
CD-Systems of Stateless Deterministic
R(1)-Automata Governed by an External

Pushdown Store?

Benedek Nagy1 and Friedrich Otto2

1 Department of Computer Science, Faculty of Informatics
University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary

nbenedek@inf.unideb.hu

2 Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

Abstract. We study cooperating distributed systems (CD-systems) of
stateless deterministic restarting automata with window size 1 that are
governed by an external pushdown store. In this way we obtain an
automata-theoretical characterization for the class of context-free trace
languages.

1 Introduction

Cooperating distributed systems (CD-systems) of restarting automata have been
defined in [11], and in [12] various types of deterministic CD-systems of restarting
automata have been studied. As expected CD-systems are much more expressive
than their component automata themselves. For example, already the marked
copy language Lcopy = {wcw | w ∈ {a, b}∗ } is accepted by a CD-system con-
sisting of only two deterministic R-automata, although this language is not even
growing context-sensitive, that is, it is not even accepted by any deterministic
RRWW-automaton (see, e.g., [16]). On the other hand, stateless restarting auto-
mata, that is, restarting automata with only a single state, have been introduced
and studied in [9, 10]. In the monotone case and in the deterministic case, they
are just as expressive as the corresponding restarting automata with states, pro-
vided that auxiliary symbols are available. Without the latter, however, stateless
restarting automata are in general much less expressive than their corresponding
counterparts with states.

In [13] we introduced CD-systems of stateless deterministic restarting auto-
mata that have a read/write window of size 1 only. The restarting automata

? This work was supported by grants from the Balassi Intézet Magyar Ösztönd́ıj Bi-
zottsága (MÖB) and the Deutsche Akademischer Austauschdienst (DAAD). The first
author was also supported by the TÁMOP 4.2.1/B-09/1/KONV-2010-0007 project,
which is implemented through the New Hungary Development Plan, co-financed by
the European Social Fund and the European Regional Development Fund.

2 B. Nagy and F. Otto

of this type have a severely restricted expressive power. However, by combining
several such automata into a CD-system we obtain a device that is suprizingly
expressive. In fact, in mode = 1 these systems accept a class of semi-linear
languages that properly contains all rational trace languages. In fact, we even
obtained a characterization of the rational trace languages in terms of a partic-
ular type of these CD-systems. Further, the class of languages that are accepted
by mode = 1 computations of these CD-systems is closed under union, product,
Kleene star, commutative closure, and disjoint shuffle, but it is not closed under
intersection with regular languages, complementation, or ε-free morphisms. In
addition, for these CD-systems the emptiness problem and the finiteness prob-
lem are easily solvable, while the regularity problem, the inclusion problem, and
the equivalence problem are undecidable in general.

Here we extend these CD-systems by an external pushdown store that is used
to determine the successor of the current automaton. When the active automaton
performs a delete operation, then one of its successor automata is chosen based
on the symbol deleted and on the topmost symbol on this pushdown store. In
addition, after the successor has been chosen the pushdown content is modified
by either erasing the topmost symbol, or by replacing it by a symbol or a word
of length 2. Essentially such a system can be interpreted as a traditional push-
down automaton, in which the operation of reading an input symbol has been
replaced by a stateless deterministic R(1)-automaton. Hence, not the first symbol
is necessarily read, but some symbol that can be reached by this automaton by
moving across a prefix of the current input word. In this way our CD-systems can
be interpreted as pushdown automata with translucent letters. Analogously, the
CD-systems of stateless deterministic restarting automata with window size 1
studied in [13] can be interpreted as finite-state acceptors with translucent letters
(see [15]). Also other variants of pushdown automata that do not simply read
their input sequentially from left to right have been studied before. For example,
in [5] pushdown automata are considered that can reverse their input.

This paper is structured as follows. In Section 2 we restate in short the defini-
tion of the CD-systems of stateless deterministic R(1)-automata and their main
properties from [13]. Then, in Section 3, we define the CD-systems of stateless de-
terministic R(1)-automata that are governed by an external pushdown store (the
so-called PD-CD-R(1)-systems). We also consider the special case of these CD-
systems when the pushdown is a counter (the so-called OC-CD-R(1)-systems),
that is, there is only a single pushdown symbol in addition to the bottom marker.
We illustrate these definitions by some examples and compare the resulting lan-
guage classes to each other and to the class CFL of context-free languages, the
class OCL of one-counter languages, and the class L=1(stl-det-local-CD-R(1))
of languages that are accepted by CD-systems of stateless deterministic R(1)-
automata. In Section 4 we then study one-counter and context-free trace lan-
guages. We will see that our PD-CD-R(1)-systems accept a proper superclass of
the context-free trace languages, and the OC-CD-R(1)-systems accept a proper
superclass of the one-counter trace languages. However, we also provide charac-
terizations of these classes of trace languages in terms of our CD-systems.

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 3

The paper closes with Section 5, which contains some preliminary closure
and non-closure results and several open problems.

2 Stateless Deterministic R(1)-Automata

Stateless types of restarting automata were introduced in [9]. Here we are only
interested in the most restricted form of them, the stateless deterministic R-
automaton of window size 1. A stateless deterministic R(1)-automaton is a one-
tape machine that is described by a 5-tuple M = (Σ, c, $, 1, δ), where Σ is a
finite alphabet, the symbols c, $ 6∈ Σ serve as markers for the left and right
border of the work space, respectively, the size of the read/write window is 1,
and δ : Σ ∪ {c, $} → {MVR,Accept, ε} is the (partial) transition function. There
are three types of transition steps: move-right steps (MVR), which shift the
window one step to the right, combined rewrite/restart steps (denoted by ε),
which delete the content u of the window, thereby shortening the tape, and place
the window over the left end of the tape, and accept steps (Accept), which cause
the automaton to halt and accept. In addition, we use the notation δ(a) = ∅
to express the fact that the function δ is undefined for the symbol a. Some
restrictions apply in that the sentinels c and $ must not be deleted, and that the
window must not move right on seeing the $-symbol.

A configuration of M is described by a pair (α, β), where either α = ε (the
empty word) and β ∈ {c} · Σ∗ · {$} or α ∈ {c} · Σ∗ and β ∈ Σ∗ · {$}; here
αβ is the current content of the tape, and it is understood that the head scans
the first symbol of β. A restarting configuration is of the form (ε, cw$), where
w ∈ Σ∗; to simplify the notation a restarting configuration (ε, cw$) is usually
simply written as cw$. By `M we denote the single-step computation relation
of M , and `∗M denotes the reflexive transitive closure of `M .

The automaton M proceeds as follows. Starting from an initial configura-
tion cw$, the window moves right until a configuration of the form (cx, ay$) is
reached such that δ(a) = ε. Now the latter configuration is transformed into
the restarting configuration cxy$. This computation, which is called a cycle, is
expressed as w `cM xy. A computation of M now consists of a finite sequence
of cycles that is followed by a tail computation, which consists of a sequence
of move-right operations possibly followed by an accept step. An input word
w ∈ Σ∗ is accepted by M , if the computation of M which starts with the initial
configuration cw$ finishes by executing an accept step. By L(M) we denote the
language consisting of all words accepted by M .

If M = (Σ, c, $, 1, δ) is a stateless deterministic R(1)-automaton, then we can
partition its alphabet Σ into four disjoint subalphabets:

(1.) Σ1 = { a ∈ Σ | δ(a) = MVR }, (3.) Σ3 = { a ∈ Σ | δ(a) = Accept },
(2.) Σ2 = { a ∈ Σ | δ(a) = ε }, (4.) Σ4 = { a ∈ Σ | δ(a) = ∅ }.

Thus, Σ1 is the set of letters that M just moves across, Σ2 is the set of letters
that M deletes, Σ3 is the set of letters which cause M to accept, and Σ4 is

4 B. Nagy and F. Otto

the set of letters on which M will get stuck. It has been shown in [13] that the
language L(M) can be characterized as

L(M) =

Σ∗, if δ(c) = Accept,
(Σ1 ∪Σ2)∗ ·Σ3 ·Σ∗, if δ(c) = MVR and δ($) 6= Accept,
(Σ1 ∪Σ2)∗ · ((Σ3 ·Σ∗) ∪ {ε}), if δ(c) = MVR and δ($) = Accept.

Cooperating distributed systems of restarting automata were introduced and
studied in [11]. Here we only consider cooperating distributed systems of stateless
deterministic R(1)-automata (or stl-det-local-CD-R(1)-systems for short). Such
a system consists of a finite collection M = ((Mi, σi)i∈I , I0) of stateless deter-
ministic R(1)-automata Mi = (Σ, c, $, 1, δi) (i ∈ I), successor relations σi ⊆ I
(i ∈ I), and a subset I0 ⊆ I of initial indices. Here it is required that I0 6= ∅,
and that σi 6= ∅ for all i ∈ I. Actually, in [13] it is required additionally that
i 6∈ σi for all i ∈ I, but as we are only interested in mode = 1 computations (see
below), this requirement is actually irrelevant.

A computation of M in mode = 1 on an input word w proceeds as follows.
First an index i0 ∈ I0 is chosen nondeterministically. Then the R-automaton
Mi0 starts the computation with the initial configuration cw$, and executes a
single cycle. Thereafter an index i1 ∈ σi0 is chosen nondeterministically, and Mi1

continues the computation by executing a single cycle. This continues until, for
some l ≥ 0, the machine Mil accepts. Should at some stage the chosen machine
Mil be unable to execute a cycle or to accept, then the computation fails. By
L=1(M) we denote the language that the system M accepts in mode = 1. It
consists of all words w ∈ Σ∗ that are accepted by M in mode = 1 as described
above. By L=1(stl-det-local-CD-R(1)) we denote the class of languages that are
accepted by mode = 1 computations of stl-det-local-CD-R(1)-systems.

Example 1. Let M = ((Mi, σi)i∈I , I0), where I = {a, b, c,+}, I0 = {a}, σa =
{b}, σb = {c}, σc = {a,+}, σ+ = {a}, and Ma, Mb, Mc, and M+ are the stateless
deterministic R(1)-automata that are given by the following transition functions:

Ma : δa(c) = MVR, δa(b) = MVR, δa(c) = MVR, δa(a) = ε,

Mb : δb(c) = MVR, δb(a) = MVR, δb(c) = MVR, δb(b) = ε,

Mc : δc(c) = MVR, δc(a) = MVR, δc(b) = MVR, δc(c) = ε,

M+ : δ+(c) = MVR, δ+($) = Accept.

The automaton M+ accepts the empty word and rejects (that is, it gets stuck
on) all other inputs. The automaton Ma simply deletes the first occurrence of
the letter a from its tape, Mb simply deletes the first occurrence of the letter b,
and Mc simply deletes the first occurrence of the letter c. Accordingly L=1(M) is
the non-context-free language Labc := {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c ≥ 1 }.

