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Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem Zusammenhang zwischen einfachen
Molekülen und deren Verhalten in starken, kurzen Laserfeldern. Einerseits wird ver-
sucht, strukturelle Daten des Moleküls in den Elektronen- und Photonenspektren
wiederzuerkennen. Anderseits geht es darum, ein Bild der elektronischen Wellen-
funktion aus den spektralen Daten abzuleiten.

Mit Hilfe des Laserfeldes kann ein Elektron dem inneren Bereich des Moleküls entflie-
hen. Nach der Ionisation wird das nun freie Elektron weiter vom Laserfeld beschleu-
nigt, wobei das Elektron zusätzliche Energie vom Laserfeld aufnimmt. Ein solches
hochenergetisches Elektron wird im Laborversuch als ein above-threshold ionization
(ATI) Elektron wahrgenommen, d.h. ein Elektron, das mehr Photonen absorbiert
hat als nötig, um die Ionisationsbarriere zu überwinden. Wenn es vom Laserfeld
zurück zum Molekülkern getrieben wird, rekombiniert das Elektron mit einer be-
stimmten Wahrscheinlichkeit unter Ausstrahlung eines Röntgen- oder UV-Photons
zurück in den gebundenen Zustand. Dieser Prozess nennt sich high-harmonic gene-
ration—Hohe-Harmonischen-Erzeugung—(HHG), da bei einem Laserpuls mit meh-
reren optischen Zyklen die Frequenzen der erzeugten Photonen höhere Harmonische
der Laserfrequenz sind.

Nach der allgemeinen Einleitung im ersten Kapitel, beinhaltet das zweite Kapitel
eine Einführung in die Physik der starken und kurzen Laserfelder und deren Wech-
selwirkung mit Atomen und einfachen Molekülen. Da im Bereich von Laserfeldern,
deren Kräfte auf die Elektronen vergleichbar sind mit den inneratomaren Kräften,
Störungsrechnungen nicht mehr greifen, ist man für eine theoretische Beschreibung
auf andere Methoden angewiesen. Auf der einen Seite ist es für die einfachsten
Molekülen mit ein oder zwei Elektronen heutzutage möglich, das gesamte Laser-
Molekül-System durch eine numerische Integration der zeitabhängigen Schrödinger-
gleichung (TDSE) exakt zu beschreiben. In dieser Arbeit benutzen wir diese Metho-
de für einfache Modellsysteme mit nur einem Elektron und ein bis zwei räumlichen
Koordinaten. Auf der anderen Seite benutzen wir die strong-field approximation—
Starkfeldnäherung—(SFA) zur analytischen Beschreibung des Gesamtsystems. Hier
werden inneratomare Kräfte und durch das Laserfeld entstandene Kräfte jeweils zum
Teil vernachlässigt.

Das dritte Kapitel befasst sich mit dem Minimum in HHG-Spektren von diatomaren
homonuklearen Molekülen, das dadurch entsteht, dass die Beiträge der beiden Mo-
lekülkerne destruktiv interferieren. Dies geschieht, wenn die halbe De-Broglie-Wel-
lenlänge des rekombinierenden Elektrons gleich der internuklearen Distanz parallel

vii



viii ZUSAMMENFASSUNG

zum Impuls des Elektrons ist. Wir vergleichen das Interferenzminimum eines laser-
induzierten HHG-Prozesses mit dem eines Zusammenstoßes zwischen der gebunde-
nen Wellenfunktion und einem künstlich eingebrachten Gaußschen Wellenpaket. Es
wird gezeigt, dass das Interferenzminimum des HHG-Prozesses mit dem Minimum
des künstlichen Wellenpaketes übereinstimmt, so lange nur eine Elektronenbahn pro
Frequenz zum Spektrum beiträgt. In Normalfall tragen aber viele Elektronenbahnen
zu einer Frequenz im HHG-Prozess bei. In diesem Fall interferieren die Elektronen-
bahnen, was dazu führt, dass die Position des Interferenzminimums einer Streuung
unterliegt.

Wir zeigen, dass das Coulomb-ähnliche Potential eine signifikante Elliptizität der
emittierten Strahlung hervorruft. Beim Interferenzminimum dreht sich die Polarisa-
tionsrichtung der emittierten Strahlung um 180◦. Der Einfluss des Potentials nimmt
für höhere Energien des emittierten Photons ab. Daraus folgt eine geringere Ellip-
tizität und eine schärfere Drehung der Polarisationsrichtung bei hohen Frequenzen.
Weiterhin wird gezeigt, dass man das Interferenzminimum auch an der Emissionszeit
der HHG-Strahlung erkennen kann.

Im Jahr 2004 wurde gezeigt, dass der HHG-Prozess zur Abbildung von Elektro-
nenorbitalen benutzt werden kann (Itatani et al. [52]). Während der Erzeugung
der HHG-Strahlung verbringt das elektronische Wellenpaket eine Zeitdauer in der
Größenordnung eines halben optischen Zyklus im freien Raum und breitet sich
währenddessen räumlich aus. Deswegen liegt es nahe, das Wellenpaket näherungs-
weise als eine Summe über ebene Wellen zu beschreiben, die entlang der Laser-
polarisationsrichtung gerichtet sind. Dies nennt sich plane-wave approximation—
Ebene-Wellen-Näherung—(PWA). Die Rekombination des elektronischen Wellenpa-
ketes lässt sich dann durch eine eindimensionale Fourier-Transformation zuzüglich
einer zweidimensionalen Projektion des Elektronenorbitals beschreiben. Mit Hilfe
eines Referenzatoms und dessen HHG-Strahlung ist es möglich, die Rekombinati-
on zu invertieren und ein Bild des Orbitals aus experimentellen Daten zu erhalten.
Abgebildet wird hier die Wellenfunktion inklusive ihre Phase, nicht nur die Elektro-
nendichte.

Im vierten Kapitel zeigen wir, dass eine notwendige Bedingung für die tomographi-
sche Rekonstruktion eines asymmetrischen Molekülorbitals ist, dass das Wellenpa-
ket sich dem Kern des Moleküls nur von einer Seite aus nähert. Dies ist durch die
Verwendung von phasenstabilisierten Laserpulsen mit nur wenigen optischen Zyklen
realisierbar. Die exponentielle Abhängigkeit der Ionisierungsrate von der elektrischen
Feldstärke des Laserfeldes sorgt dafür, dass die genaue Form des Laserpulses nur be-
dingt relevant ist. Optimal sind Laserpulse mit 2–3 optischen Zyklen und einer Phase
von π/4 zwischen der Trägerwelle und der Einhüllenden. Die tomographische Re-
konstruktion verschiedener, einfacher Moleküle wird numerisch simuliert. Zusätzlich
zu der Rekonstruktion in “length form” wie in der Originalarbeit (Itatani et al. [52]),
führen wir eine Rekonstruktion in “velocity form” ein. Sie basiert auf der Beschrei-
bung der Rekombination mit Hilfe des Impulsoperators. Dies hat den Vorteil, dass
sich die internukleare Distanz mit ihr besser ermitteln lässt. Die Rekonstruktion in
“length form” funktioniert nicht in der Nähe einer Knotenebene eines antisymmetri-
schen Molekülorbitals und auch nicht für asymmetrische Molekülorbitale. Bis jetzt
wurde kein Weg gefunden, diese Probleme zu beseitigen.
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Im fünften Kapitel beschäftigen wir uns mit dem Lewensteinschen Modell für HHG,
welches auf der SFA basiert. Der HHG-Prozess lässt sich im Lewensteinschen Modell
als eine Summe über Elektronenbahnen beschreiben. Dies erhalten wir durch eine
explizite Evaluation der Integrale über den Impuls, die Ionisations- und die Rekom-
binationszeit des Elektrons. Wir drücken die exakten und komplexen Ionisations-
und Rekombinationszeiten bezüglich der reellen Zeiten des klassischen Modells aus.
Dies ermöglicht es, den Beitrag individueller Elektronenbahnen zum HHG-Spektrum
numerisch schnell zu berechnen. Auf ähnliche Art berechnen wir die entsprechenden
Beiträge zum ATI-Spektrum. Die Ergebnisse werden anschließend verwendet, um
eine bessere Bestimmung der Eignung eines Laserpulses zur Benutzung in einer
tomographischen Rekonstruktion zu erreichen.

Mit Hilfe der SFA-Rechnungen wird ebenfalls gezeigt, dass bei Benutzung extrem
kurzer Laserpulse HHG-Frequenzen mit bestimmten ATI-Impulsen verknüpft wer-
den können. Dies basiert auf der gemeinsamen Ionisationszeit der dominierenden
Elektronenbahnen der beiden Prozesse. Wir beschreiben die Verknüpfung zwischen
einer HHG-Frequenz und einem ATI-Impuls mit Hilfe der relativen Beiträgen der re-
levanten Elektronenbahnen. Wir demonstrieren den Zusammenhang zwischen HHG
und ATI in eindimensionalen Lösungen der TDSE. Da die PWA in 1D weniger gut
zu funktionieren scheint als in 2D oder 3D, erwarten wir eine stärkere Verknüpfung
zwischen HHG und ATI in Rechnungen mit einer höheren Anzahl an Dimensionen
oder in Experimenten. Solche Rechnungen oder Experimente wurden bis jetzt noch
nicht ausgeführt.

Außerdem schlagen wir eine Methode vor, um die tomographische Rekonstrukti-
on mit Informationen aus ATI-Spektren zu ergänzen, während bis jetzt nur HHG-
Spektren zur Rekonstruktion benutzt wurden. Dazu wird die Abhängigkeit des ATI-
Spektrums von der räumlichen Orientierung eines Moleküls im Vergleich zum ATI-
Spektrum des Referenzatoms benutzt, um die Bestimmung des rekombinierenden
Wellenpaketes zu verbessern. Angesichts der Tatsache, dass die tomographische Re-
konstruktion in eindimensionalen Rechnungen nicht zu funktionieren scheint, haben
wir unseren Ansatz zur Verbesserung der Rekonstruktion noch nicht vollständig
prüfen können. Die Entwicklung von Lasern mit Wellenlängen länger als 2000 nm
und der Fortschritt bei der Erzeugung von geformten Laserpulsen werden möglicher-
weise dazu beitragen, dass sich in Zukunft die tomographische Rekonstruktion von
Molekülorbitalen weiter verbreiten wird.

Im sechsten Kapitel führen wir einen numerischen Algorithmus ein, um die Qua-
lität einer tomographischen Rekonstruktion nachträglich zu verbessern. Im Orts-
und Impulsraum werden wiederholt Filter auf das Orbital angewendet, die auf phy-
sikalischen Kenntnissen über das Molekül oder den Prozess der tomographischen
Rekonstruktion basieren. Im Ortsraum machen wir es uns zu Nutze, dass das Orbi-
tal eine begrenzte räumliche Ausdehnung hat, und im Impulsraum beschränken wir
die Variation des ursprünglichen Orbitals. Im Idealfall konvergiert der Algorithmus
zum exakten Orbital. Es wird gezeigt, dass der Algorithmus manche Kenngrößen
eines 2D-Modells des HeH2+-Kations sowie anderer Moleküle reproduzieren kann.
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Chapter 1

Introduction

In this thesis we occupy ourselves with atoms and simple molecules subjected to
strong laser fields. The main topic is the relationship between atomic and molecular
properties such as the geometry of the orbital on the one hand, and their strong-
field responses on the other hand. We are interested in molecular imaging, i.e., we
aim at researching how much we can find out about a molecule from its strong-field
response. Because the strong-field processes take place on femtosecond timescales,
they are in principle suitable for the study of ultrafast electronic processes such
as chemical reactions. The relatively low cost and easiness of handling of modern
lasers adds to the attractiveness of using strong-field processes for molecular imaging.
Therefore it is not surprising that in recent years a lot of attention of the atomic
physics community has gone in this direction.

To study molecular imaging theoretically, we solve the time-dependent Schrödinger
equation (TDSE) numerically and compare the outcome with simple models. In
chapter 3, the focus lies on the effect of molecular features on the spectra. By better
understanding the complicated behavior already exhibited by very simple molecu-
lar models, we hope to pave the way for molecular imaging of more complicated
molecules in experiment. Molecular tomography, i.e., recovering a full image of the
electronic orbital from the spectra, is the topic of chapter 4. Here we make use of
numerical simulations of the experimental procedure and semi-classical calculations
that express the strong-field yields in terms of electronic trajectories. We supply the
experimentalist with some refinements to the tomographic scheme. In chapter 6 we
propose a algorithm that can be used to improve the reconstructed orbital after the
experiment has been performed.

Strong-field physics

Under the influence of the laser field, an electron can escape from the core region.
Because the laser field is turned on longer than the time scales associated with
ionization, the electron can be further accelerated after leaving the core. Such an
electron can be experimentally detected in the far field as a so-called above-threshold-
ionization (ATI) electron. Instead of simply escaping, many other processes can
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occur, especially if the electron gets driven back to the core region by the laser
field. Because of the spatial spreading the electron wave packet undergoes while
away from the Coulombic potential in the core region, it usually just passes the core
region without any interaction. Alternatively, the now highly energetic electron can
also recombine into the bound state under the emission of a single highly-energetic
photon. These highly-energetic photons are emitted coherently and can therefore
be observed experimentally as high-harmonics of the incident laser. This process is
called high-harmonic generation (HHG) (Ferray et al. [33]).

The combination of laser parameters and ionization potential of the atom or molecule
are chosen such that we are in the high-intensity, low-frequency ‘tunneling’ regime,
which allows for easier and more successful interpretation of spectral characteristics
in terms of molecular properties than the low-intensity, high-frequency ‘multiphoton’
regime. The intensities considered in this thesis will mainly lie in the range of 1014 to
1015 W/cm2 at the standard Ti:Sapphire laser wavelength of 780 nm. This amounts
to electric field strengths on the order of 0.1 atomic units (a.u.). Expressed in atomic
units, the ionization potential of an hydrogen atom is 0.5 a.u. This means that the
additional force the charged particles experience because of the laser is comparable
to the natural Coulombic forces inside an atom or molecule. Therefore we cannot use
any perturbative method to describe the complete system. In order to understand
and describe qualitatively and quantitatively the physical processes associated with
subjecting an atom or molecule to a strong laser field, we have to consider both
the Coulombic and laser forces simultaneously and completely. However, for an
understanding of the underlying physics it will prove to be very helpful to separate
the generation process into several steps in which either the molecular or laser forces
dominate the behavior. Such an approach is provided for example by the strong-field
approximation (SFA) (Lewenstein et al. [71]).

In chapter 2 we give a bit more elaborate introduction to the strong-field processes
HHG and ATI. Especially noteworthy in this respect is the three-step model for HHG
(Corkum [25]), in which the HHG generation process is divided into three steps; in
the first step, the electron tunnels out from the Coulombic potential under the
influence of the laser field. During the second step the electron is in the continuum,
and is accelerated by the laser field only. Thirdly, if the electron comes back to the
core region, it can recombine with the parent ion. The Lewenstein model (Lewenstein
et al. [71]) is a more quantum-mechanical formulation of the three-step model for
HHG. It can be used to explain qualitatively and sometimes quantitatively spectral
characteristics and will be used at many places in this thesis.

We will only consider the contribution from the least bound electron to the strong-
field processes, i.e., we will adopt the single-active electron (SAE) approximation.
Upon returning to the core, the electron can also kick out another electron, leading
to a doubly-ionized atom or molecule in a process called nonsequential double ioniza-
tion. This is an example of a multi-electron process that we will not address in this
thesis. Additionally, all electrons of the atom or molecule contribute to some extent
to all strong-field processes (Gordon et al. [44]; Patchkovskii et al. [99, 100]; Santra
and Gordon [111]; Zhao et al. [137]). For some molecules, under certain conditions
the contribution from lower orbitals to the HHG spectrum can even dominate over
that of the highest occupied molecular orbital (HOMO) (Smirnova et al. [116]). This
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is another aspect of strong-field processes that requires more thorough investigation
with molecular imaging in mind, but it is not the subject of this thesis.

HHG spectra

In chapter 3 we mainly study the interference minimum in HHG spectra that arises
when the emissions from the two nuclei of a homonuclear diatomic molecule cancel
(Lein et al. [67, 68]). The demonstration of this minimum was the first application of
HHG towards imaging. We compare the HHG spectra generated by a laser pulse and
the harmonics that are created by artificially introducing a Gaussian electron wave
packet to a laser-free system in a numerical calculation. This allows us to separate
the features in the HHG spectrum that come from either the tunnel ionization or the
laser-specific propagation from those that are caused by the Coulombic potential or
the recombination (van der Zwan and Lein [143]). We can therefore test models of
the harmonic-generation process. We consider not only the intensity, but also the
polarization of the emitted harmonics. We find that generally the polarization of
the emitted harmonics comes from the recombination step.

Using some very artificial laser pulses we disentangle the contributions from the indi-
vidual electron trajectories to the spectrum. A single trajectory behaves exactly as
classically predicted, but the interferences between multiple trajectories can exhibit
themselves in surprising ways. In addition, we consider the harmonics from a mole-
cule with two almost degenerate bound states to study the phase of the continuum
wave packet. Next we perform a time-frequency analysis of the emitted harmonics.
We observe the two-center interference also in the emission time of the harmonics.

In a calculation where the TDSE is solved numerically, the HHG spectrum is found
with a rapidly oscillating time-translation phase superimposed on it. We show that
it is possible to remove this additional phase factor. Then the harmonic phase from
a numerical calculation follows the expected pattern.

Molecular orbital tomography

Molecular orbital tomography is a method to use HHG spectra to directly image an
electronic orbital including its internal phase differences. We devote chapter 4 to this
method that takes molecular imaging using strong-field processes to the extreme. It
was introduced in 2004 by the Corkum group at the National Research Council of
Canada (Itatani et al. [52]). In short, the electronic wave packet spends on the order
of half a laser cycle in the continuum—away from the Coulombic potential—for the
short HHG trajectories. During this time the electron wave packet will spread out
considerably and become much larger than most molecules. In other words, the
continuum wave packet effectively only depends on the laser polarization direction
and not on the perpendicular direction before recombination.

Additionally ignoring the Coulombic potential on the continuum wave packet comes
naturally although still with considerable loss of accuracy. Then the returning con-
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tinuum wave packet can be described as a sum over plane waves oriented along the
laser polarization axis. This means the interaction between the bound state and the
continuum wave packet during recombination becomes similar to a 1D Fourier trans-
form of the bound state. Many 1D Fourier transforms from different orientations of
the molecule in the laser field can be combined to obtain a 2D Fourier transform of
the orbital. This 2D Fourier transform can be inverted to obtain a 2D projection of
the electronic orbital in the spatial domain. The orbital retrieved this way can have
positive and negative lobes, or even complex ones in case of a transitional starting
state.

We simulate the molecular tomographic scheme by solving the TDSE numerically for
different orientations of the molecule in the laser field. In addition to the original
length-form reconstruction, we introduce a velocity-form reconstruction based on
momentum matrix elements (van der Zwan and Lein [141]). It has the disadvantage
of using only the HHG radiation polarized parallel to the incident laser pulse, thereby
possibly reducing the accuracy of the method. However, in the past it was shown
that momentum matrix elements (velocity form) are better suited than dipole ma-
trix elements (length form) to extract molecular properties from experimental HHG
spectra (Chirilă and Lein [22]). Therefore it lies in the line of expectation that also
reconstructing the complete molecular orbital will function better in velocity form
than in length form, and indeed we find that we obtain more accurate results using
the velocity-form reconstruction equation. The length form tends to overestimate
the internuclear distance of a H+

2 -molecular ion.

Reconstruction of asymmetric orbitals

We show that the tomographic reconstruction is actually only possible in two cases;
either if the molecular orbital is gerade or ungerade, or if the continuum wave packet
approaches the core region from one side only (van der Zwan and Lein [142]). In
all other cases the asymmetry of the molecule causes problems. The reason is that
contributions from the two directions with which the wave packet can move along
the laser polarization axis contribute with nontrivial phases to the spectrum and
their contributions cannot be disentangled anymore.

For the reconstruction of a general orbital without symmetry, the desired behavior
of the wave packet returning from one side only can be achieved using extremely
short laser pulses. We perform a rather simple semi-classical calculation consisting
of a sum over classical trajectories weighted with their exponential tunneling rate
and a wave-packet-spreading factor from the Lewenstein model. This allows us to
make plots showing the probability of return versus the momentum of the returning
electron for many different laser pulses. Suitable for reconstructing a general orbital
is a continuum wave packet that has a broad spectrum on the positive momentum
side, and no contributions with negative momenta, or vice versa.

An extremely short pulse is given by an envelope, that determines the length of the
pulse, times a carrier sine wave that oscillates with the fundamental frequency of the
pulse. Such a pulse can be characterized by the envelope width, the envelope function
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and the carrier-envelope phase (CEP), which determines the offset of a carrier wave
peak from the maximum of the envelope. We find that the best pulses for the
reconstruction of an asymmetric orbital are few-cycle pulses with a CEP around
0.25π. Experimentally, CEP stabilization is a necessary ingredient for reconstructing
asymmetric molecules. The exact parameterization of the envelope function is not so
important, due to the exponential dependence on the field strength of the tunneling
rate (van der Zwan and Lein [142]).

Continuum wave packet

To perform the tomographic reconstruction, i.e., to obtain the molecular orbital,
one needs to have information about the generated HHG spectrum and about the
continuum wave packet generated by the laser pulse. Alternatively, one can deduce
the composition of a continuum wave packet from the harmonic spectrum and the
bound state. One of the biggest challenges before any molecular reconstruction can
be made is determining the composition of the molecular continuum wave packet.
In the original experiment (Itatani et al. [52]), the known bound-state orbital and
measured HHG spectrum of a reference atom were used to calculate the composition
of the continuum wave packet for the reference atom. A reference atom with roughly
the same ionization potential as the molecule studied was chosen. In the three-step
model for HHG, the first two steps (ionization and propagation in the laser field) are
then the same for both systems. Consequently, the composition of the continuum
wave packet determined from the reference atom was also used for the molecule.

The approximation that a laser pulse generates identical continuum wave packets
for an atom and molecule with the same ionization potential is clearly very rough.
This can already be seen from the fact that a molecule has an ionization rate that
depends on the spatial orientation of the molecule in the laser field, whereas an atom
is spherically symmetric. Already in the original work, the tomographic scheme was
improved by also incorporating the total orientation-dependent ionization yield into
the scheme. This replaces the approximation that the continuum wave packet is
the same for the molecule and the reference atom with the approximation that
the molecular continuum wave packet has the same frequency dependence for all
orientations of the molecule in the laser field.

We present a theoretical analysis of the consequences of using an imperfect contin-
uum wave packet for the reconstruction. The molecular orbital is reconstructed with
a complex phase that is easily removed. If the harmonic emission time is different
for the atom and molecule, this corresponds to a linear harmonic phase difference
between the two. This leads to an additional distortion of the reconstructed orbital.

Link between HHG and ATI

In the traditional case of multi-cycle or even semi-infinite (cw) pulses generating
HHG and ATI, both HHG and ATI peaks have complex contributions from many
different trajectories. Initially it was thought there would be a direct correspondence
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between the two spectra (see Toma et al. [124] and references therein). It is possi-
ble to express the harmonic yield as a sum over ATI channels plus recombination
(Kuchiev and Ostrovsky [59, 60]). However, to the best of our knowledge no concrete
link between individual HHG and ATI peaks exists as in general it is not possible
to disentangle the contributions from the different trajectories. For extremely short
laser pulses this link turns out to be possible. The reason is that during those
pulses only a very limited number of trajectories contribute to each HHG or ATI
peak. Taking also advantage of the exponential dependence of the ionization rate
on the field strength, we find strong one-to-one links from HHG peaks to ATI peaks
for many different pulses and harmonic frequencies. The links are based on shared
birth times between HHG and ATI peaks.

Since the orbital geometry also affects the ionization dynamics, the conventional
tomographic scheme does not provide us with the optimal continuum wave packet
composition. With optimal we do not mean the completely physical description of
the continuum wave packet, as for that we would have to go beyond plane waves and
the reconstruction becomes impossible, but the plane-wave prefactors that give rise
to the best reconstruction possible. We propose a method to incorporate the ATI
electrons into the tomographic reconstruction procedure that so far is only based on
HHG. We still assume that the atomic and molecular continuum wave packet differ
only by real factors. However, it is no longer assumed that the atomic and molecular
continuum wave packet share the same frequency dependence. Unfortunately, we
found it impossible to test the incorporation of ATI electrons into the tomographic
procedure in 1D simulations. We have not yet performed any 2D or 3D simulations
to test the method.

SFA expressions

In chapter 5 we use the Lewenstein model to find semi-classical expressions for
the HHG and ATI amplitudes containing sums over classical trajectories. For the
ATI-case, Milošević et al. performed the integration over the birth time using the
saddle-point method (Milošević et al. [87, 88]). In an analogue way we perform the
integration over either only the recombination time or over both the birth and re-
combination time in HHG using the saddle-point method. In the latter case the sum
over classical trajectories can be performed without any further complex integrations
or other numerically intensive calculations. The saddle-point times, that represent
the birth and if applicable the recombination times, are in general complex. To
evaluate the saddle-point expressions directly we would therefore need to know the
electric field strengths at complex times. The integration over time in the action
makes this approach rather complicated. Therefore we expand the full saddle-point
expressions around easily calculated classical saddle-point times. We finally arrive
at expressions that are very easily calculated numerically, and that can be used to
study spectral properties in terms of classical trajectories conveniently.

We use these expressions in determining the link between HHG and ATI spectra,
and in investigating the suitability of a laser pulse for molecular orbital tomography.
We quantify the suitability of a pulse for conventional tomography. Additionally,
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the SFA expressions allow us to quantify the one-to-one links between HHG and
ATI peaks and to concretely prescribe the recipe for including ATI electrons in the
tomographic reconstruction. Therefore we can also quantify the suitability of a laser
pulse for performing tomographic reconstructions with additional information from
ATI electrons.

Error reduction

We show that it is possible to improve the quality of the tomographic reconstruction
of a molecular orbital using a postprocessing algorithm in chapter 6. The algorithm
is based on the algorithms that are widely used for the phase-retrieval problem,
i.e., when the amplitude but not the phase of the Fourier transform of an abject are
known (Fienup [34]). Iteratively we apply filters to the orbital that represent physical
knowledge about either the orbital or the tomographic reconstruction scheme. One
of these filters forces the orbital to be nonzero only in an area around the center
of the molecule. This area is then dynamically shrunk (Chapman et al. [17]). The
error reduction algorithm not only removes density located far away from the center
of the molecule that is easily identified as erroneous, but also partially recovers some
molecular features in the core region.
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Chapter 2

Strong-field physics

Unless noted otherwise, we work in atomic units.

2.1 Time-dependent Schrödinger equation

The quantum-mechanical processes that are the topic of this thesis are governed by
the time-dependent Schrödinger equation (TDSE). For the numerical results pre-
sented in this thesis we solve the TDSE numerically in either one or two dimensions
for a molecular ion with a single electron. For HHG we consider two dimensions
because in 2D many of the 3D characteristics of strong field processes are already
present, such as the existence of directions perpendicular and parallel to the laser
polarization axis. On the other hand, the TDSE can be solved very quickly, allowing
the TDSE to be solved for many alignment angles of the molecule in the laser field.
If also ATI electrons are considered, we resort to one-dimensional simulations be-
cause of the increased numerical effort. The TDSE is solved using the split-operator
method (Feit et al. [31]; Fleck et al. [35]), and the ground-state wave function is
found by imaginary-time propagation (Kosloff and Tal-Ezer [57]). More details on
the numerics can be found in appendix A.1.

For a diatomic molecule in a laser field in the single-active electron approximation,
the TDSE for a 2D model reads

i
∂ψ(r, t)

∂t
= Ĥψ(r, t), (2.1a)

Ĥ =
p̂2

2
+ V (r) + r · E(t), (2.1b)

V (r) = − Z1
√
(
r− R

2

)2
+ a2

− Z2
√
(
r + R

2

)2
+ a2

, (2.1c)

where p̂ is the momentum operator, r =
(
x
y

)
, V is a softcore potential with softcore

parameter a2 and nuclear charges Z1 and Z2, and E(t) is the time-dependent electric
field of the laser pulse. As we want to study the relationship between molecular
characteristics and emitted spectra, we will consider different orientations of the
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molecule in the laser field. The internuclear axis R makes an angle θ with respect
to the main laser polarization axis x.

The total harmonic emission spectrum is calculated from the numerical solution of
the TDSE as

I(ω) = |α(ω)|2, α(ω) =

∫

W (t)〈α(t)〉eiωtdt, (2.2a)

〈α(t)〉 = 〈ψ(r, t)|∇V (r) + E(t)|ψ(r, t)〉, (2.2b)

where 〈α(t)〉 is the dipole acceleration and I(ω) is proportional to the intensity
of the emitted radiation at frequency ω. Here W (t) is a standardly used temporal
window that prevents high-frequency artifacts at the boundaries of the integration.
We use a Welch window

W (t) = 1 −
(
t− Tprop/2

Tprop/2

)2

, (2.3)

where Tprop is the total propagation time.

In the 1D case the ATI spectrum is also found from the numerical solution of the
TDSE. Experimentally, the ATI spectrum is given by the energy distribution of the
emitted electrons at the detector. The ATI spectrum is therefore measured far away
from the molecule and after the pulse is over. Numerically we can get a good estimate
of the ATI spectrum if we consider the Fourier transform of the wave function far
away from the nucleus after the laser pulse is over. To also allow slow ATI electrons
to leave the nuclear region, we propagate the system for two more laser cycles after
the pulse is over. We filter out the bound state from the wave function using

ψATI(x) =







0 for |x| ≤ r1
(

sin
(
|x|−r1

r2−r1

π
2

))2
ψ(x, Tprop) for r1 < |x| < r2

ψ(x, Tprop) for |x| ≥ r2,

(2.4)

where we set r1 = 18 and r2 = 20. We obtain the ATI momentum spectrum A(p)
from ψATI(x) as

M(p) =
1√
2π

∫

ψATI(x)e
−ipxdx, (2.5a)

A(p) = |M(p)|2 . (2.5b)

If the molecule was ionized completely, the ATI spectrum A(p) would integrate to
1.

2.2 Semi-classical models

The most important characteristic of atomic or small molecular systems subjected
to a strong field is the Keldysh parameter (Keldysh [55]). Since laser fields per-
turb the Coulombic potential, they may cause ionization because of the overlap
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between the unperturbed bound state and continuum states in the full potential.
There are two pictures to visualize the ionization; firstly we can consider the laser
field as quasi-static in which case the electron has time enough to tunnel through
any potential barriers. Secondly, we can imagine a quickly-varying laser field that
transmits energy to the electron as it absorbs photons from the field. The Keldysh
parameter tells us which of these pictures is the more appropriate one. In Keldysh
theory (Keldysh [55]), there is an imaginary time associated with the tunneling pro-
cess that is calculated by inverting the classically-forbidden region. One obtains a
real time that is multiplied with i to obtain the imaginary tunneling time.

If we compare the absolute value of the tunneling time with the frequency of the
laser pulse, we can approximate whether the electron has enough time to tunnel
through the barrier. If this is the case, the first picture is the more accurate one and
we are in the ‘tunneling’ regime, if not, the electron cannot tunnel and we are in
the ‘multiphoton’ regime. To quantify this, we use the Keldysh parameter (Keldysh
[55])

γ =
√

2Ip
ω

E0
, (2.6)

where ω is the laser frequency, Ip is the ionization potential and E0 is the peak of
the laser electric field. We are in the multiphoton regime if γ > 1 and we are in
the tunneling regime if γ < 1. This is of course not a black-and-white transition;
close to γ = 1, we might observe features of the radiation that can only be easily
explained in the other picture.

2.2.1 Three-step model for HHG

In the tunneling regime, in which we will stay in this thesis, the HHG process
can be described remarkably well using a simple semi-classical model that describes
it in three distinctive steps and is therefore known as the ‘three-step model’ or
‘simple-man’s model’ (Corkum [25]). In the first step the electron tunnels out from
the Coulombic potential under the influence of the laser field. Ionization takes
predominantly place around the peak of the electric field. In Fig. 2.1 we have
depicted this situation for the 2D H+

2 model of section 3.1 placed in a laser field
with intensity I = 5 × 1014 W/cm2 and wavelength λ = 780 nm. The plot shows
the potential as it is seen by the molecule at the peak of the electric field. The blue
dotted line is drawn at the bound-state energy −30.2 eV and indicates the tunneling
through the potential barrier

The second step of the three-step model is free propagation in the laser field. With
‘free’ we mean that the electron does not experience the Coulomb attraction from the
nucleus in this step. Of course this is an approximation. However, since the electron
travels tens or hundreds of atomic units for the laser parameters considered in this
thesis, the error we make is acceptable for most harmonic orders. On the other
hand, by making this approximation, the propagation in the laser field becomes a
classical problem that can be solved easily and that provides us with much physical
insight into the process. The third step of the three-step model is recombination
into the bound state. It can take place if the laser drives the electron back to the
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Figure 2.1: (Color online) Coulombic potential (black solid line) and effective po-
tential (black dashed line) for a molecule at the peak of the electric field.

core region. If the electron recombines, it emits the energy it acquired in the laser
field as a single high-frequency photon, the high-harmonic.

A harmonic spectrum exhibits a plateau in which the harmonic intensity is almost
constant beyond the first few very strong harmonics. This can be seen for instance
in Fig. 3.6 on page 30 in which harmonics for a 2D H+

2 model in different laser pulses
and for different alignment angles are plotted. At a certain energy there is a cutoff
beyond which the harmonics are strongly suppressed. Depending on the pulse length
the plateau region takes different forms; for long pulses and inversion-symmetric
molecules the interference between different laser half-cycles leads to the formation of
peaks only at odd harmonics1 (see e.g. Lein and Chirilă [66] and references therein),
whereas the interference between short and long trajectories is clearly visible in the
harmonic spectrum for shorter pulses (see section 3.2).

Assuming the electrons are born at time at x = 0 with v = 0 (Corkum [25]), the
classical equations of motion for an electron born at time t′ up to time t are given

1Consider the harmonic emission of a molecule with inversion symmetry subjected to a cw laser
field with period T . Since

〈α(t)〉 = −〈α(t + T/2)〉,

the Fourier-transformed dipole acceleration is given by

α(ω) =

Z ∞

−∞
〈α(t)〉eiωtdt =

∞
X

n=−∞
einωT

“

1 − eiω T

2

”

Z T/2

0

〈α(t)〉eiωtdt.

Constructive interference between the different half-cycles therefore only occurs at odd multiples of
the fundamental laser frequency.
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by

a(t) = −E(t), (2.7a)

v(t, t′) = −
∫ t

t′
E(t′′)dt′′ = A(t) −A(t′), (2.7b)

x(t, t′) =

∫ t

t′
A(t′′)dt′′ − (t− t′)A(t′), (2.7c)

(2.7d)

with the vector potential

A(t) = −
∫ t

−∞
E(t′)dt′. (2.8)

Solving Eqs. (2.7) for the electron in the laser field we obtain the classical trajectories.
Details can be found in appendix A.4.1. With the help of such a calculation we can
explain many of the features of HHG spectra. Most importantly, the harmonic
cutoff is given by the kinetic energy of the most energetic electrons that return to
the core region plus the ionization potential, as the electron regains this energy
upon recombining. Classically the harmonic energy of the cutoff ωcutoff is given by
(Corkum [25])

ωcutoff = 3.17Up + Ip, (2.9a)

Up =
E2

0

4ω2
, (2.9b)

where Up is the ponderomotive potential or average kinetic energy of a free electron
in the laser field. Quantum-mechanically there is a correction to this formula and
the cutoff is located at ωcutoff = 3.17Up + 1.32Ip (Lewenstein et al. [71]). In a cw
pulse the process repeats itself with opposite sign every half-cycle of the laser pulse.

In the plateau region two dominant trajectories contribute to every harmonic. These
are the so-called short and long trajectories. For an electric field given by E(t) ∼
sinωt, the long trajectories ionize shortly after the peak of the electric field at
t < 0.3T , where T is the laser period. They recombine at t > 0.95T and therefore
spend at least 0.65T in the continuum. The short trajectories ionize at t > 0.3T ,
recombine at t < 0.95T and therefore spend shorter than t = 0.65T in the continuum.
In the cutoff region the short and long trajectories merge to a single classically
forbidden trajectory and the trajectory interferences disappear from the spectrum.
In Fig. 2.2 we indicate schematically the short and long trajectories. Especially if
the pulse is long, many more returns from trajectories that spend a lot longer in the
continuum contribute to the spectrum.

2.2.2 ATI electrons

Most of the electrons that tunnel out under the influence of the laser field, do not
recombine with the core, but instead escape forever. These are the so-called above-
threshold-ionization (ATI) electrons. The ATI electrons can be relatively easily
recorded using an electron spectrometer. The simpleman’s model for ATI has two
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Figure 2.2: (Color online) Sketch of a short (blue upper arrow), long (purple bottom
arrow) and most-energetic (black middle arrow) trajectory.

steps; firstly the electrons tunnel out, secondly they freely propagate in the laser
field, and after the laser pulse is over they drift with constant momentum toward
the observer. They end up at an experimental detector with momentum given by
Eq. (2.7b) as

v(∞, t′) = −A(t′). (2.10)

In words, the momentum of an ATI peak is semi-classically given by the negative of
the vector potential at its birth time. For a cw pulse, the electric field is given by

E(t) = E0 sin(ωt). (2.11)

The amplitude of the vector potential is A0 = E0
ω which means that the maximum

energy with which an electron can escape is

Emax =
v2
max

2
=

E2
0

2ω2
= 2Up. (2.12)

With Eq. (2.12) we have found the semi-classical cutoff law for the ATI electrons.

In the above analysis we only considered direct ATI electrons, i.e., ATI electrons
that after ionization never interact with the core anymore. However, when electrons
get driven back to the core, instead of recombining and generating high-harmonics
they can also backscatter. This gives rise to a second, much weaker, plateau of
rescattering ATI electrons extending up to 10Up (Paulus et al. [102, 103]; Tong
et al. [125]).

2.3 High-Harmonic Generation

We now describe the HHG process in more detail. Under the influence of the laser
pulse, the total wave function contains a bound part and an ionized continuum part.
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Because the continuum part of the wave function moves, the total wave function
has a time-dependent electrical dipole moment. Electrodynamics tells us that an
accelerated dipole moment oscillating at a single frequency generates electromagnetic
radiation with the same frequency and with its phase conserved. The oscillating
dipole in HHG contains many different frequencies leading to the emission of a
superposition of frequencies.

Consider a molecular system in a laser field polarized in the x-direction. The har-
monic radiation for a 2D molecule in the xy-plane oriented with θ with respect to
the x-axis is then characterized by

Iθ(ω) = ω4|Dθ(ω)|2, (2.13a)

Φθ(ω) = arg[Dθ(ω)], (2.13b)

where Iθ(ω) is proportional to the harmonic intensity and Φθ(ω) the phase of a
harmonic with frequency ω. The Fourier transformed dipole moment D(ω) is given
by the expression (for simplicity we drop the angle dependence)

D(ω) =

∫

〈d(t)〉eiωtdt, (2.14a)

〈d(t)〉 = 〈ψ(r, t)| − er|ψ(r, t)〉, (2.14b)

where r =
( x

y

)
and −e is the electron charge (e = 1 in a.u.).

With the semi-classical picture of the harmonic generation process in mind we split
the time-dependent wave function ψ in two parts as ψ(r, t) = ψ0(r, t) + ψc(r, t),
where ψ0(r, t) is a bound-state wave function and ψc(r, t) is the continuum wave
packet. We employ the three-step model and therefore ignore the influence of the
laser on the bound state. The time evolution of the bound state is given by

ψ0(r, t) = ψ0(r)e
iIpt, (2.15)

where ψ0(r) is a time-independent bound state of the system (with arbitrary global
phase) and Ip is its ionization potential. For the continuum wave packet we use
several simplifications from the three-step model. Firstly, we consider only electron
momenta parallel to the laser polarization axis x. That means we can write

ψc(r) =

∫ ∞

−∞
a(k)eikxdk, (2.16)

where the a(k) are complex amplitudes. In addition, we ignore the influences of the
Coulomb potential and the laser field on the evolution of ψc(r). This leads to the
plane-wave approximation (PWA) for the continuum wave packet, i.e., we describe
the continuum wave packet as a superposition of plane waves whose time evolution
is given by

ψc(r, t) =

∫ ∞

−∞
a(k)eikxe−i k2

2
tdk. (2.17)

If the total probability in the continuum wave packet is sufficiently small, the tran-
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sition dipole moment in the time domain 〈d(t)〉 is described by

〈d(t)〉 ≃ −〈ψ0(r, t)|r|ψc(r, t)〉 − 〈ψc(r, t)|r|ψ0(r, t)〉,

= −
∫∫

ψ0(r)e
−iIptr

∫ ∞

−∞
a(k)eikxe−i k2

2
tdkd2r

−
∫∫∫ ∞

−∞
a∗(k)e−ikxei

k2

2
tdk r ψ0(r)e

iIptd2r,

(2.18)

where we assumed that the ground state is real, as is always a possible choice for a
bound state of a real-valued Hamiltonian. In the frequency domain this becomes

D(ω) = −
∫ ∞

−∞
a(k)

∫∫

ψ0(r)re
ikxd2r 2πδ(ω − Ip − k2

2
)dk

−
∫ ∞

−∞
a∗(k)

∫∫

ψ0(r)re
−ikxd2r 2πδ(ω + Ip +

k2

2
)dk.

(2.19)

To evaluate the Dirac δ-function we split the integration over k into two parts as
∫∞
−∞ dk =

∫ 0
−∞ dk +

∫∞
0 dk and then we change the integration variable from k to

u = k2

2 , with k = ±
√

2u and dk = dk
dudu = ± du√

2u
. If we restrict ourselves to

physically measurable positive harmonic frequencies ω, we obtain

D(ω) = −
∫ ∞

0
a(
√

2u)

∫∫

ψ0(r)re
i
√

2uxd2r 2πδ(ω − Ip − u)
du√
2u

−
∫ ∞

0
a(−

√
2u)

∫∫

ψ0(r)re
−i

√
2uxd2r 2πδ(ω − Ip − u)

du√
2u
.

(2.20)

Performing the integration over u explicitly, for ω ≥ Ip we reach the following
expression for HHG from the three-step model

I(ω) = ω4|D(ω)|2, (2.21a)

D(ω) = −2π a[k(ω)]

k(ω)

∫∫

ψ0(r)re
ik(ω)xd2r

− 2π a[−k(ω)]

k(ω)

∫∫

ψ0(r)re
−ik(ω)xd2r,

(2.21b)

with the wave number k(ω) =
√

2(ω − Ip).

The main theme of this thesis is to obtain molecular properties from this and similar
equations, e.g., by completely inverting it as in the molecular tomographic process.
In order to retrieve ψ0, we need to combine the two terms on the right-hand side
of Eq. (2.21b) to one term. There are two cases in which this is possible. The
first case is when the orbital ψ0 is symmetric or anti-symmetric under the combined
operations x → −x and y → −y, i.e., when the orbital is (un-)gerade. In this case
the Fourier transformed dipole moment is given by

D(ω) = −2π a′[k(ω)]

k(ω)

∫∫

ψ0(r)re
−ik(ω)xd2r, (2.22)

where a′[k(ω)] = a[−k(ω)] − a[k(ω)] for gerade orbitals and a′[k(ω)] = a[k(ω)] +
a[−k(ω)] for ungerade orbitals. In case we consider a cw-pulse this reduces to
a′[k(ω)] = 2a[−k(ω)] for both gerade and ungerade orbitals.
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The second possibility to allow for recovery of ψ0 from HHG is when a(k) = 0 for
k > 0 (or k < 0). Physically this means that the returning electron wave packet
approaches the nucleus from only one side. It is this case that we will focus on
mostly in this thesis. In case the electrons only return from the positive side (i.e.,
with negative momentum) the Fourier transformed dipole moment is given by

D(ω) =
−2π a[−k(ω)]

k(ω)

∫∫

ψ0(r)re
−ik(ω)xd2r (2.23)

for ω ≥ Ip.

To this simplified picture we add the fact that high harmonics seem to be better
described numerically when one neglects the effect of the ionization potential on
the incoming wave momentum (see e.g. Lein et al. [67]) by replacing our equation
for k(ω) with k(ω) =

√
2ω. This replacement is supported by tests that we have

performed. Physically the replacement amounts to saying that if we want to describe
the returning electron wave packet as a plane wave, we should take into account that
at the moment of recombination it has already reabsorbed the ionization potential
into its kinetic energy. In other words, the molecular potential will lead to an increase
of the kinetic energy, which in turn leads to an increase of the wave numbers in a
plane wave expansion of the wave packet.

