIPA-ACL) specification.
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Major contributions: The FIPA specifications provide a comprehensive set of standards
covering a huge number of different aspects related to agent communication and interoper-
ability. Standard approaches for message structuring and message representation schemes
are provided and a common vocabulary in terms of an ontology to allow interpretation of
the message contents is also envisaged. The FIPA also identified the need for architectural
support and has provided the Abstract Architecture Specification. In conclusion, the FIPA
standards have inspired many concepts of our work.

Weaknesses: There are two reasons why we do not rely more on FIPA standards in our
work. First, the standards are tailored to agent communication whereas our objective is to
provide an approach generally applicable to information exchange and fusion in dynamic and
heterogeneous distributed environments. Second, the FIPA standards consider coordination,
communication, and message exchange among heterogeneous agents mainly at a high
symbolic level. Thus, the exchange of sensor data with measures for impreciseness like
covariance matrices, value ranges, etc., is hard to realize on top of the existing FIPA support.
Thus, at least a new content language would have been required. Another consequence of
viewing communication only at a high symbolic level is that important aspects like sensor
data fusion are not considered.

Probabilistic State Estimation of the AGILO RoboCuppers

In his dissertation, Schmitt proposes a probabilistic state estimation approach for cooperating
autonomous robots [125], which has successfully been applied to the RoboCup [121]
scenario as part of the software of the AGILO RoboCuppers.’ As a major result of his work,
algorithms for cooperative iterative incremental localization of the robots on the field and
for cooperative object detection and tracking have been developed. Both algorithms utilize
Bayesian filtering as underlying approach.

For this purpose, a number of different alternatives to realize the Bayesian filtering has been
evaluated. The Kalman Filter [71] is selected as the most promising approach and is used to
fuse the likelihoods derived from different observations. Opponent detection and tracking is
realized by an enhancement of the Multi-Hypotheses Kalman Filter [118] approach.

One highlight of Schmitt’s work is the rigorous and very accurate propagation of Gaussian
distributions from the image processing level to the object fusion level. In order to propagate
the Gaussian distributions through a series of non-linear functions, the Unscented Transfor-
mation [70] is used. In this respect, the concepts of Schmitt have been very inspiring for
our work. However, we apply the Unscented Transformation to handle heterogeneity with
respect to different data representations caused by independent development of information
providers and consumers.

Major contributions: Bayesian filtering approaches have been evaluated and extended to
be applicable for cooperative localization and object tracking. Thus, the approach has a
sound theoretical basis. The involved Gaussian distributions have not been estimated by
ad-hoc approaches at the object detection level but have rigorously been propagated through
a series of non-linear transformations starting at the image processing level.

Weaknesses: In his work, Schmitt does not deal with aspects like sensor reliability or
freshness of sensor data and it could be difficult to consider domain knowledge in the sensor

!AGILO RoboCuppers is the name of the RoboCup Middle Size Team of the TU Munich, Germany.
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fusion approach, as we also intend to do (see Chapter 12). Besides, the proposed approaches
are tailored to robot localization as well as object detection and tracking. They are not
available as part of a sensor fusion framework, which is generically applicable to a number
of different problems. However, it has never been the intention of Schmitt to provide such a
framework.

Multi-Robot Cooperative Object Localization Approach of ISocRob

At the RoboCup Symposium 2009, Santos and Lima presented a new multi-robot/sensor
cooperative object detection and tracking method [124]. It is based on a decentralized
Bayesian approach and uses Particle Filters to avoid simplifying assumptions about the object
motion and the sensors’ observation models. However, in order to save communication
bandwidth, a reduced dimension representation of the sample belief is used to exchange
information about the object’s location among the teammates. For this purpose, the sensors’
particles are approximated as Gaussian Mixture Model (GMM) with the help of the Expectation
Maximization algorithm [28].

The approach distinguishes between a local filter and a team filter. The local filter receives
the GMMs from the robot’s teammates and mixes the particles representing its own belief
with the particles sampling the received GMMs. All particles are weighted by the local
observation model and the best ones are re-sampled for the next local iteration. The team
filter receives GMM representations of the object in the world frame and fuses them by
performing Covariance Intersection among the GMM components. The estimate of the local
filter is used when the sensor detects the object in order to improve its estimate from the
teammates’ observations. The team estimate is only used when the sensor does not detect
the object alone. In order to prevent fusion of incorrect estimates, the disagreement between
different beliefs is calculated applying the approach of Beigi et al. [9].

Together with the work of Schmitt [125] reviewed in Section 6.2.2, the approach of Santos
and Lima constitutes the state of the art of cooperative object localization in the RoboCup
MSL.

Major contributions: Whereas many RoboCup MSL teams use ad-hoc approaches for
establishing a common world view, Santos and Lima propose a theoretically sound approach
for cooperative object localization. The approach improves the estimates of the local sensor
by incorporating the information of the teammates. Here, also errors in the robots’ self-
localization are taken into account.

Weaknesses: A major problem with using information of remote sensors to improve the
localization estimate of a highly dynamic object (the ball) is network latency, which causes
the received information to be outdated. This problem, however, is not addressed at all.
Besides, the approach has been designed for a homogeneous team of robots. Additional
challenges arising from heterogeneous data representations and coordinate systems have
not been discussed.

Skills, Tactics and Plays (STP) and TraderBots

In [68], Jones et al. introduce the Pickup Team Challenge. It consists of the dynamic
formation of heterogeneous robot teams, which execute coordinated tasks where a priori
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little information is known about the tasks, the robots, and the environments and where the
interaction between individual robot developers is minimal. The authors explicitly state that
much of the existing work on multi-robot coordination assumes that the robot team is built
by a group of people working closely together over an extended period of time and that they
are unaware of any work focused on the principles of building such highly dynamic teams
with minimal interaction between developers.

Furthermore, it is argued in [68] that there are several reasons for building heterogeneous
robot teams in a dynamic fashion. First, it is impractical to develop large teams or teams of
expensive robots at the same site and at the same time, which currently hinders multi-robot
research. Second, robots may be needed for emergency tasks where there may be insufficient
time to hand-engineer the coordination mechanisms before task execution. Third, as robots
fail, get lost, or otherwise malfunction, it is often necessary to substitute or add new robots.

Their approach to address the Pickup Team Challenge combines the Skills, Tactics and Plays
(STP) approach proposed by Veloso et al. [12] and TraderBots [31]. STP was developed for
controlling autonomous robot teams in adversarial environments. Teamwork, individual
behavior and low-level control are decomposed into three separate modules. For the Pickup
Team Challenge, the most important concept are Plays. Each play describes a fixed team plan
comprising a sequence of actions for each role in the team to achieve the team goals. A
boolean evaluation function allows to determine the applicability of a play in the current
situation. Team strategy consists of a set of plays, called a Playbook, of which the team can
execute only one play at any instant of time.

TraderBots, developed by Dias and Stentz [31], is a coordination mechanism which was
designed to inherit the efficacy and flexibility of a market economy and to exploit these
benefits to enable robust and efficient multi-robot coordination in dynamic environments.
The team aims to complete tasks successfully while minimizing overall costs, and each robot
aims to maximize its individual profit. To solve the task allocation problem, the robots run a
kind of task auctions and bid on tasks in other robots’ task auctions.

Three kinds of components are used to enable teamwork in the pickup team: RoboTrader,
PlayManager and RobotServer. The RobotServer provides an interface between the Play-
Manager and the components on the robot responsible for controlling the robot. Thus, the
RobotServer can be considered as a kind of proxy between the teamwork infrastructure and
the robot control systems in a similar way as it is proposed in STEAM/Teamcore [112].

Major contributions: The Pickup Team Challenge has been defined and several reasons have
been provided to justify why it is beneficial to dynamically form heterogeneous teams of
robots. A combination of the STP approach and TraderBots has been introduced as first
attempt to address this challenge.

Weaknesses: Although a teamwork model and infrastructure is provided that can be de-
ployed on top of existing robot platforms, the problem of data exchange among the hetero-
geneous robots is almost neglected. Thus, teamwork is mainly viewed in the perspective of
coordinated tasks that can be executed without establishing a common view on the world
based on the sensor information of the different robots involved. However, we consider this
as very important to solve more complex tasks in environments that require high quality
perception.
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The Sensor Fusion Effects (SFX) Architecture

Sensor Fusion Effects (SFX), proposed by Murphy [89], is a reusable generic sensor fusion
approach for autonomous mobile robots, which is suitable for a wide variety of sensors
and environments. In particular, it is targeted at autonomous mobile robots operating in
only partially known or unknown environments. Within SFX, sensor fusion consists of three
distinct activities: planning, execution, and exception handling. In the planning activity,
the task goals of the robot are used to generate expectations of percepts and to predict
what features will be observable to which sensors. The execution activity is concerned
with collecting observations and computing the total belief in the percept. Depending on
the belief, the robot proceeds with a behavior to accomplish a goal, explores further or
adds more sensor resources, or reconsiders its goals. In addition, the execution activity
tries to detect sensing anomalies such as sensor malfunction. If an anomaly is detected, an
appropriate exception handling activity is invoked.

Sensor fusion in the SFX architecture is based on DST, where the accrual of evidence follows
a three level hierarchy. At each level, evidence is represented as a Dempster-Shafer belief
function. At the lowest level, evidence is collected for features, which may contribute to a
percept and can directly be collected from the processing of sensor data. At the second level,
the evidences for features are transferred to evidences for descriptions of a percept. At the
highest level, these evidences are converted to evidences for the percept and combined with
Dempster’s rule. Propagation of the evidences between the different levels is accomplished
with the help of enlargement functions that encode evidential mappings between different
frames of discernment. In SFX, the evidential mappings are implemented as weight vectors,
which are selected according to some predefined rules.

In [89], Murphy discusses several sensor fusion schemes for their applicability for au-
tonomous mobile robots. In particular, he compares the suitability of Bayesian methods
with Dempster-Shafer Theory. He argues in favor of DST because it facilitates modelling
of full or partial ignorance, does not require a priori probabilities and allows to include
domain-specific knowledge and dependencies which are not of probabilistic nature.

Major contributions: The SFX architecture is not tailored to a concrete sensor fusion task
as part of a particular application, but provides a reusable generic sensor fusion architecture
for autonomous mobile robots. The benefits of DST compared to other sensor fusion schemes
are highlighted. It is also shown how Dempster-Shafer belief functions can be propagated
between different levels of abstraction.

Weaknesses: Sensor fusion is mainly viewed in the perspective of a single robot. Additional
challenges arising from the inherent distribution of sensors in a team of cooperating robots
are not discussed. Besides, the sensory system is assumed to be designed in a monolithic
fashion. Consequently, heterogeneity issues arising from independent development of the
different sensor components are neglected as well.

Ecology of Physical Embedded Intelligent Systems
The concept of an Ecology of networked Physically Embedded Intelligent Systems (PEIS) [110]

aims at putting together insights from the fields of ambient intelligence and autonomous
robotics in order to generate a new approach for building assistive, personal and service
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robots. In contrast to many current approaches which aim at building a single robot device
empowered with extraordinary capabilities for perception, action, and cognition, the PEIS-
Ecology approach generalizes the notion of a robot to encompass the entire environment.
In the PEIS-Ecology vision, the robot disappears in the environment in a similar way as
computers are assumed to disappear in the vision of ubiquitous computing.

For this purpose, all robots in the environment are abstracted by the notion of a physical
device including a number of functional components. Here, the term robot is used in its most
general notation and interpreted as as computerized system interacting with the environment
through sensors and/or actuators. All PEIS elements are linked through a cooperation model
based on functional components. Each participating PEIS element can offer functionalities
to or use functionalities from other PEIS elements in the environment in order to improve
the capabilities of the PEIS-Ecology.

In this respect, the PEIS-Ecology approach is close to our vision where information providers
(sensors) and information consumers (actuators) are available in the environment and are
dynamically linked together in order to use the offered information (offered functionalities)
for satisfying information needs (required functionalities).

As part of the project, a middleware [16] is developed which provides support for dynamic
configuration of functionalities, for knowledge representation and for realizing the commu-
nication among the involved entities. A functionality is specified through its inputs, outputs,
preconditions, postconditions, a transfer function and its costs. For dynamic configuration of
functionalities, a hierarchical planning approach from artificial intelligence is used [92]. This
is close to our approach, where we aim at bridging heterogeneity with respect to different
representations by providing a configuration of Inter-Representation Operations.

In [76], an approach for cooperative anchoring in heterogeneous multi-robot systems
is proposed. Cooperative anchoring means the problem of determining which items of
information in a distributed system refer to the same objects and combining these items
accordingly. In this approach, information is represented using geometric spaces, which
are inspired by Gardenfor’s conceptual spaces [45], and concepts for data association, data
fusion and prediction are provided. Futhermore, an implementation of the concepts based
on fuzzy sets is discussed.

Major contributions: The PEIS-Ecology approach is able to dynamically combine functional
components available in the environment in order to realize the overall functionality of a
robotic system. It also deals with cooperative anchoring in multi-robot systems including
the problem of data fusion. Considering the functionalities as information provisioning and
consumption, it shows a number of similarities to our approach and fulfills many of the
requirements identified above.

Weaknesses: The PEIS-Ecology approach is claimed to be tailored to incorporate heteroge-
neous functional components. However, independent development of these components
is only considered to a limited extent. Functionalities are specified involving a logic-based
formalism and it is allowed to specify representations for inputs and outputs. This can be
assumed to serve as a kind of common vocabulary for developers, but this has not been
explicitly discussed. Data fusion based on fuzzy sets has been proposed, but it is assumed
that all robots use the same data representation avoiding the need to transform the measures
for impreciseness.
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6.2.7 Summary

FIPA Schmitt Santos SFX! STP/ PEIS
AGILO! ISocRob! TraderBots
Dynamic v X X X v
Environment
Common v X X X
Vocabulary
Interpretation of X X X X
Data Structures
Conversion of X X X X X
Data Structures
Expression of X X X
Offers and Needs
Competitive X v v v X v
Fusion
Reasoning X v v v X
Schemes
X = no support = very limited support = partial support v = full support
1 = focus on data fusion and reasoning

Table 6.2: Properties of Approaches and Frameworks for Autonomous Mobile Robots

Table 6.2 presents the detailed results of our evaluation of the approaches discussed in
Section 6.2.1 to Section 6.2.6 with respect to the requirements identified above.

The approaches of Schmitt (AGILO RoboCuppers) and of Santos and Lima (ISocRob) represent
the state of the art in cooperative object localization and tracking in the RoboCup Middle
Size League. Both approaches are based on probability theory and utilize Bayesian filtering
techniques as underlying sensor fusion approach, and thus suffer from the drawbacks of
traditional probability theory. These are, for example, the difficulty to represent partial or
complete ignorance or to incorporate non-probabilistic domain specific knowledge. Besides,
the approaches are tailored to the specific task of cooperative object localization in the
RoboCup domain and do not provide a generic sensor fusion approach. In contrast, the
SFX architecture provides generic and reusable sensor fusion and reasoning schemes and is
based on DST exploiting all its benefits. However, all three approaches assume a statically
composed system and do not consider the additional challenges arising from a dynamic
ubiquitous computing environment and from independent development of information
providers and consumers.

The FIPA specifications and STP/TraderBots aim at supporting interoperability and cooper-
ation of independently developed and heterogeneous autonomous mobile systems. Here,
STP/TraderBots even more emphasizes the requirement of achieving interoperability, when
the interaction of the different development teams is minimal. Both approaches are able
to incorporate possibly heterogeneous systems which dynamically join the team. However,
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interoperability and cooperation is mainly considered from a high-level perspective focusing
on the exchange of information at the symbolic level and on the communication about goals,
tasks and plans. Exchange of sensor data with its measures of uncertainty and imprecise-
ness as well as appropriate sensor fusion and reasoning schemes for deriving high-level
information are discussed only to a very limited extent, if at all.

The PEIS approach is closest to our vision of autonomous mobile systems, which are
dynamically composed and configured at runtime. PEIS composes functionalities already
available in the environment to realize the overall functionality of the system. Our approach
aims at providing requested information from the information available through sensors
in the environment and bridges heterogeneity issues by applying (possibly a series of)
Inter-Representation Operations. The PEIS approach meets many requirements arising from
a dynamic ubiquitous computing environment and presents approaches for data fusion.
However, a common vocabulary serving as a baseline for independent development is
provided only implicitly through a logic-based definition of functionalities. Although the
developers of PEIS envisage functionalities that can perform coordinate transformations and
specify the type of data representations, semantically interpretable data structures and the
transformation of measures of uncertainty and impreciseness are not supported. Instead,
with their data fusion approach based on fuzzy logic they explicitly assume a common data
representation.

In conclusion, the work described in this dissertation represents a further ingredient to
realize teams of heterogeneous autonomous robots, which are composed dynamically at
runtime and where interaction among the different development teams is minimal. Our
approach focuses on the exchange of sensor data and on bridging heterogeneity with regard
to the utilized data representations, which has been neglected by the other approaches.
Furthermore, we present a generic and reusable information model and provide a generic
data fusion and reasoning approach based on the DST.
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7 Information Model

In this chapter, we describe the Information Model which forms the baseline of our solution
approach. Generally, we assume a message-based communication scheme between the differ-
ent nodes of the computing environment, where a piece of information can be encapsulated
in a single message. Communication between the different nodes is enabled by using a
standard communication protocol or an appropriate communication middleware. Our de-
scription of the Information Model is centered around the second option and shows how the
proposed Information Model directly fits within the concepts of SPICA [6, 3], a model-driven
development framework for communication infrastructures involving heterogeneous nodes
(see also Section 2.2.3).

7.1 Three Layers of Abstraction

Conceptual Layer

Information Model

Correspondency
Exchange Layer

Serialized Information

Serialization/
Deserialization

Functional Layer
Data Structures

Data

Figure 7.1: Three Layers of Abstraction

We identify three basic layers of abstraction for the realization of information exchange in
heterogeneous distributed environments: the conceptual layer, the exchange layer, and the
functional layer as shown in Figure 7.1. The conceptual layer is formed by the Information
Model, which is an ontology specified in OWL 2 and provides a common vocabulary defining
the application domain as well as the structure and semantics of the exchanged information.
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At design time, this vocabulary is leveraged by the developers for the specification and
semantic annotation of the exchanged messages. At runtime, it is used to perform a number
of reasoning tasks, e.g. checking the availability of and determining potentially required
Inter-Representation Operations. The exchange layer aims to be utilized for interoperability
between different nodes. At this layer, the information is expressed/serialized in any
adequate exchange format such as XML, JSON (JavaScript Object Notation) [69] or the
SPICA binary format [3], to mention only a few. Finally, the functional layer refers to the
actual implementation of the Information Model and the internal mechanisms used in the
different nodes. It provides the required serialization and deserialization mechanisms to
bridge between the functional and the exchange layer. The main objective of this layer is
efficiency, both in terms of processing speed and resource consumption.

Conceptual Layer

Information Model Transformation
OWL Ontology — SPICA ML Model

Correspondency Transformation

Provides
Serialized Information h
SPICA binary format

Exchange Layer

Serialization/
Deserialization

Infrastructure

Functional Layer

Provides
Data Structures _
Data

Figure 7.2: Three Layers of Abstraction and SPICA-based Realization

SPICA-generated Communication

As shown in Figure 7.2, one possibility for the realization of the exchange layer and the
functional layer is a communication infrastructure that is generated by the SPICA develop-
ment framework (see also Section 2.2.3). SPICA provides a specification language called
SPICA Modelling Language (SPICA ML) which is similar to IDL approaches and ASN.1 [65].
From a SPICA ML model, the data structures for the exchanged messages along with the
serialization and deserialization methods as well as module stubs acting as communication
endpoints can be generated in different programming languages. This and its support
for easy interfacing of already existing modules makes SPICA particularly well suited for
providing a communication infrastructure in heterogeneous environments. As the structure
of the information to be exchanged is entirely defined in the ontology, the definitions of the
ontology can be automatically transformed into the message part of a SPICA model acting
as starting point for the code generation. However, SPICA does not provide the capabilities
required for the further processing of the received data as envisaged in this work.

In the following sections, we focus on the description of the ontology concepts and provide
further hints how the definitions can be transformed into the message part of a SPICA ML
model.
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7.2

7.2.1

Ontology Concepts

The main purpose of the ontology concepts presented in this section is to provide a common
scheme for the ontology-based definition of application domains and for the specification of
the data structures used for information exchange. In particular, this means that we do not
propose a single concrete ontology. Instead, we only propose top-level concepts that form
the baseline for concrete ontology specifications and allow easy integration with existing
ontologies.

As the information exchanged between heterogeneous and independently developed infor-
mation sources and sinks is intended to be processed and to serve as input for calculations
and reasoning tasks, it has to be ensured that the exchanged information can be fully seman-
tically interpreted. The corresponding ontology concepts are inspired by the Aspect Scale
Context (ASC) model and the Context Ontology Language (CoOL) proposed by Strang et al.
[135]. ASC/CoOL envisage the specification of different representations (scales) for a certain
information element (aspect) and defines the internal structuring of the representations in
the ontology. As this fits very well our requirements, we adopt a number of concepts from
the ASC model and incorporate them into a more comprehensive ontological framework.
More detailed information about the concepts adopted from ASC is provided in the following
subsections.

Structuring of Exchanged Information

In our approach, we assume a simple structuring of information as depicted in Figure 7.3. A
piece of information contains an arbitrary number (but at least one) Information Elements. In
turn, an Information Element is composed of further Information Elements and of an arbitrary
number of information Values. Values correspond to atomic values of a certain data type. In
order to enable semantic interpretation of the information, the ontology provides a common
vocabulary and modelling concepts used to define the different types of Information Elements
and their internal structuring with regard to the contained Information Elements and Values.

Ontology Definition SPICA ML model
Information SPICA Message

1 Message Header
1..* * *
SPICA Contamer
Information Element 1..*
Y* Y*
SPICA Field
value

Figure 7.3: Structuring of Exchanged Information

Figure 7.3 also illustrates that the structuring of information assumed in our approach is in
line with the structuring of information applied in SPICA. In SPICA, an Information Element
corresponds or is represented by a SPICA Container, which is a collection of further SPICA
Containers and SPICA Fields. Just as in our Information Model, SPICA Fields correspond to
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atomic Values of a simple data type such as integer, float, uint8, etc. SPICA also envisages
the possibility of annotating the different elements of a message. This means that references
to concepts (individuals and classes) of our ontology can be included in order to support
semantic interpretation of the SPICA data structures. A SPICA Message also comprises
a Message Header as well as some Management Fields for each container. These provide
identifiers for the message or container, depict the used serialization/deserialization scheme,
etc.

7.2.2 Entity Types, Scopes and Representations

owl:Thing

EntityType Representation

characterizes* providesinformation*

provides*

InformationSource

Figure 7.4: Ontology Concepts: Entity Types, Scopes and Representations

Support for representing heterogeneous sensor information is one of the main requirements
for the Information Model presented in this section. Sensor information usually provides
a certain kind of information about a real or logical object of the world in a certain rep-
resentation. Consequently, at the top level the ontology defines the classes Entity Type,
Scope and Representation (see Figure 7.4). Entity Types depict the types of real or logical
entities in the application domain. In the domain of context-aware ubiquitous applications,
examples for Entity Types are User, Device, Building and Application. These types abstract
concrete Entities like ‘User Christoph’, ‘Device with IP 141.51.122.44’, ‘Building of University of
Kassel’ or ‘Application named ActivityAwarePhone’. Entities are characterized by Scopes, which
indicate the type of information elements. Examples for Scopes are LocationInfo, BatteryInfo,
DateTimelnfo. Scopes provide the information in a defined Representation, which describe
the internal structuring of the information. Here, special attention has to be paid to the
multiplicity of the property providesInformation: a Scope can provide an arbitrary number of
information elements of the corresponding type, each of which has a certain representation.
In this respect, a Scope can also be interpreted as a collection of information elements of a
certain type that can be encapsulated in a message. As described in Section 7.2.5, this is
very important, since it allows to represent multiple information elements corresponding
to multiple hypotheses of the same phenomenon in a single message. This is required for
information fusion according to DST which relies on the association of basic belief masses to
different hypothesis of a phenomenon. A Scope, i.e. an information element or a collection
of information elements of a certain type, is provided in a certain representation by an
Information Source. This class is a specialization of Entity Type and mainly represents raw
sensors (including persons) or devices that perform calculations on raw sensor data. As
also logical Entities are allowed, an Information Source can also be a certain reasoning
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component deployed on a node of the computing environment. It is also noteworthy here
that an Information Source can also be a characterized Entity of a Scope. For example, a robot
determines its position by a self-localization approach, i.e. the robot provides information
on its own position.

Scope - - » Representation
J providesinformation*

hasDimension*

—[CompositeRepresentation] [ Basic Representation j

Figure 7.5: Ontology Concepts: Basic and Composite Realizations

Whereas Scopes correspond to semantic concepts for information types, Representations
provide semantic definitions of the data structures, or containers in SPICA terminology, used
to represent the information of a certain type. We distinguish between Basic Representations
and Composite Representations as shown in Figure 7.5. Composite Representations comprise
an arbitrary number of dimensions corresponding to different types of information elements,
i.e. Scopes. This allows to specify that an information element of a certain type in a certain
representation includes further information elements, which in turn correspond to scopes
and are provided in a certain representation. The recursion stops once a dimension (Scope)
is provided in a BasicRepresentation, which does not comprise further dimensions. Usually, a
Basic Representation corresponds to a basic information value, or field in SPICA terminology,
that can be represented using an OWL datatype property.

This definition of the internal structuring of information is adopted from the ASC model
[135]. The ASC model defines Aspects (corresponding to our Scopes), which are represented
in a certain Scale (corresponding to our Representation). Scales in the ASC model refer to
Aspects again, which leads to a recursion of the same kind as in our model.

A Composite Representation represents an information element which is of a certain Scope
and characterizes a certain Entity by referring to other Scopes. These Scopes in turn char-
acterize Entities. For example, a SharedWorldInfo scope in the RoboCup domain provides
information about the current world view of a particular robot. A possible representation of
SharedWorldInfo may comprise a dimension of scope PositionInfo depicting the position of
the ball on the field. This means that a corresponding element of scope SharedWorldInfo
characterizes the robot providing the information and the ball. In general, an information el-
ement characterizes all of the entities that are described by an included information element.
In OWL 2, this can be represented by defining the following property chain as sub-property
of characterizes:

providesInformation o hasDimension o characterizes — characterizes

Just in the same way as the ASC model, we allow different Representations for a certain
Scope (see Figure 7.6). For example, the scope LocationInfo depicting the current location
of a person can be represented in GPS coordinates (LocationWGS84) or as the address of a
building (LocationAddress). In the same way, a DateTimelnfo may be represented as a tuple
of day, month and year, or as a simple string. Allowing multiple possible representations for
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Figure 7.6: Ontology Concepts: Multiple Representations

a certain type of information is one of the most important requirements for our Information
Model, as we cannot assume that independent developers always use the same representation
for a certain type of information. In this respect, support for multiple representations is
a prerequisite to boost interoperability for dynamically discoverable and heterogeneous
information consumers and providers.

In this work, the ASC model is extended by introducing taxonomies for Scopes and Represen-
tations and restricting the allowed Representations for a certain Scope. Restricting the allowed
Representations for a certain Scope to a certain class of Representations does not prevent the
possibility to allow heterogeneous representations for Scopes. As illustrated in Figure 7.6
possible heterogeneous representations are covered as subclasses of the Representation class
the Scope is restricted to. In the example of Figure 7.6, a restriction for the class LocationInfo
can be defined in OWL 2 as:

providesInformation onlyValuesFrom LocationRep

It is noteworthy here that through restrictions of this kind, the taxonomies for Scopes and
possible Representations are close-coupled.

In order to further illustrate the ontology-based definition of representations, a concrete
example is provided in Figure 7.7. In this example, the CNPositionInfoRep is intended to
provide a data structure for position information of objects in a 3D Cartesian coordinate
system. Consequently, the CNPositionInfoRep refers to the Scopes XCoordinate, YCoordinate,
and ZCoordinate, which are defined as subclasses of CoordinateSystemScope. Actually, a
Representation refers to Scopes by the hasDimension property (see Figure 7.5). However,
in order to provide a semantically more meaningful property and to ease definition of
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Figure 7.7: Example for the Detailed Specification of Representations

cardinalities!, we define three sub-properties of hasDimension: hasXCoord, hasYCoord, and
hasZCoord. Without further restrictions, the XCoordinate, YCoordinate and ZCoordinate scopes
can be provided in an arbitrary representation. This would mean that CNPositionInfoRep only
specifies the involved scopes, but does not provide further information about the concrete
representation of the internal scopes. From a conceptual point of view this is possible, but
in most practical cases also the need for a concretion of the representations of the internal
scopes can be assumed. In our example, all three coordinates should be represented as floats
in the unit millimeters. In order to be able to refer to units, we integrate an ontology from
the NASA SWEET project [137]. The SWEET Units Ontology defines classes for BaseUnits
and DerivedUnits. DerivedUnits refer to one or more BaseUnits and incorporate Prefixes, as e.g.
Kilo, Mega or Milli, and the corresponding scaling factors. This allows conversion between
the different units only with the information available in the ontology. Concrete units like
Meter and Millimeter appear as individuals in the SWEET ontology. In order to specify that
the XCoordinate, YCoordinate and ZCoordinate scopes involved in the CNPositionInfoRep are
represented as floats and in millimeters, property restrictions of the following kind have to
be defined for CNPositionInfoRep:

1t has to be ensured by cardinality restrictions that the Representation comprises exactly one XCoordinate,
one YCoordinate and one ZCoordinate.
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hasXCoord onlyValuesFrom
(XCoordinate and (providesInformation onlyValuesFrom
(FloatRep and (hasUnit hasValue Millimeter))))

The third line of this property restriction corresponds to the definition of an implicit class,
which is depicted in Figure 7.7. The definition of CNPositionInfoRep from the example (gray
background) can easily be translated into a SPICA ML container specification:

urnpfx # http://carpenoctem.das-lab.net/ontologies/SimpleExample.owl#

CNPositionInfoRep : DataContainer

[compare={XCoord, YCoord, ZCoord}, rep=#CNPositionInfoRep] {

float XCoord [refconcept=#XCoordinate,
refrep=#FloatRep{hasUnit=#Millimeter}];

float YCoord [refconcept=#YCoordinate,
refrep=#FloatRep{hasUnit=#Millimeter}];

float ZCoord [refconcept=#ZCoordinate,
refrep=#FloatRep{hasUnit=#Millimeter}];

The SPICA ML container specification defines a data container named CNPositionInfoRep
which is annotated with the key words compare and rep. compare lists the variables that
are considered in a comparison for equality, rep refers to the ontology and depicts the
corresponding Representation class. The container includes three float fields XCoord, YCoord,
and ZCoord, the names of which have been derived from the properties hasXCoord, hasYCoord
and hasZCoord defined in the ontology. All three fields are annotated with the key words
refconcept and refrep. refconcept refers to the ontology classes for the involved Scopes and
refrep depicts the ontological class for the corresponding Representation. In the same way as
in the ontology, the class for the Representation is an implicit class derived from FloatRep with
property hasUnit restricted to the individual Millimeter. In this respect, the ontology-based
specification of representations, or data structures respectively, directly fits within the SPICA
model-driven development approach and forms another abstraction layer for the message
part of SPICA ML with focus on semantic interpretability. Another possibility which has to be
investigated in future is the transformation of SPICA ML models into ontology specifications
as this would allow developers to specify data structures in the way they are used to, and
still to exploit the benefits of our Information Model.

It is also noteworthy here that all the ontology concepts presented above are designed in such
a way that a concrete piece of information represents an individual of a certain scope of the
ontology. This can be exploited to combine our Information Model with approaches applying
ontology-based reasoning on individuals to infer new knowledge (see Section 7.2.4).

Entity Types as Value Domains

In many cases, the information given through a Scope corresponds to an individual of
an Entity Type. A very prominent example for this is a scope LocationInfo that provides
information about the location of a person. The characterized Entity Type of the Scope is
Person, and one may want to express that the current location of the person is a particular
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room, e.g. ‘Room 1305’ which represents an individual of the entity type Room. In a way, this
would require to allow Entity Types as value domains for the providesInformation property,
i.e. to consider Entity Types as a kind of Representation.

Representation Entity Type

providesInformation*

hasSymbolicRep 0..1

providesinformation* Symbolic is-a

Representation

LocationInfo LocationInfoRep

LocationWGS84 Symloe e eeien
Representation

[ suiting ) [ Room j

Figure 7.8: Symbolic Representations for Entities

In order to retain a clean scheme of Entity Types, Scopes and Representations, however, we
introduce another concept/class SymbolicRepresentation in our Information Model as sub-
class of Representation (depicted in Figure 7.8). A SymbolicRepresentation provides a kind of
symbol, e.g. a simple string?, that uniquely identifies a certain Entity. For this purpose, Entity
Types are related to SymbolicRepresentations through the functional property hasSymbolicRep.
This ensures that if two SymbolicRepresentations are equal, they are associated to the same
individual of the corresponding Entity Type. This is a first step towards the establishment of
correspondencies between symbols and data values that can be perceived by sensors. This is

commonly referred to as perceptual anchoring [25].
Symbolic l . l
PersoninfoRep Entity Type
A

A
hasSymbolicRep 0..1

is-a

SymbolicPerson
Representation

i hasSymbolicRep i
0 SymbolStranger ;{(:;)org::t;?vne 10 Known Person
io SymbolKnown hasSymbolicRep Stranger

Person Representative o

Figure 7.9: Representative Individuals for Classes

Stranger

Apart from specifying that a person is currently located in a particular room or building, it
may also be required just to express that the person is currently located in a class of location
entities. For example, for some applications it may be sufficient just to know if a person
is currently located in a restaurant or in a cinema, but no more details on the particular
restaurant or cinema are required. A similar situation can be observed when a piece of
information should express a classification result. For example, a person is classified as

2From a conceptual point of view, also Composite Representations are feasible.
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a Known Person or as a Stranger. Here too, only a whole class of individuals is relevant.
In a way, this requires to reference a whole class in an individual. However, only in the
OWL Full sub-language (or in the Full Profile of OWL2 respectively) classes can be used as
individuals. But OWL Full discards the guarantee for decidability. In order to avoid this, we
introduce Representative Individuals (and associated symbols) for the different Entity Types
(see Figure 7.9). These individuals can be used in the same way as other individuals of the
class but represent the whole class of individuals.

Inference through Ontology Reasoning

As already explained in Chapter 5, ontologies are usually specified in a logic-based formalism.
This also applies to the ontology concept presented in this thesis, which are described using
a decidable fragment of OWL 2 corresponding to the SROZQ(D) description logic. Such
a logic-based formalism can not only be exploited to check consistency of ontologies, but
also to infer new knowledge based on the information already available through the classes,
their relationships and the corresponding individuals of the ontology. In the area of context
awareness, Wang et al. [145] apply this concept for reasoning about the activity of users in
a home domain. A part of their ontology, called COntext ONtology (CONON), is depicted in
Figure 7.10.

utilize Computational
Entity

locatedin locatedIn
Location ]
locatedIn

locatedIn
E Person

nearBy

Activity

engagedin

Figure 7.10: Part of the CONON Home Domain Ontology

In this ontology, Location is the central concept depicting that a Person, the utilized Computa-
tional Device, and the performed Activity all have the same location. A Person can be nearby
other Persons and a Location can be contained in another Location. If a set of individuals
of the different classes matches certain constraints, it can be inferred that some Persons are
engaged in a certain Activity.

The property locatedIn plays a central role in this reasoning approach. With regard to
our ontology concepts, so far we have only highlighted how Entity Types, Scopes and
Representations are related to each other. Figure 7.11 shows how relationships between
Entity Types, as for example represented through properties like locatedIn, fit into our scheme.

The general idea is to resolve the property locatedIn by specifying a chain of properties as
sub-property of locatedIn. For this purpose, we first define the property describedBy as inverse
property of characterizes and the property identifies as inverse property of hasSymbolicRep.
By making identifies a functional property, a one-to-one correspondence between individuals
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Figure 7.11: Property Chain for locatedIn Property

of an Entity Type and individuals of SymbolicRepresentation is ensured. Furthermore, the
property describedByLocationinfo is defined as sub-property of describedBy in order to avoid
possible ambiguities. The locatedIn property can now be represented by the following
property chain:

describedByLocationInfo o providesInformation o identifies — locatedIn

By resolving relationships (properties) between Entity Types in this way, ontology reasoning
approaches as proposed by Wang et al. [145] can be directly combined with our scheme of
Entity Types, Scopes and Representations. Section 7.2.7 describes how symbols are related to
sensor values within this scheme as a general basis for applying reasoning approaches at a
symbolic level.

Association of Meta-data

One of the main challenges for the work presented in this thesis is to deal with the special
characteristics of sensor information. Thus, we define a number of Metadata classes in the
ontology, which help in expressing the impreciseness, uncertainty, unreliability as well as the
temporal and dynamic nature of sensor information (see Figure 7.12).