If Σ = {a1, . . . , an}, then the corresponding Parikh mapping is the morphism
ψ : Σ∗ → Nn from the set of words over Σ into the set of vectors of dimension
n over N that is defined by mapping ai to the vector (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

) for all

1 ≤ i ≤ n. In [13] the following results were established.

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 5

Proposition 1. (a) Each language L ∈ L=1(stl-det-local-CD-R(1)) contains a
regular sublanguage E such that ψ(L) = ψ(E) holds. In fact, a finite-state
acceptor for E can be constructed effectively from a stl-det-local-CD-R(1)-
system for L.

(b) L=1(stl-det-local-CD-R(1)) only contains languages that are semi-linear, that
is, it only contains languages with semi-linear Parikh image.

(c) L=1(stl-det-local-CD-R(1)) properly contains the class of all rational trace
languages.

As the deterministic linear language L = { anbn | n ≥ 0 } does not contain a
regular sublanguage that is letter-equivalent to the language itself, we see from
(a) that this language is not accepted by any stl-det-local-CD-R(1)-system work-
ing in mode = 1. Together with Example 1 this implies that the language class
L=1(stl-det-local-CD-R(1)) is incomparable to the classes DLIN, LIN, DOCL, OCL,
DCFL, and CFL with respect to inclusion. Here DLIN denotes the class of deter-
ministic linear languages, which is the class of languages that are accepted by
deterministic one-turn pushdown automata, LIN is the class of linear languages,
DOCL and OCL denote the classes of deterministic one-counter languages and
one-counter languages (see below), and DCFL and CFL denote the classes of
deterministic context-free languages and context-free languages.

For technical reasons the following normal form was introduced in [13] for
stl-det-local-CD-R(1)-systems, and it was shown that a given stl-det-local-CD-
R(1)-system M can be converted effectively into a stl-det-local-CD-R(1)-system
M′ in normal form such that L=1(M′) = L=1(M).

Definition 1. A stl-det-local-CD-R(1)-system M = ((Mi, σi)i∈i, I0) is in nor-
mal form, if it satisfies the following three conditions for all i ∈ I, where
Σ

(i)
1 , Σ

(i)
2 , Σ

(i)
3 , Σ

(i)
4 is the partitioning of alphabet Σ for the automaton Mi as

described above:

(1.) |Σ(i)
2 | ≤ 1, (2.) δi(c) = MVR and Σ(i)

3 = ∅, (3.) Σ(i)
2 = ∅ iff δi($) = Accept.

In [14] closure properties and algorithmic properties are presented for these
CD-systems.

3 CD-Systems with an External Pushdown Store

A pushdown CD-system of stateless deterministic R(1)-automata, PD-CD-R(1)-
system for short, consists of a CD-system of stateless deterministic R(1)-
automata and an external pushdown store. Formally, it is defined as a tuple
M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ), where

– I is a finite set of indices,
– Σ is a finite input alphabet,
– for all i ∈ I, Mi is a stateless deterministic R(1)-automaton on Σ, and σi ⊆ I

is a non-empty set of possible successors for Mi,

6 B. Nagy and F. Otto

– Γ is a finite pushdown alphabet,
– ⊥ 6∈ Γ is the bottom marker of the pushdown store,
– I0 ⊆ I is the set of initial indices, and
– δ : (I × Σ × (Γ ∪ {⊥})) → 2I×(Γ∪{⊥})∗ is the successor relation. For each
i ∈ I, a ∈ Σ, and A ∈ Γ , δ(i, a, A) is a subset of σi × Γ≤2, and δ(i, a,⊥) is
a subset of σi × (⊥ · Γ≤2). Here Γ≤2 denotes the set of all words over Γ of
length at most 2.

A configuration of M is a triple (i, cw$, α), where i ∈ I is the index of
the active component automaton Mi, the word cw$ (w ∈ Σ∗) is a restarting
configuration of Mi, and the word α ∈ ⊥ · Γ ∗ is the current content of the
pushdown store with the first symbol of α at the bottom and the last symbol
of α at the top. For w ∈ Σ∗, an initial configuration of M on input w has the
form (i0, cw$,⊥) for any i0 ∈ I0, and an accepting configuration has the form
(i,Accept,⊥).

The single-step computation relation ⇒M that M induces on the set of
configurations is defined by the following three rules, where i ∈ I, w ∈ Σ∗,
α ∈ ⊥ · Γ ∗, A ∈ Γ , and for each i ∈ I, Σ(i)

1 , Σ(i)
2 , and Σ

(i)
3 are the subsets of Σ

that correspond to the automaton Mi (see Section 2):

(1) (i, cw$, αA)⇒M (j, cw′$, αη) if ∃u ∈ Σ(i)
1

∗
, a ∈ Σ(i)

2 , v ∈ Σ∗ such that
w = uav,w′ = uv, and (j, η) ∈ δ(i, a, A);

(2) (i, cw$,⊥)⇒M (j, cw′$,⊥η) if ∃u ∈ Σ(i)
1

∗
, a ∈ Σ(i)

2 , v ∈ Σ∗ such that
w = uav,w′ = uv, and (j,⊥η) ∈ δ(i, a,⊥);

(3) (i, cw$,⊥)⇒M (i,Accept,⊥) if ∃u ∈ Σ(i)
1

∗
, a ∈ Σ(i)

3 , v ∈ Σ∗ such that
w = uav, or w ∈ Σ(i)

1

∗
and δi($) = Accept.

By ⇒∗M we denote the computation relation ofM, which is simply the reflexive
and transitive closure of the relation ⇒M.

The language L(M) accepted by M consists of all words for which M has
an accepting computation, that is,

L(M) = {w ∈ Σ∗ | ∃i0 ∈ I0 ∃i ∈ I : (i0, cw$,⊥)⇒∗M (i,Accept,⊥) }.

A PD-CD-R(1)-system M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) is called a one-
counter CD-system of stateless deterministic R(1)-automata, OC-CD-R(1)-sys-
tem for short, if |Γ | = 1, that is, if there is only a single pushdown symbol
in addition to the bottom marker ⊥. By L(PD-CD-R(1)) we denote the class
of languages that are accepted by PD-CD-R(1)-systems, and L(OC-CD-R(1))
denotes the class of languages that are accepted by OC-CD-R(1)-systems.

Example 2. We consider the language

L = { anv | v ∈ {b, c}∗, |v|b = |v|c = n, n ≥ 0 }.

As L ∩ a∗ · b∗ · c∗ = { anbncn | n ≥ 0 } is not context-free, we see that L
itself is not context-free. Further, there is no regular sublanguage of L that is

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 7

letter-equivalent to L. Hence, by Proposition 1 (a), L is not accepted by any stl-
det-local-CR-R(1)-system, either. However, we claim that L is accepted by the
OC-CD-R(1)-systemM = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) that is defined as follows:

– I = {a, b, c,+},
– Σ = {a, b, c},
– Ma, Mb, Mc, and M+ are defined by the following transition functions:

(1) δa(c) = MVR, (5) δb(c) = MVR, (8) δc(c) = MVR,
(2) δa(a) = ε, (6) δb(b) = ε, (9) δc(c) = ε,
(3) δ+(c) = MVR, (7) δb(c) = MVR, (10) δc(b) = MVR,
(4) δ+($) = Accept,

– σa = {a, b}, σb = {c}, σc = {b,+}, and σ+ = {+},
– Γ = {C},
– I0 = {a,+}, and
– δ is defined as follows:

(1) δ(a, a,⊥) = {(a,⊥C), (b,⊥C)}, (3) δ(b, b, C) = {(c, C)},
(2) δ(a, a, C) = {(a,CC), (b, CC)}, (4) δ(c, c, C) = {(b, ε), (+, ε)},

and for all other tripels, δ yields the empty set.

The component automaton M+ just accepts the empty word, and it gets
stuck on all other words. The component Ma just deletes the first letter, if it is
an a, otherwise, it gets stuck. The component Mb reads across c’s and deletes
the first b it encounters, and analogously, the component Mc reads across b’s and
deletes the first c it encounters. Thus, we see from the form of the successor sets
that M can only accept certain words of the form amv such that v ∈ {b, c}∗.
However, when Ma deletes an a, then a symbol C is pushed onto the pushdown
store, and when Mc deletes a c, then a symbol C is popped from the pushdown
store. As Mb and Mc work alternatingly, this means that the same number of
b’s and c’s are deleted. Thus, if M is to accept, then |v|b = |v|c = n holds for
some n ≥ 0.

If m < n, then after deleting the first m occurrences of b and c, the push-
down store only contains the bottom marker ⊥, and then M gets stuck as seen
from the definition of δ. On the other hand, if m > n, then the pushdown still
contains some occurrences of the symbol C when the word amv has been erased
completely. Hence, in this situationM does not accept, either. Finally, if m = n,
then after erasing the last occurrence of c, also the last occurrence of the symbol
C is popped from the pushdown store, and then M+ can accept starting from
the configuration (+, c · $,⊥). Hence, we see that L(M) = L holds.

Thus, already the language class L(OC-CD-R(1)) contains a language that
is neither context-free nor accepted by any stl-det-local-CD-R(1)-system. Next
we will show that the class of languages that are accepted by the latter type of
CD-systems is contained in L(OC-CD-R(1)).

Proposition 2. L=1(stl-det-local-CD-R(1)) (L(OC-CD-R(1)).

8 B. Nagy and F. Otto

Proof. LetM = ((Mi, σi)i∈I , I0) be a stl-det-local-CD-R(1)-system, and let L =
L=1(M). We obtain a OC-CD-R(1)-system M′ = (I,Σ, (Mi, σi)i∈I , ∅,⊥, I0, δ),
where Σ is the tape alphabet of M, by defining the transition function δ as
follows for all i ∈ I:

δ(i, a,⊥) = { (j,⊥) | j ∈ σi } for all a ∈ Σ(i)
2 ,

δ(i, a,⊥) = ∅ for all a ∈ Σ rΣ
(i)
2 .

Then there is a one-to-one correspondence between the accepting computations
ofM and the accepting computations ofM′. Thus, L(M′) = L. This yields the
announced inclusion. Its properness follows from the previous example. 2

On the other hand, PD-CD-R(1)-systems accept all context-free languages.

Proposition 3. CFL (L(PD-CD-R(1)).