2.3.1 HHG in velocity and acceleration form

In addition to the length form description used so far, we can describe the HHG
process also in velocity or acceleration form, using 〈p(t)〉 = ∂

∂t〈d(t)〉 or 〈α(t)〉 =
∂2

∂t2
〈d(t)〉, respectively. By means of two simple partial integrations starting from

Eqs. (2.13) and (2.14a), it is easy to derive for HHG in acceleration form

I(ω) = |α(ω)|2, α(ω) =

∫

〈α(t)〉eiωtdt. (2.24)

The only difference with the expression used in the numerical HHG calculation (as
given by Eq. (2.2a)) is the addition of the Welch window W (t) to prevent high-
frequency artefacts from the numerical evaluation. Using the Ehrenfest theorem,
the explicit expression for the dipole acceleration given in Eq. (2.2b) can be derived
from the dipole moment (Eq. (2.14b)). Our choice for the acceleration form in the
numerical calculations is based on (Burnett et al. [13]), who showed it is the most
suited for this task.

Alternatively, we can perform a single partial integration to describe the harmonic
generation in velocity form as

I(ω) = ω2 |P(ω)|2 , (2.25a)

P(ω) =

∫

〈p(t)〉eiωtdt, (2.25b)

〈p(t)〉 = −〈ψ(r, t)|p̂|ψ(r, t)〉. (2.25c)
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In the simplified model introduced above we have that

〈p(t)〉 ≃ −
∫∫

ψ0(r)e
−iIptp̂

∫

a(k)eikxe−i k2

2
tdkd2r

−
∫∫∫

a∗(k)e−ikxei
k2

2
tdk p̂ ψ0(r)e

iIptd2r.

(2.26)

If we plug in that p̂ = −i ∂
∂r

we obtain

〈p(t)〉 ≃ −
∫∫∫ (

k
0

)

ψ0(r)e
−iIpta(k)eikxe−i k2

2
tdkd2r

−
∫∫∫ (

k
0

)

a∗(k)e−ikxei
k2

2
tdk ψ0(r)e

iIptd2r,

(2.27)

where we used the hermiticity of the momentum operator for the second term. In
similar lines as before we reach the following expression for the HHG process in
velocity form

I(ω) = ω2 |P(ω)|2 , (2.28a)

P(ω) = −
(

1
0

)

2π a[k(ω)]

∫∫

ψ0(r)e
ik(ω)xd2r

+

(
1
0

)

2π a[−k(ω)]

∫∫

ψ0(r)e
−ik(ω)xd2r.

(2.28b)

Note that—unlike in length form—the two contributing terms have opposite signs.

For a symmetric molecule Eq. (2.28b) can be simplified to

P(ω) =

(
1
0

)

2π a′[k(ω)]

∫∫

ψ0(r)e
−ik(ω)xd2r, (2.29)

where for gerade orbitals a′[k(ω)] = a[−k(ω)] − a[k(ω)] and for ungerade orbitals
a′[k(ω)] = a[−k(ω)] + a[k(ω)]. In case a(k) = 0 for k > 0 Eq. (2.28b) reduces to

P(ω) =

(
1
0

)

2π a[−k(ω)]

∫∫

ψ0(r)e
−ik(ω)xd2r, (2.30)

Also in the case of a velocity form description of the HHG process, best results are
obtained if an adapted dispersion relationship k(ω) with k(ω) =

√
2ω is used.

2.3.2 Pulse polarization

The acceleration dipole moments associated with HHG are found numerically as
complex numbers representing the amplitude and phase of the emission for a certain
frequency ω. The numerical data can however be converted into a more intuitive
representation in terms of the polarization angle, ellipticity and a complex prefactor
incorporating the global phase and amplitude. This information is also needed if
we want to compare physical properties like the ellipticity of the generated harmon-
ics between different systems or as a function of harmonic order. Regularly, pulses
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are characterized using Stokes parameters. Stokes parameters do not provide infor-
mation on the absolute phase with which a pulse is emitted. This information is
however needed by us to obtain the relative phase between harmonics, needed to
compare the emission time te of different harmonics (as te = ∂Φ

∂ω ) or of harmonics by
different systems. In contrast with the method described below, Stokes parameters
can be used to determine the coherence of the radiation. As the harmonic emission
process is completely coherent, we expect fully coherent radiation (Zhou et al. [139])
and we do not need information about the coherence of the emitted radiation.

We can write the emitted radiation field Eem(t) as

Eem(t) =

∫ ∞

−∞

c(ω)
√

1 + (ǫ(ω))2
(ep(ω) + iǫ(ω)eo(ω)) e−iωt dω

2π
, (2.31)

where c is a complex function and ǫ is the ellipticity as a function of frequency ω.
Here ǫ can be either positive or negative, ǫ = 0 represents linearly polarized light,
and ǫ = ±1 represent positively and negatively circularly polarized light, depending
on the choice of propagation direction. Furthermore, ep is the unit vector in the
main polarization direction, and eo is the unit vector in the perpendicular direction.
At a given ω, all possible types of coherent plane-wave radiation can be uniquely
described by the parameters (φ, ǫ, c). Coherent non-plane-wave radiation would
require position-dependent (φ, ǫ, c).

By inverting Eq. (2.24) and identifying 〈α(t)〉 with the emitted pulse Eem(t) (omit-
ting any proportionality factors), we find

α(ω) =
c(ω)

√

1 + (ǫ(ω))2
(ep(ω) + i ǫ(ω)eo(ω)) . (2.32)

Next we write ep and eo in terms of a polarization angle φ with respect to the
polarization axis of the fundamental field (or any other reference) as

ep =

(
cos(φ(ω))

sin(φ(ω))

)

, (2.33a)

eo =

(− sin(φ(ω))

cos(φ(ω))

)

. (2.33b)

Similarly to the angle θ between the molecular axis and the laser polarization axis,
a counterclockwise rotation corresponds to a positive φ. Because φ → φ+ π is the
same as c→ −c, we use the range φ ǫ [0, π). In other words, φ is defined modulo π,
and not modulo 2π as suggested by Eq. (2.33)!

The measured acceleration dipole moments can be expressed in terms of the laser
parameters (φ, ǫ, c) as

αx(ω) =
c(ω)

√

1 + (ǫ(ω))2
(cos(φ(ω)) − i ǫ(ω) sin(φ(ω))), (2.34a)

αy(ω) =
c(ω)

√

1 + (ǫ(ω))2
(sin(φ(ω)) + i ǫ(ω) cos(φ(ω))). (2.34b)
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For an experimentalist the most practical way to measure the polarization angle and
ellipticity of the emitted radiation is to pass the harmonics through a polarization
filter and measuring the emitted intensity for many polarization directions. The
direction of greatest emission corresponds to the main polarization direction, and
the emission in the orthogonal direction is a measure for the ellipticity of the emitted
radiation (Zhou et al. [139]). Only under considerable effort for the experimentalist,
the harmonic phase can be measured interferometrically as a function of alignment
angle (McFarland et al. [84]; Smirnova et al. [116]) or as a function of harmonic
order (Mairesse et al. [76]). Theoretically one has easy access to the harmonic phase.
Using the phase information, Eq. (2.34) can be inverted to deduce the polarization
parameters φ, ǫ, and the complex number c from the complex-valued αx and αy. In
appendix A.2, the details of the inversion process can be found.

2.3.3 Multi-electron and many-particle contributions

Although HHG is predominantly a single-electron process (Figueira de Morisson Faria
et al. [90]), multi-electron contributions can become important. For N2 a significant
contribution of the HOMO-1 to the harmonic spectrum was observed experimen-
tally (McFarland et al. [84]) and theoretically (Le et al. [62]). Contributions to the
harmonic spectrum from laser-induced ion dynamics during the excursion of the free
electron are also observed (Mairesse et al. [79]).

In CO2, the molecular alignment angle determines whether the ionization takes pre-
dominantly place from the HOMO, the HOMO-1 or the HOMO-2 (Smirnova et al.
[117]). In a combined experimental and theoretical work, it was shown that the
interference between the HOMO and HOMO-2 even may cause destructive interfer-
ence depending on the electron excursion time (Smirnova et al. [116]). The minimum
in the harmonic spectrum therefore shifts not only with the alignment angle (see
section 3.1), but also with the laser intensity (Torres et al. [126]; Wörner et al. [135]).

Under normal experimental conditions, many molecules or atoms will contribute to
the HHG process (see e.g. Gaarde et al. [39]; Priori et al. [105]; Tosa et al. [127]).
Because of the spatial and temporal beam profile of the laser pulse, the effective
laser intensity that these particles experience depends on both space and time. All
these contributions interfere in the far-field, which has an influence on the observed
radiation. The difference between the single-particle and many-particle responses is
called the propagation effect. The experimentalist can influence the phase-matching
between the different contributing particles by changing the location of the laser
focus with respect to the particle source, and thereby select either the short or long
trajectories (Gaarde and Schafer [38]; Salières et al. [109]).

2.3.4 Nuclear contributions

In this thesis—as in most work done on HHG—we ignore the effect of nuclear motion
on the harmonic spectrum. This is based on the consideration that nuclei are much
heavier than electrons. The typical time scale associated with nuclear motion is
picoseconds, i.e., much longer than the few-femtosecond electronic dynamics in HHG,
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and therefore the nuclei are approximated as fixed during the HHG process. Only
for the extremely light molecules H2 and D2 a significant effect of nuclear motion
on the ratio of harmonic intensities has been observed experimentally (Baker et al.
[2]). Theoretically, using an extension of the Lewenstein model (see chapter 5) to
include nuclear motion, a similar effect was seen for the ratio of harmonic intensities
of CH4 and CD4 (Madsen et al. [75]).
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Chapter 3

High-harmonic generation

3.1 Two-center interference minimum

In this chapter we will focus on 2D H+
2 with fixed nuclei. The potential is given by

Eq. (2.1c) with Z1 = Z2 = 1 and we use a2 = 0.5 such that the ionization potential
is given by Ip = 30.2 eV. For H+

2 , one observes a minimum in the spectrum of
emitted radiation polarized in the x-direction because of interference between the
two centers of the molecule (Lein et al. [68]). Using the plane-wave approximation for
the returning electron, the (first and usually only observable) minimum occurs when
the x-projection of the internuclear distance as seen by the returning wave packet is
equal to half the de Broglie wavelength. This is illustrated in Fig. 3.1 (Reff = λ

2 = π
k ).

Because the de Broglie wavelength decreases with harmonic order, the minimum will
shift toward higher harmonics for higher angles θ between the laser polarization and
molecular axis. Since it is a structural minimum that depends only on the geometry
of the bound state, one expects to see no shifts in the location of the minimum when
different laser pulses are used or when instead Gaussian wave packets are used to
generate harmonics in a laser-field-free electron-ion collision (Lein et al. [68]). Such
a structural minimum can also be observed in the harmonic spectra of for instance
H2, O2 and to some extent CO2, although there multi-electron contributions are
important also (see section 2.3.3) (Le et al. [64]).

θ

Reff

λ

Figure 3.1: (Color online) Illustration of the two-center interference minimum in H+
2

when half the de Broglie wavelength of the returning electron matches the effective
internuclear distance.
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In the three-step model (see section 2.2.1) or its quantum-mechanical formulation in
terms of the strong-field approximation (SFA) (see section 5.1), the continuum wave
packet formed by tunnel ionization carries practically no signature of the bound-state
orbital. Therefore, the molecular characteristics imprinted on the emitted spectra
must come from the recombination step (or from multiorbital interference). When
studying molecular properties from harmonic spectra, the influence of the laser field
on the recombination step and also the effect of the Coulombic potential on the
propagation step are typically ignored (see e.g. Itatani et al. [52]; Lein et al. [68]).
To study the effects of these approximations, in this chapter we perform a numerical
comparison between the harmonics emitted in a normal laser-induced HHG process
and harmonics emitted when an artificially prepared wave packet collides with the
molecular ion in the absence of any laser pulse (Lein et al. [68]). Additionally,
we compare the harmonics generated by both physical and artificial laser pulses
to disentangle the influence of the different harmonic trajectories. We show that
elliptically polarized HHG radiation from linearly polarized generating pulses occurs
near the two-center interference. Elliptical polarization of harmonics from linearly
polarized generating pulses was also found in recent experiments (Zhou et al. [139]).

For the wave-packet simulation without laser field the grid dimensions are given
by Lx × Ly. The center of the potential is placed in the middle of the grid at
(x, y) = (0, 0), and the Gaussian wave packet is introduced with its center at position
(x0 = Lx/4, 0). The initial wave packet ψ(r) is given by the superposition

ψ(r) = ψ0(r) + ψG(r), (3.1a)

ψG(r) =
√
C

√
cxcy
π

e
− 1

2

“

c2x(x−Lx
4 )

2
+c2yy2

”

+ik0x
, (3.1b)

where ψ0(r) is the ground-state wave function, and cx, cy quantify the momentum
spread of the Gaussian wave packet in the x- and y-directions. The wave packet
moves with a central momentum k0 < 0 toward the molecular core. The norm of
the Gaussian wave packet C should be set small to mimic the situation of HHG at
the typically used intensities. We use C = 10−6. The momentum-spread parameter
in the y-direction is chosen as

cy = rk|k0|, (3.2)

where a tuning parameter rk is used to study the effects of different types of Gaussian
wave packets and can be set to simulate the character of the continuum wave packet
as generated by a laser pulse. The momentum-spread parameter in the x-direction
cx is set relatively large to allow for many harmonics to be probed by one wave
packet. The propagation time is chosen such that a classical particle with momentum
k0 moves from (Lx/4, 0) to (−Lx/4, 0) during the propagation. As a result, the
strongest emission is expected at the middle of the propagation. This way little
distortion is introduced from using window function W (t) in the temporal Fourier
transform for obtaining the power spectrum using Eq. (2.2a). As an example, for
rk = 0.01 and k0 = −1.78, the grid dimensions are Lx = 383 a.u. and Ly = 1006 a.u.
Here we use 2304× 6144 spatial grid points and 2000 time steps, i.e., the same time
step as for a laser-induced HHG calculation at a comparable energy. The propagation
time equals the optical period of a laser field with a 780-nm wavelength. More details
on the calculation can be found in appendix A.1.1.
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For the simulation of the laser-induced HHG process we use a laser pulse linearly
polarized in the x-direction, simplifying Eq. (2.1b) to

Ĥ =
p̂2

2
+ V (r) + xE(t). (3.3)

The initial state is set to the ground state ψ0(r). The time-dependent wave function
is propagated for the laser pulse duration and two additional cycles after the end of
the laser pulse to minimize distortions from the dipole acceleration window and to
allow the wave packets to return to the nucleus. For the laser-induced calculations
we use a grid measuring 280 × 84 a.u. with 1536 × 512 grid points and 2000 time
steps per optical cycle.

3.1.1 Harmonic intensity

The laser wavelength for the calculations of laser-induced HHG is λ = 780 nm. For
the Gaussian-wave-packet collisions, the same energy scale in units of harmonics of a
780-nm laser pulse is used. In Fig. 3.2 we show the spectrum of the emitted radiation
polarized along the x-direction on the left-hand side and the alignment dependence
of harmonic 49 on the right-hand side. We compare a Gaussian wave packet with
k0 = −1.78 and rk = 0.01 to laser pulses with an intensity of I = 5 × 1014 W/cm2

and different lengths. The laser pulses have a sin2 envelope of either three or five
cycles, or a trapezoidal envelope of fifteen cycles length with five-cycle ramps. The
electric field of a linearly-polarized sin2-pulse is given by

E(t) = (−1)NcyclesE0 sin2

(
πt

NcyclesT

)

cos(ωt+ φCEP), (3.4)

where E0 is the maximum field amplitude, T is the laser period, Ncycles is the
number of cycles in the pulse and φCEP, the carrier-envelope phase (CEP), is the
phase between the carrier wave and the envelope. The linearly-polarized trapezoidal
pulse has a sin(ωt)-carrier that is multiplied with a trapezoidal envelope. We use
φCEP = π

4 for the shortest pulse, and φCEP = 0 for the five-cycle sin2-pulse. In
preparing the alignment-dependent curves on the right-hand side, the numerical
data were integrated over one harmonic order.

The harmonic spectra in Fig. 3.2 feature the plateau region and cutoff introduced in
section 2.2.1. Semi-classically for a cw-pulse the cutoff should be around harmonic
76 from ωcutoff = 3.17Up + Ip (Eq. (2.9a)). Because the three-cycle pulse is ex-
tremely short, its harmonic spectrum has a first cutoff well below this value (see sec-
tion 4.6.1). The Gaussian wave packet gives rise to a mostly structureless spectrum,
whereas for the three-cycle pulse the trajectory interferences and for the fifteen-cycle
pulse the formation of peaks at odd harmonics are visible (see section 2.2.1). The
two-center minima are visible in the plateau region around harmonic 45–50. The
figure shows that the different laser pulses give rise to minima that are near, but
not exactly at, the minimum position of the Gaussian wave packet.

In Fig. 3.3 we plot the positions of the minima θmin in the alignment dependence
versus harmonic order for different laser pulses and for the Gaussian wave packet
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Figure 3.2: (Color online) (a) Intensity vs harmonic order for alignment angle θ =
45◦ (curves shifted for clarity) and (b) intensity of harmonic 49 vs θ. A Gaussian
wave packet (black solid line) is compared to a three-cycle sin2-pulse (red dashed
line), a five-cycle sin2-pulse (blue dotted line) and a fifteen-cycle trapezoidal pulse
(green dot-dashed line).

from Fig. 3.2b. Also indicated in the figure are the curves that are predicted for the
two-center minimum (Reff = R cos θmin) (Lein et al. [67]) using either the energy-
conserving relationship k(ω) =

√

2(ω − Ip) from the Lewenstein model (Lewenstein
et al. [71]), or using the Ip-corrected relationship k(ω) =

√
2ω that has been adopted

previously for molecular imaging (Itatani et al. [52]; Lein et al. [68]), see section 2.2.1.
From Fig. 3.3 it is clear that the Gaussian wave packet gives rise to a very smooth
shift of the minimum as a function of alignment angle θ. The laser pulses produce
minima that follow the same trend as the Gaussian wave packet, but are scattered
around the general trend. The results for short and longer pulses are scattered
differently, but not less or more. The differences between relatively long ten- and
fifteen-cycle pulses pulses are small. This is expected, since both pulses are effec-
tively almost cw-like. Even for the fifteen-cycle pulse the depletion of the ground
state remains below 6%. The results suggest that when using the plane-wave approx-
imation for the returning electron in molecular imaging applications, a dispersion
relationship in between the Lewenstein and Ip-corrected relationships should be used
(Gonoskov and Ryabikin [43]; Levesque et al. [70]).

3.1.1.1 Effect of the propagation step

We compare the positions of interference minima for different types of Gaussian
wave packets in Fig. 3.4. We vary the momentum spread of the wave packet in
the perpendicular direction, the central momentum of the wave packet and the
position at which the wave packet starts. The striking and important observation
is that all curves lie very close together. Apparently the position of the minimum
is insensitive to the momentum distribution of the continuum wave packet. Only
for the lowest harmonics can we observe some difference between the different kinds
of continuum wave packets. Small differences appear there between wave packets
starting far away and those starting close to the nucleus, due to the effect of the
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Figure 3.3: (Color online) Location of the minimum in the alignment dependence
of the harmonic intensity polarized along the x-direction. (Left) Blue crosses are
for the Gaussian wave packet and red plusses for the three-cycle pulse of Fig. 3.2.
(Right) Green squares are for the fifteen-cycle pulse of Fig. 3.2 and violet triangles
are for a ten-cycle trapezoidal pulse. The black solid line displays the two-center
interference based on the SFA relation k(ω) =

√

2(ω − Ip) and the black dashed line
is the Ip-corrected result based on the relation k(ω) =

√
2ω.
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Figure 3.4: (Color online) (Left) Same as Fig. 3.3 for a broad Gaussian wave packet
starting far from the nucleus (blue crosses) and a broad Gaussian wave packet start-
ing close to the nucleus (red plusses). (Right) A narrow Gaussian wave packet start-
ing close to the nucleus (green squares) and a broad Gaussian wave packet starting
far from the nucleus but with less energy (violet triangles). The blue crosses and
red plusses have rk = 0.03 and k0 = −1.78, the violet triangles have the same rk
but k0 = −1.38. The red plusses and green squares start at x0 = 20 a.u., the blue
crosses correspond to an initial position of x0 = 95.8 a.u. and the green squares to
x0 = 74.1 a.u.
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long-range binding potential. Our findings suggest that in terms of the three-step
model, the propagation step has little effect on the observed position of the minimum
and cannot account for the big fluctuations observed in Fig. 3.3.

3.1.1.2 Effect of the recombination step

In the three-step model (see section 2.2.1), the laser field during the recombination
step and possible interferences between different parts of the continuum wave packet
are ignored. In reality, the electronic wave packet does not recombine under laser-
field-free conditions, and different trajectories recombine at different times with
different phases. To study the effect on the recombination process, we resort to a
comparison of the minimum positions using artificial pulses. The pulses are four-
cycle sinusoidal pulses with a constant envelope corresponding to an intensity of
I = 5 × 1014 W/cm2, i.e., a section of a cw laser field. At t = 0, the electric field
is E(0) = 0. Optionally, we employ either or both of two methods to influence the
recombination step: (i) setting the dipole acceleration to 0 after some point in time
during the propagation and (ii) turning off the laser field for the inner region near
the nuclei after some point in time.

Every half laser cycle, both a short and long classical electronic trajectory contribute
to every harmonic peak (Lewenstein et al. [71]), as discussed in section 2.2.1. As a
reminder, the distinction between short and long trajectories is based on whether
the electron spends shorter or longer than 0.65T in the continuum, where T is the
laser period. Setting the dipole acceleration to 0 beyond t = Tα using a temporal
width ∆Tα (Smirnova et al. [116]), Eq. (2.2a) becomes

α(ω) =

∫ L

0
W ′(t)〈α(t)〉eiωtdt, (3.5a)

W ′(t) = W (t)S(t), (3.5b)

S(t) =







1 for t ≤ t1

cos2
(

t−t1
t2−t1

π
2

)

for t1 < t < t2

0 for t ≥ t2,

(3.5c)

where L is the propagation length, t1 = Tα − ∆Tα
2 and t2 = Tα + ∆Tα

2 . We use
∆Tα = 0.1T . We set the dipole acceleration to 0 at either Tα = 0.95T , the return
time of the most energetic trajectory, or at Tα = 1.182T , the time at which the
return momentum of the first half-cycle’s long trajectory matches that of the second
half-cycle’s short trajectory. Thus with Tα = 0.95T we take into account only the
short trajectories from the first half-cycle, and Tα = 1.182T is the optimal point in
time for selecting only a single pair of short and long trajectories.

Additionally, we optionally turn off the laser field in the inner region at time t = Tl.
To prevent artifacts, the field is turned off gradually in both space and time. The
laser interaction is completely turned off for r =

√

x2 + y2 < 4, undisturbed for
r > 6, and we use a sin2-transition between these two extremes. In the time domain,
we use a smoothened step function (convolution of a Gaussian with a step function)
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Figure 3.5: (Color online) (Left) Same as Fig. 3.3 for a broad Gaussian wave packet
starting far from the nucleus (blue crosses) and for harmonics generated from a
sinusoidal laser pulse (red plusses). (Right) Harmonics from sinusoidal pulses with
Tα = 1.182T (green circles) and with Tα = 0.95T (violet points).

with a width of 0.1T . In formula, the Hamiltonian in Eq. (2.1b) or Eq. (3.3) is
replaced by

Ĥ =
p̂2

2
+ V (r) + Z(r, t) · xE(t), (3.6a)

Z(r, t) = F (r) + (1 − F (r))R(t), (3.6b)

F (r) =







0 for r ≤ 4

sin2(π
4 (r − 4)) for 4 < r < 6

1 for r ≥ 6,

(3.6c)

R(t) =
1

2

(

1 − erf
(

(t− Tl) /
(√

2 · 0.1T
)))

. (3.6d)

When Tl = 0.5T is used, this special setup allows us to compare near-physical
harmonics to those generated in an identical setup where only trajectories starting
during the first half-cycle contribute and with the laser field completely turned off
during all recombinations. This method could be easily extended to filter out either
the short or long trajectories.

In Fig. 3.5 we compare the scattering around the Gaussian-wave-packet results from
the sinusoidal pulse (red plusses) with those from setting the dipole acceleration to
0 at Tα = 1.182T (green circles) and from setting the dipole acceleration to 0 at
Tα = 0.95T (violet points). With Tα = 1.182T the interference between the long
and short trajectories leads to a strong, but regular oscillation of the laser-induced
results around the Gaussian-wave-packet results. The same interference between the
short and long trajectories can be seen in an associated harmonic spectrum as the
top, black solid line in Fig. 3.6. When every harmonic peak is caused by a single
trajectory (violet points in Fig. 3.5), the interference disappears completely and the
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Figure 3.6: (Color online) Harmonic intensity polarized in the x-direction for the
green circles from Fig. 3.5 for θ = 45◦ (black solid line) and θ = 50◦ (red dashed
line). Also for the violet points from Fig. 3.7 for θ = 45◦ (blue dotted line) and
θ = 50◦ (green dot-dashed line). Solid and dashed arrows indicate spectral minimum
positions predicted using k(ω) =

√

2(ω − Ip) and k(ω) =
√

2ω, respectively.

result is almost as smooth as that from the Gaussian wave packet. Under normal
circumstances, additional later returns from the same trajectories contribute to the
spectrum. For a finite pulse length, different half-cycles also contribute differently
because of the pulse envelope. Additionally, for a numerical calculation the dipole
acceleration window W (t) also changes the contributions between different half-
cycles. All of these together then smoothen but irregularize the oscillation of the
green circles in Fig. 3.5, leading to the scattering of the laser-induced data points
observed in Fig. 3.3. The interference between the short and long trajectories can
probably also explain the scattering of the two-center minimum as a function of
intensity as found by (Gonoskov and Ryabikin [43]).

The fact that the results for a single harmonic trajectory (violet points in Fig. 3.5) lie
so close to the Gaussian-wave-packet result, means that the laser field has no signifi-
cant influence on the amplitude of the recombination matrix elements. This supports
using HHG for molecular imaging (Haessler et al. [46]; Itatani et al. [52]; Lein et al.
[67, 68]), as in a typical experimental setup only short trajectories contribute to the
harmonic spectrum. Interestingly, however, in Fig. 3.7 we show that turning off the
laser field during the recombination does have a significant effect on the interference
between the short and long trajectories. In the figure, the green circles are copied
from Fig. 3.5. Additionally, we show the case where there is only a single set of
short and long trajectories with additionally the laser pulse turned off in the inner
region at Tl = 0.5T (violet points). The strong reduction in scattering amplitude for
the violet points in Fig. 3.7 can be understood from Fig. 3.6, where we plot the har-
monic spectra for molecular alignment angles 45◦ and 50◦ for the case of the green
circles (violet points) in Fig. 3.7 as the top (bottom) two curves. For the unmodified
laser pulse we observe a significant shift of the trajectory interference positions in
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Figure 3.7: (Color online) Same as Fig. 3.3 for harmonics from a sinusoidal laser
pulse with Tα = 1.182T (green circles) and additionally with Tl = 0.5T (violet
points).

the harmonic spectrum when going from alignment at 45◦ to 50◦. Although at first
sight the bottom two curves in Fig. 3.6 look more distinct from one another, a closer
look reveals that the alignment dependence of the trajectory interference minima
is actually a lot smaller with the laser field turned off in the inner region, as there
is no shift visible. The strong scattering at low harmonics for the violet points in
Fig. 3.7 is caused by the fact that the finite temporal widths of the filters R(t) and
S(t) suppress the complete lower end of the spectrum.

3.1.2 Harmonic phase

The two-center minimum in the harmonic spectrum is accompanied by a phase
jump in the harmonic phase. Using the plane-wave approximation, this should
be a sharp π-phase jump (Lein et al. [67]). However, in experiments a smaller
and smoother phase jump is observed (Boutu et al. [11]). Such deviations can be
attributed to nonclassical momenta (Chirilă and Lein [23]) and to effects of the
Coulombic potential (Ciappina et al. [24]). Similarly, a phase jump is observable
when one considers a fixed harmonic as a function of θ. The phase of harmonic 49
for emission polarized along x is shown in Fig. 3.8. The same set of laser pulses
and Gaussian wave packet is used as in Fig. 3.2. The curves have been shifted
such that for θ = 0 the phase is 0. The figure shows that both the Gaussian
wave packet and the extremely short three-cycle laser pulse give rise to a mostly
constant phase as a function of θ with a phase jump slightly smaller than π at the
location of the minimum. The longer pulses have a more smeared-out phase jump.
In the neighborhood of the minimum their jump is a lot smaller than π but over the
complete θ-range the jump seems to be bigger than π. This behavior for the longer
pulses is probably an effect of more, and longer, trajectories contributing to the
harmonics. Different trajectories are associated with different Coulomb corrections
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Figure 3.8: (Color online) Phase of the harmonic emission polarized along x for
harmonic 49 generated by a Gaussian wave packet (black solid line) and generated
by a three-cycle sin2-pulse (red dashed line), a five-cycle sin2-pulse (blue dotted
line), and a fifteen-cycle trapezoidal pulse (green dot-dashed line).

and therefore the harmonic phase becomes smeared out. This is in accordance with
the shallower intensity minima in the right-hand side of Fig. 3.2 for the longer pulses.

It is interesting to investigate the phase jump for the different Gaussian wave packets
of Fig. 3.4. This is plotted in Fig. 3.9 for a smaller range of θ for clarity. The broad
Gaussian wave packet starting closing to the nucleus (red dashed line) starts out
with small perpendicular momentum components. Because of the short propagation
time before the interaction with the core, both Coulomb effects on the momentum
distribution and perpendicular momentum components will be relatively small in
this scenario. As a result we observe a sharp almost-π-phase jump. To some extent,
the difference with the narrow Gaussian wave packet (green dot-dashed line) is
that the latter experiences roughly the same Coulomb effects, but starts out with
much larger perpendicular momentum components. This leads to a much smoother
phase jump. Independent of the central momentum of the wave packet, a broad
wave packet starting far away from the nucleus (black solid and blue dotted lines)
experiences a smoother phase jump because of Coulomb effects and the associated
increased nonparallel momentum components.

3.1.3 Polarization direction

In the following two subsections we use the procedure outlined in section 2.3.2 and
appendix A.2 to express the numerically calculated radiative emission in terms of the
polarization parameters (φ, ǫ, c). The two-center interference minimum can then also
be observed in the polarization direction φ of the harmonics. Because the emission in
the direction parallel to the laser polarization direction is strongly suppressed at the
minimum, we expect a π

2 -jump toward the minimum. The π-jump for the harmonic
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Figure 3.9: (Color online) Phase of the harmonic emission polarized along x for
harmonic 49 generated by a broad Gaussian wave packet starting far from the nucleus
(solid black line), a broad Gaussian wave packet starting close to the nucleus (red
dashed line), a narrow Gaussian wave packet starting close to the nucleus (green
dot-dashed line), and a broad Gaussian wave packet starting far from the nucleus
but with less energy (blue dotted line).

phase in the x-direction in Fig. 3.8 translates to a full π-rotation for φ. This is
exactly what is observed for a Gaussian wave packet and harmonics generated by
different laser pulses in Fig. 3.10. The polarization direction of the emitted radiation
was averaged over one harmonic order using the total emitted intensities as weights.

The phase jump in the x-direction at the two-center interference minimum becomes
smoother for low harmonics (Boutu et al. [11]; Chirilă and Lein [23]; Ciappina et al.
[24]). In the following we investigate how the jump in the polarization direction
depends on harmonic order. We plot the main polarization direction for different
harmonics in Fig. 3.11. Here we plot the polarization data points corresponding to
the exact harmonics, i.e., no averaging was done. The right-most curves for high
harmonics show a simple polarization-direction jump around the two-center mini-
mum. For the lowest harmonics (on the left-hand side) the behavior becomes more
complicated. To explain this finding, we also plot the phase difference δ between αy

and αx for harmonic 31 (black crosses). The intensity ratio
|αy|
|αx| equals 1 for θ = 16◦

and θ = 37◦, and it reaches a maximum of
|αy|
|αx| = 2 at θ = 25◦. For a given ra-

tio
|αy |
|αx| , the main polarization direction is aligned more along the laboratory-frame

(x or y) direction with the higher amplitude if the phase difference δ between the
laboratory-frame directions is far from 0 or π. We can observe this effect clearly in
Fig. 3.11: at θ equal to 20◦–25◦ for harmonic 31, where δ is around π

2 and |αy| is
bigger than |αx|, the relatively slow increase in the polarization direction shows the
tendency that the polarization is clamped toward the y-direction (φ = π

2 ).

We fit the jump observed in Fig. 3.10 with a smoothened step function to determine
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Figure 3.10: (Color online) Main polarization direction φ for harmonic 49 generated
by a Gaussian wave packet (black solid line) and generated by a three-cycle sin2-
pulse (red dashed line), a five-cycle sin2-pulse (blue dotted line), and a fifteen-cycle
trapezoidal pulse (green dot-dashed line).
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Figure 3.11: (Color online) Main polarization direction φ for harmonic 31 (black solid
line), harmonic 41 (red dashed line), harmonic 51 (blue dotted line), and harmonic
61 (green dot-dashed line). The black crosses show the phase difference δ between
the x- and y-components for harmonic 31. A three-cycle sin2-pulse was used.
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Figure 3.12: (Color online) Width of the jump in φ. Blue crosses are for the Gaus-
sian wave packet, red plusses for the three-cycle pulse, and green squares for the
fifteen-cycle pulse. The brown line shows the curve expected from purely geometric
considerations.

the location θp and the width ∆θ of the polarization-direction jump. When one plots
the location θp as a function of harmonic order, one obtains a curve very similar to
that shown in Fig. 3.3. In Fig. 3.12 we plot the width ∆θ as a function of harmonic
order for a Gaussian wave packet and different laser pulses. Again, the results for
the different laser pulses are scattered around the Gaussian-wave-packet result. The
width of the jump for φ as a function of harmonic order does not depend on the laser
pulse length. One observes that the width of the jump decreases with increasing
harmonic order. An important part of this decrease is due to a purely geometric
effect: with increasing harmonic order, the minimum moves to higher θ leading to a
narrower interference pattern as a function of θ.

In the absence of Coulomb effects, i.e., when αx and αy have the same phases
apart from π-jumps for symmetric molecules, the polarization direction φ is given
by tan φ =

αy

αx
(see Eq. (A.38b)). We assume that αy is alignment independent over

the range of the two-center minimum, as also indicated by numerical tests that we
have performed, and that the alignment dependence of αx comes purely from the

two-center interference with the phase lag kR cos θ, i.e., αx = α
(0)
x cos

(
1
2kR cos θ

)

(Ciappina et al. [24]; Zhou et al. [138]). Then the variation ∆φ of the polariza-
tion direction on varying θ in the vicinity of θp is proportional to ∆(kR cos θ) ≃
(π/ cos θp)∆(cos θ). Thus the width ∆θ should be such that ∆(cos θ) / cos θp is in-

dependent of harmonic frequency, provided that αy/α
(0)
x is frequency independent.

The brown line in Fig. 3.12 is obtained for ∆θ if we set ∆(cos θ) / cos θp arbitrar-
ily equal to 0.185 using ∆(cos θ) ≃ cos

(
θp − ∆θ

2

)
− cos

(
θp + ∆θ

2

)
. A comparison

between the brown line and the other curves shows that at the high end of the spec-
trum the decrease in ∆θ cannot be explained any more exclusively by the geometric
effect. Since θp varies very slowly in this range, we expect only a slow variation in

αy/α
(0)
x . This suggests that decreasing Coulomb effects play a role, in accordance
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Figure 3.13: (Color online) Ellipticity of the harmonic emission for harmonic 49
generated by a Gaussian wave packet (black solid line) and generated by a three-
cycle sin2-pulse (red dashed line), a five-cycle sin2-pulse (blue dotted line), and a
fifteen-cycle trapezoidal pulse (green dot-dashed line).

with Fig. 3.3, where for harmonics 50–80 we observe a transition toward the curve
predicted by the SFA dispersion relationship, also indicating decreasing Coulomb
effects in this range.

3.1.4 Ellipticity

In Fig. 3.13 we plot the ellipticity ǫ of the emitted radiation for harmonic 49 as a
function of θ. Again the polarization data was averaged over one harmonic order
using the intensities as weights. The plot shows that both a Gaussian wave packet
and different laser pulses give rise to both significant and varying elliptical emis-
sion. Nonzero ellipticity means that the harmonics in the x and y-directions are
emitted with different phases. Using the plane-wave approximation for the return-
ing electron, one would not expect to see any ellipticity for a symmetric molecule
(Levesque et al. [69]). Since the ionization and propagation step are identical for the
two components of the radiation, the ellipticity must come from the recombination
step. Therefore, this result confirms that the Coulomb effects can lead to significant
ellipticity. The ellipticity for parallel or perpendicular alignment is zero, because
at these alignment angles, the perpendicular component of the emitted radiation
vanishes. The ellipticity goes through zero at some intermediate alignment angle.
If we plot the angle of zero ellipticity as a function of harmonic order, we arrive at
Fig. 3.14. This plot shows that in the close vicinity of the two-center interference
minimum, the ellipticity goes through zero. This is as expected, because at the
location of the minimum, the x-component of the emitted radiation is very small.
Because the x-component has opposite signs before and after the minimum, the
ellipticity changes handedness through the minimum.
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Figure 3.14: (Color online) Alignment angles of zero ellipticity. (Left) Blue crosses
are for a broad Gaussian wave packet starting far from the nucleus and black triangles
for a narrow Gaussian wave packet starting close to the nucleus. (Right) Red plusses
for the three-cycle pulse and green squares for the fifteen-cycle pulse.

For each harmonic, we can also plot the extrema of the ellipticity that can be reached
and the alignment angles at which those extrema are reached. The results are shown
in Figs. 3.15 and 3.16, respectively. We observe that for sufficiently high harmonic
orders, the ellipticity extrema become smaller in absolute value and move closer
to the two-center interference minimum with increasing harmonic order. Since the
ellipticity is an indicator of non-plane-wave character, the decreasing ellipticity is
another signature of decreasing Coulomb effects for higher harmonic orders, which
correspond to higher return momenta.

3.2 Harmonic phase

Numerically we obtain the harmonic spectrum through a discrete Fourier transform
of 〈α(t)〉, according to Eq. (2.2a). The discrete Fourier transform assumes t = 0 for
the first data point. Numerically the harmonic emission does not occur at t = 0, but
at some different point in time somewhere around the peak of the pulse. Therefore,
α(ω) will acquire a complex phase factor that represents the time translation1.
Assuming that the emission in the directions x,y is centered around t = ax,y, we
numerically recover α(ω) with the phase

arg (α(ω)) = Φα(ω) + a ω. (3.7)

1A basic property of Fourier transforms is that for a function f(t) and its Fourier transform
f̂(ω) =

R

f(t)eiωtdt we have that

f̂ ′(ω) =

Z

f(t − t0)e
iωtdt = eiωt0 f̂(ω).
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Figure 3.15: (Color online) Extrema of ellipticity as a function of harmonic order.
Blue crosses represent a broad Gaussian wave packet starting far from the nucleus,
black triangles a narrow Gaussian wave packet starting close to the nucleus, red
plusses a three-cycle pulse, and green squares a fifteen-cycle pulse.
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Figure 3.16: (Color online) Alignment angles for extrema from Fig. 3.15. Same wave
packets and pulses as in Fig. 3.15.
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Figure 3.17: (Color online) The red lines represent the phase of the emitted har-
monics polarized along the x-direction. The left graph is the rough numerical result
and the right graph is after applying Eq. (3.9). The blue line is the harmonic inten-
sity polarized in the x-direction. Note the difference in harmonic range between the
graphs.

Here Φα(ω) is the ‘internal’ phase of α(ω), i.e., the part of arg (α(ω)) that does not
depend on the time reference.

We attempt to remove the numerical time-translation phase a at least for the x-
direction by the following procedure. We search for a′ that minimizes the error

T (a′) =
∑

i

|Φαx(ωi) − Φαx(ωi−1)| . (3.8)

Here the sum runs over all numerical data points up to the semi-classical cutoff and
we need to take into account that the phase is defined modulo 2π. The method is
motivated by the fact that experimentally a quadratic dependence of the harmonic
phase on the frequency is observed (see e.g. Boutu et al. [11]), whereas numerically
typically wild oscillations are seen. Therefore we assume that for a′ that minimizes
T (a′) in Eq. (3.8), we have that ax = a′. We find a′ numerically using a bisect al-
gorithm. Then we (partially) remove the time-translation phase from the numerical
results using

α(ω) → α
′(ω) = α(ω)e−iωa′

. (3.9)

In Fig. 3.17 we plot the harmonic phase for 2D H+
2 with Ip = 30.2 eV aligned

parallel to the laser polarization direction (see section 3.1). We use a laser intensity
of I = 5 × 1014 W/cm2 and a laser wavelength of λ = 780 nm. The pulse is the
three-cycle sin2-pulse from section 3.1. On the left we plot the numerical harmonic
phase for a small frequency range, and on the right we plot the harmonic phase for
a much broader frequency range after applying a′ = 1.39T according to Eq. (3.9).
Here T is the laser period. The plots show that one can largely remove the artificial
time-translation phase from the numerical calculation. More information on the
effects of the time-translation phase on molecular orbital tomography can be found
in section 4.2. The algorithm is not used for the molecular-orbital-tomography
simulations presented in chapter 4.
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Figure 3.18: (Color online) Same as the right graph of Fig. 3.17 for a sinusoidal
pulse with Tα = 1.182T (left) or Tα = 0.95T (right).

Interestingly, on top of a relatively flat background there are some jumps of almost-π
magnitude present in Fig. 3.17. The blue line in the same graph shows the harmonic
spectrum and we observe that the jumps coincide with minima in the spectrum.
These minima are caused by the interference of short and long trajectories. Because
the contributions of the two families of trajectories have unequal amplitudes, the
observed jump is smaller than π. To confirm that the jumps in the harmonic phase of
the translated spectrum are due to interference between short and long trajectories,
we employ one of the artificial pulses from section 3.1.1.2; in Fig. 3.18 we plot the
harmonic phase and harmonic intensity in the x-direction for a sinusoidal pulse with
a flat envelope for which the dipole acceleration is set to 0 after either Tα = 1.182T
(left) or Tα = 0.95T (right), giving rise to a single set of short and long trajectories,
and a single set of short trajectories contributing to the spectrum, respectively. In
case Tα = 1.182T , the regular interference between the short and long trajectories
becomes the dominant feature of both the harmonic intensity and phase. The phase
jumps at the harmonic minima become noticeably smaller with increasing harmonic
order. With the long trajectories removed (Tα = 0.95T ), the harmonic spectrum
becomes structureless and the phase jumps disappear. The harmonic phase initially
has a negative slope and at the high end of the spectrum a rapid positive slope,
i.e., a substantial second derivative with respect to the harmonic frequency exists,
representing the harmonic chirp of the short trajectories.

In Fig. 3.19 we consider the harmonic phase of a 44-cycle trapezoidal pulse with
two-cycle ramps and the same wavelength and intensity as before. In this case,
many half-cycles contribute to the harmonic emission and all harmonics are emit-
ted at many different times. Therefore it no longer makes sense to talk about a
central point in time at which the emission occurs and we do not perform the time
translation as given by Eq. (3.9). The repetitive character of the harmonic emis-
sion combined with the gerade symmetry of the H+

2 molecule gives rise to harmonic
emission at odd harmonic orders and vanishing intensity at other frequencies (see
section 2.2.1). In Fig. 3.19 the apparent completely chaotic behavior of the phase
and the concentration of the harmonic intensity around the harmonic peaks are
clearly visible.
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Figure 3.19: (Color online) Same as the left graph of Fig. 3.17 (no time translation)
for a 44-cycle trapezoidal pulse. In the left graph all data points are shown, in the
right graph only the data points exactly at the odd harmonics are shown. Note the
difference in harmonic range between the graphs.

Since the odd harmonic peaks form spectrally and partially temporally separated
contributions to the harmonic spectrum and associated attosecond pulse train, it
makes sense to compare their individual contributions. In the left graph of Fig. 3.20
we plot the harmonic phase difference between each odd harmonic peak ω and its
respective lower-lying peak ω − 2ωL, where ωL is the fundamental laser frequency.
Because the behavior of two adjacent odd harmonic peaks is very similar, the re-
sulting plot is a lot less chaotic than the right graph of Fig. 3.19. For all data points
in the neighborhood of several odd harmonic peaks we plot the phase difference
with the corresponding data points at a 2ωL-lower frequency in the right graph of
Fig. 3.20. The data points are spectrally separated by ≃ 0.022ωL. We observe that
in the vicinity of the odd harmonics all curves can be quite well approximated by
a slightly sloped linear relationship. This reflects that the harmonic phase behaves
very similarly around all odd harmonic peaks, underlining the fact that all harmonic
peaks underly roughly the same physical process. The slopes of the curves reflect
the slight emission-time differences between the harmonics. Since many trajectories
contribute to each harmonic, and because the harmonic emission is not centered
around t = 0, the emission time as a function of harmonic does not follow the simple
behavior displayed in the right graph of Fig. 3.18.