We distinguish between RepMetadata, which are only associated to or used in Representations,
ScopeMetadata, which are only associated to Scopes and CommonMetadata, which can be
associated to both, Scopes and Representations. Here it is important to note that when
specifying meta-data, Scopes are interpreted as a collection of Information Elements of a
certain type, and the individuals of the corresponding Representations are considered as
the actual Information Elements, i.e. the values for the Scope. Consequently, meta-data
associated to Scopes apply to the whole collection of Information Elements. So far, as
ScopeMetadata we only use Reliability, which expresses the reliability of the sensor providing
the Scope, and BeliefAssignment, which allows to form a complex Dempster-Shafer belief
assignment from the belief masses of the single hypotheses, i.e. Information Elements. As
Metadata for Representations we define ValueRange, UniformValueRange with a uniform
belief mass distribution, CovarianceMatrix, Covariance, and Variance. These classes are used
to denote the impreciseness of an Information Element. Furthermore, BeliefMass and its
specialization Probability are sub-classes of RepMetadata expressing a Dempster-Shafer belief
mass assignment or probability for a single Information Element. Probability is considered
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Figure 7.12: Different Types of Meta-data Defined in the Ontology

as a BeliefMass that only applies to a singleton of the domain (frame of discernment) of
the corresponding Information Element. CommonMetadata has the subclasses Timestamp
and ChangeFrequency depicting the temporal and dynamic nature of sensor information.
Whereas the meaning of Timestamp is self-explaining, ChangeFrequency allows to express
the expected frequency the observations represented in the Information Elements change
considerably. As shown in Chapter 9, this information can be used in conjunction with
a timestamp to model the belief in a piece of information that was sensed at a certain
time in the past. CommonMetadata associated to a Scope apply for the whole collection of
InformationElements, whereas CommonMetadata included in Representations are only valid
for the particular Information Element.

From Figure 7.12 it can be observed that Metadata is directly derived from owl:Thing,
although from a conceptual point of view it would be reasonable to consider Metadata as a
special kind of information type and thus to put it a sub-class of Scope. However, deriving
Metadata from Scope would mean that Metadata can have multiple Representations and that
the internal structure has to be specified in the scheme Scope and Representation again. As
we assume a quite fixed representation for most of the Metadata classes, for the sake of
simplicity we decided to put Metadata as sub-class of owl:Thing instead of Scope. If it is
required to allow multiple representations for a class of Metadata, a constraint can be added
to the particular Metadata class denoting that it also has the superclass Scope.

Furthermore, it has to be noted here that we do not claim the set of proposed Metadata
classes to be exhaustive. However, we have limited the description to these Metadata classes
that are actually exploited in the further steps of the solution approach. In the following
paragraphs, the association of those Metadata classes is described in more detail which
cannot be expressed as a single value but have an internal structure and refer to Scopes of a
Representation or concrete Information Elements of a certain Scope.
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Figure 7.13: Association of Covariance Matrices and Value Ranges to Representations

Figure 7.13 illustrates the association of the measures for impreciseness, CovarianceMatrices
and ValueRanges, to Representations. Here some difficulties arise as these meta-data have to
refer to particular scopes of the corresponding representation. In order to avoid introducing
many additional classes and properties, the links between the referred Scopes and the
Metadata are simply established through two OWL datatype properties of type string:
hasScopelD and referencedScopelD. The required matching of these strings is just assumed
and not specified in OWL in full detail, in order to avoid unnecessary complexity in the
definition of the ontology. This is reasonable as these definitions are not expected to be
exploited by a general-purpose OWL reasoner but only by a dedicated module that performs
the data conversion and fusion steps. It is important to note here that when specifying
concrete values for the two data properties mentioned above, we are still at the class level,
i.e. property restrictions are added as axioms for the class that associate a concrete individual
(string) to the properties.

When specifying ValueRanges or Variances/Covariances/CovarianceMatrices, special care has
to be taken that the corresponding definitions are reasonable. Actually, value ranges are
feasible for all domains/sets where a partial or total order can be defined, and generalizations
exist for the concepts of variance and covariance for symbolic data. In this thesis, however,
we will restrict ourselves to the application of such concepts to discrete or continuous
valued numerical Representations, such as integers (IntegerRep), floats (FloatRep), doubles
(DoubleRep), etc.

The DST forms the central paradigm for competitive and complementary sensor fusion in
this thesis. Thus, it is not only required to have elaborate support for the specification
of belief assignments to single hypothesis but also to arbitrary sets of hypotheses. In the
ontology, this is supported by the concepts shown in Figure 7.14. It is assumed that an
Information Element coming as individual of a specific Representation corresponds to a single
hypothesis. A Scope can now be associated with an arbitrary number of BeliefAssignments.
A BeliefAssignment specifies exactly one BeliefMass and refers to a ValueReference, which
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Figure 7.14: Association of Belief Assignments to Scopes

is used to specify the set of hypothesis the belief mass applies to. There exist four sub-
classes of ValueReference: SimpleReference, ComplementReference, IntersectionReference, and
UnionReference. SimpleReference refers to an individual of an Representation corresponding
to a concrete Information Element or hypothesis. This is realized with the help of two simple
string datatype properties (hasValueld, referencedValueld) in a similar way as Scopes are
referenced in Metadata associated to Representations. The difference is, however, that here
concrete values cannot be specified at the class level, but can only be defined in a concrete
individual of a Scope. ComplementReference, IntersectionReference, and UnionReference provide
the corresponding set operations in order to allow compact specification of arbitrary sets of
hypotheses.

Special Properties for Information Fusion with the DST

When it comes to information fusion with DST, the possibility for reasoning about the in-
tersection and inclusion of hypotheses with regard to other hypotheses is a predominant
requirement. In the case of a class/sub-class relationship, reasoning with regard to inclusion
of the individuals of one class in the set of individuals of another class is inherently sup-
ported. However, in the general case, we have to take special care to indicate if a relationship
expressed through a property defined in the ontology corresponds to either the intersection
or the inclusion of hypotheses. For this purpose, we predefine the three properties DSTinter-
sectedWith, DSTincludes and its inverse property DSTisIncludedIn. Properties like partOf,
which allows to express that a room is a part of a floor, and a floor is a part of a building, are
then defined as sub-properties of DSTisIncludedIn. This allows to infer that a belief mass for
being in a room of a building contributes to the belief for being in the building.

Ontology Concepts for Inter-Representation Operations
The ASC model [135] not only envisages to define the internal structuring of information

with regard to aspects and scales, it also introduces the concept of Inter-Representation
Operations (IROs) allowing to convert one scale of a certain aspect to another scale. As
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this concept is vitally important to boost interoperability in dynamic and heterogeneous
distributed environments, it is adopted in the context of this thesis. We align the concept of
IROs to the scheme of Entities (Entity Types), Scopes and Representations and also discuss the
more general case, where an IRO converting a piece of information from one Representation
to another also depends on additional information.

Entity Type Representation

characterizes providesInformation*

haslnput 1

hasDependency * worksOn 1
hasOutput 1

InterRepresentation
Operation

owl:Thing

hasGrounding 1

IROGrounding serviceType : string

serviceAddress : string

protocol : string

serializationScheme : string

Figure 7.15: Definition of Inter-Representation Operations in the Ontology

The general purpose of IROs is to allow further processing of information, which already
corresponds to the required Scope and describes the desired Entity but differs in the expect-
ed/required Representation. In order to allow spontaneous integration of heterogeneous
information providers, mismatches in Representations have to be detected and resolved by
applying appropriate IROs automatically and at runtime.

An IRO is defined as an operation that converts an Information Element of a specific Scope in a
certain Representation and characterizing a specific Entity to the same Information Element in
another Representation applicable for the corresponding Scope. In the simplest case, an IRO
is just in charge of converting from one measuring unit to another, e.g. from kByte to MByte
or from Celsius to Fahrenheit. Such simple conversions for measuring units can be derived
from the information captured in the SWEET Units ontology and can be executed with the
help of an accompanying set of rules by an SWRL engine. Furthermore, we also envisage
more complex IROs in our model which also require some additional information apart
from the current representation. Assume for example, we would like to convert the location
of a user from coordinates relative to a certain building to global coordinates. In order to
perform such a conversion, the position of the building in global coordinates is required as
well. In general, this means that an IRO can have an arbitrary number of dependencies to
additional information.

Figure 7.15 illustrates the ontology concepts for defining IROs. As an IRO converts an
Information Element of a certain Scope from one Representation to another Representation
of the same Scope, an IRO is directly associated to the particular Scope it works on. Via
the Scope the IRO is also related to the characterized Entity. As an IRO is only in charge
of converting the Representation of an Information Element to another Representation, the
described Scope as well as the characterized Entity remain unchanged.

As already mentioned above, an IRO can have an arbitrary number of dependencies to
additional information. Thus, the IRO is associated via the hasDependency property to
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an arbitrary number of Scopes, describing a certain Entity and providing information in a
specified Representation again. Please note that these Entities not necessarily have to be the
same as the Entity described by the Scope the IRO works on. In our previous example, the
Entity whose location has to be converted is a user whereas the dependency refers to an
Entity of type Building.

Furthermore, each IRO is associated to a grounding, which defines in detail how the IRO can
be invoked. Thus, a grounding specifies the type of conversion service (e.g. SWRL, Java JAR,
Spica Module, Web service), its address (e.g. IP address and port, URL), the communication
protocol (e.g. HTTP, SOAP, RMI, SPICA Udp), and the serialization scheme (XML, JSON,
SPICA binary format).

When specifying concrete IROs, i.e. individuals of the class InterRepresentationOperation, it
has to be considered that an IRO is not applicable only for a single individual of a certain
Scope and a single individual of the corresponding Representation but for all individuals of
the Scope and all individuals of the Representation. Therefore, for a concrete IRO we only
define an object property assertion axiom with regard to its IROGrounding but not with regard
to the Scope and the Representations the IRO works on. The definitions of IRO individuals
are exploited at runtime to reason about the availability of IROs that are required to convert
between different Representations of Information Elements.

At this point, we would like to draw the reader’s attention to a special kind of IROs: IROs
that convert the Information Elements provided by a Scope to SymbolicRepresentations. Such
IROs are applied, for example, to convert a LocationInfo provided in GPS coordinates to
a symbol for a certain Location Entity. In this respect, following the approach presented
above, correspondencies between symbols and data values are established through the
invocation of appropriate IROs. This has turned out to be a highly flexible approach as
the location and invocation details for the corresponding IROs are defined in the ontology
and thus are also shared among the nodes involved in the computing infrastructure. This
means that all the involved nodes not only share a common vocabulary of symbols but also
employ the same operations to relate symbols to sensor data values. Here, another important
aspect is the fact that IROs are able to create new symbols corresponding to new Entities
(individuals of a certain Entity Type). This is the case, if an IRO is invoked that converts to a
SymbolicRepresentation, but the corresponding symbol is not available in the ontology yet.

Structural Organization of the Ontology

Processing and reasoning with ontologies is known to be a resource consuming tasks, in
particular if the ontologies become large and comprise a huge number of classes, individuals
and properties. New lightweight representation schemes (e.g. the Manchester OWL syntax
[61]) have been developed to speed up retrieving, parsing and preprocessing of ontologies.
However, it is still vitally important to keep the ontology, or at least the active parts of the
ontology, as small as possible. Thus, it has been established as common practice (see e.g.
[145, 160]), to organize the ontology in a hierarchical manner incorporating at least two
levels of hierarchy. Figure 7.16 shows how this approach is incorporated in and aligned to
our Information Model.

In our approach, ontologies are organized in a three-level hierarchy. The top-level ontology
comprises the general scheme of Entity Types, Scopes and Representations and includes all
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the basic ontology concepts described in the previous sections. Thus, the top-level ontology
forms the baseline for other ontology definitions and ensures that the overall ontology
adheres to the basic concepts presented in this thesis.

At the next level, the top-level ontology is extended by a number of domain-specific on-
tologies. These ontologies are intended to capture basic concepts and general knowledge
applicable to almost all scenarios in a certain application domain. Here, with application
domain we refer to whole areas like Context-aware Applications in Ubiquitous Computing
or Cooperating Teams of Autonomous Robots. For almost all scenarios of context-aware
applications, the notions of location, users, device resources, etc. are required. Consequently,
these concepts are captured in a domain-specific ontology. Every domain-specific ontology
is then extended at the lowest level by an application-specific ontology, which introduces
the concepts that are likely to be important only for a limited number of scenarios in the
corresponding domain. In the domain of context-aware computing, for example, one sce-
nario could involve an application that supports the user while working in different office
environments. Another scenario may comprise an application assisting the user in her travel-
ing activities. This organizational structure of the ontology is complemented by the SWEET
Units ontology. As definitions for units are expected to be important for a great number of
applications, the SWEET Units ontology is considered to be a fundamental building block for
ontologies as envisaged in this thesis.

In order to reduce computational effort, the structural organization of the ontology is
exploited to keep only these ontologies active, which are really required. For example, in
context-aware computing, only the top-level ontology, the SWEET Units ontology and the
corresponding domain-specific ontology are necessarily required. Depending on the concrete
application the corresponding application-specific ontology is plugged-in.

The ontology concepts described above serve a lot of different purposes. They are not
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expected to be handled by a single general-purpose ontology reasoner, as e.g. Fact++ [140]
or Pellet [128]. Instead, it is proposed to also employ a number of dedicated reasoners
which are tailored to different purposes of the ontology. In the following list, the usage of
ontology reasoners as envisaged in this work is described:

* General purpose ontology reasoners (Fact++, Pellet) are used at design time and
possibly at start-up of the system to check consistency of the set of ontology defini-
tions. At runtime, the usage of such reasoners is restricted to infer new knowledge
through ontology reasoning as described in Section 7.2.4. For this purpose, only the
definitions for Entity Types/Entities are required and have to be activated.

* A dedicated reasoner is employed at design time (but maybe also at runtime) to
transform the definitions of the ontology to SPICA ML models, for example, in order
to support the model-driven generation of data structures and serialization/deseri-
alization methods as required at the functional and exchange layer.

* At runtime, a dedicated reasoning module supports semantic service discovery
and matching. It reasons about the required mediation tasks to extract specific
information elements contained in other information elements. This module is also
responsible for reasoning about the necessity and availability of IROs.

* Another dedicated reasoning module is in charge of processing the meta-data defini-
tions and making the meta-data associated to information elements available for
the information fusion steps.

From the list presented above it can be observed that apart from general consistency checking,
general purpose reasoners are only envisaged to use the Entity Type/Entities definitions.?
Thus, general purpose reasoners are used only for tasks they have already proven to show
a reasonable performance in other projects. For all other aspects, we propose the usage of
dedicated reasoners which are tailored for their specific task and only exploit a subset of
defined classes, individuals and properties again.

Information Offers and Requests

One of the key challenges to deal with in today’s and future distributed computing environ-
ment is the dynamic appearance of devices and services, which act as information providers
and consumers. Here, the devices and services constituting the computing environment
cannot be foreseen at design time. This implies the need for runtime service discovery
and matching approaches in order to facilitate the establishment of communication links
between information consumers and providers in a dynamic fashion. Apart from appropriate
service discovery protocols, specification means are required to express information offers
and requests. The corresponding language has to facilitate the filtering of inappropriate
information providers and to establish only communication links that provide the infor-
mation actually needed. In the following section, we present the Information Offer and
Request Language, which is designed to meet these requirements. The proposed language
can easily be integrated and be used on top of already existing service discovery protocols
like UPnP/SSDP [51], SLP [54] or Geminga [7]. Afterwards, we present the corresponding

3This also implies a further splitting of the ontologies at the different levels.
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matching approach, which is required to check the appropriateness of information offers
with respect to information requests.

Information Offer and Request Language (IORL)

The Information Offer and Request Language (IORL) is based on the Context Query Language
(CQL) [117] developed in the European project MUSIC [90]. Although CQL only focuses
on the specification of queries for context information and does not deal with specification
of information offers at all, it still forms a sound basis for our IORL. This is justified by the
observation that a context query is generally used to restrict the requested context informa-
tion to a subset of possibly provided context information by defining a set of constraints.
The purpose of the specification of information offers is exactly the same: the set of offered
information is restricted to a subset of the possibly offered information elements. Transferred
to our ontology-based Information Model, this means the restriction of the set of possible
individuals of Scope to a certain subset.

As the information offers and requests have to be tailored to the ontology-based Information
Model, an obvious candidate for an underlying query language is SPARQL [111]. SPARQL is
a W3C standard proposal for a RDF query language whose syntax is inspired by SQL. The
approach is interesting as a way of incorporating semantic concepts and ontologies into a
SQL-based query language. SPARQL allows the definition of constraints on Entities, Scopes
and Representations and even the specification of fine-grained constraints on numerical
values and strings, but the queries tend to become quite long and complex as they must
be specified on the RDF triples. As the XML-based CQL is already tailored to our scheme
of Entities, Scopes and Representations and allows to specify the corresponding queries in a
more user-friendly compact manner, we have decided to use CQL as baseline for our IORL.
For a more detailed discussion on the advantages of CQL with respect to SPARQL and other
query languages we refer the reader to [117].

Just as the underlying CQL, the IORL is an XML-based language. Consequently, information
offers and requests are specified in an XML document with root element IORLSpecification.
Services can act as information providers and consumers at the same time (reasoners)
and may provide and require different kinds of information. Thus, an IORLSpecification
element comprises one InformationOffers element, which encapsulates an arbitrary number of
Information Offers and Sub-Offers, and one InformationRequests element, which encapsulates
an arbitrary number of Information Requests and Sub-Requests. The purpose of Sub-Offers
and Sub-Requests is to detail the specification with regard to Scopes nested in the main
Scope. For example, if a Scope UserInfo provides in a certain Representation the Scopes
(dimensions) LocationInfo and ActivityInfo, an Information Offer or Request would refer to the
main Scope UserInfo, whereas the Sub-Offers/Requests can be used to detail the specification
for LocationInfo and Activitylnfo. The general structure of an IORLSpecification is visualized
in Figure 7.17.

The general structure of InformationOffer and InformationRequest elements is depicted in
Figure 7.18. Information Offer elements differ from Information Request elements only
through some additional attributes, which are only available in Information Offers (Source,
SourceType) or in Characterized Entity elements (Negotiable) of Information Offers (marked
with gray caption).
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Figure 7.17: General Structure of an IORL Document

The attributes Scope and Representation of type xsd:string refer to the corresponding concepts
defined in the ontology and depict the type of the provided information and its Representation.
Subscription is also an attribute of type xsd:string and depicts the provided or requested
subscription mode. It can take the values ‘ONCLOCK’, ‘ONCHANGE’, ‘ONDEMAND’ and a
concatenation of these values separated with ‘/’. ‘ONCLOCK’ defines a subscription offer or
request for notification in time intervals corresponding to the reciprocal value of the attribute
Frequency. ‘ONCHANGE’ refers to a notification offer/request for each value change event.
‘ONDEMAND’ specifies that the information is exchanged synchronously only as an answer
to a corresponding request. The attributes Source and SourceType, which are only used for
Information Offers, refer to the ontology again and define the Entity and the corresponding
Entity Type for the information source, i.e. the service.

InformationOffer and InformationRequest elements include an arbitrary number of Character-
izedEntity elements. These elements are used to define and restrict the set of characterized
Entities of the provided Scope. They have the attribute Entity, which is of type xsd:string
and refers to individuals of a certain Entity Type. If all individuals of a certain Entity Type
should be considered, simply a reference to the Entity Type is given. For referring to single
individuals there are two different possibilities: A string containing a reference to a concrete
individual defined in the ontology, and a string that is a concatenation of a reference to the
Entity Type defined in the ontology, a separator ‘|’ and the Symbolic Representation of the
individual. An example for the second alternative is ‘... #Person | Peter_Maier’. The rationale
behind the second alternative is that we cannot expect, for example, that all possible persons
or users are defined as concrete individuals in the ontology. Thus, it is required to define
individuals ‘on the fly’ by providing the Entity Type and the Symbolic Representation of the
individual.

The boolean attribute Recursive defines that the entity characterization applies also to all
nested Scopes and thus allows to compact the specification. The attribute Negotiable is of
type xsd:boolean and is only available for Information Offers. It depicts that the defined
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set of Entities is negotiable. For example, for a service that provides LocationInfo for a
large number of persons it may be difficult to precisely define the set of persons for which
information can be provided. In this case, we envisage a kind of negotiation procedure
in our future work that is similar to what is practiced for service level negotiation. First,
the service announces that it provides LocationInfo for individuals of entity type Person and
marks this characterization as negotiable. If then an information consumer is interested in
LocationInfo for only a limited set of persons, it matches the information offer but then asks
the information provider about the concrete set of persons it is really interested in. Of course,
it also has to be investigated in future how this kind of negotiation can be incorporated with
the underlying service discovery protocols.

Entity Constraints are used to constrain the set of Entities with regard to the relationships
they participate in. For example, if the set of characterized persons should be constrained to
a set of persons currently located in a building, a simple Entity Constraint element is defined
through the attributes ‘Relation = ‘... #locatedIn” (defined in the ontology) and ‘DomainEntity
= ‘University of Kassel” (defined in the ontology).

Scope Constraint elements (see Figure 7.19) are used to constrain the possible values of
a Scope involved in the main Scope. Here, only constraints on Scopes in a BasicRepresen-
tation or SymbolicRepresentation are supported; definition of constraints for Scopes in a
CompositeRepresentation has to be realized in a corresponding Sub-Offer or Sub-Request. A
Scope Constraint defines the Scope which should be constrained through a ScopeProperty
or ScopelD attribute. The values of these attributes are references to the corresponding
property (sub-property of hasDimension) or identifier (scopelD) of the Scope defined with the
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Representation of the main Scope in the ontology. The Operator attribute of type xsd:string
defines the operator for the constraint and can take the values ‘EQ’, ‘NEQ’, ‘GT’, ‘GE’, ‘LT,
‘LE’, ‘CONTAINS’, and ‘NOTCONTAINS'. The latter two can be used for constraining string
values. The Delta attribute allows to define that a comparison to equality or inequality has
not to be precise and a tolerance of the value of Delta is acceptable.
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Value Delta
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Figure 7.20: Structure of an IORL Metadata Constraint

Metadata Constraint elements (see Figure 7.20) are very similar to Scope Constraint elements.
However, instead of referring to a property or identifier, the corresponding Metadata class
defined in the ontology is referenced. Additionally, Metadata Constraints may refer to a
number of ScopelDs. This is required, for example, if a Covariance should be constrained.
Here, it is not sufficient just to provide a reference to the class defined in the ontology, but
we need also to know the two Scopes the Covariance relates to. Besides, we also envisage the
combination of Entity Constraints, Scope Constraints and Metadata Constraints through the
logical operators ‘AND’, ‘OR’ and ‘NOT’ to logical expressions.*

The elements used to refer to the Sub-Offers or Sub-Requests only have two attributes. They
identify the restricted Scope (ScopeProperty or ScopelD) and provide the reference to the
corresponding Sub-Offer/Sub-Request (RefID).

Sub-Offer and Sub-Request elements have nearly the same structure as Information Offer /Re-
quest elements. The only difference is that they do provide one additional attribute (ID),
which is used to establish the references.

It is noteworthy here that if compared to CQL, the structure and some attributes of a request
have been changed slightly. However, the way of referring to individuals of Entity Types, as
well as the way of defining constraints for Scopes and Metadata and the support for their
logical combination have been directly adopted for the IORL.

*For the sake of simplicity this is not depicted in Figure 7.18.
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7.3.2 Matching of Information Offers and Requests

In general, for an information offer to match an information request with regard to the
Scopes and Representations the following conditions must hold:

1. The requested Scope a) matches exactly the provided Scope, b) is a generalization of
the provided Scope or c¢) corresponds to a nested Scope of the provided Scope. In the
last case, the matching procedure is repeated with the corresponding Sub-Offer.

2. The requested Representation a) directly matches the provided Representation of the
Scope (or nested Scope), b) is a generalization of the provided Representation or c)
appropriate IROs are available to resolve mismatches.

With regard to the Subscription mode and Frequency, the following conditions must hold:

1. At least one of the requested Subscription modes has to be provided by the offering
service.

2. In the case of a notification in regular time intervals (‘ONCLOCK’) the requested
Frequency has to fall into the interval [(1/(1) * forovideds @ *fprovided] with e.g. a =
1.5.

These conditions can be checked quite easily and can be used to pre-filter inappropriate
information offers. However, the matching of Entity Constraints, Scope Constraints and
Metadata Constraints is more complex, in particular if it is considered that the constraints
can be combined to complex logical expressions. In the previous section, it was explained
that both, Information Offers and Requests, define subsets of possible Scope individuals. From
this observation it can easily be concluded that an information offer matches a request if
the intersection of the two subsets is not empty. In this case, at least part of the information
provided by a service corresponds to the requested information. From a theoretical point of
view, a non-empty set of individuals for the intersection can be achieved if the conjunction
of the constraints defined for the Information Offer and the constraints defined for the
Information Request is satisfiable.

For checking the satisfiability of the conjunction of the constraints on Information Offers and
Requests, for example, an algorithm based on the method of semantic (or analytic) tableaux
[10] can be applied. The general idea of such an algorithm is to attempt to break complex
formulas into smaller ones. For this purpose, a tree structure is successively created by
applying a set of expansion rules until contradictions become directly evident or no further
expansion rule can be applied. If all paths from the root of the tree to the leaves include
contradictions, i.e. all branches of the tree are closed, the conjunction of the constraints is
unsatisfiable. With regard to Information Offers and Requests this means that we assume
matching if no closed tableaux (tree with all branches closed) for the conjunction of the
constraints on the offer and the request can be found.

When applying our matching approach, two further aspects are important to consider:

* When searching for contradictions, the constraints on Entities have also to be checked
against the constraints on Scopes. In Section 7.2.4, we have seen how relationships
between Entities are related to information provided by Scopes.

* For the checking of constraints on Scopes it may already be necessary to apply the
corresponding IROs that are used to resolve the mismatches with regard to the
representations.
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It is also noteworthy here that the checking of satisfiability of logical expressions is known to
be a N'P-complete problem. Thus, special care has to be taken that the logical expressions
do not become too complex in order to achieve a feasible reasoning time.
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8.1

Inter-Representation Operations

The general purpose of Inter-Representation Operations (IROs) is to allow further processing
of information which already corresponds to the required Scope and describes the desired
Entities but differs in the expected/required Representation. This is vitally important to boost
interoperability in dynamic and heterogeneous distributed environments as it has to be
expected that independent developers use different Representations for the same piece of
information.

Characteristics and Challenges

An IRO is defined as an operation that converts an Information Element of a specific Scope
in a certain Representation to the same Information Element in another Representation
applicable for the corresponding Scope. The operation is provided through a method in
a library (e.g. Java JAR or a C# DIl), a dynamically accessible service available in the
computing environment (e.g. a Web service or SPICA module) or through a set of SWRL
rules accompanying the ontology.

From a conceptual point of view, a Representation is a collection of atomic Information Values
in primitive data types like integers, floats, strings, etc. Information Elements are only used
to group the Information Values (and maybe other Information Elements) into logical units
forming Representations for more complex Scopes. Consequently, from a mathematical point
of view an IRO realizes a (partial) mapping:

IRO: D! XDy x...x PP — D] x D) x...x D (8.1)

where m > 1 and n > 1. Df denotes the domain of the i-th dimension (Information Value) of
the provided Representation, and DJT denotes the domain of the j-th dimension (Information

Value) of the requested Representation. Df and D; can be defined as R, Q, Z, N (and subsets,
intervals, enumerations of these) or as (sub-)set of all possible strings, corresponding to the
primitive data type (double, float, integer, short, uint8, bool, string, etc.) of the respective
Information Value and its possible/allowed values.

In the simplest case, an IRO is just in charge of converting from one measuring unit to
another, e.g. from kByte to MByte or from Celsius to Fahrenheit. In this case, m and n equal
to 1, which means that a data structure comprising only one dimension is transformed into
a data structure which also contains only a single dimension. m and n are greater than 1,
for example, if polar coordinates are converted to Cartesian coordinates. Furthermore, we
also allow for more complex IROs in our model which require some additional information
apart from the current Representation. Assume, for example, that we would like to convert
the location of a user from coordinates relative to a certain building to global coordinates.

79



In order to perform such a conversion, the position of the building in global coordinates
is required as well. In this case, only the dimensions corresponding to the domains D’l’ to
Dgﬂ (1 £m; < m) are provided by the current Representation (relative coordinates). The
dimensions corresponding to the domains Dgﬂ 4 to DP result from the additionally required
Information Element in the respective Representation (global coordinates of the building).
Special attention has also to be paid to IROs which establish a mapping of values measurable
by sensors to symbols (see also Section 7.2.3 and Section 7.2.7), which means that the IROs
convert information provided in a certain Representation into a Symbolic Representation of a
certain Entity. In this case, a data structure comprising a number of dimensions is typically

transformed to a simple string, i.e. m > 1 and n = 1.

The concept of IROs as envisaged in this thesis imposes a number of challenges to be
addressed. For example, appropriate runtime reasoning mechanisms are required for
determining and selecting appropriate IROs that are able to bridge the mismatches in
representations. These reasoning mechanisms have also to be aware of possible dependencies
of the IROs to additional information. Hence, they have to be integrated well with the
discovery and matching approaches for information offers and requests. Furthermore, the
IROs have to be located and invoked at runtime. In particular, this means that the availability
of the corresponding libraries and services has to be checked, libraries have to be fetched
and loaded, services have to be bound and invoked or a SWRL engine has to be employed.

A major challenge, however, results from the general requirement of this thesis to be able
to deal with uncertain, imprecise, unreliable and heterogeneous sensor information. This
implies that not only the information itself has to be converted but also the measures for
uncertainty, impreciseness and unreliability have to be preserved across the transformations.
As we employ Dempster-Shafer belief functions to express and reason about uncertainty,
impreciseness and unreliability, a corresponding transformation of the belief functions is
required as well. In our case, we consider the transformation of basic belief assignments,
which are in one-to-one correspondence with belief functions.

Let QP = le X ...xDP and Q" = D] X ... x D], then the basic belief assignment
mP : 2% — [0, 1] of the information in the provided Representation has to be converted to a
corresponding basic belief assignment m" : 2% — [0,1] of the information in the requested
Representation, according to the transformation realized by the IRO.

Here, the belief functions of the additional dependencies of the IROs also have to be
considered, which introduces further complexity. Developers should not be bothered with
providing support for the transformation of belief functions. They should only be required to
specify a ‘point-to-point’ transformation encapsulated in a simple method, and the underlying
framework automatically realizes the corresponding transformation of the belief functions.

From the examples above, it is quite obvious that IROs can result in highly non-linear
transformations. Furthermore, if the IROs convert between string representations or establish
a mapping between symbols and sensor values, it is even very unlikely that the transformation
has mathematical properties like continuity, monotonicity, etc.

Although all challenges described above are very important, in the following sections we
focus on concepts for the transformation of the basic belief assignments as it is considered to
be most difficult to realize.
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8.2.1

Transforming Measures for Impreciseness and Uncertainty

In our approach, impreciseness and uncertainty are modeled through Dempster-Shafer
belief functions, or more precisely, basic belief assignments (BBAs), which are in one-to-one
correspondence with belief functions. Before explaining how the BBA of the information in
the provided Representation is transformed into a BBA of the information in the requested
Representation, we first have to recall how BBAs are described using the Information Model
introduced in Chapter 7.

Basic Belief Assignments and the Information Model

In the previous section, it was stated that a BBA mP of the information in the provided
Representation realizes a mapping m? : 2% — [0,1] with QF = Df X...x D, mP(0)=0
and ). acor MP(A) = 1. As the power set of QF has to be expected to comprise a very large
number (or even an infinite number) of elements, in general it is not feasible to define the
. . QP . .
mapping by enumerating all elements of 2** and assigning a mass value to them. Instead,
usually only the assignments for the focal elements of 2% ie. the elements A in 2% with
m(A) > 0, are provided, and functions and patterns are used to compact the specification if
possible.

With regard to the Information Model we facilitate a compact specification of BBAs by using
what we call basic hypotheses and complex hypotheses. Basic hypotheses correspond to a
certain Information Element having associated a belief mass and possibly other meta-data.
Thus, basic hypotheses are given as individuals of the provided Representation that are
related to the corresponding Scope individual by the providesInformation property. Complex
hypotheses refer to basic hypotheses and combine them by using the logical operators ‘and’
(IntersectionValueReference), ‘or’ (UnionValueReference), and ‘not’ (ComplementValueReference)
as described in Section 7.2.5. Consequently, complex hypotheses and the corresponding
belief assignment are specified as part of the Scope individual.

The Information Model provides the following modelling elements for the specification of
basic hypotheses:

* Masses are assigned to singletons (elements of QF) by simply providing values for
all the scope dimensions of the Representation and associating a belief mass to the
individual (basic hypothesis).

* Variances and covariance matrices are used for numerical dimensions to indicate that
the values follow a normal distribution with the provided variance or covariance
matrix, where the mean is given through the values provided for the scope dimensions.
Masses are assigned only to singletons of Qf and are calculated with the corresponding
Gaussian function. If additionally a belief mass is assigned as meta-data, this belief
mass acts as scaling factor for the Gaussian function.

* Uniform value ranges are used for numerical dimensions to indicate that the values are
uniformly distributed within this value range. Masses are assigned only to singletons
within the value range, are constant and sum up to 1 or to the value which is associated
through the belief mass meta-data attribute. It is also noteworthy here that multi-
dimensional uniform value ranges can be specified by associating uniform value range
meta-data to several scope dimensions.
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* Value range meta-data specify the assignment of a belief mass to the whole value
range, i.e. to the union set of all singletons of 2 within the value range. This has
to be seen in contrast to the uniform value range where it is additionally assumed
that the complete mass is equally distributed among the singletons, which results in a
mass assignment for the singletons itself. In the same way as for uniform value ranges,
multi-dimensional value ranges can be modeled by associating value range meta-data
to several scope dimensions.

In order to fully understand the interpretation of BBA specifications with the help of basic
and complex hypotheses, the reader has to become aware of the following details:

* Basic hypotheses are not exclusive, i.e. two different basic hypotheses can assign
different belief masses to the same singleton of QP. When calculating the BBA, it is
assumed that all the belief masses assigned to a particular singleton are summed up.

* Whereas the meaning of the logical operator ‘not’ is obvious for singletons and value
ranges, the situation is more difficult for basic hypotheses that are specified with the
help of the primitives uniform value range and mean/covariance matrix. Such basic
hypotheses specify a kind of mass density for a set of singletons, for which the normal
negation of a body of evidence (see Equation 9.13) lacks a meaningful interpretation.
Therefore, we introduce the convention that ‘not’ assigns the belief mass to the set
of all singletons which are outside of the uniform value range or whose Mahalanobis
distance from the mean (see also Section 9.2.3.2) is greater than a certain threshold.
At this point, it has to be noted that the simplification rule Rule 6 we will derive in
Section 9.2.3.1 is compliant with the normal negation of a body of evidence and also
with our modified interpretation.

* A probability assignment for singletons a € QF differs from a mass assignment in the
usual sense, as it implicitly states that m(A) = 0 for all A € OQF, |A| > 1. In particular
this means that m(Q) = 0. Of course, it has to be ensured that ZaeQP m(a) = 1.

* Belief masses can also be assigned to complex hypotheses referring to intersections
and unions of basic hypotheses which include the meta-data variance, covariance
matrix or uniform value range. As already stated above, such basic hypotheses provide
a concrete mass assignment to all singletons or a subset of the singletons. In this case,
these concrete mass assignments (without scaling according to the belief mass assigned
to the basic hypothesis) form conditional mass assignments m(A|H) with A € Qf and
H denoting the corresponding basic hypothesis. A mass assignment, for example,
to the union of two basic hypotheses H; and H, then represents an assignment for
m(H, U H,), and the corresponding conditional mass assignment m(A|H; U H,) is
derived from m(A|H,) and m(A|H,) using the Disjunctive Rule of Combination (see
Equation 4.17).

In summary, a BBA is defined with regard to the Information Model as
m(A)= ) m(AlH)-m(H) ACQF (8.2)
HeH

H denotes a basic or complex hypothesis, H is the set of hypotheses (basic and complex),
and m(A|H) describes the conditional mass assignment with regard to the hypothesis H. It is
also important to note that we assume an implicit hypothesis Hqp such that m(QP|Hgy) =1
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and m(Hpp) =1— ZHE%H#HQP m(H). Thus, the mass assignments to basic and complex
hypotheses do not have to sum up to 1 but just to a value less than 1. The remaining mass is
assigned to the whole frame of discernment, the belief mass of which represents the amount
of total ignorance.

Transformation of Complex Hypotheses

The transformation of the belief assignments specified through complex hypotheses imposes
two important challenges. On the one hand, complex hypotheses define mass assignments
to possibly very complex sets of singletons. Consider for example, complex hypotheses
referring to nested unions and intersections of basic hypotheses whose impreciseness is
specified through covariance matrices and uniform value ranges. In particular, if we have
multiple dimensions, the resulting set of singletons may form complex geometrical shapes
which may be hard to determine, to approximate and to represent. On the other hand, mass
assignments resulting from the conditional BBAs defined by the basic hypotheses and the
mass assignment to the hypotheses (basic and complex) have to be maintained as well. This
requires that the transformed complex hypotheses appropriately relate to the corresponding
transformed basic hypotheses.

Considering these aspects, an obvious idea is just to transform the basic hypotheses and
to maintain the complex hypotheses and the corresponding belief assignment unchanged.
As already mentioned above, however, the transformations cannot be expected to show
mathematical properties like continuity or monotonicity. Even more important, they cannot
be assumed to realize injective functions. Imagine, for example, a function that converts
location information of a user in GPS coordinates into a representation that only provides
the name of the city the user is currently visiting. In this case, a huge (infinite) number of
GPS coordinates will be mapped to a single city. This causes problems again as only injective
functions have the mathematical property f(ANB) = f(A) N f(B). It is also obvious that for
a non-injective function it cannot be guaranteed that f(A) = f (A).