Proof. Let L ⊆ Σ+ be a context-free language. Then there exists a context-free
grammar G = (V,Σ, S, P) in quadratic Greibach normal form for L, that is, for
each production (A→ r) ∈ P , the right-hand side r is of the form r = aα, where
a ∈ Σ and α ∈ V ≤2. In addition, we can assume that the start symbol S does not
occur on the right-hand side of any production. Applied to G, the standard con-
struction of a pushdown automaton from a context-free grammar yields a push-
down automaton A without ε-moves that, given a word w ∈ Σ+ as input, simu-
lates a left-most G-derivation of w from S (see, e.g., [7]). In analogy to this con-
struction we build a PD-CD-R(1)-system M = (I,Σ, (Mi, σi)i∈I , V,⊥, {S}, δ),
where I = V ∪ {+}, the stateless deterministic R(1)-automata MA (A ∈ V) and
M+ are defined as follows:

(1) δA(c) = MVR,
(2) δA(a) = ε, if there exists γ ∈ V ≤2 : (A→ aγ) ∈ P,
(3) δ+(c) = MVR,
(4) δ+($) = Accept,

the sets of successors are defined by σA = σ+ = I for all A ∈ V , and the successor
relation δ is defined as follows, where A ∈ V and a ∈ Σ:

(1) δ(S, a,⊥) = { (+,⊥) | (S → a) ∈ P }
∪ { (B,⊥B) | (S → aB) ∈ P }
∪ { (B,⊥CB) | (S → aBC) ∈ P },

(2) δ(A, a,A) = { (B, ε) | B ∈ V r {S} and (A→ a) ∈ P }
∪ { (+, ε) | (A→ a) ∈ P }
∪ { (B,B) | (A→ aB) ∈ P }
∪ { (B,CB) | (A→ aBC) ∈ P },

and δ yields the empty set for all other values. Then, for all w ∈ Σ∗ and all
a ∈ Σ,

wa ∈ L iff S ⇒+
G wA⇒G wa

iff (S, c · wa · $,⊥) ⇒∗M (A, c · a · $,⊥A)⇒M (+, c · $,⊥)
⇒M (+,Accept,⊥).

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 9

Hence, it follows that L(M) = L(G) = L.
If the given context-free language includes the empty word, we can apply

the above construction to the language Lr{ε}. Then the resulting PD-CD-R(1)-
system will accept this language. By adding the component + to the set of initial
components, we obtain a PD-CD-R(1)-system for the language L. This yields the
intended inclusion, which is proper by Example 2. 2

Next we consider the so-called one-counter automata and the class of lan-
guages accepted by them. However, one finds several different non-equivalent
definitions for one-counter automata in the literature. Here we take a definition
that is equivalent to the one used by Jančar et. al. in [8] (see also [3]).

A pushdown automaton A = (Q,Σ, Γ, q0,⊥, δ, F) is called a one-counter
automaton if |Γ | = 1, and if the bottom marker ⊥ cannot be removed from the
pushdown store. Thus, if C is the only symbol in Γ , then the pushdown contents
⊥Cm can be interpreted as the integer m for all m ≥ 0. Accordingly, the pop
operation can be interpreted as the decrement −1. It is assumed in addition that
the only other pushdown operations leave the value m unchanged or increase it
by 1, that is, the pushdown is not changed or exactly one additional C is pushed
onto it. Finally, A has to read an input symbol in each step, that is, it cannot
make any ε-steps.

A word w ∈ Σ∗ is accepted by A, if (q0, w,⊥) `∗A (q, ε,⊥) holds for some
final state q ∈ F . Observe that A can only distinguish between two states of its
pushdown store: either the topmost symbol is C, which is interpreted by saying
that the counter is positive, or it is the bottom marker ⊥, which is interpreted as
the counter is zero. By OCL we denote the class of languages that are accepted
by one-counter automata. It is well-known that REG (OCL (CFL holds.

Proposition 4. OCL (L(OC-CD-R(1)).

Proof. Let A = (Q,Σ, {C}, q0,⊥, δA, F) be a one-counter automaton, and let
L = L(A) ⊆ Σ∗ be the language it accepts. We simulate A through a OC-CD-
R(1)-system M = (I,Σ, (Mi, σi)i∈I , {C},⊥, I0, δ), where

1. I = (Q× {=, >}) ∪ {+},
2. I0 = {(q0,=),+},
3. σ(q,>) = σ(q,=) = σ+ = I for all q ∈ Q,
4. the stateless deterministic R(1)-automata M(q,>), M(q,=) (q ∈ Q), and M+

are defined as follows:

(1) δ(q,=)(c) = MVR,
(2) δ(q,=)(a) = ε if δA(q, a,⊥) is defined,
(3) δ(q,>)(c) = MVR,
(4) δ(q,>)(a) = ε if δA(q, a, C) is defined,
(5) δ+(c) = MVR,
(6) δ+($) = Accept,

10 B. Nagy and F. Otto

5. and the successor relation δ is defined as follows, where q ∈ Q, a ∈ Σ, and
i ∈ {1, 2}:

(1) δ((q,=), a,⊥) = { ((q′,=),⊥) | (q′,⊥) ∈ δA(q, a,⊥) }
∪ { (+,⊥) | ∃q′ ∈ F : (q′,⊥) ∈ δA(q, a,⊥) }
∪ { ((q′, >),⊥C) | (q′,⊥C) ∈ δA(q, a,⊥) },

(2) δ((q,>), a, C) = { ((q′, >), Ci) | (q′, Ci) ∈ δA(q, a, C) }
∪ { ((q′, >), ε), ((q′,=), ε) | (q′, ε) ∈ δA(q, a, C) }
∪ { (+, ε) | ∃q′ ∈ F : (q′, ε) ∈ δA(q, a, C) },

while δ yields the empty set for all other values.
Observe that each time A decreases its counter,M also decreases its counter,

and in addition it has the option of activating the final component M+, if the
state entered is final. However, M+ can only accept, if at that moment the input
has been processed completely, andM only accepts if, in addition, the counter is
zero. It follows that there is a one-to-one correspondence between the accepting
computations of the one-counter automaton A and the system M. Hence, we
have L(M) = L(A) = L. This yields the intended inclusion, which is proper by
Example 2. 2

Definition 2. A PD-CD-R(1)-system M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) is in
strong normal form if it satisfies the following conditions, where, for all i ∈ I,
Σ

(i)
1 , Σ

(i)
2 , Σ

(i)
3 , Σ

(i)
4 is the partitioning of alphabet Σ for the automaton Mi as

described in Section 2:

(1) ∃ i+ ∈ I : δi+(c) = MVR, δi+($) = Accept, and Σ(i+)
4 = Σ;

(2) ∀i ∈ I r {i+} : δi(c) = MVR, |Σ(i)
2 | = 1, Σ(i)

3 = ∅, and δi($) = ∅.

Thus, if M is in strong normal form, then it has a unique component Mi+

that can execute accept instructions, but it only accepts the empty word, while
all other components each delete a single kind of letter. In particular, a word
w ∈ L(M) is first erased completely by executing |w| many cycles, and then the
empty word is accepted by activating component Mi+ . As OC-CD-R(1)-systems
are a special type of PD-CD-R(1)-systems, this definition also applies to them.
The following technical result shows that we can restrict our attention to PD-
CD-R(1)-systems in strong normal form.

Lemma 1. From a PD-CD-R(1)-system M one can construct a PD-CD-R(1)-
system M′ in strong normal form such that L(M′) = L(M). In addition, if
M is a OC-CD-R(1)-system, then M′ can be constructed to be a OC-CD-R(1)-
system, too.

Proof. Let M = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) be a PD-CD-R(1)-system. First
we split every component automaton Mi into |Σ(i)

2 | + 1 many parts, M (a)
i for

a ∈ Σ
(i)
2 , and M

(+)
i , where the former is responsible for executing the cycles

of Mi in which an occurrence of the letter a is deleted, while the latter takes

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 11

care of the accepting tail computations of Mi. In detail, for each a ∈ Σ(i)
2 , and

all b, c ∈ Σ,

δ
(a)
i (c) = ∅, if δi(c) = Accept, δ

(+)
i (c) = Accept, if δi(c) = Accept,

δ
(a)
i (c) = MVR, if δi(c) = MVR, δ

(+)
i (c) = MVR, if δi(c) = MVR,

δ
(a)
i (b) = MVR, if δi(b) = MVR, δ

(+)
i (b) = MVR, if δi(b) = MVR,

δ
(a)
i (a) = ε, δ

(+)
i (c) = Accept, if δi(c) = Accept,

δ
(+)
i ($) = Accept, if δi($) = Accept.

Then we adjust the successor relations σi (i ∈ I) as follows:

σ
(a)
i = σ

(+)
i = { j(b), j(+) | j ∈ σi, b ∈ Σ(j)

2 }.

Observe, however, that the successor relations σ(+)
i are never used in any com-

putation. We take

M̂ = (Î , Σ, (M (a)
i , σ

(a)
i)

i∈I,a∈Σ(i)
2
∪ (M (+)

i , σ
(+)
i)i∈I , Γ,⊥, Î0, δ̂),

where Î = { i(a), i(+) | i ∈ I, a ∈ Σ(i)
2 }, and Î0 = { i(a), i(+) | i ∈ I0, a ∈ Σ(i)

2 }.
Finally, the successor relation δ̂ : (Î ×Σ × (Γ ∪ {⊥}) → 2Î×(Γ∪{⊥})∗ is defined
as follows, where i ∈ I, a, b ∈ Σ, and A ∈ Γ :

(1) δ̂(i(a), a, A) = { (j(c), α) | (j, α) ∈ δ(i, a, A), c ∈ Σ(j)
2 }

∪ { (j(+), ε) | (j, ε) ∈ δ(i, a, A) },
(2) δ̂(i(a), a,⊥) = { (j(c), α) | (j, α) ∈ δ(i, a,⊥), c ∈ Σ(j)

2 }
∪ { (j(+),⊥) | (j,⊥) ∈ δ(j, a,⊥) },

and for all other tripels, δ̂ yields the empty set.
Then M̂ simply simulates the computations ofM. Each time a successor au-

tomaton Mj is chosen in a computation ofM, one has to guess whether another
cycle will be executed, and if so, which rewrite instruction will be applied, or
whether the next component automaton will accept in a tail computation. Then
in the simulating computation of M̂, one must simply choose the corresponding
component M (a)

j or M (+)
j . Observe that a computation of M can succeed only

if the pushdown contents just consists of the bottom marker ⊥ at the moment
when the active component Mj executes an accepting tail computation. Accord-
ingly M̂ only needs to be able to choose an accepting component M (+)

j when
the pushdown content is just ⊥ (see (2)) or when it could just now have been
reduced to ⊥ (see (1)). It follows easily that L(M̂) = L(M).

In order to obtain the intended system in normal form, we need to modify
the accepting component automata M (+)

i (i ∈ I). First we introduce a special
component M ′+ that just accepts the empty word, that is, δ′+(c) = MVR and
δ′+($) = Accept. Now we need to distinguish three cases.

12 B. Nagy and F. Otto

If δ(+)
i (c) = Accept, then M

(+)
i will accept all words from Σ∗. Accordingly,

we define δ′i
(+) as follows:

δ′i
(+)(c) = MVR, δ′i

(+)(a) = ε for all a ∈ Σ.