3.3 Harmonic phases from two close-lying states

To study the high-harmonic generation process, it will prove interesting to study
the harmonics generated by two almost degenerate states. Since for our numerical
simulations we are restricted to one-electron systems and we wish to study HHG
in the tunneling regime, we resort to a very artificial potential to obtain two deep-
and close-lying states. The potential is best described as extended H+

2 with R = 14
a.u. and two modifications; firstly, at the origin we add a potential peak to separate
the two lobes. Since this strongly reduces the quantum-mechanical overlap between
the two atomic lobes of H+

2 , the gerade ground and ungerade first excited state
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Figure 3.20: (Color online) Harmonic phase differences for the pulse from Fig. 3.19.
From the harmonic phase at frequency ω we subtracted the harmonic phase at
ω − 2ωL. The left graph contains data points at the odd harmonic orders, the right
graph shows the area around the harmonic peak for harmonic orders 51 (black solid
line), 53 (red dashed line), 55 (blue dotted line), 57 (violet dot-dashed line), and 59
(brown dot-dot-dashed line).

are almost degenerate. Secondly, we add a ring-like potential barrier around the
molecule to prevent depletion during the pulse. We consider linearly polarized laser
light aligned along the internuclear axis. The potential is given by

V (r) = − 1
√

(r− R
2 )2 + a2

− 1
√

(r + R
2 )2 + a2

+ bce
−(|r|−br)2/b2w + pce

−(x2+0.01y2)/p2
w ,

(3.10)
with a2 = 0.5, peak parameters pc = 2.0, pw = 4 and bc = 0.7 and barrier parameters
br = 14, and bw = 1.5. The ground (n = 0) and first excited (n = 1) state
energies are both −13.57 eV with E1−E0

|E0| < 10−8. For the numerical calculation

we used I = 1.5 × 1014 W/cm2, λ = 2000 nm and the three-cycle sin2-pulse with
φCEP = 1.25π. In Fig. 3.21 we plot the potential and in Fig. 3.22 we show a cut
through the potential at y = 0. Also indicated in this plot is the situation at the
maximum of the electric field.

In Fig. 3.23 we plot the phase difference between the two close-lying state for har-
monics polarized along the x-direction. We also show the Fourier transforms of the
two orbitals and the harmonic frequencies corresponding to Ip, and to V0, the max-
imum of the potential peak at x = y = 0. For low harmonic energies, both at the
tunneling step and the recombination step V0 is too high to overcome, and the n = 0-
and n = 1-states give rise to identical spectra as there is no interference possible
between the lobes. This is an illustration of the fact that the continuum wave packet
carries the phase of the ionizing lobe. At recombination the harmonic phase is de-
termined by the phase difference between the continuum and bound states, which
is equal for the two close-lying states. Above harmonic 80, where the recombining
electron has enough energy to overcome the V0, interferences can occur at the recom-
bination step. The phase difference becomes quite chaotic there, but some jumps
observable seem to correspond to jumps in the Fourier transforms of the individual
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Figure 3.21: (Color online) Density plot of the potential used in section 3.3.
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Figure 3.22: (Color online) Cut through the potential at y = 0 for the laser-free
situation (black solid line) and at the maximum of the electric field (black dashed
line). Schematically indicated are also the two lobes of the wave function in both
situations; for the laser-free situation with red lines, at the peak of the electric field
with blue lines, the dotted lines indicate the lobe for the n = 1-state.
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Figure 3.23: (Color online) Harmonic phase difference for the two close-lying states
as a function of harmonic order. The green dashed and blue dotted lines are the
Fourier transforms of the n = 0 and n = 1 states, respectively.

states.

3.4 Time-frequency analysis

Using the method developed by our former group member Ciprian Chirilǎ we an-
alyze the temporal characteristics of the HHG process from our numerical results
(Chirilă et al. [20]). In short, instead of performing a Fourier transform to obtain
the harmonic spectrum from 〈α(t)〉, we perform a Gabor transform (Gabor [40]) to
obtain time-frequency information. We replace Eq. (2.2a) with

αG(ω, t) =

∫

〈α(t′)〉exp(−(t′ − t)2/2σ2)

σ
√

2π
eiωt′dt′. (3.11)

We use here σ = 1/(3ωL), with ωL being the central laser frequency. The parameter
σ sets the balance between the resolutions in the temporal and frequency domains.
In the limit σ → ∞, all the temporal information is lost, and the Fourier transform
is recovered up to a prefactor that depends on σ.

Using Eq. (3.11) one obtains the quantum-mechanical emission-time distribution for
all harmonic orders. If we take the maxima of |αG(ω, t)| as a function of t for dif-
ferent ω, we obtain the classical emission times (see Chirilă et al. [20]). In Fig. 3.24
we plot the classical emission times for different alignment angles of the 2D H+

2

model of section 3.1. The intensity is I = 5 × 1014 W/cm2 with λ = 800 nm. For
plot ‘(a)’ we use a pulse with eight cycles and a trapezoidal envelope with ramps
of two cycles. We perform the analysis on trajectories that are born in the first
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Figure 3.24: (Color online) Harmonic-order emitted as a function of time for 2D
H+

2 . Red circles are for θ = 40◦, blue squares are for θ = 45◦ and black triangles are
for θ = 50◦. (a) a standard laser pulse, (b) a ramp-less pulse and (c) additionally
has trajectories from later half-cycles suppressed.

half-cycle of the plateau. The short (left branch) and long (right branch) trajecto-
ries are clearly visible. The experimental parameters are such that the two-center
interference minimum is expected to move through the plateau. At the interference
minimum, we expect an emission-time shift because of the relationship between the
harmonic phase and the emission time te

te =
∂Φ

∂ω
, (3.12)

where Φ is the harmonic phase (Chirilă et al. [20]). The above relationship follows
from the Fourier-transform property in the footnote on page 37. Such an emission-
time shift was also observed experimentally for CO2 (Boutu et al. [11]).

In plot ‘(a)’ we can observe the emission-time shift move along the plateau as a
function of θ, but not very clearly. The reason is that there are many processes
going on in Fig. 3.24a that obscure the view. We show here that we can use some
of the ideas of section 3.1.1.2 to clean the picture. In plot ‘(b)’ we use a laser pulse
that does not have a ramp-on, i.e., the electric field starts with the full intensity.
This way returns from trajectories that started during the ramp-on are removed. As
a result, the short and long trajectories stand out better in the plot. Also we can
now observe the interference minimum shift along the plateau much clearer for the
short trajectories. In plot ‘(c)’ we turn off the laser pulse in the inner region after
the first half-cycle, i.e., we set Tl = 0.5T in Eq. (3.6). This additionally suppresses
trajectories born during the second half-cycle. Some of these can interfere with long
trajectories born during the first half-cycle (see section 3.1.1.2). The features of the
short and long trajectories stand out even more now from an almost zero background
as most of the other processes are suppressed. As a result, we can see the two-center
interference minimum move along the plateau very clearly for both the short and
long trajectories in Fig. 3.24c.
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Chapter 4

Molecular orbital tomography

This chapter is devoted to molecular orbital tomography, i.e., the most extreme
form of molecular imaging. It was introduced in December 2004 by the Corkum
group at the National Research Council of Canada (Itatani et al. [52]). Instead of
inferring molecular characteristics from HHG spectra as we have occupied ourselves
with in chapter 3, in molecular orbital tomography—also referred to as molecular
tomography or orbital tomography—we image the full (one-electron) electronic wave
function with the help of HHG spectra. The method was shown to work for N2 by
(Itatani et al. [52]) using a priori information about the harmonic phases. The
experiment for N2 has been repeated using measured harmonic phases by (Haessler
et al. [46]). At the moment it is unclear whether the tomographic reconstruction
works for CO2 (Haessler [45]). So far no experimental reconstructions for other
molecules have been reported.

We ask the reader to view the density plots in this chapter in the color version of
this thesis. The differences between the orbitals are a lot clearer in that version.

4.1 Derivation

4.1.1 Length form reconstruction

For an orientation θ of the bound state ψ0,θ(r) we consider the Fourier elements

dθ[ω(k)] ≡
∫∫

ψ0,θ(r)re
−ikxd2r (4.1)

inside the definition of Dθ[ω(k)] for positive harmonic frequencies and negative mo-
mentum of the returning electron in Eq. (2.23). In other words, we focus on the
case that a(k) = 0 for k > 0 to allow for inversion of Eq. (2.21b). Here ω(k) is
the harmonic frequency corresponding to return momentum k. Since we are inter-
ested in recovering the molecular orbital from 1D Fourier elements, it makes sense
to consider k and not ω the independent variable in the following. Since we consider
only returns with negative momentum, there exists a one-to-one mapping between
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Figure 4.1: Coordinate frames.

k and ω. Through a dispersion relationship such as k(ω) =
√

2ω we can go back to
a frequency-based picture in the end.

Using rotations given by (see Fig. 4.1)

Aθ =

(
cos θ − sin θ
sin θ cos θ

)

(4.2)

Aθ
−1 =

(
cos θ sin θ
− sin θ cos θ

)

(4.3)

r′θ =

(
x′

y′

)

= Aθ

(
x
y

)

=

(
x cos θ − y sin θ
x sin θ + y cos θ

)

(4.4)

r′′θ =

(
x′′

y′′

)

= Aθ
−1

(
x
y

)

=

(
x cos θ + y sin θ
−x sin θ + y cos θ

)

(4.5)

we define

ψ0,θ(r) = ψ0(Aθ
−1r) = ψ0(x cos θ + y sin θ,−x sin θ + y cos θ) (4.6)

and

dθ[ω(k)] =

∫∫

ψ0(r)r
′
θ(r)e

−ik(x cos θ−y sin θ)d2r. (4.7)

Now define the more general Fourier transform

g(k1, k2) =

(
g1(k1, k2)
g2(k1, k2)

)

=

∫∫

ψ0(r)re
−i(k1x+k2y)d2r, (4.8)

of which both components can be inverted to reach

ψ0(r) r =
1

(2π)2

∫∫

g(k1, k2)e
i(k1x+k2y)dk1dk2. (4.9)

Note that d0[ω(k)] = g(k, 0). This is also predicted by the Fourier Slice Theorem
(Lichtenbelt [73]), which states that a Fourier transform of a 1D projection of a
multidimensional function is the same as a line through a two-dimensional Fourier
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transform of that function in the same direction. We write k1 = k cos ϑ and k2 =
−k sinϑ. Next we change the integration variables to k, ϑ with

dk1dk2 =

∣
∣
∣
∣
det

([
dk1
dk

dk1
dϑ

dk2
dk

dk2
dϑ

])∣
∣
∣
∣
dkdϑ = kdkdϑ, (4.10)

where k ≥ 0 and ϑ ǫ [0, 2π). Eq. (4.9) then becomes

ψ0(r)r =
1

(2π)2

∫ 2π

0

∫ ∞

0
g(k cos ϑ,−k sinϑ)eik(x cos ϑ−y sinϑ)kdkdϑ. (4.11)

From now the integration boundaries will be left out for ease of notation. We can
insert the following equality

Aθ
−1dθ[ω(k)] =









∫∫
ψ0(r)[cos θ(x cos θ − y sin θ)

+ sin θ(x sin θ + y cos θ)]e−ik(x cos θ−y sin θ)d2r

∫∫
ψ0(r)[− sin θ(x cos θ − y sin θ)

+ cos θ(x sin θ + y cos θ)]e−ik(x cos θ−y sin θ)d2r









=

(∫∫
ψ0(r)xe

−ik(x cos θ−y sin θ)d2r
∫∫

ψ0(r)ye
−ik(x cos θ−y sin θ)d2r

)

= g(k cos θ,−k sin θ),

(4.12)

into this formula to reach

ψ0(r)r =
1

(2π)2

∫∫

Aϑ
−1dϑ[ω(k)]eik(x cos ϑ−y sinϑ)kdkdϑ. (4.13)

In the experimental implementation (Itatani et al. [52]), the molecules are aligned
along directions within the xy-plane, with an angle θ between the molecular axis
and the electric field. Therefore we replace ϑ → θ and we rewrite Eq. (4.13) into
two distinct equalities for ψ0(r) as

ψ0(r) =
1

x

1

(2π)2

∫∫

(dθ,x[ω(k)] cos θ + dθ,y[ω(k)] sin θ)eik(x cos θ−y sin θ)kdkdθ,

(4.14a)

ψ0(r) =
1

y

1

(2π)2

∫∫

(−dθ,x[ω(k)] sin θ + dθ,y[ω(k)] cos θ)eik(x cos θ−y sin θ)kdkdθ.

(4.14b)

It is expected that a good estimation for ψ0 can then be attained using both
equalities to obtain

ψ0(r) =
1

2(2π)2

{
1

x

∫∫

(dθ,x[ω(k)] cos θ + dθ,y[ω(k)] sin θ)eik(x cos θ−y sin θ)kdkdθ

+
1

y

∫∫

(−dθ,x[ω(k)] sin θ + dθ,y[ω(k)] cos θ)eik(x cos θ−y sin θ)kdkdθ

}

. (4.15)
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Finally, we convert the above expression back to frequency space. This is the more
natural choice as in a HHG experiment photon energies are being measured. Let us
consider the general dispersion relationship

k(ω) =
√

2(ω − cI(ω)Ip), (4.16)

where cI(ω) is an arbitrary function of ω. A change of integration variables gives

kdk = k dk(ω)
dω dω =

(

1 − dcI(ω)
dω Ip

)

dω. Therefore the reconstruction equation be-
comes

ψ0(r) =
1

2(2π)2

{
1

x

∫∫

(dθ,x(ω) cos θ + dθ,y(ω) sin θ)

× eik(ω)(x cos θ−y sin θ)

(

1 − dcI(ω)

dω
Ip

)

dωdθ

+
1

y

∫∫

(−dθ,x(ω) sin θ + dθ,y(ω) cos θ)

× eik(ω)(x cos θ−y sin θ)

(

1 − dcI(ω)

dω
Ip

)

dωdθ

}

.

(4.17)

Energy conservation for the returning electron in the Lewenstein model gives cI(ω) =
1. On the other hand, as explained at the end in section 2.3, molecular characteristics
are often derived from HHG spectra using cI(ω) = 0 (Itatani et al. [52]; Lein et al.

[67]). Typically a constant cI(ω) is used and dcI(ω)
dω vanishes. In that case the

reconstruction equation simplifies to

ψ0(r) =
1

2(2π)2

{
1

x

∫∫

(dθ,x(ω) cos θ + dθ,y(ω) sin θ)eik(ω)(x cos θ−y sin θ)dωdθ

+
1

y

∫∫

(−dθ,x(ω) sin θ + dθ,y(ω) cos θ)eik(ω)(x cos θ−y sin θ)dωdθ

}

. (4.18)

Compared to the original work (Itatani et al. [52]), our additional factor of 1
2 can be

related to their summation of θ only running from 0 to π. This is a simplification for
symmetric orbitals. The fact that they only use the real part of their reconstructed
orbital is probably because they lack phase information in their measurements, so
this was done in an attempt to reduce the reconstruction error. When dθ is known,
and the original orbital is real, taking the real part in the reconstruction has no
effect. Apart from these observations there still seems to be a sign error in the
exponent of the reconstruction equation in (Itatani et al. [52]).

Experimentally both the amplitude and the phase of Dθ(ω) can be obtained from
measuring the intensities and relative phases of the high harmonics, although in
(Itatani et al. [52]) only the intensities were measured. They solved this problem
by adding phase information from a priori considerations. There are two unknowns
in our equation for Dθ(ω), namely a[−k(ω)] and ψ0,θ(r). The idea is to solve this

problem by looking at an atomic system for which ψ
(a)
0 (r) is known and a(a)[k(ω)] is

very similar to a[k(ω)]. If the atomic and molecular system share the same ionization
potential, and the same intensity-dependent ionization probability, the first step of
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the three step model (ionization) is similar, as the systems respond similarly to
strong fields. The saddle point through which the electrons tunnel acts as a spatial
filter, so the second step (propagation in the laser field) is also the same for the two
systems. Therefore the atomic system can be used to determine a[−k(ω)] (Levesque
et al. [70]), after which ψ0(r) can be determined. It has been pointed out that the
polarizability of the system plays an important role in the multi-photon regime, and
therefore the size of the system influences the intensity-dependent ionization rate if
the Keldysh parameter (Eq. (2.6)) is not much smaller than 1 (Chin and Golovinski
[18]; Liang et al. [72]). Therefore extra care should be given if the Keldysh parameter
γ ∼ 1.

Some experimental schemes to determine the harmonic phase might not be able to
distinguish between D∗(ω) and D(ω) as they cannot measure the sign of a phase
difference. In case the orbital is accidently reconstructed using D∗(ω) instead of
D(ω), the consequences depend on the phase of the Fourier components of the
reference atom. If the Fourier transform of the reference atom is purely real or
imaginary, the reconstructed orbital is rotated by 180◦ and complex conjugated. On
the other hand, if the phase of the reference atom shows more complex behavior, i.e.,
if the reference atom is not symmetric, additional distortions to the reconstructed
orbital result.

4.1.2 Velocity form reconstruction

Instead of inverting Eq. (2.23) to obtain a reconstruction formula in length form, we
can also invert Eq. (2.30). Let us consider the Fourier elements

pθ[ω(k)] ≡
∫∫

ψ0,θ(r)e
−ikxd2r (4.19)

in that equation. We define the generalized Fourier transform

l(k1, k2) =

∫∫

ψ0(r)e
−i(k1x+k2y)d2r, (4.20)

for which

pθ[ω(k)] = l(k cos θ,−k sin θ) =
1

2π a′(k)
Pθ,x[ω(k)]. (4.21)

The inverse of this transform is

ψ0(r) =
1

(2π)2

∫∫

l(k1, k2)e
i(k1x+k2y)dk1dk2. (4.22)

We change the integration variables dk1dk2 → kdkdθ, where k1 = k cos θ and k2 =
−k sin θ, to arrive at

ψ0(r) =
1

(2π)2

∫∫

k pθ[ω(k)]eik(x cos θ−y sin θ)dkdθ

=
1

(2π)2

∫∫

pθ(ω)eik(ω)(x cos θ−y sin θ)dωdθ.

(4.23)

For the last equality we assumed a simple dispersion relationship with a constant
cI(ω).
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4.2 Phase of reconstructed orbital

In this section we look at the phase with which the orbital is reconstructed in a
numerical simulation of the molecular-orbital-tomography scheme. The conclusion
is derived for length-form reconstructions, but equally valid for velocity-form recon-
structions. The simulation starts with the determination of the reference quantities
D(a)(ω) and d(a)(ω). The Fourier-transformed dipole moment D(a)(ω) is numeri-
cally most reliably calculated from the dipole acceleration, but effectively calculated
according to Eq. (2.14a) as

D(a)(ω) =

∫

〈d(a)(t)〉eiωtdt. (4.24)

Since the harmonic emission does not occur at t = 0, but at some different point in
time, D(a)(ω) will acquire a complex phase factor that represents the time translation
(see section 3.2). Assuming that the emission in the directions x and y is centered
around t = a1x,y , respectively, we numerically recover D(a)(ω) with the phase

arg
(

D(a)(ω)
)

= Φ
(a)
D (ω) + a1 ω, (4.25)

where Φ
(a)
D (ω) is the ‘internal’ phase of D(a)(ω), i.e., the part of arg

(
D(a)(ω)

)
that

does not depend on the time reference. It incorporates the physically relevant phase
jumps between the harmonics, including the chirp of the emitted radiation. On the
other side, the reconstruction matrix element d(a)(ω) has the phase

arg
(

d(a)(ω)
)

= Φ
(a)
d (ω) + cFI, (4.26)

where Φ
(a)
d (ω) contains the physically relevant phase jumps between the momentum

components, I is the two-dimensional identity matrix and cF with 0 ≤ cF < 2π
represents the arbitrary phase that the reference ground state has when determining
its Fourier transform. Normally cF = 0 is used, but it will prove insightful to
explicitly keep cF. Since the continuum wave packet is given by (a[−k(ω)] is to be
understood as a linear combination in the long-pulse-symmetric-molecule case, see
Eq. (2.22))

a[−k(ω)] = −k(ω)D
(a)
x (ω)

2πd
(a)
x (ω)

, (4.27)

its argument is given by

arg (a[−k(ω)]) = π + Φ
(a)
Dx

(ω) + a1xω − Φ
(a)
dx

(ω) − cF. (4.28)

Next in the tomographic scheme is the determination of the reconstruction matrix

elements d
(tom)
θ (ω) as

d
(tom)
θ (ω) = − k(ω)Dθ(ω)

2πa[−k(ω)]
, (4.29)

where with the superscript ‘(tom)’ we explicitly denote matrix elements as recovered

by the tomographic procedure. This means that the argument of d
(tom)
θ (ω) is given
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Figure 4.2: (Color online) Harmonic phase difference between H+
2 and He+ (solid

black line), and between shielded He+ and He+ (red dashed line) for harmonics
polarized in the x-direction; (a) using a three-cycle sin2 pulse, (b) using an artificial
pulse with only short trajectories.

by

arg
(

d
(tom)
θ (ω)

)

= πI+ΦD(θ, ω)+a2(θ)ω−
(

π + Φ
(a)
Dx

(ω) + a1xω − Φ
(a)
dx

(ω) − cF

)

I,

(4.30)
where a2 is analogous to a1 but for the molecule. One of the main assumptions
behind molecular orbital tomography is that the propagation step of the three-step
model is identical for the molecule and the reference. Therefore within the three-step
model the only difference between the harmonic phases is given by the recombination
matrix elements, i.e.,

ΦD(θ, ω) − Φd(θ, ω) = Φ
(a)
D (ω) − Φ

(a)
d (ω). (4.31)

This means we can write

arg
(

d
(tom)
θ (ω)

)

= Φd(θ, ω) + (a2(θ) − a1xI)ω + cI. (4.32)

The fact that a1 and a2 do not cancel out in the above expression reflects the
influence of any emission time difference between the reference and molecule on the
reconstructed orbital. Such an emission time difference can arise for instance due to
a difference in Coulomb fields between the reference and molecule.

4.2.1 Demonstration central emission time

As a demonstration of the fact that different atoms and molecules are associated
with different emission times, we plot the difference in harmonic phase in the x-
direction between different atoms and molecules as a function of harmonic order in
Fig. 4.2. The solid black lines are for the phase difference between 2D H+

2 and He+.
The laser wavelength is λ = 780 nm and the laser intensity is I = 5 × 1014 W/cm2.
The model for H+

2 was the same as in chapter 3; the ground state was modeled
using a 2D softcore potential with softcore parameter a2 = 0.5 to give an ionization
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potential of 30.2 eV. He+ was modeled using a 2D softcore potential with Z = 2 and
a2 = 0.9207 to give the same ionization potential. The red lines are for the phase
difference between ‘shielded’ He+ and He+. We modeled ‘shielded’ He+ using a 2D
softcore potential with Z = 1.5 and a2 = 0.2952 and Ip = 30.2 eV. The left plot was
created using a laser pulse with a three-cycle sin2 envelope with a carrier-envelope
phase of 1.25π, as was also used in chapter 3. The interference between the short
and long trajectories that we also observed in section 3.1.1.2 is clearly visible here.
For the right plot we use a cw-like pulse and set the dipole acceleration to 0 at
t = 0.95T to select only a single set of short trajectories, using the method proposed
in section 3.1.1.2. This gets rid of most of the interference patterns and cleans the
picture significantly.

For both plots in Fig. 4.2 the phase difference between ‘shielded’ He+ and He+

is linear in ω in the harmonic plateau, with the trajectory interference pattern
superimposed for the normal pulse on the left. Since the two model systems are
so similar, their harmonic spectra are very similar. This results in only a small
difference in the center time of emission and therefore in a small value for a2,x −
a1x , which means the harmonic phase difference in the x-direction only has a small
linear slope. Any effect from the extension of the molecule or trajectory length
would be frequency-dependent. All frequency-dependent emission-time differences
would show up as higher than linear orders in Fig. 4.2. As there is no higher than
linear order visible for the trend of the red dashed lines, the emission time shift is
apparently identical for all harmonic orders.

As far as the harmonic phase difference between H+
2 and He+ (black solid lines in

Fig. 4.2) is concerned, a quadratic contribution to the trend does seem to appear
additionally to a small linear contribution from a difference in central emission time.
A probable explanation is that the difference in character between the two-center
H+

2 and the one-center He+ has a significant influence on the propagation. The low
harmonics are influenced more by the Coulombic potential during the propagation
than the high harmonics. Therefore it makes sense that the low harmonics experience
a larger emission time shift between H+

2 and He+ than the high harmonics, which is
visible as the steeper curve for the low harmonics.

4.2.2 Reconstruction equation

Using the above analysis, and considering that an adapted dispersion relationship
without Ip (cI(ω) = 0) was used for the reconstruction, the reconstruction equation
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Eq. (4.18) becomes

ψ0(r) =
eicF

2(2π)2

{

1

x

∫∫

(dθ,x(ω)eia2x (θ)k2

2 cos θ + dθ,y(ω)eia2y (θ)ω sin θ)

× e−ia1x ωeik(ω)(x cos θ−y sin θ)dωdθ

+
1

y

∫∫

(−dθ,x(ω)eia2x (θ)ω sin θ + dθ,y(ω)eia2y (θ)ω cos θ)

× e−ia1xωeik(ω)(x cos θ−y sin θ)dωdθ

}

. (4.33)

Here the phase of the reconstruction matrix elements dθ(ω) is taken to incorporate
only the physically relevant phase jumps between the harmonics. The above equation
shows that in principle the molecular orbital is reconstructed with the same phase cF
as was used for the reference orbital. However, both errors from the determination
of dθ, e.g., because of the plane-wave approximation used, and the finite harmonic
range available lead to errors in the reconstructed orbital. In general, these errors
can make the reconstructed orbital a complex object without a well-defined single
global phase. In practice, the errors can introduce a combination of small complex
disturbances and an overall global phase to the reconstructed orbital.

Furthermore, the fact that the harmonic emission might occur at slightly different
times for the different systems and cartesian directions might lead to an additional
distortion of the reconstructed orbital in the numerical simulation of molecular or-
bital tomography. To the extent that a2(θ) 6= a1xI for one of the two components,
there is a ‘chirp’ of the reconstructed orbital for the orientation θ. Since ω = k2/2
in Eq. (4.33), the high momentum components are translated in space further than
the low components if a2(θ) 6= a1xI.

Experimentalists sometimes remove the time translation phase from the recombina-
tion matrix elements (see e.g. Boutu et al. [11]). If the actual emission times are
used for the reference and molecule, this can be used to circumvent the distortion
from an emission time shift between the reference and molecule. However, if the
three-step model is used to determine the emission time, any emission time differ-
ence between the reference and molecule will survive and the reconstructed orbital
will be distorted.

4.2.3 Rotation of reconstructed orbital in complex plane

The above analysis shows that the orbital might be reconstructed with a nonzero
global phase. The best guess for the orbital is therefore obtained by rotating the
reconstructed orbital in the complex plane in such a way that the density in the real
domain is maximized. In formula, for the rotated wave function

ψ′
0(r) = ψ0(r)e

−iφ, (4.34)

we are looking for the angle φ that maximizes

a′D(φ) =

∫∫
(
Re(ψ′

0(r))
)2
d2r. (4.35)
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Simple algebra shows that the condition for an extremum of the density in the real
domain is given by

da′D(φ)

dφ
= (bD − aD) sin 2φ+ 2cD cos 2φ = 0, (4.36a)

aD =

∫∫

(Re(ψ0(r)))
2 d2r, (4.36b)

bD =

∫∫

(Im(ψ0(r)))
2 d2r, (4.36c)

cD =

∫∫

(Re(ψ0(r))Im(ψ0(r))) d
2r. (4.36d)

This is easily solved for φ to obtain

φ =
1

2
arctan

(
2cD

aD − bD

)

. (4.37)

Now we need to check whether multiplying the wave function with e−iφ minimizes
or maximizes the density in the real domain. In the former case, we need to move
the density from the imaginary domain to the real domain. The densities in the real
and imaginary domains of the rotated wave function are given by, respectively,

a′D = aD cos2 φ+ bD sin2 φ+ cD sin 2φ, (4.38a)

b′D = aD sin2 φ+ bD cos2 φ− cD sin 2φ. (4.38b)

If b′D > a′D, which simplifies to

(bD − aD) cos 2φ− 2cD sin 2φ > 0, (4.39)

we move the density from the imaginary to the real domain by adding π
2 to φ.

In a real experiment, the molecular orbital is reconstructed with more complicated
errors than just a rotation in the complex plane. The less ideal the experimental
parameters (e.g., complexity of the orbital, laser wavelength and intensity), the big-
ger these errors are and the more they also manifest themselves as the appearance
of significant density far away from the molecular core. In such a case maximiz-
ing the density in the real domain might be equivalent to maximizing the errors in
the real domain, as the outer regions dominate the core region in the above proce-
dure. Therefore sometimes it is necessary to limit the integration range in the above
procedure. In that case, the orbital parameters in Eq. (4.36) become

aD =

∫∫

r≤Rc

(Re(ψ0(r)))
2 d2r, (4.40a)

bD =

∫∫

r≤Rc

(Im(ψ0(r)))
2 d2r, (4.40b)

cD =

∫∫

r≤Rc

(Re(ψ0(r))Im(ψ0(r))) d
2r, (4.40c)

where r =
√

x2 + y2 and Rc limits the range of the integration to the molecular
core region and should be set equal to a couple of bohr.
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4.3 Simulation

As far as possible the experimental procedure (Itatani et al. [52]) was followed. In
velocity form, the procedure is as follows; firstly we calculate the continuum wave
packet function a(k), which acts as a container function as it is combines many
different factors to form an effective plane-wave continuum decomposition. In case
the laser pulse gives rise to essentially one-sided returns, as is the case for the pulses
that are used in this section as will be shown in section 4.6.1, it is approximated as
(see Eq. (2.30))

aθ[−k(ω)] =
P

(a)
x (ω)

2π p(a)(ω)

√

PI(θ)

P
(a)
I

, (4.41)

where with the (a)-superscript we denote reference quantities and PI is the total
ionization probability, experimentally relatively easily accessible as the total solid
angle- and momentum-integrated photoelectron spectrum. As a reference system
we use a 2D softcore atom with a nuclear charge equal to the total nuclear charge
of the molecule and the softcore parameter chosen such that its ionization potential
is equal to that of the molecule. Secondly we determine the reconstruction matrix
elements as

pθ(ω) =
Pθ,x(ω)

2π aθ[−k(ω)]
. (4.42)

Finally the molecular orbital is reconstructed using Eq. (4.23).

The reconstruction works best if many different orientations Nθ are used, as oth-
erwise artifacts in the reconstructed orbital can arise. In formula, we use Nθ =

100
min(∆x,∆y) , where ∆x, ∆y are the spatial resolutions in the x- and y-directions, re-
spectively. As an example, for a typical spatial resolution of ∆x = ∆y = 0.17 a.u.
this leads to Nθ ≃ 600, which is definitely on the safe side. In practice usually less
angles need to be measured, as symmetries of the orbital reduce the number of inde-
pendent orientations. Nonetheless, for typical laser intensities of 2−5×1014 W/cm2

at a wavelength of 780 nm the simulation is quite resource-intensive. Therefore nu-
merical tomographic simulations are at the moment practical only on massively par-
allel machines. Because the numerical solution of the time-dependent Schrödinger
equation for each orientation angle is independent, and only at the very end of the
simulation we need to combine data from all the different angles to perform the
reconstruction, not much communication between the different processes is needed
and the simulation is highly parallelizable. Therefore no high-performance computer
is needed but a cluster of normal PCs suffices.

After some initial numerical experiments, the above formula for Nθ was chosen
to be on the safe side always. Usually it should be possible to reduce this number
significantly without decreasing the quality of the reconstruction. It is probably also
possible to calculate the harmonics for even significantly less angles, and calculate
the rest by interpolation from the calculated angles. One complication for such
an interpolation procedure are the strongly varying complex phases factors in any
numerical HHG calculation that will partially survive in the reconstructed matrix
elements, see the analysis in section 4.2. We have not experimented with such an
interpolation procedure. In a recent tomographic experiment where only 8 harmonic
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Figure 4.3: (Color online) Tomographic reconstruction of the ground state of 2D
H+

2 . From left to right the exact orbital, the real part of the reconstructed orbital
and the real part of the reconstructed after rotation in the complex plane are shown.

orders were used for the reconstruction, no significant improvement was reported in
going beyond ∆θ = 360

Nθ
= 10◦ (Haessler [45]). The low requirement on the angular

resolution reported there is probably related to the slow angular variation for σ- and
π-orbitals.

Before performing the reconstruction, we diffuse the matrix elements by convoluting
them with a Gaussian filter to flatten artificial spikes that arise when the molecule
and the reference system exhibit trajectory interferences at slightly different fre-
quencies. The Gaussian filter has a 1/e-width of 6ωL. After diffusing the matrix
elements, we use the frequency range

max (ωL, 0.05Ip) < ω < 1.05 × (3.17Up + Ip) (4.43)

for the reconstruction. In words, for a 780-nm pulse and Ip = 30.2 eV all mea-
sured frequencies above the fundamental are used, and to take into account that the
quantum-mechanical cutoff lies beyond the classical one, we use the classical cutoff
times 1.05. We have also experimented with not using the lowest harmonics for the
reconstruction. The results strongly depended on the molecule considered in that
case; both improvements and detoriations of reconstructed orbitals were seen and
no general guideline was found. In (Haessler [45]) it was reported that if only a
limited frequency range is available for the reconstruction, best results are obtained
if one makes sure the used frequency range is not too one-sided with respect to the
characteristic momentum/-a of the reconstructed orbital, even if that means not
using part of the available frequency range.

Even in the relatively straightforward case of the ground state of 2D H+
2 , the rota-

tion procedure from section 4.2.3 brings a slight improvement, as demonstrated in
Fig. 4.3. The laser wavelength is λ = 780 nm and the laser intensity is I = 5× 1014

W/cm2. The laser pulse had a three-cycle sin2 envelope with a carrier-envelope
phase of φCEP = 1.25π. The 2D softcore model for H+

2 included a softcore param-
eter a2 = 0.5 and internuclear distance R = 2 to give an ionization energy of 30.2
eV. As a reference we used a softcore model for He+ with Z = 2 and a2 = 0.9207
to give the same Ip. The left-most density plot in Fig. 4.3 shows the exact ground
state and in the middle the real part of the reconstructed orbital in velocity form is
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shown. The right-most density plot shows the real part of the reconstructed orbital
rotated in the complex plane by φ ≃ 0.12 rad to maximize the total density in the
real domain (Rc = ∞ suffices here). Although the difference is small, after rotation
in the complex plane the reconstructed orbital is more oval and less rectangular and
thereby resembles the exact orbital a bit better.

For a length-form reconstruction, we proceed analogously. Here the continuum wave
packet is approximated from the parallel emission of the atomic reference system as
(see Eq. (2.23))

aθ[−k(ω)] = −k(ω)D
(a)
x (ω)

2π d
(a)
x (ω)

√

PI(θ)

P
(a)
I

. (4.44)

The reconstruction matrix elements are retrieved using

dθ(ω) = − k(ω)D(ω)

2π aθ[−k(ω)]
, (4.45)

and the molecule is reconstructed using Eq. (4.18).

In the above we considered the case that a(k) = 0 for k > 0 allowing for the re-
construction of general molecules. In case one uses a long pulse to reconstruct an
(un-)gerade molecule, the procedure is exactly the same. The only difference is
that evaluation of the righthand sides of Eq. (4.41) or Eq. (4.44) does not give the
momentum components of the continuum wavepacket as defined in Eq. (2.16), but
instead an effective container function a′[k(ω)] is obtained. The analysis around
Eqs. (2.22) and (2.29) showed us that for either a length or velocity-form recon-
struction a′[k(ω)] = a[−k(ω)] − a[k(ω)] for gerade orbitals and a′[k(ω)] = a[k(ω)] +
a[−k(ω)] for ungerade orbitals.

4.4 Length versus velocity form

In Fig. 4.4 we present the results of a numerical simulation of molecular orbital
tomography using length and velocity forms. The parameters are the same as for
Fig. 4.3. Although the orbital has a k = 0-component that cannot be retrieved
using the tomographic procedure, the reconstruction procedure seems to work quite
well. The negative part of the reconstructed orbital is located at large r and does
not destroy the reconstruction of the inner region. The length-form reconstructed
orbital shown in the middle overestimates the nuclear dimensions significantly, but
its shape seems to be closer to the exact orbital on the left than the velocity-form
reconstructed orbital shown on the right. It has been reported before that in a length
form description of HHG the nuclear dimension is stretched (Chirilă and Lein [22]).

In Fig. 4.5 the results of a tomographic simulation for an ungerade orbital are shown.
We use the first excited state of H+

2 , but with an adapted softcore parameter of a2 =
0.0681 to keep Ip constant. The laser parameters are the same as for Fig. 4.4. The
length-form reconstruction breaks down around the x = 0-symmetry axis because
of the 1/x-term in Eq. (4.18). The velocity form gives a reasonable reconstruction,
although some erroneous density outside of the core region is visible.
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Figure 4.4: (Color online) Tomographic reconstruction of the ground state of 2D
H+

2 . From left to right the exact orbital, the real part of the reconstructed orbital
using length-form reconstruction and using velocity-form reconstruction are shown.
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Figure 4.5: (Color online) Tomographic reconstruction of the first excited state of
2D H+

2 . From left to right the exact orbital, the real part of the reconstructed orbital
using length-form reconstruction and using velocity-form reconstruction are shown.
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Figure 4.6: (Color online) Alternative length form tomographic reconstructions of
the first excited state of 2D H+

2 . From left to right the real part of the reconstructed
orbital using only the 1/y-term, using R− = 0.1 and using R− = 0.3 are shown.

In Fig. 4.6 we explore some possibilities to improve the length-form reconstruction of
an ungerade orbital. If only the 1/y- and not the 1/x-term of Eq. (4.18) is used (left
panel), the reconstruction is comparable to the velocity-form reconstruction. This
shows that the problem in length form can be overcome by avoiding the problem-
causing term in Eq. (4.18). Of course a general prescription is hard to give here, but
by considering both terms in Eq. (4.18) independently it is possible to reconstruct
an ungerade orbital. Problems will persist where two antisymmetry axes cross, e.g.,
at the origin of a πg-orbital. Alternatively, we could set the orbital to 0 if |x| < R−.
The results for R− = 0.1 and R− = 0.3 in Fig. 4.6 show that the results still show
the artifacts, but the shape of the reconstructed orbital outside the region where x
is small becomes visible.

If the reconstructed orbital was not centered around the origin, but all electron
density would be placed at for instance positive x, y, the problem would not oc-
cur. Using adapted matrix elements we obtain a perfect length-form reconstruction.
However, in length form and using the plane-wave approximation, the correspon-
dence between the translated molecule and the harmonic spectrum is lost. This
leads to the introduction of new errors to the reconstructed orbital in the molecular
tomography scheme. Since these errors are frequency-dependent, and not bound to
a small spatial region, it is probably not beneficial to translate the molecule before a
length-form reconstruction. The adapted length-form matrix elements correspond-
ing to a translated orbital can also not be obtained from the normal length-form
matrix elements without knowledge of the orbital.

4.4.1 Biegert-type length-form reconstruction

Very recently an alternative length-form reconstruction equation was proposed by
the Biegert group (Hijano et al. [49]). It consists of a trick to get rid of the 1/x-,

1/y-problems except at the origin by multiplying ψ with x2+y2

x2+y2 . The idea here is to

use the two terms in Eq. (4.18) independently as equalities for ψ as in Eq. (4.14).
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Figure 4.7: (Color online) Tomographic reconstruction of the ground state of 2D
H+

2 . On the left side the exact orbital, and on the right side the real part of the
Biegert-type length-form reconstructed orbital are shown.

The length-form reconstruction equation then becomes

ψ0(r) =
xfx(r) + yfy(r)

x2 + y2
, (4.46a)

fx(r) =
1

(2π)2

{∫∫

(dθ,x(ω) cos θ + dθ,y(ω) sin θ)eik(ω)(x cos θ−y sin θ)dωdθ

}

, (4.46b)

fy(r) =
1

(2π)2

{∫∫

(−dθ,x(ω) sin θ + dθ,y(ω) cos θ)eik(ω)(x cos θ−y sin θ)dωdθ

}

.

(4.46c)

Using exact matrix elements the authors obtained very good results with Eq. (4.46)
(see Hijano et al. [49]).

Unfortunately, in our numerical simulations their method does not perform so well.
In Fig. 4.7 we show the Biegert-type length-form reconstruction for the case of
Fig. 4.4. Although the ground state can be reconstructed quite well using the original
reconstruction equation Eq. (4.18), we plot the result for Eq. (4.46) to show its effect.
There is a very clear distortion of the reconstructed orbital around the origin. This
is probably related to an inequality between fx/x and fy/y combined with a rapidly
changing ratio x/y around the origin. Using exact matrix elements, fx/x and fy/y
are equal (see Eq. (4.14)).

As a reference, in Fig. 4.8 we plot the obtained reconstructions for the case of Fig. 4.5
using exact matrix elements, but limited to the experimental harmonic range of a
780-nm pulse with an intensity of 5 × 1014 W/cm2. The Biegert-type length-form
reconstruction using Eq. (4.46) (middle plot) performs quite well here. The divergent
axis of normal length form (left plot) has been reduced to a single point, the origin.
Apart from the origin, the accuracy of the reconstruction is comparable to the
velocity-form result (right plot). However, using matrix elements obtained from the
numerical tomographic simulation, Biegert-type length-form reconstruction brings
no real improvement compared to normal length-form reconstruction, as shown in
Fig. 4.9. This is in line with what we saw in Fig. 4.7. Like in Fig. 4.8 we obtain a
point-like divergence around the origin instead of a line-shaped one. The problem is
that even if we set all points with |x| < 0.1 or |y| < 0.3 to 0 (R− = 0.3, right plot),
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Figure 4.8: (Color online) Tomographic reconstruction of the first excited state of
2D H+

2 using exact matrix elements. From left to right the real part of the orbital
using length-form reconstruction, using length-form Biegert-type reconstruction and
using velocity-form reconstruction are shown.
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Figure 4.9: (Color online) Tomographic reconstruction of the first excited state of
2D H+

2 . From left to right the exact orbital, the real part of the reconstructed orbital
using a Biegert-type length-form reconstruction, and the same with R− = 0.3 are
shown.

there is no improvement. The dominant behavior in the plot is still that of artificial
peaks at the origin.

The derivation of Eq. (4.46) depended on the equality between fx/x and fy/y as in
Eq. (4.14). However, in a real tomographic experiment (or its numerical simulation),
both will contain different errors. In the area around the origin where the density
is low, these errors can be substantial and Eq. (4.46) breaks down.

4.5 Orbital symmetry and signs

Using linearly-polarized HHG, one cannot measure the absolute phase of an orbital
in the complex plane. The reason is that when one multiplies the orbital with a
complex phase factor, the continuum wave acquires the same extra phase and the
harmonic spectrum and phases are not altered. This makes physical sense as the
absolute overall phase of an wave function has no physical meaning. Problems result
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Figure 4.10: (Color online) Typical 2D projection of an ungerade orbital with an-
tisymmetry around the yz-plane (depicted by the dashed line). The x-direction is
from bottom to top.

when reconstructing orbitals that contain some symmetry.

Consider for instance an ungerade orbital. An example with one nodal plane is
depicted in Fig. 4.10. The sign difference between matrix elements mirrored with
respect to the nodal plane becomes clear from the figure. For this orbital a rotation
by 180◦ is equivalently described by a multiplication by -1. Physically, the orien-
tation angles 0◦ and 180◦ cannot be distinguished and lead to identical harmonics.
Therefore the matrix elements obtained within the tomography scheme at 180◦ need
to be multiplied by -1 to take into account the antisymmetry.

For the typical cases of mirror symmetries with respect to the laboratory frame axes
x and y, we will give the symmetry relationships in the following. First we consider
a mirror symmetry Sx with respect to the x-axis, i.e., ψ0(x,−y) = Sx ψ0(x, y) with
Sx = ±1. The following equations can be used to determine the reconstruction
matrix elements

d−θ(ω) =

∫∫

ψ0(r)

(
x cos θ + y sin θ
−x sin θ + y cos θ

)

e−ik(ω)(x cos θ+y sin θ)d2r

=

∫∫

ψ0(x,−y)
(
x cos θ − y sin θ
−x sin θ − y cos θ

)

e−ik(ω)(x cos θ−y sin θ)d2r

= Sx

(
dθ,x(ω)
−dθ,y(ω)

)

,

(4.47a)

p−θ(ω) = Sx pθ(ω). (4.47b)

Equivalently, in case of a mirror symmetry Sy with respect to the y-axis (ψ0(−x, y) =
Sy ψ0(r)), the following hold

dπ−θ(ω) = Sy

(
dθ,x(ω)
−dθ,y(ω)

)

, (4.48a)

pπ−θ(ω) = Sy pθ(ω). (4.48b)

We observe that the length form x-components behave as the velocity form compo-
nents and follow the sign of the symmetry, whereas the length-form y-components
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show the inverse behavior. In other words, the length-form dipole operator changes
the sign of the mirror symmetry for the y-component. Every mirror symmetry
reduces the range of orientations that both needs to be measured and carries inde-
pendent physical information by 50%.