So far, we have not found a feasible solution for the transformation of arbitrarily complex
hypotheses yet. Thus, we restrict our transformation support to complex hypotheses which
assign belief masses only to unions of basic hypotheses and apply the approach outlined
above (transforming the basic hypotheses and retaining the complex hypotheses and its
belief assignments). The belief masses assigned to other complex hypotheses are simply
assigned to Q", which means that these beliefs turn into ignorance. Theoretically, we can
avoid this situation as all sets of singletons can be represented as unions of sets of singletons.
In our future work, we will further investigate the issue and try to find a feasible approach
for the transformation of arbitrarily complex hypotheses.

Another difficulty arises as IROs may have a dependency to additionally required informa-
tion.! With regard to the transformation of the measures for impreciseness and uncertainty
this means that also the belief function defined for the additional information has to be taken
into account. More precisely speaking, we have two BBAs: m; : 2D XDy oy [0,1] for
the actual Information Element to be transformed, and m, : 2P % XD s [0,1] for the
additional dependency. Both, m; and m,, are specified using basic and complex hypotheses
as explained above.

without loss of generality, we assume here only one additional dependency. The general approach is also
applicable for an arbitrary number of additional dependencies.
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The general idea of our solution approach is to convert the two BBAs into a single BBA and
to apply the approach already described above for IROs without additional dependencies.
For this purpose, the following steps have to be performed:

1. So far, we can consider only complex hypotheses which are unions of basic hypotheses.
Thus, all mass assignments to complex hypotheses involving intersections and nega-
tions are shifted to Q' (frame of discernment of m;) and to Q2 (frame of discernment
of m,) respectively. As we implicitly assume the hypotheses H1 and Hg2 which
represent the whole frames of discernment, this can be realized by simply discarding
the corresponding complex hypotheses and their mass assignments.

2. Now we combine each remaining hypothesis Hi1 (basic or complex) of m; with each
remaining hypothesis sz (basic or complex) of m, to a hypothesis Hfj of the common

frame of discernment P and assign the mass ml(Hl.l)-mz(sz) to it. This nearly
corresponds to the vacuous extension [132] of m; and m, to the common frame of
discernment and to the application of Dempster’s Rule of Combination at the hypothe-
ses level. The only difference is that complex hypotheses Hfj involving the implicit
hypotheses H1 and/or Hg: are neglected. However, this is reasonable as such hy-
potheses where either the actual information or the additionally required information
is modelled as totally unknown, cannot be transformed anyway, and thus the result of
the transformation is unknown as well. The combination of two hypotheses is given
as:

H!=(h{u...uhl)) H}=(WUu...Uk,) -

HY, = (W, B U (W, ) U U (R ey ) U (R, )

nl>

where the h' are the basic hypotheses of H 11 and the i/ the basic hypotheses of H]2 If
Hl.1 and/or H 12 denote basic hypotheses, then nl and/or n2 equal to 1.

3. The tuples (hil,hjl;) are now considered as basic hypotheses of the extended Scope
individual.

The number of basic hypotheses to be transformed corresponds to the product of the number
of basic hypotheses of the actual Scope individual and the numbers of basic hypotheses of
the additionally required Scope individuals. This can result in quite high numbers of basic
hypotheses even if the numbers of basic hypotheses for the single Scope individuals are small.
Thus, special care has to be taken that the transformation of the basic hypotheses can be
achieved in a reasonable time frame.

Transformation of Basic Hypotheses

As basis for the following description we would like to call the reader’s attention to the fol-
lowing characteristics and challenges for the transformation of basic hypotheses as envisaged
in this thesis:

* In general, a developer should only be required to specify a point-to-point transfor-
mation and should be relieved from the burden to also provide the transformation
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for the BBAs. As a consequence, the transformation of the BBAs, and in particular
the transformation of the basic hypotheses, is realized with the help of sampling
techniques.

* The transformation can realize an arbitrary mapping. Thus, the transformation
cannot be expected to have mathematical properties like continuity, monotonicity,
differentiability or to be an injective, surjective or bijective function.

* The granularities of Qf and Q" can differ considerably. With different granularities we
refer to the fact that a potentially high (or even infinite) number of elements of F
can correspond to only a small number of elements or even only a single element of
Q". It may also be the case that one element in QP corresponds to a potentially high
(or even infinite) number of elements in . Consider, for example, a transformation
of location information of a user from the address of a building to GPS coordinates.

* It was already stated above that we allow value ranges, variances and covariance
matrices only for numerical scope dimensions. However, different types of these
meta-data can be used in a single basic hypothesis. This is particularly the case if the
IROs have dependencies to additionally required information.

In this thesis, we focus on the transformation of BBAs involving (uniform) value ranges,
variances and covariance matrices for IROs that have the mathematical properties of con-
tinuity and infinite differentiability for all involved scope dimensions. The corresponding
approaches are described in the following paragraphs. Afterwards, we also discuss some
possibilities to realize the transformation of the BBAs for other cases.

Transformation of (Uniform) Value Ranges

Although we assume that the transformation is a mathematical function that is continuous
and infinitely differentiable, we still have to cope with the problem that the function may
realize a multi-dimensional mapping, i.e. (without loss of generality) f : R™ — R", and has
to be expected to be highly non-linear.

A common approach, for example, to propagate normal distributions through non-linear
functions is to use the first- or second-order Taylor approximation of the transformation
function [125]. As first-order approximations have proved to show quite poor performance in
a number of applications [125], we discuss the usage of second-order Taylor approximations
of the transformation function in our approach. For the i-th dimension of the function f,
fi : R™— R, it is given as:

1
Fi(B) s fi(0) + (X = 30) TV £;(35) + S %0)" H, () (% — %) (8.3)

where Vf;(x;) denotes the gradient of f; at xi and H,(xXp) denotes the Hessian matrix? of
f; at xp. Now the problem arises that at runtime the transformation function is not available
in an appropriate representation to derive the gradient and the Hessian matrix analytically.
Instead, we have only the possibility to perform point-to-point transformations. In order to
approximate the gradient and the Hessian matrix, approaches are applied which are known
from the area of image processing for estimating the first-order and second-order partial
derivatives of the discretized signal functions.

2The Hessian matrix is the matrix of the second partial derivatives of a function.
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Figure 8.1: Estimation of Partial Derivatives of Discretized Functions

In image processing it is common to estimate the first-order and second-order partial deriva-
tives of the image function with the help of simple convolution masks.®> The general approach
along with the corresponding convolution masks and their application to a discretized func-
tion in two variables is shown in Figure 8.1. Using this approach, we can estimate the
first-order partial derivative f, and the second-order partial derivative f,, for a function
f:R?2—Ras:

1
2h,

1
frex(X0,0) ~ %) (f Gxo+hy, ¥0) — 2+ f (X0, ¥o) + f (xo — hy, ¥o)) (8.5)

fx(x0, ¥0) (f Cxo +hy, yo) = f(xo — Ay, ¥0)) (8.4)

Analogously, we estimate the first-order and second-order partial derivatives of our transfor-
mation function within a certain value range by transforming a number of sample points and
then applying the convolution masks. Second-order derivatives like f,,(x,y) = aa_y :—x flx,y)
are estimated by successively applying the convolution masks first in x-direction and after-
wards in y-direction. For a function in two variables we need to transform 9 sample points
(as depicted in Figure 8.1), and for a function in three variables 19 sample points have to
be transformed. Generally speaking, 1 + 2m + 2m(m — 1) sample points are required for
a mapping from R™ to R". If a first-order approximation suffices, then the number can be

reduced to 2m sample points.

If basic hypotheses specified by uniform value ranges have to be transformed by a mapping
f :R™— R", apart from the computational costs it has also to be considered that a uniform
distribution is generally not preserved when propagated through a non-linear function.

3A discrete convolution calculates the weighted sum of the function values at discrete points in the neigh-
bourhood of a reference point. The weights are defined by the convolution mask.
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Even for a linear transformation of uniformly distributed random variables with multiple
independent dimensions it is not guaranteed that the uniform distribution is preserved. This
becomes obvious when we consider the following example.

We assume that the gradient for a function f : R> — R is (1,1)” and all the elements
of the Hessian matrix as well as f(xg, y) are equal to 0. Consequently, the function is
approximated by f(x,y) ~ (x —x¢) + (¥ —yo) = x +y — (xg + ¥o). If we further assume
that x, = 0 and y, =0, it holds f(x,y) ~ x + y. However, it is known that the density of
the sum of two independent random variables calculates as the convolution of the densities
of the two random variables, i.e.

Pty (&) = fpx(v) ‘py(§ —v)dv (8.6)

This results for uniformly distributed random variables X and Y, both in the range [0, 1], in
the situation depicted in Figure 8.2.

Px A
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Figure 8.2: Density of the Sum of two Uniformly Distributed Random Variables

In order to check whether the uniform distribution is approximately preserved during the
transformation, the following criteria can be applied:

1. The Taylor approximation is dominated in each dimension by a single linear term,
i.e. the absolute value of a single element of the gradient is higher than the sum of
the absolute values of all other elements of the gradient and the absolute values of
all elements of the Hessian matrix by one or several orders of magnitude. However,
here it is vitally important to mind that this criterion only holds if the value ranges
are normalized, i.e. we assume the interval [0, 1] for all value range dimensions. The
normalization can be considered as part of the transformation function, if we assume
that the transformation function first realizes a linear transformation to map the
interval [0, 1] to the actual value range and then performs the actual transformation.
Of course, the Taylor approximation can also be adjusted after the transformation of
the sample points by means of substitution.

2. Each dimension of the transformation function is dominated by a linear term in a
different variable. Otherwise, the dimensions are not independent and a uniform
value range over several dimensions cannot be specified anymore.
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If the criteria described above are fulfilled, the calculation of the transformed uniform
value range is straight-forward: We just have to apply the linear transformation. For most
cases, however, it has to be expected that these criteria do not hold. Here we propose
to approximate the uniform value range by a multivariate normal distribution retaining
the mean and variances and to apply the same approach as for the transformation of
normal distributions as described in Section 8.2.3.2. This way, at least the moments of the
transformed distribution are approximated with reasonable precision.

The above criteria do not have to hold for the transformation of value ranges which do not
make statements about the BBAs within the range as no assumptions of the transformed
distribution can be made anyway. Hence, it suffices to compute the maximum extent of the
transformed value range, i.e. the minimum and maximum value for each of the dimensions.
This leads to a bound constrained optimization problem. More precisely speaking, if we
utilize the second-order Taylor approximation of the transformation function, we have to
solve a quadratic programming problem with inequality constraints. For the maximum
bound of dimension i of the value range, the quadratic programming problem can be written
as:

maxy (f;(3) + (% — )" V() + 3 (% — %) Hy (30)(% — %))

x 2
>b,i, and ®<Db,. (8.7)

=L

where b,,;,, describes the vector formed by the lower bounds of the original value range
for the different dimensions, and Bmax denotes the vector of the upper bounds. ¥ > Bmin
and X < Bmax mean that each element of the vector X has to be greater or equal than the
corresponding element of Bmin and less or equal than the corresponding element of Bmax.

Numerous approaches have been developed to (approximately) solve quadratic programming
problems, as e.g. the method of the conjugate gradient [60]. In this dissertation, however,
we apply a simple approach which is easier to implement, relies on standard gradient ascent
and uses Resilient Propagation (RProp) [119] for determining the step size. Critical to all
gradient ascent methods is the selection of the starting point (%), for which we propose the
following heuristic. We inspect the signs of the elements of the gradient vector V f;(x). If
the sign is negative or 0, the lower bound of the value range for the corresponding dimension
is used as element for the vector ¥(?. If the sign is positive, the upper bound is used. From
this starting point, n = 10 gradient ascent steps are performed:*

_)(k+1) = - - = -
x0T =20 4 (VG5 + Hy, (5)(#F) - 5)) (8.8)

where the step size 1) is adaptively adjusted using RProp. In order to ensure that the

. . . - (k+1) .
inequality constraints are met, the elements of x’ are normalized as follows:

bminj ) if x/('k+1) < bminj
k e ik
=1 by, XY > by (8.9)
x/FFD else

J

4According to our tests, the number of 10 gradient ascent steps offers a good tradeoff between the quality of
the result and the computational costs.
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After n = 10 gradient ascent steps have been performed as described above, the maximum
bound of the value range for dimension i can be calculated by transforming ¥!%). The
minimum bound is calculated analogously, but we have to perform a gradient descent
instead. This procedure has to be applied for all dimensions of the resulting value range.

From the description above it becomes obvious that this approach requires quite high
computational effort. Due to this fact, this approach should only be used if an accuracy
better than provided by a first-order approach is essential. Otherwise, it is recommended
to only consider the first-order Taylor approximation where the problem can efficiently be
solved (only the starting vectors X¥*) for the minimization and maximization have to be
transformed). We can also work on the first-order Taylor approximation if all elements of
Hy, are very small and the approximation is dominated by the linear terms.

Transformation of Normally Distributed Basic Hypotheses

Basic hypotheses that are specified with variances/covariance matrices define a basic mass
assignment which corresponds to the probability density function (pdf) of a normally
distributed random variable. Thus, the corresponding transformation reduces to the problem
of propagating Gaussian pdfs through non-linear functions. Here too, it is possible to utilize
the first-order or second-order Taylor approximation of the non-linear function. However,
the Unscented Transformation represents a very efficient approach for the propagation of
Gaussian pdfs. As it is based on sampling techniques and achieves at least second-order
accuracy, it is particularly well-suited for the purposes of this thesis.

The Unscented Transformation was developed by Julier and Uhlmann [70] following the
intuition that it should be easier to approximate a given distribution with a fixed number of
parameters than it is to approximate an arbitrary nonlinear mapping or transformation. Based
on this intuition, they have developed a parameterization that captures the mean and the
covariance matrix of a Gaussian pdf, while being directly propagated through an arbitrary
set of non-linear functions.

This is achieved by generating a discrete distribution having the same first and second (and
possibly higher) moments where each point can directly be transformed. Afterwards, the
mean and the covariance matrix of the transformed set of points can be calculated as an
approximation of the transformed original distribution.

Intuitively, the Unscented Transformation samples the 1o contour of a Gaussian random
variable at 2m predefined points. Each of these sample points is propagated through the
nonlinear transformation function, and finally the transformed set of sample points is used
to determine the mean and the covariance matrix of the transformed pdf.

Formally, the Unscented Transformation allows to determine the n-dimensional Gaussian
random variable N(y, Z}y)s resulting from a transformation of the m-dimensional random
variable N(x, %, ) with the transformation function f : R™ — R" and y = f(x) with the
help of the following four steps:

1. Compute the set Z of 2m points from the rows or columns of the matrices +4/mZX,,
which is zero mean and has the covariance matrix X,. The matrix square root can
efficiently be calculated with the help of the Cholesky decomposition.

5Actually, the resulting pdf is only approximated with mean y and covariance matrix Z,. It can not be
assumed that the result of the transformation constitutes a Gaussian distribution.
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2. Compute the set of points X with the same covariance matrix X,, but with mean x by
translating each point in Z by x; = z; + x.

3. Compute the set of points Y by transforming all points of X with function f, i.e.
calculate y; = f(x;).

4. Compute y and X, by calculating the mean and the covariance matrix of the 2m
points of the set Y.

The Unscented Transformation achieves second-order (or better) accuracy in determining the
mean, whereas only first-order accuracy is achieved by linearization. Although a linearization
approach transforms the covariance matrix correctly up to the second-order as well, the
absolute errors in the forth and higher order terms of the Unscented Transformation are
smaller. It is also important to note here that for the Unscented Transformation it is sufficient
to transform only 2m sample points. An estimation of gradients or Hessian matrices is not
required.

Transformation of (Uniform) Value Ranges and Covariance Matrices in One Basic
Hypothesis

In particular, if we consider dependencies of IROs to additionally required information, it
may be necessary to transform basic hypotheses that involve value ranges, uniform value
ranges and covariance matrices for different subsets of dimensions at the same time. For this
case, we propose the following approach:

1. If the basic hypothesis involves no value ranges, but covariance matrices, all possibly
involved uniform value ranges are approximated through a corresponding mean and
covariance matrix.

The rationale behind this is that uniform value ranges are likely to be not preserved
during the transformation, in particular if additional information characterized by
a covariance matrix is required as well. However, in this way the moments of the
distribution can be preserved by applying the Unscented Transformation. The result of
the transformation is a normally distributed basic hypothesis.

2. If the basic hypothesis involves value ranges, all possibly involved covariance matrices
and uniform value ranges are assumed to define value ranges.

A value range abstracts from concrete mass assignments to singletons and only specifies
a belief assignment to the whole set of singletons within the value range. Therefore,
the concrete mass assignments determined by the uniform value ranges and the
covariance matrices are abstracted by a mass assignment for the whole subset of
singletons as well. The result of the transformation is a basic hypothesis with a value
range again. Another possibility would be to successively split up the value range
in reasonably small sub-value ranges which can be abstracted by its means. Then
we can consider the basic hypothesis as a complex hypothesis with a union of basic
hypotheses corresponding to the sub-value ranges. However, this can be expected to
require high computational costs. Furthermore, it is quite difficult to define ‘reasonably
small’ without knowing the actual properties of the transformation. The result of the
transformation would be a set of basic hypotheses specifying (uniform) value ranges
or covariance matrices.
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3. Finally, the transformation of the basic hypothesis which now involves only value
ranges, only (uniform) value ranges or only covariance matrices is performed with the
help of the approaches presented in the previous sections.

As already mentioned above, for the application of the Unscented Transformation to basic
hypotheses involving only covariance matrices and uniform value ranges, the uniform value
ranges have to be approximated by a corresponding mean and a covariance matrix first.
Afterwards, the different covariance matrices have to be combined to a single covariance
matrix. In this regard, it is important to note that we assume the different subsets of
dimensions covered by uniform value ranges or covariance matrices to be conditionally
independent of the other dimensions. This is reasonable as the corresponding impreciseness
or uncertainty of the dimensions is expressed independently, and the information may reflect
independent observations. In particular, the latter holds for the additional dependencies of
IROs.

For transforming a multivariate normal distribution into a value range, the covariance matrix
is analyzed using the principal axis transformation first. This results in a diagonal matrix and
a rotation matrix. The diagonal matrix represents the variances O'%, cee, ai along the principal
axes. The corresponding value range is then bounded by b,,;,, = a-(—04,...,—0,)" and
binax = - (+01,...,+0,)". The required rotation and translation of the value range can
be considered to be part of the transformation in the same way as we have realized the
normalization of value ranges. The parameter a can be used to adjust the mass included in
the value range. If we use a = 2, for example, 95% of the mass is included in the value range.
In this case, the mass assigned to the whole basic hypothesis is discounted by multiplication
with 0.95.

Sometimes it may not be satisfactory to discard all concrete belief assignments and to
transform uniform value ranges and covariance matrices to value ranges. For this case,
we consider the following enhancement of the approach to be investigated in future work.
First, the value range is abstracted only by its mean and the basic hypothesis (based on the
primitive mean/covariance matrix or uniform value range) is transformed. Afterwards, the
value range is kept and the other dimensions are abstracted by its mean. The resulting basic
hypothesis is also transformed. If the value range resulting from the second transformation
is ‘reasonably small’ compared to the size of the uniform value range or to the size of the 1o
contour of the covariance matrix resulting from the first transformation, the result of the first
transformation is used for the overall transformation. Otherwise, the result of the approach
described above is used. However, it is difficult to evaluate if a value range is ‘reasonably
small’. A possible criterion might be the ratio of the volume covered by the value range and
the volume defined by the 1o contour of the covariance matrix or the volume of the uniform
value range.

Discrete Domains and Ranges in Case of Non-continuous IROs

As already stated above, this thesis focuses on the transformation of the measures for
impreciseness and uncertainty for continuous domains and ranges of IROs and continuous
and differentiable IROs. In this section, we would like to present some preliminary thoughts
on the general case. However, a detailed investigation of the issue is out of the scope of this
thesis and planned for future work.
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First, we still consider IROs that have the mathematical property of continuity but work, for
example, on integers, i.e. with discrete domains and/or ranges.

* Discrete domain, continuous range. In this case, there is a good chance that the
approaches presented above also provide reasonable results as the approaches rely on
the definition of appropriate sample points, and hence abstract the domain by a limited
set of points anyway. Most difficulties have to be expected with the application of the
Unscented Transformation as here the sample points do not form a grid structure. The
chance that the approaches presented above provide reasonable results is expected to
increase with the dimension of the (uniform) value ranges and the 1o contour defined
by the covariance matrix, i.e. we expect reasonable results when a great number of
discrete domain values is involved.

* Continuous domain, discrete range. Here too, we expect that the chance that the
approaches presented above provide reasonable results increases with the number
of the involved singletons of the IRO range. With only a limited number of involved
values, the gradient and the Hessian are difficult to estimate. It is also difficult to make
assumptions on the distribution if only a very limited number of singletons of the IRO
range is involved as a high discretization error has to be expected.

* Discrete domain, discrete range. This case can be considered in a way as the
intersection of the cases discussed above. Consequently, good results can be expected
only if a reasonable number of domain and range values are involved.

So far, we have mainly discussed the applicability of the approaches presented above for
continuous domains and ranges and continuous IROs. However, it is always possible to split
up the set of involved domain singletons in reasonable small subsets and to consider them as
more fine-grained basic hypotheses which are transformed separately. The subsets should be
selected so small that it is reasonable to abstract them by their means. Currently, we consider
this approach as the only feasible one for the most general case. This method, however, can
be expected to require high computational effort, and here too it is quite difficult to define
‘reasonable small’. At this point, it has to be noted that generally if two basic hypotheses
are mapped to the same singleton of the IRO range, the corresponding mass assignments
are summed up. This concept can be extended to the equality of (uniform) value ranges
and mean/covariance matrices which result form the transformation of basic hypotheses. In
particular for mean/covariance matrices, however, equality is expected to be hardly achieved.
In Section 9.2.3.2, an approach to check whether multivariate normal distributions can be
considered to be equal is presented. We also discuss the abstraction of several multivariate
normal distributions by a single one.

Besides, it becomes obvious from the discussion above that the granularities of the basic
hypotheses and their transformed basic hypotheses often cause problems. Here, with
granularity we refer to the number of involved elements of the IRO domain or the IRO range
respectively. Consider, for example, a transformation from a street name to GPS coordinates
where a single street name is only reasonably represented by a set of GPS coordinates, e.g. a
value range. If we assume here only the availability of a point-to-point transformation, one
possibility would be to utilize the reverse transformation (GPS coordinates to street name)
and to apply an appropriate search strategy in order to determine the bounds of the value
range. However, in such cases it seems to be more reasonable that the developer takes care
of providing the value range as part of the actual IRO, which should be indicated in the
definition of an IRO by means of a corresponding property.
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8.4

Transformation of Nested Scope Individuals

In general, a Scope individual provides information in form of individuals of a certain
Representation. In turn, a Complex Representation refers to Scope individuals again. For
converting from a Complex Representation of a Scope to another Complex Representation of
the same Scope, it is not necessarily required that an IRO is explicitly defined. It may be
sufficient that the corresponding IROs for the nested scopes are available. This is the case if
the following conditions are met:

* The nested scopes, i.e. the dimensions of the representation can be converted indepen-
dently. In particular, this means that no covariances are specified involving different
dimensions.

* The nested scopes do not have a particular semantic as part of a certain Representation.
Consider, for example, the conversion between two different Cartesian coordinate
systems which differ in their units and in the direction of the axes. If there is no
explicit IRO defined, the units of the coordinates are adjusted correctly, but a possible
rearrangement of the axes would not be taken into account if the scopes XCoordinate
and YCoordinate are transformed separately without having the particular context in
mind.

* The set of nested scopes of the provided representation corresponds to (or is a subset
of) the set of nested scopes of the requested representation, and the scopes of the
provided and required representation can be related unambiguously.

Here too, a property is required for the representations to indicate if the conditions listed
above are met.

If there are mass assignments for a hypothesis corresponding to an individual of a certain
representation which includes nested scopes defining mass assignments as well, the mass
assignments of the nested scopes are considered to be conditional mass assignments given
the hypothesis is true. If there are several hypotheses, basic or complex, for different nested
scopes, they are combined to a set of basic hypotheses in the same way as it is practiced
when resolving dependencies of IROs to additionally required information.

Summary and Discussion

In the previous sections, numerous concepts have been described for the realization of
IROs in general, but we have particularly focused on the transformation of measures for
impreciseness and uncertainty. As the general case is very difficult to realize if only point-
to-point transformations are available, a number of assumptions and simplifications have
been made. Despite these assumptions and simplifications, the problem still remains very
challenging and our approach shows some limitations. Therefore, a critical assessment of
the proposed methods is presented in the following paragraphs. In particular, we discuss
the issues of scalability and performance. But first, we provide a summary of the proposed
concepts along with the different assumptions/simplifications we have acted on.
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Figure 8.3: Overview of the IRO Approach for Transforming Measures of Impreciseness and
Uncertainty

The presented approach mainly consists of the following four steps, which are also illustrated
in Figure 8.3:
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1. Checking of the IRO for dependencies to additionally required information.

2. Resolving the additional dependencies and combining the belief functions.

Complex hypotheses are expressed as tuples of basic hypotheses of the involved
Scope individuals. The tuples then correspond to the basic hypotheses of the new
belief function. In total, a number of b,,;q; = b- l_[?:1 b® basic hypotheses has to
be expected, where b depicts the number of basic hypotheses of the actual Scope
individual, b corresponds to the number of basic hypotheses of the i-th dependency,
and d is the number of additional dependencies.

. Transforming the complex hypotheses.

Simplification: Complex hypotheses are transformed by processing the involved
basic hypotheses and retaining the corresponding expressions of set-operations on the
basic hypotheses. However, the correctness of this approach cannot be guaranteed
for complex hypothesis involving the intersection and/or the complement of basic
hypotheses. Hence, belief masses assigned to such complex hypotheses are assigned to
Q.
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4. Transforming the basic hypothesis.

Simplification: We assume that the IRO realizes a mapping f : R™ — R" which has
the mathematical properties of continuity and infinite differentiability.

a) Harmonize measures of impreciseness and uncertainty

Simplification: Basic hypotheses involving different measures for imprecise-
ness/uncertainty are transformed to involve only one kind of measure for impre-
ciseness/uncertainty.

b) Transformation of basic hypotheses involving covariance matrices using the Un-
scented Transformation. Here, the transformation of 2m sample points is required.

¢) Transformation of basic hypotheses involving uniform value ranges. For this purpose,
first the properties of f within the value range are checked by transforming
1+ 2m+ 2m(m — 1) sample points and estimating the second-order Taylor
approximation.

Simplification: Uniform value ranges are assumed to be preserved across the
transformation only if the Taylor approximation is dominated by a single linear
term in each range dimension and the dominating terms across the range domains
do not involve the same domain dimensions. Otherwise, the uniform value range
is approximated by a mean and covariance matrix and transformed with the help
of the Unscented Transformation.

d) Transformation of basic hypotheses involving value ranges. For this purpose,
first the properties of f within the value range are checked by transforming
1+ 2m + 2m(m — 1) sample points and estimating the second-order Taylor
approximation. If the Taylor approximation is dominated by the linear terms,
then the transformed value range can directly be calculated. Otherwise a gradient
ascent/descent is performed for each of the dimensions of the transformed value
range in order to calculate its minimum and maximum bound.

8.4.1 Scalability and Performance

In the approach presented above, a number of different calculations/operations have to be
performed, even within the single steps. For example, expressions of set-operations have to
be transformed, Cholesky decompositions and principal axis transformations of covariance
matrices have to be realized, and gradients and Hessians have to be estimated. All these
operations cause considerable computational costs.

When we consider the scalability and performance of our approach, however, we particularly
focus on the number of sample points to be transformed as we expect it to be the dominating
factor with regard to performance and scalability. This is due to the following reasons:

e A great number of transformations may be necessary (O(b,,.q; - m?))

* The transformation itself may be heavyweight and computational costly, e.g. if complex
calculations have to be performed or a SWRL rule engine is invoked.

* The transformation may require the invocation of an external service with a potentially
high communication overhead.
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8.4.2

As b;yq1 and m not only determine the number of transformations to be performed but
along with the dimensionality n of the IRO range also the computational costs of most of
the additionally required operations, it is obvious that these three factors have to be kept as
small as possible. Whereas m and n have to be expected to be more or less fixed, by, can
be decreased by applying some heuristics. One possibility is to only use the k hypotheses
with the highest belief mass and to assume the remaining belief mass to be assigned to
QP. Another possibility for significantly reducing the computational costs is to use just the
first-order Taylor approximation of f instead of the second-order Taylor approximation.
Here, only (O(b;q; - m)) transformations have to be performed. Besides, it is also obvious
that an IRO should be realized as a function of a local and dynamically loadable library
whenever possible.

With regard to the number of basic hypotheses b,,.,;, the problem of different granularities
arises again if we consider the general case. Assume, for example, information about the
location of the user in GPS coordinates with a covariance matrix defining a very large 1o
contour which covers half of a city. If this information is transformed to the address of
buildings, this results in a huge number of basic hypotheses. In this case, a transformation
to location information that covers whole areas of a city and still allows to reason about the
association of buildings to the area would be much more reasonable. However, this imposes
several additional challenges and is out of the scope of this thesis.

A detailed investigation of the performance of the proposed approach with concrete state-
ments about the time required for performing different IROs is presented as part of the
evaluation (see Part III).

Limitations

A considerable effort has been spent for the transformation of basic hypotheses in order
to achieve an accuracy better than provided by approaches based on the first-order Taylor
approximation. As already mentioned above, for time-critical applications the option of
restricting the transformation to only utilize a first-order Taylor approximation has to be
taken into account if we can expect that b,,,,;, M, or n becomes too big. However, this has
to be traded off against potentially poor approximation results.

Another big limitation is that currently we have only available a comprehensive approach for
transforming measures of impreciseness and uncertainty if the corresponding IROs define a
mapping R™ — R" which is continuous and infinitely differentiable. For the general case, the
only currently available solution is to split up the set of involved domain singletons in small
subsets and to consider them as more fine-grained basic hypotheses which are transformed
separately. However, this can be expected to result in huge computational costs. For some
IROs, e.g. the conversion of the name of a building to GPS coordinates, we even have to rely
that the developer provides the corresponding value range by herself.

Another issue to be considered is that an IRO may not be able to perform the transformation
for all input values. We assume again, for example, the conversion of GPS coordinates to the
address of a building. In this case, it is obvious that not all GPS coordinates can reasonably
be transformed, e.g. if the user is currently hiking in a big forest. In this case, the only
possibility we currently see is the assignment of the corresponding belief mass of the basic
hypotheses to QF.
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9

9.1

Information Fusion

Computing environments as envisaged in this thesis are characterized by the dynamic
appearance and disappearance of information providers. This does not only mean that
actually required information may not be available all the time, but also that several services
may provide the requested information at the same time. In this chapter, we show how
competitive information fusion based on the Dempster-Shafer Theory of Evidence can be
applied in order to resolve contradictory statements and to combine a number of unreliable,
uncertain and imprecise observations to obtain more reliable state estimates.

Requirements

Before presenting the concrete approach for information fusion based on the Dempster-
Shafer Theory, first we summarize the requirements we have identified for the work of this
thesis.

* Information providers, in particular sensors for real-world entities which are subject to
a number of influences from the environment, are inherently unreliable. The varying
reliability of different sensors has also to be taken into account in the information
fusion approach.

* Sensor information is not only unreliable due to different sensor characteristics but
also due to its age. For example, if information on the location of an entity which
possibly changes its position significantly every second is older than a few seconds,
it has to be considered extremely unreliable. This also has to be reflected in the
information fusion approach.

* In our Information Model, uncertainty is represented through basic mass assignments
to basic and complex hypotheses. In general, a basic mass assignment for a Scope
individual is calculated as:

m(A)= > m(AlH)- m(H) (9.1)

HeH

where A is an element of 2%, H denotes a (basic or complex) hypothesis from the
set of hypotheses H, m(A|H) describes the conditional basic mass assignment for A
under the condition that H holds, and m(H) denotes the belief mass that H holds. It
is important to recall that all conditional mass assignments do not assign a mass to
Q". Hence, we introduce an implicit hypothesis Hyr such that m(Q"|Hg-) = 1 and
m(Hg ) =1— ZHGH’H AHor m(H), as already mentioned above. Now, competitive
fusion of two Scope individuals has to be realized as conjunctive combination of
two basic mass assignments m; and m, which both are represented in the form of
Equation 9.1.
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9.2

9.2.1

* It has to be expected that at least one dimension D; of Q" is continuous, i.e. it allows
values from R or from a subset of R. If uniform value ranges and covariance matrices
are specified for basic hypotheses which involve continuous dimensions, the basic
mass assignment given by Equation 9.1 has to be considered as a mass density for
the singletons of ©2". Consequently, appropriate support for dealing with such mass
densities is required in our information fusion approach.

* The result of the information fusion should be a basic mass assignment or mass density
which can be expressed in the way shown by Equation 9.1 and which only uses the
already introduced primitives (mean/covariance matrix, uniform value range or value
range). The introduction of new primitives has to be avoided as this would further
complicate the approaches for the realization of IROs and the information fusion.

Fusion Approach

In the following sections, we present our information fusion approach based on the Dempster-
Shafer Theory of Evidence in detail. In particular, we show how the requirements listed
above are met.

Consideration of the Reliability of Information Providers

A common approach (already proposed by Shafer in [126]) to take into account the reliability
of sensors, or of information providers in general, within the DST is the so called method
of discounting. Intuitively, discounting shifts a fixed portion of the masses of all elements
of 2% which do not equal to " to m(Q"). The portion to be shifted is determined by the
reliability of the sensor and is expressed by the discounting factor a. Typically a is selected as
1 — reliability. As m(Q") can be interpreted as a measure of ignorance included in the basic
mass assignment, a discounting decreases the belief in concrete observations and increases
the ignorance expressed by the belief assignment. Formally, the method of discounting
calculates the discounted basic mass assignment m, from the original basic mass assignment
m as follows:

my (A) = (1 —a)-m(A) VAe 2 A+ QT (9.2)
mg () =m@Q)+a-(1-m(Q")

With regard to basic mass assignment of the form shown in Equation 9.1, a discounting with
factor a yields to:

mg(A) = (1-a)- Z m(A|H)-m(H) VA€2Y A#Q" 9.3)
HeH

which can be reformulated as:

my(A) = Z m(AIH)- (1 —a)-m(H)) VA€2Y A#Q" 9.4)
HeH
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If m(Q"|H) =0 (H € H, H # Hy) and m(Q"|Hg) = 1, a discounting of a basic mass
assignment which is expressed in the form of Equation 9.1 simplifies to a discounting of the
basic mass assignments of the hypotheses. This is formally specified in Equation 9.5.

mg(H)=((1—a)-m(H) VH € H,H#Hqgr (9.5)
mq (Hgr) =m (Hgr) +a- (1 —m (Hgr))

9.2.2 Consideration of the Information Age

As motivated with the above example on position information for an entity of the world,
the age of a piece of information has to be considered in the fusion approach as well. In
general, it is justified to assume that the reliability of non-constant information decreases
with increasing age. Consequently, the age of the information is taken into account by
another discounting step which can be performed analogously to the discounting step for
the consideration of sensor reliability. Thus, the problem is reduced to the selection of an
appropriate discounting factor a.

As described in Section 7.2.5, a meta-data attribute ChangeFrequency can be associated
to Scope individuals which denotes the frequency with which the provided information is
expected to change significantly. When performing the information fusion step, this attribute
can be used along with the Timestamp meta-data associated to the corresponding Scope
individuals to calculate the discounting factor a. Here we propose the following equation
which corresponds to the equation Shafer presented in [126] to address this problem but
which is adjusted to the attributes available in our Information Model:

a=1—e¢f 7t (9.6)

where f corresponds to value of the attribute ChangeFrequency, t, to the current time and
t, to the Timestamp meta-data of the Scope individual. With Equation 9.6, a evaluates to 0
if t, = t,, and evaluates to 0.95 for (t, —t;) =3 Jlf This means that the reliability of the
information is considered to be less than 5% if the difference of the current time and the
time when the information was sensed is greater than three times the reciprocal of the value
of the attribute ChangeFrequency.

If covariance matrices or (uniform) value ranges are specified for basic hypotheses, we
could also consider the age of the information by increasing the covariance matrices or the
dimensions of the (uniform) value ranges dependent on the age of the information. However,
this would require additional information on how the values can be expected to change
over time, which may be highly dependent on the Scope and the characterized Entity. For
example, for information on the position of a moving object at least an estimation of the
maximal velocity has to be known. As the required information is very specific to the Scope
and Entity, integration of this idea in a generic framework as envisaged in this thesis is
difficult. However, we will further investigate the idea as part of our future work.
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9.2.3 Fusion of two Independent Basic Mass Assignments

As introduced in Section 3.5, two basic mass assignments m; and m, resulting from two
independent observations are usually fused with Dempster’s Rule of Combination or with the
Conjunctive Rule of Combination. In this thesis, we have decided to employ Dempster’s Rule of
Combination as the unnormalized Conjunctive Rule of Combination tends to yield very small
belief masses if several belief functions have to be combined, even if the conflict is quite
small. For the reader’s convenience Dempster’s Rule of Combination is presented again in
Equation 9.7.

ml’z (@) =0 (9.7)

1
myp(A) = (m&my) W)= — > m(B)m;(C)
BNC=A#0

K= Y m(B)my(C)

BNC=0

With regard to two basic mass assignments in the form of Equation 9.1 the combination
results in:

1
m,(A)=T—F% Z Z my(B|H;) my(Hy)- Z my(C|Hy) my(Hy)  (9.8)
BNC=A#0H,€H, HyeH,
where K is analogously calculated as above and also m; , () = 0 is ensured. With some
re-ordering of the terms and the operations in Equation 9.8 we get:

1
ml,z(A):TK Z Z my(Hy) - my(H,) Z my(B|H;) - my(C|H,) 9.9

1 HyeH, HyeH, BNC=A#0
This equation can be interpreted in the following way:

. ZBmc: A2 m(B|H;)-my(C|H,) corresponds to the conjunctive combination (Demp-
ster’s Rule of Combination without normalization) of two conditional mass assignments
on two hypotheses from #; and H, respectively. The result of this combination is
written as m; 5(A|H;,H,) (in accordance with Smets in [132]).

e m;(H;) - my(H,) is considered as weight for m; ,(A|H;,H,) and therefore as weight
for the combined hypothesis.