Then in combination with M ′+, M ′i
(+) accepts all words from Σ∗. We adjust the

successor relation by defining

δ′(i′(+)
, a,⊥) = {(i′(+)

,⊥), (+,⊥)}.

If δ(+)
i (c) = MVR, and δ

(+)
i ($) is undefined, then M

(+)
i accepts all words

from Σ
(i)
1

∗
·Σ(i)

3 ·Σ∗. Accordingly, we define δ′i
(+) as follows:

δ′i
(+)(c) = MVR,

δ′i
(+)(a) = MVR for all a ∈ Σ(i)

1 ,

δ′i
(+)(a) = ε for all a ∈ Σ(i)

3 .

Also we define another component automaton M ′′i
(+) as follows:

δ′′i
(+)(c) = MVR,

δ′′i
(+)(a) = ε for all a ∈ Σ,

where M ′′i
(+) is the only successor of M ′i

(+). Then together with M ′+ they accept
the same words as M (+)

i , but an accept instruction is only executed on the $-
symbol. In this case we must modify the successor relation δ̂ as follows:

δ′(i′(+)
, a,⊥) = {(i′′(+)

,⊥), (+,⊥)} for all a ∈ Σ(i)
3 ,

δ′(i′′(+)
, a,⊥) = {(i′′(+)

,⊥), (+,⊥)} for all a ∈ Σ.

Finally, if δ(+)
i (c) = MVR, and δ(+)

i ($) = Accept, then M (+)
i accepts all words

from Σ
(i)
1

∗
·Σ(i)

3 ·Σ∗ ∪Σ
(i)
1

∗
. Accordingly, we define M ′i

(+) and M ′′i
(+) as above,

but we define a third component M̂ (+)
i as follows:

δ̂
(+)
i (c) = MVR,

δ̂
(+)
i (a) = ε for all a ∈ Σ(i)

1 .

Then, in each successor set we replace M
(+)
i by both, M ′i

(+) and M̂
(+)
i , and

take M ′′i
(+) as the only successor of M ′i

(+). Then together with M ′+ these three
components accept the same words as M (+)

i , but an accept instruction is only
executed on the $-symbol. Further, we have to modify the successor relation δ̂
as follows:

δ′(i′(+)
, a,⊥) = {(i′′(+)

,⊥), (+,⊥)} for all a ∈ Σ(i)
3 ,

δ′(i′′(+)
, a,⊥) = {(i′′(+)

,⊥), (+,⊥)} for all a ∈ Σ,
δ′(̂i(+), a,⊥) = {(̂i(+),⊥), (+,⊥)} for all a ∈ Σ(i)

1 .

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 13

Finally we again split each component automaton that contains more than
one rewrite instruction into several automata, one for each letter that is deleted
by a rewrite instruction. Then the resulting PD-CD-R(1)-systemM′ is in strong
normal form, and it accepts the same language as the original system M.

We see from the description above that the PD-CD-R(1)-system M′ is actu-
ally a OC-CD-R(1)-system, if the given system M is. This completes the proof
of Lemma 1. 2

We have seen that the language class L(PD-CD-R(1)) contains all context-free
languages and some languages that are not even context-free. Our next result
implies that all languages from this class are semi-linear, that is, if L ⊆ Σ∗

belongs to this language class, and if |Σ| = n, then the Parikh image ψ(L) of L
is a semi-linear subset of Nn.

Theorem 1. Each language L ∈ L(PD-CD-R(1)) contains a context-free sub-
language E such that ψ(L) = ψ(E) holds. In fact, a pushdown automaton for E
can be constructed effectively from a PD-CD-R(1)-system for L.

Proof. LetM = (I,Σ, (Mi, σi)i∈I , Γ,⊥, I0, δ) be a PD-CD-R(1)-system, and let
L = L(M). By Lemma 1 we can assume that M is in strong normal form, that
is, there exists a unique index + ∈ I such that M+ accepts the empty word,
and for each other index i ∈ Ir := I r {+}, Mi does not execute any accept
instructions and |Σ(i)

2 | = 1. To simplify the notation in the following we denote
the letter a ∈ Σ(i)

2 simply by a(i).
From M we construct a pushdown automaton P = (Q,Σ, Γ, q0,⊥, δP , F) as

follows:

– Q = I ∪ {q0}, where q0 is a new state,
– F = {+}, and
– the transition relation δP is defined as follows for all i ∈ Ir, a ∈ Σ, and
A ∈ Γ :

(1) δP (q0, ε,⊥) = { (i,⊥) | i ∈ I0 },
(2) δP (i, a,⊥) = { (j, η) | (j, η) ∈ δ(i, a,⊥) },
(3) δP (i, a, A) = { (j, α) | (j, α) ∈ δ(i, a, A) }.

Then E = L(P) is a context-free language. It remains to show that it is a
sublanguage of L that is letter-equivalent to L.

Claim 1. For all i0 ∈ I, all w ∈ Σ∗, and all α ∈ Γ ∗, if (i0, c·w ·$,⊥α)⇒M (i1, c·
w1 · $,⊥α1)⇒M · · · ⇒M (is, c ·ws · $,⊥αs)⇒M (+, c · $,⊥)⇒M (+,Accept,⊥)
is an accepting computation of M, then there exists a word z ∈ Σ∗ such that
(i0, z,⊥α) `∗P (+, ε,⊥) holds, and ψ(z) = ψ(w).

Proof. We proceed by induction on s. If s = 0, then there are two cases. Either
i0 = +, and then w = ε and α = ε, too, or i0 ∈ Ir, and then w = a(i0), |α| ≤ 1,
and (+,⊥) ∈ δ(i0, a(i0),⊥), if α = ε, or (+, ε) ∈ δ(i0, a(i0), A), if α = A ∈ Γ . In
the first case we take z = ε, which implies that (i0, z,⊥α) = (+, ε,⊥), and in

14 B. Nagy and F. Otto

the latter case we take z = a(i0). Then (i0, z,⊥α) = (i0, a(i0),⊥α) `P (+, ε,⊥)
by (2) or (3).

Now assume that s ≥ 1. By the induction hypothesis there exists a word
z1 ∈ Σ∗ such that (i1, z1,⊥α1) `∗P (+, ε,⊥) and z1 is letter-equivalent to w1.
As (i0, c · w · $,⊥α) ⇒M (i1, c · w1 · $,⊥α1), w has a factorization w = uav

such that u ∈ Σ
(i0)
1

∗
, a = a(i0), and w1 = uv, α = ε, and α1 = η such that

(i1, η) ∈ δ(i0, a(i0),⊥), or α = α′A for some A ∈ Γ , and α1 = α′γ such that
(i1, γ) ∈ δ(i1, a(i0), A).

We define z = a(i0)z1. Then z is letter-equivalent to a(i0)w1 and therewith
to w, and (i0, z,⊥α) = (i0, a(i0)z1,⊥α) `P (i1, z1,⊥α1) `∗P (+, ε,⊥). This com-
pletes the proof of Claim 1. 2

If w ∈ L(M), then there exists an initial index i0 ∈ I0 such that

(i0, c · w · $,⊥)⇒∗M (+, c · $,⊥)⇒M (+,Accept,⊥)

holds. By Claim 1 it follows that there exists a word z that is letter-equivalent
to w such that (i0, z,⊥) `∗P (+, ε,⊥). Hence, we obtain that z ∈ L(P), as
(q0, z,⊥) `P (i0, z,⊥) by (1). Thus, for each w ∈ L, there exists a word z ∈ E
that is letter-equivalent to w.

The proof of Theorem 1 is now completed by establishing the following claim.

Claim 2. E ⊆ L.

Proof. Let z ∈ E, that is, (q0, z,⊥) `∗P (+, ε,⊥). We proceed by induction
on n = |z|. If n = 0, then z = ε, and hence, (+,⊥) ∈ δP (q0, ε,⊥). From the
definition of δP we conclude that + ∈ I0, which implies that z = ε ∈ L.

If n = 1, then z = a ∈ Σ. Hence,

(q0, z,⊥) = (q0, a,⊥) `P (i, a,⊥) `P (+, ε,⊥)

for some i ∈ I0 such that (+,⊥) ∈ δP (i, a,⊥) = δ(i, a,⊥). Hence, a = a(i), and

(i, c · z · $,⊥) = (i, c · a(i) · $,⊥)⇒M (+, c · $,⊥)⇒M (+,Accept,⊥)

is an accepting computation of M on input z, that is, z ∈ L.
If n > 1, then z = az′ for some a ∈ Σ and z′ ∈ Σ+, and the accepting

computation of P on input z has the following form:

(q0, z,⊥) = (q0, az′,⊥) `P (i0, az′,⊥) `P (i1, z′,⊥α) `∗P (+, ε,⊥)

for some i0 ∈ I0 such that a = a(i0) and (i1,⊥α) ∈ δ(i0, a,⊥). Thus, M can
perform the following computational step:

(i0, c · z · $,⊥) = (i0, c · az′ · $,⊥)⇒M (i1, c · z′ · $,⊥α).

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 15

From the definition of δP we can conclude by induction that there exists a
computation of M of the form

(i1, c · z′ · $,⊥α)⇒∗M (+, c · $,⊥)⇒M (+,Accept,⊥),

which implies that z ∈ L holds. Hence, we see that E is indeed a subset of L. 2

Together Claims 1 and 2 prove Theorem 1. 2

In the proof of Theorem 1 the pushdown automaton P constructed from the
given PD-CD-R(1)-systemM can easily been turned into a one-counter automa-
ton if M is a OC-CD-R(1)-system. Thus, we also have the following result.

Corollary 1. Each language L ∈ L(OC-CD-R(1)) contains a sublanguage E that
is a one-counter language such that ψ(L) = ψ(E) holds. In fact, a one-counter
automaton for E can be constructed effectively from a OC-CD-R(1)-system for L.

As each context-free language has a semi-linear Parikh image, Theorem 1 has
the following consequence.

Corollary 2. The language class L(PD-CD-R(1)) only contains semi-linear lan-
guages, that is, if a language L over Σ = {a1, . . . , an} is accepted by a PD-CD-
R(1)-system, then its Parikh image ψ(L) is a semi-linear subset of Nn.

The semi-linear language L = { anbncn | n ≥ 0 } does not contain a context-
free sublanguage that is letter-equivalent to the language itself. Hence, Theo-
rem 1 yields the following negative result.

Proposition 5. The language L = { anbncn | n ≥ 0 } is not accepted by any
PD-CD-R(1)-system.

The language Lpal = {wcwR | w ∈ {a, b}∗ } is a context-free language that
is not a one-counter language (see, e.g., [2]). As a context-free language it is
accepted by some PD-CD-R(1)-system by Proposition 3, but based on Corollary 1
we can show that it is not accepted by any OC-CD-R(1)-system.