In the orbital reconstructions published so far, the information about the symmetry
came from a priori considerations. However, there has been some limited success in
measuring the orbital symmetry directly. Although this is not possible using linearly-
polarized pulses for the reason mentioned above, there have been some alternative
methods proposed. By considering the alignment-dependent total ionization rate,
nodal planes can be identified and an indication of the symmetry can be obtained
(Levesque et al. [69]). The four most common molecular symmetries can also be
distinguished visually by considering a polarization map that shows the polarization
angle as a function of alignment and harmonic order (Hijano et al. [49]). Alterna-
tively we can generate high-harmonics using elliptically polarized pulses to determine
the molecular symmetry (Mairesse et al. [77]; Niikura et al. [93]). Semi-classically
this can be understood as studying trajectories that ionize from one lobe and then
recombine in another to determine the relative phase between these two lobes. El-
liptically polarized pulses can also be used to perform a tomographic reconstruction
directly (Shafir et al. [115]).

4.5.1 Asymmetric orbitals

Consider the case where the molecular orbital has lobes with different signs but
they are not associated with any symmetries. Also in this case the continuum wave
packet will start out with the phase of the lobe that dominates the ionization at
a certain orientation, and this initial phase will work its way through the final
phase with which the continuum wave packet recombines. This leads to a π-jump
in the phase of the continuum wave packet at the transition between orientations
corresponding to two lobes with a sign difference that is not taken into account in
the current procedure for determining aθ[−k(ω)]. An improvement should therefore
be expected if we artificially multiply the reconstruction matrix elements with -1
appropriately at such a transition.

We performed a tomographic simulation for the first excited state of HeH2+ using
a laser intensity of I = 3 × 1014 W/cm2 and a laser wavelength of λ = 780 nm.
The softcore parameter was chosen as a2 = 0.7581 to set the ionization potential
at 30.2 eV. For a discussion of asymmetric orbitals and more details on HeH2+ see
section 4.6. The results of the simulation are shown in Fig. 4.11. The exact orbital
on the left shows the two lobes with their sign difference. The difference between the
velocity-form reconstructed orbitals in the middle and on the right is that for the
right-most plot we multiplied pθ(ω) with −1 for π

2 < θ < 3π
2 , roughly corresponding

to the orientations where the transition between the two lobes take place. A clear
improvement in reconstruction is seen between the right-most and middle plots.
Because the positive lobe is larger and has higher amplitude than the negative lobe,
probably the reconstructed orbital would look better if pθ(ω) was multiplied with
−1 for a slightly smaller range.
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Figure 4.11: (Color online) Tomographic reconstruction of the first excited of 2D
HeH2+. From left to right the exact orbital, the real part of the reconstructed
orbital and the real part of the reconstructed orbital when the matrix elements for
π
2 < θ < 3π

2 are multiplied with −1 are shown.
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The physical reason why the reconstruction can be improved like this can be seen
in Fig. 4.12. Here we show the phase of pθ(ω) for harmonic 49 as a function of
orientation angle for the three different plots of Fig. 4.11. The different curves in
Fig. 4.12 include the complex phase factors with which the reconstructed orbitals
were multiplied to maximize the density in the real domain, for which we used
Rc = 3 a.u. In this case using Rc = ∞ produces very bad results because of the
density far away from the origin. The curve of the exact orbital (black line) shows
sharp π-jumps at 90◦ and 270◦ orientation, although the orbital is not (un-)gerade
and pθ(ω) is therefore not purely real or imaginary. Because the initially obtained
matrix elements (red dashed line) do not include these jumps, the adapted matrix
elements (blue dotted line) follow the exact curve much better.

4.6 Reconstruction of asymmetric orbitals

As derived in section 2.3, when the studied molecule is not gerade or ungerade a
reconstruction of the molecular orbital is only possible if the electronic wave packet
approaches the molecule from one side only. This can be achieved using extremely
short pulses, as will be shown in the following sections. Furthermore, for a mole-
cule that has no internal symmetries, obviously one cannot use the equalities from
section 4.5 to reduce the number of angles for which one needs experimental (or in
the simulation, numerical) data. In principle, however, we could use the a priori
knowledge that the reconstructed orbital can be chosen real to reduce the number
of needed angles by 50% as

dπ+θ(ω) =

∫∫

ψ0(r)

(
−x cos θ + y sin θ
−x sin θ − y cos θ

)

e−ik(ω)(−x cos θ+y sin θ)d2r,

= −d∗
θ(ω),

(4.49a)

pπ+θ(ω) = p∗θ(ω). (4.49b)

However, it turns out that in practice the orbital is reconstructed with a nonzero
phase introduced by the different errors of the tomographic scheme as we saw in
section 4.2. Therefore using Eq. (4.49) might produce unwanted and strange effects.
We have observed numerically that a reconstruction using Eq. (4.49) becomes unre-
liable for more adverse reconstruction conditions (complicated orbital, low intensity,
etc), i.e., when the overall error of the reconstruction increases.

4.6.1 Semi-classical pulse characterization

In general, recolliding electrons with both positive and negative momenta contribute
to the generation of the same harmonic generation, each through their own recombi-
nation matrix element. The reconstruction of an arbitrary orbital therefore requires
that the wave packets approach the core from one side only as we saw in section 2.3.
We propose achieving this behavior of the continuum wave packet by using extremely
short tailored laser pulses for high-harmonic generation. By stabilization and con-
trol of the carrier-envelope phase (CEP), the returning wave packet can be tailored.
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Because of the very-few-cycle character of the pulse, the CEP can be chosen such
that classical trajectories in the unwanted direction are effectively suppressed.

4.6.1.1 Return probability

To characterize the returning wave packet we calculate semi-classically the proba-
bility that an electron returns with momentum k. We sample the ionization time
with 3000 points per laser cycle. At each ionization time ti, the electron tunnels
with tunneling probability

pI ∼ exp

(

−4Ip
√

2Ip

3|E(ti)|

)

. (4.50)

The above factor can be found also in the Lewenstein model (Lewenstein et al. [71])
as we will see in section 5.1.3.2. After tunnelling, the electron follows a classical
trajectory, starting with zero velocity at position zero. Every classical return receives
a weight based on the tunnelling probability and a factor τ−3, where τ is the time
the electron spends in the continuum until the time of return. This factor reflects the
effect of wave-packet spreading and comes from the Lewenstein model (Lewenstein
et al. [71]). With experiments in mind, we consider here a full three-dimensional
world. We then add the contributions from the different trajectories to arrive at the
probability that the electron returns to the core with a momentum k in the range
ki − ∆k/2 < k ≤ ki + ∆k/2, where ki is the momentum of the i’th momentum
bin and ∆k is the width of a bin. In contrast with the full Lewenstein model as
treated in section 5.1, interferences between the different paths leading to the same
harmonic are not included in this model. Therefore slightly more accurate results
are obtained by using the approach of section 5.3.1, at the cost of added complexity.
However, to observe the general trend and assess the suitability of different pulses
for the reconstruction of general molecules the approach in this section suffices.

We consider two types of analytical representations for extremely short and linearly-
polarized laser pulses. The first type are 3-cycle pulses with a sin2-envelope for which
the electric field is given by Eq. (3.4). We choose a laser wavelength of λ = 780 nm
and an intensity of I = 5× 1014 W/cm2 for both pulses. The length of such a pulse
in terms of the full width at half maximum of the intensity (FWHM) is 2.84 fs.
The second type are pulses with a Gaussian envelope. These pulses are in principle
infinitely long but for the semi-classical calculation we consider only the center 4
cycles of the pulses

E(t) = E0 exp

(

−1.5
(t− 2T )2

T 2

)

cos(ωt+ φCEP). (4.51)

These pulses have a FWHM of 2.50 fs. Both mentioned values of the FWHM are
comparable to one laser cycle (2.6 fs). The choice of simple analytical expressions
for the time-dependent field strength leads to small but unimportant violations of
the rule

∫
E(t)dt = 0 for the pulses with a Gaussian envelope.
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Figure 4.13: (Color online) Returning electron momentum distributions for the 3-
cycle sin2-pulses. (a) φCEP = 0 rad, (b) φCEP = 0.25π rad, (c) φCEP = 0.55π rad
and (d) φCEP = 0.75π rad. The distributions are shown on a linear scale (bars),
and on a logarithmic scale (crosses).
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Figure 4.14: (Color online) Returning electron momentum distributions for the
Gaussian pulses. (a) φCEP = 0 rad, (b) φCEP = 0.2π rad, (c) φCEP = 0.5π rad and
(d) φCEP = 0.7π rad. The distributions are shown on a linear scale (bars), and on
a logarithmic scale (crosses).
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Figure 4.15: (Color online) Fraction of electrons returning with negative momentum
as a function of φCEP. Red plus symbols correspond to the 3-cycle sin2-pulse, blue
crosses to the Gaussian pulse.
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4.6.1.2 Results

We set Ip = 30.2 eV in accordance with the 2D model system for H+
2 that we used

in section 3.1 and elsewhere. In Figs. 4.13 and 4.14 the probability that an electron
returns with momentum k is depicted for the two different pulse types and different
CEPs. The bars reflect that probability on a linear scale, the crosses on a logarithmic
scale. For each pulse the sum of the probabilities is normalized to 1. The insets show
the laser pulse used to generate the data. Subjected to an infinitely long pulse of
the mentioned intensity and wavelength, the fastest returning electrons would have
an energy of 3.17Up corresponding to k ≃ ±2.57 a.u. The figures show that the
CEP of an extremely short pulse has a very large influence on the characteristics
of the returning wave packet, and that tuning of the CEP allows one to select the
characteristics that one desires. This is also apparent in Fig. 4.15, which shows the
fraction of the electrons returning with negative momentum as a function of φCEP

for the two pulses. For φCEP = 0 rad, the pulses have their main ionizing half-cycle
in the positive direction, which means that the electrons leave toward the negative
direction. As a consequence, most electron returns occur with positive momentum.

An optimal pulse for use with the molecular orbital tomography has to meet two
requirements: (i) all returning electrons should come from the same side, i.e., zero
probability for electrons returning with the opposite momentum sign and (ii) the
energy spectrum of the returning electrons should be broad, so that the Fourier
transform of the orbital can be accurately extracted from the HHG spectra. The
results show that a large range of CEPs that are suitable for molecular orbital to-
mography can be found for both pulses. For both pulses the results are very similar.
This indicates that many types of phase-stabilized extremely short laser pulses will
be suitable for the procedure. These pulses should have an ionizing half-cycle where
the amplitude of the electric field is significantly higher than everything earlier, and
the following half-cycle in the opposite direction should be comparable to the ion-
izing half-cycle in strength, to force the electrons to return. Everything after the
‘returning’-half-cycle should be significantly lower in amplitude, otherwise electrons
return from the other side with a significant probability. The reason that these ef-
fects can be achieved with the few-cycle pulses proposed in this section, is that the
ionization rate depends exponentially on the field amplitude. A nice demonstration
that small field-amplitude changes can have large influence on harmonic spectra can
be found in (Cao et al. [14]). Because of this effect, we expect no problems with
experimental pulses that have more smeared out tails, or with pre- and postpulses.
For a different Ip the qualitative behavior will be the same, as Ip has no influence
on the classical trajectories. Small differences in relative ionization rates might lead
to a slightly different CEP being optimal for a different Ip though.

4.6.1.3 Harmonic spectra

A quantum-mechanical signature of the above-mentioned effects can be found in the
high-harmonic spectra generated with these pulses. We consider a 2D He+ model



72 Chapter 4 Molecular orbital tomography

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 0  20  40  60  80  100

Harmonic order

In
te

ns
ity

(a
rb

.u
.)

Figure 4.16: (Color online) Harmonic spectra calculated using 3-cycle sin2-pulses
with φCEP = 0.25π rad (red solid line) and φCEP = 0.55π rad (blue dashed line).
The latter spectrum was multiplied with a factor 10 to separate the two curves
graphically.

ion with the soft-core potential

V (r) = − 2√
r2 + a2

(4.52)

with the softness parameter a2 adjusted such that Ip = 30.2 eV. In Fig. 4.16 har-
monic spectra associated with two values of the CEP for the 3-cycle sin2-pulse are
shown. In both spectra, the low-frequency part is rather irregular due to the in-
terference of several trajectories, while the high-frequency part shows the typical
regular pattern of interference between short and long trajectories (Milošević and
Becker [85]). The latter is the pattern that we expect for uni-directional recollisions.

For the case of φCEP = 0.25π rad, the transition to the regular interference pattern
occurs at roughly the 28th harmonic. To relate the energy of an emitted photon
Ω with the momentum of the returning electron k, we use the energy-conserving
dispersion relationship Ω = k2/2 + Ip. The 28th harmonic then corresponds to
k ≃ ±1 a.u. As can be seen in Fig. 4.13, |k| ≃ 1 a.u. is exactly the limit above
which contributions come only from electrons with positive momentum. Also the
cutoff at the 60th harmonic can be related to the classical picture, corresponding to
the cutoff of k ≃ 2.2 a.u. for electrons with positive momentum. The second cutoff
comes from the less-likely events involving electrons with negative momentum, and
clearly extends a couple of harmonics beyond the classically calculated and expected
cutoff at the 76th harmonic, corresponding to k ≃ −2.57 a.u.

In the case of φCEP = 0.55π rad, the classical picture suggests a single cutoff at
k ≃ 2.4 a.u., corresponding to the 68th harmonic. This is exactly what we see in
Fig. 4.13. However, there is a small discrepancy between the TDSE and classical
result concerning the location of the transition to a more regular spectrum. In
the classical calculation, the fastest electrons with negative momentum have k ≃
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−1.3 a.u. This would correspond to a transition in the spectrum around the 33th
harmonic. The TDSE result shows this transition around the 37th harmonic, which
may be due to modifications of the electron trajectories by the Coulombic potential.

4.6.2 Alternative approaches

In this thesis we show that for the tomographic reconstruction of general molecules
one needs that a(k) = 0 for k > 0 or alternatively for k < 0. In the previous sections
we presented a calculation that shows that extremely short laser pulses can exhibit
this behavior for the generated continuum wave packet. In attosecond physics,
many people have worked on similar problems; the generated harmonics combine to
an attosecond pulse that can be used for applications. In a long pulse, every laser
half-cycle the generation process is repeated and one obtains an attosecond pulse
train (Paul et al. [101]; Tzallas et al. [129]). A few experimental groups have isolated
single attosecond pulses (Drescher et al. [28]; Hentschel et al. [48]), or focussed on
generating as short as possible attosecond pulses (Mairesse et al. [76]; Sola et al.
[119]). Single attosecond pulses correspond to harmonics being generated during a
single half-cycle, which in practice amounts to the same requirements as one-sided
returns. Very short attosecond pulses require broad and preferably Fourier-limited
harmonics, something also very useful for molecular imaging. For both isolating
and shortening attosecond pulses, at the moment the best results are obtained using
spectral filtering of the lowest harmonics. However, for tomographic imaging the
low harmonics are very important too and should not be ignored. To some extent
the requirements for generating a single or short attosecond pulse are therefore less
strong than those for successful molecular imaging of asymmetric molecules, and the
methods reported in this section cannot be directly applied to imaging of asymmetric
molecules.

Single attosecond pulses can also be obtained using polarization gating (Corkum
et al. [26]). Here two circularly polarized pulses with opposite handedness are com-
bined. High-harmonics are generated only in the linearly-polarized region in the
meeting point of the pulses, because under circular polarization the continuum wave
packet never returns to the core (Dietrich et al. [27]). Therefore the requirements
on the individual pulses are less stringent. Twelve femtosecond generating pulses
can be used to generate a single attosecond pulse if one uses a double optical gating
(DOG) method that combines polarization gating with two-color gating where a
weak second-harmonic field is added to the fundamental (Mashiko et al. [83]). The
generalized double optical gating method (GDOG) takes it even one step further by
replacing the circularly polarized pulses by elliptically polarized pulses. Then single
attosecond pulses can be generated from 20–30 femtosecond infrared pulses that are
widely available nowadays (Feng et al. [32]; Gilbertson et al. [42]). Alternatively, a
linearly polarized 30-fs 800-nm pulse can be combined with a parallelly polarized
40-fs 1300-nm pulse to generate single attosecond pulses without the need for CEP
stabilization (Takahashi et al. [121]).
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4.6.3 Helium-hydrogen cation

To demonstrate the molecular tomographic method in case of an asymmetric mole-
cule, we make use of a 2D version of the doubly-charged Helium-Hydrogen cation
(HeH2+). From a theorist point-of-view, this is the simplest asymmetric molecule
conceivable, consisting of one singly-charged and one doubly-charged nucleus, and
a single electron. For an experimentalist the cation poses a much bigger challenge.
Despite the very strong repulsion between the nuclei, a bound state exists. The
ground state is repulsive, but the first excited state (2pσ) has a potential well that
is 0.849 eV deep and has a minimum around R = 3.89 a.u. It supports around 15
vibrational states, each associated with a different life time before decaying via an
electronic dipole transition to the 1sσ-ground state. Depending on the temperature
of the source used, in practice a distribution of vibrational states is occupied in a
real experiment.

The existence of a bound state in HeH2+ was first predicted by Bates and Carson
(Bates and Carson [6]). This results was verified by Winter et al. (Winter et al.
[134]), who also showed that from the first 20 excited states of the cation, three
are bound. Experimental evidence of the existence of at least one bound state was
given by Ben-Itzhak et al. (Ben-Itzhak et al. [9]). A similar group of people later
measured the average life time of the cation to be on the order of a few ns (Ben-
Itzhak et al. [8]) and studied the contributions of the different vibrational states for
different HeH2+-isotopes in more detail (Ben-Itzhak et al. [7]). The life time on the
order of a few ns makes it difficult but not impossible to perform experiments on
the HeH2+-cation.

4.7 Projected 3D orbital

The harmonic spectra used so far were based on the solution of the time-dependent
Schrödinger equation in two dimensions, i.e., on a 2D slice of the true 3D orbital.
However, the experimentally observed harmonic spectra involve the whole 3D or-
bital, such that the double integral in for instance Eq. (4.1) becomes a triple integral
over all space dimensions x, y and z. Since only ψ0 depends on z in that and the
following equations, Eq. (4.18) becomes

ψ0(r) =

∫ ∞

−∞
ψ3D

0 (x, y, z)dz

=
1

2
{1

x

1

(2π)2

∫∫

(dθ,x(ω) cos θ + dθ,y(ω) sin θ)eik(ω)(x cos θ−y sin θ)dωdθ

+
1

y

1

(2π)2

∫∫

(−dθ,x(ω) sin θ + dθ,y(ω) cos θ)eik(ω)(x cos θ−y sin θ)dωdθ}, (4.53)

where from now on with ψ3D
0 (x, y, z) we denote the unrotated three dimensional

orbital, and with ψ0(r) its projection on the xy-plane. This equation shows that
from experimental spectra we can only directly reconstruct ψ0 and not ψ3D

0 . If we
assume rotational symmetry of the molecule around the x-axis, i.e., the internuclear
axis, we can however retrieve the 3D orbital from its projection. The reason is that
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in this case the projected orbital contains all physical information about the full
orbital and the first equality of Eq. (4.53) becomes an Abel transform (Weisstein
[132]). More details about the procedure can be found in appendix A.3.

4.8 ATI electrons

4.8.1 Molecular tomography including ATI electrons

In principle ATI electrons contain information about aθ[−k(ω)] that can be used for
the tomographic reconstruction of a molecular orbital. However, so far no practical
link between HHG and ATI electrons exists. For the case of extremely short pulses,
this link turns out to be possible, as we will show in section 5.3.2. In the simple-man’s
model (see section 2.2.2), the momentum of ATI electrons is completely determined
by the vector potential at their moment of birth. This time of birth can be related
to specific harmonics (specific components of aθ[−k(ω)]). If both relationships are
unique, ATI electrons can improve the tomographic reconstruction.

Schematically, in the simple-man’s model the ATI intensity A at electron momentum
p is given by (assuming one trajectory per ATI peak)

A(a)(p) =
∣
∣
∣T (a)(tb(p))

∣
∣
∣

2
× |pA(tb(p))|2 , (4.54a)

Aθ(p) = |Tθ(tb(p))|2 × |pA(tb(p))|2 , (4.54b)

where the first line is for the reference atom and the second line is for the molecule.
Here tb(p) is the birth time of the trajectory leading to momentum p and pA describes
the propagation including for example angular spreading. The complex amplitude
T describes the continuum wave packet just after ionization. This means that

∣
∣
∣T (a)(tb(p))

∣
∣
∣ =

√

A(a)(p)

|pA(tb(p))| , (4.55a)

|Tθ(tb(p))| =

√

Aθ(p)

|pA(tb(p))| . (4.55b)

Similarly, in the three-step model for HHG the continuum wave packet is given by
(assuming one trajectory per HHG peak)

a(a)[−k(ω)] = T (a)(tb[p(A)(ω)]) × pH(tb[p
(A)(ω)]), (4.56a)

aθ[−k(ω)] = Tθ(tb[p(A)(ω)]) × pH(tb[p
(A)(ω)]), (4.56b)

where pH describes the free propagation of the electron in the laser field for the
HHG process and p(A)(ω) is the ATI momentum that shares its birth time with the
harmonic frequency ω. This means that we can express the continuum wave packet
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as

aθ[−k(ω)] = a(a)[−k(ω)]
Tθ(tb[p(A)(ω)])

T (a)(tb[p(A)(ω)])

= a(a)[−k(ω)]

∣
∣Tθ(tb[p(A)(ω)])

∣
∣ eiφ

(T )
θ (tb[p(A)(ω)])

∣
∣T (a)(tb[p(A)(ω)])

∣
∣ e

iφ
(T )
(a)

(tb[p(A)(ω)])

≃ a(a)[−k(ω)]

√

Aθ[p(A)(ω)]

A(a)[p(A)(ω)]
,

(4.57)

where φ(T ) is the phase of T in the complex plane. The approximation φ
(T )
θ (t) =

φ
(T )
(a) (t) for the last equality is based on the fact that the tunneling process is usually

and quite accurately described by a real tunneling factor (Smirnova et al. [117]). In
the Lewenstein model (Lewenstein et al. [71]), the contribution from a trajectory is
proportional to a real ionization rate and inherits the phase from the lobe of the
bound state it ionized from (see e.g., Eq. (5.109)). Multiplication of aθ[−k(ω)] with a
global phase is irrelevant for the reconstruction. Therefore, in the Lewenstein model

we can consider φ
(T )
0 (t) = φ

(T )
(a) (t) as fulfilled if the reference atom and molecule share

Ip. The approximation φ
(T )
θ (t) = φ

(T )
0 (t) also holds as long as we do not consider

symmetric ionizing lobes with opposite signs. This shows that using ATI electrons
we cannot overcome the limitation of conventional molecular orbital tomography
that orbital symmetries cannot be measured (see the discussion in section 4.5).

To use Eq. (4.57), we need to know the best mapping from ATI peaks to harmonics
peaks for a given pulse. Therefore we will derive an analytical expression for both
processes in terms of sums over classical trajectories in chapter 5. In section 5.3.2 an
ATI peak will be uniquely linked to every harmonic peak through the birth time of
the electron giving rise to both peaks in the three-step model. In this model, an elec-

tron returning with momentum k will give rise to a harmonic order
(

k2

2 + Ip

)

/ωL.

Therefore there are no links to ATI peaks available for harmonic peaks with an en-
ergy lower than Ip. For those low-energy peaks, as well as for other peaks for which
no suitable link to an ATI peak can be found, the original relationship between the

atomic and molecular a(k) should be used. In this relationship,

√

Aθ[p(A)(ω)]

A(a)[p(A)(ω)]
, the

square root of the relative strength of an ATI peak, is replaced by the square root
of the relative total ionization probabilities.

Starting from the simple-man’s model for HHG, one needs to make two basic ap-
proximations for standard molecular tomography. Firstly, and most importantly,
it is assumed that the tunneling step is identical for the atom and the molecule,
independent of the alignment angle of the molecule in the laser field. Secondly, it
is assumed that the propagation step for HHG is the same for the atom and the
molecule. If instead we perform the molecular tomography including ATI electrons
as proposed in this section, these assumptions are replaced with four, but much
weaker, approximations. The first approximation is that the propagation step for
HHG is the same for the atom and the molecule. The second approximation is that
the same holds for the propagation step of ATI, i.e., that the propagation step for
ATI is the same for the atom and the molecule.
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The third assumption is that the tunneling amplitude T has the same phase for the
atom and the molecule, as the ratio between the two tunneling amplitudes is assumed
to be real. The tunneling itself is usually described by a real factor, so only a small
error is expected here. However, T also includes the phase of the bound state with
which the wave packet starts in the continuum. As a result, both the original and
adapted tomography from this section cannot measure the symmetry of an orbital,
as this phase then cancels out in the recombination. Furthermore it was recently
found that for multi-electron systems nonadiabatic multi-electron rearrangements
can produce an extra phase factor (Mairesse et al. [79]). The gravest assumption
in the newly proposed technique is that there exists a one-to-one mapping for every
harmonic peak to an ATI peak. As will be shown later, extremely short laser pulses
can fulfill this last assumption, thereby opening the door for molecular tomography
with additional information from ATI electrons.

4.8.2 Demonstration link between ATI and HHG

The formulas in section 4.8.1 can also be used to demonstrate the link between
ATI and HHG as a fundamental phenomenon in strong-field physics. Comparing
Eqs. (4.54) and (4.56), we see that for any atom or molecule we can write

∣
∣a(i)[−k(ω)]

∣
∣

√

A(i)(p(A)(ω))
=

∣
∣pH(tb[p(A)(ω)])

∣
∣

∣
∣pA(tb[p(A)(ω)])

∣
∣
, (4.58)

where with the superscript ‘(i)’ we label the atom or molecule. The right-hand side
of equation (4.58) is independent of the system considered, as it only depends on
the propagation properties of the electron in the laser field. Therefore plotting the
left-hand side expression should produce a curve that is a measure of the laser pulse
used, and not of the system subjected to that laser field. This means that if we
plot the left-hand side as a function of ω for different molecules, the extent to which
these curves are identical is a measure of the extent to which the one-to-one mapping
between HHG and ATI works. Unfortunately it seems the plane-wave approximation
for HHG is not justified in 1D, as we will see in section 4.9. Therefore it does not
make much sense to compare

∣
∣a(i)[−k(ω)]

∣
∣ /
√

A(i)(p(A)(ω)) for different molecules
in a 1D simulation. As at the moment of writing we did not perform any 2D or 3D
simulations that incorporate ATI electrons, we will leave this to a later time.

4.8.2.1 Birth time

Instead, we demonstrate the links between HHG and ATI for extremely short pulses
for a single molecule with the help of the procedure introduced in section 3.1.1.2
on page 28 to artificially turn off the pulse in the inner region gradually in space
and time. We employ a 1D version of Eq. (3.6) with the following parameters. The
laser pulse is completely turned off for |x| ≤ 8 and left unaltered for |x| ≥ 10. In
the temporal domain we again use a characteristic temporal width of 0.1T , where
T is the laser period. In Fig. 4.17 we plot the normalized amplitudes of a[−k(ω)]
and

√

A(i)(p(A)(ω)) for three different harmonics ω and corresponding ATI momenta
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Figure 4.17: (Color online) Normalized |a[−k(ω)]| (linespoints) and
√

A(p(A)(ω))
(lines) as a function of Tl. We consider harmonic orders 100 (black solid lines), 150
(red dashed lines), and 200 (blue dotted lines).

p(A)(ω) as a function of the turn-off time Tl. We use a laser intensity of 2 × 1014

W/cm2 and a wavelength of 2000 nm. The pulse is a two-cycle sin2-pulse with
φCEP = 1.25π rad. We consider here 1D H+

2 . The potential is given by

V (x) = − Z1
√
(
x− R

2

)2
+ a2

− Z2
√
(
x+ R

2

)2
+ a2

. (4.59)

We use Z1 = Z2 = 0.730883 a.u., R = 2 a.u. and a2 = 0.5 to obtain a ground
state with Ip = 30.2 eV. The amplitudes of the continuum function a[−k(ω)] were
convoluted with a Gaussian with a 1/e-width of 6 harmonic orders and the ATI
momentum spectrum was convoluted with a Gaussian with a 1/e-width of 0.135
a.u.

The harmonic orders considered are 100, 150, and 200. From the SFA calculation
that we will present in chapter 5 we find that these are associated with ATI mo-
menta p(A)(ω) equal to -1.49218, -1.83006, and -2.23151 a.u., respectively. We define

Q
(h)
1to1(ω) as the extent to which the trajectories born at tb[p(A)(ω)] determine the

spectra at harmonic ω and ATI momentum p(A)(ω). Here Q
(h)
1to1(ω) = 0 means there

is no link between the two spectra and Q
(h)
1to1(ω) = 1 means trajectories born at

tb[p
(A)(ω)] completely determine both spectral peaks. We postpone the exact defi-

nition of Q
(h)
1to1(ω) and a detailed discussion on how to find the links to section 5.3.2.

For the three HHG-ATI pairs of Fig. 4.17, we have Q
(h)
1to1 = 0.997, Q

(h)
1to1 = 0.986,

and Q
(h)
1to1 = 0.802, respectively.

Initially, for low Tl, the three HHG and ATI peaks are all suppressed. For later
Tl, first harmonic order 100, then harmonic order 150 and finally harmonic order
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200 revives. We observe that the ATI peaks are revived at the same time and with
the same speed as their corresponding HHG peaks. This demonstrates clearly the
shared birthtimes between the ATI and HHG peaks.

4.8.2.2 Variation CEP

The links between HHG and ATI peaks can be used to express the variation of the
amplitude of an ATI peak in terms of the variation of a HHG peak upon varying
the laser pulse used. Specifically, based on Eq. (4.58), we expect that

∆
(∣
∣a(i)[−k(ω)]

∣
∣
)

∣
∣a(i)[−k(ω)]

∣
∣

=
∆

(

|pH(tb[p(A)(ω)])|
|pA(tb[p(A)(ω)])|

√

A(i)(p(A)(ω))

)

|pH(tb[p(A)(ω)])|
|pA(tb[p(A)(ω)])|

√

A(i)(p(A)(ω))
, (4.60)

where the ∆ is taken on a small variation of the laser pulse. Even if Eq. (4.58) holds
only up to an additional factor that changes slowly upon a variation of the laser
pulse, Eq. (4.60) can be used to predict the variation of an ATI peak based on the
variation of the amplitude of the corresponding HHG peak.

In Fig. 4.18a we plot the right-hand side of Eq. (4.60) as a function of the left-hand
side of Eq. (4.60) for 100 different two-cycle 2000-nm pulses with an intensity of
2 × 1014 W/cm2. The laser pulses have φCEP = 0–π rad and the molecule is the
same as in section 4.8.2.1. We consider sets of HHG and ATI peaks that fulfill the
criteria

ω ≥ 100ωL, (4.61a)

|p(A)| ≥ 1.05, (4.61b)
∣
∣
∣
∣
∣

∆
(
p(A)

)

p(A)

∣
∣
∣
∣
∣
≤ 0.01, (4.61c)

Q
(h)
1to1 ≥ 0.95, (4.61d)

where ∆
(
p(A)

)
is the variation of the ATI momentum upon varying φCEP. For

Fig. 4.18 we evaluate pH and pA using the SFA expressions for the HHG and ATI
yields that we will derive in chapter 5. More specifically, we approximate pH as ev-
erything after dion,θ in Eq. (5.108) and pA as the two terms after dion,θ in Eq. (5.129).
We would like to stress that in Fig. 4.18a the variations of the spectral amplitudes
are calculated with respect to the previous CEP-value, and not with respect to a
common reference.

From Fig. 4.18 the correlation between the HHG and ATI amplitude variations is
clear; there is a strong correspondence between the behavior of the HHG and ATI
amplitudes as a function of φCEP. In Fig. 4.18b we show that this correspondence
cannot be explained through the norms of the two spectra. Plotted here are the
square root of the harmonic intensities summed over the complete harmonic range
and the square root of A(p) summed over the complete momentum range, both
scaled. As a function of φCEP, the norm of the HHG spectrum is almost constant
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Figure 4.18: (Color online) (a) Right-hand side of Eq. (4.60) versus left-hand side of
Eq. (4.60) for small CEP variations. (b) Scaled norms of the HHG spectrum (black
solid line) and ATI spectrum (red dashed line) as a function of φCEP.

compared to the norm of the ATI spectrum. This shows that it is not possible to
quantitatively predict the variation of an ATI peak based solely on the norm of the
entire HHG spectrum.

4.8.2.3 Variation internuclear separation

Alternatively, we demonstrate the links between HHG and ATI for different mole-
cules using the approximation that the recombination matrix element has the same
amplitude for these molecules. We consider 1D H+

2 with varying internuclear dis-
tances from R = 1.6–3.2 a.u. The molecules have Z1 = Z2 = 0.730883 a.u. and the
softness parameter adjusted such that Ip = 30.2 eV. We approximate Eq. (4.58) as

∣
∣α(i)(ω)

∣
∣

√

A(i)(p(A)(ω))
≃ z(ω), (4.62)

where z(ω) is independent of the molecule. In Fig. 4.19 we plot the normalized
amplitudes of α(i)(ω) and

√

A(i)(p(A)(ω)) as a function of internuclear distance R
for the same set of harmonics and ATI peaks as in Fig. 4.17. The amplitudes of
α(i)(ω) were convoluted with a Gaussian with a 1/e-width of 6 harmonic orders.

The approximation that the amplitude of the recombination matrix element is inde-
pendent of R is not well justified and it introduces errors. Nonetheless we observe
the relationship between the HHG and ATI peaks in Fig. 4.19. The amplitude of
harmonic order 100 and its corresponding ATI peak increase as a function of R. In
contrast, harmonic order 200 first increases, and then decreases as a function of R,
just like its corresponding ATI peak. Harmonic order 150 and its corresponding ATI
peak show intermediate behavior. A modulation of the yields is visible superimposed
on the trends. Note that the modulation of an ATI peak has the same phase and
strength as the modulation of the corresponding HHG peak. This shows that it is
the ionization rate that is modulated as a function of R. Trajectory interferences

cannot play a role as Q
(h)
1to1 ∼ 1 means only a single trajectory contributes to both
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Figure 4.19: (Color online) Normalized |α(i)(ω)| (linespoints) and
√

A(i)(p(A)(ω))
(lines) as a function of R for the harmonics and ATI peaks from Fig. 4.17.

HHG and ATI. The reason behind the ionization rate modulation is unknown at the
moment. We have confirmed it is not related to the spatial grid spacing.

If instead one uses
∣
∣a(i)[−k(ω)]

∣
∣ in either length or velocity form, one observes wild

behavior as a function of R and no correlation between the HHG and ATI peaks can
be seen (not shown). This is probably related to the fact that the plane-wave ap-
proximation is not well justified in 1D. Artificial peaks are introduced to a(i)[−k(ω)]
when a minimum in the matrix element does not coincide with a minimum in the
spectrum.

4.9 1D Molecular orbital tomography

In 1D molecular orbital tomography takes a slightly different form than in 2D. The
length-form matrix element Eq. (4.1) in 1D is given by

dj[ω(k)] =

∫

ψ0(x)(jx)e
−jikxdx, (4.63)

where j = ±. The derivation in section 4.1.1 reduces to inverting a single 1D Fourier
transform and the tomographic reconstruction Eq. (4.17) simplifies to

ψ0(x) =
1

2π

1

x

∫
d+(ω)eik(ω)x − d−(ω)e−ik(ω)x

k(ω)

(

1 − dcI(ω)

dω
Ip

)

dω. (4.64)

For a constant cI(ω) this reduces to

ψ0(x) =
1

2π

1

x

∫
d+(ω)eik(ω)x − d−(ω)e−ik(ω)x

k(ω)
dω. (4.65)
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Figure 4.20: (Color online) Ground state of 1D H+
2 (black solid line) and tomo-

graphic reconstruction using k(ω) =
√

2ω (red dashed line) and k(ω) =
√

2(ω − Ip)
(blue dotted line); (a) using length-form reconstruction, (b) using velocity-form re-
construction. In plot (b) we also show a reconstruction using exact matrix elements
(purple dot-dashed line).

The velocity-form matrix element Eq. (4.19) in 1D is given by

pj[ω(k)] =

∫

ψ0(x)e
−jikxdx. (4.66)

The velocity-form reconstruction Eq. (4.23) reduces to.

ψ0(x) =
1

2π

∫
p+(ω)eik(ω)x + p−(ω)e−ik(ω)x

k(ω)
dω, (4.67)

where we assumed a constant cI(ω). In case of a mirror symmetry S with respect
inverting x (ψ0(−x) = S ψ0(x)), Eq. (4.48) still holds as

d−(ω) = S d+(ω), (4.68a)

p−(ω) = S p+(ω). (4.68b)

In Fig. 4.20 we plot the result of a tomographic simulation for the 1D H+
2 -model with

R = 2 a.u. from section 4.8.2. For the reconstruction we employ a three-cycle sin2-
pulse with φCEP = 1.25π rad at an intensity of I = 2× 1014 W/cm2 and wavelength
λ = 2000 nm. The reference atom is 1D He with Z = 1.46177 and a2 = 0.85527, and
possesses an identical ionization potential. On the left in Fig. 4.20 we plot the result
for length-form reconstruction and on the right for velocity-form reconstruction, in
both cases for two different dispersion relationships. For the given experimental
parameters the frequency range used for the reconstruction runs from harmonic 2.5
to harmonic 452, as given by Eq. (4.43).

It is clear that the reconstructions are disappointing, especially considering the long
wavelength used. Velocity-form reconstruction seems to tend to a too localized func-
tion at the origin for k(ω) =

√
2(ω − Ip) and a nonlocalized state for k(ω) =

√
2ω.

Only length-form reconstruction with k(ω) =
√

2ω provides something that resem-
bles the original orbital, but still with rather large errors. Using exact plane-wave
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Figure 4.21: (Color online) Phase of d(ω) for the ground state of Fig. 4.20 (black
solid line) and retrieved from the tomographic reconstruction; (a) using k(ω) =

√
2ω

(red dashed line) and using k(ω) =
√

2(ω − Ip) (blue dotted line), (b) using k(ω) =√
2ω and 10 two-cycle pulses (red dashed line) and additionally incorporating ATI

electrons (blue dotted line).

matrix elements limited to the experimental harmonic range, the length-form recon-
struction is almost perfect (not shown), whereas the velocity-form reconstruction
already contains significant errors. The problem with 1D tomography might be re-
lated to the lack of the perpendicular dimension. The electron wave packet can only
spread out in the polarization direction. Therefore its approximation as a sum of
plane waves loses validity and its interaction with the molecular core is less well
described by a Fourier transform of the bound state orbital.

We tried to improve the reconstruction by employing 10 different two-cycle 2000-nm
pulses with φCEP ranging from 0.0–0.9π rad at the same intensity of 2×1014 W/cm2,
following the prescription that will be given in section 5.3.1.2. We obtained only
a marginal—if any—improvement to the reconstruction (not shown). Also there
was no difference visible if we added information from ATI electrons to the 10-pulse
reconstruction, following the prescription that will be given in section 5.3.2.2 (also
not shown). There are probably two reasons for these observations.

Firstly, in 1D tomographic reconstruction does not really seem to work, as we saw in
Fig. 4.20. This can also be seen in Fig. 4.21, where we plot the phase of the length-
form recombination matrix element as a function of harmonic order. The exact phase
is flat with a π-jump around harmonic 140. Independent of the dispersion relation-
ship, there is no phase jump reproduced around harmonic order 140 (left plot). Even
though both 10-pulse reconstructions flatten the phase over some harmonic ranges,
the location of the phase jump is not altered and therefore the reconstruction not
significantly improved. The reason the curve for k(ω) =

√

2(ω − Ip) has non-zero
values below Ip is that also for the 1D case we convolute the matrix elements with
a Gaussian filter with a 1/e-width of 6ωL. There seems to be a problem with 1D
tomography or our implementation of it that is too fundamental to be corrected
by the rather subtle methods employed here. The incorporation of ATI electrons
into the reconstruction can only improve the amplitude but not the phase of the
reconstruction matrix elements (see Eq. (4.57)).
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Figure 4.22: (Color online) Same as Fig. 4.20 for the ground state of 1D HeH2+.

The second reason is specifically related to the lack of improvement from incorpo-
rating ATI electrons in the 1D case. ATI inclusion adds to standard tomography
an orientation-dependence of the ω-dependent ionization rate. In other words, in
standard molecular tomography the same ionization probability PI(θ) is used for all
harmonics. In a 1D symmetric molecule, there is only one orientation and therefore
no variation of the harmonic-dependent ionization rate as a function of θ. Therefore
a big advantage of ATI-included tomography over standard tomography is lost in a
1D simulation of the scheme. A small correction from an improved determination
of the ω-dependent ionization rate should still be present.

For completeness we plot in Fig. 4.22 the result of a tomographic simulation for 1D
HeH2+. Its potential is given by R = 2.5 a.u., Z1 = 0.487255 a.u., Z2 = 0.974511
a.u. and a2 = 0.477255. As a reference state we use the same state as for 1D H+

2 .
The antisymmetric component of the asymmetric orbital causes the length-form
reconstructions on the left to diverge at the origin. However, just as in the previous
case, also the velocity-form reconstructions are not accurate.

4.10 Multi-electron contributions

Up to now we have assumed that there was only a single electron contributing
to HHG. In other words, our analysis and simulations so far are all based on the
single-active-electron approximation (SAE). Although the SAE can be very useful in
understanding HHG, contributions from more deeply bound electrons to the spectra
can be found, as discussed in section 2.3.3. For molecular tomography it has been
claimed that in a multi-electron system one does not retrieve the HOMO, but instead
one obtains a Dyson orbital plus exchange correction terms (Patchkovskii et al.
[99, 100]; Santra and Gordon [111]). In length form, the dipole matrix elements
Eq. (4.1) are replaced by

d[ω(k)] = 〈ψD(rn)|rn|χ(xn)〉 + dex, (4.69a)

ψD(rn) =
√
n〈Ψ0(r1, . . . , rn)|Ψ+(r1, . . . , rn−1)〉. (4.69b)
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Here we consider an n-electron system and ri is the electron coordinate of the i-th
electron. The one-electron Dyson orbital ψD is given by the overlap between the
n-electron ground state of the neutral Ψ0 and the n− 1-electron ground state of the
ion Ψ+. The continuum wave function χ(xn) is a plane wave under the plane-wave
approximation. Furthermore dex is an exchange correction that corresponds to the
indistinguishability of the n electrons.

The above multi-electron correction to Eq. (4.1) can be put in a physically insightful
form under two assumptions; firstly we assume that Ψ0 and Ψ+ can be represented
using single Slater determinants, i.e., as antisymmetrized products of single-electron
orbitals (the Hartree-Fock framework). Secondly, we assume that the ion does not
relax after removal of one electron, i.e., Ψ+ is built with the same single-electron
orbitals ψi as Ψ0 consists of except for the active orbital ψn (Koopmans’ approxi-
mation). Then the contributions to d[ω(k)] take the form

ψD(rn) ≃ ψn(rn), (4.70a)

dex ≃ 〈
n∑

i=1

diiψn(rn) −
n−1∑

i=1

dinψi(rn)|χ(xn)〉, (4.70b)

dij = 〈ψi|r|ψj〉. (4.70c)

Note that the exchange correction term results from taking the plane-wave approx-
imation; dex vanishes under the above approximations for an exact continuum wave
χ(xn).

An inversion of Eq. (4.70) (Patchkovskii et al. [99]) shows that in the Hartree-Fock
framework and under the Koopmans’ approximation, the reconstructed quantity
ψ0(r)r in Eq. (4.13) is replaced with

ψ0(r)r → ψD(r)r +
n∑

i=1

diiψn(r) −
n−1∑

i=1

dinψi(r). (4.71)

From Eq. (4.71) we see that there is an exchange correction to the reconstructed
orbital from the total permanent dipole moment of the molecule (second term), and
also from the transition dipole moments between the HOMO and occupied lower-
lying one-particle orbitals (third term). The total permanent dipole vanishes for
(un-)gerade orbitals, so that for those molecules we are only left with the correction
from the transition dipole moments. Since the exchange correction is a vector, the
deviation of the reconstructed orbital from the HOMO depends on the component
of Eq. (4.71) considered. For N2 the experimentally reconstructed orbital more
closely resembles the theoretical prediction from Eq. (4.71) than the pure HOMO
(Patchkovskii et al. [99]).