* In this respect, m; 5 (A) can be considered as weighted sum over all possible combined

hypotheses. If the normalization factor ﬁ is incorporated into the weights as well,

this interpretation yields to an expression exactly the same as depicted in Equation 9.1.

* If two hypotheses H; and H; have no intersection, i.e. m; 5(A|H;,H,) =0 forallAe
2% then the whole mass m; (H;) - m,(H,) is shifted to K. Checking for intersection and
calculating the product m;(H;)-m4y(H,) can be considered as conjunctive combination
of the hypotheses at an abstract level (hypotheses level):
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9.2.3.1

1
mpH)=1—2 D, mH) my(Hy) 9.10)
H,®H,=H_,H #0

where H, corresponds to the combined hypothesis and @ denotes the combination of
hypotheses.

In summary, the fusion of two basic mass assignments corresponding to Equation 9.1
can be considered as combination over two hierarchical levels. The mass assignments
to the hypotheses from H; and #H, are conjunctively combined at an abstract level, and
the conditional mass assignments m;(B|H;) and m,(C|H,) are conjunctively combined to
m, 5(AlH,,H,) at a concrete level, i.e. at the level of the elements A € 2% If we fuse
the different conditional mass assignments independently, we have to take special care
that the normalization factor ﬁ is calculated consistently over all combinations as the
resulting combined conditional mass assignments are assumed to be normalized to sum up
to 1 (with m; ,(@|H;,H,) = 0). This problem will be discussed in detail later on when we
describe methods to fuse the conditional mass assignments for the different hypotheses and
in particular when we present concepts for the fusion of mass densities.

Fusion of two Conditional Basic Mass Assignments

When combining two conditional basic mass assignments m;(B|H;) and m,(C|H,), we have
to consider that H; as well as H, may represent complex hypotheses, which are formed by
a logical expression of basic hypotheses. For example, H; may be the union of three basic
hypotheses hy;, h;5 and hy3, i.e. hj; Uhyy Uhq3. If we assume that H, represents a single
basic hypothesis h,;, the combination of m,(A|H;) and m,(A|H,) consists of calculating
my 5 (Al (1 Uhya Uhys) Nhay).

Of course, the combination of two conditional basic mass assignments can always be
represented through the intersection of the two logical expressions on basic hypotheses
as shown in the example above. However, complex expressions make it difficult to detect
conflicting hypotheses and make it hard to process the resulting belief functions in further
reasoning steps. Thus, it is desirable to simplify the logical expression to a small number
of new combined basic hypotheses if possible. For this purpose, we will review the basic
combination rules and establish a number of simplification rules. Special care has to be
taken that the resulting basic mass assignments adhere to the form shown in Equation 9.1
and that no additional primitives are required.

Dubois and Prade have listed the following three basic combination rules in [33]:

1. Intersection of two independent bodies of evidence (corresponding to the Conjunctive
Rule of Combination):

m(AlH; N Hy) = (m; Nmy)(A) = D m;(B)-my(C) (9.11)
BNC=A
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2. Union of two independent bodies of evidence (corresponding to the Disjunctive Rule of
Combination):

m(A|H, U H,) = (m, Umy)(A) = Z m,(B)-m,(C) 9.12)
BUC=A

3. Complement/negation of a body of evidence:

VYA C Q" m(AlH;) = m;(A) = m;(A) (9.13)

Besides, the Conjunctive Rule of Combination and the Disjunctive Rule of Combination are
known to be associative and commutative. Furthermore, the union and intersection of bodies
of evidences satisfy De Morgan’s laws [33], which is illustrated in Equation 9.14.

(my Umy)(A) = (myUmy)A) = D my(B)-my(C)= Y, my(B)-m3(C) = (mynimz)(A)
BUC=A BnC=A

(9.14)

Whereas the rules and properties for the combination of conditional basic mass assignments

described above suggest that we can apply the commonly known set operations, it is vitally

important to note that the union and intersection of bodies of evidences are not idempotent:

(mAm)@)= > m(B)-m(C)# m(A) (9.15)
BNC=A

(mUm)(A) = Z m(B)-m(C) # m(A) (9.16)
BUC=A

Moreover, also the distributive laws do not hold generally:

((my Umy) Nm3)(A) # ((m; Nmg) U (my Nm3))(A) (9.17)

((my Nmy) Ums)(A) # ((my Umg) N (my Ums))(A) (9.18)

Equation 9.18 is trivial as also with usual sets the intersection is not distributive over union.
Equation 9.17 gets clear, if we assume that m only assigns masses to singletons. In this case,
the result of the left side of Equation 9.17 assigns masses only to singletons again. The right
side of Equation 9.17, however, may also assign masses to the union of two singletons.

In Section 8.2.2 it was described that the application of IROs for complex hypotheses either
results in a mass shift to Q" (if negations or intersections of basic hypotheses are involved) or
in complex hypotheses that consist of a union of basic hypotheses. Therefore, support for the
fusion of unions of basic hypotheses is vitally important. Here, the fact that Equation 9.17
does not hold causes additional challenges and requires the establishment of new rules for
the simplification of an intersection of unions of basic hypotheses.
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As a baseline for the derivation of the simplification rules we first have a closer look on how
the conditional basic mass assignment m (E|(H, U Hy) N H3) denoted as ((m; Umy) Nms) (E)
is calculated:!

((myum)nm)(E)= Y my(C) D, my(A) my(B) 9.19)

CND=E,E#0 AUB=D

Dependent on C we now represent m;(A) as mf+(A) + mf‘(A) such that:

m$*(A)=my(A) and m{(A)=0 ifANC#0 (9.20)
m{*(A)=0 and m{ (A)=my(A) fANC=0

When doing the same for m,(B), Equation 9.19 can be written as:

(mum)nm)E)= Y. my(C)- Y. (m{*(A)+m{(A)-(mS*(B)+m§ (B))

CND=E,E#0 AUB=D
(9.21)
With some re-ordering of terms this yields:
(mum)nm)E)= >, my(C)- (9.22)
CND=E,E#£0
Z mer(A) . mg+(B) + mf+(A) . mg_(B) + mf_(A) . mg+(B) + mf_(A) . mg_(B)

AUB=D
In essence, the right side of Equation 9.22 is a sum of four terms:
1. > cnpes g20M3(C) Y ausp M§~(A)-mS$~(B), which is denoted as m] ;, 5(E).

It holds m; , ,(E) =0 for all E # 0, as mf‘(A) . mg_(B) may only be greater than zero
if AN C =0 and BN C = (. However, this also means that C N (AU B) = ), which does
not meet the assertion CND =E,E # 0.

2. Yicnp=r.520M3(C)" 2ap—p m&*(A)-m$™(B), which is denoted as mig’B(E).

migg(E) can also be written as:

mio4(E) = Z ms(C)- Z m§*(A)-m$~(B) (9.23)
CND=E,E#0 AUB=D
= ) my(©)mfF@A)- D mE(B)
CNA=E,E#0 B
= > my(©)my): Y mSm(B)
CNA=E,E#0 B

Here, D mg_(B ) corresponds in a way to the conflict of C with regard to m,.

! Actually, (m, Nm,)(A) denotes the combination of two basic mass assignments according to the Conjunctive
Rule of Combination. In this thesis, however, we employ Dempster’s Rule of Combination. Therefore, we
introduce the assertion E # 0. Nevertheless, we keep (m; N'm,)(A) as shorthand notation.
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3. Yienp=r.520M3(C)" 2ap—p m$~(A)-m$T(B), which is denoted as ml_’;rB(E).
Can be rewritten analogously to Equation 9.23.
4. Ycnp=£.520M3(C)* 2aup—p m$*(A)-m$*(B), which is denoted as my 3 5(E).

If C is a singleton, i.e. C € Q", then m3(C)- >, 5_p MS T (A)-m$*(B) may only be

greater than zero if A = B. Otherwise, either mf*’(A) or mg+(B ) is zero.
As already mentioned above, special care has to be taken that the normalization factor ﬁ
of Equation 9.9 is calculated consistently over all combinations when we fuse the hypotheses
of two independent basic mass assignments. This can be realized by representing K as the
sum of all conflicts, i.e. mass assignments to the empty set, across all combinations. The
same result is achieved if we assign A* - m;(H;) - my(H,) as mass to the combined hypotheses
of H; € H; and H, € H, and normalize the sum of the mass assignments of the hypotheses
(including the hypothesis representing the whole frame of discernment) to 1 after all fusion
steps have been performed.? Here, the factor A* = 1 — K* denotes the agreement of the two
hypotheses if K* represents the conflict resulting from the fusion of the particular conditional
basic mass assignments m; (A|H;) and m,(A|H,).> When deriving the rules for simplification
we will also discuss how A* is calculated for the particular rule.

For the simplification of expressions of complex hypotheses we have derived the following
rules most of which are focused on the primitives mean/covariance matrix, uniform value
range and value range. Here, m; denotes the conditional mass assignment corresponding to
H:

i*

* Rule 1: ((m; Umy) N mg)(E) = ((my Nm3) U (my N mg))(E)

if m;, m, and mj are all based on the primitive value range or are unions of value
ranges.

A* =1, if the hypotheses H; and H; or H, and H5 have an intersection, A* = 0
otherwise.

Proof: Trivial.

* Rule 2: ((m; Umy) Nmg)(E) = (my Nm3)(E)

if H; and H; have an intersection and H, and H; have no intersection.

* * * . . o .
A" =1-Ky o, where Ky o, denotes the conflict resulting from the combination
of H; and Hs.

Proof: m$*T(B) = 0,VC,VB. This means that miZB(E) = 0 and ml_,;r’g(E) = 0.

> pmS~(B)=1,YC. Thus mig’s(E) = (m; Nm3)(E).

2As already mentioned above, we assume that the conditional basic mass assignments of the combined
hypotheses are normalized to sum up to 1.

3For the remainder of the document A* and K* denote the agreement and the conflict when combining
particular basic or complex hypotheses, whereas K corresponds to the overall conflict across all involved
combinations of hypotheses.
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Rule 3: ((m; Umy) Nm3)(E) = (m; Nmg+ my Nms3)(E)
if H; and H, have no intersection and ms only assigns masses to singletons, i.e. is
based on the primitive mean/covariance matrix or uniform value range.

As this rule results in two hypotheses, we have to calculate two factors Aﬁ . (for
(m; Nm3)(E)) and AZ,B (for (my, Nm3)(E)):

* A% 1 _ * : * *
A3 = Ay e, = 1 — Ky en, if (AH163H3 +AH2®H3) =1
A*
‘Hq1®H: .
=1 otherwise
’ AH1®H3+AH2€BH3
*  __ pk 1 * . * *
Ay s = Ay e, = 1 — Ky en, if (AHIGBHg, +AH2€BH3) =1
A*
‘Ho ®H: .
Ay, = # otherwise (9.24)
? H1®H3+ Hy ®H3

The rationale behind the normalization with A*Hl oH, +AZZ®H3 will become clear when
we discuss the calculation of the agreement for the combination of hypotheses based
on the primitives mean/covariance matrix and uniform value range. Here, it has to be

ensured that the agreements do not sum up to a value greater than 1.

Proof: As already stated above, if m; only assigns masses to singletons C, i.e. C €
Q", then m3(C)- ZAUB:D mf+(A) . mg+(B) may only be greater than zero if A = B.
Otherwise either mf+(A) or mg+(B) is zero. As H; and H, have no intersection,
miis(E )=0.

If m5(C)-m,(A) > 0, then mg_(B) = m,(B), VB, as H; and H, have no intersection.
Thus m;, ,(E) = (m; N m3)(E).

Analogously, it holds m} § 4(E) = (my Nmg)(E).

All rules can be applied several times or consecutively for the simplification of more complex
intersections of unions of hypotheses. For this purpose, the union of two or more hypotheses
may be abstracted by a single hypothesis. With the help of this principle we have derived,
for example, the following two rules:

Rule 4: ((m; Umy) N(m3Umy)(E) = (m; Nm3)(E)
if H, and Hs, H; and H,4 as well as H, and H, have no intersection.

A =1-K}p op.-

Proof: H, and H, are abstracted by a single hypothesis and Rule 2 is applied. To the
result Rule 2 can be applied again.
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* Rule 5: ((my Umy) N (mgUmy)(E) =(m; Nmsz + myNms)(E)

if H; and H,, H; and H, as well as H, and H, have no intersection and ms only
assigns masses to singletons, i.e. it is based on the primitive mean/covariance matrix
or uniform value range.

A* is calculated analogously as for the application of Rule 3.

Proof: H; and H, are abstracted by a single hypothesis and Rule 2 is applied. To the
result Rule 3 can be applied again.

Actually, we have derived some more simplification rules. However, the results of the
application of these rules cannot be expressed according to Equation 9.1 anymore, and
thus these rules are omitted here. The same problem also arises if rules are derived for
the simplification of expressions which involve the negation of hypotheses. So far, we have
derived only the following simplification rule for negations of hypotheses.

* Rule 6: (m; Nmy)(E) = my(E)

if H; and H, have no intersection.

A*=1.

Proof: if my,(B) > 0 and m;(C) > O, it holds BN C = B as H,; and H, have no
intersection. Thus (m; N m,)(B) = my(B)- Y. m;(C) = my(B).

Rule 1 to Rule 6 along with the commutativity/associativity of the Conjunctive and Dis-
junctive Rule of Combination and De Morgan’s laws provide a good set of concepts for the
simplification of complex hypotheses. As each rule has a number of guarding conditions,
however, we certainly have to expect expressions that cannot be simplified. It may even
be difficult to represent the result of the combination by a single basic hypothesis if a rule
can be applied. Consider, for example, the case where the result of a simplification is the
combination of a uniform value range and a mean/covariance matrix. In this case, we just
keep the two hypotheses and assign the mass to H; N H,.

For decision making, however, an estimation of the conflict or agreement is necessary also for
the expressions which cannot be simplified. This is due to the fact that the overall conflict is
used for the normalization of the belief masses, and thus it influences the absolute values of
the belief masses of the involved hypotheses. Therefore, we apply the following preliminary
heuristic to the fused belief function before decision making. A detailed investigation of the
heuristic and the search for alternatives is subject of future work.

1. First, the complex hypothesis which cannot be simplified is transformed in a disjunction
of conjunctions, i.e. the logical expression of the complex hypothesis is represented in
disjunctive normal form.* This can be achieved by applying the usual logical operators

It is important to note here that this is only done at the hypotheses level and does not involve the
combination of conditional mass assignments.
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9.2.3.2

and the laws holding for propositional logic which also comprise the distributive law
and De Morgan’s laws.

2. The agreement of the expression is now calculated as:
A= miax(Af) (9.25)

where the A} represent the agreement of the single involved conjunctions and evaluate
to:

A= ] A o, (9.26)
1<j<n,j<k<n

*

where n is the number of hypotheses in the conjunction and A depicts the

H;®H,

agreement of H; and Hy. If H; and/or H represent the negation of a hypothesis, then
: B 0 A 4 .

the agreement is calculated as AHjeaHk =1 Ahj ohy where h; and h; denote the basic

hypotheses constituting H; or H, or referred to in H; and H). respectively. Of course,
this estimation requires that for all combinations of basic hypotheses an agreement
can be calculated. We will show in the next section how this can be achieved.

The rationale behind Equation 9.26 is that in a conjunction of hypotheses each involved
hypothesis has to be ‘intersected’ with each of the other hypotheses. Therefore, we
multiply the agreements of all n(n — 1)/2 pairs of hypotheses to derive the overall
agreement in the conjunction.

As in a disjunction of conjunctions it is sufficient that only a single conjunction
holds, the overall agreement of the complex hypothesis is calculated as the maximum
agreement of all involved conjunctions (see Equation 9.25).

From the descriptions above, it becomes obvious that it is vitally important to be able to
check two basic hypotheses for intersection and to calculate/estimate their agreement. In
the following sections, we discuss these challenges for the combination of the primitives
value range, uniform value range and mean/covariance matrix. Later on, we will also discuss
how the properties DSTintersectedWith, DSTincludes and its inverse property DSTisIncludedIn
defined in the ontology (see Section 7.2.6) are used to check whether basic hypotheses have
an intersection.

Intersection, Combination and Agreement of two Basic Hypotheses

Combination of Value Ranges

Checking for intersection, combining and calculating the agreement for two basic hypotheses
is straight-forward if the hypotheses are based on the primitive value range.

Two value ranges are checked for intersection by inspecting the single dimensions of the
value ranges. If for all dimensions the intersection of the value ranges is unequal to the empty
set, the two value ranges have an intersection. The new limits consist of the intersected
value ranges of the single dimensions. For the agreement it holds A* = 1 if the two value
ranges, i.e. the two basic hypotheses, have an intersection, and it holds A* = 0 otherwise.
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Mass Densities

Before we discuss the combination of basic hypotheses of the type mean/covariance matrix
and uniform value range, it is vitally important to recall their interpretation for continuous
dimensions of Q":

Basic hypotheses based on the primitives mean/covariance matrix and uniform value range
are considered to only assign masses to singletons of Q". In this respect, the mass assignments
correspond to a probability assignment in the usual sense. Consequently, if continuous
dimensions are involved in ", a basic mass assignment m has to be interpreted as probability
density function, which we also refer to as mass density. Based on our interpretation that
masses are only assigned to singletons, the conjunctive combination corresponds to a
pointwise multiplication of the two basic mass assignments:

(my Nmy)(X) = my(X) - my(X) (9.27)

As we assume that all conditional mass assignments sum up to 1, we have to normalize the
mass assignment of Equation 9.27 with the factor %, where y evaluates to:

Y= J mq(X) - my(X¥)dx (9.28)
xeqQr

Actually, y corresponds to the agreement A* = 1 — K* of the hypotheses to be combined.
However using y as agreement turns out to be a problem when dealing with mass densities.
Consider, for example, the combination of two one-dimensional uniform value ranges in the
interval [0, 1]. As result we get the same interval and for the agreement it holds A* =y =1,
which corresponds to our intuition. However, if working on a different scale and combining
two one-dimensional uniform value ranges in the interval [0, 10], then the resulting interval
still remains the same, i.e. [0, 10], but the agreement evaluates to A* = y = 0.1, which is in
a way counter-intuitive. As the agreement of two basic hypotheses based on mass densities is
heavily dependent on the scale, we will propose an alternative calculation of the agreement
A* if the primitives mean/covariance matrix and/or uniform value range are involved.

Combination of two Basic Hypotheses based on the Primitive Mean/Covariance Matrix

A basic hypothesis based on the primitive mean/covariance matrix defines a basic mass
assignment (mass density):

1
m(f) = mN(-)_C’J -)?OJ Zx) = (2 )n d t(z )
T e x

where X, denotes the mean, X, corresponds to the covariance matrix and n is the number of
dimensions of £2". For checking two basic hypotheses based on the primitive mean/covariance
matrix for intersection, we utilize the Mahalanobis distance [80] of the two corresponding
Gaussian random variables:

e—%(f—fo)Tzzl(f—fo) (9.29)

d(Hy, Hy) = o/ (E1 — #2)7 (s 4wl )10z — &1ty (9.30)

SH SH H H
where, X," and X,* are the means of the hypotheses H; and H,, and %' and X,* are the
covariance matrices of H; and H,. The two hypotheses are assumed to have an intersection
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if the Mahalanobis distance is smaller than a certain threshold a, e.g. @ = 4. In many
Al applications this criterion is used to solve the data association problem [125], i.e. to
decide whether an estimate of an object’s state corresponds to an observation. Both, the
object’s state and the observation, are represented as Gaussian random variables. If the test
is successfully passed, it is assumed that both variables are related to the same object, and
thus the observation can be used to refine the state estimate of the corresponding object.

The combination of two basic hypotheses, which only assign masses to singletons, corre-
sponds to the pointwise multiplication of the mass densities. As the mass densities are given
as two Gaussian functions, the result is a scaled Gaussian function with scaling factor B:

— - —H - —H.
(mlﬂmz)(x) = mN(X:XOI:2?1)'mN(x)X02:ZI;Z)

= B-my(% %7, £M) (9.31)

H H . . .
where X,'"* and X, represent the mean and the covariance matrix of the combined hy-
potheses. They evaluate as:

—, -1 = -1 bys
nglZ Zfz (ZIX_'II + ZIJ;IZ) xgll + ZIJ;II (lel + ZI;Z) x(I;I2
-1
21;12 - 21;1 (251 + 252) EI;Z (9.32)

As already discussed above, for mass densities the calculation of the agreement according to
A* =y is highly dependent on the scale, and thus is in a way counter-intuitive. Therefore,
we propose to determine the agreement of two basic hypotheses based on the primitive
mean/covariance matrix as follows:

(9.33)

d.(H,H
A*zmax(l——m( L 2),0)

a

where a corresponds to the threshold used to check whether the two basic hypotheses have
an intersection. This formula can be interpreted as a rough estimation of the portion of one
hypothesis covered by the other hypothesis. Here, we assume that two hypotheses do not
overlap at all if d,,(H,,H,) > a.

In order to abstract two independent hypotheses by a single one, i.e. to check the equality of
two hypotheses, the Mahalanobis distance is not appropriate as it only checks the distance of
the two means but does not take into account the similarity of the covariance matrices. Thus,
we propose to use the squared Bhattacharyya distance of two Gaussian random variables
instead, which evaluates as:

1 1 det(zH 4yt
d?(Hy,H,) = = -d*(H;,H,)+ = In et <) (9.34)
b 4 m H H
2v/det(z1) der(=2)

Two hypotheses are considered to be equal if dlf(Hl,Hz) < B, with e.g. f =0.01. Two equal
hypotheses are merged by summing up the mass assignments m(H;) and m(H,), and to use
m(A|H;) as the new conditional mass assignment.
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In order to reduce the number of basic hypotheses, it may be required to abstract a number
of similar normal distributions (high agreement, but Bhattacharyya distance greater than
B) by a single basic hypothesis. In this case, we represent each normal distribution by a
minimal number of sample points as done in the Unscented Transformation [70] and weight
the sample points according to the belief mass which is assigned to the corresponding basic
hypothesis. The mean and the covariance matrix of the new basic hypothesis can then be
calculated as the mean and the covariance matrix of the set of weighted sample points of all
basic hypotheses to be abstracted.

Combination of two uniform value ranges

If we combine two uniform value ranges, the check for intersection and the calculation of the
limits of the combined value range are performed in the same way as for the combination of
value ranges. The result of the combination is a uniform value range again as it holds:

1
(m;Nmy)(X) = if my(¥) > 0,my(¥)>0
Vi, Vi,
(myNmy)(X¥) = 0 otherwise (9.35)

where Vy, denotes the volume of the uniform value range associated to H; and where V,
corresponds to the volume of the uniform value range associated to H,. Here too, the mass
assignment has to be normalized to sum up to 1 with the help of the factor %, where v is
calculated according to Equation 9.28. As already discussed above, using y as agreement
would yield counter-intuitive results. Therefore, we propose the following alternative way to
calculate the agreement A* of the two hypotheses:

Vo V.
A" = max | 2z e (9.36)
Vir, " Vi,

This means, the agreement is calculated as the maximum overlap of the volumes of the
combined hypothesis V; , and of the two original hypotheses (Vy, and Vy,).

Combination of a uniform value range and a value range

The test for intersection and the calculation of the limits are performed in the same way as
for the combination of two value ranges. The result of the combination is a uniform value
range again as it holds:

1
(m Am)(E) = () > 0,7 € Bmy(B) >0
H,

(m; Nmy)(X) 0 otherwise (9.37)

where m; denotes the basic mass assignment of the uniform value range, and m, corresponds
to the basic mass assignment of the value range.

In general, it holds that the combination of a basic mass assignment only assigning masses
to singletons with another basic mass assignment results in a basic mass assignment which
only assigns masses to singletons as well.
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Here, the factor y required to normalize the mass assignment of Equation 9.37 (with %)
corresponds to the ratio, the uniform value range associated to H; is covered by the value
range associated to H,. Therefore, we do not see the requirement for an alternative way to
calculate the agreement and use A* =y.

In order to check two (uniform) value ranges for equality, we apply the following approach.
Two (uniform) value ranges are considered to be equal if it holds:

V V
min( Hiz ﬁ) > (9.38)

Vi, ’ Vh,

with 8 = 0.95, for example. The limits of the new (uniform) value range are formed by the
minimum/maximum limits of the two original (uniform) value ranges, which result from
the union of the (uniform) value ranges defined for the single involved dimensions.

Combination of a basic hypothesis based on mean/covariance matrix with a (uniform)
value range

The combination of a basic hypothesis based on mean/covariance matrix with a (uniform)
value range is most difficult. In both cases, the result is a basic mass assignment that only
assigns masses to singletons, but the result cannot be represented by one of the primitives
used in this thesis. Thus, in the following paragraphs we will concentrate on the check for
intersection and on the estimation of the agreement of the two basic hypotheses.

For checking the intersection and estimating the agreement, the value ranges are transformed
into a mean/covariance matrix representation. This allows to calculate a Mahalanobis
distance between the mean/covariance matrix and the (uniform) value range, although a
value range does not specify a mass density but only assigns a mass to the union of singletons
included in the value range. With the help of the Mahalanobis distance we can easily check
the basic hypotheses for intersection and estimate their overlap.

The mean x(()l) for dimension i is calculated as:

X(()i) =0.5-(x9 +x@ ) (9.39)

min max

and the variance 0(21) for dimension i evaluates as:

(x(i) _ X(i)- )2
2 _ Ymax — Tmin_
O = 12 (9.40)

As the single dimensions are considered to be stochastically independent, all covariances are
equal to 0. Now we can check the two basic hypotheses for intersection and estimate
their agreement in the same way as for two basic hypotheses based on the primitive
mean/covariance matrix.

It should be noted here that the alternative ways of calculating the agreement result in
values which usually are bigger than the values for the agreement that are calculated in
the normal way. This is the reason why the normalization shown in Equation 9.24 becomes
necessary.
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9.2.3.3 Combination of Basic Hypotheses in Symbolic Representations

9.3

In this thesis, the specification of (uniform) value ranges and covariance matrices is limited
to numerical continuous dimensions. Thus, in most cases the basic hypotheses have to be
expected to consist of a single singleton, which of course can be combined to unions with
the help of complex hypotheses. In this case, the whole approach reduces to the simplest
form of a Dempster-Shafer combination of two basic mass assignments, where the concepts
of hypotheses and conditional mass assignments are not required.

However, basic hypotheses specified in Symbolic Representations form a special case here.
Consider, for example, two hypotheses for the location of the user in a Symbolic Represen-
tation for the entity Location. One basic hypothesis specifies the Symbolic Representation
‘University of Kassel WA73’, the other one specifies ‘Room 1305 WA73’. Consequently, even if
‘University of Kassel WA73’ corresponds to a singleton, from our conceptual point of view it
may implicitly still represent the union of a number of other singletons, as e.g. ‘Room 1305
WA73’, ‘Room 1403 WA73’, ‘Room 1605 WA73’, etc., which are all part of or located in the
building ‘University of Kassel WA73’. Thus, in the fusion step we have to consider the rela-
tionships between the entities which are defined in the Ontology through the properties (or
sub-properties of) DSTintersectedWith (meaning that H,NH, # @), DSTincludes (meaning that
H; 2 H,) and DSTisIncludedIn (meaning that H; C H,). In the same way, the relationships
among classes can be exploited if Representative Individuals (see Section 7.2.3) are involved
in the specification of basic hypotheses. The consideration of these relationships/properties
is also important when we calculate the measures of plausibility and belief.

Summary and Discussion

In this chapter, we have explained how the Dempster-Shafer Theory of Evidence can be
used to fuse belief functions that are specified according to the Information Model presented
in Chapter 7. The specification of the belief functions is based on basic hypotheses which
may involve the primitives value range, uniform value range or mean/covariance matrix,
on complex hypotheses which represent logical expressions of the basic hypotheses and
on the assignment of belief masses to the hypotheses. We have shown that discounting
of such belief functions can be performed at the hypotheses level only. The conjunctive
combination of belief functions results in a conjunctive combination at the hypotheses level
and in a combination of the involved hypotheses. Therefore, the hypotheses form in a way
a set of ‘high-level focal elements’ enabling the application of the Dempster-Shafer Theory
of Evidence even if continuous scales are involved. However, the basic hypotheses must
not be considered as singletons in this interpretation. Instead, basic hypotheses can have
intersections with other basic hypotheses without being equal to them, and their combination
can result in further basic hypotheses.

A major problem arises with the simplification of complex hypotheses in the fusion process
because the distributive law does not hold for the combination of bodies of evidence. As
the primitives used for the definition of the belief functions result in conditional mass
assignments that assign masses only to singletons or to only one union of singletons, we
have been able to derive new simplification rules similar to the distributive law that still
allow a simplification in a number of cases.
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We only use a few primitives for the definition of belief functions. This facilitates their
compact representation but also limits the expressiveness, which prevented us, for example,
to derive new simplification rules if negated bodies of evidence are involved. This is because
the result cannot be represented in terms of the introduced primitives anymore. In our future
work, we therefore will investigate other possibilities for representing the belief functions.
For example, the approach of linear belief functions [77] could be a viable alternative here.

In this chapter, we have extensively discussed the combination of basic hypotheses and have
proposed methods to calculate the conflict consistently over all involved combination steps.
In particular, the problem has been recognized that different scales may result in different
conflict values if mass densities are involved, and an alternative method for the calculation
of the conflict/agreement has been presented.

Furthermore, with the presented approach we are only able to fuse belief functions that
are specified for single concrete entities, i.e. the different hypotheses represent different
possible states of the same entity. It is currently not possible to fuse belief functions whose
hypotheses may represent state estimates for a set of entities. Here, the data association
problem [8] has to be solved before the actual fusion step, which is out of the scope of this
thesis.

If the Dempster-Shafer Theory of Evidence is utilized, scalability and performance are always
important issues, as it works on the power set of a frame of discernment. Here too, limiting
the expressiveness, basing the definition of belief functions on only a few primitives and
considering only the focal elements can help to reduce the computational costs. A detailed
discussion on scalability and concrete performance measurements are presented in Part III.

In our approach, information fusion is always performed based on the Representation
requested by the corresponding information consumer. However, if IROs are involved that
convert between Representations of different granularity, it might be useful to perform the
fusion step in a different Representation. Furthermore, the information of all matching
information providers is fused. We assume that the quality of the information improves
with the number of redundant information sources. However, this cannot be expected
to be always true, in particular if sensors provide misleading information under certain
circumstances although their reliability is assumed to be high. Here, a conflict measure could
provide some hints for the selection of an appropriate subset of information providers to be
used in the fusion step.
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10 Reasoning with Uncertain and Imprecise
Information

In the previous chapters it was explained how Dempster-Shafer belief functions are specified
according to our information model, propagated across non-linear transformations and
competitively fused. This chapter focuses on the question how belief functions can be
incorporated in reasoning schemes known from traditional probability theory and in logic-
based reasoning.

10.1 Transferable Belief Model and Probabilistic Reasoning
Schemes

Probabilistic reasoning schemes like Naive Bayes Classifiers, Hidden Markov Models or Bayesian
Networks have successfully been applied in a number of application domains, and Pearl’s
belief propagation algorithm describes an inference method for these reasoning schemes
based on a message passing protocol. The Transferable Belief Model [130] and reasoning in
Directed Evidential Networks [161] build the corresponding counterparts from the perspective
of Dempster-Shafer belief functions. Although this provides a general method for using the
well-known reasoning schemes with Dempster-Shafer belief functions, it is often either not
recognized or not emphasized in literature. In [114], for example, the authors introduce the
so-called credal HMM (CrHMM) , which is an enhancement of an HMM to Dempster-Shafer
Theory of Evidence. The Transferable Belief Model and reasoning in Evidential Networks
are referenced several times in [114], but HMMs are not really viewed from the perspective
of a simple Dynamic Bayesian Network and a corresponding message passing scheme. For
this reason, we present a direct mapping of Pear!’s belief propagation algorithm to its DST-
based counterpart for Directed Evidential Networks in this section. Using this theoretical
foundation, DST-based reasoning with Naive Bayes Classifiers, Hidden Markov Models and
Polytree Bayesian Networks can easily be performed.

The core of Pearl’s belief propagation algorithm is given in Equation 4.5 to Equation 4.9. In
the following paragraphs, we will review these equations from the perspective of DST and
the Transferable Belief Model.

Equation 4.5 states that the belief at a node X is calculated by multiplication of the belief
induced from its parent nodes (7t(X)) and the belief induced by its child nodes (A(X)).
In probability theory the two independent pieces of evidence are combined by pointwise
multiplication. In DST, such a combination of two independent pieces of evidence is
performed with Dempster’s Rule of Combination or the Conjunctive Rule of Combination if
normalization is postponed or not desired. From this consideration, we get the following
mapping:
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P(X|Ex+,Ex—) - aﬂ(X))L(X) — mX - mnx D m}LX (10.1)

The belief induced by the child nodes of X, i.e. A(X), results from the multiplication of the
A-messages and thus from the combination of the independent pieces of evidence received
from the child nodes. Therefore, we have to replace the multiplications by Dempster’s Rule
of Combination or by the Conjunctive Rule of Combination also in Equation 4.7. This yields
to the mapping:

C C
A =] i) — my =Pm, (10.2)
j=1 j=1

where m Avjox denotes the A-message sent from node Y; to node X.

The belief induced on X by its parent nodes, i.e. (X), is calculated by applying the law of
total probability and exploiting the conditional independence with respect to the different
parent nodes:

p
Tx(x) = Z P(X=x|u1,...,up)l_[7tUjX(uj) (10.3)
j=1
The counterpart of the law of total probability in DST is given by (see also Equation 3.15):

my 5 (A)= ) my (AlB)m; (B) (10.4)

BCQ

Thus, utilizing a conditional belief function instead of a conditional probability function we
can derive the mapping for Equation 10.3 as:

P

my, (x)= Z my (X = x|uy, . ..,up)l_lmnujﬂx(uj) Vx € X (10.5)
,,,,, uPEQUP j=1

where Mey is the m-message sent from the parent node U; to the node X. In traditional
Bayesian networks, the 7-message a node X sends to its child node Y; is calculated as (see
also Equation 4.8):

Ty, () = amg ()| [ Anx(x) (10.6)
k#j

which is the multiplicative combination of the belief induced by its parent nodes, i.e.
7tx(x), and the multiplicative combination of the belief induced by its other child nodes,
ie [, £ Ay, x(x). In the same way as above, here the multiplication has to be replaced by
Dempster’s Rule of Combination or the Conjunctive Rule of Combination as well. This yields
the following mapping for Equation 10.6:
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Mry oy = My © @ My —x (10.7)
ki

Most difficult to provide is the mapping for the equation that allows the calculation of the
A-messages (see also Equation 4.9):

AXUI-(UJ=/527LX(X) Z P(X=X|U1,---;Up)l_[7TUkX(Uk) (10.8)

Uy e U1l 1 o5l k#i

Thus, we carefully inspect the right side of the equation first. Here, it can be observed that
the term

> P(X = xuy, ..., u,) [ [ () = P™(X = x|u;) (10.9)

U yeellj1,Uj g 15005l k#i

corresponds to the likelihood of u; with respect to X = x if all evidences from the other
parent nodes of X have been incorporated, which we denote as P™(X = x|u;). In general,
belief is propagated from a child node to its parent node using the Bayesian theorem,
resulting in the combination of the likelihood with the a priori belief, which in this case is
7ty (x), and a normalization. Viewing it from the perspective of DST and the TBM, we have
to realize the belief propagation by applying the Generalized Bayesian Theorem [132]. Here,
we can exploit the fact that it holds:

plo(x]6) = plo(B]x) YO CO,x CQ (10.10)

Applying Equation 3.15, these considerations yield the A-messages:

Pla o W) =D my (0)-pIF (wilx) = Y my (x)-plF(xlu;) Vx € 0¥,u; € QY

xCOX xCOX
(10.11)
where for the conditional plausibilities it holds:
pIE (uilx) = pLF (xlu;) = > plCelupow)] [mg, @) (10.12)

1<j<p,j#iu; <’ k#i

Now we have mappings for all the core equations of Pearl’s belief propagation algorithm.
The general message passing protocol remains the same, but still the initialization step
remains to be revisited. Observations are considered by providing a corresponding belief
function m,, for the observed node.

* observed nodes without parents: m,, is initialized with m,_.
* observed nodes without child nodes: m;_ is initialized with m,, .

* not observed nodes without parents: m,_ is initialized with the a priori belief of X,
my,, if available or the vacuous belief function otherwise, i.e. m, @ =1.
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* not observed nodes without child nodes: m,_ is initialized with the vacuous belief
function, i.e. m, (Q*)=1.