Proposition 6. The language Lpal = {wcwR | w ∈ {a, b}∗ } is not accepted by
any OC-CD-R(1)-system.

Proof. By Corollary 1 we only need to show that the language Lpal does not
contain a sublanguage that is letter-equivalent to Lpal itself and that is a one-
counter language.

Let Σ = {a, b, c}, and let E be a sublanguage of Lpal that is letter-equivalent
to Lpal. Hence, for all n ≥ 1,

ψ(E ∩Σ2n+1) = { (2i, 2(n− i), 1) | 0 ≤ i ≤ n },

and accordingly,

ψ(E ∩Σ≤2n+1) = { (2i, 2(m− i), 1) | 0 ≤ m ≤ n, 0 ≤ i ≤ m }.

16 B. Nagy and F. Otto

Assume that there exists a one-counter automaton M = (Q,Σ, {C}, q0,
⊥, δ, F) such that L(M) = E holds. Thus, for each m ∈ {1, . . . , n} and each
i ∈ {0, 1, . . . ,m}, there exists a word w(i,m) ∈ E such that

ψ(w(i,m)) = (2i, 2(m− i), 1).

As E is a sublanguage of Lpal, w(i,m) = u(i,m)cu(i,m)R for some u(i,m) ∈
{a, b}m satisfying |u(i,m)|a = i and |u(i,m)|b = m − i. As E = L(M), M has
an accepting computation on input w(i,m), which is of the following form:

(q0, w(i,m),⊥) = (q0, u(i,m)cu(i,m)R,⊥) `∗M (q1, cu(i,m)R,⊥Cj)
`M (q2, u(i,m)R,⊥Cj+µ) `∗M (qf , ε,⊥)

for some states q1, q2 ∈ Q, a final state qf ∈ F , and integers j ≥ 0 and µ ∈
{−1, 0, 1}. While processing the prefix u(i,m) of w(i,m), M can increase the
value on its counter at most m = |u(i,m)| times, which means that j ≤ m holds.
Hence, while there are at least

n∑
m=0

(m+ 1) =
n+1∑
m=1

m =
1
2

(n+ 1)(n+ 2)

many different words w = ucuR in E such that |u| ≤ n, there are only n + 1
different values that the counter of M may have after processing the prefix u of
any of these words. Choose n > 2 · |Q|. Then 1

2 (n+ 1)(n+ 2) > (n+ 1)|Q|, which
means that there are two different input words ucuR ∈ E and vcvR ∈ E such
that |u| ≤ n, |v| ≤ n, ψ(u) 6= ψ(v), and

(q0, ucuR,⊥) `∗M (q1, cuR,⊥Cj) `∗M (qf , ε,⊥)

and
(q0, vcvR,⊥) `∗M (q1, cvR,⊥Cj) `∗M (q′f , ε,⊥)

are both accepting computations of M . But then also

(q0, ucvR,⊥) `∗M (q1, cvR,⊥Cj) `∗M (q′f , ε,⊥)

is an accepting computation of M . However, ucvR 6∈ Lpal, implying that
ucvR 6∈ E, that is, L(M) 6= E. Thus, no sublanguage of Lpal can be both,
letter-equivalent to Lpal and a one-counter language. 2

4 Context-Free Trace Languages

Let Σ be a finite alphabet, and let D be a binary relation on Σ that is reflexive
and symmetric, that is, (a, a) ∈ D for all a ∈ Σ, and (a, b) ∈ D implies that
(b, a) ∈ D, too. Then D is called a dependency relation on Σ, and the relation
ID = (Σ×Σ) rD is called the corresponding independence relation. Obviously,
the relation ID is irreflexive and symmetric. The dependency relation D (or

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 17

rather its associated independence relation ID) induces a binary relation ≡D
on Σ∗ that is defined as the smallest congruence relation containing the set of
pairs { (ab, ba) | (a, b) ∈ ID }. For w ∈ Σ∗, the congruence class of w mod ≡D is
denoted by [w]D, that is, [w]D = { z ∈ Σ∗ | w ≡D z }. These equivalence classes
are called traces, and the factor monoid M(D) = Σ∗/≡D is a trace monoid. In
fact, M(D) is the free partially commutative monoid presented by (Σ,D) (see,
e.g., [6]). By ϕD we denote the morphism ϕD : Σ∗ → M(D) that is defined by
w 7→ [w]D for all words w ∈ Σ∗.

To simplify the notation in what follows, we introduce the following notions.
For w ∈ Σ∗, we use Alph(w) to denote the set of all letters that occur in w, that
is,

Alph(w) = { a ∈ Σ | |w|a > 0 }.

Now we extend the independence relation from letters to words by defining, for
all words u, v ∈ Σ∗,

(u, v) ∈ ID if and only if Alph(u)×Alph(v) ⊆ ID.

As Alph(ε) = ∅, we see that (ε, w) ∈ ID for every word w ∈ Σ∗. The following
technical result (see, e.g., [6] Claim A in the proof of Prop. 6.2.2) will be useful
in what follows.

Proposition 7. For all words x, y, u ∈ Σ∗ and all letters a ∈ Σ, if xay ≡D au
and |x|a = 0, then (a, x) ∈ ID, xay ≡D axy, and xy ≡D u.

A subset S of a trace monoid M(D) is called recognizable if there exist a
finite monoid N , a morphism α : M(D) → N , and a subset P of N such
that S = α−1(P) [3]. Accordingly, this property can be characterized as follows
(see [6] Prop. 6.1.10).

Proposition 8. Let M(D) be the trace monoid presented by (Σ,D), and let
ϕD : Σ∗ → M(D) be the corresponding morphism. Then a set S ⊆ M(D) is
recognizable if and only if the language ϕ−1

D (S) is a regular language over Σ.

By REC(M(D)) we denote the set of recognizable subsets of M(D).

A subset S of a trace monoid M(D) is called rational if it can be obtained
from singleton sets by a finite number of unions, products, and star operations [3].
This property can be characterized more conveniently as follows.

Proposition 9. Let M(D) be the trace monoid presented by (Σ,D), and let
ϕD : Σ∗ → M(D) be the corresponding morphism. Then a set S ⊆ M(D)
is rational if and only if there exists a regular language R over Σ such that
S = ϕD(R).

By RAT(M(D)) we denote the set of rational subsets of M(D). Concerning
the relationship between the recognizable subsets of M(D) and the rational
subsets of M(D) the following results are known (see, e.g., [6]).

18 B. Nagy and F. Otto

Proposition 10. For each trace monoid M(D), REC(M(D)) ⊆ RAT(M(D)),
and these two sets are equal if and only if ID = ∅.

Thus, each recognizable subset of a trace monoid M(D) is necessarily ratio-
nal, but the converse only holds if ID is empty, that is, if D = Σ × Σ, which
means that the congruence ≡D is the identity. Thus, the free monoids are the
only trace monoids for which the recognizable subsets coincide with the rational
subsets.

We call a language L ⊆ Σ∗ a rational trace language, if there exists a de-
pendency relation D on Σ such that L = ϕ−1

D (S) for a rational subset S of the
trace monoid M(D) presented by (Σ,D). From Proposition 9 it follows that
L is a rational trace language if and only if there exist a trace monoid M(D)
and a regular language R ⊆ Σ∗ such that L = ϕ−1

D (ϕD(R)) =
⋃
w∈R[w]D. By

LRAT (D) we denote the set of rational trace languages ϕ−1
D (RAT(M(D))), and

LRAT is the class of all rational trace languages. In [13] the following result on
rational trace languages was established.

Theorem 2. LRAT (L=1(stl-det-local-CD-R(1)), that is, if M(D) be the trace
monoid presented by (Σ,D), where D is a dependency relation on the finite
alphabet Σ, then the language ϕ−1

D (S) is accepted by a stl-det-local-CD-R(1)-
system working in mode = 1 for each rational set of traces S ⊆M(D).

Here we are interested in more general trace languages. A language L ⊆ Σ∗ is
called a one-counter trace language, if there exist a dependency relation D on Σ
and a one-counter language R ⊆ Σ∗ such that L = ϕ−1

D (ϕD(R)) =
⋃
w∈R[w]D.

Analogously, a language L ⊆ Σ∗ is called a context-free trace language, if there
exist a dependency relation D on Σ and a context-free language R ⊆ Σ∗ such
that L = ϕ−1

D (ϕD(R)) =
⋃
w∈R[w]D [1, 4]. By LOC(D) we denote the set of

one-counter trace languages obtained from (Σ,D), and LOC is the class of all
one-counter trace languages. Further, by LCF(D) we denote the set of context-
free trace languages obtained from (Σ,D), and LCF is the class of all context-free
trace languages. The next theorem states that all context-free trace languages
are accepted by PD-CD-R(1)-systems.

Theorem 3. Let M(D) be the trace monoid presented by (Σ,D), where D is a
dependency relation on the finite alphabet Σ. Then

LCF(D) ⊆ L(PD-CD-R(1)),

that is, the language ϕ−1
D (ϕD(R)) is accepted by a PD-CD-R(1)-system for each

context-free language R ⊆ Σ∗.

Proof. Let L ⊆ Σ∗ be a context-free trace language, that is, there ex-
ists a context-free language R over Σ such that L = ϕ−1

D (ϕD(R)). As R is
context-free, there exists a grammar G = (V,Σ, S, P) in quadratic Greibach
normal form for R′ = R r {ε}. From G we construct a PD-CD-R(1)-system
M = (I,Σ, (Mi, σi)i∈I , V,⊥, I0, δ) as follows (cf. the proof of Proposition 3):

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 19

– I = { (A, a) | A ∈ V, a ∈ Σ, ∃ γ ∈ V ≤2 : (A→ aγ) ∈ P } ∪ {+},
– I0 = { (S, a) | ∃ γ ∈ V ≤2 : (S → aγ) ∈ P } ∪ {+ | ε ∈ L },
– the stateless deterministic R(1)-automata M(A,a) ((A, a) ∈ I) and M+ are

defined as follows:

(1) δ(A,a)(c) = MVR,
(2) δ(A,a)(a) = ε,
(3) δ(A,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,
(4) δ+(c) = MVR,
(5) δ+($) = Accept,

– the sets of successor indices are defined as σ(A,a) = σ+ = I for all (A, a) ∈ I,
– and the successor relation δ is defined as follows, where A ∈ V and a ∈ Σ:

(1) δ((S, a), a,⊥) = { (+,⊥) | (S → a) ∈ P }
∪ { ((B, b),⊥B) | (S → aB) ∈ P, (B, b) ∈ I }
∪ { ((B, b),⊥CB) | (S → aBC) ∈ P, (B, b) ∈ I },

(2) δ((A, a), a, A) = { ((B, b), ε) | B ∈ V r {S}, (B, b) ∈ I, (A→ a) ∈ P }
∪ { (+, ε) | (A→ a) ∈ P }
∪ { ((B, b), B) | (A→ aB) ∈ P, (B, b) ∈ I }
∪ { ((B, b), CB) | (A→ aBC) ∈ P, (B, b) ∈ I },

and δ yields the empty set for all other values.