The exchange correction vanishes for directions perpendicular to an axis on which the
projection of the angular momentum vanishes for all occupied orbitals (Patchkovskii
et al. [100]). The number of components of Eq. (4.71) could be extended from two (x
and y) to three (x, y and z) by repeating the experiment appropriately after either
rotating the molecules in a plane other than the xy-plane, or using a probe beam
propagating in the x- or y-directions. In a system where only a limited of orbitals
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contribute, and the exchange corrections vanish for certain components, it might be
possible to reconstruct the full electronic wave function by just considering HHG
from the HOMO (Patchkovskii et al. [99]); the Dyson orbital, closely resembling the
HOMO, is obtained from a component with vanishing exchange correction. Then
the Dyson orbital can be subtracted from the other components to retrieve some of
the lower-lying orbitals.

Alternatively, molecular tomography can be extended to reconstruct not only the
HOMO but also some lower-lying orbitals if the contributions to the spectrum of
these orbitals are strong but separable because of symmetry reasons (Zhao et al.
[136, 137]). This has been demonstrated experimentally for N2 in an experiment
where the HOMO was reconstructed and signatures from the HOMO-1 were seen
(Haessler et al. [46]).

4.11 Experimental considerations

In achieving a molecular tomographic reconstruction an experimentalist has to over-
come many technical difficulties. In this section we will stipulate a few for the
understanding of a theorist, or as a basic overview.

4.11.1 Molecular orientation and alignment

The difference between orientation and alignment is that under alignment one does
not distinguish between molecules oriented at θ = 0◦ or θ = 180◦. It has been
shown that orientation of nonpolar molecules cannot be achieved using one-color
pulses (Gershnabel et al. [41]; Ohmura et al. [97]). On the other hand, it has also
been shown that a molecule with a permanent dipole moment can be oriented in
three-dimensional space (Tanji et al. [122]). In this subsection we focus on the for
molecular imaging typical case of two-dimensional alignment of symmetric molecules.
Here the alignment distribution along an azimuthal angle—typically around the laser
polarization direction—is left undisturbed. For symmetric molecules there is no
difference between alignment and orientation. Such a molecule also never possesses
a permanent dipole, forcing the experimentalist to attempt to align molecules using
laser-induced dipole moments.

If the polarizability tensor of the molecule is anisotropic, the interaction of an in-
duced dipole with the laser field produces a potential well in the direction of the
most-polarizable axis (for linear molecules the internuclear axis). This potential is
known as the angular AC Stark shift. Averaged over one laser cycle its depth is
proportional to the difference in polarizability between the most- and second-most-
polarizable axis and to the laser intensity (Friedrich and Herschbach [36]). Classi-
cally, the torque that the molecules experiences is related to the angle θ its most
polarizable axis makes with the laser polarization direction. Quantum-mechanically
this corresponds to the excitation of a coherent superposition of rotational eigen-
states. The alignment can be done adiabatically or non-adiabatically (for an excel-
lent review see Haessler [45] and references therein).
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The standard measure for the achieved degree of alignment is 〈cos2 θ〉. Here maxi-
mum alignment corresponds to 〈cos2 θ〉 = 1 and maximum anti-alignment to 〈cos2 θ〉
= 0. For linear molecules such as H+

2 and HeH2+, the force on the molecules works
in the plane formed by the internuclear and the laser polarization axes. For an ini-
tially isotropic distribution of linear molecules, the cylindrical symmetry around the
laser polarization direction is conserved. For such molecules anti-alignment there-
fore means that the internuclear axes are oriented in a disk-shaped distribution at
θ = π/2. An isotropic distribution corresponds to 〈cos2 θ〉 = 1/3.

In adiabatic alignment, a low-intensity laser pulse with a minimum length on the
order of a rotational period of the molecule is used (Friedrich and Herschbach [36];
Larsen et al. [61]; Sakai et al. [108]; Seideman [113]). During such a pulse, the
molecules are slowly aligned along the laser polarization axis, but the alignment is
lost after the pulse is over. Experiments on aligned molecules can therefore only
be done in the presence of the laser field that perturbs the molecules. Much better
for molecular imaging experiments is the use of non-adiabatic alignment. Here a
relatively intense pulse (typically 1013–1014 W/cm2) with a length much shorter than
the rotational period (typically 20–100 fs) is used to impulsively align the molecules
(Rosca-Pruna and Vrakking [107]; Seideman [114]). Because of the coherence of
the rotational wave packet created, revivals of the molecular alignment occur at
multiples of the rotational period (on the order of picoseconds for small molecules),
allowing for the actual imaging processes to take place in laser-field-free situations.
Typical molecular imaging experiments use a pump-probe setup, where the pump
aligns the molecules and the stronger probe pulse, that is delayed by one rotational
period of the molecule studied, initiates strong-field processes.

There have been several methods proposed to improve the experimentally achieved
degree of alignment, which also depends on the initial rotational temperature of
the sample. It is possible to combine the adiabatic and non-adiabatic alignment
techniques (Poulsen et al. [104]). Using two almost parallel aligning pulses, planes
of alignment are created (Mairesse et al. [78, 81]). The high-harmonics from these
planes are predominantly emitted at certain diffraction angles, effectively creating
much better alignment of the molecules. Furthermore, evolutionary algorithms can
be employed to optimize the alignment (Horn et al. [50]). Instead of aligning mole-
cules, we can also take advantage of a preferred ionization direction—if present—by
using two orthogonally polarized pulses to achieve directional sensitivity, thereby
avoiding the experimental difficulties associated with aligning molecules altogether
(Kitzler and Lezius [56]).

4.11.2 Phase-locked few-cycle pulses

A laser cavity can amplify light whose wavelength fits an integer times in a round
trip through the cavity. Therefore a laser does not emit light of a single frequency,
but instead many different frequency modes are supported. For the simplest case of
an empty Fabry-Pérot (parallel and flat mirrors) cavity with length L, the modes are
separated by angular frequency ∆ω = πc

L . Depending on the bandwidth of the gain
medium, between a few and on the order of a million cavity modes are excited. High
gain-bandwidth media, such as the nowadays omnipresent titanium-doped sapphire
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(Ti:Sapph) crystals, can be used for the generation of ultrashort pulses because of the
broad frequency range and many cavity modes excited. Normally the cavity modes
operate independently and have no fixed phase relationships, leading to a randomly
fluctuating output intensity. To generate ultrashort pulses, the cavity modes have
to be phase locked in a process called mode locking. Mode locking can be done
actively or passively, but for the generation of ultrashort pulses in the femtosecond
regime only passive mode locking is suitable, as no fast enough active methods are
available.

Passive mode locking is based on a saturable absorber inside the laser cavity that
becomes satisfied when a strong pulse passes and thereby effectively stimulates the
formation of short pulses, i.e., the concentration of pulse energy. The difference in
absorption during the pulse and at other times can be small (e.g., 1%) because of
the many passes of the light in the cavity. There are many ways to make a saturable
absorber, for example semiconductor mirrors can be used, but for the generation of
ultrashort pulses Kerr lenses are most common. When propagating in a medium, a
strong laser pulse affects the refractive index of the material through which it travels
by polarizing it. In strong-field physics especially the second-order term, the Kerr
effect, is important. It is given by

∆n = n2 I, (4.72)

where I is the laser intensity and n is the refractive index. When a strong pulse
propagates through a medium, the spatial center of the beam profile experiences
the highest intensity, and therefore the highest local refractive index, as normally
n2 > 0. As a result the wave front is deformed, and the beam self-focusses. This
is then combined with a small aperture or a narrow pump beam to achieve the
formation of ultrashort pulses by relative attenuation of the non-peak-intensity-
part at every loop through the cavity. A nice introduction and reference for laser
technology is the online encyclopedia provided by RP Photonics Consulting GmbH
(Paschotta [98]).

To further compress the pulse from roughly 20–200 fs to the few-cycle regime (. 8 fs),
usually a hollow-fiber compression technique is used (see for example the excellent
review by Nisoli and Sansone [94]). Propagation inside a gas-filled hollow fiber
leads to spectral broadening (Nisoli et al. [95, 96]). In a medium with n2 > 0
the center of the pulse envelope is dynamically delayed compared to the leading
and trailing edges due to the Kerr effect, a process called self-phase modulation.
Initially the output pulse after a hollow-fiber can be even longer than the input
pulse, but because of its broader bandwidth pulse compression can be achieved by
removing the well-behaved chirp1 introduced by the fiber using linear chromatic
dispersion, e.g., using two prisms (see e.g. Paschotta [98]). Sub-5-fs pulses have
been generated using tapered hollow fibers with smaller output than input diameter
(Caumes et al. [15]), and 3.8-fs pulses were generated using two gas-filled hollow
fibers and ultrabroadband dispersion compensation using a liquid-crystal spatial
light modulator that in combination with (for example) two gratings allows for

1The chirp of a laser pulse is the time-dependence of its instantaneous frequency. A linear positive
chirp corresponds for instance to a pulse where the instantaneous frequency increases linearly with
time.
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complete spectral phase control (Schenkel et al. [112]). High-energy 5.4-fs pulses
that could be focussed up to an estimated 5×1018 W/cm2 have been obtained using
a hollow fiber with a pressure gradient (Bohman et al. [10]; Suda et al. [120]).

For few-cycle pulses the exact evolution of the electric field—and not just its envelope—
becomes important. The electric field of such a pulse can be described by a real
envelope times a carrier wave as

E(t) = f(t)ei(ωt+φCEP), (4.73)

where ω is the central frequency of the pulse and f(t) is its real envelope. Chromatic
dispersion (n = n(λ)) and nonlinear effects lead to variations from pulse to pulse.
The pulse-to-pulse variations correspond to variations in the carrier-envelope phase
φCEP that are encoded in the spectrum as an offset ω0 of the frequency comb. This
can be seen by considering a frequency comb ωn = nωrep + ω0 with ωrep = 2π

T . Here
T is the time between two pulses (the cavity roundtrip time). The electric field of a
pulse can then be written in terms of the electric field of the previous pulse as2

E(t+ T ) = e
i

ω0
ωrep

2π
E(t) = f(t)e

i
“

ωt+φCEP+
ω0

ωrep
2π

”

. (4.74)

The last equality shows that an offset ω0 leads to ∆φCEP = ω0
ωrep

2π, where ∆φCEP

is the pulse-to-pulse CEP variation.

The CEP can be stabilized either actively or passively (Nisoli and Sansone [94]).
Active stabilization works by spreading the frequency spectrum over a full octave,
and then frequency-doubling the low end of the spectrum to let it interfere with
the high end of the spectrum in a f -to-2f interferometer (Apolonski et al. [1]; Jones
et al. [53]; Telle et al. [123]). The resulting lowest-frequency beat signal has frequency
ω0. A feedback loop is used to control the CEP using some means of active phase
stabilization, e.g., via the pump power, by slightly tilting a resonator mirror, or by
inserting a glass wedge to a variable extent (Paschotta [98]). The f -to-2f setup itself
causes a slow CEP drift that can be monitored and corrected using a second f -to-2f
interferometer (Baltuška et al. [5]). Then residual phase fluctuations can be kept
below 100 mrad. On the other hand, passive CEP stabilization works by difference
frequency generation from two parts of the spectrum (Baltuška et al. [4]; Vozzi et al.
[130]). The resulting lower frequency pulse automatically has φCEP = 0.

4.11.3 Measurement of harmonic phases

As mentioned in section 4.1.1, the initial experiment on molecular orbital tomog-
raphy was performed without measuring the harmonic phases, which were added

2The frequency comb ωn = nωrep + ω0 corresponds to an electric field

E(t) =
∞

X

n=1

Ẽneiωnt,

where Ẽn is the complex amplitude of the n-th frequency component. One pulse later the electric
field is given by

E(t + T ) =

∞
X

n=1

Ẽne
i(nωrep+ω0)(t+ 2π

ωrep
)
= e

i
ω0

ωrep
2π

E(t).
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by hand from a priori considerations (Itatani et al. [52]). Although possible, it is
far from trivial for an experimentalist to measure harmonic phases, or equivalently,
if also the harmonic spectrum is considered at the same time, the time profile of
the emitted radiation. The reason is that the radiation takes place on an attosec-
ond time scale. Normally time profiles of physical processes are obtained using a
measurement device that operates faster than the characteristic time scale of the
process. In this case such faster-operating measurement tools are very rare and
are associated with large energy bandwidths3. Therefore alternative approaches are
used to measure the harmonic phases.

As an introduction to these alternative approaches, consider the characterization of
femtosecond pulses. Here many of the same problems in measuring the electric field
already occur. Two widespread techniques are Frequency-Resolved Optical Gating
(FROG) and Spectral Phase Interferometry for Direct Electric-Field Reconstruction
(SPIDER) (Nisoli and Sansone [94]). An autocorrelation of the pulse can be mea-
sured using two copies of the pulse with a variable delay interacting with a nonlinear
medium, for example a second-harmonic-generation crystal. This however only pro-
vides a rough measure of the length of the pulse, and no details of the electric field
are obtained. If instead of only measuring the total intensity emitted by a nonlinear
medium as a function of the delay time between the two pulses (a standard auto-
correlation), one measures the nonlinear emission spectrally resolved, one obtains a
FROG trace (Trebino [128]). In contrast to the 1D autocorrelation, the 2D FROG
trace contains enough information to completely characterize the optical pulse. The
retrieval process iteratively converges to the unique solution that satisfies all the
constraints and can be done for example using the widely-spread PCGPA-algorithm
(Kane [54]).

Alternatively, SPIDER works by creating two copies of the pulse that are delayed
and then mixed with a chirped picosecond pulse in a nonlinear medium (Iaconis
and Walmsley [51]). This creates a frequency offset between the two copies of the
femtosecond pulse given by the delay between the two copies. Then a spectrogram
of the two frequency-shifted femtosecond-pulse copies is recorded. If the pulses are
delayed by a time τ much larger than the length of the pulse, in the spectrogram
fringes with a period of roughly 2π

τ appear4. Here τ is chosen such that multiple
fringes per independent frequency component appear. The spectral shear between
the two copies leads to an interference between two frequency-shifted components
of the original pulse at each frequency component. The phase differences between
neighboring frequency components and thereby the phases of the Fourier compo-
nents of the pulse are encoded in the deviations from the nominal fringe spacing if
the spectral shear is chosen small enough. The inversion requires only two 1D Fourier
transforms to fully characterize the electric field of the femtosecond pulse (Iaconis

3From the Heisenberg uncertainty relationship

∆E∆t ≥
~

2
a.u.
=

1

2

it follows that a time resolution of ∆t = 1 a.u. ≃ 24.2 as is associated with an energy uncertainty
of ∆E = 1

2
a.u. = 13.6 eV.

4In Fourier analysis, a signal with a periodicity of τ has contributing terms with angular fre-
quencies n 2π

τ
, where n is an integer.
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and Walmsley [51]). In other words, compared to FROG, in SPIDER the nonlinear
generating medium is replaced by a frequency shear between the two copies (nor-
mally requiring a nonlinear medium to produce) and no variable time delay between
the two copies is needed.

In the case we consider relatively long generating pulses that generate attosecond
pulse trains, Resolution of Attosecond Beating by Interference of Two-photon Tran-
sitions (RABITT) can be used to measure the harmonic phases (Paul et al. [101]).
RABITT works by delaying a low intensity branch of the generating optical pulse and
mixing it with the generated high harmonics, and then subjecting a second atomic
system to the combined field. The delay-time dependent photo-electron spectrum
is recorded. This spectrogram shows sidebands between the odd harmonics at the
even harmonics. These sidebands are periodic with half the fundamental (=generat-
ing) laser period as a function of the delay time. The interference at each sideband
between contributions coming from the higher- and from the lower-lying harmonic
can be used to retrieve the phase difference between the two neighboring harmon-
ics, and thereby to retrieve the harmonic phases up to an irrelevant global phase
(Haessler [45]). RABITT can be considered as a specific case of SPIDER tuned for
harmonic spectra with only odd-harmonic peaks (Muller [92]). It was recently found
that because of spatiotemporal intensity fluctuations, under realistic experimental
conditions RABITT underestimates the pulse duration (Kruse et al. [58]). The rea-
son is that intensity differences lead to differences in the relative contributions of
short and long trajectories, and therefore to spatiotemporal differences in the chirp.
The chirps of different intensities then average out to a relatively flat phase in the
measurement.

The harmonic phases generated by laser pulses of any length, so also those generated
by very short pulses, can be measured using the Frequency-Resolved Optical Gat-
ing for the Complete Reconstruction of Attosecond Bursts (FROG CRAB) method
(Mairesse and Quéré [80]). Here the attosecond pulse (train) is used to ionize an
atom in the presence of a low-frequency field (e.g., the fundamental field) that func-
tions as a gate. Then the intensity and energy of the photo-electrons for different
delays between the two pulses are recorded, to arrive at the so-called Crab trace.
This trace is very similar to a FROG trace and it contains information about both
the gate pulse and the attosecond pulse that can be retrieved quite robustly because
of the redundancy present. For a single attosecond burst and its generating field
the method works like an attosecond streak camera; the time-dependent energy of
the electrons appears in the Crab trace. For long dressing fields, the ‘Rabbitt’-
effect of sidebands between the harmonics becomes important and the oscillations
of these sidebands becomes visible in the trace. In the intermediate case, the trace
is continuous (with overall oscillation) for high electron energies, and discrete with
time-oscillation in the lower part (Mairesse and Quéré [80]). This is because for
high energies a single trajectory dominates, whereas for low energies many half-
cycles contribute.
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4.12 Discussion

The most important question in a discussion on molecular tomography is: why does
it work so well? Many approximations are made that theorists would not dream of
making when calculating molecular properties for a single molecule, and still exper-
imentally one obtains a good reconstruction. How can it be that the errors from
ignoring the Coulombic field on the propagation (the plane-wave approximation),
from ignoring the laser-field on the recombination process and from ignoring com-
pletely all electronic interactions do not completely destroy the reconstruction? We
think the answer lies in the fact that in the tomographic procedure one compares two
different systems (molecule and reference atom), and therefore many of the errors
are simply ‘divided out’ by making the same approximations in both systems.

The wave function ψc(r) =
∫∞
−∞ a(k)eikxdk with the experimentally obtained a(k)

is not an accurate description of the continuum wave packet. However, when com-
paring the two systems, a(k) is an effective plane-wave prefactor for the Fourier-
components of the reconstructed orbital. If one attempts a (plane-wave) tomo-
graphic molecular reconstruction using exact matrix elements, it does not work
(Walters et al. [131]), because no cancellation of errors can take place here. How-
ever, in molecular orbital tomography the same plane-wave approximation is made
for both the atom and the molecule, with very similar effects.

Using longer wavelengths, the possibility for molecular tomography improves because
lower intensities can be used and still higher frequency bandwidths can be achieved
(Le et al. [65]). This is because of the λ2-dependence of the ponderomotive potential
Up, and thus of the energy of the returning electrons (see section 2.2.1).

Instead of improving the description of the continuum wave packet with the help of
ATI electrons, also an XUV pulse can be used to measure the wave packet directly
(Smirnova et al. [118]). This way corrections to the simple-man’s model and the
Lewenstein model can be measured. A future reconstruction method might include
the measured effects.

Tomographic reconstructions might be improved using iterative schemes. One could
use an iterative approach to go beyond the plane-wave approximation (Patchkovskii
et al. [100]). After reconstruction with plane waves, the potential and a new basis set
are calculated. Then using a mean-root-square method a new orbital is calculated
that corresponds the best to this new basis set and the measured dipole moments.
This then continues iteratively.

Alternatively, we have considered an iterative approach where the potential is ob-
tained from the reconstructed orbital using the time-independent Schrödinger equa-
tion as

V =
(E − T̂ )ψ

ψ
, (4.75)

where T̂ is the kinetic energy operator and E is the bound state energy. In theory one
can then optimize the reconstruction in an iterative way by calculating the bound
state and associated harmonics of the retrieved potentials. However, the problem
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here is that the potential cannot be obtained accurately enough from Eq. (4.75)
around zero-crossings of the wave function.
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Chapter 5

SFA calculations

In this chapter we derive semi-classical expressions for HHG and ATI amplitudes in
terms of classical trajectories using the strong-field approximation (SFA). For HHG,
we start from the Lewenstein model (Lewenstein et al. [71]). We perform integrals
over birth, and if applicable, recombination times analytically. The resulting ex-
pressions are very fast to evaluate numerically. This allows us to evaluate them
for many different experimental parameters (e.g., laser intensity, wavelength, pulse
length). The HHG expressions derived in section 5.1.3 and the corresponding ATI
expression of section 5.2 are used to derive many of the HHG and ATI properties
presented in this thesis.

5.1 High-harmonic generation

The dipole acceleration α(ω) in the Lewenstein model for linearly polarized pulses
reads

αθ(ω) = −ω
∫ Tp

0
dt

∫ t

0
dt′ v∗

rec,θ(ks(t, t
′) +A(t))e−iS(t,t′)+iωt

×dion,θ(ks(t, t
′) +A(t′), t′)

[
2π

ǫ+ i(t− t′)

]3/2

,

(5.1)

where the laser pulse is turned on after t = 0 and turned off some sensible time
before t = Tp. The matrix elements are defined as

dion,θ(k, t) =
1

(2π)3/2

∫∫

ψ0,θ(r)(E(t) · x)e−ikxd2r, (5.2a)

vrec,θ(k) =
1

(2π)3/2

∫∫

e−ikx(i∇)ψ0,θ(r)d
2r. (5.2b)

The prefactors come from the integration over three spatial dimensions, where one
spatial dimension is already integrated over for ψ0(r) (see Eq. (4.53)). The semi-
classical action is given by

S(t, t′) =
1

2

∫ t

t′
dt′′ [ks(t, t

′) +A(t′′)]2 + Ip(t− t′). (5.3)
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The momentum appearing from performing the saddle-point method for the mo-
mentum integral in the Lewenstein model, the so-called saddle-point momentum ks,
is given by

ks(t, t
′) = −

∫ t

t′
A(t′′)dt′′/(t− t′). (5.4)

It is equal to the canonical momentum p = v(t, t′)−A(t) such that a classical electron
starting at time t′ returns to its starting point at time t, where v(t, t′) is the electron
velocity. This reflects the fact that the dominant contributions come from classical
trajectories that start and recombine close to the origin. The electron cannot emit a
photon in vacuum because the difference in dispersion relationships between photons
and electrons forbids simultaneous momentum and energy conservation. Instead,
the electron will recombine predominantly in the vicinity of a nuclear core, where
a nucleus can absorb most of the electron momentum. For an atom this means the
recombination and classically also the ionization take place at the origin. In case of a
molecule the multiple nuclear centers allow for an electron ionizing and recombining
at different cores. For molecules with very large internal distances on the order of
α = E0

ω2 (e.g., ∼ 35 a.u. for I = 5× 1014 W/cm2 and λ = 780 nm) this can lead to a
significant increase in the cutoff energy that is beyond the standard SFA model, as
discussed in section 2.2.2 (Chirilă and Lein [21]; Moreno et al. [89]).

The influence of the binding potential on the propagation is neglected in the SFA.
This allowed for defining ks as a canonical momentum that is conserved during the
propagation. In other words, for an electron that ionizes at time t′ and returns to
the core at time t, the velocity at time t′′ > t′ is given by

vt(t
′′, t′) = ks(t, t

′) +A(t′′). (5.5)

The factor [2π/(ǫ+ i(t− t′))]3/2 describes the spreading of the wave packet during
the propagation in the continuum. Mathematically, it arises from performing the
integration over the momentum of the electron using the saddle-point approximation.
A second order Taylor expansion of the action around the momentum saddle points
gives a factor [2π/(ǫ + i(t − t′))]1/2 for every spatial dimension (Lewenstein et al.
[71]). Therefore in numerical simulations one should adapt the power of the factor
to the dimensionality of the model system.

5.1.1 Saddle point method for the recombination time

We perform the integral over t using the saddle-point method. Because the exponent
is rapidly oscillating, the only contributions to the integral come from around the
saddle points t0 that are defined as

d

dt

[
S(t, t′) − ωt

]

t=t0
= 0. (5.6)

To find the saddle points, we consider that

d

dt
S(t, t′) =

∂ks

∂t

∂S(t, t′)
∂ks

+
∂

∂t
S(t, t′) =

1

2
[ks(t, t

′) +A(t)]2 + Ip, (5.7)
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where we have used that by definition the first derivative of the action with respect
to the saddle-point momentum ks vanishes. The saddle times t0 are given by

[ks(t0, t
′) +A(t0)]

2

2
= ω − Ip, (5.8)

or

vrec ≡ vt0(t0, t
′) = ks(t0, t

′) +A(t0) = ±
√

2(ω − Ip), (5.9)

where for the first equality we used Eq. (5.5). This shows that the condition found is
the energy-conservation relation for the returning electrons; they should have return
momentum vrec = ±

√

2(ω − Ip).

Now we expand S(t, t′) − ωt around the saddle times as

S(t, t′) − ωt = S(t0, t
′) − ωt0 +

d

dt
[S(t, t′) − ωt]t=t0(t− t0)

+
1

2

d2

dt2
[S(t, t′) − ωt]t=t0(t− t0)

2 + O((t− t0)
3).

(5.10)

We plug in that

d2

dt2
[S(t, t′) − ωt] =

d

dt
[
[ks(t, t

′) +A(t)]2

2
+ Ip − ω]

= −(ks(t, t
′) +A(t))

(
ks(t, t

′) +A(t)

t− t′
+ E(t)

)

,

(5.11)

where we used that

d

dt
ks(t, t

′) =
−A(t)(t− t′) +

∫ t
t′ A(t′′)dt′′

(t− t′)2
= −ks(t, t

′) +A(t)

t− t′
. (5.12)

We arrive at

S(t, t′) − ωt ≃ S(t0, t
′) − ωt0

− 1

2
(ks(t0, t

′) +A(t0))

(
ks(t0, t

′) +A(t0)

t0 − t′
+ E(t0)

)

(t− t0)
2.

(5.13)

Approximating the integral over the return times in the dipole acceleration αθ(ω)
by the saddle-point method we reach

αθ(ω) ≃ −ω
∫ Tp

0
dt′
∑

t0>t′

∫ ∞

−∞
dt v∗

rec,θ[ks(t0, t
′) +A(t0)]

[
2π

ǫ+ i(t0 − t′)

]3/2

× dion,θ(ks(t0, t
′) +A(t′), t′)e−i(S(t0,t′)−ωt0)

× e
1
2
i(ks(t0,t′)+A(t0))

„

ks(t0,t′)+A(t0)

t0−t′ +E(t0)

«

(t−t0)2

.

(5.14)

Here we approximate the integral of the action over t around one saddle-point t0
as an integral of the second order expansion of the action over all t. We take the
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dominant contributions at t = t0 for v∗
rec,θ and dion,θ. The result for αθ(ω) is

αθ(ω) = −ω
∫ Tp

0
dt′
∑

t0>t′
v∗

rec,θ(vrec)

[
2π

ǫ+ i(t0 − t′)

]3/2

× dion,θ(ks(t0, t
′) +A(t′), t′)e−i(S(t0,t′)−ωt0)

√

2πi
2(ω−Ip)

t0−t′ + E(t0)vrec
.

(5.15)

If we consider only such pulses that the wave packet returns with negative momen-
tum, the dipole acceleration equals

αθ(ω) = −ω v∗
rec,θ(−

√

2(ω − Ip))

∫ Tp

0
dt′
∑

t0>t′

[
2π

ǫ+ i(t0 − t′)

]3/2

× dion,θ(ks(t0, t
′) +A(t′), t′)e−i(S(t0 ,t′)−ωt0)

√

2πi
2(ω−Ip)

t0−t′ − E(t0)
√

2(ω − Ip)
.

(5.16)

Because

αθ(ω) =

∫ ∞

−∞
(∂2

t 〈dθ(t)〉)eiωtdt = −iω
∫ ∞

−∞
(∂t〈dθ(t)〉)eiωtdt = −iωPθ(ω), (5.17)

the SFA short-pulse result can be expressed as

Pθ(ω) = −i v∗
rec,θ(−

√

2(ω − Ip))

∫ Tp

0
dt′
∑

t0>t′

[
2π

ǫ+ i(t0 − t′)

]3/2

× dion,θ(ks(t0, t
′) +A(t′), t′)e−i(S(t0,t′)−ωt0)

√

2πi
2(ω−Ip)

t0−t′ − E(t0)
√

2(ω − Ip)
.

(5.18)

5.1.1.1 Integration into molecular orbital tomography

We can convert this equation to the notation of chapter 4 if we use v∗
rec,θ(−k(ω)) =

1
(2π)3/2

∫∫
ψ0,θ(r)(i∇)e−ik(ω)xd2r = k(ω)

(2π)3/2 pθ(ω) to reach

Pθ(ω) = −i k(ω)

(2π)3/2
pθ(ω)

∫ Tp

0
dt′
∑

t0>t′

[
2π

ǫ+ i(t0 − t′)

]3/2

× dion,θ(ks(t0, t
′) +A(t′), t′)e−i(S(t0,t′)−ωt0)

√

2πi
2(ω−Ip)

t0−t′ − E(t0)k(ω)
,

(5.19)

where we used k(ω) =
√

2(ω − Ip). If we can compare this with the harmonic
relationships for velocity-form reconstruction

Iθ(ω) = ω2 |Pθ(ω)|2 , (5.20a)

Pθ(ω) = 2π aθ[−k(ω)] pθ(ω), (5.20b)
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we see that the velocity-form continuum wave packet decomposition aθ[−k(ω)] in
the SFA is given by

aθ[−k(ω)] = −i k(ω)

(2π)5/2

∫ Tp

0
dt′
∑

t0>t′

[
2π

ǫ+ i(t0 − t′)

]3/2

× dion,θ(ks(t0, t
′) +A(t′), t′)e−i(S(t0,t′)−ωt0)

√

2πi
2(ω−Ip)

t0−t′ −E(t0)k(ω)
.

(5.21)

For length-form reconstruction we have to replace the velocity-form reconstruc-
tion matrix element vrec,θ(k) in Eq. (5.18) with the length-form matrix element
drec,θ(k) = 1

(2π)3/2

∫∫
ψ0,θ(r)(−r)e−ikxd2r to obtain the Fourier transformed dipole

acceleration. It is given by

αθ(ω) = iω2 d∗
rec,θ(−

√

2(ω − Ip))

∫ Tp

0
dt′
∑

t0>t′

[
2π

ǫ+ i(t0 − t′)

]3/2

× dion,θ(ks(t0, t
′) +A(t′), t′)e−i(S(t0 ,t′)−ωt0)

√

2πi
2(ω−Ip)

t0−t′ − E(t0)
√

2(ω − Ip)
.

(5.22)

Now we use that d∗
rec,θ[−k(ω)] = 1

(2π)3/2

∫∫
ψ0,θ(r)(−r)e−ik(ω)xd2r = − 1

(2π)3/2 dθ(ω)

to reach

Dθ(ω) =
i

(2π)3/2
dθ(ω)

∫ Tp

0
dt′
∑

t0>t′

[
2π

ǫ+ i(t0 − t′)

]3/2

× dion,θ(ks(t0, t
′) +A(t′), t′)e−i(S(t0,t′)−ωt0)

√

2πi
2(ω−Ip)

t0−t′ −E(t0)
√

2(ω − Ip)
.

(5.23)

We can compare this with the harmonic relationships for length form as found earlier

Iθ(ω) = ω4|Dθ(ω)|2, (5.24a)

Dθ(ω) = −2π aθ[−k(ω)]

k(ω)
dθ[ω(k)]. (5.24b)

In the SFA, the continuum wave packet decomposition in length form aθ[−k(ω)] is
then given by

aθ[−k(ω)] =
−ik(ω)

(2π)5/2

∫ Tp

0
dt′
∑

t0>t′

[
2π

ǫ+ i(t0 − t′)

]3/2

× dion,θ(ks(t0, t
′) +A(t′), t′)e−i(S(t0,t′)−ωt0)

√

2πi
2(ω−Ip)

t0−t′ −E(t0)k(ω)
.

(5.25)

This shows that in the SFA the continuum wave packet decomposition is exactly the
same in length or velocity form. Note that in (van der Zwan et al. [140]) a(k) has a
prefactor of 2π compared to what is presented here.
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5.1.2 Saddle point method for both emission and recombination

time

We can perform the integrations over both times in Eq. (5.1) analytically using the
saddle-point method. Contributions come from the points where there is no rapid
phase oscillation, i.e., points where the derivatives of S(t, t′) − ωt with respect to
both times vanish. The saddle point conditions are

d

dt

[
S(t, t′) − ωt

]

t=ts
t′=t′s

= 0, (5.26a)

d

dt′
[
S(t, t′) − ωt

]

t=ts
t′=t′s

= 0. (5.26b)

By redefining vrec as

vrec ≡ ks(ts, t
′
s) +A(ts), (5.27a)

Eq. (5.26a) again leads to

v2
rec

2
= ω − Ip. (5.27b)

Analogous to Eq. (5.7) we use for the second condition that

d

dt′
S(t, t′) = −1

2
[ks(t, t

′) +A(t′)]2 − Ip. (5.28)

Eq. (5.26b) then leads to the condition

[ks(ts, t
′
s) +A(t′s)]

2

2
= −Ip. (5.29)

We define vi as the initial momentum with which the electron is born at time t′s.
Using

vi = ks(ts, t
′
s) +A(t′s), (5.30)

we rewrite Eq. (5.29) as

v2
i

2
= −Ip. (5.31)

At real times the laser electric field is real, which means that the purely imaginary
initial momentum can only be obtained using complex saddle-point times ts, t

′
s. We

now divide the two saddle point conditions (5.27) and (5.29) by 2Up, to arrive at
the rewritten conditions

[ks(ts, t
′
s) +A(t′s)]

2

4Up
=

−Ip
2Up

, (5.32a)

(ks(ts, t
′
s) +A(ts))

2

4Up
=
ω − Ip
2Up

. (5.32b)
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Using γ =
√

Ip
2Up

, we introduce the functions f(γ) and g(γ) as

f(γ) ≡ ks(ts, t
′
s) +A(t′s) = SIp2i

√

Upγ, (5.33a)

g(γ) ≡ ks(ts, t
′
s) +A(ts) = vrec = Svrec

√

4Up(
ω

2Up
− γ2)

= Svrec

√
2ω

√

1 − 2Up

ω
γ2 ≃ Svrec

√
2ω(1 − 1

2

2Up

ω
γ2 − 1

8
(
2Up

ω
γ2)2) + O(γ6),

(5.33b)

where SIp and Svrec are ±1. The physical meaning of Svrec is the sign of the
returning electron momentum vrec. Only one possibility for SIp is physical for a
given trajectory, as we will find when we determine SIp later on.

For γ → 0, the saddle-point conditions become equal to

f(0) = ks(t0, t
′
0) +A(t′0) = 0, (5.34a)

g(0) = ks(t0, t
′
0) +A(t0) = Svrec

√
2ω ≡ v0. (5.34b)

Combined with the condition that the electron returns to its starting point from
the momentum saddle-point equation (Eq. (5.4)), these saddle-point conditions show
that for γ → 0 we need to consider classical trajectories with vi = 0 (Eq. (5.34a)) and
v2
rec
2 = ω (Eq. (5.34b)). The last condition physically means that concerning energy

conservation of the recombination process we need to use an adapted dispersion
relationship that takes into account that Ip → 0 for γ → 0.

As a side-remark, we would like to stress that using Eq. (5.34a), we can express the
canonical saddle-point momentum for a classical trajectory as

ks(t0, t
′
0) = −A(t′0). (5.35)

This equality simplifies the numerical calculation.

Since γ is smaller than 1 for the cases we are interested in, it makes sense to expand
the saddle times ts, t

′
s around t0, t

′
0 as

t′s(γ) = t′0 +

∞∑

n=1

1

n!
anγ

n, (5.36a)

ts(γ) = t0 +

∞∑

n=1

1

n!
bnγ

n. (5.36b)

It should be noted that t0 is redefined here with respect to section 5.1.1. We will
determine the coefficients ai and bi up to second order. We start by also expanding
f(γ) and g(γ) around γ = 0 as

f(γ) = f(0) +
∑

n=1

1

n!

[
dnf(γ)

dγn

]

γ=0

γn, (5.37a)

g(γ) = g(0) +
∑

n=1

1

n!

[
dng(γ)

dγn

]

γ=0

γn. (5.37b)
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When we compare with Eq. (5.33) we find the conditions
[
df(γ)

dγ

]

γ=0

= SIp2i
√

Up, (5.38a)

[
dnf(γ)

dγn

]

γ=0

= 0 for n ≥ 2, (5.38b)

[
dg(γ)

dγ

]

γ=0

= 0 for n is odd, (5.38c)

[
d2g(γ)

dγ2

]

γ=0

= −v0
2Up

ω
. (5.38d)

For the first condition we write
[
df(γ)

dγ

]

γ=0

=

[
dt′s
dγ

∂f(γ)

∂t′s
+
dts
dγ

∂f(γ)

∂ts

]

γ=0

, (5.39a)

dt′s
dγ

= a1 + a2γ + O(γ2), (5.39b)

dts
dγ

= b1 + b2γ + O(γ2), (5.39c)

∂f(γ)

∂t′s
=
ks(ts, t

′
s) +A(t′s)
ts − t′s

+
∂A(t′s)
∂t′s

, (5.39d)

∂f(γ)

∂ts
= −ks(ts, t

′
s) +A(ts)

ts − t′s
. (5.39e)

Using Eq. (5.34) we arrive at

− a1 E(t′0) −
b1 v0
t0 − t′0

= SIp2i
√

Up. (5.40)

Similarly we find from
[
dg(γ)

dγ

]

γ=0

=

[
dt′s
dγ

∂g(γ)

∂t′s
+
dts
dγ

∂g(γ)

∂ts

]

γ=0

, (5.41a)

∂g(γ)

∂t′s
=
ks(ts, t

′
s) +A(t′s)
ts − t′s

, (5.41b)

∂g(γ)

∂ts
= −ks(ts, t

′
s) +A(ts)

ts − t′s
+
∂A(ts)

∂ts
, (5.41c)

that (

− v0
t0 − t′0

− E(t0)

)

b1 = 0. (5.42)

Since this condition holds generally, we must have that

b1 = 0. (5.43)

From Eq. (5.40) it then follows that

a1 = −SIp2i
√
Up

E(t′0)
, (5.44a)

a2
1 = − 4Up

(E(t′0))
2
. (5.44b)
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To determine a2 and b2 we have to consider the second order terms in the expansions
of f(γ) and g(γ). Using Mathematica, Eq. (5.34) and b1 = 0, we verify that

[
d2f(γ)

dγ2

]

γ=0

=
−b2v0
t0 − t′0

+
−a2

1 − a2(t0 − t′0)
t0 − t′0

E(t′0) − a2
1E

′(t′0), (5.45a)

[
d2g(γ)

dγ2

]

γ=0

= −b2(v0 + (t0 − t′0)E(t0)) + a2
1E(t′0)

t0 − t′0
. (5.45b)

Combining these equations with the requirements in Eq. (5.38) leads to

a2 =
4Up

(E(t′0))
2

(
E(t0) −E(t′0)

v0 + (t0 − t′0)E(t0)
+
E′(t′0)
E(t′0)

)

, (5.46a)

b2 =
2v0(t0 − t′0)

Up

ω +
4Up

E(t′0)

v0 + (t0 − t′0)E(t0)
. (5.46b)

5.1.2.1 Gaussian integral for return time

To perform the integration over both times, we expand S(t, t′)−ωt around the saddle
points (ts, t

′
s) as

S(t, t′) − ωt =S(ts, t
′
s) − ωts +

1

2

d2

dt2
[
S(t, t′) − ωt

]

t=ts
t′=t′s

(t− ts)
2

+
d

dt

d

dt′
[
S(t, t′) − ωt

]

t=ts
t′=t′s

(t− ts)(t
′ − t′s)

+
1

2

d2

dt′2
[
S(t, t′) − ωt

]

t=ts
t′=t′s

(t′ − t′s)
2.

(5.47)

Using Eq. (5.12) and

d

dt′
ks(t, t

′) =
ks(t, t

′) +A(t′)
t− t′

, (5.48)

it is easily verified that

d2

dt2
[
S(t, t′) − ωt

]
= (ks(t, t

′) +A(t))

(−ks(t, t
′) −A(t)

t− t′
− E(t)

)

, (5.49a)

d

dt

d

dt′
[
S(t, t′) − ωt

]
= (ks(t, t

′) +A(t′))
ks(t, t

′) +A(t)

t− t′
, (5.49b)

d2

dt′2
[
S(t, t′) − ωt

]
= −(ks(t, t

′) +A(t′))

(
ks(t, t

′) +A(t′)
t− t′

− E(t′)

)

. (5.49c)

In the dipole acceleration αθ(ω) we again take the dominant contributions at
(t = ts, t

′ = t′s) for the prefactors of the action. Furthermore, we replace ks(ts, t
′
s) +
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A(ts) by vrec to reach

αθ(ω) ≃ −ω
∑

t0,t′0

v∗
rec,θ(vrec)dion,θ(ks(ts, t

′
s) +A(t′s), t

′
s)

[
2π

ǫ+ i(ts − t′s)

] 3
2

e−iS(ts,t′s)+iωts

×
∫ ∞

−∞
dt

∫ ∞

−∞
dt′ e

− 1
2
i(ks(ts,t′s)+A(ts)

„

−ks(ts,t′s)−A(ts)

ts−t′s
−E(ts)

«

)(t−ts)2

× e
−i(ks(ts,t′s)+A(t′s))

ks(ts,t′s)+A(ts)

ts−t′s
(t−ts)(t′−t′s)

e
+ 1

2
i(ks(ts,t′s)+A(t′s))

„

ks(ts,t′s)+A(t′s)
ts−t′s

−E(t′s)
«

(t′−t′s)
2

,

(5.50)

where again the integrals over t′ or t around the saddle points are approximated as
integrals over all t′ or t of the expanded action. Rewriting the exponent from the
form at2 +bt+c to the form a(t+ b

2a)2− b2

4a +c and shifting the integration variables,
we reach

αθ(ω) = −ω
∑

t0,t′0

v∗
rec,θ(vrec)dion,θ(ks(ts, t

′
s) +A(t′s), t

′
s)

[
2π

ǫ+ i(ts − t′s)

] 3
2

e−iS(ts,t′s)+iωts

×
∫ ∞

−∞
dt

∫ ∞

−∞
dt′ e

1
2
i(ks(ts,t′s)+A(ts))

„

ks(ts,t′s)+A(ts)

ts−t′s
+E(ts)

«

t2

e

1
2
i

0

@− (ks(ts,t′s)+A(t′s))
2(ks(ts,t′s)+A(ts))

(ts−t′s)2
„

ks(ts,t′s)+A(ts)

ts−t′s
+E(ts)

« +(ks(ts,t′s)+A(t′s))
„

ks(ts,t′s)+A(t′s)
ts−t′s

−E(t′s)
«

1

At′2

.

(5.51)

For Gaussian integrals we know that
∫ ∞

∞
e−a t2dt =

√
π

a
for Re(a) ≥ 0. (5.52)

Before evaluating the time integrals, we should check if the condition Re(a) ≥ 0 in
Eq. (5.52) is fulfilled for both integrals. At least we know that for γ = 0 this condition
should be fulfilled since the exponent is purely imaginary in this case. Starting with
the integration over the return time t, we wish to determine sgn(Re(a)). We rewrite
a using Eq. (5.33) and then expand the resulting expression in a Taylor series around
γ = 0 as

a = −1

2
i(ks(ts, t

′
s) +A(ts))

(
ks(ts, t

′
s) +A(ts)

ts − t′s
+ E(ts)

)

= −1

2
i

(
v2
rec

ts − t′s
+ E(ts) vrec

)

= −1

2
i

(

v2
rec

t0 + 1
2b2γ

2 − t′0 − a1γ − 1
2a2γ2

+ E(t0 +
1

2
b2γ

2) vrec

)

+ O(γ3).

(5.53)

Now we use that b2 is real, to write

Re(a) = Im

(

1

2

v2
rec

t0 + 1
2b2γ

2 − t′0 − a1γ − 1
2a2γ2

)

+ O(γ3). (5.54)
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In general, we can rewrite the fraction Im
(

c1
c2+c3i

)

for c1, c2, c3 ǫ R as

Im

(
c1

c2 + c3i

)

= Im

(
c1 (c2 − c3i)

c22 + c23

)

= − c1c3
c22 + c23

. (5.55)

Inserting this equality into Eq. (5.54) using

c1 =
1

2
v2
rec > 0, (5.56a)

c3 = −a1γ/i =
SIp2

√
Up

E(t′0)
γ, (5.56b)

leads to sgn(Re(a)) being determined up to second order in γ as

sgn(Re(a)) = sgn

(

− c1c3
c22 + c23

)

= sgn(−c3) = sgn

(−SIp

E(t′0)
γ

)

=

{

−sgn(E(t′0))SIp for γ > 0

0 for γ = 0.