Special care has to be taken, if direct evidence can also be gathered from observations for
nodes which are not root nodes and also not leaf nodes of the polytree. Here, the evidence
has to be propagated in the w-messages and the A-messages, as well. However, initializing
m, and m,_ with the belief function reflecting the observation would yield to wrong results
as the conjunctive combination of belief functions is not idempotent. Thus, in this case we
have to slightly adjust Equation 10.2 and Equation 10.7 for these nodes in order to also
consider the evidence m,, resulting from the direct observation:

C
My, =M, @ @mayjﬁx (10.13)
j=1
me  =m,@m. @ | Pmy, (10.14)
K#j

It is also noteworthy that Bayesian networks learned using pure probability theory can be
extended for the integration of DST-based observations represented as belief functions. For
this purpose, only the a priori probability functions or vectors for the root nodes and the
conditional probability tables have to be enhanced. The enhancement of the probability
vector to a Dempster-Shafer belief function is trivial: just set the probabilities as masses for
the singleton elements and set all other masses to zero. In the same way, the conditional
belief function m(x|u) with x € QX can be derived for all singletons u, i.e. u € QY, from the
conditional probability function/vector P(x|u). Then all other conditional belief functions
m(x|U) with x € X, U € QY and |U| > 1 can be constructed using the Disjunctive Rule of
Combination.

In the previous paragraphs, we have shown how Pearl’s belief propagation algorithm for Poly-
tree Bayesian Networks can be mapped to its DST/TBM-based counterpart. Its application
to a DST-based version of a Naive Bayes Classifier is illustrated in Figure 10.1.

Figure 10.1: Naive Bayes Classifier from the Perspective of the DST
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First, m,_ is initialized with the a priori belief of C, i.e. m,, and the observations of the
features F; to F, are integrated through the initialization of m,  with m,_. Then, all feature
nodes send their A-messages to C, which are combined with m _ using Dempster’s Rule of
Combination to calculate the a posteriori belief m. of node C.

As already mentioned in Section 4.1.3, classification of observation sequences with Hidden
Markov Models can be realized by calculating the probability for each of the HMMs un-
der consideration to generate the observation sequence and choosing the HMM with the
maximum probability. For this purpose, the a variables, i.e. the a,, are calculated for each
time step and the normalization factors ¢ of the a-variables reflect how well the a priori
estimate of the state probability function at a particular time step fit with the corresponding
observation at this time step. In HMM theory [113], the a-variables are also called forward
variables and actually correspond to the -messages sent from a node to its successor node.
Figure 10.2 illustrates, how these m-messages can be calculated applying the mapping of
Pearl’s belief propagation algorithm to a DST/TMB-based version of a HMM.

t=1 t=k

o 8- --0

©¢ o o

Figure 10.2: Hidden Markov Model from the Perspective of the DST

At time step X, My, is initialized with the a priori belief for the states of the HMM, i.e.
my,,- Updating m, with the A-message Moy that reflects the induced belief from
the observation using Dempster’s Rule of Combination yields the m-message (or forward
Ty, = mf{l sent from node X; to node X,. In the same way, the 7-messages
for all other time steps are calculated by updating My with the A-message Mg " At time
step n, the forward message corresponds to the a posteriori belief my of X,. For calculating
the counterparts for the c-factors in the DST/TMB-based version of the HMM, we have to
utilize the Conjunctive Rule of Combination instead of Dempster’s Rule of Combination, in
order to prevent an implicit normalization by applying the combination rule. The c-factor

for a particular time step can then be calculated as:

message) m

= Y. my(x) (10.15)

xCOX x#0

Just as in the probability-based version of the HMM, the factor c, is used to normalize m)f(

and reflects how well the evidence induced by the observation fits the a priori belief of the
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10.2

states of the HMM. It is also noteworthy that if the belief functions for the a priori beliefs
and for the observations happen to be probability functions, all DST/TBM-based models
reduce to its probability-based counterpart.

Logic-Based Reasoning with Uncertain Information

Apart from probabilistic reasoning schemes such as Naive Bayes Classifiers, Hidden Markov
Models or Bayesian Networks, reasoning based on formal logics is often applied to infer
new high-level information from low-level sensor data. However, such approaches typically
rely on precise and complete input data and cannot handle uncertainty and partial or total
ignorance of their inputs. Thus, in this section we will briefly present how Dempster-Shafer
belief functions can be incorporated in an evaluator for first-order logic formulas. As logic-
based reasoning with Dempster-Shafer belief function is not in the focus of this dissertation,
only an informal overview of the basic ideas for the evaluator is given here. A more formal
description can be found in the Master’s thesis of Triller [139] that has been co-supervised
as part of the work for this dissertation.

In [139], the evaluator is implemented in Prolog [13] and is able to evaluate first-order
logic formulas in clause form. The basic idea is to evaluate predicates not only to either
true or false but also to unknown = {true,false} and to provide mass assignments that
reflect our belief in the truth value of the predicates. Prolog relies on resolution techniques
[120] to evaluate clauses. Just as in standard resolution, variables may be bound during

predicate evaluation. Given a predicate P(X+,...X,,,Y;,...Y,) with free variables X, ..., X,
and bound variables Y7, ..., Y,, the evaluation of the predicate yields the conditional mass
assignment
true
mp false X s X Yi,-00, Y,
unknown

that reflects the belief in the truth value of the predicate in the context of the assignments
for the free and also the bound variables. In addition, the binding of the free variables in the
evaluation process may result in a conditional mass assignment

mp (X1, s Xl Y150, Yy)

that denotes the belief for the assignment of the variables X1, ..., X,, during the evaluation
of predicate P in the context of the already bound variables Y7, ...,Y,. Assume, for example,
a predicate UserLoc(P,X) that binds the free variable P with the different hypotheses for the
location of the user X (already bound variable). The predicate is then evaluated to true for all
valid hypotheses for P with mass 1 and the mass assignment mge;10.(P = p|X = x) denotes
the belief mass that the location of user x is p, where p C Q. Here, myserroc(P = QP |X = x)
is the belief mass for the unknown location of user X, which allows to handle total ignorance
about the user’s location. However, it is important to note here, that not all predicates may
return such masses for the assignment of free variables in the context of bound variables.
Exceptions are predicates that bind free variables not with different hypotheses for the

120 Reasoning with Uncertain and Imprecise Information



assignment but instead with different available alternatives for which no mass assignment
can be provided. An example for such a predicate is User(X)! that binds the variable X
with the different available users in a ubiquitous computing scenario. A mass assignment
myser(X = x) would express the belief that we assume x with mp,.(X = x) to be the
user X, which is not appropriate if we would like to evaluate the predicate for all users
independently.

If a conditional mass assignment for the binding of free variables in the context of the
already bound variables is available, it can be used for de-conditioning the conditional mass
assignment for the truth value of the predicate:

true
mp false Y,....Y, | = (10.16)
unknown
true
Z mp false Xipewos Xy Y15eees Yy | -m(xq,. .., x0|Y7,...,Yy)
X, SOX1,..x, COXm unknown
If appropriate mass assignments are available for the bound variables Y7, ..., Y, from previous

predicate evaluations, these can be used to perform the de-conditioning of the conditional
mass assignment for the truth value of the predicate with regard to the bound values just in
the same way.

In order to allow evaluation of first-order logic formulas involving a number of predicates,
we also have to clarify how the belief masses for the truth values of conjunctions, disjunctions
and negations of predicates can be calculated. For this purpose, we define the A-operator for
a conjunction of two predicates through the following matrices:

MCtrye =

MCfalse = MCynknown =

S O =
o O O
S O O
O = O
[
oS = O
= O O
S O O
[ S

The mass assignment for a conjunction of two predicates P; and P, in the context of the
variables X; ,,Y; , can then be calculated as

T
mp ap,(truelXy pm, Y1.0) = mp (X1 Y1) *mcpye * mp, (X1 s Y1.0)
T
mp pp,(falselX1 m, Y1.0) = mp (X1 s Y1.0)" * Mcpgse * mp, (X1 > Y1.0)
T
Mp, AP, (unknown|Xq p, Y1 ,) = mpl(-|X1..m’ Y1.n)" * MCynknown * sz('|X1..m: Y1)

where mp (.[X;_, Y1 ) and mp, (.[Xq_p, Y1 ,) are considered as vectors of the masses for P,
and P, to be true, false and unknown and * denotes the standard vector/matrix multiplica-
tion.

1 This predicate has no bound variable as input.
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The V-operator for a disjunction of two predicates is defined through the matrices:

Mdrye =

mdfalse = Mmdynknown =

—_ =
S O =
O O =
o O O
o~ O
o O O
o O O
—= O O
—_ = O

which are applied to the mass vectors of two predicates in the same way as shown above for
the conjunction. The mass assignment for a negation of a predicate P is defined as:

mﬁP(truelxl..m: Yl..n) = mP(falselxl..m’ Yl..n)
mﬂP(falselxl..m, Yl..n) = mP(true|X1..m: Yl..n)
m_p(unknown|Xy n, Y1 ,) = mp(unknown|Xy n, Y1 ,)

If a free variable can only be assigned with a finite number of alternatives, the existential
quantor (3) can be expressed as a disjunction over all alternatives for the corresponding
variable and the matrices mdy e, mdggse and mdypgnown can be used to derive the mass
assignment for the truth-values of the formula. In the same way, the universal quantor (V)
can be replaced by a conjunction over all alternatives for a variable that has only a finite
number of possible assignments. The matrices mcgye, Mcfgise and Mcypknown can be applied
to derive the mass assignment for the truth-value of the formula.

“
X
\ /
@

Figure 10.3: Conditional Variable Dependencies Represented as Directed Acyclic Graph

In Prolog, predicates are defined via clauses, i.e. disjunctions of literals typically written as
Head < Body

where Head is the predicate and Body is a conjunction of literals. This means that the
evaluation of a predicate involves the evaluation of all the predicates contained in the Body
of the clause. Special care has to be taken if variables appear in the Body of a clause but not
in its Head. Assume, for example, the clause

Pred(Y) «— P,(X) APy(X,Y) APy (A) A P4(A,Y, Z)
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As result of the evaluation we expect mpy.4(.|Y) and mp,,4(Y), but the Body of the clause is
evaluated in the context of all variables appearing in it, i.e. X, Y, A and Z, which results in
mpreq(.|X,Y,Z,A). Besides, the variable Y is bound during the evaluation of P, depending
on the variable X, which has already been bound during the evaluation of P;. Thus, we
get a conditional mass assignment mp, (Y|X) as result of the evaluation of P,. In order
to retrieve the expected mass assignments mp,4(.|Y) and mp.4(Y) we have to perform
an appropriate de-conditioning of mp.4(.|X,Y,Z,A) and mp, (Y|X). For this purpose, we
represent the conditional dependencies of the variable bindings as a directed acyclic graph
similar to a Bayesian network, which is shown in Figure 10.3 for our example predicate.

Exploiting the conditional independence of variables represented in this directed acyclic
graph, we can now process the graph from bottom up until a variable is reached, which
should be kept, i.e. in our case variable Y. First, we utilize mp, (Z|Y,A) in the same way as
done in Equation 10.16 in order to derive mp,,q(.|1X, Y,A) from mp,.q4(.|1X,Y, Z,A). Next, we
use mp, (A) to get Mppeq(.|X,Y) from mpp4(.|X,Y,A). Now, just de-conditioning with regard
to the variable X has to be performed in order to get the desired result. For this purpose, the
graph is further processed bottom up but variable Y is left out. This means that we derive
Mpred(.[Y) from mp.q(.|X, Y) by utilizing mp (X). In the same way, mp (X) can be exploited
to get mpyeq(Y) from mp (Y'[X).

Discussion

As demonstrated with our case study on user activity recognition using Hidden Markov
Models (see Chapter 13) and by the Master’s thesis of Triller [139], the reasoning approaches
presented in the previous section show promising results if the involved (random) variables
have a quite small number of possible assignments, or more precisely, if the corresponding
frames of discernment for the Dempster-Shafer belief mass assignments are small. In
general, the Dempster-Shafer Theory of Evidence works on the power sets of the frame of
discernments, the size of which is exponential with the number of elements in the frame of
discernments. Thus, problems already arise, for example, if a complete conditional mass
assignment of a variable X is needed, under the condition that evidence for a variable Y has
been collected and the corresponding frames of discernment QX and QY have 10 elements
each. Then the complete conditional mass table has 21°- 219 ~ 10° entries.

It is quite obvious that integration of complex belief functions on continuous variables and
involving hypotheses based on the primitives mean/covariance matrix, value range and
uniform value range that may result from the methods presented in the previous chapters,
might be difficult to handle in the presented reasoning schemes. Here, approaches are
essential that reduce the complexity of the belief functions.

One possibility is to abstract hypotheses on continuous variables just by their mean, as it is
also done in the Master’s thesis of Triller [139]. This work shows that with this abstraction
feasible results can be obtained as still the uncertainty among the different hypotheses can
be considered. However, all information about the impreciseness of the involved hypotheses
is lost, which may lead to inaccurate results. A problem also arises if complex hypotheses
have to be processed that involve intersection of basic hypotheses based on the primitives
mean/covariance matrix and (uniform) value range, which cannot be combined immediately.
Here, the abstraction by the corresponding mean values cannot be expected to yield feasible
results.
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In order to avoid this situation and also to allow considering the impreciseness of hypotheses
to some extent, it is possible to approximate the hypotheses and their intersection by a
number of smaller hypotheses, which are then abstracted by their mean values again.
However, the quality of the approximation has to be traded against the number of new
hypotheses, which determines the size of the new frame of discernment.

For some reasoning tasks, approaches similar to the handling of belief functions within IROs
can be applied. Assume, for example, a predicate NearObject(O, X ) that evaluates to true if
the object O is within a certain distance, e.g. 1000mm, to the user X. In this case, a kind of
TRO’ can be used to transform the object location to a representation D = dist(X,0) — 1000.
From this representation, the belief masses my for the truth values of the NearObject(O,X)
predicate can easily be derived. myp(true) is assigned with belp(D < 0), myp(false) with
belp(D > 0) and myp(unknown) with 1 — myo(true) — myp(false). belp(D < 0) and
belp(D > 0) are easy to determine even if the primitive mean/covariance matrix is involved.
In this case, computing the beliefs can be reduced to calculating P,(D < 0) and P,(D > 0)
with Pj, being the probability density function of the one-dimensional Gaussian distribution
that represents the hypothesis.

From the discussion above, it becomes quite obvious that the selection of an appropriate
approach for reducing the complexity of the belief functions highly depends on the required
accuracy and on the applied reasoning schemes and thus on the concrete application. In
this section, we have presented a number of ideas but no general methodology to tackle
this problem. However, reduction of complexity is the predominant issue with regard to the
integration of Dempster-Shafer belief function in reasoning schemes as presented in this
chapter and has to be investigated further in future work, in order to come up with a general
method applicable to a wide range of applications.
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11.1

Architectural Implications

The combination of the theoretical concepts proposed in the previous chapters to a compre-
hensive framework for information exchange and fusion leads to a number of implications
at the architectural level. As we provide a generic method applicable to a wide range of
applications, however, we will not propose a concrete architecture which is grounded on
particular technologies, representations, and programming models, but only identify the
main architectural elements and their relationships. Here, we have been inspired by the
FIPA Abstract Architecture Specification (FIPA-AAS) [37]. In a similar way as the FIPA-AAS,
we only provide an architectural description at an abstract level, which is intended to serve
as a guideline for developers to design the architecture for a concrete framework.

Concrete realizations of the architecture may adopt the technologies, representations and
programming models that are most suitable for the respective application domain. Further-
more, they may show differences in the distribution of the functionalities over the nodes
of the computing environment and functionalities may be realized in a centralized or in a
decentralized manner. For example, autonomous mobile robots that have to cooperate in a
highly dynamic environment and need to react quickly on changes in the environment may
be equipped with their own components for most of the architectural elements in order to
avoid communication overhead. For mobile devices with very limited resources, however,
this is not feasible. Instead, functionalities have to be deployed on a single or multiple other
nodes and to be made available through the respective communication framework.

Main Architectural Elements and their Relationships

In this section, we define the abstract architecture by identifying the main architectural
elements, their functionalities and their relationships to other elements. Here, we have been
guided by the experiences from the implementation of the prototype framework that forms
the basis for our real-world case study described in Chapter 12 as well as by experiences
from our work on the MUSIC context middleware [106, 107, 116]. The latter one utilizes
the Information Model presented in Chapter 7 as underlying context modelling approach.

Figure 11.1 shows our abstract architecture with regard to the three layers of abstraction
(Conceptual Layer, Exchange Layer and Functional Layer) as introduced in Section 7.1.
The architectural elements at the Conceptual Layer are mainly concerned with managing
the knowledge captured in the ontology and making it available for the Discovery Service
and Matching Service. The Exchange Layer consists of the underlying Communication
Infrastructure and the Mediation Engine that establishes the links between Information
Providers, Consumers, and Reasoners. The Mediation Engine is also part of the Functional
Layer, as it is responsible for conversions between different representations. At the Functional
Layer, all the Information Providers, Consumers and Reasoners are located, which are
connected to the distributed environment through the Communication Infrastructure. It
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Figure 11.1: Main Elements of the Abstract Architecture

also contains the Fusion Engine and Information Repository. The Fusion Engine provides
support for competitive information fusion; the Information Repository facilitates caching of
information in order to allow processing of information with matching timestamps. In the
following list, the main architectural elements are described in more detail. It starts with the
elements at the Conceptual Layer and finishes with the elements at the Functional Layer.

* Ontology Manager: The Ontology Manager is responsible for parsing the Ontology
and storing all contained information in data structures that facilitate fast processing of
queries for the matching of information offers and requests and enable fast reasoning
about possibly required mediation tasks. In addition, it may incorporate a general
purpose Ontology Reasoner, as e.g. Pellet [128] or Fact++ [140], in order to be able
to support general inference tasks, which may not be related to discovery, matching or
mediation.

Relation to other elements:

Requires access to the Ontology

Allows the Matching Service to query for information captured in the Ontology

Establishes a connection to a general purpose Ontology Reasoner

Provides an interface accessible through the Communication Infrastructure to
accept queries for general ontology inference

* Discovery Service: The Discovery Service enables Information Providers, Information
Consumers, and Information Reasoners to register their information offers and requests
via broadcast messages or a similar mechanism. As part of the registration messages,
which are defined in a platform- and protocol-independent fashion using the Infor-
mation Offer and Request Language (IORL), the Information Providers, Consumers
and Reasoners also provide information about how they can be reached. Later on, this
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information can be exploited for establishing channels in a peer-to-peer manner. If
the registration messages are periodically sent in certain time intervals, they can also
serve as a kind of alive message facilitating the detection of disappearing services.

All reasoners in the environment immediately register their information requests after
start-up but only advertise their information offers if all their information requests
are fulfilled. For reasoning about matching offers and requests, the Discovery Service
contacts the Matching Service and grants access to all currently registered information
offers and requests. As a result, for each of the information requests that can be fulfilled
a Request Result data structure is returned by the Matching Service that contains
information about matching information offers and possibly required mediation tasks.
The Request Results are then forwarded to the Mediation Engine. If there is a change
in the advertised information offers and requests, the Discovery Service contacts the
Matching Service in order to update the corresponding Request Result data structures
and propagates the changes to the Mediation Engine.

Relation to other elements:

- Allows Information Providers, Consumers and Reasoners to register information
offers and requests via the underlying Communication Infrastructure

— Contacts the Matching Service to find matching information offers and requests
and retrieves the corresponding Request Result data structures

— Forwards the Request Result data structures to the Mediation Engine

* Matching service: The Matching Service retrieves a set of information offers and a set
of information requests from the Discovery Service and is responsible to find possible
matchings. For this purpose, it uses the information about the involved entities, scopes
and available IROs contained in the Ontology by querying the Ontology Manager.
If the constraints on entities and scopes can be fulfilled, the Matching Service also
tries to find an appropriate chain of IROs if there are mismatches in the requested
and provided representations. As part of this task, it is not only necessary to check if
appropriate IROs are defined in the ontology but also if they are available as concrete
realization, i.e. as service, library method, etc. Besides, IROs may have additional
dependencies to other information. Thus, it must be checked how information requests
resulting from these additional dependencies can be fulfilled. As result, a Request
Result data structure is returned to the Discovery Service for each of the information
requests for which matching offers can be found.

Relation to other elements:

— Retrieves the registered information offers and requests from the Discovery Service
and returns Request Result data structures for the found matches to the Discovery
Service

— Requires access to the Ontology Manager to raise queries about the entities,
scopes, representations and IROs defined in the Ontology

e Communication Infrastructure: The Communication Infrastructure provides the
basic facilities required by the involved components, modules and services to com-
municate in the distributed computing environment. It offers broadcast protocols for

11.1 Main Architectural Elements and their Relationships 127



advertising information offers and requests but also supports the establishment of
peer-to-peer communication channels.

Relation to other elements:

— Utilized by all architectural elements that have to communicate with components,
modules and services on remote nodes

* Mediation Engine: The Mediation Engine retrieves Request Result data structures
from the Discovery Service. It is responsible to perform the possibly required IROs
and to establish the links between the Information Consumers, Information Providers
and Reasoners. If no mediation steps are required and only one Information Provider
fulfills the request, the information is just forwarded to the Consumer/Reasoner. If
there is more than one provider available, the information is fused competitively with
the help of the Fusion Engine. If additional dependencies of IROs have to be resolved
in a mediation step, also the corresponding mediation steps and potential fusion steps
are performed for the additional dependencies. The Mediation Engine may utilize
an Information Repository in order to ensure a matching of timestamps of the data
needed in a mediation task.

Relation to other elements:

Retrieves the Request Result data structures from the Discovery Service

Establishes links between Information Consumers, Providers, and Reasoners utiliz-
ing the Communication Infrastructure

Utilizes the Fusion Engine to perform competitive information fusion

Accesses the Information Repository in order to ensure that information used to
resolve additional dependencies of IROs is aligned with regard to its timestamps

* Fusion Engine: The Fusion Engine is invoked by the Mediation Engine to perform
competitive information fusion and returns the result of the fusion step to the Media-
tion Engine. In order to ensure a matching of timestamps of the data to be fused, the
Information Repository is accessed and data is retrieved from its cache.

Relation to other elements:

— Is invoked by the Mediation Engine to perform the competitive information fusion
tasks and returns the fused result

— Accesses the Information Repository, in order to ensure that information to be
fused is aligned with regard to its timestamps

* Information Repository: The Information Repository supports caching of information,
in order to allow the combination and fusion of data that match with regard to their
timestamps.

Relation to other elements:

— Provides access to cached information to the Mediation Engine

— Provides access to cached information to the Fusion Engine
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* Information Provider: An Information Provider advertises its offers to the Discovery
Service via a broadcast protocol or similar mechanism utilizing the underlying Com-
munication Infrastructure. In the advertising message also more detailed information
is provided about the supported protocols, data serialization schemes and how the
provided data can be accessed. For example, a port can be provided that accepts
connections and publishes the data via these connections. Optionally, an interface
could be provided that allows to register a callback method.

Relation to other elements:

— Registers its information offers with the Discovery Service utilizing the Communi-
cation Infrastructure

— Provides information to Consumers and Reasoners through the Communication
Infrastructure and the Mediation Engine

* Information Consumer: An Information Consumer registers its information needs
with the Discovery Service. In the registration message also more detailed information
is provided about the supported protocols, data serialization schemes and how the
requested data can be retrieved. For example, a port can be provided that accepts
connections and allows pushing of the data via these connections. Optionally, an
interface could be provided that allows to register a callback method.

Relation to other elements:

— Registers its information requests with the Discovery Service utilizing the Commu-
nication Infrastructure

- Retrieves information from Providers and Reasoners through the Communication
Infrastructure and the Mediation Engine

* Information Reasoner: An Information Reasoner acts as Information Provider and
Information Consumer at the same time. It registers its information needs with the
Discovery Service and also provides information about how the requested information
can be retrieved. If all information requests can be fulfilled, it also advertises its
information offers to the Discovery Service and specifies how the provided data can be
published.

Relation to other elements:

— Registers its information offers and requests with the Discovery Service utilizing
the Communication Infrastructure

— Retrieves information from Providers and Reasoners through the Communication
Infrastructure and the Mediation Engine

— Provides information to Consumers and Reasoners through the Communication
Infrastructure and the Mediation Engine

The architectural elements described in the list above communicate via a number of data
structures that are encapsulated in messages, as e.g. Information Offers, Information
Requests, or Request Results. Information Offers and Requests are specified using the
platform- and protocol-independent IROL introduced in Section 7.3. The Request Result
data structure is also very important as it implicitly defines the links between Information
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Providers and Consumers and captures the required mediation and fusion tasks. The
following paragraph provides a detailed description of the Request Result data structure
shown in Figure 11.2.

Request Result

Mediator Chain
[ Mediator H Mediator H Mediator ]1 I":::;::g:"

~ Request Result
Fused Result
Consumer

Mediator Chain

I 4 . 4 i
M or < Mediator G I"form.at'on
Provider

Request Result

Figure 11.2: The Request Result Data Structure

Request Result: The Request Result is the central data structure that specifies a kind of
runtime model of how information requests can be fulfilled by information offers. This
possibly involves a number of mediation tasks and fusion steps. A Request Result contains a
number of Mediator Chains whose results are competitively fused and then returned to the
Information Consumer. Each Mediator Chain specifies a chain of Mediators that have to be
invoked in order to cope with mismatches in the requested and provided representations or
to extract a requested scope as part of a more comprehensive message. As a consequence,
all IROs to be performed are encapsulated in Mediators. As each IRO may have additional
dependencies to further information, a Mediator holds a Request Result data structure for
each of its additional dependencies.

Discussion

In the architecture described above, Information Providers and Reasoners are assumed to
periodically provide data to Information Consumers/Reasoners if there is a matching of the
offered and requested information. Information offers and requests are specified using the
IORL and information requests can also be interpreted as queries to a data management
system. In this respect, our abstract architecture shows a number of similarities to what is
commonly understood by Data Stream Management Systems [2].

We also assume in our approach that Information Reasoners always register their information
requests with the Discovery Service regardless if the information they provide is actually
requested by another Information Reasoner or Consumer. If all requests of an Information
Reasoner are fulfilled, it also registers its information offer with the Discovery Service.
This assumption simplifies checking whether information requests can be fulfilled, as only
information offers are registered whose dependencies are resolved. Thus, reasoning can
be performed on the set of currently registered information offers and requests without
checking the dependencies of reasoners and involving a kind of recursive search. This
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approach has been inspired by the OSGi bundle lifecycle [99], where a bundle has to be in
the state resolved, i.e. all its dependencies are fulfilled, before being started.

Furthermore, there is no mechanism envisaged in our architecture to select a subset of
information providers from the set of available providers matching a request. Instead, the
information of the whole set of providers is fused with the assumption, that the quality of
the information improves with the number of redundant information sources. However, this
may not always be true, in particular if sensors provide misleading information under certain
circumstances although their reliability is expected to be high. Here, a conflict measure in
the fusion of the different information sources could provide some hints for the selection of
an appropriate subset. Selection could also be useful if resource consumption or monetary
costs related to the use of information providers/reasoners have to be considered.
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12.1

Case Study I: Heterogeneous Team of
Autonomous Mobile Soccer Robots

Overall Description

In this chapter, we present a real-world case study centered around a dynamically composed
team of autonomous soccer robots in the RoboCup environment. RoboCup [121] is an
international joint project attempting to foster research in robotics, artificial intelligence,
and related fields. Soccer is a well-understood, highly dynamic game where a wide range
of technologies can be integrated and examined. The robots are completely autonomous,
i.e. they have all the necessary sensors and control devices on board and must navigate
autonomously without external control.

Currently, a RoboCup soccer team consists of 5 robots. For the long time goal, however,
the number of players will approach 11. It may be difficult for research groups to keep up
with the enlargement of team sizes. For newcomers it even constitutes a virtually infeasible
financial effort. This is why so-called mixed teams gain a lot of popularity. Here, two or more
research groups pool their resources together to provide a joint, more powerful team [91].
Although this means more effort and difficulties for the affected teams, it is assumed that
this situation better reflects the reality also for future large-scale search and rescue scenarios,
where it is expected that robots with different capabilities and independently developed by
different companies have to dynamically compose to and cooperate in a team.

To realize team play, robots must be able to exchange information with their teammates,
interpret the exchanged data, and fuse the information to a consistent world view. This
is the basis for coming to an agreement about the current situation and coordinating the
cooperative behavior of the team. Nowadays, almost every team in the RoboCup middle-size
league implements some kind of team play, which in most cases is tailored to the capabilities
and the needs of the underlying robotic software framework. However, the creation of mixed
teams has proved to be a difficult and time-consuming task. This is due to the lack of standard
software and the variety of involved software frameworks that are tailored to the specific
research focus of the corresponding institutes. Although development frameworks like SPICA
[6, 4, 5, 7] are able to establish a communication infrastructure incorporating a number of
different platforms with minimal effort, there is still the problem of the heterogeneity of the
data that have to be communicated, interpreted and fused. The different teams use their
own representations, coordinate systems, measuring units, etc., most suitable for their world
modelling and behavior control approach. Approaches to establish standard representations
[143] have not gained popularity and cannot be expected to be adopted in near future.

In this case study, we show how team play of autonomous soccer robots can be realized incor-
porating imprecise, uncertain and unreliable information from heterogeneous sources. Here,
we concentrate on coming to an agreement on the ball position on the field, which probably
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is the most important criterion for the organization of the team play. The communicated
estimates for the ball position and the robots’ positions are annotated with confidence values
and with covariance matrices, in order to model the imperfect nature of sensor information.
Furthermore, the robots can provide several hypotheses for the ball position.

For the case study, we utilize the robots of the Carpe Noctem RoboCup team of the University
of Kassel [18] (see Figure 12.1). The corresponding communication infrastructure for team
coordination is already based on the SPICA development framework, which is tailored
to allow communication among heterogeneous software platforms. Therefore, the usage
of effectively only one software platform does not affect the viability of our case study
with regard to heterogeneity of involved software platforms. However, with regard to the
communicated data the robots are artificially ‘heterogenized’.

Figure 12.1: Two Carpe Noctem Robots Tackling an Opponent

In RoboCup, it is a common practice of almost all teams to establish at least two different co-
ordinate systems for observed objects and estimated positions: a global coordinate system on
the field and a coordinate system relative to the robot. Whereas the global coordinate system
is used for organizing the team play, relative coordinates are a convenient representation for
the realization of low-level behaviors of a robot, as e.g. approaching the ball. Two possible
global coordinate systems, called CNAllocentric (a) and CNAllocentricArt (b), are shown in
Figure 12.2. They differ in the direction of the axes and in the units of measurement.

In the same way as for the global coordinates, there exists an infinite number of possibilities
for the relative coordinate systems. Two examples are shown in Figure 12.3. CNEgocentric
(a) is a Cartesian coordinate system with origin in the center of the robot and x-axis along
Wheel Axis 1 of the robot. CNEgocentricArt (b) is a polar coordinate system with the pole
in the center of the robot and the polar axis along Wheel Axis 1 of the robot. CNAllocentric
and CNEgocentric correspond to the actual coordinate systems used in the Carpe Noctem
RoboCup team. CNAllocentricArt and CNEgocentricArt are introduced just for the purpose of
this case study. However, the use of a polar coordinate system as CNEgocentricArt is plausible
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a) CNAllocentric b) CNAllocentricArt

Figure 12.2: Two Possible Global Coordinate Systems in RoboCup

since for an omni-directional vision system adopted by most RoboCup Middle-Size teams
polar coordinates are the most natural representation for detected objects.

a) CNEgocentric b) CNEgocentricArt

CN Robot

Figure 12.3: Two Possible Relative Coordinate Systems in RoboCup

In order to convert between relative and global coordinates, the estimated position of the
robot on the field is also required and has to be communicated to the team members. This
gives rise for another heterogeneity issue we introduce in our case study: One team may
decide to communicate ball positions and robot positions separately, whereas other teams
prefer to communicate combined messages that include both, the ball position and the
robot position. Table 12.1 presents the three types of robots with heterogeneous message
organizations and representations as used in this case study.
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| || Ball Position | Robot Position | Message Organization |

Type A CNEgocentric CNAllocentric combined
Type B || CNEgocentricArt | CNAllocentric combined
Type C || CNEgocentricArt | CNAllocentricArt separate

Table 12.1: Example of Heterogeneity Issues in Robot Communication

Although the communicated data are represented differently among the robots, only quite
homogeneous information sources have been incorporated so far. All the communicated data
originate from a vision system and a corresponding object detection and self-localization
approach. In order to further emphasize heterogeneity in our case study, we also incorporate
the Referee Box Client of the team as additional sensor for the ball position. During a RoboCup
game, the Referee Box Client is responsible for receiving referee signals from the Referee Box
and to propagate them to the connected clients of the teams. The Referee Box is a graphical
tool that allows a referee assistant to enter referee signals, like e.g. Kickoff, Throw In, Free
Kick, Corner Kick, etc. As in Kickoff, Corner Kick and Throw In situations the area for possible
ball positions is quite restricted, we use the signals not only for preparing the team for the
corresponding situation but also as additional sensor for the ball position. For this purpose,
the Referee Box Client provides information about the ball position in the representation
CNAllocentric as depicted in Figure 12.4.

Figure 12.4: Referee Box Client as Sensor for Ball Position

12.2 Purpose of the Case Study

The general purpose of this case study is to demonstrate the applicability and viability of
the proposed solution comprising the four main building blocks, Information Model, Inter-
Representation Operations, DST-based Information Fusion and Reasoning, in a real-world
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scenario. The robots involved in this case study have to dynamically discover the information
offers of other robots in the team and have to exchange and fuse heterogeneously represented
information. Thus, in this case study we make heavy use of the Information Model, of Inter-
Representation Operations and DST-based Information Fusion as illustrated in Figure 12.5.
How to further exploit the exchanged and fused information for the coordination of the
team is not in the focus of this case study and will be discussed only very briefly. A detailed
investigation of this question, however, can be found in the Master’s thesis of Triller [139],
which was co-supervised as part of this work.

Inter-
Information Representation
Model Operations Information Fusion Reasoning
e

o

Case Study |: Heterogeneous
team of autonomous

soccer robots
http://carpenoctem.das-lab.net

Figure 12.5: Purpose of Case Study I

The robots are required to make decisions and coordinate in the team within very short
time intervals. Thus, the performance of the proposed solution with regard to CPU time
required to realize the information exchange and fusion is a major issue. Here, it is also
important to analyze how the performance is affected by the number of robots participating
in the team and the number of hypotheses a robot contributes to the estimation of the ball
position, i.e. the complexity of the involved belief functions. This leads us to the question of
the scalability of the proposed methods.

In our review of related works, we have also seen that state-of-the-art approaches [125, 124]
for fusing the observations of different robots to get an estimate of the ball position on
the field are based on traditional probability theory and apply Bayesian filtering methods.
Here, the question arises how our proposed solution performs in comparison with the
state-of-the-art approaches and whether there are benefits from the application of the
Dempster-Shafer theory instead of traditional probability theory.

In summary, this case study is intended to provide answers to the following questions:

1. Can the methods for information exchange and fusion proposed in this dissertation be
successfully applied in a real-world scenario?

2. What is the performance of the proposed solution in a real-world application?

3. How do the proposed methods scale with respect to the number of participating robots
and the complexity of the belief functions?

4. How do the methods perform in comparison to state-of-the-art approaches for cooper-
ative object localization in the RoboCup community?
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5. Are there benefits from the application of the Dempster-Shafer Theory or does it just
increase complexity?

12.3 Implementation
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Figure 12.6: Architecture Realization for Autonomous Soccer Robots

For the realization of the case study, we created an instance of the abstract architecture
presented in Chapter 11 and implemented almost all of the introduced architectural elements.
There are only three minor simplifications but these should not be decisive for the overall
system behavior: 1) The different robots participating in the team communicate the estimates
of their localized position and the ball position on the filed, receive the corresponding
information from their teammates and fuse them to a consistent ball estimate of the team.
This means that we have information providers and consumers but no real information
reasoner which registers information offers and requests with the discovery service at the
same time. 2) In this scenario, there is no need for a general purpose ontology reasoner
and thus it was not considered in the implementation. 3) As the robots communicate their
estimated own position and the estimated ball position in very short time intervals of 33ms®,
we have abandoned the implementation of an information repository. Instead, the robots
always process the most recently received data but consider the corresponding timestamps
in the fusion process (see also Section 12.4).

As mentioned in Chapter 11, the abstract architecture identifies the main architectural
elements and their relationships but leaves enough room for tailoring the architecture to a

For this case study, the communication interval has been reduced from 100ms to 33ms in comparison to
the actual Carpe Noctem control software. This allows to prepare for future challenges arising from faster robots
currently developed in the RoboCup Middle Size League.
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specific application domain. We have the option to decide for a centralized or decentralized
realization of functionalities and may adjust the distribution of the functionalities over the
different nodes of the computing environment as desired. An overview of the realization of
the architecture for this case study is provided in Figure 12.6.

In general, the different nodes of the distributed computing environment, i.e. the au-
tonomous mobile robots, the Referee Box Client and an external server, communicate via
WLAN. In order to minimize communication overhead, each robot is equipped with its
own Ontology Manager, Discovery Service, Matching Service, Mediation Engine and Fusion
Engine. Interaction among them is realized through local method invocations. At runtime,
communication is only required for registration of information offers and needs with the
Discovery Services and for the actual information exchange with regard to the estimated
robot positions and ball positions. The Referee Box Client and the World Model Publishers of
the different robots act as information providers; the Shared World Model components of
the robots are information consumers. Communication among the information providers,
consumers and discovery modules is realized with the help of a SPICA generated commu-
nication infrastructure in form of SPICA Adapters and is based on IP multicast. The group
communication scheme IP multicast has been selected instead of establishing peer-to-peer
connections as information coming from the robots and the Referee Box Client has to be
communicated to all robots in the team, which is naturally supported by IP multicast. This
also means that the Mediation Engine is not responsible to establish communication channels
between information consumers and providers in this scenario. At start-up, the Ontology
Managers of the robots connect to the external server in order to fetch the Ontology using
the standard HTTP protocol on top of TCP/IP. The external server also hosts the IRO Li-
brary, which is fetched by the Matching Service when reasoning about the required IROs is
performed and their availability has to be checked.