It remains to show that L(M) = ϕ−1
D (ϕD(R)) =

⋃
u∈R[u]D.

Claim 1.
⋃
u∈R[u]D ⊆ L(M).

Proof. Assume that w ∈
⋃
u∈R[u]D. Then there exists a word u ∈ R such that

w ≡D u. If w = ε, then u = ε, and therewith ε ∈ L. From the definition of M
we see that in this case + ∈ I0, which implies that w ∈ L(M).

So assume that w 6= ε implying that u 6= ε, either. As w ≡D u, there exists
a sequence of words u = w0, w1, . . . , wn = w such that, for each i = 1, . . . , n,
wi is obtained from wi−1 by replacing a factor ab by ba for some pair of letters
(a, b) ∈ ID. We now prove that wi ∈ L(M) for all i by induction on i.

For i = 0 we have w0 = u ∈ R. Thus, w0 is generated by the grammar G,
and hence, it follows as in the proof of Proposition 3 that w0 is accepted byM.

Now assume that wi ∈ L(M) for some i ≥ 0, and that wi = xaby and
wi+1 = xbay for a pair of letters (a, b) ∈ ID. By our hypothesis M has an
accepting computation for wi = xaby, which is of one of the following two forms:

((S, a1), c · xaby · $,⊥)⇒m
M ((A1, a), c · x′aby′ · $,⊥α1)

⇒M ((A2, a2), c · x′by′ · $,⊥α2)
⇒∗M (+, c · $,⊥)
⇒M (+,Accept,⊥)

or
((S, b1), c · xaby · $,⊥)⇒m

M ((A1, b), c · x′aby′ · $,⊥β1)
⇒M ((B2, b2), c · x′ay′ · $,⊥β2)
⇒∗M (+, c · $,⊥)
⇒M (+,Accept,⊥),

20 B. Nagy and F. Otto

where in the first m cycles some letters from x and y are deleted, in this way
reducing these factors to x′ and y′, respectively. However, as (a, b) ∈ I, the
component automaton M(A1,a) can read across the letter b when looking for the
leftmost occurrence of the letter a. Thus,M also has an accepting computation
for wi+1 = xbay, which is of one of the following two forms:

((S, a1), c · xbay · $,⊥)⇒m
M ((A1, a), c · x′bay′ · $,⊥α1)

⇒M ((A2, a2), c · x′by′ · $,⊥α2)
⇒∗M (+, c · $,⊥)
⇒M (+,Accept,⊥)

or
((S, b1), c · xbay · $,⊥)⇒m

M ((A1, b), c · x′bay′ · $,⊥β1)
⇒M ((B2, b2), c · x′ay′ · $,⊥β2)
⇒∗M (+, c · $,⊥)
⇒M (+,Accept,⊥),

implying that wi+1 ∈ L(M). This completes the proof of Claim 1. 2

Claim 2. L(M) ⊆
⋃
u∈R[u]D.

Proof. From the definition of M we see that ε ∈ L(M) holds if and only if
ε ∈ R. So let ε 6= w ∈ L(M), and let

((S, an), c · w · $,⊥)⇒M ((An−1, an−1), c · wn−1 · $,⊥αn−1)
⇒M ((An−2, an−2), c · wn−2 · $,⊥αn−2)
⇒∗M ((A2, a2), c · w2 · $,⊥α2)
⇒M ((A1, a1), c · w1 · $,⊥α1)
⇒M (+, c · $,⊥)
⇒M (+,Accept,⊥)

be an accepting computation of M on input w = wn. If n = 1, then A1 = S,
and we see from the definition of δ that (+,⊥) ∈ δ((S, a1), a1,⊥) implies that
(S → a1) ∈ P , that is, w = w1 = a1 ∈ R.

For n > 1, we claim that, for each i = 1, . . . , n − 1, there exists a word
ui ∈ Σ∗ such that ui ≡D wi and αRi ⇒∗G ui. We prove this claim by induction
on i.

For i = 1 we have wi = a1. As n > 1, A1 6= S. From the reduction step

((A1, a1), c · w1 · $,⊥α1)⇒M (+, c · $,⊥),

we see that α1 = A1 and (+, ε) ∈ δ((A1, a1), a1, A1). Hence, (A1 → a1) ∈ P ,
and hence, we have αR1 = A1 ⇒G a1 = u1 = w1.

Now assume that, for some i ∈ {1, . . . , n− 2}, we have a word ui ∈ Σ+ such
that ui ≡D wi and αRi ⇒∗G ui hold. The above computation of M contains the
cycle

((Ai+1, ai+1), c · wi+1 · $,⊥αi+1)⇒M ((Ai, ai), c · wi · $,⊥αi).

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 21

Thus, wi+1 = uai+1v and wi = uv for some u ∈ Σ
(Ai+1,ai+1)
1

∗
and v ∈ Σ∗,

and αi+1 = βAi+1 and αi = βη, where ((Ai, ai), η) ∈ δ((Ai+1, ai+1), ai+1, Ai+1).
Hence, (Ai+1 → ai+1η

R) ∈ P , which implies that

αRi+1 = Ai+1β
R ⇒G ai+1η

RβR = ai+1α
R
i ⇒∗G ai+1ui.

As ui is letter-equivalent to wi = uv, we see that ui+1 = ai+1ui is letter-
equivalent to wi+1 = uai+1v. Further, as u ∈ Σ(Ai+1,ai+1)

1

∗
, (b, ai+1) ∈ ID for all

letters occurring in u, which means that

ui+1 = ai+1ui ≡D ai+1wi = ai+1uv ≡D uai+1v = wi+1.

This completes the inductive step.
Finally, from ((S, an), c ·w · $,⊥)⇒M ((An−1, an−1), c ·wn−1 · $,⊥αn−1), we

see that w = u′anv
′ and wn−1 = u′v′ for some word u′ satisfying (u′, an) ∈ ID,

and ((An−1, an−1),⊥αn−1) ∈ δ((S, an), an,⊥). Hence, (S → anα
R
n−1) ∈ P , and

we see that

S ⇒G anα
R
n−1 ⇒∗G anun−1 = un,

that is, un ∈ R. Further, un = anun−1 ≡D anwn−1 = anu
′v′ ≡D u′anv

′ = w.
This completes the proof of Claim 2. 2

Claims 1 and 2 together show that L(M) =
⋃
u∈R[u]D, which completes the

proof of Theorem 3. 2

An analogous result also holds for one-counter languages.

Theorem 4. Let M(D) be the trace monoid presented by (Σ,D), where D is a
dependency relation on the finite alphabet Σ. Then

OCL(D) ⊆ L(OC-CD-R(1)),

that is, the language ϕ−1
D (ϕD(R)) is accepted by a OC-CD-R(1)-system for each

one-counter language R ⊆ Σ∗.

Proof. Let L ⊆ Σ∗ be a one-counter trace language, that is, there exists a one-
counter language R over Σ such that L = ϕ−1

D (ϕD(R)). As R is a one-counter
language, there exists a one-counter automaton A = (Q,Σ, {C}, q0,⊥, δA, F)
for R, that is, for all w ∈ Σ∗, w ∈ R if and only if (q0, w,⊥) `∗A (q, ε,⊥)
holds for some final state q ∈ F . From A we construct a OC-CD-R(1)-system
M = (I,Σ, (Mi, σi)i∈I , {C},⊥, I0, δ) as follows (cf. the proof of Proposition 4):

1. I = (Q× {=, >} ×Σ) ∪ {+},
2. I0 = { (q0,=, a) | a ∈ Σ } ∪ {+ | ε ∈ L },
3. σ(q,>,a) = σ(q,=,a) = σ+ = I for all q ∈ Q and all a ∈ Σ,

22 B. Nagy and F. Otto

L(PD-CD-R(1))

LCF

44iiiiiiiiiiiiiiiii L(OC-CD-R(1))

OO

CFL

44jjjjjjjjjjjjjjjjjj
LOC

OO 44iiiiiiiiiiiiiiiii L=1(stl-det-local-CD-R(1))

OO

OCL

OO 44iiiiiiiiiiiiiiiii
LRAT

OO 44hhhhhhhhhhhhhhhh

REG

OO 44iiiiiiiiiiiiiiii

Fig. 1. Hierarchy of language classes accepted by various types of CD-R(1)-systems.
Each arrow represents a proper inclusion, and classes that are not connected by a
sequence of arrows are incomparable under inclusion.

4. the stateless deterministic R(1)-automata M(q,>,a), M(q,=,a) (q ∈ Q, a ∈ Σ),
and M+ are defined as follows:

(1) δ(q,=,a)(c) = MVR,
(2) δ(q,=,a)(a) = ε, if δA(q, a,⊥) is defined,
(3) δ(q,=,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,
(4) δ(q,>,a)(c) = MVR,
(5) δ(q,>,a)(a) = ε, if δA(q, a, C) is defined,
(6) δ(q,>,a)(b) = MVR for all b ∈ Σ satisfying (b, a) ∈ ID,
(7) δ+(c) = MVR,
(8) δ+($) = Accept,

5. and the successor relation δ is defined as follows, where q ∈ Q, a, b ∈ Σ, and
i ∈ {1, 2}:

(1) δ((q,=, a), a,⊥) = { ((q′,=, b),⊥) | (q′,⊥) ∈ δA(q, a,⊥), b ∈ Σ }
∪ { (+,⊥) | ∃q′ ∈ F : (q′,⊥) ∈ δA(q, a,⊥) }
∪ { ((q′, >, b),⊥C) | (q′,⊥C) ∈ δA(q, a,⊥), b ∈ Σ },

(2) δ((q,>, a), a, C) = { ((q′, >, b), Ci) | (q′, Ci) ∈ δA(q, a, C), b ∈ Σ }
∪ { ((q′, >, b), ε) | (q′, ε) ∈ δA(q, a, C), b ∈ Σ }
∪ { ((q′,=, b), ε) | (q′, ε) ∈ δA(q, a, C), b ∈ Σ }
∪ { (+, ε) | ∃q′ ∈ F : (q′, ε) ∈ δA(q, a, C) },

while δ yields the empty set for all other values. As in the proof of Theorem 3
it can now be shown that L(M) = ϕ−1

D (ϕD(R)) =
⋃
u∈R[u]D holds. 2

Thus, we have the inclusions of language classes depicted in the diagram in
Figure 1. As L=1(stl-det-local-CD-R(1) contains the non-context-free language
{w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c ≥ 0 }, and as this class does not contain the
one-counter language { anbn | n ≥ 0 }, we see that L=1(stl-det-local-CD-R(1) is

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 23

incomparable under inclusion to the language classes OCL and CFL. From Propo-
sition 6 we see that the class L(OC-CD-R(1)) is incomparable under inclusion to
the language class CFL.