(5.57)

We see that the condition Re(a) ≥ 0 is satisfied for γ = 0. We expect α(ω) to
change only infinitesimally when γ is infinitesimally small. That means that in that
case the condition Re(a) ≥ 0 should still be fulfilled, otherwise the integration over
t suddenly becomes singular. This leads to SIp being determined up to second order
in γ for γ > 0 as

SIp = −sgn(E(t′0)). (5.58)

Physically, this choice for SIp ensures that the integration over t does not explicitly
depend on the value of the electric field at the birth time t′. We can see that it should
not by considering a trajectory arising from a gerade molecule in a laser field. If
we change the polarization of the laser pulse by 180◦, the resulting harmonic will
undergo a 180◦-polarization shift too. For a classical plane-wave trajectory this shift
stems entirely from the complex conjugation of the recombination matrix element.
This means that the rest of the contributions to a(ω) should be unaltered, i.e., be
independent of the sign of the electric field at the birth time t′. Using Eq. (5.58),
the ambiguity in the γ-expansion of the saddle-point birth time t′s is resolved and
we can write

a1 = −SIp2i
√
Up

E(t′0)
=

2i
√
Up

|E(t′0)|
. (5.59)

Similarly, the saddle-point condition for the birth time (Eq. (5.33a)) becomes

f(γ) ≡ ks(ts, t
′
s) +A(t′s) = −2i sgn(E(t′0))

√

Upγ. (5.60)

Using the above value for SIp and evaluating the integral over the return time, we
find

∫ ∞

−∞
dt e−at2 =

∫ ∞

−∞
dt e

1
2
i(ks(ts,t′s)+A(ts))

„

ks(ts,t′s)+A(ts)

ts−t′s
+E(ts)

«

t2

=

√
√
√
√

2πi
v2
rec

t0+ 1
2
b2γ2−t′0−a1γ− 1

2
a2γ2 + E(t0 + 1

2b2γ
2) vrec

+ O(γ3).

(5.61)
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In a numerical calculation one can use Eq. (5.60) to calculate ks(ts, t
′
s) efficiently,

analogously to Eq. (5.35) for ks(t0, t
′
0).

5.1.2.2 Complex laser fields

As a side-excursion, we determine the expansions around γ = 0 of the laser electric
field. This expansion can be used to calculate the electric field at complex times.
For the birth time, we have that

E(t′s) = E(t′0) +

[
dE(t′s(γ))

dγ

]

γ=0

γ

+
1

2

[
d2E(t′s(γ))

dγ2

]

γ=0

γ2 + O(γ3),

(5.62a)

[
dE(t′s))
dγ

]

γ=0

=

[
∂E(t′s)
∂t′s

]

t′s=t′0

[
dt′s
dγ

]

γ=0

= a1

[
∂E(t)

∂t

]

t=t′0

, (5.62b)

[
d2E(t′s(γ))

dγ2

]

γ=0

=

[

∂E(t′s)
∂t′s

d2t′s
dγ2

+
∂2E(t′s)
∂t′2s

(
dt′s
dγ

)2
]

γ=0

=

[
∂E(t)

∂t

]

t=t′0

a2 +

[
∂2E(t)

∂t2

]

t=t′0

a2
1.

(5.62c)

This leads to

E(t′s) = E(t′0) + a1E
′(t′0)γ +

1

2
(a2E

′(t′0) + a2
1E

′′(t′0))γ
2 + O(γ3), (5.63a)

and similarly to

E(ts) = E(t0) +
1

2
b2E

′(t0)γ
2 + O(γ3). (5.63b)

5.1.2.3 Gaussian integral for birth time

For the integration over the birth time t′ we define b as

b ≡ 1

2
i

(
(ks(ts, t

′
s) +A(t′s))

2(ks(ts, t
′
s) +A(ts))

(ts − t′s)2
(

ks(ts,t′s)+A(ts)
ts−t′s

+ E(ts)
)

− (ks(ts, t
′
s) +A(t′s))

(
ks(ts, t

′
s) +A(t′s)
ts − t′s

− E(t′s)

))

=
1

2
i




−4Upγ

2vrec

(ts − t′s)2
(

vrec
ts−t′s

+ E(ts)
) +

4Upγ
2

ts − t′s
− 2i

√

Upγ sgn(E(t′0)) E(t′s)





=
2(ts − t′s)E(ts)

(ts − t′s) (vrec + (ts − t′s)E(ts))
iUpγ

2 +
√

Upγ sgn(E(t′0)) E(t′s)

=

(
E(t0)

vrec + (t0 − t′0)E(t0)
+
E′(t′0)
E(t′0)

)

2iUpγ
2 +

√

Upγ|E(t′0)| + O(γ3).

(5.64)
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From this it can be easily seen that at least up to second order in γ we have that

sgn(Re(b)) ≥ 0. (5.65)

Evaluating the integral we reach

∫ ∞

−∞
dt′ e−bt′2

=

√
π

(
E(t0)

vrec+(t0−t′0)E(t0) +
E′(t′0)
E(t′0)

)

2iUpγ2 +
√
Upγ|E(t′0)|

+ O(γ3)

=
(√

Upγ
)− 1

2

√
π

(
E(t0)

vrec+(t0−t′0)E(t0) +
E′(t′0)
E(t′0)

)

2i
√
Upγ + |E(t′0)|

+ O(γ3).

(5.66)

5.1.2.4 Expansion of the action

The final step in evaluating Eq. (5.51) is expanding exp(−i(S(ts, t
′
s) − ωts)) around

γ = 0, so that we do not have to integrate the laser field over complex times. More-
over the expansion will prove physically insightful as it makes the factor describing
the tunneling process appear explicitly. We also expand the Ip = 2Upγ

2-term in the
action. The expansion is easier performed by first expanding the new function

h(γ) ≡ S(ts(γ), t
′
s(γ), γ) − ωts(γ), (5.67a)

with

S(ts, t
′
s, γ) =

1

2

∫ ts

t′s

dt′′ [ks(ts, t
′
s) +A(t′′)]2 + 2Upγ

2(ts − t′s), (5.67b)

around γ = 0 as

h(γ) = h(0) +

[
dh

dγ

]

γ=0

γ +
1

2

[
d2h

dγ2

]

γ=0

γ2 +
1

6

[
d3h

dγ3

]

γ=0

γ3

+
1

24

[
d4h

dγ4

]

γ=0

γ4 + O(γ5).

(5.68)

Here we introduced a three-argument version of the action. The three-argument
action S(ts, t

′
s, γ) has the advantage that for all values of γ we can make use of the

saddle-point equalities Eqs. (5.26) and other properties of the action derived before.

It should be noted that in Eq. (5.68) the expansion is up to fourth order in γ, whereas
so far we have limited ourselves to second order in γ. Because S(ts, t

′
s, γ)−ωts is part

of a rapidly varying phase factor in αθ(ω), we are especially interested in expanding
it to the highest possible order in γ for better accuracy. For practical reasons, for
the highest order expansion we perform we make use of Mathematica. In principle,
for expansions above the second order in γ we have the problem that we expanded
the saddle times ts and t′s only up to second order in γ. However, it turns out
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that up to fourth order in γ we are in the lucky circumstance that all the terms
containing higher order expansion coefficients of ts or t′s cancel, so that the higher
order expansion can be done even without knowledge of these coefficients.

For the first order term of the expansion we have that

[
dh

dγ

]

γ=0

=

[
∂h

∂ts

dts
dγ

]

γ=0

+

[
∂h

∂t′s

dt′s
dγ

]

γ=0

+

[
∂h

∂γ

]

γ=0

=
[
4Upγ(ts − t′s)

]

γ=0
= 0,

(5.69)

where we have used the saddle-point Eqs. (5.26). This means there is no contribution
from the first order term.

For the second order term we have that

d2h

dγ2

∣
∣
∣
γ=0

=

[(
dts
dγ

∂

∂ts
+
dt′s
dγ

∂

∂t′s
+

∂

∂γ

)(
∂h

∂ts

dts
dγ

+
∂h

∂t′s

dt′s
dγ

+
∂h

∂γ

)]

γ=0

=

[
∂2h

∂t2s

(
dts
dγ
︸︷︷︸

= 0

)2

+ 2
∂2h

∂ts∂t′s

dts
dγ
︸︷︷︸

=0

dt′s
dγ

+ 2
∂2h

∂ts∂γ

dts
dγ
︸︷︷︸

=0

+
∂2h

∂t′2s
︸︷︷︸

= 0 (see Eq.(5.49c))

(
dt′s
dγ

)2

+ 2
∂2h

∂t′s∂γ
︸ ︷︷ ︸

= 0 (∼ γ)

dt′s
dγ

+
∂h

∂ts
︸︷︷︸

= 0 (SP)

d2ts
dγ2

+
∂h

∂t′s
︸︷︷︸

= 0 (SP)

d2t′s
dγ2

+
∂2h

∂γ2

]

γ=0

= 4Up

(
t0 − t′0

)
.

(5.70)

The equalities underneath the curly braces are partially taken already at γ = 0.
With ‘(SP)’ we denote that the equality follows from the saddle-point Eqs. (5.26).
Up to second order the expansion is therefore given by

h(γ) = h(0) + 2Up

(
t0 − t′0

)
γ2 + O(γ3) = S(t0, t

′
0, γ) − ωt0 + O(γ3),

(5.71a)

e−i(S(ts,t′s)−ωts) = e−i(S(t0,t′0,γ)−ωt0) + O(γ3). (5.71b)

For the third order term we need to act one more time with
(

dts
dγ

∂
∂ts

+ dt′s
dγ

∂
∂t′s

+ ∂
∂γ

)

on everything inside the square brackets in Eq. (5.70), before taking the limit γ → 0.
If we immediately take into account that (Eqs. (5.26), (5.49), (5.43))

∂h

∂ts

∣
∣
∣
γ=0

=
∂h

∂t′s

∣
∣
∣
γ=0

=
∂2h

∂t′2s

∣
∣
∣
γ=0

=
∂2h

∂t′s∂ts

∣
∣
∣
γ=0

=
dts
∂γ

∣
∣
∣
γ=0

= 0, (5.72)
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we obtain

d3h

dγ3

∣
∣
∣
γ=0

=

[
∂3h

∂t′3s

(
dt′s
dγ

)3

+ 3
∂3h

∂t′2s ∂γ
︸ ︷︷ ︸

= 0

(
dt′s
dγ

)2

+ 3
∂3h

∂t′s∂γ2

dt′s
dγ

+ 3
∂2h

∂ts∂γ
︸ ︷︷ ︸

= 0

d2ts
dγ2

+ 3
∂2h

∂t′s∂γ
︸ ︷︷ ︸

= 0

d2t′s
dγ2

+
∂3h

∂γ3
︸︷︷︸

= 0

]

γ=0

.

(5.73)

Using Eq. (5.49c) we find that

[
∂3h

t′3s

]

γ=0

= −
(
E(t′0)

)2
, (5.74a)

[(
dt′s
dγ

)3
]

γ=0

= a3
1 =

−8iU
3/2
p

|E(t′0)|3
, (5.74b)

∂3h

∂t′s∂γ2
= −4Up. (5.74c)

Plugging the results from Eq. (5.74) into Eq. (5.73) we obtain

[
d3h

dγ3

]

γ=0

=
−16i U

3/2
p

|E(t′0)|
. (5.75)

That means that up to third order in γ the action is given by

h(γ) = S(t0, t
′
0, γ) − ωt0 +

−8i U
3/2
p γ3

3|E(t′0)|
+ O(γ4), (5.76a)

e−i(S(ts,t′s)−ωts) = e−i(S(t0,t′0,γ)−ωt0)e
− 8U

3/2
p γ3

3|E(t′
0
)| + O(γ4). (5.76b)

With the help of Mathematica, we can continue the expansion a bit more. The result
up to fourth order in γ is given by

e−i(S(ts,t′s)−ωts) = e−i(S(t0,t′0,γ)−ωt0)e
− 8U

3/2
p γ3

3|E(t′0)|

× e
i

2U2
p

 

E(t′0)(v0E(t0)−E(t′0)(2v0+(t0−t′0)E(t′0)))

v0(v0+(t0−t′
0
)E(t0))

+E′(t′0)

!

γ4

(E(t′
0
))3 + O(γ5).

(5.77)

For an expansion up to fifth order in γ, only a3 and b3 and not a4,a5, b4, or b5 would
be needed.
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5.1.2.5 Final expression

Combining the results from the previous sections we can express the dipole accele-
ration αθ(ω) as

αθ(ω) =
−ω

(√
Upγ

) 1
2

∑

t0,t′0

v∗
rec,θ(vrec)dion,θ(−2i sgn(E(t′0))

√

Upγ, t
′
s)

[
2π

ǫ+ i(ts − t′s)

] 3
2

× e−i(S(t0,t′0)−ωt0)e
i

„

E(t′0)(v0E(t0)−E(t′0)(2v0+(t0−t′0)E(t′0)))

v0(v0+(t0−t′0)E(t0))
+E′(t′0)

«

2U2
pγ4

(E(t′
0
))3

× e
− 8U

3/2
p γ3

3|E(t′
0
)|

√
√
√
√

2πi
v2
rec

t0+ 1
2
b2γ2−t′0−a1γ− 1

2
a2γ2 + E(t0 + 1

2b2γ
2) vrec

×
√

π
(

E(t0)
vrec+(t0−t′0)E(t0) +

E′(t′0)
E(t′0)

)

2i
√
Upγ + |E(t′0)|

+ O(γ3)

= −ω
(
Ip
2

)− 1
4 ∑

t0,t′0

v∗
rec,θ(vrec)dion,θ(−i sgn(E(t′0))

√

2Ip, t
′
s)

[
2π

ǫ+ i(ts − t′s)

] 3
2

× e−i(S(t0,t′0)−ωt0)e
i

„

E(t′0)(v0E(t0)−E(t′0)(2v0+(t0−t′0)E(t′0)))

v0(v0+(t0−t′
0
)E(t0))

+E′(t′0)

«

I2
p

2(E(t′0))3

× e
− (2Ip)3/2

3|E(t′
0
)|

√
√
√
√

2πi
v2
rec

t0+ 1
2
b2γ2−t′0−a1γ− 1

2
a2γ2 + E(t0 + 1

2b2γ
2) vrec

×
√

π
(

E(t0)
vrec+(t0−t′0)E(t0) +

E′(t′0)
E(t′0)

)

i
√

2Ip + |E(t′0)|
+ O(γ3),

(5.78a)

with

a1 =
2i
√
Up

|E(t′0)|
, (5.78b)

a2 =
4Up

(E(t′0))
2

(
E(t0) − E(t′0)

v0 + (t0 − t′0)E(t0)
+
E′(t′0)
E(t′0)

)

, (5.78c)

b2 =
2v0(t0 − t′0)

Up

ω +
4Up

E(t′0)

v0 + (t0 − t′0)E(t0)
, (5.78d)

v0 = Svrec

√
2ω = ±

√
2ω, (5.78e)

vrec = Svrec

√

2(ω − Ip) = ±
√

2(ω − Ip), (5.78f)

where for the last equality of αθ(ω) we inserted again Ip for 2Upγ
2. It should

be noted that the above expression is up to order O(γ3), but the expansion of the
action in it was up to O(γ5). As mentioned before, the difference makes sense as the
latter is a rapidly varying phase factor. Hopefully, this makes the whole expression
reasonably accurate, although formally of course it is only so up to order O(γ3).



5.1 High-harmonic generation 111

5.1.3 Double saddle-point with only birth time equation expansion

The method described in section 5.1.2 has several advantages and disadvantages. It
provides an intuitive expansion of the full trajectories in terms of γ, or alternatively,
in terms of Ip, starting from the classical trajectories. The harmonic order generated
by a classical trajectory is completely determined by its return momentum. One
of the striking features of this procedure is therefore that the full solutions are
expanded from classical trajectories associated with higher return momenta. As
a consequence, the highest order harmonics cannot be calculated, as no classical
returns with appropriate return momenta exist. Also, we do not calculate harmonics
with an energy lower than Ip using our approaches based on classical trajectories.
Although in principle this would be possible using the approach of section 5.1.2, we
would expect very inaccurate results. The latter could be overcome by performing
the integrations in Eq. (5.1) explicitly, or by solving the saddle-point conditions
for imaginary return momenta, for which probably only solving them directly for
complex times makes sense. Both of these would be accompanied by a substantial
increase in numerical effort.

Concerning our current approach based on classical trajectories, we expect more
accurate results from an expansion starting with trajectories that share the return
momentum and are associated with the same harmonic as the full trajectory, because
in that case the two trajectories will lie closer together. This can be achieved using
an alternative approach for the expression of the full solutions in terms of solutions
of real saddle-point equations. Instead of dividing both saddle-point equations by
2Up and expanding them in γ, or equivalently, in Ip, we will expand only the birth
time equation, but keep the return time equation unmodified. This no longer cor-
responds to expanding Ip in the action in Eq. (5.1) and deriving the saddle-point
conditions from there. Therefore the physical meaning of the expansion is lost and
the expansion as treated in this section could be considered more artificial, i.e., a
mathematical trick. In formulas, we find the solutions of the full equations

f(γ) ≡ ks(ts, t
′
s) +A(t′s) = −2i sgn(E(t′0))

√

Upγ, (5.79a)

g(γ) ≡ ks(ts, t
′
s) +A(ts) = vrec = ±

√

2(ω − Ip), (5.79b)

as expansions of the classical solutions of

f(0) ≡ ks(t0, t
′
0) +A(t′0) = 0, (5.80a)

g(0) ≡ ks(t0, t
′
0) +A(t0) = vrec (not v0!). (5.80b)

Again we choose to expand in terms of γ and not Ip, because the expansion takes a
lot simpler form then. This time we find the full expression on the basis of classical

trajectories that satisfy vi = 0 (Eq. (5.80a)) and v2
rec
2 = ω − Ip (Eq. (5.80b)), i.e., in

contrast to section 5.1.2 the full energy-conserving dispersion relationship is used.
Appendix A.4.1 is devoted to finding the contributing classical trajectories.
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As in section 5.1.2, we expand the saddle times ts, t
′
s around t0, t

′
0 as

t′s(γ) = t′0 +

∞∑

n=1

1

n!
anγ

n, (5.81a)

ts(γ) = t0 +

∞∑

n=1

1

n!
bnγ

n. (5.81b)

The coefficients ai and bi are determined by the expansion of the saddle-point equa-
tions f(γ) and g(γ) around γ = 0 as

f(γ) = f(0) +
∑

n=1

1

n!

[
dnf(γ)

dγn

]

γ=0

γn, (5.82a)

g(γ) = g(0) +
∑

n=1

1

n!

[
dng(γ)

dγn

]

γ=0

γn. (5.82b)

By comparing Eqs. (5.79) and (5.80) with Eq. (5.82), we see that the coefficients
ai and bi should be such that

[
df(γ)

dγ

]

γ=0

= −2i sgn(E(t′0))
√

Up, (5.83a)

[
dnf(γ)

dγn

]

γ=0

= 0 for n ≥ 2, (5.83b)

[
dng(γ)

dγn

]

γ=0

= 0 for n ≥ 1. (5.83c)

Similarly as before, the first order conditions lead to

−a1 E(t′0) −
b1 vrec
t0 − t′0

= −2i sgn(E(t′0))
√

Up, (5.84a)

(

− vrec
t0 − t′0

− E(t0)

)

b1 = 0. (5.84b)

Since the second condition must be fulfilled always, we again have that

a1 =
2i
√
Up

|E(t′0)|
, (5.85a)

b1 = 0. (5.85b)

Using b1 = 0, we verify that the second order derivatives of f(γ) and g(γ) are given
by

[
d2f(γ)

dγ2

]

γ=0

=
−b2vrec
t0 − t′0

+
−a2

1 − a2(t0 − t′0)
t0 − t′0

E(t′0) − a2
1E

′(t′0), (5.86a)

[
dg(γ)

dγ2

]

γ=0

= −b2(vrec + (t0 − t′0)E(t0)) + a2
1E(t′0)

t0 − t′0
. (5.86b)
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Combining these equations with the requirements in Eq. (5.83) leads to

a2 =
4Up

(E(t′0))
2

(
E(t0)

vrec + (t0 − t′0)E(t0)
+
E′(t′0)
E(t′0)

)

, (5.87a)

b2 =
4Up

E(t′0)(vrec + (t0 − t′0)E(t0))
. (5.87b)

In comparison with the expansion of both saddle-point equations made in sec-
tion 5.1.2, the first order expansion coefficients of the saddle-point times a1 and
b1 are identical. However, the second order coefficients a2 and b2 take a simpler
form.

5.1.3.1 Gaussian integrals

The next steps are identical to what was done in section 5.1.2. Taylor expanding
S(t, t′) − ωt around the saddle points (ts, t

′
s) and shifting the integration variables

leads to

αθ(ω) ≃ −ω
∑

t0,t′0

v∗
rec,θ(vrec)dion,θ(ks(ts, t

′
s) +A(t′s), t

′
s)

[
2π

ǫ+ i(ts − t′s)

] 3
2

e−iS(ts,t′s)+iωts

×
∫ ∞

−∞
dt

∫ ∞

−∞
dt′ e

1
2
i(ks(ts,t′s)+A(ts))

„

ks(ts,t′s)+A(ts)

ts−t′s
+E(ts)

«

t2

e

1
2
i

0

@− (ks(ts,t′s)+A(t′s))
2(ks(ts,t′s)+A(ts))

(ts−t′s)2
„

ks(ts,t′s)+A(ts)

ts−t′s
+E(ts)

« +(ks(ts,t′s)+A(t′s))
„

ks(ts,t′s)+A(t′s)
ts−t′s

−E(t′s)
«

1

At′2

.

(5.88)

Using the definition for a in Eq. (5.53), the integration over t gives us a prefactor

∫ ∞

−∞
dt e−at2 =

∫ ∞

−∞
dt e

1
2
i(ks(ts,t′s)+A(ts))

„

ks(ts,t′s)+A(ts)

ts−t′s
+E(ts)

«

t2

=

√
√
√
√

2πi
v2
rec

t0+ 1
2
b2γ2−t′0−a1γ− 1

2
a2γ2 + E(t0 + 1

2b2γ
2) vrec

+ O(γ3).

(5.89)

With the appropriate new values for ai and bi, the laser field at complex times is
still given by Eq. (5.63). Since b2 is real, however, it is easier and better to calculate
E(ts) directly as

E(ts) = E(t0 +
1

2
b2γ

2). (5.90)
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The integration over t′ gives the prefactor

∫ ∞

−∞
dt′ e−bt′2

=

√
π

(
E(t0)

vrec+(t0−t′0)E(t0)
+

E′(t′0)
E(t′0)

)

2iUpγ2 +
√
Upγ|E(t′0)|

+ O(γ3)

=
(√

Upγ
)− 1

2

√
π

(
E(t0)

vrec+(t0−t′0)E(t0)
+

E′(t′0)
E(t′0)

)

2i
√
Upγ + |E(t′0)|

+ O(γ3).

(5.91)

5.1.3.2 Expansion of the action

To avoid the integration of the laser field over complex times, we need to ex-
pand exp(−i(S(ts, t

′
s) − ωts)) around the classical times t0, t

′
0. In contrast to sec-

tion 5.1.2.4, this expansion is no longer equal to a full expansion around γ = 0.
Effectively, we will expand the function

h(γ) ≡ S(ts, t
′
s) − ωts =

1

2

∫ ts(γ)

t′s(γ)
dt′′ [ks(ts(γ), t

′
s(γ)) +A(t′′)]2 + Ip(ts(γ) − t′s(γ))

(5.92)
as

h(γ) = h(0)+

[
dh

dγ

]

γ=0

γ+
1

2

[
d2h

dγ2

]

γ=0

γ2+
1

6

[
d3h

dγ3

]

γ=0

γ3+
1

24

[
d4h

dγ4

]

γ=0

γ4+O(γ5).

(5.93)
For the purpose of the expansion, Ip in Eq. (5.92) is kept fixed and is not considered
as a function of γ.

The first order term is given by

[
dh

dγ

]

γ=0

=

[
∂h

∂ts

dts
dγ

]

γ=0

+

[
∂h

∂t′s

dt′s
dγ

]

γ=0

, (5.94a)

∂h

∂ts
=

1

2
(ks(ts, t

′
s) +A(ts))

2 + Ip − ω, (5.94b)

∂h

∂t′s
= −1

2
(ks(ts, t

′
s) +A(t′s))

2 − Ip, (5.94c)

dts
dγ

= b2γ + O(γ3), (5.94d)

dt′s
dγ

= a1 + a2γ + O(γ3), (5.94e)

leading to

[
dh

dγ

]

γ=0

= −a1Ip = −2i
√
UpIp

|E(t′0)|
. (5.94f)
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From Eqs. (5.79a) and (5.94c) we see that here

[
∂h

∂t′s

]

γ=0

6= 0. (5.95)

This is because for γ = 0 Eq. (5.79a) does not correspond to a saddle point of
Eq. (5.92). Therefore the expansion of the action has to be calculated a bit more
explicitly here compared to section 5.1.2.4.

The second order term is given by

[
d2h

dγ2

]

γ=0

=

[

∂h

∂ts

d2ts
dγ2

+
∂2h

∂t2s

(
dts
dγ

)2

+
∂h

∂t′s

d2t′s
dγ2

+
∂2h

∂t′2s

(
dt′s
dγ

)2

+2
∂2h

∂ts∂t′s

dts
dγ

dt′s
dγ

]

γ=0

.

(5.96a)

Using that (Eq. (5.49c))

[
∂2h

∂t′2s

]

γ=0

= 0, (5.96b)

and that b1 = 0 we arrive at

[
d2h

dγ2

]

γ=0

= b2

(
1

2
v2
rec + Ip − ω

)

− a2Ip = −a2Ip. (5.96c)

Only including the first two order terms of the expansion, the action takes the form

S(ts, t
′
s) − ωts = S(t0, t

′
0) − ωt0 − i

4U
3/2
p γ3

|E(t′0)|

−
4U2

pγ
4

(E(t′0))
2

(
E(t0)

vrec + (t0 − t′0)E(t0)
+
E′(t′0)
E(t′0)

)

+ O(γ3)

= S(t0, t
′
0) − ωt0 + O(γ3).

(5.97)

After having expressed Ip in terms of γ, we see that also using the approach of this
section the action is given by the classical value up to third order in γ. However,
unlike in section 5.1.2, the first and second order expansion terms are not zero but
instead are of higher order in γ.

With the help of Mathematica we find that for the third order term

[
d3h

dγ3

]

γ=0

= −2a3Upγ
2 +

8iU
3/2
p

|E(t′0)|
. (5.98)

The undetermined coefficient a3 appears here, but it only contributes at fifth order
in γ. The fourth order term is given by

[
d4h

dγ4

]

γ=0

=
48U2

p

(E(t′0))
2

(
E(t0)

vrec + (t0 − t′0)E(t0)
+
E′(t′0)
E(t′0)

)

+ O(γ2). (5.99)
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When we combine the contributions from the different terms, we arrive at

S(ts, t
′
s) − ωts = S(t0, t

′
0) − ωt0 −

8iU
3/2
p

3|E(t′0)|

−
(

E(t0)

vrec + (t0 − t′0)E(t0)
+
E′(t′0)
E(t′0)

)
2U2

pγ
4

(E(t′0))
2

+ O(γ5).

(5.100)

Therefore we can write

e−i(S(ts,t′s)−ωts) = e−i(S(t0,t′0)−ωt0)e
− 8U

3/2
p γ3

3|E(t′0)| e
i

„

E(t0)

vrec+(t0−t′
0
)E(t0)

+
E′(t′0)

E(t′
0
)

«

2U2
pγ4

(E(t′0))2 + O(γ5).
(5.101)

Compared to the result in section 5.1.2, the third order term describing tunnel
ionization is identical. The fourth order term, a correction, takes a quite different
but somewhat simpler form. The fifth order expansion term and the contribution to
fifth order from the third order expansion term are such that the expression behaves
even nicer than in the previous section, in the sense that for an expansion up to fifth
order in γ, only a3 and not even b3, a4, a5, b4, or b5 would be needed.

5.1.3.3 Ionization matrix element

Unfortunately, evaluating Eq. (5.1) using the saddle-point approximation for both
the birth and return times, as is done both here and in section 5.1.2, leads to
an ambiguity in evaluating the ionization matrix element dion,θ(k, t). Clearly we
cannot use the approximate classical starting momentum of 0 (from Eq. (5.35)) for
dion,θ(k, t) as the result would be highly dependent on the symmetry of the molecule.
Plugging k = 0 in Eq. (5.2a) shows that the result would even be equal to 0 for a
gerade molecule.

On the other hand, the full saddle-point momentum k = −i sgn(E(t′0))
√

2Ip from
Eq. (5.60) gives rise to dion → ∞ for a bound state with a Coulombic tail. As an
illustration of the problem, consider a 3D hydrogen-like ground state. For such a
state, ψ ∼ e−Zr and Z ≃

√
2Ip (see e.g. Bransden and Joachain [12]). Therefore on

the x-axis the integrand is proportional to x for either positive or negative x and
the integral diverges.

The singularity of the ionization matrix element at the solution of the saddle-point
conditions Eq. (5.79) has to be taken into account somehow. Using the approach
of section 5.1.1 where one performs the integration over t′ numerically brings a
clear advantage here. However, this approach brings less physical insight and does
not allow us to relate ATI and HHG peaks in terms of contributing trajectories.
Moreover it is computationally much more demanding. Sticking to an approach
in terms of classical trajectories, formally the singularity of the ionization matrix
element can be handled by taking into account the pole of the ionization matrix
element analytically when performing the integration over t′ (Chirilă [19]). However,
this would only unnecessarily complicate things for our purposes as we are not
interested in finding the overall amplitude of the HHG spectrum from the SFA
calculations, but instead we are mostly interested in finding the relative contributions
of the electronic trajectories
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Figure 5.1: (Color online) Absolute value of dion,θ as a function of k for E(t) = 1.
The black solid line is for x0 = ∞ (effectively Eq. (5.2a)), the red dashed line for
x0 = 2 and the blue dotted line for x0 = 5.

Instead, we insert a Gaussian filter in the definition of the ionization matrix element
to cut off the long-distance contribution. In formula, Eq. (5.2a) becomes

dion,θ(k, t) =
1

(2π)d/2

∫∫

ψ0,θ(r)(E(t) · x)e
− ln 2 |r|2

x2
0 e−ikxd2r, (5.102)

where x0 is the radius at which the contribution to the ionization matrix element is
attenuated by a factor 2. In our numerical calculations we use x0 = 5. The number
of dimensions, d, is set to d = 2 to reflect the fact that ψ0(r) is calculated as a true
2D state and not as a 2D projection of a 3D state as suggested by Eq. (4.53). As an
illustration of the effect of the Gaussian filter, in Fig. 5.1 we plot the absolute value
of dion for different values of x0. The plot was created for the standard 2D model
of H+

2 with parallel alignment (see e.g., section 3.1). Although the curves are for
real and not imaginary momenta, the figure suggests that using x0 = 5 we obtain a
reasonable approximation for the ionization matrix element.

Evaluated at the saddle points, the ionization matrix element is given by

dion,θ(−i sgn(E(t′0))
√

2Ip, t
′
s) =

1

(2π)
E(t′s)

∫∫

ψ0,θ(r) x e
− ln 2|r|2

x2
0 e−sgn(E(t′0))

√
2Ipxd2r, (5.103)

where for E(t′s) we use Eq. (5.63a). From Eq. (5.103) we see that dion is given by
a trajectory-dependent complex prefactor E(t′s) times one of two possible integrals
depending on sgn(E(t′0)). For a symmetric molecule both these integrals are iden-
tical. This supports replacing Eq. (5.2a) by Eq. (5.102) for our purposes as dion,θ

does not influence the relative contributions between trajectories.
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5.1.3.4 Final expression

The final expression for the dipole acceleration αθ(ω) takes the form

αθ(ω) = −ω
(√

Upγ
)− 1

2
∑

t0,t′0

v∗
rec,θ(vrec)dion,θ(−2i sgn(E(t′0))

√

Upγ, t
′
s)

×
[

2π

ǫ+ i(ts − t′s)

] 3
2

e−i(S(t0,t′0)−ωt0)e
i

„

E(t0)

vrec+(t0−t′
0
)E(t0)

+
E′(t′0)

E(t′
0
)

«

2U2
pγ4

(E(t′
0
))2

× e
− 8U

3/2
p γ3

3|E(t′
0
)|

√
2πi

v2
rec

ts−t′s
+ E(ts) vrec

×
√

π
(

E(t0)
vrec+(t0−t′0)E(t0)

+
E′(t′0)
E(t′0)

)

2i
√
Upγ + |E(t′0)|

+ O(γ3)

or

= −ω
(
Ip
2

)− 1
4 ∑

t0,t′0

v∗
rec,θ(vrec)dion,θ(−i sgn(E(t′0))

√

2Ip, t
′
s)

×
[

2π

ǫ+ i(ts − t′s)

] 3
2

e−i(S(t0,t′0)−ωt0)e
i

„

E(t0)

vrec+(t0−t′
0
)E(t0)

+
E′(t′0)

E(t′
0
)

«

I2
p

2(E(t′
0
))2

× e
− (2Ip)3/2

3|E(t′
0
)|

√
2πi

v2
rec

ts−t′s
+ E(ts) vrec

×
√

π
(

E(t0)
vrec+(t0−t′0)E(t0)

+
E′(t′0)
E(t′0)

)

i
√

2Ip + |E(t′0)|
+ O(γ3),

(5.104a)

with

ts = t0 +
1

2
b2γ

2, (5.104b)

t′s = t′0 + a1γ +
1

2
a2γ

2, (5.104c)

a1 =
2i
√
Up

|E(t′0)|
, (5.104d)

a2 =
4Up

(E(t′0))
2

(
E(t0)

vrec + (t0 − t′0)E(t0)
+
E′(t′0)
E(t′0)

)

, (5.104e)

b2 =
4Up

E(t′0)(vrec + (t0 − t′0)E(t0))
, (5.104f)

vrec = Svrec

√

2(ω − Ip) = ±
√

2(ω − Ip). (5.104g)

It should be noted that the above expression is up to order O(γ3), but the expansion
of the action in it was up to O(γ5). As mentioned before, the difference makes sense
as the latter is a rapidly varying phase factor. Hopefully, this makes the whole
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Figure 5.2: (Color online) Harmonic intensity polarized in the x-direction for a
three-cycle sin2-pulse. The black solid line is for the exact TDSE result, the red
dashed line is using Eq. (5.104) and the blue dotted line is using Eq. (5.78). The
green dot-dashed line is for Eq. (5.104) in length form.

expression reasonably accurate, although formally of course it is only so up to order
O(γ3).

5.1.3.5 Spectra

For the 2D model of H+
2 used in section 3.1 and other places in this thesis, we

will compare HHG spectra from the TDSE (numerically exact) with SFA spectra
calculated using Eqs. (5.78) and (5.104). The results for the three-cycle sin2- and
fifteen-cycle trapezoidal pulses of section 3.1 are in Figs. 5.2 and 5.3, respectively.
The plotted spectra are for an angle of θ = 45◦ between the laser polarization
axis and the internuclear axis. We plot the exact result (black solid lines), the
result from this section where Ip was expanded in the birth-time equation only
(red dashed lines) and the result from section 5.1.2, where Ip was expanded in
both saddle-point equations (blue dotted lines). Furthermore, the green dot-dashed
lines are the result from this section after replacing vrec,θ(k) with a length-form
expression (for details see section 5.1.3.6). In Fig. 5.2 the SFA results were shifted
with respect to the TDSE result but not with respect to each other. In Fig. 5.3
all curves were shifted individually for clarity. Looking at the figures, one realizes
that the SFA expressions for the harmonic intensity derived in this chapter are not
that accurate. Obtaining accurate harmonic spectra was however not the purpose
of this chapter. The curves for Eq. (5.104) (red dashed and green dot-dashed lines)
do reproduce many of the features of the exact spectrum, including much of the
interference patterns, indicating they can be used to assess the contributions of
individual trajectories.
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Figure 5.3: (Color online) Harmonic intensity polarized in the x-direction for a
fifteen-cycle trapezoidal pulse. The black solid line is for the exact TDSE result,
the red dashed line is using Eq. (5.104) and the blue dotted line is using Eq. (5.78).
The green dot-dashed line is for Eq. (5.104) in length form.

For the extremely short pulse used in Fig. 5.2, the general trend of the spectrum
is reproduced. The curves for Eq. (5.104) exhibit the double cutoff structure also
present in the exact result. The physics behind the double cutoff can be understood
from section 4.6.1; an electron returns most probably with negative momentum (for
φCEP = 1.25π). However, returns with positive momenta can occur up to higher
energies. Also the interference between the short and long trajectories is visible in
all curves. Because the expansion from section 5.1.2 requires classical trajectories
with higher energies than the full solution, the cutoff is underestimated for the blue
dotted line. For the much longer pulse used in Fig. 5.3, the multi-cycle interference
leading to the formation of harmonic peaks at only the odd harmonics is reproduced
(Milošević and Becker [85]).

In Fig. 5.4 we plot the emission times for the short and long trajectories of a sin-pulse
with λ = 800 nm and I = 3 × 1014 W/cm2. We consider the emission times from
the three-step model t0, and the emission times ts using the double Ip-expansion
of section 5.1.2 and the single Ip-expansion of this section. The emission times are
compared to the emission times from the quantum-orbital model (Chirilă et al. [20]),
i.e., the real part of the exact solutions to the saddle-point Eqs. (5.27) and (5.29)
on page 100. These were obtained by our former group member Ciprian Chirilă.
As expected, we obtain much better results using the single-Ip-expansion approach
of this section because the energy of the classical trajectories matches that of the
expanded solution. The difference between the two will be smaller for a combination
of laser and molecular parameters where Ip is a smaller fraction of the cutoff.

Furthermore, we observe that ts from this section is a good approximation to the
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Figure 5.4: (Color online) Harmonic order as a function of emission time for the
short and long trajectories of a sin-pulse. The black dashed curve represents the
three-step model, the black solid curve represents the quantum-orbit model, the red
plusses are ts from section 5.1.2 and the blue crosses are ts from section 5.1.3.

quantum-orbit emission time over most of the harmonic range for both the short
and long trajectories. However, for the lowest-energy short trajectories we observe
a significant deviation. In addition, the expanded saddle-point recombination times
are completely off around the classically cutoff. This is partially due to the fact that
the saddle-point approximation breaks down around the classical cutoff, as here two
trajectories meet and the trajectories cannot be considered independently anymore
(Figueira de Morisson Faria et al. [91]). Furthermore, our γ-expansion also does not
seem to function when two trajectories meet as the direction of expansion for the
classical trajectory is undetermined.

The SFA curves in the plots of this section show that using the approach based on
classical trajectories taken in this chapter, the harmonic spectra cannot be calculated
for harmonic energies smaller than Ip (except in principle using the approach taken
in section 5.1.2) or above the semi-classical cutoff. The peaks for the SFA curves
at the very low end of the harmonic spectra, just above Ip, are caused by electrons
with very low momenta. Ignoring the Coulombic potential during the propagation
of these electrons is a very bad approximation and therefore the Lewenstein model
breaks down for these electrons. As a result, our SFA calculations are not reliable
in this region.
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5.1.3.6 Integration into molecular orbital tomography

In the short pulse case, where the momentum of the returning electron is always of
the same sign (chosen negative), we have that

αθ(ω) = −ω
(
Ip
2

)− 1
4

v∗
rec,θ(−

√

2(ω − Ip))
∑

t0,t′0

dion,θ(−i sgn(E(t′0))
√

2Ip, t
′
s)

×
[

2π

ǫ+ i(ts − t′s)

] 3
2

e−i(S(t0,t′0)−ωt0)e
i

„

E(t0)

−
√

2(ω−Ip)+(t0−t′
0
)E(t0)

+
E′(t′0)

E(t′0)

«

I2
p

2(E(t′
0
))2

× e
− (2Ip)3/2

3|E(t′0)|

√
2πi

2(ω−Ip)
ts−t′s

− E(ts)
√

2(ω − Ip)

×
√
√
√
√

π
(

E(t0)

−
√

2(ω−Ip)+(t0−t′0)E(t0)
+

E′(t′0)
E(t′0)

)

i
√

2Ip + |E(t′0)|
+ O(γ3),

(5.105a)

with

ts = t0 +
1

2
b2γ

2, (5.105b)

t′s = t′0 + a1γ +
1

2
a2γ

2. (5.105c)

a1 =
2i
√
Up

|E(t′0)|
, (5.105d)

a2 =
4Up

(E(t′0))
2

(

E(t0)

−
√

2(ω − Ip) + (t0 − t′0)E(t0)
+
E′(t′0)
E(t′0)

)

, (5.105e)

b2 =
4Up

E(t′0)(−
√

2(ω − Ip) + (t0 − t′0)E(t0))
. (5.105f)

In this case the summation over classical trajectories becomes a prefactor for the
singly-occurring recombination matrix element, and it will be possible to rewrite
this equation to express the orbital as a function of the harmonic yields and phases.
Using Eq. (5.17), we can rewrite the SFA short-pulse result as

Pθ(ω) =
iαθ(ω)

ω
. (5.106)

When we compare this with the harmonic relationships for velocity-form reconstruc-
tion,

Iθ(ω) = ω2 |Pθ(ω)|2 , Pθ(ω) = 2π aθ[−k(ω)] pθ(ω), (5.107a)

pθ(ω) =

(∫∫
ψ0,θ(r)e

−ik(ω)xd2r

0

)

, (5.107b)

and consider that the matrix element v∗
rec,θ(−k) = 1

(2π)3/2

∫∫
ψ0,θ(r)(i∇)e−ikxd2r =

k
(2π)3/2 pθ[ω(k)] we see that in the SFA the decomposition of the continuum wave
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packet for velocity-form reconstruction is given by

aθ[−k(ω)] =
−ik(ω)

(2π)5/2

(
Ip
2

)− 1
4 ∑

t0,t′0

dion,θ(−i sgn(E(t′0))
√

2Ip, t
′
s)

×
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2π

ǫ+ i(ts − t′s)

]3
2

e−i(S(t0,t′0)−ωt0)e
i

„

E(t0)

−
√

2(ω−Ip)+(t0−t′
0
)E(t0)

+
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0
)

«

I2
p

2(E(t′0))2

× e
− (2Ip)3/2

3|E(t′
0
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√
2πi

2(ω−Ip)
ts−t′s

− E(ts)
√

2(ω − Ip)

×
√
√
√
√

π
(

E(t0)

−
√

2(ω−Ip)+(t0−t′0)E(t0)
+

E′(t′0)
E(t′0)

)

i
√

2Ip + |E(t′0)|
+ O(γ3).

(5.108)

In the above expression k(ω) is the dispersion relationship relating the emitted
harmonic energy to the momentum of the returning electron used in the tomographic
scheme. From a comparison of Eqs. (5.106) and (5.107) it can be seen that indeed
for the SFA-calculations the dispersion relationship should be chosen as k(ω) =
√

2(ω − Ip).

The overall result can still be quite accurately calculated using only the lowest order
in γ for the prefactors in Eq. (5.108). The following expression is less accurate, but
a lot simpler than Eq. (5.108),

aθ[−k(ω)] ≃ −ik(ω)

27/4π3/2I
1/4
p

∑

t0,t′0

dion,θ(−i sgn(E(t′0))
√

2Ip, t
′
0)

×
[

2π

ǫ+ i(t0 − t′0)

]3/2

e−i(S(t0,t′0)−ωt0)

× e
− (2Ip)3/2

3|E(t′0)|

√
√
√
√

i
(

2(ω−Ip)
t0−t′0

− E(t0)
√

2(ω − Ip)
)

|E(t′0)|
+ O(γ).

(5.109)

For the case of length-form reconstruction we need to replace the velocity-form
recombination matrix element by a length-form one. Since the SFA-prefactor in front
of the recombination matrix element (including the sum over electron trajectories)
does not depend on the choice for the reconstruction form, we obtain the dipole
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moment

Dθ(ω) = −i
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(5.110)

where d∗
rec,θ(−k) = 1

(2π)3/2

∫∫
ψ0,θ(r)(−r)e−ikxd2r = − 1

(2π)3/2 dθ[ω(k)]. Comparing

with Eq. (5.24) for short pulses (a(k) = 0 for k > 0) we find that aθ[−k(ω)] is
given by Eq. (5.108). That means that in the SFA the wave packet decomposition
functions as defined in this paper for length- and velocity-form tomography are
equal. Note that beyond the SFA the prefactors before the matrix elements in the
expressions for Dθ(ω) and Pθ(ω) are different, e.g., because of differences in effects
of the plane-wave approximation. Also note that in (van der Zwan et al. [140]) a(k)
has a prefactor of 2π compared to what is presented here.