All architectural elements were implemented using C# on top of Mono for Linux [85].
It was a kind of natural choice as most parts of the robot control software are written
in this language. However, an issue occurred with the implementation of the Ontology
Manager as there was no suitable API for OWL available for C#/Mono. Therefore, we used
the Java library OWLApi2 [100] and converted it with the help of IKVM.NET [63] into a
Mono-accessible assembly. It also turned out that the matrix operations required for the
Unscented Transformation, for determining the Mahalanobis and Bhattacharyya distances,
and for fusing two Gaussian distributions require too much CPU time if realized in C#.
Thus, we utilized the Eigen C++ template library for linear algebra [34] and implemented
appropriate wrappers to make it accessible from C# code.

Integration of the architecture into the other parts of the robot control software was straight-
forward. Instead of directly communicating its information to the other robots, the World
Model component of the robot control software forwards the localized position and the
estimates for the ball position to the World Model Publisher, which is responsible to perform
the transformations to achieve heterogeneous representations and to send the information
to the other robots. The World Model Publisher, as information provider, is also in charge of
registering the information offers with the Discovery Services available in the environment.
The Shared World Model component, which was already part of the robot control software,
was extended to register its information needs with the Discovery Services and to receive the
fused ball position from the Mediation Engine. Finally, the Referee Box Client, which is also
part of the robot software framework, was prepared to act as information provider for the
ball position and enhanced with support for registering the corresponding information offer.
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12.4

The required IROs are provided as part of a C#/Mono IRO Library made available by the ex-
ternal server. They implement a simple standard interface providing just a method transform
and are accessed by the Mediation Engine via Reflection. In order to avoid unnecessary access
of the external server, the Matching Service and the Mediation Engine first check whether
the corresponding library has already been downloaded and is available in a predefined
local directory.

Uncertainty and impreciseness of the information to be exchanged is represented using
Dempster-Shafer belief functions as described in Chapter 7, Chapter 8 and Chapter 9, which
have to be maintained across the non-linear transformations required to adjust the different
coordinate systems. Here, the belief functions for the ball and own position of the robots
utilize the primitive mean /covariance matrix for the basic hypotheses. The belief function for
the ball position from the Referee Box Client utilizes the primitive value range.

Application of the Dempster-Shafer Theory of Evidence

In our review of related work (see Chapter 6), it was described that state-of-the-art solutions
in RoboCup to estimate the ball position from observations made by different robots of the
team utilize Bayesian approaches [125, 124]. Thus, in this section we will show how our
Dempster-Shafer-based method relates to Bayesian inference and that it has advantages over
probability-based approaches in the scenario of our case study.

As already mentioned in Section 3.4, Bayesian inference updates an a priori estimate of the
ball position x on the field with the likelihood of x with respect to an observation o of a
robot:

p(x|o) = a-p(x)-plo|x) (12.1)

In fact, this is a pointwise multiplication of the prior of x with the likelihood p(o|x) and
a subsequent normalization. The likelihood p(o|x) results from the corresponding sensor
model, which in our case is the sensor model of the camera system including the applied
image processing steps used to detect the ball. Here, the sensor model often results in a
multivariate Gaussian density function with mean x and covariance matrix %, .

1 i
plolx) = e 2(0= )M (0-x) (12.2)

J @) - det(z,)

The sensor model described in Equation 12.2 is a function of o for a given x, but the required
likelihood is a function of x with respect to 0. Assuming, however, that %, is nearly constant
in a certain neighbourhood of x, the likelihood with respect to o approximately represents
a multivariate Gaussian again, with mean o and covariance matrix %,. Furthermore,
if we assume that the camera system provides a number of hypotheses o4,...,0,, with
corresponding confidences expressed as probabilities P(o;) with ) P(0;) = 1, the likelihood
of x with respect to the observation constitutes a Gaussian Mixture Model (GMM) with
weighting factors P(o0;). These considerations are completely in line with the approach of
Santos and Lima [124], where belief with regard to the ball position exchanged between
the robots is also represented as GMM.
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Updating a uniform prior of x with a GMM likelihood according to Equation 12.1 yields the
GMM again. Now we can use this posterior estimate as prior for the next update step and
combine it with the GMM received from another robot. The combination of the two GMMs
is achieved by performing what Santos and Lima refer to as Covariance Intersection extended
to GMMs [124].

In our approach, observations of different robots are fused by combining Dempster-Shafer
belief functions of the form

m(x) = Z m(x|H)-m(H) (12.3)

HeH

with Dempster’s Rule of Combination. If there are no complex hypotheses but only basic
hypotheses with the primitive mean/covariance matrix and m(QX) = 0, the mass assignment
of Equation 12.3 happens to be a probability function representing a GMM. According to our
fusion approach, combination of two GMMs has to be performed with

1

ml,z(x)=ﬁ Z Z my(Hy) - my(Hy) - (my(x; %1, Zg, ) -ma(x; X2, Zy,)) - (12.4)
H,€H{HyeH,

which actually corresponds to the Covariance Intersection extended to GMMs as described
by Santos and Lima [124]. This is because Dempster’s Rule of Combination reduces to a
pointwise multiplication if the mass assignments are probability functions. Compared to
Santos and Lima, however, we do not use an additional parameter y to adjust the determinant
of the result and apply a different method for calculating the weights of the components of
the new GMM:

my o(H;;) = a'AZi@Hj -my(H;) my(H;) (12.5)

where a is a normalization factor to ensure that the m; 5(H;;) sum up to 1. A;Ii oH,
the agreement of the hypotheses H; and H, (see also Chapter 9). Santos and Lima calculate
the new weight as %(ml(H 1) +my(H,)) (with N being the number of components of the
GMMs) [124], which has to be regarded as an ad-hoc approach and is questionable to have

a direct justification in probability theory.

denotes

In [124], the authors argue that it is very important to consider the imprecision of the
self-localization approach of the robot when an estimate of the ball position in egocentric
view has to be transformed to the world view, which is neglected in most related works. In
our approach, this is naturally supported by IROs that have a dependency to an estimate of
the robot’s localized position. Furthermore, we argue that also network latency has to be
taken into account when fusing the observations for the ball of the different robots. The ball
moves with up to 5m/s if passed or dribbled by a robot, and a network latency of 100ms can
often be observed during RoboCup tournaments. This causes an estimation error of about
50cm even if the robots make perfect observations and process images which are captured
at exactly the same time.

Actually, Santos and Lima propose a Bayesian filtering approach that applies an object motion
model to predict the probability distribution into the future and then uses this prediction as
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prior for the update with the corresponding observations of the robots. Thus, in principle
the Bayesian filtering proposed by Santos and Lima naturally supports consideration of
network latencies. However, this is not discussed at all in [124]. Our method is not tailored
to application in RoboCup but constitutes a general method for information exchange and
fusion in heterogeneous distributed environments. Consequently, we do not have a ball
motion model or, more generally speaking, no object state transition model is available. Still,
our approach is able to consider network latency as illustrated in the following paragraphs.

In Section 9.2.1 and Section 9.2.2 it is described how discounting can be used to adjust
Dempster-Shafer belief functions in order to take into account sensor reliability and the
up-to-dateness of the information to be fused. With discounting, a portion of the mass
assignments, determined by the discounting factor a, is shifted to the mass of the whole
frame of discernment. In order to take into account network latency, we discount the belief
functions with regard to its timestamps according to the following equation:

a=1— e som (tmr—to) (12.6)

where t,,. denotes the timestamp of the most recent observation and t, the timestamp of
the observation, whose belief function is adjusted by discounting. The factor ﬁ results
from the consideration that with an assumed speed for the ball and the robots of up to 5m/s
(goal kicks excluded), the ball position changes up to 25cm every 50ms, which has to be
regarded as significant change. Meaningful timestamps are an essential prerequisite of this
approach, and thus the local system time of the robots and the Referee Box Client has to be
synchronized. In our case study, this has been achieved with the help of NTP Version 4 [95].

For easier illustration of the effect of our discounting approach, we will restrict our descrip-
tion to two robots observing the ball. Thus, we assume the following situation, which is
illustrated in Figure 12.7. The first robot observes the ball at CNAllocentric coordinates
(—318.71,—76.31) with belief mass 0.89 (magenta observation). The second robot ob-
serves the ball at CNAllocentric coordinates (241.77,—79.88) with belief mass 0.91 (blue
observation). The covariance matrices are

( 4.2861-10% 3.4745-10%

3.4745-10% 8.2981-10% ) for the first robot (magenta observation) and,

( 6.9004-10* —5.1615-10*

_51615-10¢ 1.2860-10% ) for the second robot (blue observation)

and are depicted by the magenta and blue ellipses corresponding to the 2o-contours.

In Figure 12.7, the black ellipses describe the hypotheses resulting from combining the
magenta and blue observations through Covariance Intersection. The red ellipses illustrate
the hypotheses that abstract the GMMs resulting from combination of the observations from
the two robots through a single Gaussian. Each sub-figure shows the results for a different
time difference between the magenta observation (most recent) and the blue observation. It
can be observed that by our discounting approach the blue observation has less effect on
the result (red ellipse) the bigger the time difference gets between the observations. Thus,
the robots consider more recent information as more reliable. Too old information (time
difference > 100 ms) has almost no influence at all.

The approach presented above heavily relies on assigning a belief mass to the whole frame
of discernment, which expresses that the ball position is unknown to a certain degree/belief.
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Figure 12.7: Effect of Discounting with regard to the Time Difference of Observations
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Modelling such a kind of ignorance, however, is of big importance if sensor reliability and
confidences in certain observations should be considered. For example, if a robot detects
the ball at position x with confidence 0.6, we cannot assume that with confidence 0.4 the
ball is not at position x. Instead, with confidence 0.4 we have no idea of the ball position.
In a Bayesian framework, ignorance is commonly expressed by a uniform distribution,
which in many cases yields the desired result. So for example, total ignorance could be
expressed in the GMMs of Santos and Lima by introducing a Gaussian mixture component
with mean (0.0, 0.0) and a covariance matrix that has very large eigenvalues, for example
25 - (field length in mm)?. With this method, the technique of discounting could also be
applied within their approach. However, a problem arises with the IROs required to adjust
the representations (coordinate systems) in a heterogeneous mixed team as envisaged in
this case study. If modelling ignorance through the uniform distribution, pure Bayesian
probability theory does not provide means to distinguish between ignorance of the ball
position and the knowledge that the ball position is uniformly distributed across the field.
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Figure 12.8: Non-linear Transformation of a Uniform Distribution

Assume, for example, an IRO that converts from polar coordinates to Cartesian coordinates
as required in this case study. A uniform distribution in polar coordinates used to express
ignorance would not yield a uniform distribution in Cartesian coordinates as illustrated in
Figure 12.8. Thus, the application of IROs as envisaged in this thesis in a pure Bayesian
probability framework cannot guarantee to maintain the modelled ignorance. Instead, using
Dempster-Shafer belief functions, ignorance can be modelled by assigning masses to the
whole frame of discernment, which are naturally maintained by IROs. With Dempster-Shafer
Theory it is even possible to distinguish between complete and partial ignorance by utilizing
mass assignments for complex hypotheses instead of assigning a mass to the whole frame
of discernment. With the help of the example illustrated in Figure 12.9, we investigate
the effect of assigning masses to complex hypotheses instead of distributing the masses
uniformly among the involved basic hypotheses as it would be done in a Bayesian framework.
Furthermore, we show how domain knowledge can easily be incorporated in our fusion
method.
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Figure 12.9 depicts a typical situation during a RoboCup game. A Carpe Noctem robot has
succeeded to dribble the ball into the opponent half of the field and kicked it towards the
goal. However, the ball hit one of the goal posts and was moved by an opponent defender
out of the field. This is why the Carpe Noctem team gets a corner kick and the ball is
manually positioned by the referee to the corresponding corner of the field. Only three of
the four Carpe Noctem field players (CN 2, CN 3, CN 4) are correctly self-localized (depicted
by confidences greater than 0.97) and only two of them (CN 1 and CN 2) detect a ball.
Unfortunately, robot CN 1 is de-localized, detects a ball in the audience (false positive) with
a high confidence of 0.87 and maps the ball using a wrong estimate for its own position
to the field. Although CN 2 knows that his estimate of the position is not very reliable
(confidence 0.60), without incorporation of additional knowledge the robots would agree on
the wrong ball position (belief mass 0.60-0.87 = 0.522 for the wrong ball position, belief
mass 0.98-0.32 = 0.3136 for the correct ball position) and adjust the team play accordingly.

Figure 12.9: Referee Box Client used to Stabilize the Ball Position Estimation

In such a situation, the Referee Box command can be exploited as additional sensor for
the ball position. During a corner kick, as shown in the example of Figure 12.9, there
are only two possible ball positions on the field, namely the two corners of the opponent
half. However, there is no possibility to distinguish between the two corners only from the
Referee Box command. In our example, this is modelled by assigning a mass of 0.9 to a
complex hypothesis which is the union of two basic hypotheses each covering a corner with a
corresponding value range (red rectangles). In a Bayesian framework, the mass of 0.9 would
be distributed equally among the involved basic hypotheses, i.e. the two basic hypotheses
would be assigned 0.45 each.
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Table 12.2 shows the results of the fusion process. The row for m contains the result
if the mass of 0.9 is assigned to the complex hypothesis and the row for mp shows the
result for equally distributed masses. In the first case, the complex hypothesis H3 U H4
has the highest mass assignment whereas in the second case the two basic hypotheses H3
and H4 have the highest mass values. For decision making, Cobb and Shenoy [24] have
proposed the plausibility transformation introduced in Section 3.5. Basically, the plausibility
transformation calculates the plausibility for each element of the frame of discernment and
normalizes the values to sum up to 1. The elements of the frame of discernment are atomic
in the sense that no masses can be assigned to a part of the element. In our case, however,
we calculate mass assignments also for H1 NH3, H1 N H3 and H1 N H3, which are part of
H1 and H3 respectively. Thus, we have to consider H2, H4, HINH3, H1 NH3 and HINH3
as the actual elements of the frame of discernment. Applying the plausibility transformation
in this way to the mass assignments m. and my yields the rows Pl P. and Pl Pg. In both
cases, we would decide for the complex hypothesis H1 N H3, which corresponds to the
correct ball position. The resulting confidence values are 0.38 and 0.35 respectively. At the
first glance, these confidence values are surprising as there is almost no conflict between the
hypothesis H1 and H3UH4 if assigning the whole mass to H3UH4, whereas there is only an
agreement of H1 and H3 if the masses are equally distributed among the two involved basic
hypotheses, and total conflict for H1 and H4. The reason for the almost identical confidence
values can be found in the normalization factors used in Dempster’s Rule of Combination
and in the plausibility transformation. Consequently, in our example situation there is no
big improvement of expressing partial ignorance through assigning the mass to the complex
hypothesis as allowed in Dempster-Shafer theory instead of equally distributing the masses
among the involved basic hypotheses as in a Bayesian framework.

H1 | H2 | H3 | H4 |H3UH4 | HINH3 | HINH3 | HINH3 | QF
me 0.03 [ 0.07 | - - 0.58 0.26 - - 0.06
mp 0.03 | 0.08 | 0.33 | 0.33 - 0.15 - - 0.08
PlLP. || - ]o06] - [026 — 0.38 0.04 0.26 —
PlLP; | - |010| - [024 - 0.35 0.07 0.24 -
pIEN [ 0.87 | 0.07 | 0.87 | 0.58 - - - - -
PigY | 0.51|0.08]0.51 | 0.33 - - - - -

Table 12.2: Results of the Fusion for the Example Situation

Applying the plausibility transformation as described above yields low confidence values
although a hypothesis with a confidence value of 0.31 is confirmed with a hypothesis of 0.9.
It also requires the determination of the refined frame of discernment, which can be quite
complex if the number of involved hypotheses gets high. For these reasons, we use another
approach for decision making in this case study. We just calculate the plausibility of the basic
hypotheses H1, H2, H3 and H4 without considering the mass assignment of Q!, omit the
normalization and decide for the basic hypothesis with the highest plausibility value. If two
basic hypotheses have the same value, the hypothesis originating from an observation of a
robot is favored. The mass assignment to Q2 is not considered as it expresses total ignorance
and thus should not contribute to the confidence value. Furthermore, consideration of
the mass assignment to 2 would always yield a confidence value of 1.0 if only one basic
hypothesis is involved. Our new approach for decision making results in the rows PlgN
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and PlgN of Table 12.2. A high confidence value of 0.87 for H1 is obtained if assigning the
masses to the combined hypothesis and a medium confidence value of 0.51 if the masses are
equally distributed among the involved basic hypotheses. This new approach for decision
making provides reasonable results in this case study, but it still has to be investigated if this
approach can also be used and behaves properly in other application domains.

Performance and Scalability

Whereas the previous section was concerned with evaluating our approach applied to the
case study from a qualitative point of view, this section assesses the performance and
scalability of our prototype implementation described in Section 12.3. Good performance is
very important for the application in the domain of cooperative autonomous robots as they
have to make decisions and to adapt their behavior in very short time intervals.

| | CN Ontology | MUSIC Ontology |

DL Expressivity ALCROIN(D) ALCROIN(D)
classes 89 228
object properties 46 102
data properties 12 13
sub-class axioms 123 337
sub-properties 22 65
individuals 112 110
class assertion axioms 124 110
object property assertion axioms 150 151
data property assertion axioms 86 75

Table 12.3: Metrics of the Used Ontologies

Generally speaking, parsing ontologies and reasoning with the represented knowledge
is quite resource consuming. Thus, in our prototype implementation we preprocess the
concepts defined in the ontology once at start-up. The contained information is stored
in data structures, which are tailored to facilitate fast matching of information offers and
requests and reasoning about the required mediation tasks with minimal overhead. We
measured the time required for ontology loading (fetching and parsing with OWLApi2 [100])
and ontology preprocessing on three different computer systems. We used two different
ontologies, whose metrics are presented in Table 12.3. The Carpe Noctem Ontology (CN
Ontology) is the ontology actually used in this case study and the MUSIC Ontology forms
the baseline for the MUSIC Context Model. Both ontologies are defined according to the
Information Model presented in Chapter 7, but differ in the number of the contained concepts
and their relationships. For example, the MUSIC Ontology defines 228 classes and 102 object
properties, whereas the CN Ontology only defines 89 classes and 46 object properties. The
results of our measurements on a Core 2 Duo 2.53GHz with 4GB RAM, a Pentium IV 3.0 GHz
with 512MB RAM and a Core Duo 1.66GHz with 2GB RAM are presented in Figure 12.10,
which depicts the mean values of 20 trials.

It can be observed that ontology loading requires up to a couple of seconds, whereas
ontology preprocessing only requires from 29ms (CNOntology on the Core 2 Duo) up
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Figure 12.10: Processing Time of the Ontology Manager for Remote Ontologies

to 281ms (MUSICOntology on the Core Duo). However, the ontologies as well as their
imported ontologies were fetched from the Web, and thus network latency and delays caused
by the involved servers influenced the measurements. Therefore, we repeated the test
with ontologies already available on the local file system. The corresponding results of the
measurement are illustrated in Figure 12.11.
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Figure 12.11: Processing Time of the Ontology Manager for Local Ontologies

With locally available ontologies the time for ontology loading decreased by about 1s,
whereas the time required for ontology preprocessing, just as expected, remains the same.
With the help of the data structures resulting from the preprocessing step, registration of
information requests with the discovery service, their matching against information offers
and reasoning about the required mediation tasks can be achieved in about 95us on the
Core Duo for this case study, where only a limited number of 8 IROs is available. An
investigation how this time increases with the number of involved representations, IROs and
their dependencies remains for future work.

More important for the performance of our prototype implementation than ontology loading
and processing, which are only required once during start-up, are the tasks that have to
be performed in each iteration of the robot control cycle, i.e. at a frequency of 30Hz:
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serialization and deserialization of the messages, performing the IROs and fusing the
estimates. We measured the time required for the different tasks using the following
test setup: Five robots play soccer with the Carpe Noctem team strategy used during the
RoboCup world championships 2009. They communicate the estimated ball position and
their own position. The exchanged messages are organized and utilize the representations
according to the three types of robots defined in Table 12.1. One robot is of Type A, two
robots of Type B, and also two robots are of Type C. In addition, the Referee Box Client
provides information about the ball position during a standard situation using a symbolic
representation. Information with regard to the ball position is requested on all robots in
the representation CNAllocentric. Thus, in one control cycle, our prototype implementation
has to serialize one or two messages, to deserialize up to 9 messages, to perform up to 12
IROs and to fuse 6 estimates for the ball position. Figure 12.12 presents the results of our
measurements (mean values for 200 control cycles) on three different computer systems.
As the actual Carpe Noctem robots used in this scenario are equipped with a Core Duo
1.66GHz, we could measure the time under real conditions only on this system. For the other
configurations we had to perform the measurements with the help of the Carpe Noctem
robot simulator.
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Figure 12.12: Performance of the Prototype Implementation

Figure 12.12 shows that under real game conditions our prototype implementation requires
in total about 2ms in one control cycle. The average time for deserialization is 0.45ms,
the average time for the mediation tasks 0.41ms and the average time for fusing the ball
estimates 0.36ms. Under real game conditions about 80% of one core of the CPU is occupied
by the image processing module, which is not running in our simulation environment as all
information on the world model objects are provided by the simulator. It can be observed
that the time for fusion, mediation and deserialization is almost constant, whereas the
average total time decreases from 1.99ms to 1.73ms. This decrease is explained by the
less frequent interruption of our routine by the scheduler, when the background workload
is small. The measurements on the other computer systems reveal no surprising results
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and just reflect the better performance of the CPUs. So, for example, on a system with an
up-to-date 2.53GHz Core 2 Duo 2.53GHz, the average total time required by our prototype
implementation in one control cycle decreases to 0.97ms.

In the previous paragraphs, we have assessed the performance of our prototype implementa-
tion for a current RoboCup game situation with five robots and the Referee Box Client. The
following paragraphs will use our prototype implementation to investigate the scalability
of the concepts proposed in this dissertation. All measurements were performed on the
1.66GHz Core Duo with 2GB RAM in a simulated environment that allows us to tune the
different parameters which are of interest for the scalability tests.

The time required for deserialization of messages is mainly determined by the complexity
of the belief function to be represented, i.e. by the number of defined basic and complex
hypotheses and the number of dimensions (number of contained scopes) in a basic hypothesis.
Figure 12.13 presents the results of the corresponding scalability test. All values depict the
average time for 20 trials.
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Figure 12.13: Results of the Scalability Test for the Deserialization Method

The left part of Figure 12.13 shows that the average time for serialization/deserialization is
more or less proportional to the number of basic hypotheses (number of complex hypotheses
was set to zero in this test) and grows quadratically with the number of dimensions. This is
completely in line with the fact that also the message size is proportional to the number of
basic hypotheses in this case, and quadratic to the number of dimensions. This is because the
size of the covariance matrices used to express uncertainty also grows quadratically with the
number of dimensions. The right part of Figure 12.13 illustrates the results of the scalability
test with regard to the number of complex hypotheses. The number of dimensions is set
to 5 and the number of basic hypotheses was fixed to 7. Obviously, the required time for
deserialization grows linearly to the number of complex hypotheses if the representation of
the complex hypotheses contributes most to the message size.
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The time required to perform an IRO is mainly determined by the following four factors:
1) time for a single point-to-point conversion, 2) number of additional dependencies of the
IRO, 3) number of dimensions of the involved basic hypotheses and 4) number of basic
hypotheses. The results of the corresponding scalability test are presented in Figure 12.14.
Here too, all values depict the average time for 20 trials. It is also noteworthy that the
method which realizes the point-to-point conversion is fixed for all tests, and thus the
required time for the method was nearly constant.
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Figure 12.14: Results of the Scalability Test for the IROs

From the left part of Figure 12.14 we observe that the required time grows nearly proportion-
ally in the range of 3 to 40 dimensions if the IRO has no additional dependencies and only
one basic hypothesis has to be transformed. This is in line with the consideration that the
Unscented Transformation used to propagate covariance matrices across non-linear functions
requires the transformation of 2n + 1 sample points, where n is the number of dimensions.
For more than 40 dimensions, however, the effort for the Cholesky Decomposition, which
has to be performed in order to determine the sample points, has more and more impact.
It requires about én3 multiplications for a covariance matrix of size n X n, which causes
the time to grow cubically with the number of dimensions. If also additional dependencies
are involved, the number of ‘effective’ dimensions is increased by the sum of the number of
dimensions of the additional dependencies. In our test setup, we used the same number of
dimensions for the additional dependencies as for the real basic hypothesis. Thus, the time
required for 30 dimensions and no additional dependency corresponds to the time for 10
dimensions with 2 additional dependencies. The time for 40 dimensions and no additional
dependency is nearly the same as for 20 dimensions and one additional dependency.

The right part of Figure 12.14 shows the influence of the number of basic hypotheses on the
time required for performing the IRO (average of 20 trials). In our experiment, the number
of dimensions was fixed to 5 and the number of basic hypotheses was constant for the actual
information element to be transformed and for the additional dependencies. From the plots
we observe that the required time grows linearly with the number of hypotheses if there is
no additional dependency, quadratically for one additional dependency and cubically for
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two additional dependencies. This is due to the fact that each combination of the hypotheses
has to be transformed. For 5 hypotheses this means 5 transformations if there are no
dependencies, 55 = 25 transformations with one additional dependency, and 5-5-5 = 125
transformations with two additional dependencies.
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Figure 12.15: Results of the Scalability Test for the Fusion Approach

The time required for our Dempster-Shafer-based information fusion method is mainly
determined by the number of participating robots, i.e. the number of information providers,
and the number of basic hypotheses used to define the corresponding belief functions.
In order to evaluate the scalability of the fusion approach, we generated belief functions
with basic hypotheses based on the primitive mean/covariance matrix. The mean values
are uniformly distributed in a rectangular area of 5000mm x 5000mm on the field. The
covariance matrix was fixed and has only elements unequal to O on its diagonal. All the
variances are set to 300mm x 300mm. This guarantees a high number of intersections of
the basic hypotheses, which results in new basic hypotheses for the next fusion step.

For random generation of unions of basic hypotheses, i.e. complex hypotheses, we applied
the following approach: If a belief function with n hypotheses (basic or complex) is desired,
we first generate n basic hypotheses as described above. Afterwards, we generate a vector
of n random numbers (xi,...,X,) in the interval of [0, 1]. If x; is greater than a certain
threshold, the basic hypothesis i is part of the union. A union with only one basic hypothesis
results in a belief assignment to the basic hypothesis itself. If a union of hypotheses is
the same as a previously generated union, a new vector of random numbers is used. This
way, we can adjust the number of belief assignments to basic and complex hypotheses by
tuning the threshold. These steps are repeated until n belief assignments to basic or complex
hypotheses have been realized.

The results of our scalability test are presented in Figure 12.15. The left part of the figure
shows the time required for information fusion in our prototype implementation depending
on the number of participating robots for one and two basic hypotheses (no complex
hypothesis). It is obvious that the time grows exponentially with the number of robots, i.e.
information providers. This is due to the fact that combining two belief functions with n basic
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12.6

hypotheses each, results in a belief function with at most (n+1)? — 1 basic hypotheses (each
basic hypothesis of the first belief function has intersections with all basic hypotheses of the
second belief function). If this belief function is combined with a further belief function with
n basic hypotheses, we get a maximum number of (n + 1)® — 1 basic hypotheses. Generally
speaking, the combination approach results in a maximum number of (n + 1)™ — 1 basic
hypotheses for m robots.

The right part of Figure 12.15 illustrates the influence of the number of hypotheses (basic
and complex) on the time required for the fusion. In this experiment, we fixed the number
of information providers (robots) to three. It can be observed that the time grows roughly
like n®, which is in line with the considerations of the previous paragraph, and also that by
trend less time is required the more complex hypotheses (unions of basic hypotheses) are
used in the belief function. At first, this might be surprising as the belief functions define the
same number of basic hypotheses that have to be checked for intersection. However, due to
the fact that the distributive law does not hold for the general combination of two unions of
basic hypotheses, we have complex hypotheses that cannot be simplified and thus do not
result in new basic hypotheses by Covariance Intersection.

In summary, the number of participating robots and the number of basic hypotheses used
in the belief functions are the most limiting factors of our solution approach consisting
of serialization/deserialization of messages, performing the IROs and fusing the different
belief functions. In particular, the scalability of our fusion approach with regard to the
number of information providers has to be considered as problematic. We have to expect an
exponential growth in the number of involved basic hypotheses. With regard to this case
study, our analyses revealed that the approach is feasible for about 12 robots if only one
basic hypothesis is used for the ball position and for about 6 robots if a belief function for a
ball estimate defines two basic hypotheses.

Summary and Discussion

As part of this case study, we have shown how our Dempster-Shafer-based information
fusion method relates to a current state-of-the-art approach in RoboCup [121] which apply
Bayesian methods to fuse estimates of the ball position from different robots. Very similar to
what was proposed by Santos and Lima, our approach results in a combination of Gaussian
Mixture Models if the belief functions are specified with basic hypotheses based on the
primitive mean/covariance matrix. Our concept of IROs naturally supports consideration
of the precision of the self-localization of the robot when converting between coordinates
relative to the robot and absolute world coordinates. This was claimed by Santos and Lima
as one of the highlights of their work and they argue that this important issue has been
neglected by most other approaches so far. Besides, we have shown how network latencies
can be considered very easily in our information fusion method. This is not discussed
in [124] at all even though their framework would allow for it. Here, the approach of
Santos and Lima can be expected to achieve even more precise results than our method
as they have available an object motion model. However, we have to keep in mind that
the framework of Santos and Lima has been designed specifically for the RoboCup domain
and the requirements of fusing ball position estimates. In contrast, our generic framework
for information exchange and fusion is not tailored to a particular application domain.
Nevertheless, it can compete with the state-of-the-art approaches in the domain of RoboCup.
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The Dempster-Shafer Theory of Evidence is more expressive than pure Bayesian probability
theory. It allows to explicitly model partial or complete ignorance. In probability theory, this
can only implicitly be expressed by special distributions such as the uniform distribution.
Thus, in principle our approach is also more expressive than the one proposed by Santos
and Lima. Here, our analyses revealed that due to the normalization factors in Dempster’s
Rule of Combination and in the plausibility transformation used for decision making, the
increased expressiveness only yields slightly better results, which would not justify the
increased complexity. However, if non-linear IROs have to be performed to overcome
mismatches in the requested and provided representations as envisaged in this scenario,
implicit modelling of ignorance as done in probability theory is not appropriate anymore.
This is because the modelled ignorance is not properly maintained across the IRO. Using our
Dempster-Shafer-based method instead, this is naturally supported.

The performance evaluation of our prototype implementation has shown that the solution
proposed in this dissertation is applicable for the RoboCup domain where decisions have to
be made in very short time intervals of some milliseconds. However, our solution does not
scale with the number of information providers: The time required for the fusion step grows
exponentially with the number of information providers in the worst case. It is noteworthy
here that the same phenomenon is observed in the combination of GMMs if all components
of the fused GMM are maintained. With GMMs and probability theory a common approach is
to reduce the number of components through approximation of the distribution by a smaller
number of components. However, this may cause the result of the fusion to be dependent
on the order of the fusion steps. For our Dempster-Shafer-based approach, approximation
is even more difficult as we also allow specification of complex hypotheses that have to
be maintained in the approximation. The search for appropriate methods that reduce the
number of involved basic hypotheses remains open for future work.

It has also to be noted here that the Dempster-Shafer Theory of Evidence in general is
characterized by scalability issues as it operates on the power set of a frame of discernment.
In this case study, the frame of discernment for the ball position is actually continuous
and contains all points in and around the area of the football field. By defining the belief
functions on some predefined primitives as proposed in this dissertation, however, the
expressiveness is limited in favor of a small set of high-level focal elements which is formed
by the hypotheses defined in the involved belief functions. Consequently, adding a new basic
hypothesis that results from the combination of two basic hypotheses in fact increases the
number of high-level focal elements. Here too, it is vitally important for the applicability of
the approach to find methods that reduce the number of basic hypotheses and in this way
keep the number of high-level focal elements as small as possible.
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13

13.1

Case Study Il: Activity Recognition for
Context-aware Systems

Overall Description

In many ubiquitous computing scenarios, the user is assumed to always carry a mobile
device supporting her in performing the activities of daily living. For this purpose, the mobile
device interacts with a number of diverse computing devices ranging from large computers
to small, invisible processing units contained in objects of our daily life. Communication
and data exchange between the involved devices is realized through wireless networking.
A key characteristic of such a scenario is the mobility of the user. It implies confrontation
with different context situations the devices and applications have to care for by dynamic
reconfiguration in order to always provide an appropriate quality of service. For example,
the applications and devices have to adapt to changing networking facilities in different
environments, have to consider scarce device resources like battery power and have to react
to changes in the user situation. So it may be required that the application switches to
hands-free mode while the user is driving or that different privacy policies are activated
depending on whether the user is in a meeting, at work or having dinner. All the context
changes, either with regard to the user or with regard to the computing environment, have
to be detected by appropriate sensors or derived by reasoning approaches.

In particular, adaptation to different high-level user situations is a challenging task as no
sensors exist which are able to sense the user situation directly. For example, there exists
no sensor that can directly tell whether the user is having dinner or sleeping. Instead, the
corresponding information has to be derived by appropriate reasoning approaches from
lower-level sensor information.

This simulated case study illustrates the application of Dempster-Shafer-based reasoning
with HMMs as proposed in Chapter 10 for user activity recognition. It is assumed that a user
moves around the city and the applications running on her mobile device have to adapt to
the current activity as already mentioned above (see Figure 13.1).!

We consider the following five activities to be recognized: ‘Going to Cinema’, ‘Having Dinner’,
‘Doing a Presentation’, ‘Going Shopping Alone’ and ‘Going Shopping with Friends’. Of course,
the location of the user is a strong indication for the corresponding activity. However, the
sensors have to be expected to be unreliable to a certain extent and may also provide wrong
observations. Furthermore, the location of the user may not be known precisely. For example,
it might only be known that the user is currently in a big shopping center with a lot of
shops but also with a number of restaurants and a cinema. In this case, further sensors are
employed in order to resolve ambiguities and to stabilize the recognition.

!Concepts for the realization of the adaptive behaviour of the application are not discussed here and are out
of the scope of this thesis.
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In order to be able to perform the necessary reasoning, the user is assumed to wear a small
microphone clipped on the jacket and two accelerometers hidden in the belt and in the
watch. The microphone is used to provide information about persons currently speaking
and the surrounding sound. A classification approach is applied to derive, for example,
whether only the user speaks, only other persons speak, the user talks to other persons, etc.
The measurements of the two accelerometers are used as input for a posture recognition
approach. This means, information is derived from the accelerometers whether the user
is currently sitting, standing, walking, etc. In addition, the mobile device can utilize a
GPS sensor and/or WiFi connectivity and/or discoverable sensors in the environment to
collect location information. This setting more or less corresponds to the one which was
realized in the Master’s thesis of Mark Blum on ‘Real-time Context Recognition’ at ETH Ziirich
[11]. The only difference is that location information was derived using audio information,
intentionally abandoning information from location sensors as we do assume.

Environment Sensors

User

[ ..
oa‘(‘\es\\Ne @@‘N

B @) e

Figure 13.1: Activity Recognition for Context-aware Systems

In comparison to Blum, we adjusted the alphabets for the observations of the three sensors
to better match the different activities to be recognized. The observation alphabets we used
are shown in Table 13.1. Of course, these outputs are not directly provided by the sensors,
but they have to be derived from the raw sensor data by possibly applying a number of
preprocessing and classification steps.

As HMMs have been successfully applied for user activity recognition in many related
works [123, 168, 98, 114], we decided to use them as underlying reasoning approach
for this case study as well. We not only show how these models can be used to classify
observation sequences as activities based on the traditional Bayesian probability theory but
also how HMMs can deal with uncertain, imprecise and unreliable information represented
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13.2

| Location | Audio | Posture |

AtHome NoSpeech Lying
AtOffice MeSpeaking Sitting
Street MeTalkingToOthers | Standing
Shop OthersSpeaking Walking
Restaurant LoudCrowd Running
Cinema DistantVoices Driving
Car unspecific unspecific
Subway
unspecific

Table 13.1: Observation Alphabets for the three Employed Sensors

as Dempster-Shafer belief functions. In our case study, heterogeneity and different quality
levels of sensor information are considered with regard to location information. Location
information is mainly provided by the GPS sensor of the mobile device. However, inside
a building, e.g. in a shopping center with several floors, GPS is unlikely to work. Here,
location information is gathered by exploiting the WiFi connectivity and knowledge about
the location of the corresponding access points, or by utilizing an appropriate person tracking
service provided by the computing infrastructure of the building. It is obvious that these
three different approaches provide information of different granularity, different precision
and reliability. Also the precision and reliability of the speech sensor is heavily affected by
the current environment. For example, it is difficult to decide if a user speaks alone or talks
to other persons if there is much surrounding noise. All these aspects highlight the need
for reasoning approaches that are able to deal with all the characteristics of heterogeneous
sensor information.