Let Σ = {a, b, c}, and let L′ = {wam | |w|a = |w|b = |w|c ≥ 1,m ≥ 1 }. As
shown in Example 4 of [14] the language L′ is accepted by a stl-det-local-CD-
R(1)-system. However, L′ is not a context-free trace language.

Proposition 11. For each dependency relation D on Σ and each context-free
language R ⊆ Σ∗, L′ 6=

⋃
w∈R[w]D.

Proof. Let D be a dependency relation on Σ, and let R ⊆ Σ∗ be a language
such that L′ =

⋃
w∈R[w]D holds. We claim that from these assumptions it follows

that R is not context-free.

Claim 1. (a, b), (b, a) ∈ D.

Proof. Assume that (a, b) 6∈ D. As D is symmetric, this means that (b, a) 6∈ D,
either. Hence, (a, b), (b, a) ∈ ID implying that ab ≡D ba holds. For all n,m ≥ 1,
the word cn(ab)n · am ∈ L′, and hence, there exists a word u(n,m) ∈ R such
that

u(n,m) ≡D cn(ab)nam ≡D cnan+mbn.

This, however, contradict the assumption L′ =
⋃
w∈R[w]D, as cnan+mbn 6∈ L′.

Thus, (a, b), (b, a) ∈ D follows. 2

Claim 2. (a, c), (c, a) ∈ D.

Proof. Assume that (a, c) 6∈ D. As D is symmetric, this means that (c, a) 6∈ D,
either. Hence, (a, c), (c, a) ∈ ID implying that ac ≡D ca holds. For all n,m ≥ 1,
the word bn(ac)n ·am ∈ L′, and hence, there exists a word v(n,m) ∈ R such that

v(n,m) ≡D bn(ac)nam ≡D bnan+mcn.

This, however, contradict the assumption L′ =
⋃
w∈R[w]D, as bnan+mcn 6∈ L′.

Thus, (a, c), (c, a) ∈ D follows. 2

It follows that

D = {(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a)}

or
D = {(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}.

For all n,m ≥ 1, the word bnancn · am ∈ L′, and hence, there exists a word
w(n,m) ∈ R such that w(n,m) ≡D bnancnam. However, in each of these two
cases we see that [bnancnam]D = {bnancnam}, as (b, a), (a, c), (c, a) ∈ D, that
is, w(n,m) = bnancnam. Thus,

R ∩ (b+ · a+ · c+ · a+) = { bnancnam | n,m ≥ 1 },

which is not context-free. As the class of context-free languages is closed under
the operation of intersection with a regular language, it follows that R is not
context-free. This completes the proof of Proposition 11. 2

24 B. Nagy and F. Otto

Together with Proposition 6 this result we have the following consequences.

Corollary 3.
(a) LCF is incomparable under inclusion to L=1(stl-det-local-CD-R(1)).
(b) LCF is incomparable under inclusion to L(OC-CD-R(1)).
(c) LOC is incomparable under inclusion to L=1(stl-det-local-CD-R(1)).
(d) LCF (L(PD-CD-R(1)).
(e) LOC (L(OC-CD-R(1)).

Next we present a restricted class of PD-CD-R(1)-systems that accept exactly
the context-free trace languages.

Definition 3. Let M = (I,Σ, (Mi, σi)i∈I , V,⊥, I0, δ) be a PD-CD-R(1)-system
in strong normal form that satisfies the following condition:

(∗) ∀i, j ∈ I : Σ(i)
2 = Σ

(j)
2 implies that Σ(i)

1 = Σ
(j)
1 ,

that is, if two component automata erase the same letter, then they also read
across the same subset of Σ. With M we associate a binary relation

IM =
⋃
i∈I

(Σ(i)
1 ×Σ

(i)
2),

that is, (a, b) ∈ IM if and only if there exists a component automaton Mi such
that δi(a) = MVR and δi(b) = ε. Further, by DM we denote the relation DM =
(Σ ×Σ) r IM.

Observe that the relation IM defined above is necessarily irreflexive, but that
it will in general not be symmetric.

Theorem 5. Let M be a PD-CD-R(1)-system over Σ satisfying condition (∗)
above. If the associated relation IM is symmetric, then L(M) ∈ LCF(DM), that
is, L(M) is a context-free trace language. In fact, from M one can construct a
pushdown automaton B over Σ such that L(M) =

⋃
u∈L(B)[u]DM .

Proof. LetM = (I,Σ, (Mi, σi)i∈I , V,⊥, I0, δ) be a PD-CD-R(1)-system in strong
normal form on Σ. Assume that M satisfies condition (∗), and that the as-
sociated relation IM =

⋃
i∈I(Σ

(i)
1 × Σ

(i)
2) is symmetric. Then the relation

DM = (Σ × Σ) r IM is reflexive and symmetric, and so it is a dependency
relation on Σ with associated independence relation IM. Without loss of gen-
erality we may assume that all letters from Σ do actually occur in some words
of L(M), since otherwise we could simply remove these letters from Σ. From
the properties of M we obtain the following consequences:

1. As all words w ∈ L=1(M) are first reduced to the empty word, which is
then accepted by the accepting component automaton M+ of M, we see
that, for each letter a ∈ Σ, there exists a component automaton Mi such
that Σ(i)

2 = {a}.

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 25

2. If (a, b) ∈ IM, then a ∈ Σ
(i)
1 for all component automata Mi for which

Σ
(i)
2 = {b} holds.

3. If (a, b) ∈ IM, then (b, a) ∈ IM, too, and hence, b ∈ Σ(j)
1 for all component

automata Mj for which Σ
(j)
2 = {a} holds.

Let L = L(M). We claim that L is a context-free trace language over
the trace monoid defined by (Σ,DM). To verify this claim we present a
context-free language R ⊆ Σ∗ such that L =

⋃
u∈R[u]DM . The context-free

language R will be defined through a nondeterministic pushdown automaton
B = (Q,Σ, Γ, q0,⊥, δB , F) which is obtained as follows:

– Q = I ∪ {q0}, where q0 is a new state,
– F = {+}, which corresponds to the unique accepting component M+ ofM,

and
– the transition relation δB is defined as follows for all i ∈ Ir := I r {+},
a ∈ Σ, and A ∈ Γ :

(1) δB(q0, ε,⊥) = { (i,⊥) | i ∈ I0 },
(2) δB(i, a,⊥) = { (j, η) | (j, η) ∈ δ(i, a,⊥) },
(3) δB(i, a, A) = { (j, α) | (j, α) ∈ δ(i, a, A) }.

Now R = L(B) is the announced context-free language over Σ. It remains to
prove that L =

⋃
u∈R[u]DM holds.

Claim 1.
⋃
u∈R[u]DM ⊆ L.

Proof. The above construction is identical to the one used in the proof of The-
orem 1. Thus, it follows that R = L(B) is a sublanguage of L(M) that is
letter-equivalent to L(M).

Let w ≡DM u ∈ R, and let u = w0, w1, . . . , wn = w be a sequence of words
such that, for each i = 1, . . . , n, wi is obtained from wi−1 by replacing a factor
ab by ba for some pair of letters (a, b) ∈ IM. We now prove that wi ∈ L for all i
by induction on i.

For i = 0 we have w0 = u ∈ R, and so w0 ∈ L(M) by the considerations in
the previous paragraph. Now assume that wi ∈ L(M) for some i ≥ 0, and that
wi = xaby and wi+1 = xbay for a pair of letters (a, b) ∈ IM. By our hypothesis
M has an accepting computation for wi = xaby, which is of one of the following
two forms:

(i0, c · xaby · $,⊥)⇒k
M (i1, c · x1aby1 · $,⊥α1)⇒M (i2, c · x1by1 · $,⊥α2)
⇒l
M (i3, c · x2by2 · $,⊥α3) ⇒M (i4, c · x2y2 · $,⊥α4)
⇒∗M (+, c · $,⊥) ⇒M (+, c · $,Accept),

or

(i0, c · xaby · $,⊥)⇒k
M (j1, c · x1aby1 · $,⊥α1)⇒M (j2, c · x1ay1 · $,⊥α2)
⇒l
M (j3, c · x2ay2 · $,⊥α3) ⇒M (j4, c · x2y2 · $,⊥α4)
⇒∗M (+, c · $,⊥) ⇒M (+, c · $,Accept),

26 B. Nagy and F. Otto

where in the first k cycles some letters from x and y are deleted, in this way
reducing these factors to x1 and y1, respectively, Σ(i1)

2 = {a} = Σ
(j3)
2 and

Σ
(i3)
2 = {b} = Σ

(j1)
2 , and in the latter l cycles some letters from x1 and y1 are

deleted, reducing these factors to x2 and y2, respectively. As (a, b) ∈ IM, we see
from the above stated properties ofM that b ∈ Σ(i1)

1 . Hence, in the former case
we obtain the computation

(i0, c · xbay · $,⊥)⇒k
M (i1, c · x1bay1 · $,⊥α1)⇒M (i2, c · x1by1 · $,⊥α2)
⇒l
M (i3, c · x2by2 · $,⊥α3) ⇒M (i4, c · x2y2 · $,⊥α4)
⇒∗M (+, c · $,⊥) ⇒M (+, c · $,Accept),

while in the latter case we have the computation

(i0, c · xbay · $,⊥)⇒k
M (j1, c · x1bay1 · $,⊥α1)⇒M (j2, c · x1ay1 · $,⊥α2)
⇒l
M (j3, c · x2ay2 · $,⊥α3) ⇒M (j4, c · x2y2 · $,⊥α4)
⇒∗M (+, c · $,⊥) ⇒M (+, c · $,Accept).

Thus, we see that w = wn is accepted by M, which completes the proof of
Claim 1. 2

Claim 2. L ⊆
⋃
u∈R[u]DM .

Proof. Let w ∈ L = L(M), and let

(in, c · wn · $,⊥)⇒M (in−1, c · wn−1 · $,⊥αn−1)⇒M (in−2, c · wn−2 · $,⊥αn−2)
⇒M . . . ⇒M (i1, c · w1 · $,⊥α1)
⇒M (+, c · $,⊥) ⇒M (+, c · $,Accept)

be an accepting computation ofM on input w = wn. We claim that, for each j =
1, . . . , n, there exists a word uj ∈ Σ∗ such that uj ≡DM wj , and the pushdown
automaton B accepts when starting from the configuration (ij , uj ,⊥αj).

We prove this claim by induction on j. For j = 1 we have wj = a1 ∈ Σ,
where Σ(i1)

2 = {a1}, and either α1 = ⊥ and (+,⊥) ∈ δ(i1, a1,⊥), or α1 = ⊥A
for some A ∈ Γ and (+, ε) ∈ δ(i1, a1, A). From the definition of B we see that in
either case (i1, w1, α1) = (i1, a1, α1) `B (+, ε,⊥) holds. Hence, we simply take
u1 = a1 = w1, and then the above is an accepting computation of B starting
from the configuration (i1, u1, α1).