5.2 Above Threshold Ionization

We consider here only direct ATI electrons, i.e., scattering at the nuclei after ioniza-
tion is not taken into account. Assuming that A(∞) = 0, i.e., we are dealing with
a physical laser pulse, the SFA amplitude for the process is the so-called Keldysh-
Faisal-Reiss amplitude (Faisal [30]; Keldysh [55]; Reiss [106]) and is given by

M(p) = −i
∫ Tp

0
dt〈p + A(t)|r · E(t)|ψ0〉eiS(p,t), (5.111a)

with

S(p, t) =
1

2

∫ t

0
(p + A(t′))2dt′ + Ipt, (5.111b)

where p is the momentum of the ATI electron.

Similar to what was done in section 5.1, using the saddle-point method one can find
an expression for the transition amplitude Mp in terms of classical trajectories. For
linear polarization and emission (anti-)parallel to the polarization axis, it is given
by (Milošević et al. [86, 87, 88])

M(p) ≃ −i
∑

t
(A)
s

(

2πi

E(t
(A)
s )(p +A(t

(A)
s ))

)1/2

〈p+A(t(A)
s )|xE(t(A)

s )|ψ0〉eiS(p,t
(A)
s ).

(5.112)
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The saddle-point times t
(A)
s satisfy the equation

(p+A(t
(A)
s ))2

2
= −Ip. (5.113)

This leads to

f(γ) ≡ p+A(t(A)
s ) = SATIi

√

2Ip = SATI2i
√

Upγ, (5.114)

where we have redefined f(γ) and SATI = ±1.

The solutions t
(A)
s of Eq. (5.114) are complex, requiring analytical representations

of the laser pulse in the complex plane. In the general case, these will not be
available. Therefore we will proceed similarly as before for the HHG process, finding
the solutions of Eq. (5.114) as expansions around classical solutions as

f(γ) = f(0) +
∑

n=1

1

n!

[
dnf(γ)

dγn

]

γ=0

γn. (5.115)

In this case the classical equation, for which the solutions can easily be found, reads

f(0) = p+A(t
(A)
0 ) = 0. (5.116)

To solve Eq. (5.114), the expansion coefficients should be given by

[
df(γ)

dγ

]

γ=0

= SATI2i
√

Up, (5.117a)

[
dnf(γ)

dγn

]

γ=0

= 0 for n ≥ 2. (5.117b)

To find the saddle times t
(A)
s that satisfy Eq. (5.117), we also expand t

(A)
s around

γ = 0 as

t(A)
s (γ) = t

(A)
0 +

∞∑

n=1

1

n!
a(A)

n γn. (5.118)

For the first order term in Eq. (5.117), we have that

[
df(γ)

dγ

]

γ=0

=

[

dt
(A)
s

dγ

∂f(γ)

∂t
(A)
s

]

γ=0

= −a(A)
1 E(t

(A)
0 ). (5.119)

Combining this with Eq. (5.117) leads to

a
(A)
1 = −SATI2i

√
Up

E(t
(A)
0 )

. (5.120)

The imaginary part of t
(A)
s represents ionization. Since M(p) in Eq. (5.111a) is

proportional to exp(−Ip Im(t
(A)
s )), Im(t

(A)
s ) should be positive. Therefore we have

that
SATI = −sgn(E(t

(A)
0 )). (5.121)
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That means that we can write

a
(A)
1 =

2i
√
Up

|E(t
(A)
0 )|

, (5.122)

and we can rewrite the saddle-point condition as

f(γ) ≡ p+A(t(A)
s ) = −i sgn(E(t

(A)
0 ))

√

2Ip = −2i sgn(E(t
(A)
0 ))

√

Upγ. (5.123)

The second order term is given by
[
d2f(γ)

dγ2

]

γ=0

= −a(A)
2 E(t

(A)
0 ) −

(

a
(A)
1

)2
E′(t(A)

0 ). (5.124)

When we combine this with Eq. (5.117), we derive

a
(A)
2 =

4UpE
′(t(A)

0 )

(E(t
(A)
0 ))3

. (5.125)

Because we are dealing with only one saddle-point time, it is easy to go beyond
second order. With the help of Mathematica, we derive

a
(A)
3 =

8iU
3/2
p

|E(t
(A)
0 )|3

(

−3
|E′(t(A)

0 )|2

|E(t
(A)
0 )|2

+
E′′(t(A)

0 )

E(t
(A)
0 )

)

, (5.126)

a
(A)
4 =

16U2
p (−15(E′(t(A)

0 ))3 + 10E(t
(A)
0 )E′(t(A)

0 )E′′(t(A)
0 ) − (E(t

(A)
0 ))2E′′′(t(A)

0 ))

(E(t
(A)
0 ))7

.

(5.127)

When we compare the expansion coefficients derived in this section, with those
presented for the HHG process in Eq. (5.104), we see that the first order term for
the birth time is identical. The second order term is also identical if we take t0 = ∞,
reflecting the fact that an ATI electron never recombines. In this case

[a2]t0→∞ =
4Up

(E(t′0))
2

E′(t′0)
E(t′0)

(5.128)

becomes equal to a
(A)
2 if we set equal the two birth times.

Inserting equation(5.123) into Eq. (5.112), we arrive at

M(p) ≃ −i
∑

t
(A)
s

(

−2π

E(t
(A)
s ) sgn(E(t

(A)
0 ))

√
2Ip

)1/2

× 〈−i sgn(E(t
(A)
0 ))

√

2Ip|xE(t(A)
s )|ψ0〉eiS(p,t

(A)
s )

= −i
∑

t
(A)
s

dion,θ(−i sgn(E(t
(A)
0 ))

√

2Ip, t
(A)
s )

×
(

−2π

E(t
(A)
s ) sgn(E(t

(A)
0 ))

√
2Ip

)1/2

eiS(p,t
(A)
s ).

(5.129)
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To evaluate this expression, we need to know how to calculate E(t
(A)
s ) and S(p, t

(A)
s ).

With the help of Mathematica, we find that the laser pulse at complex birth times
is given by

E(t(A)
s ) = E(t

(A)
0 ) + a

(A)
1 E′(t(A)

0 )γ +
1

2

(

a
(A)
2 E′(t(A)

0 ) +
(

a
(A)
1

)2
E′′(t(A)

0 )

)

γ2

+
1

6

(

a
(A)
3 E′(t(A)

0 ) + 3a
(A)
1 a

(A)
2 E′′(t(A)

0 ) +
(

a
(A)
1

)3
E′′′(t(A)

0 )

)

γ3

+
1

24

(
a

(A)
4 E′(t(A)

0 ) +

(

3
(

a
(A)
2

)2
+ 4a

(A)
1 a

(A)
3

)

E′′(t(A)
0 )

+ 6
(

a
(A)
1

)2
a

(A)
2 E′′′(t(A)

0 ) +
(

a
(A)
1

)4
E′′′′(t(A)

0 )
)
γ4 + O(γ5).

(5.130)

Also with the help of Mathematica, we expand the action around γ = 0 to avoid
integrating the laser field over complex times. With knowledge of the saddle-time
expansion coefficients up to fourth order in γ, this expansion can be done up to sixth
order in γ. The result expressed in terms of Ip is

eiS(p,t
(A)
s ) = eiS(p,t

(A)
0 )e

− (2Ip)3/2

3|E(t
(A)
0

)| e

i
E′(t(A)

0
)I2

p

2

„

E(t
(A)
0

)

«3

e

2
√

2

 

3

„

E′(t(A)
0 )

«2
−E(t

(A)
0 )E′′(t(A)

0 )

!

I
5/2
p

15|E(t
(A)
0

)|5

× e

i

 

−15

„

E′(t(A)
0 )

«3
+10E(t
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0 )E′(t(A)

0 )E′′(t(A)
0 )−

„

E(t
(A)
0 )

«2
E′′′(t(A)

0 )

!

I3
p

18

„

E(t
(A)
0 )

«7

+ O(γ7).

(5.131)

The expansion of the action for the ATI process is very similar to that of the HHG
process in Eq. (5.104). In both cases the action is stationary up to second order
in γ, and the third order term gives the tunneling ionization factor. The fourth
order term is identical if we take t0 → ∞ in Eq. (5.104). This is the same kind of

relationship between HHG and ATI as we saw for a2 versus a
(A)
2 , reflecting the fact

that the fourth order term of the action seems to depend physically on the second
order term of the birth time.

We can now evaluate Eq. (5.129) by using the approximations made in Eqs. (5.130)
and (5.131). The fifth order term of the expansion of the action is imaginary, leading
to exp(iS) containing the exponent of a real number in Eq. (5.131). The numerator
of this number can have both signs and its denominator can become arbitrarily
small. Therefore evaluating this term sometimes amounts to taking the exponent
of a division close to 0, which is associated with significant numerical problems and
errors. It is for this reason that we do not use the fifth and sixth order terms
of Eq. (5.131), i.e., the last two terms of the expression are ignored in numerical
calculations. It is not very surprising that the expansion does not work for the
trajectories that start at very small values of the electric field, because the underlying
strong-field approximation is not applicable in this situation.
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5.3 Suitability of laser pulse

In the sections 5.1.3 and 5.2 we saw that the HHG and ATI spectra of a molecular
system can be expressed as sums over contributions from classical trajectories. In
this section we will use these SFA results to calculate the suitability of a given laser
pulse to perform molecular tomography.

5.3.1 Suitability of laser pulse for standard tomography

In section 2.3 it was shown that the tomographic reconstruction equation can only
be derived for the general case of an unsymmetric molecule if a(k) = 0 for either
k > 0 or k < 0. The extent to which this requirement is fulfilled for a particular
laser pulse can be checked by comparing the contributions with negative return
momentum to those with positive return momentum in Eq. (5.104). It will be
interesting to compare the result of this calculation with the results of the simplified
calculations in section 4.6.1.

Let cni be the i-th contribution to harmonic n with frequency ωn. It is given by
everything after v∗

rec,θ(vrec) in Eq. (5.104) evaluated for that specific trajectory. As
a measure of the contribution of trajectories with negative return momentum to
harmonic ωn, we introduce the measure

Q
(h)
NVR(ωn) =







(∑

vrec<0 |cni|
)
/(

∑Nn
i=1 |cni|

)

if Nn > 0

0.5 else.
(5.132)

Here Nn is the total number of trajectories contributing to ωn. The contribution of
trajectories with negative return momentum to the complete harmonic spectrum is
then given by

QNVR =
1

N

N∑

n=1

Q
(h)
NVR(ωn), (5.133)

where N is the number of harmonic frequencies considered. QNVR will be equal to
1 if all trajectories that contribute to the harmonic spectrum return with negative
momentum, and 0 if all the contributing trajectories return with positive momentum.

Instead of finding a single laser pulse that has QNVR = 1 (or 0) for the system
studied, of course also a small collection of different pulses can be used for the
reconstruction. The system would be subjected to the different pulses independently.

The harmonic ranges for which the individual pulses have Q
(h)
NVR(ωn) close to 1 or 0

can be combined before performing the reconstruction.

In theory, for a tomographic reconstruction regions of the spectrum where Q
(h)
NVR(ω)

is close to 0 can be combined with regions where Q
(h)
NVR(ω) is close to 1, by taking the

complex conjugate of the reconstruction matrix elements lying in the first category
of regions. However, as we saw in section 4.6, in practice this does not work very
well because the orbital is reconstructed with a global complex phase. Therefore it

is impossible to use the regions where Q
(h)
NVR(ω) = 0 and instead we have to resort

to recording the spectrum also for a pulse with opposite polarity.
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Figure 5.5: (Color online) Q
(h)
NVR(ω) for a three-cycle sin2-pulse with φCEP = 1.25π.

The laser intensity is I = 5 × 1014 W/cm2 and the laser wavelength is λ = 780 nm.

5.3.1.1 Results

For a linearly polarized three-cycle sin2-pulse with a carrier-envelope-phase of φCEP

= 1.25π we plot Q
(h)
NVR(ω) in Fig. 5.5. We use I = 5 × 1014 W/cm2, λ = 780 nm,

and we assume a 3D world. We can compare the result with Fig. 4.13b that was
calculated for exactly the same laser pulse, a pulse that was also used for most
of the numerical tomographic simulations presented in chapter 4. Note that in
Fig. 4.13b we plotted the result for φCEP = 0.25π though, which means that we
must replace k → −k in that plot to compare it with Fig. 5.5. If we do so, we
observe that Fig. 5.5 contains much of the same information as Fig. 4.13b, although
more accurately because the full SFA expression including trajectory interferences
and the effect of finite γ was used to calculate it. However, the absolute probabilities
of the returns are not reflected in Fig. 5.5. Both curves convey that the spectrum
associated with a three-cycle laser pulse with φCEP = 1.25π is strongly dominated
by electron returns with negative momenta up to around harmonic 57, and for the
high end of the spectrum much weaker returns with positive momenta dominate the
spectrum.

In Fig. 5.6 we copy from Fig. 4.15 the red plusses that indicate the fraction of
electrons that return with negative momenta as a function of φCEP for three-cycle
sin2-pulses. In addition we plot QNVR in the same figure for comparison (black
triangles). The reason why the QNVR-values for the three-cycle sin2-pulses do not
look very promising, whereas in section 4.6.1 we came to the conclusion that these
pulses are very suitable for molecular tomography, is that QNVR is given by the

average Q
(h)
NVR(ωn) over the entire harmonic range. As we saw in Fig. 5.5 for the

φCEP = 1.25π-pulse, the high-end of the spectrum might be dominated by weak
returns with momenta with the opposite sign as the returns that dominate the main
part of the spectrum. In Fig. 4.15 these weak high-energy returns hardly contribute
toward the result as here the total amplitudes of returns with negative and positive
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Figure 5.6: (Color online) The red plusses are taken from Fig. 4.15. The black
triangles are QNVR for the same pulses. The green squares and blue crosses also show
QNVR, but for the frequency range up to harmonic orders 57.6 and 65, respectively.

momenta are compared.

If instead of letting the sum in Eq. (5.133) run up to the classical cutoff (harmonic
76), we let the sum run up to harmonic 57.6 or 65, we obtain the green squares and
blue crosses in Fig. 5.6, respectively. These curves show that some of these pulses
are very suitable for molecular tomographic reconstructions of general molecules
if we use a cutoff that is a bit lower than that predicted by the classical cutoff
law (3.17Up + Ip). Alternatively, as discussed just before section 5.3.1.1, we could
combine a pulse with φCEP = 1.25π for the main part of the spectrum with a pulse
with φCEP = 0.25π for the high-end part of the spectrum to obtain an even better
reconstruction. However, as the numerical simulations in chapter 4 show, simply
using the φCEP = 0.25π-pulse for the entire harmonic range produces already good
results.

5.3.1.2 Multiple pulses

Instead of using a single laser pulse to perform the tomographic reconstruction, it
is also possible to combine the data from many different laser pulses to improve the
reconstruction. This is an advantage for extremely short pulses that may provide
favorable conditions only for a small harmonic range. Therefore this has the most
relevance for asymmetric molecules.

If multiple pulses are used for the reconstruction, we select the pulse for each har-
monic ωn using the following procedure. First we select the pulses that fulfill

Q1−sided(ωn) ≥ qNVR = 0.999 (5.134a)
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and

I(ωn) ≥ qI Imax(ωn) = 10−3Imax(ωn), (5.134b)

where Q1−sided(ωn) = max
(

Q
(h)
NVR(ωn), 1 −Q

(h)
NVR(ωn)

)

and Imax(ωn) is the max-

imum harmonic intensity at ωn of all pulses considered. From these pulses we se-
lect the one associated with the highest harmonic intensity at frequency ωn. If no
pulses are found for which Eqs. (5.134a) and (5.134b) are fulfilled, we instead se-
lect the pulse that fulfills Eq. (5.134b) and is associated with the highest value of
Q1−sided(ωn).

If no contributing trajectories could be found for ωn for any of the pulses, Q
(h)
NVR(ωn)

is undefined for all the pulses. In this case we select the same pulse for ωn as for

ωn−1, or if this is not possible, as for ωn+1 and we also transfer the Q
(h)
NVR-value from

the neighboring harmonic. This way we extend the procedure into the classically
forbidden region and there also reasonable pulses are selected based on surround-

ing classically allowed regions. Although Q
(h)
NVR(ωn) is irrelevant for a symmetric

molecule, the above procedure will improve the tomographic reconstruction of a
symmetric molecule if extremely short pulses are used to reconstruct it. The reason
is that it ensures that over the entire harmonic range pulses are used that give rise
to a high harmonic intensity at that frequency and thereby good correspondence
with the three-step model.

For asymmetric molecules we encounter problems in the tomographic reconstruction
if at some harmonics we use dipole matrix elements retrieved from tomographic
experiments where the short laser pulse effectively had the opposite polarity as for
the other harmonics, i.e., when the wave packet came from the opposite side for
those harmonics. In such a scenario, we retrieved dθ+π(ωn) or pθ+π(ωn) for those

harmonics for which Q
(h)
NVR(ωn) < 0.5. This means we have to rotate the orientation

of the affected dipole matrix elements by π rad.

In Fig. 5.7 we plot the pulse selected by our selection procedure in case we consider
ten different three-cycle sin2-pulses at a wavelength of 2000 nm and an intensity of 2×
1014 W/cm2. Here we consider the 1D world used for the simulations in section 4.9.
The pulses have φCEP-values of 0.0–0.9. The plot shows that the procedure makes
use of all the pulses to achieve one-sided recombinations over the entire harmonic
range.

5.3.2 Suitability of laser pulse for tomography with ATI

In section 4.8.1 it was argued that if there exists a one-to-one mapping between
each harmonic peak and an ATI peak, ATI electrons can be used to improve the
molecular tomographic reconstruction. For this mapping to exist, each harmonic
peak must be predominately determined by a single trajectory. At the birth time of
that harmonic trajectory, an ATI trajectory that dominates the ATI spectrum for
some momentum p must start. In this section we will derive measures that quantify
how well the one-to-one mapping is satisfied, i.e., how suitable the laser pulse is for
using ATI electrons to improve the molecular reconstruction.
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Figure 5.7: (Color online) The φCEP used for the reconstruction as a function of
harmonic order when ten three-cycle pulses are considered (red dots). Also plotted
is the value of Q1−sided(ωn) (blue line).

The extent to which trajectory ni determines harmonic ωn, is given by

QHHG(ωn, i) = |cni|
/




Nn∑

j=1

|cnj |



 . (5.135)

If the trajectory uniquely determines the harmonic, QHHG(ωn, i) = 1, if it has no
influence at all, QHHG(ωn, i) = 0.

Let an ATI trajectory with the same birth time as harmonic trajectory ni contribute
with dni to ATI peak pni. Since we are making a classical comparison between the
two trajectories, we set their classical birth times equal, not their full birth times or
the real part of their full birth times. For the HHG trajectory, the return time has
a direct influence on the expansion of the classical birth time to the full birth time.
This shows that in the full birth times they are factors that go beyond the simple
picture used here, and we should not consider the full birth time for this purpose.
The contribution dni is given by everything after the sum in Eq. (5.129) for that
trajectory. The uniqueness of that trajectory in determining ATI peak pni is given
by

QATI(ωn, i) = |dni|
/






∑

t
(A)
0 →pni

|d(t(A)
s )|




 , (5.136)

where d(t
(A)
0 ) is the contribution to Eq. (5.129) from the trajectory with birth time

t
(A)
0 , and the sum is over all birth times that lead to an ATI peak at momentum pni.

Since for non-cw pulses pni is not restricted to any discretized values, a dedicated
search for other trajectories that lead to pni has to be performed.

Putting equations (5.135) and (5.136) together, the amount of one-to-one linking for
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each HHG trajectory is defined as

Q
(t)
1to1(ωn, i) = QHHG(ωn, i) ×QATI(ωn, i). (5.137)

Here Q
(t)
1to1(ωn, i) = 1 means that the one-to-one linking is perfect for harmonic

trajectory ni and Q
(t)
1to1(ωn, i) = 0 means the link is not possible. The amount of

one-to-one linking to an ATI peak for an harmonic peak ωn is given by the best link
provided by one of its contributing harmonic trajectories. In formula,

Q
(h)
1to1(ωn) =

{

max
(

Q
(t)
1to1(ωn, 1), . . . , Q

(t)
1to1(ωn,Nn)

)

if Nn > 0

0 else.
(5.138)

The total measure for the whole harmonic range is then given by

Q1to1 =
1

N

N∑

n=1

Q
(h)
1to1(ωn). (5.139)

If Q1to1 = 0, the pulse cannot be used to determine the continuum wave packet
according to Eq. (4.57). If, however, Q1to1 = 1, the pulse is perfect for the incorpo-
ration of ATI electrons into the tomographic reconstruction scheme.

Besides playing a role in determining the suitability of the laser pulse for the molec-

ular reconstruction, Q
(t)
1to1(ωn, i) also provides us with the prescription of how to

do the reconstruction. It can be used to determine p(A)(ω) in Eq. (4.57), i.e., it
provides us with the information which harmonic peak to link to which ATI peak.
Namely, the ATI peak that corresponds to the birth time of the trajectory nk with

the highest value Q
(t)
1to1(ωn, k) for harmonic ωn should be used. In formulas,

p(A)(ωn) = pnk, (5.140a)

with k such that

Q
(t)
1to1(ωn, k) ≥ Q

(t)
1to1(ωn, l) for 1 ≤ l ≤ Nn. (5.140b)

If Q1to1 = 1 but QNVR is not equal 0 or 1, the condition that returns from one side
only contribute to a(k) is fulfilled in a complicated frequency-dependent manner.
This means that in principle the pulse can still be used for the reconstruction of
asymmetric molecules. However, attention should be paid to from which side the
continuum wave packet approached the core for every harmonic and the measure-
ment should be repeated with an oppositely polarized pulse for those harmonics
where the return was originally from the opposite side.

As before, instead of considering a single pulse, a small collection of pulses can
be used that perform well in different harmonic ranges. The results can then be
properly combined to achieve an even better reconstruction.
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Figure 5.8: (Color online) Q
(h)
1to1(ω) for two-cycle sin2-pulses with φCEP = 0π (black

solid line), φCEP = 0.25π (red dashed line), φCEP = 0.5π (blue dotted line) and
φCEP = 0.75π (green dot-dashed line). The laser intensity is I = 2 × 1014 W/cm2

and the laser wavelength is λ = 2000 nm.

5.3.2.1 Results

In this section we consider a 1D world as the simulations for molecular tomography
including ATI electrons in this thesis are in 1D. This means that we adapt the
wave-packet-spreading factor accordingly, as described below Eq. (5.5). We consider
linearly polarized sin2-pulses with an intensity of λ = 2000 nm at an intensity of

I = 2 × 1014 W/cm2. For two-cycle and three-cycle pulses we plot Q
(h)
1to1(ω) for

different φCEP in Figs. 5.8 and 5.9, respectively. The lowest energy ATI electrons
are strongly perturbed by the Coulombic potential and we do not use them for
tomographic reconstructions. Therefore we accept only those HHG-ATI links for
which ∣

∣
∣p(A)(ω)

∣
∣
∣ ≥ pmin. (5.141)

We arbitrarily set pmin =
√

2(0.2Up) ≃ 1.05 a.u. in Figs. 5.8 and 5.9. In Fig. 5.9 we

additionally plot Q
(h)
1to1(ω) for φCEP = 0.25π using pmin = 0 (brown dot-dot-dashed

versus red dashed line).

From Fig. 5.8 we observe that for extremely short pulses—even shorter than re-
quired for normal tomographic reconstructions of general molecules—over a broad
harmonic range ATI peaks are available that can be used to improve the tomo-
graphic reconstruction. The observed one-to-one linking between HHG and ATI
peaks is unique and has not been observed or predicted so far. Unfortunately the
relationship between HHG and ATI peaks exists only for extremely short pulses.
Already if we move to the three-cycle pulses of Fig. 5.9 we can find a usable one-to-
one relationship between the two processes only for a narrow harmonic range. From
the brown dot-dot-dashed lines in Fig. 5.9 we observe that this is the case because
of the low momenta of the linked ATI peaks. Setting pmin = 0 or pmin =

√

2(0.2Up)
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Figure 5.9: (Color online) Q
(h)
1to1(ω) for three-cycle sin2-pulses with φCEP = 0π

(black solid line), φCEP = 0.25π (red dashed line), φCEP = 0.5π (blue dotted line)

and φCEP = 0.75π (green dot-dashed line). Additionally Q
(h)
1to1(ω) for pmin = 0 is

shown (brown dot-dot-dashed line). The laser intensity is I = 2 × 1014 W/cm2 and
the laser wavelength is λ = 2000 nm.

hardly makes a difference for the curves plotted in Fig. 5.8 (not plotted).

There is a straightforward physical explanation for the phenomenon that only ex-
tremely short pulses can give rise to significant usable one-to-one linking between
HHG and ATI. Ionization takes predominantly place at the peaks of the electric
field of the laser pulse. From Eq. (5.116) we see that the energy of an ATI peak is
given by minus the value of the vector potential at the birth time. Since the vector
potential is given by the integral of the electric field of the laser pulse, A(t) tends
to be exactly out of phase with the sinusoidal carrier of E(t). Therefore the ATI
trajectories born at the same time as the HHG trajectories, just after the peak of
the electric field, tend to have low energies. This effect is broken for the two-cycle
pulses of Fig. 5.8 as the very short envelope destroys the phase relationship between
A(t) and E(t). For longer pulses also more trajectories contribute to each HHG and
ATI peak, reducing the probability that one birth time has a significant influence
on both an HHG and ATI peak.

In Figs. 5.10 and 5.11 we plot Q1to1 as a function of φCEP for pulses with different
lengths. The left plots are for an intensity of I = 2 × 1014 W/cm2 at a laser
wavelength of λ = 2000 nm whereas the right plots are for I = 5× 1014 W/cm2 and
λ = 780 nm. In Fig. 5.11 we redefined Eq. (5.137) in accordance with Figs. 5.8 and
5.9 as

Q
(t)
1to1(ωn, i) =

{

QHHG(ωn, i) ×QATI(ωn, i) if |pni| ≥ pmin

0 else,
(5.142)

before calculating Q
(h)
1to1(ω) and Q1to1. Also here we use pmin =

√
2(0.2Up), where

pmin takes a different numerical value for the left and right plots because of the differ-
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Figure 5.10: (Color online) Q1to1 as a function of φCEP for two-cycle sin2-pulses
(black triangles), three-cycle sin2-pulses (red plusses), and four-cycle sin2-pulses
(blue crosses); (a) I = 2 × 1014 W/cm2 and λ = 2000 nm, (b) I = 5 × 1014 W/cm2

and λ = 780 nm.
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Figure 5.11: (Color online) Same as Fig. 5.10 with pmin =
√

2(0.2Up).

ence in laser parameters. If we accept pmin = 0 there is significant HHG-ATI linking
for the investigated 2–4 cycle pulses. However, already using the relatively low
pmin =

√
2(0.2Up) we observe there is hardly any possibility to use 3–4 cycle pulses

to improve the tomographic reconstruction. Also visible is that longer wavelengths
provide better opportunities for improving tomographic reconstructions using ATI
electrons.

Experimentally the situation might be a bit better than depicted in this section
because phase-matching leads to certain harmonic trajectories being selected (see
section 2.3.3) (Gaarde and Schafer [38]; Hariharan and Robinson [47]; Salières et al.
[110]). Because of the difference in propagation times, the short and long trajectories
acquire different phases in the continuum. Therefore the contributions from a gas of
atoms constructively add if the laser focus is placed either before or after the gas jet,
and the short and long trajectories are emitted under different angles. (Balcou et al.
[3]; Salières et al. [109]). For instance, in a standard experimental setup the long
trajectories are suppressed relative to the short trajectories. The short trajectories
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can also be selected by adding a weak third harmonic field to the generating pulse
(Cao et al. [14]). For the very short pulses considered here the contributions of
different trajectories depends on φCEP. Nonetheless some improvement might be
possible when we block certain harmonic trajectories. We have not considered this
possibility. Additionally the curves look slightly better for a physical 3D world as
the wave-packet spreading tends to suppress unwanted trajectories.

5.3.2.2 Multiple pulses

As we saw in section 5.3.2.1, a single extremely short pulse only provides useful
information over a narrow harmonic range. Therefore it makes sense to combine
tomographic data from several pulses when incorporating ATI electrons into the
tomographic reconstruction, both for symmetric and asymmetric molecules. Here
we elaborate on the procedure to select the pulse to use for each harmonic frequency.

From all the pulses that fulfill

Q
(h)
1to1(ωn) ≥ q

(1)
1to1 = 0.8 (5.143a)

and

|p(A)(ωn)| ≥ q(1)p =
√

2(0.3Up), (5.143b)

we select the pulse that is associated with the highest momentum p(A) at frequency

ωn. If no such pulse exist, instead we select the pulse with the highest Q
(h)
1to1-value

under the conditions that

Q
(h)
1to1(ωn) ≥ q

(2)
1to1 = 0.5 (5.144a)

and

|p(A)(ωn)| ≥ q(2)p =
√

2(0.2Up). (5.144b)

In the case that no pulse can be found that fulfills Eq. (5.144), we do not use
information from ATI electrons for the tomographic reconstruction and we resort to
the procedure outlined in section 5.3.1.2.

Analogous to Fig. 5.7, in Fig. 5.12 we plot the pulse selected by our selection pro-
cedure for tomographic reconstruction including ATI electrons. In Fig. 5.12 we plot
only those harmonics for which ATI electrons are incorporated into the reconstruc-
tion. Here we consider two-cycle and not three-cycle sin2-pulses, but the wavelength
of 2000 nm and the intensity of 2 × 1014 W/cm2 remain the same. The plot shows
that there is good-quality information from ATI electrons available over a significant
fraction of the harmonic range.

Also if the pulse was selected using Eq. (5.143) or Eq. (5.144), we need to consider the

value of Q
(h)
NVR(ωn) for the harmonic considered. If Q

(h)
NVR(ωn) < 0.5 for asymmetric

molecules the reconstruction matrix elements between orientations θ and θ + π are
switched around as described at the end of section 5.3.1.2.
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Figure 5.12: (Color online) The φCEP used for tomographic reconstruction including
ATI electrons as a function of harmonic order when ten two-cycle pulses are con-
sidered (red dots). Also plotted is the value of Q1to1(ωn) for those harmonics (blue
line).



Chapter 6

Post-processing reconstructions

In this chapter we will occupy ourselves with the optimization of reconstructed or-
bitals obtained from the molecular tomographic scheme. This chapter is not devoted
to optimizing the experimental scheme itself, but instead we focus on removing errors
from the reconstructed orbitals numerically afterwards. The reconstruction errors
can be partially removed in an iterative process. At each iteration step we will apply
filters to the reconstructed orbital that represent a priori knowledge about either
the orbital or the molecular tomographic scheme.

6.1 Error causes

Only for the simplest of orbitals and/ or optimal laser parameters does the to-
mographically reconstructed orbital closely resemble the real orbital of the target
molecule. In contrast typically quite large errors are present. These errors either
disturb the molecular reconstruction in the core region or present themselves as ar-
tifacts outside the core region. Very typical for the latter are the ring-like structures
present in most tomographic reconstructions.

One of the main sources of error for the tomographic reconstruction are systematic
errors of the Lewenstein model. Contributions from the orbital shape on the ion-
ization process, and more importantly from the Coulomb field on the propagation
and the recombination processes, and from the laser field on the recombination pro-
cess all destroy the plane-wave character of the returning wave packet. Therefore
the plane-wave approximation (PWA) that was used in the derivation of the re-
construction equations is not fully fulfilled and errors are introduced. Furthermore,
only a finite range of frequencies can be determined, depending on both the laser
wavelength and intensity and limited by the depletion of the bound state. Both
low and high frequencies are missing, the former because the PWA becomes worse
for the lowest harmonics and these are therefore normally ignored, and the latter
because of the harmonic cutoff. Clearly molecular features at too low or too high
frequencies cannot be recovered, but the limited range of frequencies present also
causes artifacts in the reconstruction that can be removed.
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In addition—and arguably the most important source of errors—using a reference
atom we do not obtain the optimal aθ[−k(ω)]. Despite all the problems mentioned
above, an almost perfect reconstruction is often still possible using the optimal
aθ[−k(ω)], as the aθ[−k(ω)]-entries under the PWA are nothing more than Fourier
components. Even if aθ[−k(ω)] does not accurately reflect the physical process
behind HHG, if we find a good way to approximate aθ[−k(ω)], we can still attain
an almost perfect reconstruction.

6.2 Error filters

The main notion behind the error reduction algorithm is that a physical orbital
has a tight support, i.e., that it is nonzero only in a relatively small area around
the origin. Furthermore we use that the error superimposed on the reconstructed
orbital has limited θ- and k-dependence. In other words, we assume that the error
introduced by the tomographic process does not change much on a small change of
the momentum k or the angle θ. While we search for variations of the orbital that
make it fulfill the requirement of the tight support and other requirements, at the
same time we make sure that the introduced variations—the presumed error—fulfill
the property of limited θ- and k-dependence. All requirements on the orbital or the
error are expressed in terms of filters that are iteratively applied to the orbital.

The filters take the form of projection operators that project the current orbital
onto the closest orbital that fulfills the condition expressed by the filter. Because the
images of the filters are not orthogonal, together the filters are not a projection and
the orbital keeps changing on iteratively applying the filters. Ideally it moves toward
the point where the filter images overlap, i.e., the optimal point where all a priori
requirements are met and that represents the physical orbital. This is illustrated
geometrically in Fig. 6.1. In reality, such a point might not exist, meaning the true
physical orbital cannot be found but only approximated. Moreover, because some
constraint subspaces associated with the filters are nonconvex, the algorithm can
get stuck in a fixed point that only fulfills a subset of the physical constraints (Elser
[29]). The projection onto a concave image might be undefined, as the image can be
orthogonal to the vector from the current orbital at a whole family of points. An
extreme example that illustrates the problem is given by a circular image around a
point that represents the current orbital. If one of the two images is concave, the
algorithm can get stuck around a point where the distance between the two images
has a local maximum.

6.3 Error reduction algorithm

A schematic of the error reduction algorithm is depicted in Fig. 6.2. It is largely
based on the hybrid input-output algorithm (HIO) for phase retrieval developed by
Fienup (Elser [29]; Fienup [34]). The HIO algorithm deals with the problem of re-
covering the phases if only the amplitudes of the Fourier transform of an object are
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Figure 6.1: (Color online) Illustration of the effect of two non-orthogonal filters.
Starting at point x, projection operators P1 and P2 are iteratively applied. The
orbital converges slowly toward the intersection point of the filter images.

known. Such a problem is often encountered in for instance astronomy or crystal-
lography. It works by iteratively Fourier transforming the object to the momentum
domain. In each domain those filters representing physical knowledge about the
orbital are applied that are best expressed in that domain. Most importantly, in
the momentum domain the amplitudes of the Fourier components are set to the
measured values. In the real domain it is used that the object is assumed to have
a tight support. Although for the HIO algorithm nothing has been proven about
the rate of convergence, it has been applied successfully in many different problems
(Elser [29]). Depending on the complexity of the problem, convergence can take
more than 1,000 iterations (see e.g. Marchesini et al. [82]).

The removal of errors from the tomographic reconstruction of a molecular orbital is
not exactly the same as the phase-retrieval problem. Instead of having to retrieve
the phases to the (approximately) exactly known amplitudes in the momentum
domain, we have information about both the amplitudes and phases, but both with
considerable errors. Since we assume that ψ is nonzero only in a relatively small area
around the origin, we have adapted the HIO algorithm to look for variations of both
the amplitudes and phases in the momentum domain with little θ- and k-dependence
that make it fulfill the tight-support requirement in the real domain. In the following
we will explain the different components of the error reduction algorithm as depicted
in Fig. 6.2.

In Fig. 6.2 the circles represent states and the boxes represent operations or filters.
At every iteration n we Fourier transform the orbital ψ to Ψ in the momentum
domain and back, indicated by the boxes labeled ‘FT’ and ‘FT−1’, respectively.
After the momentum-domain filters have been applied to Ψ and the orbital has
been transformed back into the real domain, we label it ψ′. The box labeled ‘norm’
represents the renormalization we perform on ψ′ once every iteration.
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Figure 6.2: (Color online) The iterative error reduction algorithm. Start is at the
top with n = 1. For an explanation of the different components see the text.

6.3.1 Filters

We assume that the orbital is real. Before we use the reconstructed orbital as
input to the error reduction algorithm, we therefore rotate it in the complex domain
to maximize its real density as explained in section 4.2.3. Projection operator Fr

enforces the realness of the position-space orbital by projecting out the imaginary
part as1

(FrΨ)(k1, k2) = 0.5 (Ψ(k1, k2) + Ψ∗(−k1,−k2)) . (6.1)

If we know that we are dealing with a gerade or ungerade orbital, the projection
operators Fe or Fo will enforce this as2

(Fe Ψ)(k1, k2) = Re (Ψ(k1, k2)) , (6.2a)

(Fo Ψ)(k1, k2) = i Im (Ψ(k1, k2)) . (6.2b)

6.3.1.1 Variation limitation

The filter that ensures the limited k- and θ-dependence of the imposed variation is
labeled ‘Fl’. For the first time during iteration n = Nl+1 and then everyNl iterations

1The Fourier transform of a real function f(x, y) satisfies F ∗(−k1,−k2) = F (k1, k2).
2The Fourier transform of a real and symmetric function is purely real. The Fourier transform

of a real and antisymmetric function is purely imaginary.
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the current orbital Ψn is compared with Ψ1. Here Nl ≥ 1 and normally Nl = 1 . . . 10.
Beforehand Ψ1 is smoothened slightly by convolution with a narrow Gaussian labeled
as ‘Diffuse’ in Fig. 6.2. The Gaussian is such that in both dimensions grid points
Ng steps away from the center point have a weight that is 1

100th of the weight of the
center point. If not specified differently, Ng = 5 is used to smoothen out only the
worst spikes in Ψ1.

The first step of Fl is to represent Ψn(k1, k2) − Ψ1(k1, k2) on a (θ, k)-grid as

f(θ, k) = Ψn(k1(θ, k), k2(θ, k)) − Ψ1(k1(θ, k), k2(θ, k)), (6.3)

where k1(θ, k) = k cos θ and k2(θ, k) = −k sin θ. Here θ has the range [0, 2π) and k
has the range [−1.26kmax, 1.26kmax], where kmax is the maximum momentum asso-
ciated with the quantum mechanical cutoff (Lewenstein et al. [71])

Umax = 3.17Up + 1.32Ip. (6.4)

Note that every point on the (k1, k2)-grid is represented twice on the (θ, k)-grid and
therefore the values for negative k are copied from those with positive k. In the
k-direction a cos2-window with a width of 0.2Nk is used, where Nk is the number
of grid points in the k-direction. We choose the number of grid points such that at
k = kmax the variation of the momentum vector is given by τv ∆k1 for both θ and
k. We typically use τv = 0.005–0.025. The increased resolution on the (θ, k)-grid is
necessary because otherwise the coordinate transformation back to the (k1, k2)-grid
at the end of the procedure will introduce errors. For an intensity of 5×1014 W/cm2

at a wavelength of 780 nm this leads for instance to Nθ = 9246 and Nk = 3710 for
τv = 0.01.

Secondly, f(θ, k) is Fourier transformed to reach g(Θ, r). Thirdly, the Fourier com-
ponents of the variation f(θ, k) that are above the set limits are set to 0 as

g(Θ, r) = 0 for |Θ| ≥ τΘ, (6.5a)

g(Θ, r) = 0 for |r| ≥ τr
2π

Lk
, (6.5b)

where Lk is the length of the grid in the k-direction. Here τΘ and τr are the number
of Fourier components that are allowed for the θ- and k-dependence of the imposed
variation. To prevent introducing artificial high-frequency components, in practice
the variation is not limited as abruptly as suggested by Eq. (6.5), but instead cos2-
transitions with widths corresponding to 1

5 th of τΘ and τr are used, respectively.

Fourthly, g(Θ, r) is Fourier transformed back to f(θ, k) and fifthly Ψ′
n(k1, k2) is
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calculated using k =
√

k2
1 + k2

2 and tan θ = −k2
k1

as

Ψ′
n(k1, k2) =







Ψ1(k1, k2) + f(θ, k) for τ2 ≤ k ≤ τ3(

1 − k − τ1
τ2 − τ1

)

Ψn(k1, k2)

+
k − τ1
τ2 − τ1

(Ψ1(k1, k2) + f(θ, k))

for τ1 < k < τ2

k − τ3
τ4 − τ3

Ψn(k1, k2)

+

(

1 − k − τ3
τ4 − τ3

)

(Ψ1(k1, k2) + f(θ, k))
for τ3 < k < τ4

Ψn(k1, k2) for k ≥ τ4 or k ≤ τ1.

(6.6)
Here τ1 < τ2 < τ3 < τ4, Fl is not applied for momenta lower than τ1 or higher than
τ4 and Fl is applied fully for momenta higher than τ2 and lower than τ3. In between
τ1 and τ2 and in between τ3 and τ4 a linear transition is used. Unless specified
otherwise, we use τ1 = 0.1kmax, τ2 = 0.15kmax, τ3 = 0.95kmax, and τ4 = 1.0kmax.

Because the other filters introduce high-frequency components to the orbital, we
finally calculate Fl Ψn(k1, k2) as

Fl Ψn(k1, k2) =







Ψ′
n(k1, k2) for k ≤ τmax − ∆τmax

2

cos2

(
k−(τmax−∆τmax

2 )
∆τmax

π
2

)

for τmax − ∆τmax
2 < k < τmax + ∆τmax

2

0 for k ≥ τmax + ∆τmax
2 .

(6.7)
Here k-components higher than τmax are set to 0 using a cos2-transition with a width
of ∆τmax = 0.1τmax.

Unfortunately, Fl is not a true projection operator in the sense that

Fl(Fl ψn) 6= Fl ψn. (6.8)

This is because of windows associated with τΘ, τr, and τmax that are needed in
a numerical calculation, and to a much lesser extent because of further numerical
errors associated with the forward and backward coordinate transformation. If the
number of grid points on the (θ, k)-grid is significantly reduced the coordinate-
transformation errors start to dominate in the sense that at some point the error in
the orbital increases again. It is probably due to the combined effect of these errors
that best results seem to be obtained using Nl 6= 1 but for instance using Nl = 4.
In the cases we looked at, convergence takes around a couple of hundred iteration
steps.

The exact reasons why applying Fl is necessary are unclear at the moment. As
we will see in section 6.4.1, the algorithm does not function properly without Fl.
However, the bounds on the allowed variation in the form of τΘ and τr are set to
allow hundreds or even thousands of Fourier components of the variation to survive.
Intuitively one would not expect such high bounds if the main reason for applying
Fl was that the reconstructed orbital has an error with limited θ- and k-dependence.
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In a phase-retrieval algorithm, at every iteration the amplitudes are set to the mea-
sured values. For our problem Fl is the only part of the algorithm that inputs the
original orbital at every iteration. Although arbitrarily large variations of the orbital
are allowed if they have limited θ- and k-dependence, an important contribution of
Fl might be that it suppresses some unphysical and unwanted variations induced by
the other filters. In particular, it smoothens out spikes in (θ, k)-space introduced
by the support. If none of the other filters makes the orbital deviate from the in-
put orbital too dramatically in other ways, we can understand that through Fl the
correspondence with the reconstructed orbital is satisfactorily ensured.

6.3.1.2 Support

At every iteration step the limited support of the wave function is enforced in the
real domain by Fn+1 as depicted in Fig. 6.2. Following the HIO algorithm (Fienup
[34]), we do not simply set the wave function to 0 outside the support area, but we
somewhat overcompensate the area outside the support. In formula, the orbital for
the next iteration is given by

ψn+1(r) =

{

ψ′
n(r) for r ∈ S

ψn(r) − βψ′
n(r) for r /∈ S,

(6.9)

where S is the support area. Here β is a relaxation parameter usually chosen between
0.5 and 1.

For the error reduction problem to have a unique solution, the dimensionality of the
constraint subspaces should not be bigger than the dimensionality of the problem.
The dimensionality of the problem is given by the number of grid points of the
grid on which ψ is represented, and the constraint subspace associated with Fn+1

has a dimensionality equal to the size of the support area. The dimensionality
of Fl is not trivial to find, and therefore the exact dimension of the constraints is
unknown, unlike in the phase retrieval problem (Elser [29]). However, it is clear that
S should not be too big with respect to the grid dimensions, i.e., the orbital should
be reconstructed on a large grid. This is referred to as oversampling in the literature
as in crystallography it corresponds to using a higher momentum resolution than
that of the measurement apparatus. The spatial grid we use for the error reduction
algorithm measures 29.76 × 29.76 a.u. and has 190 × 190 grid points, leading to a
spatial resolution of 0.157 × 0.157 a.u.