Purpose of the Case Study

Whereas the first case study has demonstrated the applicability of the Information Model,
the Inter-Representation Operations and the DST-based Information Fusion to the domain
of RoboCup, this case study focuses on the DST-based Reasoning with heterogeneous and
imperfect sensor information (see Chapter 10) and its application to the area of context-
aware adaptive applications.

As already mentioned above, we use HMMs to classify observation sequences as different
activities. In our framework, however, the observations of the sensors are represented by
means of Dempster-Shafer belief functions, and thus the HMMs have to work on belief
functions instead of probabilities. Ramasso et al. have shown in [114] how HMMs can be
extended to the Dempster-Shafer Theory of Evidence and how better classification results
can be obtained in comparison to their probability-based counterparts. However, Ramasso
et al. have exploited the approach of contextual discounting [84] for creating the extended
transition and observation matrices, which in fact corresponds to the incorporation of
additional knowledge. Furthermore, they have proposed an adjusted classification method
exploiting the additional expressivity of Dempster-Shafer Theory.
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Figure 13.2: Purpose of Case Study II

In this case study, we analyze how observations represented as Dempster-Shafer belief
functions perform in comparison to observations represented through probability vectors, if
no contextual discounting is applied and the standard classification algorithm is used.

Another important challenge in our scenarios arises from the incorporation of a priori
unknown sensors which are discovered in the ubiquitous computing environment. These
dynamically incorporated sensors are likely to show different characteristics with regard to
reliability and precision of the measurements compared to the sensors used in the training
phase of the HMM. Therefore, we also analyze the robustness of the trained HMM with
respect to changing quality of observations.

In summary, this case study is intended to provide answers to the following questions:

1. How can context-aware systems in ubiquitous computing environments profit from
the approach proposed in this thesis?

2. How do observations represented as Dempster-Shafer belief functions perform in
comparison to observations represented through probability vectors in a HMM-based
reasoning scheme?

3. How do different quality levels of the used sensor information influence the classifica-
tion results?

Implementation

Realizing a scenario as described above in real world and performing the data collection and
evaluation with real sensors and real persons would require a lot of personnel resources and
much time. Thus, we decided to develop a simulation that provides us with the data required
for the training of the Hidden Markov Models and for testing the influence of a decreased
sensor performance on the classification results. The overall approach for realizing this case
study is depicted in Figure 13.3.

The simulation environment comprises manually designed HMMs, which provide models
of the different activities and are used to create ‘ideal’ observation sequences. These ‘ideal’
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13.3.1
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Figure 13.3: Approach for Simulation and Classification of Activities

observation sequences are then disturbed by confusion matrices in order to achieve more
realistic observations. Using this kind of simulation, 100 observation sequences are generated
for each of the activities which serve as a basis for the training of HMMs that are used for
classification in the further analyses. It is important to note here that the trained HMMs
are different from the manually designed HMMs. The rationale behind this is the fact that
in a real-life scenario we would not be aware of the real model of the activities (manually
designed HMMSs) and would start to estimate models (trained HHMs) from a number
of observation sequences. The trained HMMs are then used to investigate the effect of
observations represented as Dempster-Shafer belief functions instead of probability vectors
and the robustness of the HMMs with regard to different quality levels of the involved
sensors. The following sections introduce the simulation environment and describe the
training of the HMMs.

Simulation Environment

As HMMs have shown a good performance in projects with real data [123, 168, 98, 114], it
is justified to assume that HMMs are also well suited to model real-life user activities. Hence,
we base our simulation on manually designed HMMs, i.e. for each of the different activities
to be classified a corresponding HMM is created by manually providing its parameters
(number of states, initial state distribution, transition matrix and observation matrices). The
different parameters are manually tuned so that the provided output reflects our subjective
expectations about the particular activity. It is noteworthy here that the observation matrices
are specified to simulate an ideal sensor. The resulting HMMs for the activities ‘Having
Dinner’, ‘Going to Cinema’, ‘Doing a Presentation’, ‘Going Shopping Alone’, and ‘Going
Shopping with Friends’ are presented in Appendix A.
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In order to integrate a more realistic sensor model, we incorporate confusion matrices? for the
different sensors. For speech and posture, the matrices are guided by the confusion matrices
resulting from the classification experiments on real data performed by Blum [11]. However,
it was not possible to reuse the confusion matrices of Blum directly as the sensor outputs
required for the activities mentioned above are slightly different. Thus, we manually adjusted
the confusion matrices but kept the overall performance of the sensors. The confusion matrix
for location is not based on experiments on real data. Instead, we estimated a confusion
matrix for location based on an assumed accuracy of the corresponding sensor of 10m. This
roughly corresponds to the accuracy of current GPS sensors [52]. Furthermore, we estimated
the size and arrangement of buildings. The different confusion matrices for speech, posture
and location observations are presented in Appendix A.

Having integrated the confusion matrices, the resulting HMMs can be used to simulate an
arbitrary number of observation sequences. Just as in a real-world scenario, where the
data would have been collected by real persons, the simulated data are now used to train
and evaluate the HMMs. Although the data have been created by simulation, they already
reflect some characteristics of sensor information due to the integration of the confusion
matrices. However, the influence of a decreased sensor performance on the classification
results should also be investigated in this case study. Therefore, the confusion matrix for the
location sensor is adjusted to provide more unreliable and more uncertain observations.

Whereas for the training the observations are assumed to be ‘sharp’, i.e. an observation
corresponds to a single symbol (e.g. the current location is ‘Restaurant’), the classification of
activities is performed using ‘sharp’ observations, observations represented as probability
vectors as well as observations represented by Dempster-Shafer belief functions. The first
two cases can be handled with traditional Bayesian probability theory and traditional HMMs.
The third case illustrates the usage of HMMSs which are extended so that Dempster-Shafer
belief functions can be incorporated.

For the generation of the probability vector which is intended to reflect the probabilities
resulting from a corresponding classification method, we applied the following approach:

* Generate the ideal observation from the manually designed HMM and select the
column of the confusion matrix that belongs to the ideal observation. This column
contains the relative frequencies of occurrences of the symbols to be expected.

* Repeat the following steps until all symbols have been assigned with a probability:

1. Randomly choose an element from the set S,,,, which comprises all symbols that
have not yet been assigned a probability according to the relative frequencies of
all elements of S,,,.

2. Let s be the selected symbol and f; its relative frequency. Generate n random
numbers which are distributed according to N'(1/|S,,4l, @ f;), with e.g. a = 1.
Set all random numbers > 1.0 to 1.0, all random numbers < 0.0 to 0.0, and
choose the maximum m.

3. If m < 1/S,,| go back to step 2.

2A confusion matrix describes the relative frequencies of confusing the correct symbols with other symbols.
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4. Assign symbol s with the probability p = m - r, where r = min(p,,;,, 1.0—5,) (Pmin
is the smallest probability already assigned and s, is the sum of all probabilities
assigned so far).

* Normalize the resulting probability vector to sum up to 1.

From the probability vector generated in this way, the ‘sharp’ observation can be retrieved
by simply selecting the symbol with the maximum probability. Here, steps 1 and 4 of the
probability generation approach described above ensure that the relative frequencies of
the symbols defined by the confusion matrix are retained. Step 1 selects the first symbol
according to the relative frequencies and step 4 guarantees that it is assigned with the
highest probability.

Step 2 has the effect that symbols with a high relative frequency are assigned with prob-
abilities that differ more from the uniform distribution than the probabilities assigned to
symbols with low relative frequency. This way, we model that the decision for symbols with
a high relative frequency can often be made with high confidence (big difference in the
classification probabilities), whereas the confidence in decisions for symbols with a small
relative frequency is often quite low (nearly the same probability values).

Dempster-Shafer belief functions are generated from the probability vector by applying a
simple clustering approach. All symbols with classification probabilities that differ only
to a certain extent (defined by a threshold) are included in a cluster. Then the minimal
probability of the elements multiplied with the number of elements is assigned as belief mass
to the union set of the symbols in the cluster. The differences to the minimal probability are
assigned as belief masses to the single symbols. In this way we model that we cannot really
decide for a symbol if the classification probabilities are nearly the same.

Training of the Hidden Markov Models

Training of Hidden Markov Models is performed in this case study as usual with the help of
Expectation Maximization (EM) [113]. A remaining problem, however, is the need for an
initial estimate of the parameters of the HMM (number of states, initial state distribution,
transition matrix and observation matrices) as starting point for the iterative EM approach.
It is also noteworthy here that the initial parameters can heavily influence the quality of the
training result. Of course, we could use the manually designed HMMs, but this would not
reflect the reality where the ideal model is typically unknown.

As initial parameter estimation for Hidden Markov Models is not in the focus of our work,
we applied a very simple approach based on the manual analysis of the histograms of
the observation sequences for an activity. The histograms depict the relative frequency
of observation triples, comprising the observed symbols for location, speech and posture.
Consequently, peaks in the histogram correspond to triples that can be observed with high
frequency. If we assume that a state is characterized by a frequently observable triple, the
peaks correspond to the different states of the HMM. However, for a certain state, not only
such a characteristic triple is likely to be observed but also triples which are very similar to
it, i.e. with only one different symbol. This way, we get an idea of the different states and
the frequencies of characteristic observations, and thus are able to build the observation
matrices. The remaining parameters, the initial state distribution and the state transition
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matrix are estimated by creating 5 histograms covering subsequent parts of the observed
sequences and examining the histograms for occurrences of the previously identified states.

Training of the Hidden Markov Models is performed using ‘sharp’ observations only and
based on probability theory. Consequently, we have to extend the resulting models to be
able to incorporate observations represented as Dempster-Shafer belief functions. This
can easily be achieved by extending the transition matrix and observation matrices using
the Disjunctive Rule of Combination. In this process, however, we do not use contextual
discounting as it is done in [114]. As the Dempster-Shafer Theory works on the power set
of the frame of discernment, the matrices are significantly increased in size. A conditional
probability table of size m X n results in a matrix for the conditional mass assignments
of 2™ x 2", Thus, it is vitally important to keep the number of states and the number of
observable symbols as small as possible. Seen from the other direction, our approach is only
feasible for HMMs with a small number of states and small observation symbol alphabets.

Evaluation

As basis for the evaluation we generated 100 observation sequences for each of the activities
‘Cinema’, ‘Dinner’, ‘Presentation’, ‘Shopping Alone’ and ‘Shopping with Friends’ using our
simulation environment. These observation sequences were used to perform initial parameter
estimation and training of the HMMs as described in the previous section.

Afterwards, 50 test sequences were generated for each of the different activities. In order to
investigate the robustness of the trained HMMs with regard to a decreased sensor quality, 25
out of the 50 observations were generated with an adjusted confusion matrix for the location
sensor in order to simulate a decreased sensor performance: the elements on the diagonal
of the confusion matrix (number of correctly classified observations) were multiplied with
a=2/3.

sharp prob. vector DST belief function
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Dinner 1 |124| 0 0 0 0 [24| 0 1 0 0 [24| 0 1 0
Presentation 0 0O [25] O 0 0 0 [25]| O 0 0 0 [25]| O 0
Shop. Alone 2 0 0|23 |0 0 0 0|25 0 0 0 0|25 0
Shop. Friends 1 3 0210 0 3 0 |21 |1 0 3 0|21 |1

Table 13.2: Confusion Matrix for Normal Sensor Quality
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In this case study, we investigate whether the classification results of the HMMs improve if
the sensor observations are represented as probability vectors or as Dempster-Shafer belief
functions, instead of using only ‘sharp’ observations. Consequently, the generated sequences
contain the location information represented as ‘sharp’ observations, as probability vectors
and as Dempster-Shafer belief functions. The audio and posture information, however, is
only integrated in terms of ‘sharp’ observations in all tests to keep the experiments traceable.

Table 13.2 and Table 13.3 illustrate the classification results for a normal location sensor
quality and a decreased location sensor quality in terms of confusion matrices. The labels
for the rows depict the ground truth, i.e. actual class of observations, whereas the labels for
the columns exhibit the classification result for sharp observations, probability vectors and
Dempster-Shafer belief functions. Hence, an entry of the table corresponds to the number of
sequences of the activity defined by the row label, classified as the activity depicted by the
column label.

From Table 13.2 it gets obvious that for normal sensor qualities the HMMs can discriminate
reliably between the activities ‘Cinema’, ‘Dinner’ and ‘Presentation’ for all three representa-
tions of the location observations. Most sequences of ‘Shopping Alone’ are correctly classified,
whereas almost all ‘Shopping with Friends’ sequences are mapped to ‘Shopping Alone’. Thus,
the HMMs are not able to discriminate between the two shopping activities. This situation is
almost the same for all three possible representations of the location observations. In general,
the representation of the location observations as probability vectors or as Dempster-Shafer
belief function yields only slightly better results in comparison to the integration of sharp
observations: with location observations based on probability vectors or belief functions, all
‘Shopping Alone’ activities are classified correctly.
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Shop. Alone 3 0|0(22]| 0 0 0 0 [25]| 0 0 0 0250
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Table 13.3: Confusion Matrix for Decresed Sensor Quality

In case of a decreased performance of the location sensor, however, representation of the
location observations as probability vectors or belief functions yields significantly better clas-
sification results (see Table 13.3). With probability vectors or belief functions, the HMMs are
still able to discriminate between the activities ‘Cinema’, ‘Dinner’ and ‘Presentation’, whereas
only 10 out of 25 ‘Presentation’ sequences can be classified correctly when integrating sharp
location observations. Consequently, the HMM-based classification is more robust against
decreasing sensor performance if representing the observations as probability vectors or
as belief functions, i.e. if uncertainty in the observations is taken into account during the
classification.
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negative log-likelihoods for Cinema observation sequences
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Figure 13.4: Analysis of the Negative Log-likelihoods for ‘Cinema’ Observation Sequences

We actually expected that Dempster-Shafer belief functions can handle a decreased sensor
performance even better than probability vectors. However, probability vectors and belief
functions show an identical performance and even identical confusion matrices, for normal
sensor quality as well as for a decreased performance of the location sensor. At the first
glance, this is a surprising observation. In order to further investigate this phenomenon,
we used 25 observations of type ‘Cinema’ for normal sensor quality and analyzed the
log-likelihoods of the HMMs that served as classification criterion.

distance of negative log-likelihoods

250 --distance prob

--distance DST

N
o
<

150

100~

distance of negative log-likelihood

a
<
<.

0 1 1 1 1 1
0 5 10 15 20 25

number of observation sequence

Figure 13.5: Differences of the Negative Log-likelihoods of the Winner HMM and the Runner-up
HMM
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Figure 13.4 illustrates the negative log-likelihoods of the winning HMM (HMM with the
smallest negative log-likelihood) and of the HMM that was the runner-up in the classification
process (HMM with the second smallest negative log-likelihood) for probability vectors and
Dempster-Shafer belief functions. It can be observed that the curves for Dempster-Shafer
belief functions are more or less just the shifted curves of the probability vectors: all values
for the belief functions are roughly smaller by 30 points than the corresponding values for
the probability vector. Consequently, also the differences of the negative log-likelihoods of
the winner HMM and the runner-up HMM are nearly the same. The deviations are that small
that even in the enlarged illustration of Figure 13.5 no real discrepancies can be observed.
With identical differences, however, it is also obvious that the classification results are the
same for probability vectors and the belief functions.

Our further analyses have revealed that the phenomenon described above can be explained
as follows:

1. During classification, the HMMs implicitly perform an iterative filtering, which results
in a probability vector or belief function for the current state of the activity at each
time step. When in the DST version of the HMM the integration of observations once
leads to a belief function which more or less only assigns masses to singletons, i.e. the
corresponding belief function reduces to a probability vector, then all belief functions
for the states at subsequent time steps also assign masses only to singletons. This
is due to the following two reasons: 1) Without contextual discounting all entries
m(st=K[st=k=1) (st=k € 8, |s=%| > 1 and s'=F! € ) of the transition matrix extended
to a Dempster-Shafer conditional mass assignment equal to 0. 2) A conjunctive
combination of a probability vector with an arbitrary belief function yields a probability
vector again. In our experiments, this phenomenon could be observed after 6 time
steps in average (total length of the observation sequence > 80), even if the a priori
state distribution was initialized with m(Q°) = 1.

2. The update of the belief function for the states (m,) with the belief functions that
result from the observations by applying the Generalized Bayesian Theorem (m,), has
to be performed with the Conjunctive Rule of Combination:

1
(m;@®my)(s)= 1% Z m(s,) -m,(sg) (13.1)

saNsp=s7#0,5,<S,s5 S

which reduces to:

(my®@my)(s) = ﬁms(s) -pl,(s) VseS (13.2)

if m, only assigns masses to singletons.

3. The plausibility pl,(s) = pl(s|o) for singletons s, i.e. s €S and 0 € O (O frame of
discernment for the observation), calculates as:

pl(slo) =pl(ols) = D, pl(o;ls) = Y pl(slo;) (13.3)

0;€0 0;€0

as m(.|s) happens to be a probability vector if the observation matrices are extended
to Dempster-Shafer conditional mass assignments without contextual discounting.
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We illustrate the last point with the following example. Assume a HMM with three states

S1, o, S3, three possible observations 04, 05, 05, and an observation matrix as provided by
Table 13.4.

P(0OIS)
P(.Js1) | P(lsy) | P(ls3)
o7 || 0.3000 | 0.1000 | 0.6000
05 || 0.2000 | 0.4000 | 0.1000
o3 || 0.5000 | 0.5000 | 0.3000

Table 13.4: Example for an Observation Matrix

An extension of the observation matrix depicted in Table 13.4 using the Disjunctive Rule of
Combination results in the conditional mass assignment which is shown in Table 13.5. All
entries for m(ols), |o| > 1 and |s| = 1 equal O as no contextual discounting is performed.
From the mass assignments, we calculate the plausibility matrix shown in Table 13.6.

m(0|S)
~ ~ ~ :::a
~ ~ ~ 5 g s &
= ) = = = ) =
E E E E E E E
{o,} 0.3000 | 0.1000 | 0.6000 | 0.0300 | 0.1800 | 0.0600 | 0.0180
{0,} 0.2000 | 0.4000 | 0.1000 | 0.0800 | 0.0200 | 0.0400 | 0.0080
{05} 0.5000 | 0.5000 | 0.3000 | 0.2500 | 0.1500 | 0.1500 | 0.0750
{01,045} 0.0000 | 0.0000 | 0.0000 | 0.1400 | 0.1500 | 0.2500 | 0.1490
{003} 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.3900 | 0.3300 | 0.3390
{0,,05} 0.0000 | 0.0000 | 0.0000 | 0.3000 | 0.1100 | 0.1700 | 0.1690
{01,05,03} || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2420

Table 13.5: Observation Matrix Extended to the DST

Updating the belief function for the states at a certain time step according to the extended
belief propagation algorithm (see Chapter 10), however, needs the matrix pl(S|O) instead of
the matrix pl(O|S) as presented in Table 13.6. Since it holds pi(s|o) = pl(o]s), transposing
the matrix of Table 13.6 is sufficient. The resulting matrix for pl(S|0) is shown in Table 13.7.

With the help of Table 13.7, the effect of Equation 13.3 becomes obvious. Consider, for
example, the bold marked entries for pl({s3}|{o,}), pl({s3}|{0,}) and pl({s3}|{o;,0,}). It

can easily be verified that pl({s3}|{01,0,}) = pl({s3}|{o1}) + pl({s3}|{0,}). Furthermore, it
holds pl(s;|o;) = p(ojls;) (see Table 13.4).

168 Case Study II: Activity Recognition for Context-aware Systems



pl(OIS)

plCH{s1H)

pl(H{s2})

pl(-l{ss})

pl(.I{s1,55})

pl(.|{s1,53})

pl(.|{s2,53})

pl(|{s1,52,53})

{o1} 0.3000 | 0.1000 | 0.6000 | 0.3700 | 0.7200 | 0.6400 | 0.7480
{0y} 0.2000 | 0.4000 | 0.1000 | 0.5200 | 0.2800 | 0.4600 | 0.5680
{os} 0.5000 | 0.5000 | 0.3000 | 0.7500 | 0.6500 | 0.6500 | 0.8250
{01,050} 0.5000 | 0.5000 | 0.7000 | 0.7500 | 0.8500 | 0.8500 | 0.9250
{o1,03} 0.8000 | 0.6000 | 0.9000 | 0.9200 | 0.9800 | 0.9600 | 0.9920
{o0,,03} 0.7000 | 0.9000 | 0.4000 | 0.9700 | 0.8200 | 0.9400 | 0.9820
{01,04,03} || 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

Table 13.6: Plausibility Matrix for Observations

When observations are integrated, a belief function m; for the states of the HMM at a certain

time step which only assigns masses to singletons is updated according to Equation 13.2 by
multiplication with ply(s):

plo(s) = Y pl(sl0)-mop(0) (13.4)

0C0

where mg;, denotes the observation represented as belief function.

pl(s]|0)

~ ~ ~ Om

" e e Q

~ ~ ~ (@] o o (o)

= Q e = S R 3

> = = = = > =

" ], ’, A, B, B _,
{s1} 0.3000 | 0.2000 | 0.5000 | 0.5000 | 0.8000 | 0.7000 | 1.0000
{s5} 0.1000 | 0.4000 | 0.5000 | 0.5000 | 0.6000 | 0.9000 | 1.0000
{s3} 0.6000 | 0.1000 | 0.3000 | 0.7000 | 0.9000 | 0.4000 | 1.0000
{81,859} 0.3700 | 0.5200 | 0.7500 | 0.7500 | 0.9200 | 0.9700 | 1.0000
{51,853} 0.7200 | 0.2800 | 0.6500 | 0.8500 | 0.9800 | 0.8200 | 1.0000
{59,583} 0.6400 | 0.4600 | 0.6500 | 0.8500 | 0.9600 | 0.9400 | 1.0000
{81,89,83} || 0.7480 | 0.5680 | 0.8250 | 0.9250 | 0.9920 | 0.9820 | 1.0000

Table 13.7: Plausibility of States for a Given Observation
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At this point we have to recall how the mass assignment m, is derived from the observation
represented as probability vector pyy,: if n > 1 observations show nearly the same probability
value, the minimal probability value of these observations multiplied with n is assigned to
the union set of these observations. Therefore, it approximately holds:

Mops(0) ~ Z Pobs(0i) A 1 pops(01)  for o] =n>1 (13.5)

0;€0,1<i<n

Hence, if the mass is assigned to the union set o0 = Ul <i<n 0i» the corresponding summand
of ply(s) is given by:

pL(s|0) - mops(0) & 1~ pops(01) - pl(slo) . D ploils)-pops(0)  (13.6)

1<i<n

If the observation is represented as a probability vector, the update is performed according
to the theorem of Bayes by multiplication of p,(s) with py(s) = Zoeop(ols) “Pops(0). In this
case, the summands corresponding to Equation 13.6 are given by Y., ... p(0;s)* pops(0;).
Hence, the summands used for the update step of the HMM just differ by the constant factor
n.

If we now assume? that there are a few dominating values in p,, which results in a mass
assignment to the union set of the corresponding singletons, all other summands can be
neglected and also the plausibilities used for the update differ only by the constant factor n.
Consequently, a corresponding update step always results in a decrease of the negative log-
likelihood by log(n) in comparison to the probability vector-based integration. Considering
our example of ‘Cinema’ observations, this also means that each assignment of a mass to the
union set of n singletons results in a shift of the negative log-likelihoods for the winner HMM
and also for the other HMMs by log(n). If the average number of such assignments and the
relative frequencies of the values for n are approximately the same as in our experiments,
even the total shift of the curves is constant for all observation sequences.

In summary, the considerations presented above revealed that representing (partial) ig-
norance by assigning masses to union sets of singletons instead of uniformly assigning
probabilities to the singletons has no effect on the classification result in the experiments
performed so far.

We now assume that the user for which activity recognition has to be performed, watches a
movie in a cinema located in a shopping center with 15 shops, 3 restaurants and 1 cinema.
GPS is not available in the shopping center. The only reliable information with regard
to location is the fact that the user is inside the shopping center. We now represent the
ignorance about the real location of the user by a uniform distribution over all different
shops, restaurants and the cinema. This yields:

Pops(‘Shop ') = 1/19, 1<i<15
Pops(Restaurantj) = 1/19, 1<j<3
Pops(‘Cinema’) = 1/19

3This assumption has proven to hold in our experiments but it is unlikely to be true in the general case.
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If an IRO or reasoning step is performed that abstracts the concrete shops, restaurants and
the cinema only by the corresponding categories, we get:

Ppys(‘Shop’) = 15/19
py, (Restaurant’) = 3/19
Ppy(‘Cinema’) = 1/19

If we represent the ignorance instead by
mops({'Shop 17, ..., ‘Shop 15’, ‘Restaurant 1’, ..., ‘Restaurant 3’, ‘Cinema’}) =1
the ignorance is naturally maintained across the IRO to
my,,({'Shop’, ‘Restaurant’, ‘Cinema’}) = 1.

In order to show the effect of the different representations of ignorance on the classification
result, we generated 25 observation sequences for the ‘Cinema’ activity. The location
information inside the shopping center was given by the sharp observation ‘Shop’ (maximum
probability in the probability vector py, ), the probability vector py, - and the belief function
my,,.- The corresponding classification results are presented in Table 13.8.

sharp prob. vector DST belief fucntion
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Table 13.8: Confusion of ‘Cinema’ Observations (adjusted experiment)

Table 13.8 shows that for sharp observations and probability vectors, the HMMs are not able
to reliably recognize the ‘Cinema’ activity any more, whereas with belief functions, 21 out of
25 observation sequences are classified correctly. Very interesting is the fact that the number
of correctly classified sequences is higher for sharp observations than for observations
represented as probability vectors. However, this can be explained by the integration of
the observations for audio and posture which do not match the shopping activities but vote
in favor of the dinner activity. In the probability vector-based representation the location
restaurant is also assigned with a probability 3/19. This is sufficient for shifting a number of
classifications from ‘Cinema’ to ‘Dinner’.

As in this experiment, the mass assignment to the union set of singletons does not correspond
to uniformly distributed probabilities, the constant shift of the negative log-likelihoods as in
the previous experiments cannot be observed any more. Also the distances of the winner
HMM to the runner-up HMM differ to a large extent (see Figure 13.6 and Figure 13.7). This
is also in line with the observation that the representation of the observations influences the

classification results in this experiment.
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13.5 Summary and Discussion

In this case study, we have investigated the influence of representing observations in an
HMM-based activity recognition approach as ‘sharp’ observations, as probability vectors and
as Dempster-Shafer belief functions. Our experiments revealed that the classification with
probability vectors and belief functions is more robust against decreasing sensor performance.

However, in our case study, where we have not applied contextual discounting [84], proba-
bility vectors and belief functions yield identical classification results, if a mass assignment
to the union set of singletons corresponds to uniformly distributed probabilities of the
singletons. In this case, the negative log-likelihoods for all HMMs are shifted by a constant
value. This also means that if we do not apply contextual discounting for the extension
of the transition and observation matrices, we do not have to use HMMs extended to the
DST and can achieve classification results of the same quality with traditional HMMs. We
just have to convert the Dempster-Shafer belief functions to a probability vector using the
pignistic transformation (see Section 3.5), which distributes the masses assigned to union
sets of singletons uniformly to the involved singletons.

Our last experiment, however, highlights again that it is more appropriate to represent
ignorance through Dempster-Shafer belief functions instead of using a uniform distribution if
IROs have to be expected. Exploiting the expressivity of the Dempster-Shafer belief functions,
partial ignorance is naturally maintained across the IRO. Nevertheless, we can still do the
actual reasoning with the traditional HMMs based on probabilities if we apply the pignistic
transformation before the integration of the observations.

Still, reasoning with HMMs extended to Dempster-Shafer belief functions can yield better
classification results if contextual discounting is applied and a modified classification criterion
is used, as shown by Ramasso et al. [114]. Here, our case study revealed that contextual
discounting is of major importance for the success of Ramasso’s approach. An investigation,
however, how contextual discounting and the modified classification criterion influence the
classification results in the scenario of our case study remains for future work.

It is also noteworthy here that in this case study, we have classified whole observation
sequences for different activities, i.e. we have classified only once at the end of an observation
sequence. In a real context-aware application which has to adapt its behaviour according
to the current user activity, classification has to be performed at each time step when new
observations are integrated. This also means that the evolution of the negative log-likelihoods
has to be tracked for the different models over time and criteria have to found that facilitate
a stable and dependable adaptation decision. The search for solutions to these problems
also remains for future work.
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14 Conclusions

14.1 Requirements Revisited

In this dissertation, we have identified a number of unsolved challenges imposed by current
distributed computing environments. A priori unknown information providers and consumers
dynamically appear and disappear in the environment, and the involved software components
and systems are likely to be independently developed with minimal interaction of the
different development teams. Consequently, a number of heterogeneity issues arise which
have to be handled at runtime. Furthermore, the need to incorporate imprecise, uncertain
and unreliable sensor information constitutes an additional key characteristic of current
distributed computing environments.

The identified challenges and key characteristics directly translate to a number of require-
ments which have been collected in Chapter 6. The main objective of our work was to
provide a comprehensive approach fulfilling all requirements at the same time. Thus, in this
section we summarize how the single requirements are addressed by the proposed solution.

1. Dynamic integration of a priori unknown information consumers and providers

An abstract architecture specification has been presented in Chapter 11 which com-
prises services for semantic discovery and matching of information consumers and
providers as well as a Mediation Engine responsible for establishing the links between
them. Information offers and requests are defined with the help of the ontology-
based Information Model and the IORL introduced in Section 7.3. The Mediation
Engine is also concerned with bridging the heterogeneity issues that are caused by the
independent development of the involved software components and services.

2. Establishment of a common vocabulary

A common vocabulary which serves as baseline for the different development teams is
established utilizing our Information Model (see Chapter 7). We have not presented a
concrete ontology for a particular application domain, but instead our Information
Model constitutes an ontology meta-model that can be used for the specification of a
wide range of ontologies tailored for specific application domains. The Information
Model has also been designed to allow easy integration of already available ontologies.

3. Mechanisms for the semantic interpretation of data structures

The Information Model not only allows for the definition of a conceptualization of the
real and logical entities of the world, but also supports the definition of information
types (scopes) and different representations for them. Data structures are defined in
terms of representations which comprise further scopes as their dimensions. Scopes
and representations are associated with meta-data to describe the imperfect nature of
the sensor data. In this respect, the data structures used in a particular application
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as well as the meta-data to define the quality of the information are semantically
interpretable.

4. Support for conversion between data representations

Conversions between different representations of a piece of information are realized
with the help of Inter-Representation Operations (IROs), which are described in Chap-
ter 8. Here, we have particularly focused on the problem of preserving the measures
for impreciseness and uncertainty across the possibly non-linear transformations. The
Unscented Transformation is applied to propagate multivariate normal distributions
through non-linear functions. Furthermore, we have shown how (uniform) value
ranges can be transformed based on a second-order Taylor approximation of the
transformation function. The developer is only required to provide a method for a
point-to-point conversion and is not confronted with the problem of maintaining the
measures for uncertainty and impreciseness at all.

5. Expression of information offers and needs

For expression of information offers and needs we have presented the IORL in Sec-
tion 7.3, which is an XML-based language and which allows to define constraints on
the entities, scopes, representations and the data values of the provided or requested
information. Furthermore, it supports the specification of meta-data attributes like
sensor reliability or the frequency with which the information is provided/requested.
A corresponding approach for matching of information offers and requests has been
discussed in Section 7.3.2.

6. Support of competitive sensor fusion

Competitive sensor fusion is realized with the help of the Dempster-Shafer Theory
of Evidence (see Chapter 9). As we base the specification of the belief functions on
the primitives mean/covariance matrix, value range and uniform value range, the
involved hypotheses can be considered as high-level focal elements. This allows us
to apply the Dempster-Shafer Theory also on domains that involve continuous scales.
We have also presented concepts for a consistent calculation of the conflict across
several fusion steps. A difficult problem in the simplification of complex hypotheses
is caused by the fact that the distributive law does not hold for the Conjunctive Rule
of Combination and the Disjunctive Rule of Combination. Here, we have derived and
proven a set of new rules that still allow a simplification in a number of cases.

7. Provisioning of reasoning schemes that consider the imperfect nature of sensor
data

In Section 10.1, we have shown how Dempster-Shafer belief functions can be incor-
porated in traditional probabilistic reasoning schemes like Hidden Markov Models,
Naive Bayes Classifiers and Polytree Bayesian Networks. For this purpose, Pearl’s belief
propagation algorithm was revisited in the realm of the Dempster-Shafer Theory and
the Transferable Belief Model. Furthermore, it was described how belief functions can
be considered in logic-based reasoning schemes and particularly in the evaluation of
first-order logic formulas. In this respect, a number of approaches have been presented
that allow a consideration of the imperfect nature of sensor data in different reasoning
schemes.

From the discussion above, we can conclude that the solution proposed in this dissertation
is able to address all challenges and requirements identified in Section 1.2 and Chapter 6
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respectively. Thus, it is justified to claim that this dissertation provides a comprehensive
approach for information exchange and fusion in dynamic and heterogeneous distributed
environments.

Contributions

Although the theories serving as baseline for our methods are already well established,
our work includes a number of enhancements and solutions to problems which arise if the
different concepts have to be incorporated to a coherent approach. For example, we base the
specification of the belief functions on some basic primitives that allow to work on a set of
high-level focal elements formed by the hypotheses and facilitate the application of simple
rules for the simplification of complex hypotheses. As another example, we have shown how
belief functions can be handled in the evaluation of first-order logic formulas.

However, we do not see the main contribution of this work in specific theoretical concepts
we have proposed. Instead, we claim the provisioning of a comprehensive solution which
addresses all the identified requirements of current and future distributed computing envi-
ronments as main contribution of this work. In particular, the state of the art in the area of
Context Management and Reasoning in Ubiquitous Computing and in the area of Cooperative
Teams of Heterogeneous Mobile Robots is enhanced.

Our analyses of related work have revealed that several current context management and
reasoning systems address the challenges resulting from a dynamic computing environment
with appearing and disappearing context providers and consumers. Other approaches fa-
cilitate the independent development of context components by establishing a common
vocabulary based on ontologies. However, together with the ASC/CoOL model our Informa-
tion Model stands out because they are, to the best of our knowledge, the only approaches
that explicitly address the problem of heterogeneous representations of context information
and conversions between them. All other approaches neglect this important issue. We have
used many concepts of ASC/CoOL as a baseline for our Information Model, but we have
enhanced it to allow a more elaborate specification of Inter-Representation Operations and
a representation of uncertainty, impreciseness and unreliability of context information in
terms of Dempster-Shafer belief functions.

Although some context management frameworks support competitive context fusion and
provide reasoning schemes which consider the imperfect nature of context information, they
lack the ability to represent partial or complete ignorance. The Dempster-Shafer Theory of
Evidence supports modelling partial or complete ignorance. However, the analyzed works
applying Dempster-Shafer Theory fail to incorporate it with well-established reasoning
schemes required to derive high-level context information.

In the area of autonomous robots, state-of-the-art approaches for cooperative object local-
ization are mainly based on probability theory and utilize Bayesian filtering techniques as
underlying method for sensor fusion. Hence, they also suffer from the inability of traditional
probability theory to explicitly model partial and complete ignorance. As shown in both of
our case studies, this causes problems if non-linear transformations have to be performed.
Besides, most approaches are tailored to a specific task or application domain and do not
provide a generic sensor fusion approach. Generic and reusable sensor fusion and reasoning
schemes in the area of autonomous mobile robots, however, assume a statically composed
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system and do not consider the additional challenges arising from a dynamic computing
environment and from independent development of information providers and consumers.

Related works that address interoperability and cooperation of independently developed and
heterogeneous autonomous mobile systems view interoperability and cooperation mainly
from a high-level perspective and consider the exchange of information at the symbolic level
only. Exchange of sensor data with its measures of uncertainty and impreciseness as well
as appropriate sensor fusion and reasoning schemes are supported only to a very limited
extent.

Closest to our vision of autonomous mobile systems, which are dynamically composed and
configured at runtime is the PEIS approach (see Section 6.2.6). It meets many requirements
arising from a dynamic computing environment and even presents approaches for data
fusion. However, a common vocabulary serving as a baseline for independent development
is provided only implicitly, and semantically interpretable data structures and the transfor-
mation of measures of uncertainty and impreciseness are supported only to a very limited
extent.

In conclusion, we see four main contributions of our work to the state of the art:

1. A comprehensive solution for information exchange and fusion in dynamic and
heterogeneous distributed environments has been designed combining a number of
available theoretical concepts to a coherent approach.

2. Our ontology-based Information Model along with the associated IORL represents a
new context modelling approach which is tailored to support heterogeneous context
sensors and reasoners and which allows to express the imperfect nature of sensor
information through Dempster-Shafer belief functions.

3. The proposed information fusion method along with the enhancement of the proba-
bilistic reasoning schemes to the Dempster-Shafer Theory describes a new generally
applicable context aggregation and reasoning method.

4. The work described in this dissertation introduces new concepts for the realization
of teams of heterogeneous autonomous robots, which are composed dynamically
at runtime and where interaction among the different development teams is minimal.

14.3 Insights from the Case Studies

The solution to realize information exchange and fusion in dynamic and heterogeneous
distributed computing environments proposed in this dissertation has been evaluated with
two case studies. The first case study was concerned with the dynamic establishment of a
cooperative team of heterogeneous autonomous robots in the RoboCup environment. The
second case study was settled in the area of activity recognition for context-aware adaptive
applications.