Now assume that, for some j ≥ 1, uj ≡DM wj , and that B accepts when
starting from the configuration (ij , uj ,⊥αj). The above computation ofM con-
tains the step

(ij+1, c · wj+1 · $,⊥αj+1)⇒M (ij , c · wj · $,⊥αj).

Thus, wj+1 = xaj+1y and wj = xy for some words x, y ∈ Σ∗ and a letter aj+1

satisfying Σ(ij+1)
2 = {aj+1}, ⊥αj+1 = γA and ⊥αj = γη for some γ ∈ Γ ∗ and

A ∈ Γ ∪ {⊥}, and (ij , η) ∈ δ(ij+1, aj+1, A). Also we see that (x, aj+1) ∈ IM.

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 27

Again from the definition of B it follows that (ij , η) ∈ δB(ij+1, aj+1, A), which
implies that B can perform the computational step

(ij+1, aj+1uj ,⊥αj+1) = (ij+1, aj+1uj , γA) `B (ij , uj , γη) = (ij , uj ,⊥αj).

Now let uj+1 be the word uj+1 = aj+1uj . Then

uj+1 = aj+1uj ≡DM aj+1wj = aj+1xy ≡DM xaj+1y = wj+1,

and B has an accepting computation starting from the configuration
(ij+1, uj+1,⊥αj+1).

Finally, for j = n we obtain a word u such that u ≡DM w and B has an
accepting computation starting from the configuration (in, u,⊥). As in ∈ I0, this
means that u ∈ R = L(B), as (q0, u,⊥) `B (in, u,⊥). 2

Now Claims 1 and 2 together show that L = L=1(M) =
⋃
u∈R[u]DM , which

completes the proof of Theorem 5. 2

If the given PD-CD-R(1)-system M is a OC-CD-R(1)-system, then the push-
down automaton B constructed in the proof above can easily be turned into a
one-counter automaton by deleting the transition δB(q0, ε,⊥) = { (i,⊥) | i ∈ I0 }
and by defining δB(q0, a,⊥) = { (j, η) | ∃i ∈ I0 : (j, η) ∈ δ(i, a,⊥) } for all a ∈ Σ.
Thus, we also have the following result.

Corollary 4. Let M be a OC-CD-R(1)-system over Σ satisfying condition (∗)
above. If the associated relation IM is symmetric, then L(M) ∈ LOC(DM), that
is, L(M) is a one-counter trace language. In fact, from M one can construct a
one-counter automaton B over Σ such that L(M) =

⋃
u∈L(B)[u]DM .

Observe that the systemM constructed in the proof of Theorem 3 is in strong
normal form, that it satisfies property (∗), and that the associated relation IM
coincides with the relation ID, and hence, it is symmetric. Thus, Theorems 3
and 5 together yield the following characterization.

Corollary 5. (a) A language L ⊆ Σ∗ is a one-counter trace language if and
only if there exists a OC-CD-R(1)-systemM in strong normal form satisfying
condition (∗) such that the relation IM is symmetric and L = L(M).

(b) A language L ⊆ Σ∗ is a context-free trace language if and only if there exists
a PD-CD-R(1)-systemM in strong normal form satisfying condition (∗) such
that the relation IM is symmetric and L = L(M).

5 Closure and Non-Closure Properties

As seen in Example 2 the language

L = { anv | v ∈ {b, c}∗, |v|b = |v|c = n, n ≥ 0 }

is accepted by a OC-CD-R(1)-system, while the language

L ∩ a∗ · b∗ · c∗ = { anbncn | n ≥ 0 }

28 B. Nagy and F. Otto

is not accepted by any PD-CD-R(1)-system (Prop. 5). This gives the following
non-closure result.

Corollary 6. The language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) are not
closed under intersection with regular languages.

Next we consider the closure under Boolean operations.

Proposition 12.

(a) The language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) are closed under
union.

(b) The language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) are neither closed
under intersection nor under complementation.

Proof. It is easily seen that these language classes are closed under union, as
a PD-CD-R(1)-system for the union L1 ∪ L2 of L1 and L2 can immediately be
constructed from PD-CD-R(1)-systems for L1 and L2. On the other hand, each
regular language is accepted by a OC-CD-R(1)-system. Hence, Corollary 6 shows
that these language classes are not closed under intersection. Finally, closure
under union and non-closure under intersection imply that these classes are not
closed under complementation, either. 2

The commutative closure com(L) of a language L ⊆ Σ∗ is the set of all words
that are letter-equivalent to a word from L, that is,

com(L) = ψ−1(ψ(L)) = {w ∈ Σ∗ | ∃u ∈ L : ψ(w) = ψ(u) }.

If L is accepted by a PD-CD-R(1)-system M, then from M we can construct
a pushdown automaton B for a context-free sublanguage E of L that is letter-
equivalent to L (Theorem 1). Obviously, the commutative closure com(L) of
L coincides with the commutative closure com(E) of E. For the dependency
relation D = { (a, a) | a ∈ Σ }, the trace monoid M(D) presented by (Σ,D)
is the free commutative monoid generated by Σ. Thus, com(E) =

⋃
w∈E [w]D

is simply the context-free trace language ϕ−1
D (ϕD(E)). Hence, it follows from

Theorem 2 that this language is accepted by a PD-CD-R(1)-systemM′. In fact,
the systemM′ can effectively be constructed from the pushdown automaton B,
and therewith from the given PD-CD-R(1)-system M. This yields the following
effective closure property.

Corollary 7. The language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) are ef-
fectively closed under the operation of taking the commutative closure.

Also it is easily seen that these language classes are closed under disjoint
shuffle, that is, if L1 ⊆ Σ∗ and L2 ⊆ Γ ∗ are languages in L(OC-CD-R(1)) or
L(PD-CD-R(1)), where Σ ∩ Γ = ∅, then the shuffle of L1 and L2 is also in
this language class. On the other hand, the following questions remain currently
open.

CD-Systems of Stateless R(1)-Automata with a Pushdown Store 29

1. Are the language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) closed under
product?

Remark. It may be possible to carry the construction for stl-det-local-CD-
R(1)-systems from [14] over to PD-CD-R(1)-systems. However, there is a
problem with the pushdown store: whenever a system M1 deletes the last
occurrence of a letter a from its tape, then the simulating automatonM′1 just
remembers this by changing the corresponding index from 1 to d. However,
this means that not only the erasing of the letter a is not performed, but also
the corresponding operation on the pushdown store is not executed. Hence,
from this point on the pushdown stores ofM1 andM′1 differ. Is there a way
to overcome this problem?

2. Are the language classes L(OC-CD-R(1)) and L(PD-CD-R(1)) closed under
Kleene-star and Kleene-plus?

3. Are they closed under reversal?
4. Are they closed under ε-free morphisms?
5. Are they closed under inverse morphisms?

Finally we take a short look at decision problems for OC-CD-R(1)- and PD-
CD-R(1)-systems. The membership problem for a language accepted by such
a CD-system is obviously decidable nondeterministically in linear space and
quadratic time. Further, from Theorem 1 and Corollary 1 it follows immediately
that the emptiness problem and the finiteness problem are decidable for these
classes of CD-systems. On the other hand, from the corresponding results for
stl-det-local-CD-R(1)-systems in [14] it follows that the regularity problem, the
inclusion problem, and the equivalence problem are all undecidable in general
for OC-CD-R(1)- and PD-CD-R(1)-systems.

References

1. I. Aalbersberg and G. Rozenberg. Theory of traces. Theoretical Computer Science
60 (1988) 1–82.

2. J. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown au-
tomata. In: G. Rozenberg and A. Salomaa(eds.), Handbook of Formal Languages,
Vol. 1: Word, Language, Grammar, Springer, Berlin, 1997, 111–174.

3. J. Berstel. Transductions and Context-Free Languages. Teubner, Stuttgart, 1979.

4. A. Bertoni, G. Mauri, and N. Sabadini. Membership problems for regular and
context-free trace languages. Information and Computation 82 (1989) 135–150.

5. H. Bordihn, M. Holzer, and M. Kutrib. Input reversals and iterated pushdown
automata: a new characterization of Khabbaz geometric hierarchy of languages.
In: C.S. Calude, E. Calude, and M.J. Dinneen (eds.), DLT 2004, Proc., LNCS
3340, Springer, Berlin, 2004, 102–113.

6. V. Diekert and G. Rozenberg (eds.). The Book of Traces, World Scientific, Singa-
pore, 1995.

7. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979.

30 B. Nagy and F. Otto

8. P. Jančar, F. Moller, and Z. Sawa. Simulation problems for one-counter machines.
In: J. Pavelka, G. Tel, and M. Bartošek (eds.), SOFSEM’99, Proc., LNCS 1725,
Springer, Berlin, 1999, 404–413.

9. M. Kutrib, H. Messerschmidt, and F. Otto. On stateless two-pushdown automata
and restarting automata. In: E. Csuhaj-Varjú and Z. Ésik (eds.), AFL 2008, Proc.,
Hungarian Academy of Sciences, 2008, 257–268.

10. M. Kutrib, H. Messerschmidt, and F. Otto, On stateless two-pushdown automata
and restarting automata; Int. J. Found. Comput. Sci. 21 (2010) 781–798.

11. H. Messerschmidt and F. Otto. Cooperating distributed systems of restarting au-
tomata. Int. J. Found. Comput. Sci. 18 (2007) 1333–1342.

12. H. Messerschmidt and F. Otto. On deterministic CD-systems of restarting auto-
mata. Int. J. Found. Comput. Sci. 20 (2009) 185–209.

13. B. Nagy and F. Otto. CD-systems of stateless deterministic R(1)-automata accept
all rational trace languages. In: A.H. Dediu, H. Fernau, and C. Martin-Vide (eds.),
LATA 2010, Proc., LNCS 6031, Springer, Berlin, 2010, 463–474.

14. B. Nagy and F. Otto. On CD-systems of stateless deterministic R-automata with
window size one. Kasseler Informatikschriften, 2/2010. Fachbereich Elektrotech-
nik/Informatik, Universität Kassel, 2010. https://kobra.bibliothek.uni-kassel.de/
handle/urn:nbn:de:hebis:34-2010042732682

15. B. Nagy and F. Otto. Finite-State Acceptors with Translucent Letters. BILC
2011, Proc., to appear.

16. F. Otto. Restarting automata. In: Z. Ésik, C. Martin-Vide, and V. Mitrana (eds.),
Recent Advances in Formal Languages and Applications, Studies in Computational
Intelligence Vol. 25, Springer, Berlin, 2006, 269–303.