As part of both case studies we have investigated whether the application of Dempster-Shafer
Theory of Evidence has benefits over traditional approaches based on probability theory, or
just increases the complexity of the involved conversion, fusion and reasoning steps. Both
case studies have revealed that the application of the Dempster-Shafer Theory of Evidence,
at least in the two specific scenarios, does not yield significantly better results if just the
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fusion and reasoning steps are considered and possibly required IROs are neglected. If
non-linear IROs are involved, however, the inability of traditional probability theory to
explicitly model partial and complete ignorance leads to problems, since e.g. a uniform
distribution used to represent ignorance is not maintained as a uniform distribution across
non-linear transformations. In this case, probability theory does not allow to distinguish
between ignorance represented through a uniform distribution and the knowledge that a
random variable is uniformly distributed. Case study I has also revealed that our Dempster-
Shafer-based solution, although not tailored to the RoboCup domain, can compete with
state-of-the-art approaches in this domain and that with the concept of discounting we allow
to consider sensor reliability and the outdatedness of sensor information in a straight-forward
manner.

The evaluation of the performance of the prototype implementation used as basis for case
study I has shown that the proposed solution is applicable for the RoboCup domain, where
decisions have to be made in very short time intervals of a few milliseconds. However, just
as expected it turned out that our solution approach does not scale with the number of
information providers: The time required for the fusion step grows exponentially with the
number of information providers in the worst case. Therefore, the proposed information
fusion method is only applicable for about 12 robots providing a single basic hypothesis
each, or for about 6 robots if they define belief functions with two basic hypotheses.

Furthermore, case study II has shown that activity recognition based on Hidden Markov
Models is more robust against decreasing sensor performance if the observations are rep-
resented by probability vectors or Dempster-Shafer belief functions instead of integrating
‘sharp’ observations comprising only a single symbol. This also means that the classification
benefits from explicit modelling of uncertainty and its consideration in the corresponding
reasoning tasks. In contrast to Ramasso et al. in [114], we have not observed advantages of
using HMM extended to DST instead of the pure probabilistic scheme for the classification
tasks. Here, our analyses revealed that the results of Ramasso et al. can be explained by
the application of contextual discounting [84], which in fact means the incorporation of
additional knowledge, and by the usage of a modified classification criterion.

Outlook and Future Work

The work presented in this dissertation provides a viable and comprehensive solution to
information exchange and fusion in dynamic and heterogeneous environments. Still there
are a number of open questions which are subject of future work. In the following paragraphs
we will discuss the most important ones with respect to the main building blocks of our
solution approach.

Information model and IORL

The information model has already proven its viability as context model in the European
research project MUSIC [90, 116], and the IORL has been inspired by the MUSIC Context
Query Language (MUSIC CQL) [117]. However, so far we have presented only preliminary
ideas for the matching of information offers and requests based on semantic tableaus. This
approach has to be elaborated and its viability has to be tested in future work.
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Inter-Representation Operations

In Chapter 8, we have elaborated on methods to maintain the measures for uncertainty and
impreciseness across non-linear functions that are continuous and involve only continuous
scales. Possibilities for realizing conversions from a continuous space to a discrete space or
vice versa are still an open issue. In our future work, methods have to be found which enable
to perform such transformations in an efficient manner as well. Furthermore, complex
hypotheses involving the negation and intersection of basic hypotheses cannot be maintained
across the transformation. The search for efficient solutions or appropriate approximations
is also a subject of future work.

Information fusion

A major problem to be faced in our Dempster-Shafer-based information fusion method is that
the distributive law does not hold for the Conjunctive and Disjunctive Rule of Combination.
We have provided a set of rules that allow a simplification of complex hypotheses in a number
of cases, but still we are not able to perform all necessary simplifications. In this context,
appropriate approximations have to be found which allow to abstract the intersection of
two basic hypotheses based on the primitives (uniform) value range and mean/covariance
matrix. The scalability issues of our information fusion method constitute another important
point to be addressed in future work. Here, appropriate methods have to be researched
that allow a more compact representation of belief functions involving a smaller set of basic
hypotheses and thus a smaller number of high-level focal elements.

Reasoning schemes

In Chapter 10, we have presented methods that allow the incorporation of the Dempster-
Shafer Theory of Evidence in reasoning schemes based on probability theory and first-order
logic. However, the proposed reasoning schemes rely on Dempster-Shafer belief assignments
which are defined on a small frame of discernment. Therefore, methods are required
that allow the abstraction of complex belief functions involving a number of complex and
basic hypotheses in a suitable manner. Our case study on activity recognition has also
shown that the classification results cannot be improved by extending the HMM theory
to DST without applying the approach of contextual discounting and utilizing a modified
classification criterion. An investigation, however, to which extent the classification results
can be improved remains for future work.
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A Hidden Markov Models for Activity
Recognition

In this chapter, first we present the Hidden Markov Models which have been used in Case
Study I for the generation of observation sequences, along with the confusion matrices which
have been employed in order to obatain more realistic sensor outputs. Afterwards, the
HMMs that have been estimated from a number of observation sequences and have been
used in the classification process are shown.

A.1 Manually Designed Model for the ‘Cinema’ Activity

This section presents the manually designed HMM for the ‘Cinema’ activity in terms of
the initial state distribution (Table A.1), the state transition matrix (Table A.2) and the
observation matrices for the sensor outputs (Table A.3 to Table A.5).

Py(s)
S1 | So | S3 | S4 | S5 | Se | S7
1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table A.1: Initial State Distribution for the Manually Designed ‘Cinema’ Model

P(s(t+1) |S(t))
|| S1 | Sy | S3 | S4 | S5 S Sy
s1 || 0.9300 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
S5 || 0.0700 | 0.9000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
s3 || 0.0000 | 0.0500 | 0.9800 | 0.0000 | 0.0000 | 0.1500 | 0.0000
s4 || 0.0000 | 0.0000 | 0.0200 | 0.9800 | 0.0000 | 0.0000 | 0.0000
ss || 0.0000 | 0.0000 | 0.0000 | 0.0200 | 0.9800 | 0.0000 | 0.0000
Sg || 0.0000 | 0.0500 | 0.0000 | 0.0000 | 0.0000 | 0.8500 | 0.0000
s7 || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0200 | 0.0000 | 1.0000

Table A.2: State Transition Matrix for the Manually Designed ‘Cinema’ Model
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P(oLls)
|| $1 S2 | S3 | S4 | S5 Se6 Sy
AtHome 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
AtOffice 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Street 0.7000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4000
Shop 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Restaurant || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Cinema 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000
Car 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3000

Subway 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3000
unspecific || 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table A.3: Location Observation Matrix for the Manually Designed ‘Cinema’ Model

P(04ls)
” $1 S2 | S3 | S4 Ss | S6 | S7
NoSpeech 0.0250 | 0.1250 | 0.1000 | 0.1000 | 0.1000 | 0.4950 | 0.0250
MeSpeaking 0.1000 | 0.0500 | 0.0250 | 0.0250 | 0.0250 | 0.0500 | 0.2500
MeTalkingToOthers || 0.1000 | 0.2500 | 0.0250 | 0.0250 | 0.0250 | 0.0500 | 0.3000
OthersSpeaking 0.1000 | 0.2500 | 0.2800 | 0.2800 | 0.2800 | 0.1000 | 0.1000
LoudCrowd 0.1500 | 0.1500 | 0.0250 | 0.0250 | 0.0250 | 0.0050 | 0.1000
DistantVoices 0.4250 | 0.1250 | 0.2500 | 0.2500 | 0.2500 | 0.1000 | 0.1250
unspecific 0.1000 | 0.0500 | 0.2950 | 0.2950 | 0.2950 | 0.2000 | 0.1000

Table A.4: Audio Observation Matrix for the Manually Designed ‘Cinema’ Model

P(opls)
|| S1 Sy | S3 | S4 | Ss | Se Sy
Lying 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Sitting 0.0500 | 0.0000 | 0.9750 | 0.9750 | 0.9750 | 0.3000 | 0.0500
Standing | 0.1000 | 0.8000 | 0.0200 | 0.0200 | 0.0200 | 0.3000 | 0.1000
Walking 0.6500 | 0.1500 | 0.0000 | 0.0000 | 0.0000 | 0.3000 | 0.6500
Running 0.0500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0500
Driving 0.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2500
unspecific || 0.0000 | 0.0500 | 0.0050 | 0.0050 | 0.0050 | 0.1000 | 0.0000

Table A.5: Posture Observation Matrix for the Manually Designed ‘Cinema’ Model

A.2 Manually Designed Model for the ‘Dinner’ Activity

This section presents the manually designed HMM for the ‘Dinner’ activity in terms of
the initial state distribution (Table A.6), the state transition matrix (Table A.7) and the
observation matrices for the sensor outputs (Table A.8 to Table A.10).
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Py(s)

S1 |

) |

S3 |

|

ss |

S6

1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table A.6: Initial State Distribution for the Manually Designed ‘Dinner’ Model

p(s(HD |5y
|| S1 | S2 | S3 | S4 | S5 S6
s1 || 0.9200 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
so || 0.0800 | 0.9400 | 0.0000 | 0.0000 | 0.0000 | 0.0000
s3 || 0.0000 | 0.0350 | 0.9400 | 0.0000 | 0.1500 | 0.0000
s4 || 0.0000 | 0.0000 | 0.0350 | 0.9400 | 0.1000 | 0.0000
ss || 0.0000 | 0.0250 | 0.0250 | 0.0250 | 0.7500 | 0.0000
Sg || 0.0000 | 0.0000 | 0.0000 | 0.0350 | 0.0000 | 1.0000

Table A.7: State Transition Matrix for the Manually Designed ‘Dinner’ Model

P(ogls)
” S1 S2 | S3 | S4 Ss S6
AtHome 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
AtOffice 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Street 0.7000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4000
Shop 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Restaurant || 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000
Cinema 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Car 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3000
Subway 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3000
unspecific || 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table A.8: Location Observation Matrix for the Manually Designed ‘Dinner’ Model

P(o4ls)
|| S1 | S2 | S3 | S4 S5 S6
NoSpeech 0.0250 | 0.1250 | 0.1250 | 0.1250 | 0.5000 | 0.0250
MeSpeaking 0.2500 | 0.3000 | 0.3000 | 0.3000 | 0.0500 | 0.2500
MeTalkingToOthers || 0.3000 | 0.3000 | 0.3000 | 0.3000 | 0.0500 | 0.3000
OthersSpeaking 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000
LoudCrowd 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1000
DistantVoices 0.1250 | 0.1250 | 0.1250 | 0.1250 | 0.1000 | 0.1250
unspecific 0.1000 | 0.0500 | 0.0500 | 0.0500 | 0.2000 | 0.1000

Table A.9: Audio Observation Matrix for the Manually Designed ‘Dinner’ Model

A.2 Manually Designed Model for the ‘Dinner’ Activity
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P(opls)
I ss | so | s3 | sa | s S6
Lying 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Sitting 0.0000 | 0.9000 | 0.9000 | 0.9000 | 0.3000 | 0.0000
Standing | 0.1000 | 0.0250 | 0.0250 | 0.0250 | 0.3000 | 0.1000
Walking 0.7000 | 0.0250 | 0.0250 | 0.0250 | 0.3000 | 0.7000
Running || 0.0500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0500
Driving 0.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2500
unspecific || 0.0000 | 0.0500 | 0.0500 | 0.0500 | 0.1000 | 0.0000

Table A.10: Posture Observation Matrix for the Manually Designed ‘Dinner’ Model

A.3 Manually Designed Model for the ‘Presentation’ Activity

This section presents the manually designed HMM for the ‘Presentation’ activity in terms of
the initial state distribution (Table A.11), the state transition matrix (Table A.12) and the
observation matrices for the sensor outputs (Table A.13 to Table A.15).

Py(s)

S1 |

So |

S3 |

S4 |

Sg |

S6

1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table A.11: Initial State Distribution for the Manually Designed ‘Presentation’ Model

P(S(H-l)ls(t))
L 52 [ so [ ss | sa | s 56
s1 || 0.9400 | 0.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
sy || 0.0200 | 0.6600 | 0.0000 | 0.0000 | 0.0000 | 0.0000
s3 || 0.0400 | 0.0400 | 0.0500 | 0.0000 | 0.0000 | 0.0000
s4 || 0.0000 | 0.0000 | 0.9500 | 0.9700 | 0.0000 | 0.0000
ss || 0.0000 | 0.0000 | 0.0000 | 0.0300 | 0.8000 | 0.0000
Sg¢ || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 1.0000
Table A.12: State Transition Matrix for the Manually Designed ‘Presentation’ Model
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P(oLls)
” S1 S2 | S3 | S4 S5 S6
AtHome 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
AtOffice 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Street 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Shop 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Restaurant || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Cinema 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Car 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Subway 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
unspecific || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table A.13: Location Observation Matrix for the Manually Designed ‘Presentation’ Model

P(04ls)
I si | so | ss | s4 | s S6
NoSpeech 0.7500 | 0.4950 | 0.0000 | 0.0000 | 0.0000 | 0.0000
MeSpeaking 0.1500 | 0.0500 | 0.0000 | 0.0000 | 0.0000 | 0.0000
MeTalkingToOthers || 0.0250 | 0.0500 | 0.0000 | 0.9900 | 0.8000 | 0.3000
OthersSpeaking 0.0250 | 0.1000 | 0.9900 | 0.0100 | 0.2000 | 0.7000
LoudCrowd 0.0000 | 0.0050 | 0.0000 | 0.0000 | 0.0000 | 0.0000
DistantVoices 0.0500 | 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
unspecific 0.0000 | 0.2000 | 0.0100 | 0.0000 | 0.0000 | 0.0000

Table A.14: Audio Observation Matrix for the Manually Designed ‘Presentation’ Model

P(opls)
[ s | 55 | s | ss | s
Lying 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Sitting 0.5000 | 0.3000 | 1.0000 | 0.0000 | 0.0000 | 1.0000
Standing | 0.2000 | 0.3000 | 0.0000 | 0.9500 | 0.9000 | 0.0000
Walking 0.3000 | 0.3000 | 0.0000 | 0.0500 | 0.1000 | 0.0000
Running 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Driving 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
unspecific || 0.0000 | 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table A.15: Posture Observation Matrix for the Manually Designed ‘Presentation’ Model

A.4 Manually Designed Model for the ‘Shopping Alone’ Activity

This section presents the manually designed HMM for the ‘Shopping Alone’ activity in terms
of the initial state distribution (Table A.16), the state transition matrix (Table A.17) and the
observation matrices for the sensor outputs (Table A.18 to Table A.20).
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Py(s)
Sy | S2 | S3 | S4
1.0000 | 0.0000 | 0.0000 | 0.0000

Table A.16: Initial State Distribution for the Manually Designed ‘Shopping Alone’ Model

p(s(D sy
I ss | so | s3 | s4
s1 || 0.9000 | 0.0000 | 0.0000 | 0.0000
sy || 0.1000 | 0.9400 | 0.1500 | 0.0000
s3 || 0.0000 | 0.0600 | 0.8000 | 0.0000
s4 || 0.0000 | 0.0000 | 0.0500 | 1.0000

Table A.17: State Transition Matrix for the Manually Designed ‘Shopping Alone’ Model

P(oys)
I su | s5 | s 54
AtHome 0.0000 | 0.0000 | 0.0000 | 0.0000
AtOffice 0.0000 | 0.0000 | 0.0000 | 0.0000

Street 0.7000 | 0.1000 | 1.0000 | 0.4000
Shop 0.0000 | 0.9000 | 0.0000 | 0.0000
Restaurant || 0.0000 | 0.0000 | 0.0000 | 0.0000
Cinema 0.0000 | 0.0000 | 0.0000 | 0.0000
Car 0.1000 | 0.0000 | 0.0000 | 0.3000

Subway 0.1000 | 0.0000 | 0.0000 | 0.3000
unspecific || 0.1000 | 0.0000 | 0.0000 | 0.0000

Table A.18: Location Observation Matrix for the Manually Designed ‘Shopping Alone’ Model

P(04ls)
I ss | s5 | s S4
NoSpeech 0.0250 | 0.0000 | 0.0000 | 0.0250
MeSpeaking 0.2500 | 0.0100 | 0.0100 | 0.2500
MeTalkingToOthers || 0.3000 | 0.0400 | 0.0300 | 0.3000
OthersSpeaking 0.1000 | 0.1000 | 0.0100 | 0.1000
LoudCrowd 0.1000 | 0.0000 | 0.0500 | 0.1000
DistantVoices 0.1250 | 0.8000 | 0.8000 | 0.1250
unspecific 0.1000 | 0.0500 | 0.1000 | 0.1000

Table A.19: Audio Observation Matrix for the Manually Designed ‘Shopping Alone’ Model
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P(opls)
I su | s5 | s 54
Lying 0.0000 | 0.0000 | 0.0000 | 0.0000
Sitting 0.0500 | 0.0000 | 0.0000 | 0.0500
Standing | 0.1000 | 0.3000 | 0.0500 | 0.1000
Walking 0.6500 | 0.7000 | 0.9000 | 0.6500
Running || 0.0500 | 0.0000 | 0.0000 | 0.0500
Driving 0.2500 | 0.0000 | 0.0000 | 0.2500
unspecific || 0.0000 | 0.0000 | 0.0500 | 0.0000

Table A.20: Posture Observation Matrix for the Manually Designed ‘Shopping Alone’ Model

A.5 Manually Designed Model for the ‘Shopping with Friends’

Activity

This section presents the manually designed HMM for the ‘Shopping with Friends’ activity in
terms of the initial state distribution (Table A.21), the state transition matrix (Table A.22)
and the observation matrices for the sensor outputs (Table A.23 to Table A.25).

Py(s)

sp |

) |

S3 |

|

ss |

S6

1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table A.21: Initial State Distribution for the Manually Designed ‘Shopping with Friends’ Model

P(S(t+1)|s(t))
L 51 | 5o [ ss [ sa [ s 56
s1 || 0.9000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
s || 0.0900 | 0.9300 | 0.1000 | 0.0000 | 0.0000 | 0.0000
s3 || 0.0000 | 0.0600 | 0.8000 | 0.0000 | 0.0500 | 0.0000
s4 || 0.0100 | 0.0100 | 0.0500 | 0.3000 | 0.0000 | 0.0000
ss || 0.0000 | 0.0000 | 0.0000 | 0.6500 | 0.9500 | 0.0000
S || 0.0000 | 0.0000 | 0.0500 | 0.0500 | 0.0000 | 1.0000

Table A.22: State Transition Matrix for the Manually Designed ‘Shopping with Friends’ Model
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A.6

P(oLls)
|| S1 S2 | S3 | S4 S5 S6
AtHome 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
AtOffice 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Street 0.7000 | 0.1000 | 1.0000 | 1.0000 | 0.0000 | 0.4000
Shop 0.0000 | 0.9000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Restaurant || 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000
Cinema 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Car 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3000

Subway 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3000
unspecific || 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table A.23: Location Observation Matrix for the Manually Designed ‘Shopping with Friends’ Model

P(oyls)
I ss | so | s3 | sa | s 56
NoSpeech 0.0250 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0250
MeSpeaking 0.2500 | 0.0100 | 0.0100 | 0.0000 | 0.0000 | 0.2500
MeTalkingToOthers || 0.3000 | 0.0400 | 0.0300 | 0.4900 | 0.4500 | 0.3000
OthersSpeaking 0.1000 | 0.1000 | 0.0100 | 0.4900 | 0.4500 | 0.1000
LoudCrowd 0.1000 | 0.0000 | 0.0500 | 0.0000 | 0.0000 | 0.1000
DistantVoices 0.1250 | 0.8000 | 0.8000 | 0.0200 | 0.0900 | 0.1250
unspecific 0.1000 | 0.0500 | 0.1000 | 0.0000 | 0.0100 | 0.1000

Table A.24: Audio Observation Matrix for the Manually Designed ‘Shopping with Friends’ Model

P(opls)
|| S1 S2 | S3 | S4 Ss S6
Lying 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Sitting 0.0500 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0500

Standing || 0.1000 | 0.3000 | 0.0500 | 0.9500 | 0.0000 | 0.1000
Walking 0.6500 | 0.7000 | 0.9000 | 0.0500 | 0.0000 | 0.6500
Running 0.0500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0500
Driving 0.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2500
unspecific || 0.0000 | 0.0000 | 0.0500 | 0.0000 | 0.0000 | 0.0000

Table A.25: Posture Observation Matrix for the Manually Designed ‘Shopping with Friends’ Model

Confusion Matrices

In this section, the confusion matrices are shown which have been employed in order to
obtain more realistic sensor observations. For the location sensor, we distinguish between
two confusion matrices corresponding to a normal sensor performance (Table A.26) and
a decreased sensor performance (Table A.27). The confusion matrices for the audio and
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AtHome 737 1 19 1 1 1 1 1 1
AtOffice 1 1076 | 20 | 18 2 1 1 1 1
Street 9 9 218 | 17 | 16 | 16 2 2 1
Shop 1 1 115 | 343 | 47 3 1 3 1
Restaurant 1 2 98 | 48 | 482 | 14 1 1 1
Cinema 1 1 88 | 52 | 33 | 512 | 1 1 1
Car 1 3 298 | 20 2 4 |412] 15 | 1
Subway 2 2 302 | 22 2 5 12 | 509 | 1
unspecific 12 14 8 7 3 2 6 5 |80

Table A.26: Confusion Matrix for Location Sensor (normal performance)

) < § < > “E:
& & ] o § g 2 é
T |1 Q| 8| 2| 8| 5| 5|38 |2
<< << wn 97) a1 o O 95) =)
AtHome 491 1 19 1 1 1 1 1 1
AtOffice 1 717 | 20 18 2 1 1 1 1
Street 9 9 145 | 17 16 16 2 2 1
Shop 1 1 115 | 229 | 47 3 1 3 1
Restaurant 1 2 98 48 | 321 | 14 1 1 1
Cinema 1 1 88 52 33 | 341 1 1 1
Car 1 3 298 | 20 2 4 | 275 | 15 1
Subway 2 2 302 22 2 5 12 | 339 | 1
unspecific 12 | 14 8 7 3 2 6 5 |53

Table A.27: Confusion Matrix for Location Sensor (decreased performance)

A.6 Confusion Matrices

posture observations are shown for normal sensor performance in Table A.28 and Table A.29
respectively.
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NoSpeech 785 | 4 4 21 | 3| 8 |1
MeSpeaking 7 104 | 50 | 15 | 9 | 1 | 2
MeTalkingToOthers 7 56 | 108 | 10 | 9 | 1 | 2
OthersSpeaking 26 6 6 (493 |21 |10 1
LoudCrowd 1 1 2 16 (46| 1 | 2
DistantVoices 76 2 2 41 | 2 | 6 | 1
unspecific 11 12 | 12 | 12 |10 | 10 | 80

Table A.28: Confusion Matrix for Audio Sensor

]
w | 2| 2|2 o g
2l E 2|2 |E|2 |8
2| & |a |2 || A8
Lying 89 2 1 1 1 1 1
Sitting 3 16241 | 174 | 2 1] 27 |22
Standing 1| 304 |924| 43 | 1 | 100 | 8
Walking 1 6 16 | 182 | 1 6 1
Running 1 1 1 1 122 1 1
Driving 1 6 17 2 1 547 | 1
unspecific || 1 5 2 1 1 1 |53

Table A.29: Confusion Matrix for Posture Sensor

A.7 Estimated Model for the ‘Cinema’ Activity

This section presents the estimated HMM for the ‘Cinema’ activity in terms of the initial
state distribution (Table A.30), the state transition matrix (Table A.31) and the observation
matrices for the sensor outputs (Table A.32 to Table A.34).

Py(s)
S1 | So | S3 | Sy
| 0.8953 | 0.0000 | 0.0000 | 0.1047

Table A.30: Initial State Distribution for the Estimated ‘Cinema’ Model
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P(s(t+D|s(0)
” 51 | 52 | 53 | S4
s || 0.8877 | 0.0104 | 0.0505 | 0.5455
sy || 0.0295 | 0.9529 | 0.7752 | 0.0327
s3 || 0.0056 | 0.0361 | 0.1651 | 0.0109
s4 || 0.0772 | 0.0005 | 0.0092 | 0.4109

Table A.31: State Transition Matrix for the Estimated ‘Cinema’ Model

P(ols)
I ss | so | s3 | s4
AtHome 0.0089 | 0.0000 | 0.0000 | 0.0048
AtOffice 0.0107 | 0.0025 | 0.0000 | 0.0120
Street 0.8326 | 0.1198 | 0.0000 | 0.1781
Shop 0.0160 | 0.0555 | 0.0000 | 0.0911
Restaurant || 0.0178 | 0.0185 | 0.0000 | 0.0683
Cinema 0.0157 | 0.8018 | 1.0000 | 0.0720
Car 0.0812 | 0.0000 | 0.0000 | 0.2453
Subway 0.0050 | 0.0019 | 0.0000 | 0.3017
unspecific || 0.0121 | 0.0000 | 0.0000 | 0.0267

Table A.32: Location Observation Matrix for the Estimated ‘Cinema’ Model

P(04ls)
I si | so | s 54
NoSpeech 0.0000 | 0.0002 | 0.0000 | 0.0002
MeSpeaking 0.0235 | 0.9272 | 0.0057 | 0.0636
MeTalkingToOthers || 0.0670 | 0.0000 | 0.9717 | 0.1322
OthersSpeaking 0.8005 | 0.0305 | 0.0170 | 0.3356
LoudCrowd 0.0249 | 0.0002 | 0.0000 | 0.0711
DistantVoices 0.0834 | 0.0049 | 0.0000 | 0.3158
unspecific 0.0007 | 0.0371 | 0.0057 | 0.0814

Table A.33: Audio Observation Matrix for the Estimated ‘Cinema’ Model

A.7 Estimated Model for the ‘Cinema’ Activity
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P(opls)
I ss | so | s3 | s4
Lying 0.1343 | 0.2366 | 0.3003 | 0.0783
Sitting 0.2472 | 0.2591 | 0.2040 | 0.1819
Standing || 0.2711 | 0.2360 | 0.1926 | 0.2377
Walking 0.1856 | 0.1804 | 0.1700 | 0.2270
Running 0.0926 | 0.0361 | 0.0510 | 0.1319
Driving 0.0135 | 0.0142 | 0.0198 | 0.0289
unspecific || 0.0556 | 0.0376 | 0.0623 | 0.1143

Table A.34: Posture Observation Matrix for the Estimated ‘Cinema’ Model

A.8 Estimated Model for the ‘Dinner’ Activity

This section presents the estimated HMM for the ‘Dinner’ activity in terms of the initial
state distribution (Table A.35), the state transition matrix (Table A.36) and the observation
matrices for the sensor outputs (Table A.37 to Table A.39).

Py(s)

S1 |

So |

S3 |

S4

| 0.8243 | 0.0000 [ 0.0541 | 0.1216

Table A.35: Initial State Distribution for the Estimated ‘Dinner’ Model

P(s(t+D|s0)
I ss | so | s3 | s4
s || 0.9105 | 0.0021 | 0.0343 | 0.5369
sy || 0.0219 | 0.9669 | 0.3929 | 0.0369
s3 || 0.0092 | 0.0307 | 0.5604 | 0.0123
s4 || 0.0584 | 0.0004 | 0.0124 | 0.4139

Table A.36: State Transition Matrix for the Estimated ‘Dinner’ Model
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P(ogls)
I ss | so | s3 | s4
AtHome 0.0108 | 0.0000 | 0.0000 | 0.0047
AtOffice 0.0108 | 0.0010 | 0.0010 | 0.0076

Street 0.8373 | 0.1134 | 0.0298 | 0.1691
Shop 0.0240 | 0.0640 | 0.0123 | 0.0923
Restaurant || 0.0172 | 0.7731 | 0.9435 | 0.0820
Cinema 0.0165 | 0.0470 | 0.0123 | 0.0703
Car 0.0710 | 0.0000 | 0.0010 | 0.2450

Subway 0.0014 | 0.0015 | 0.0000 | 0.2958
unspecific || 0.0111 | 0.0000 | 0.0000 | 0.0332

Table A.37: Location Observation Matrix for the Estimated ‘Dinner’ Model

P(oals)
L 51 [ s | s3 [ s
NoSpeech 0.0000 | 0.0002 | 0.0021 | 0.0005
MeSpeaking 0.0505 | 0.9864 | 0.0031 | 0.0990
MeTalkingToOthers || 0.0688 | 0.0002 | 0.8943 | 0.1501
OthersSpeaking 0.7663 | 0.0030 | 0.0585 | 0.3024
LoudCrowd 0.0258 | 0.0000 | 0.0000 | 0.0814
DistantVoices 0.0878 | 0.0050 | 0.0257 | 0.3235
unspecific 0.0007 | 0.0052 | 0.0164 | 0.0432

Table A.38: Audio Observation Matrix for the Estimated ‘Dinner’ Model

P(OP Is)
|| 51 | 52 | S3 | S4
Lying 0.1846 | 0.2808 | 0.2772 | 0.0845

Sitting 0.2072 | 0.0507 | 0.0873 | 0.1220
Standing | 0.2007 | 0.0568 | 0.1253 | 0.1902
Walking 0.2215 | 0.3572 | 0.3039 | 0.2813
Running 0.1004 | 0.0526 | 0.1078 | 0.1303
Driving 0.0208 | 0.0404 | 0.0267 | 0.0438
unspecific || 0.0649 | 0.1615 | 0.0719 | 0.1479

Table A.39: Posture Observation Matrix for the Estimated ‘Dinner’ Model

A.9 Estimated Model for the ‘Presentation’ Activity

This section presents the estimated HMM for the ‘Presentation’ activity in terms of the initial
state distribution (Table A.40), the state transition matrix (Table A.41) and the observation
matrices for the sensor outputs (Table A.42 to Table A.44).
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Py(s)
S1 | So | S3
0.5104 | 0.2500 | 0.2396 |

Table A.40: Initial State Distribution for the Estimated ‘Presentation’ Model

P(s(tHDs(0)
L si [ ss [ s
s || 0.7725 | 0.2958 | 0.4562
sy || 0.1594 | 0.6152 | 0.3076
s3 || 0.0681 | 0.0890 | 0.2363

Table A.41: State Transition Matrix for the Estimated ‘Presentation’ Model

P(ols)
| s [ ss [ s
AtHome 0.0000 | 0.0000 | 0.0000
AtOffice 0.9814 | 0.9883 | 0.8328
Street 0.0091 | 0.0056 | 0.0721
Shop 0.0087 | 0.0040 | 0.0799
Restaurant || 0.0009 | 0.0020 | 0.0152
Cinema 0.0000 | 0.0000 | 0.0000
Car 0.0000 | 0.0000 | 0.0000
Subway 0.0000 | 0.0000 | 0.0000
unspecific || 0.0000 | 0.0000 | 0.0000

Table A.42: Location Observation Matrix for the Estimated ‘Presentation’ Model

P(o04ls)

I si | so | s
NoSpeech 0.0004 | 0.0000 | 0.0000
MeSpeaking 0.9831 | 0.0044 | 0.0451
MeTalkingToOthers || 0.0018 | 0.9553 | 0.0486
OthersSpeaking 0.0033 | 0.0032 | 0.6263
LoudCrowd 0.0000 | 0.0008 | 0.0014
DistantVoices 0.0093 | 0.0322 | 0.2454
unspecific 0.0020 | 0.0040 | 0.0332

Table A.43: Audio Observation Matrix for the Estimated ‘Presentation’ Model
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P(opls)
I su | s5 | s
Lying 0.2103 | 0.1340 | 0.4235
Sitting 0.1220 | 0.2559 | 0.1579
Standing | 0.1995 | 0.4628 | 0.2516
Walking 0.4151 | 0.0938 | 0.1122
Running 0.0382 | 0.0414 | 0.0398
Driving 0.0102 | 0.0004 | 0.0073
unspecific || 0.0047 | 0.0117 | 0.0077

Table A.44: Posture Observation Matrix for the Estimated ‘Presentation’ Model

A.10 Estimated Model for the ‘Shopping Alone’ Activity

This section presents the estimated HMM for the ‘Shopping Alone’ activity in terms of
the initial state distribution (Table A.45), the state transition matrix (Table A.46) and the
observation matrices for the sensor outputs (Table A.47 to Table A.49).

Py(s)
S1 | So | S3
0.7200 | 0.2267 | 0.0533

Table A.45: Initial State Distribution for the Estimated ‘Shopping Alone’ Model

p(s(HD |5y
[ 51 [ s [ s
sp || 0.8374 | 0.2316 | 0.4902
sy || 0.1090 | 0.7536 | 0.0588
s3 || 0.0537 | 0.0149 | 0.4510

Table A.46: State Transition Matrix for the Estimated ‘Shopping Alone’ Model

P(oyls)
L si [ ss [ s
AtHome 0.0073 | 0.0037 | 0.0051
AtOffice 0.0092 | 0.0008 | 0.0118
Street 0.8791 | 0.0058 | 0.1821
Shop 0.0024 | 0.9390 | 0.1309
Restaurant || 0.0226 | 0.0432 | 0.1075
Cinema 0.0204 | 0.0058 | 0.0583
Car 0.0559 | 0.0004 | 0.2255
Subway 0.0014 | 0.0008 | 0.2617
unspecific || 0.0016 | 0.0004 | 0.0172

Table A.47: Location Observation Matrix for the Estimated ‘Shopping Alone’ Model
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P(0als)

I si | so | s
NoSpeech 0.0004 | 0.0000 | 0.0001
MeSpeaking 0.0392 | 0.0419 | 0.0826
MeTalkingToOthers || 0.0632 | 0.0979 | 0.2426
OthersSpeaking 0.8208 | 0.8465 | 0.2626
LoudCrowd 0.0143 | 0.0004 | 0.0659
DistantVoices 0.0571 | 0.0120 | 0.3278
unspecific 0.0051 | 0.0012 | 0.0185

Table A.48: Audio Observation Matrix for the Estimated ‘Shopping Alone’ Model

P(opls)
L i | s2 | s
Lying 0.2618 [ 0.4548 | 0.0955
Sitting 0.1562 | 0.0635 | 0.1178
Standing || 0.1686 | 0.0544 | 0.1819
Walking 0.2482 | 0.3270 | 0.3218
Running 0.0822 | 0.0253 | 0.1204
Driving 0.0271 | 0.0465 | 0.0495
unspecific || 0.0559 | 0.0286 | 0.1132

Table A.49: Posture Observation Matrix for the Estimated ‘Shopping Alone’ Model

A.11 Estimated Model for the ‘Shopping with Friends’ Activity

This section presents the estimated HMM for the ‘Shopping with Friends’ activity in terms of
the initial state distribution (Table A.50), the state transition matrix (Table A.51) and the
observation matrices for the sensor outputs (Table A.52 to Table A.54).

Py(s)

S1 |

So |

S3 |

S4

0.8000 | 0.1500 | 0.0125 [ 0.0375

Table A.50: Initial State Distribution for the Estimated ‘Shopping with Friends’ Model

P(s(t+D|s0)
L si [ ss | s3 | s
s || 0.8604 | 0.2202 | 0.0122 | 0.5512
sy || 0.0720 | 0.7528 | 0.0069 | 0.0540
s3 || 0.0147 | 0.0114 | 0.9789 | 0.0019
s4 || 0.0530 | 0.0156 | 0.0020 | 0.3929

Table A.51: State Transition Matrix for the Estimated ‘Shopping with Friends’ Model
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Table A.52:

P(oLls)
I ss | so | s3 | s4
AtHome 0.0084 | 0.0013 | 0.0000 | 0.0062
AtOffice 0.0095 | 0.0026 | 0.0018 | 0.0127
Street 0.8670 | 0.0030 | 0.1341 | 0.1760
Shop 0.0012 | 0.9431 | 0.0620 | 0.1003
Restaurant || 0.0197 | 0.0395 | 0.7865 | 0.0691
Cinema 0.0215 | 0.0065 | 0.0151 | 0.0541
Car 0.0698 | 0.0026 | 0.0000 | 0.2516
Subway 0.0013 | 0.0000 | 0.0005 | 0.3178
unspecific || 0.0016 | 0.0013 | 0.0000 | 0.0122

Location Observation Matrix for the Estimated ‘Shopping with Friends’ Model

P(o04ls)
L osi | 55 [ s3 | s4
NoSpeech 0.0003 | 0.0000 | 0.0000 | 0.0000
MeSpeaking 0.0406 | 0.0435 | 0.9781 | 0.0753
MeTalkingToOthers || 0.0637 | 0.1078 | 0.0173 | 0.2167
OthersSpeaking 0.8002 | 0.8314 | 0.0000 | 0.2952
LoudCrowd 0.0199 | 0.0009 | 0.0000 | 0.0643
DistantVoices 0.0707 | 0.0161 | 0.0027 | 0.3361
unspecific 0.0045 | 0.0004 | 0.0018 | 0.0124

Table A.53: Audio Observation Matrix for the Estimated ‘Shopping with Friends’ Model

Table A.54: Posture Observation Matrix for the Estimated ‘Shopping with Friends’ Model

P(opls)
I ss | so | s3 | s4
Lying 0.2225 | 0.4576 | 0.0967 | 0.0874
Sitting 0.1857 | 0.0626 | 0.1341 | 0.1413
Standing | 0.1927 | 0.0548 | 0.2605 | 0.2004
Walking 0.2301 | 0.3294 | 0.4443 | 0.3011
Running 0.0859 | 0.0309 | 0.0397 | 0.1314
Driving 0.0253 | 0.0343 | 0.0128 | 0.0369
unspecific || 0.0578 | 0.0304 | 0.0119 | 0.1015

A.11 Estimated Model for the ‘Shopping with Friends’ Activity
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