6.3.2 Shrinkwrap

In an earlier version of the algorithm we chose the support S for the error reduction
algorithm based on a priori considerations to extend 3–5 a.u. in all directions from
the origin. There are three problems with such an approach; firstly, the final orbital
gets influenced heavily by our subjective guess for S, and secondly, the algorithm
has the tendency to ‘fill the space’ offered by the fixed support, leading to featureless
blobs instead of accurate orbitals. Thirdly, ψ tends to adopt the symmetry of S,
making the error reduction of asymmetric orbitals impossible without putting the
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asymmetry in by hand. Therefore we decided to follow the approach introduced by
Chapman to employ a dynamically shrinking support (Chapman et al. [16, 17]). In
our case at every iteration step the support is redetermined to no longer incorporate
areas that are no longer significantly occupied by the orbital.

We consider a reconstructed orbital that is roughly centered at the origin. The
initial support is determined from the autocorrelation of the diffused reconstructed
orbital as {

r ∈ S if |R(r)| ≥ τaRmax

r /∈ S else,
(6.10)

where the autocorrelation R(r) is given by

R(r) =

∫∫

(Fg ψ
∗) (r′) (Fg ψ) (r + r′)d2r′, (6.11)

and Rmax is its maximum amplitude. Here Fg smoothens the wave function by
convoluting it with a Gaussian that has a 1/e-width of 2τg. Normally we use τg = 5
a.u. Furthermore τa is a parameter that we set equal to τa = 0.25 unless specified
otherwise. Numerically we calculate R(r) using the Wiener-Khinchin theorem as
the inverse Fourier transform of the spectral density of the diffused wave function
(Weisstein [133]), i.e.,

R(r) =

∫∫ ∣
∣
∣
∣

∫∫

(Fg ψ) (r′)e−ik·r′d2r′
∣
∣
∣
∣

2

eik·rd2k. (6.12)

At every iteration step, we recalculate the support by looking for grid points that no
longer need to be in the support. To this end we smoothen ψ′

n by applying Fg to it,
i.e., by applying the same smoothening Gaussian as was used for the autocorrelation
function. Then we look for points that can be removed out of the support as

r /∈ S if |ψ′
n(r)| < τs φmax, (6.13)

where φmax is the maximum amplitude of ψ1(r) and τs is a parameter in the range
0.001–0.1.

6.3.3 Error determination

We estimate the error at every iteration step by calculating the difference between
the orbitals after applying the momentum and coordinate domain filters and dividing
that by the fraction of grid points that lies outside the support. This is indicated
by the filter labeled ‘Error’ in Fig. 6.2. In formula,

ǫd =

√
∫∫

|ψn+1(r) − ψ′
n(r)|2 d2r / cs, (6.14)

where we use the normalized version of ψ′
n and cs is the fraction of grid points that

lies outside of the support. In the beginning the support is still very big, leading to
just a very small effect from the Fn+1-filter. In that case ǫd is artificially small and
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this effect is somewhat counterbalanced by the division by cs. Estimating the error
using ǫd is based on the assumption that we are in the optimal point, i.e., closest
to the exact orbital, when the distance between the images of the momentum and
coordinate domain filters is minimal.

If ǫd at the current iteration is smaller than all previous errors, we keep ψn+1 and
the current support. We do not use the orbital and support from the final iteration,
not only because of the reasons mentioned at the end of section 6.3.1.1, but also
because after some time the Shrinkwrap procedure tends to overshrink the support
area (Chapman et al. [17]). The algorithm is stopped if the best error has not been
improved in 200 iterations, or after a smaller number for initial scans and the like.
The final orbital ψf is obtained by setting the orbital equal to 0 outside the best
support using the support filter Fs as

ψf(r) = Fs ψn+1(r) =

{

ψn+1(r) for r ∈ S

0 for r /∈ S.
(6.15)

In addition to the Fn+1-filter, also Fl has very limited effect in its first applications
because we are still close to ψ1. Therefore we accept a low error as the best error
only if it occurs in an iteration for which n ≥ Nl + 4. Of course only iterations
during which Fl was applied are considered for the final orbital.

In our simulations, we can also calculate the exact error of the optimized orbital
by comparing it with the exact orbital. This information cannot be used by the
optimization algorithm, as it would amount to ‘cheating’. However, it can be used
to assess the performance of the error reduction algorithm. In formula, we define
the exact error ǫe as

ǫe =

√
√
√
√

∫∫

S

|ψn+1(r) − ψ0(r)|2 d2r, (6.16)

where ψ0(r) is the exact bound state orbital. The integration is over the support
area, as the orbital is assumed to be localized in this region by the algorithm.

6.3.4 Optimization

To automatically search for the optimal set of parameters (Nl, β, τΘ, τr, τmax, Ng,
τg, τs) that minimizes the error, we have employed a primitive gradient approach.
We try both multiplying and dividing each of the parameters by 1 + δ, where δ is
a parameter that is initially set to δ = 0.5. If the error is found to decrease, the
gradient is calculated for moving in this direction. The parameters Nl and Ng are set
to the closest integer to the value suggested by the δ-variation that is different from
the old value. The algorithm then moves in the direction of the steepest gradient;
the variable gets multiplied or divided by 1 + 2nδδ, where nδ is either 0, 1 or 2
depending on what gives rise to the lowest absolute error.

Every time no parameter variation can be found that gives rise to a negative gradient,
δ is reduced by a factor 5. Once a negative gradient is found, δ is restored to its
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original value of δ = 0.5. If δ < 0.003 and no significant improvement can be found
anymore, the algorithm is stopped. Experience has shown it is needed to put an
artificial bound on some of the parameters or otherwise the algorithm will converge
to nonphysical solutions. The bounds we use are 0.5 ≤ β ≤ 1, τΘ and τr can be up
to one-third times the number of Fourier components represented on the grid, Ng is
not allowed to increase beyond the original value, τg ≤ 5, and τmax is not allowed to
increase by more than 10% with respect to the original value.

6.3.5 RAAR

As an alternative to HIO algorithm, the relaxed averaged alternating reflection
(RAAR) algorithm was introduced in 2005 for the phase retrieval problem (Luke
[74]). It is distinct in several points from the HIO algorithm. Since it uses the
nonnegativity of the object present in the typical phase retrieval problem, but that
is not generally a characteristic of a molecular orbital, we can not implement the
RAAR algorithm directly.

In the RAAR-version of our algorithm, two changes are made with respect to what
was presented before. Firstly, Fn+1 (Eq. (6.9)) is replaced by

ψn+1(r) =

{

ψ′
n(r) for r ∈ S

βψn(r) + (1 − 2β)ψ′
n(r) for r /∈ S.

(6.17)

Here we assumed there is a sign error in Eq. (14) of (Luke [74]). Secondly, at each
iteration the support is not calculated using Eq. (6.13), but instead a grid point is
considered to lie outside of the support if the momentum-domain filters increases
the amplitude of the object at the point by more than a factor of 2. In formula,

r /∈ S if

∣
∣
∣
∣

ψn(r)

ψ′
n(r)

∣
∣
∣
∣
< 0.5. (6.18)

An aspect of the RAAR algorithm that was not implemented is a nonconstant β
that increases from β = 0.75 to β = 1 during the iteration process. We feel that
such a behavior is not needed for our problem because of the much lower number
of iteration steps. Similarly, it has been reported that the best results for the phase
retrieval problem are obtained when the parameters and/ or algorithms are varied
during the iteration process (see e.g. Chapman et al. [17]; Fienup [34]). We have not
tested such an approach yet.

6.4 Post-processing results

The error reduction parameters used for the reconstructions presented in this section
were all derived using the procedure outlined in section 6.3.4. For every orbital we
started with the parameters Nl = 4, β = 1, τΘ = 100, τr = 100, τmax = kmax,
Ng = 5, τg = 5, and τs = 0.01. For the optimization of the parameters we used a
resolution of τv = 0.01, and for the final runs we used τv = 0.005. This means that we
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Figure 6.3: (Color online) Tomographic reconstruction of the ground state of 2D
HeH2+. From left to right the exact orbital, the real part of the reconstructed
orbital using velocity-form reconstruction and the same orbital after postprocessing
by the error reduction algorithm are shown.

did not manually tweak the algorithm for each of the orbitals. The only information
that we put in the algorithm about the orbitals was their symmetry. Therefore a
slightly more sophisticated algorithm would not need any extra information about
the orbitals at all.

This section contains a lot of density plots. Just as for chapter 4, we ask the reader
to view these in the color version of this thesis.

6.4.1 Helium-hydrogen cation

Firstly we consider the ground state of 2D softcore HeH2+ with R = 2.5 a.u., i.e.,
the same molecule as was considered in section 4.5.1. To set the ionization potential
to 30.2 eV we use a2 = 2.56801. The reference atom has Z = 3 a.u. and a2 =
3.33548. The laser intensity for the tomographic reconstruction is 3 × 1014 W/cm2

at a wavelength of 780 nm, and we used a three-cycle sin2-pulse with φCEP = 1.25π.
The optimization procedure kept Nl, β, Ng = 5, and τg = 5 constant. Furthermore,
τΘ was set to 1310, τr was set to 432, τmax was set to 2.89 a.u., and τs was set
to 0.0102. For τΘ and τmax this is equal to the maximum allowed. The results of
the tomographic reconstruction and the postprocessing can be found in Fig. 6.3.
We observe that the error reduction algorithm not only makes the reconstructed
orbital go to 0 smoothly far away from the origin, but also in the inner region the
postprocessed orbital corresponds better with the exact orbital. From a quadratic
fit around the maximum value of the orbital at y = 0 the postprocessed orbital has
its maximum at x = 0.57 compared with x = 0.53 for the reconstructed orbital and
x = 0.74 for the exact orbital. Combined with the longer extension of the orbital for
x < 0 the postprocessed orbital recovers the asymmetry of the exact orbital better
and also the overall size of the orbital matches that of the exact orbital better.

In Fig. 6.4 we plot the results of runs of three adapted versions of the error reduction
algorithm. On the left the output of the RAAR algorithm is shown. With respect
to the Shrinkwrap algorithm presented in Fig. 6.3, for the RAAR algorithm τΘ was
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Figure 6.4: (Color online) Tomographic reconstruction of the ground state of 2D
HeH2+. From left to right the real part of the velocity-form reconstructed orbital
after postprocessing using the RAAR algorithm, using the Shrinkwrap algorithm
(same as Fig. 6.3) but without τΘ and τr, and using the Shrinkwrap algorithm but
with τmax → 2τmax are shown.

set to 225 and τr was set to 307 as indicated by the optimization procedure. The
postprocessed RAAR orbital is of bad quality, and we conclude that the RAAR
algorithm as we implemented it does not seem to work for the current problem. The
reason is probably more related to the way of determining the support than to the
exact way in which the support is enforced in the algorithm.

The middle and right plots in Fig. 6.4 are the Shrinkwrap algorithm of the right plot
in Fig. 6.3, but with changes in the parameters. For the middle plot τΘ and τr were
not enforced. We observe that the resulting orbital looses the egg-like shape of the
exact orbital, but instead becomes round and a lot more symmetric. Although the
values of τΘ = 1310 and τr = 432 seem very high and one might think that such high
values have no significance, these limits are clearly necessary to recover the character
of the exact orbital. For the right plot in Fig. 6.4 we doubled the value of τmax to
τmax = 5.78 a.u. This has a devastating effect on the postprocessed orbital and we
conclude that it’s very important that the high-frequency components introduced
mainly by enforcing the support area are properly removed. Also one should realize
that beyond the harmonic cutoff Fl cannot be applied anymore.

6.4.1.1 Convergence

In Fig. 6.5 we plot the convergence of the algorithm for the case of Fig. 6.3 as
indicated by the error ǫd. We only plot those iterations during which Fl is applied.
The algorithm performed 505 iterations, and the best orbital was obtained after 305
iterations (indicated by the vertical line). In the first few steps the convergence is
very fast. Later on the convergence is a lot slower, and regularly the error even
temporarily increases slightly. Just before the best error is found, one more big step
is made. Afterwards no more progress is made but the error increases slowly because
of the reasons mentioned in section 6.3.3. Also indicated is the size of the support
area, i.e., the number of grid points it contains. We can see the support shrink
gradually throughout the iterations until slightly before the best error is obtained,
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Figure 6.5: (Color online) The error measure ǫd (black solid line), exact error ǫe
(blue dotted line), and the number of grid points inside the support (red dashed
line) as a function of iteration n. For ǫd and ǫe only iterations during which Fl is
applied are shown. The vertical line indicates the iteration at which the final orbital
is determined. For clarity ǫe was multiplied with 0.5.

and then the support size remains constant.

The curve of the exact error ǫe in Fig. 6.5 shows that the algorithm successfully
reduces the overall error in the reconstructed orbital. It also suggests that the best
orbital is not reached after 305 iterations, but after around 475 iterations. From
a visual inspection of the orbitals we conclude that the orbital in iteration 305 is
closer to the exact orbital than the orbital in iteration 477, as the latter has grown
too big in the y-direction (not shown). This illustrates the difficulty in finding the
right point to stop the algorithm. Furthermore it shows that a minimum in ǫe not
necessarily corresponds to best recovery of the orbital from a naked-eye point of
view.

To give some insight into how the algorithm works, in the bottom row Fig. 6.6 we
plot ψ′

n at different points in the procedure. In the top row of the same figure the
initial support area and the support during two later points in the procedure are
shown. At every iteration step, Fl introduces significant density mostly inside the
current support area. If we look carefully, some density outside the current support
can be observed for low n though. This shows that during the procedure the orbital
changes slowly toward a solution while at the same time the set of solutions becomes
smaller because of the shrinking support.

6.4.2 Hydrogen molecular cation

In this subsection we consider 2D softcore H+
2 with R = 2 a.u., i.e., the same molecule

that we occupied ourselves with through most of chapter 3. The reference atom has
Z = 2 and a2 = 0.920747 and therefore also Ip = 30.2 eV. The laser parameters



152 Chapter 6 Post-processing reconstructions

-8
-6
-4
-2
 0
 2
 4
 6
 8

 0

 1

-8
-6
-4
-2
 0
 2
 4
 6
 8

-8 -6 -4 -2  0  2  4  6  8 -8 -6 -4 -2  0  2  4  6  8 -8 -6 -4 -2  0  2  4  6  8

-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

x (a.u.)x (a.u.)x (a.u.)

y
(a

.u
.)

y
(a

.u
.)

Figure 6.6: (Color online) Bottom row: from left to right ψ′
n at n = 5, n = 13, and

n = 305. Top row: from left to right support area at n = 1, n = 13, and n = 305.
Here the red (grey) area labeled ‘1’ represents the support.

are the same as in section 6.4.1 except for the laser intensity, which equals 5× 1014

W/cm2 here. Firstly, we will consider the ground state. In Fig. 6.7 the results of
a tomographic reconstruction and its postprocessing can be found. With respect
to section 6.4.1 the following parameters were set differently by the optimization
procedure: Nl = 5, τΘ = 1541, τr = 618, τmax = 3.40 a.u., and τs = 0.033132. Here
both τΘ and τr are set to the maximum value allowed. The postprocessing removes
the errors at large r, but also the orbital itself appears slightly less longitudinal
and therefore more accurately reconstructed. This is just a small effect as the
reconstruction was already of very good quality.

Secondly and lastly we consider the first excited state. We change the softcore
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Figure 6.7: (Color online) Same as Fig. 6.3 for the ground state of 2D H+
2 .
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Figure 6.8: (Color online) Same as Fig. 6.3 for the first excited state of 2D H+
2 .

parameter to a2 = 0.06811 in order to keep Ip at the same energy. The same
reference state and the same laser pulse are used. The results of the tomographic
simulation and the postprocessing can be found in Fig. 6.8. Instead of the previous
parameters, now Nl = 6, τΘ = 1504 and τs = 0.0102 are used, while all other
parameters retain their value. We observe that the postprocessed orbital resembles
the exact orbital better than the reconstructed orbital. Not only because some
erroneous density further away from the origin has been removed, but also because
the lobes extend further away from the origin in the x-direction, although not as far
as for the exact orbital.
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Chapter 7

Conclusion and outlook

In this chapter we summarize briefly the main conclusions of this thesis and give an
outlook to future work. The main subject of this thesis is the relationship between
molecular properties of simple molecules on one side, and their response to strong
laser fields on the other side. We solve the time-dependent Schrödinger equation
numerically to find the single-molecule response. Propagation and multi-electron
effects are neglected throughout this thesis, i.e., we consider only the response of a
single electron from a single molecule. We employ simple models to retrieve molec-
ular characteristics from strong-field spectra.

By limiting ourselves to simple molecular models, a thorough understanding of the
strong-field response is possible. This allows us to investigate single-particle and
single-electron molecular imaging in great detail. The results are useful when in-
terpreting molecular imaging results of more complicated molecules in experiments.
We give special attention to the molecular orbital tomographic scheme, which can
be used to image electronic orbitals using high-harmonic generation (HHG) (Itatani
et al. [52]). Using theoretical analysis and semi-classical calculations involving the
strong-field approximation (SFA), we provide the experimentalist with several en-
hancements to the scheme.

Molecular structure in high-harmonic generation

When a Gaussian wave packet collides with an aligned H+
2 -molecule, the result-

ing harmonic spectrum has a structural minimum from the two-center interference
between the two lobes of the orbital. The position of this minimum points to an
effective plane-wave momentum that transitions from the Ip-corrected k(ω) =

√
2ω

at low harmonics to the SFA-based k(ω) =
√

2(ω − Ip) at high harmonics. A laser-
induced HHG spectrum shows the same behavior if only a single electronic trajectory
is taken into account, as is the case for a typical experimental setup. This justifies
using HHG for molecular imaging as the laser field has no significant effect on the
amplitude of the recombination matrix element. When a single set of short and long
electron trajectories contributes to the spectrum, the interference between the two
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trajectories causes a large but regular oscillation around the general trend. Intro-
ducing more and longer trajectories by using longer pulses has the effect of averaging
out the oscillations to a smaller scattering around the Gaussian wave packet result
and leads to a smoother interference minimum as a function of θ.

Our results show that the effect of the Coulomb potential can lead to significant ellip-
ticity of the emitted radiation. At the interference minimum, the main polarization
angle makes a π-jump and the ellipticity goes through zero. The Coulomb effects
are less important at higher harmonics. Therefore we observe less overall ellipticity
and a sharper jump in the polarization direction at the high end of the spectrum.
We have shown that the two-center minimum is also visible in the emission time of
the harmonics.

In a numerical calculation of a HHG spectrum the harmonic phases are retrieved
with a rapidly oscillating time-translation phase superimposed on them. We have
shown that when one removes this extra phase, the harmonic phase from a numerical
calculation reveals the physics behind the generation process. The phase difference
between two nearly degenerate state can be used to show that the continuum wave
packet inherits the phase of the ionizing lobe upon ionization.

Tomographic reconstruction

It was demonstrated that one can use the HHG spectrum for different orientations of
the molecule in the laser field combined with the HHG spectrum of a reference atom
to reconstruct a molecular orbital (Itatani et al. [52]). We show that a necessary
condition for accurate tomographic reconstruction of arbitrary molecular orbitals is
that all recombining electrons return from the same direction. This can be achieved
by using extremely short phase-stabilized laser pulses. Because of the exponential
dependence of the tunnelling rate on the field amplitude, the choice of envelope
shape is not very critical. A carrier-envelope phase of 0.25π rad seems to be optimal
for either two- or three-cycle pulses. We present results from numerical simulations
of the experiment for different molecular models. We introduce a velocity form for
the reconstruction equation that recovers the internuclear distance more reliable
than the conventional length-form formulation. The length-form reconstruction is
associated with errors along the nodal planes of antisymmetric molecules and in
asymmetric molecules. We have not found any method to remove these errors.

SFA calculations

The Lewenstein model is a quantum-mechanical model for the HHG process that
employs the SFA. The HHG yield in the Lewenstein model can be expressed using
a sum over electronic trajectories by performing the integrals over momentum and
the birth and recombination times using the saddle-point method. We expand the
resulting complex times from real-valued classical times. This allows us to calculate
the contributions from individual trajectories to the full spectrum. We perform a
similar calculation for the above-threshold ionization (ATI) spectrum also. We have
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used this information to improve the characterization of the suitability of a pulse
for conventional molecular tomography.

HHG-ATI correspondence

From the SFA calculation we also find that peaks from the HHG spectrum can be
related to peaks in the ATI spectrum when extremely short pulses are used. The
peaks are related through the common birth time of their dominant trajectories. We
characterize the link between a HHG frequency and ATI momentum through the
relative contributions of the relevant trajectories. We demonstrate the correspon-
dence between HHG and ATI in 1D simulations. Because the plane-wave approxi-
mation for the returning electron does not seem to work well in 1D, we expect the
correspondence between HHG and ATI to be stronger from 2D or 3D simulations
or experiments. Performing 2D or 3D simulations for HHG and ATI to test this
hypothesis will be an interesting future topic.

We propose a method to improve the tomographic reconstruction—that is so far
based solely on HHG—by incorporating also ATI electrons into the reconstruction.
The intensity of the ATI spectrum as a function of molecular orientation in the laser
field can be used to improve the characterization of the continuum wave packet in
the tomographic reconstruction scheme. Because molecular tomography does not
function well in 1D, we have not been able to seriously test the method yet. At the
moment lasers in the far-IR regime around 2000 nm are becoming available. There
is also significant progress in the field of laser pulse shaping and laser pulses with a
few optical cycles are becoming available. A combination of these techniques can be
used to design pulses that are better suited for molecular tomography. Furthermore
we believe that without much extra effort to the experimentalist the tomographic
reconstruction can be moderately improved by using ATI electrons if one employs a
suitable laser pulse.

Postprocessing

We have shown that it is possible to improve the tomographic reconstruction of
a molecular orbital using a postprocessing algorithm. Filters that represent basic
physical knowledge about the orbital or the reconstruction scheme are applied iter-
atively in the real and Fourier domain. In the real domain we use that the orbital
is localized around the origin and in the Fourier domain we limit the variation from
the input orbital. In the ideal case the algorithm converges to the exact orbital. We
have shown that the algorithm recovers some of the features of a 2D HeH2+ cation
and other molecules.
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Future of molecular tomography

The future of the molecular tomographic scheme is unclear at the moment. So far
experimentally the scheme has been proven to work for N2 only. However, no experi-
ments have been reported where laser wavelengths longer than that of a Ti:Sapphire
laser were employed. Theoretically there should be a significant improvement from
longer wavelengths, both from the increased harmonic range available and the asso-
ciated better performance of the plane-wave approximation at high electron energies.
Furthermore, additional methods to improve the reconstruction, such as the tech-
nique based on ATI electrons and the postprocessing proposed in this thesis, are
being developed at the moment. The long-term goal of a molecular movie showing
the full electronic wave function of the contributing electron(s) during a chemical
reaction is still far away, but might be reached sooner than we think.
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Numerics

A.1 TDSE solver

We wish to solve the time-dependent Schrödinger equation Eq. (2.1a) numerically.
At t = 0 we start with an initial state ψ(r, 0), and we propagate the wave packet in
time till t = Tprop. The evolution of the wave packet is given by

ψ(r, t) = Γ
(

e−i
R t
0

Ĥ(t′)dt′
)

ψ(r, 0), (A.1)

where the time-ordering operator Γ is needed because the Hamiltonian does not
commute with itself at a different time. For a small time step ∆t for which we take
the Hamiltonian to be time-independent, this reduces to

ψ(r, t + ∆t) = e−iĤ∆tψ(r, t). (A.2)

We split the Hamiltonian Ĥ as

Ĥ = T̂ + V̂ , (A.3)

where T̂ is the momentum-dependent and V̂ the space-dependent part. For ease,
accuracy and mostly numerical speed, we would like to operate T̂ on the wave
function in momentum space, and V̂ on the wave function in coordinate space.
Because T̂ and V̂ do not commute we cannot apply them sequentially for arbitrarily
large ∆t. Instead, we use the Baker-Campbell-Hausdorff formula1 to approximate
the propagator in Eq. (A.2) using the split-operator method (Feit et al. [31]; Fleck
et al. [35]) as

e−iĤ∆t = e−i V̂
2

∆te−iT̂∆te−i V̂
2

∆t + O(∆t3). (A.4)

In between applying e−i V̂
2

∆t and e−iT̂∆t we (inverse) Fourier transform the wave
packet so that we can apply the respective operators in their own space, i.e., we

1The Baker-Campbell-Hausdorff formula for two noncommuting A, B reads

eAeB = eA+B+
1
2
[A,B]+higher order commutators,

where the commutator [A, B] = AB − BA.
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avoid having to calculate gradients numerically. For the Fourier transforms we use
the FFTw package (Frigo and Johnson [37]).

For the laser-induced HHG calculations the propagation time equals Tprop = Nprop T ,
where T is the laser period and Nprop is the number of laser cycles that we propagate
the system. We choose Nprop = Ncycles + 2, where Ncycles is the number of cycles in
the laser pulse. For the laser-free collisions of section 3.1, we propagate the system
for the duration of one optical cycle of a 780-nm laser.

Normally we set the initial state ψ(r, 0) equal to a bound state ψ(r, 0) = ψ0(r). For
the laser-free results of section 3.1, the initial state is set equal to a bound state
plus a Gaussian wave packet. We obtain the bound states by propagating a random
initial state in imaginary time using the laser-field free Hamiltonian Ĥ0 (Kosloff and

Tal-Ezer [57]). Replacing ∆t by −i∆τ , the evolution operator becomes e−Ĥ0 ∆τ . So
how can we find a bound state using this operator? Expand the wave packet as

ψ(r, τ) =
∑

j

aj(τ)φj(r), (A.5)

where the aj(τ) are complex coefficients of the φj(r). The φj(r) form a complete
set of eigenstates of the Hamiltonian Ĥ0 with eigenenergies Ej. Now applying the
imaginary-time propagator we obtain

e−Ĥ0 ∆τψ(r, τ) =
∑

j

aj(τ)e
−Ej ∆τφj(r). (A.6)

This shows that eigenstates with energies higher than the ground state energy E0

are exponentially suppressed.

The norm of the probability density is not conserved because the imaginary-time
propagator is not unitary. After each imaginary-time step the norm is given by

N(τ + ∆τ) =

∫∫ ∣
∣
∣e−Ĥ0 ∆τψ(r, τ)

∣
∣
∣

2
d2r =

∑

j

|aj(τ)|2 e−2Ej ∆τ , (A.7)

where we used the orthonormality of the φj(r). We renormalize the density to 1
after each imaginary-time step, such that

ψ(r, τ + ∆τ) =

∑

j aj(τ)e
−Ej ∆τφj(r)

√
∑

j |aj(τ)|2 e−2Ej ∆τ
. (A.8)

As long as ψ(r, τ) 6= φ0(r), but there is some contribution from the ground state
in ψ(r, τ) (0 < |a0(τ)| < 1), after each imaginary-time step we can write for the
coefficient of the ground state

|a0(τ + ∆τ)|2 =
|a0(τ)|2 e−2E0 ∆τ

∑

j |aj(τ)|2 e−2Ej ∆τ
>

|a0(τ)|2
∑

j |aj(τ)|2
= |a0(τ)|2 . (A.9)

Since |a0(τ + ∆τ)| increases every imaginary-time step, |a0(τ)| approaches 1 for
τ → ∞. In words, if we propagate long enough in imaginary time, the initial state



A.1 TDSE solver 161

will transform into the ground state. Theoretically, to obtain the ground state
there should be some contribution of the ground state already in the initial state.
Numerical errors can actually help here as they add a small fraction of all eigenstates
to ψ(x, τ) at each propagation step because of their random nature. The initial state
is chosen completely randomly in our calculations, i.e., the value at every grid point
is given by a random number.

Assuming that we have found the ground state, i.e., |a0(τ)| = 1 and |ak(τ)| = 0 for
k > 0, the norm of the density after one propagation step is given by

N = e−2E0 ∆τ . (A.10)

We can invert this to obtain the ground state energy E0 from the norm of the
probability density after one propagation step as

E0 = − 1

2∆τ
lnN. (A.11)

Excited states can be obtained in either of two ways. Firstly, if the symmetry of the
excited state is known and different from all states lower in energy, we can obtain
the excited state by enforcing the symmetry at every propagation step. Also the
symmetry can be helpful in separating (almost) degenerate states and to increase
the numerical convergence and stability significantly for such systems. Therefore the
almost degenerate states discussed in section 3.3 were obtained by taking advantage
of their respective symmetries. Secondly, in general excited states can always be
found by first finding the lower states one by one and then projecting these out
during every propagation step. For example, to find the second excited state, we
perform one run to find the ground state, then start again with a random initial
state while projecting out the ground state at every time step, and then a final run
where both the ground state and the first excited state are projected out at every
time step. Projecting out a bound state is done according to the prescription

cj = 〈φj(r)|ψ(r, τ)〉, (A.12a)

ψ(r, τ) → ψ′(r, τ) = ψ(r, τ) − cj φj(r), (A.12b)

where the complex conjugation guarantees that the prescription also works if the
bound state is present in the wave packet with a complex global phase.

To increase the speed of conversion in finding bound states, we start the propagation
with a relative big imaginary-time step equal to ∆τ = 5 a.u. Once the wave packet
is converged, we reduce ∆τ to continue the search using increased accuracy. We
consider the bound state found if the wave packet is converged and ∆τ < 10−5 a.u.
If the wave packet does not converge to the ground state, which can happen for large
∆τ , we repeat the procedure using a smaller ∆τ .

The interaction between the electron and the laser can be described in either length
or velocity gauge in the Hamiltonian. All Hamiltonians in this thesis presented
so far—including e.g. Eq. (2.1b)—are written in length gauge because in length
gauge the interaction with the laser takes a more intuitive form. In velocity gauge
Eq. (2.1b) takes the form

Ĥ =
(p̂ + A(t))2

2
+ V (r), (A.13)
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where A(t) is the vector potential of the laser, A(t) = −
∫ t
−∞ E(t′)dt′. Most of

the numerical results presented in this thesis were calculated in velocity gauge.
Physically the choice of gauge should not matter and we confirmed that this is
the case for the numerical results presented in this thesis.

For the 2D calculations we performed for a wavelength of 780–800 nm we propagated
the system for two more laser periods after the laser pulse. Some electrons might
return to the nucleus after the laser pulse is already over. Furthermore, the temporal
window would influence the HHG spectrum too much for extremely short pulses
otherwise. For the 1D calculations (up to a wavelength of 2000 nm) we additionally
inserted two extra laser periods before the start of the laser pulse into 〈α(t)〉. This
has the effect of shifting the recombinations more towards the middle of 〈α(t)〉,
thereby further reducing the influence of the temporal window.

A.1.1 Gaussian-wave-packet grid

In this section we describe how we select the parameters of the Gaussian-wave-
packet calculations. For convenience, we copy here the definition of the Gaussian
wave packet from Eq. (3.1b)

ψG(r) =
√
C

√
cxcy
π

e
− 1

2

“

c2x(x−Lx
4 )

2
+c2yy2

”

+ik0x
, (A.14)

where cx, cy are the momentum spread of the wave packet in the x, y-directions and
k0 < 0 is the central momentum in the x-direction. The grid measures Lx ×Ly a.u.
and ψG(r) is centered at (x0 = Lx/4, 0) whereas the bound state is located at the
origin. As described in section 3.1, we pick a parameter rk that sets the momentum
spread of the wave packet in the orthogonal direction as cy = rk|k0| to set one of the
physically most relevant characteristics of the Gaussian wave packet. Furthermore
we pick a laser intensity and wavelength that we want to compare the Gaussian
wave packet with. We parameterize the Gaussian wave packet in terms of the Up

of this laser pulse. The other parameters are mostly set to guarantee the numerical
accuracy of the calculation by limiting the size of the wave packet both in coordinate
and momentum space, thereby preventing reflections at the boundaries. In addition,
by limiting the frequency range of the Gaussian wave packet around the harmonic
cutoff of a laser pulse with Up, we can use the same spatial and temporal resolutions
for the Gaussian-wave-packet calculation as for the corresponding HHG calculation.
The other parameters are given by

kmax =
√

2(3.17Up), (A.15a)

e−rx =

∣
∣
∣
∣

ψG(Lx/2, 0)

ψG(Lx/4, 0)

∣
∣
∣
∣
, e−ry =

∣
∣
∣
∣

ψG(Lx/4, Ly/2)

ψG(Lx/4, 0)

∣
∣
∣
∣
, (A.15b)

e−ru =

∣
∣
∣
∣
∣

ψ̂G(−kmax, 0)

ψ̂G(k0, 0)

∣
∣
∣
∣
∣
, e−rd =

∣
∣
∣
∣
∣

ψ̂G(0, 0)

ψ̂G(k0, 0)

∣
∣
∣
∣
∣
, (A.15c)

where ψ̂G(kx, ky) is the Fourier transform of ψG(x, y).
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If we take into account that the propagation time Tprop must be chosen such that a
classical particle with momentum k0 moves from (Lx/4, 0) to (−Lx/4, 0) during the
propagation as explained in section 3.1, the solution of Eq. (A.15) for k0, cx, Lx, Ly

and Tprop is given by

k0 = − kmax

1 +
√

ru
rd

, cx =
kmax√

2rd +
√

2ru
, (A.16a)

Lx =
4
√

2
√
rx

cx
, Ly =

4
√

2
√
ry

cy
, (A.16b)

Tprop =
Lx

2 |k0|
. (A.16c)

We use rx = ry = rd = 10 and ru = 2 for the calculations presented in this thesis.
An additional requirement for Tprop is that it is given by Nprop T , where Nprop is an
integer and T is the duration of one optical cycle of the equivalent laser pulse, such
that the numerical energy data points lie on top of the harmonics of the equivalent
laser pulse. That means that Tprop as prescribed by Eq. (A.16c) is extended to
fulfill Tprop = Nprop T . To keep the collision at the middle of the propagation,
Lx is then multiplied with the same factor. Also Lx, Ly are always set to at least
80 a.u. Therefore rx, ry should be considered minimum requirements, not absolute
prescriptions.

For simulated laser parameters of I = 5 × 1014 W/cm2 and λ = 780 nm and using
rk = 0.01, the grid dimensions are Lx = 383 a.u. and Ly = 1006 a.u. (the example in
section 3.1). The spatial resolutions and grid characteristics such as the absorbing
boundary are in line with what is prescribed for general HHG calculations in sec-
tion A.1.2. For the above example we use 2304 × 6144 grid points, and the spatial
resolution is 0.16–0.17 a.u. in both spatial dimensions.

A.1.2 Spatial grid in HHG calculations

The spatial grid needs to be big enough to represent all electrons that can play a
role in the harmonic generation process. Solving the classical equations of motion
Eq. (2.7) shows that classically the largest distance an electron can travel before
returning to the core in a cw laser is ±2α, where α = E0/ω

2 and E0 is the amplitude
of laser electric field. If we consider a laser pulse with a finite length the envelope will
reduce the effective amplitude of the electric field and the electron will stay closer
to the core region before recombining. For the linearly polarized pulses considered
in this thesis we adopt a spatial grid that covers Lx = 8α in the laser polarization
direction. The 2D calculation uses Ly = 0.3Lx in the orthogonal y-direction.

At every edge of the grid, 10% of the grid length in that dimension is used for an
absorbing sin2-boundary. The purpose of the boundary is to absorb electron density
moving outside the grid. The density moving outside the grid needs to be absorbed
because technically a discretized grid is closed, i.e., density crossing the grid edge
reappears at the opposing edge. The density at the edge cannot be removed too
suddenly as that leads to artificial reflections. The effect of applying the absorbing
boundary during the propagation is visualized in section A.1.4.
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Unless mentioned otherwise, for all numerical calculations presented in this thesis
we use spatial step sizes in the range [0.15, 0.20] a.u. in each spatial dimension.
This way the obtained spectra can be considered converged. In the past molecular
characteristics were successfully calculated using significantly lower resolutions (see
e.g. Lein et al. [67]), but modern day computers allow us to be on the safe side. For
the typical case of a 2D calculation for λ = 780 nm at an intensity of I = 5 × 1014

W/cm2 this then leads to a grid measuring 279.8 × 84.0 a.u. with 1536 × 512 grid
points.

A.1.3 Spatial grid in ATI calculations

For combined HHG+ATI calculations, we keep the grid resolution identical to that
used for a pure HHG calculation. However, the grid has to be lot larger since it
has also hold electrons whose trajectories never return to the origin. For the tomo-
graphic procedure only direct ATI electrons are used, which means that classically
the maximum kinetic energy we need to take into account is Emax = 2Up. If we want
to calculate the full ATI spectrum, also rescattering electrons with classical energies
up to Emax = 10Up need to be considered. In formulas, in the laser polarization
direction the grid needs to have the dimension

Lx = 2NpropTvmax, (A.17a)

vmax = 1.2
√

2Emax = 1.2
√

2NUpUp, (A.17b)

where NUp is a parameter that determines the highest kinetic energy the grid can
hold in multiples of Up. The factor 1.2 in Eq. (A.17b) represents the absorbing
boundaries. The factor 2 in Eq. (A.17a) comes from the fact that the electron
can travel the maximum distance in either direction. Especially for short pulses
Eq. (A.17) overestimates the required grid dimension as we assumed that the elec-
trons leave the nucleus at t = 0. To take into account quantum-mechanical effects,
for direct electrons we use NUp = 3 and for rescattering electrons we use NUp = 15.

In an atom the maximum ATI energy is given by 10Up. Only for a molecule that
contains an internuclear distance comparable to the electron excursion length (35
a.u. for a pulse with 780-nm wavelength at 5 × 1014 W/cm2), the cutoff energy is
significantly higher (Chirilă and Lein [21]). For NUp = 15 the absorbing boundary
has practically no effect anymore as after the propagation virtually all density is still
represented on the grid. As an example, for a three-cycle laser pulse (Nprop = 5) with
λ = 2000 nm and I = 2×1014 W/cm2 we use Lx = 13432 a.u. for direct electrons and
Lx = 30034 a.u. if we want to calculate the full ATI spectrum including rescattering
electrons. For this we use 81920 and 179200 gridpoints, respectively.

A.1.4 Time step HHG calculations

The time step ∆t is chosen such that the evolution operator e−i E ∆t is close to unity
for all energies E that we expect to occur during the propagation. For example, for
the case of 780 nm and 5 × 1014 W/cm2 we choose a minimum of 2000 time steps
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Figure A.1: (Color online) Effect of the absorbing boundary in the classically for-
bidden region. Nmask = 1 (green line with crosses), Nmask = 8 (black solid line) and
Nmask = 40 (red line with plusses).

per laser cycle. For the 1D calculations we use significantly smaller time steps, as
explained in the next paragraphs.

Every Nmask time steps the absorbing boundary is applied. If the system is such that
the boundary absorbs some density, this creates artefacts at multiples of the angular
frequency with which the boundary is applied, i.e., at multiples of 2π

∆t/Nmask. This
is illustrated in Fig. A.1. This plot was created from 1D solutions of the TDSE for
a 3-cycle sin2-pulse with φ = 1.25π and 780 nm and 5× 1014 W/cm2. The molecule
was 1D H+

2 with Z1 = Z2 = 0.7309 and a2 = 0.5 such that Ip = 30.2 eV. The number
of time steps per laser cycle was 8000. The artefacts at multiples of harmonic 200
for Nmask = 40 in Fig. A.1 are therefore expected.

The choice of Nmask seems to affect the region beyond the cutoff in a pure HHG
calculation. In particular, setting Nmask too low can cause the HHG spectrum
to fall off less well right after the cutoff. This can be seen clearly from Fig. A.1
by considering the Nmask = 1-case. Therefore, care should be taken when selecting
Nmask if one is interested in obtaining the cleanest numerical spectrum. Particularly,
one should not forget to increase Nmask if the time resolution is increased.

A.1.5 Time step ATI calculations

For numerical ATI calculations on a simple grid as used by us, a higher time res-
olution is needed than for numerical pure HHG calculations. The grid also needs
to be much larger. The reason is that we need to represent and propagate very
fast electrons that do not contribute to HHG, but contribute to the ATI spectrum.
These electrons are absorbed by the boundary on a pure HHG grid. Therefore the
time resolution is chosen such that also these very fast electrons are properly propa-
gated. One requirement we set is that rescattering ATI electrons with energies up to
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10Up (see section 2.2.2) are still correctly propagated. Here we ignore internuclear-
distance effects (see the discussion below Eq. (5.4)). The second requirement is that
no artifacts with the frequency of the inverse time step (from repeatedly applying
the evolution operator) occur within the energy range represented on the grid. We
require this because these artefacts seem to propagate to much lower energies, and
then also influence the energy domain we are interested in. In formula the second
requirement is that

2π

∆t
≥ 1

2

( π

∆x

)2
. (A.18)

In practice, both requirements are usually fulfilled by a four times as small time step
for a HHG+ATI calculation as for a pure HHG calculation, leading to e.g. 10,000
time steps per cycle for a calculation with a 2000-nm pulse at 2 × 1014 W/cm2. In
case we compare a tomographic reconstruction from an HHG+ATI calculation with
a result from a pure HHG calculation we use the same higher time step for both
calculations.

A.2 Pulse polarization

This section is about the inversion of Eq. (2.34). This allows us to express numerical
HHG spectra in terms of physical parameters such as the orientation and ellipticity of
the emitted radiation. If we split the equalities in Eq. (2.34) into real and imaginary
parts explicitly and drop the angle dependence, we obtain

Re(αx) =
Re(c) cos φ+ Im(c)ǫ sin φ√

1 + ǫ2
, (A.19a)

Im(αx) =
Im(c) cos φ− Re(c)ǫ sin φ√

1 + ǫ2
, (A.19b)

Re(αy) =
Re(c) sin φ− Im(c)ǫ cos φ√

1 + ǫ2
, (A.19c)

Im(αy) =
Im(c) sin φ+ Re(c)ǫ cos φ√

1 + ǫ2
. (A.19d)

We add the squares of the four Eqs. (A.19) to obtain

|α|2 = |αx|2 + |αy|2 = (Re(αx))2 + (Im(αx))2 + (Re(αy))
2 + (Im(αy))

2

=
((Re(c))2 + (Im(c))2)(cos2 φ+ sin2 φ+ ǫ2(cos2 φ+ sin2 φ))

1 + ǫ2

= (Re(c))2 + (Im(c))2 = |c|2.

(A.20)

The ‘mix’-terms between the real and imaginary parts of α are given by

Re(αx)Im(αy) = Re(c)Im(c) cos φ sinφ+
ǫ
(
(Re(c))2 cos2 φ+ (Im(c))2 sin2 φ

)

1 + ǫ2
,

(A.21)

Re(αy)Im(αx) = Re(c)Im(c) cos φ sinφ+
ǫ
(
−(Im(c))2 cos2 φ− (Re(c))2 sin2 φ

)

1 + ǫ2
.

(A.22)
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We can now define a new quantity σ as

σ ≡ Re(αx)Im(αy) − Re(αy)Im(αx) =
ǫ
(
(Re(c))2 + (Im(c))2

)

1 + ǫ2
=

|α|2ǫ
1 + ǫ2

, (A.23)

where for the last equality we used Eq. (A.20). Alternatively, using sin(a − b) =
sin a cos b− cos a sin b, we can express σ as

σ = |αx||αy| sin δ, (A.24)

where δ is the phase difference between the two laboratory frame components, i.e.,
δ = arg(αy) − arg(αx).

From Eq. (A.23) we see that the numerically measurable quantity σ
|α|2 is a measure

for ǫ; σ
|α|2 = 0 for linear polarization (ǫ = 0) and σ

|α|2 = ±1
2 for circular polarization

(ǫ2 = 1). It follows from Eq. (A.23) that

σ

|α|2 ǫ
2 − ǫ+

σ

|α|2 = 0. (A.25)

The solutions of this equation for ǫ for non-linear polarization are given by

ǫ =
1 ±

√

1 − 4
(

σ
|α|2
)2

2 σ
|α|2

. (A.26)

However, since for non-circular and non-linear polarization −1
2 < σ

|α|2 < 1
2 with

σ
|α|2 6= 0, it follows that 0 <

√

1 − 4
(

σ
|α|2
)2

< 1. This means that the +-sign in

Eq. (A.26) always give rise to unphysical solutions for ǫ, as

∣
∣
∣
∣
∣
∣

1+

r

1−4
“

σ
|α|2

”2

2 σ
|α|2

∣
∣
∣
∣
∣
∣

> 1.

Therefore we select the solution with the −-sign and write for the ellipticity

ǫ =
1 −

√

1 − 4
(

σ
|α|2
)2

2 σ
|α|2

. (A.27)

Alternatively, using the trigonometric identities tan
(

1
2 arcsin a

)
= 1−

√
1−a2

a and
sin (2 arctan a) = 2a

1+a2 , we express the ellipticity as

ǫ = tan

(
1

2
arcsin

(

sin

(

2 arctan

( |αy|
|αx|

))

sin δ

))

, (A.28)

as was for instance done in (Le et al. [63]).

Concerning the polarization direction, using Eq. (2.34) we can express the ratio
between the two complex emission amplitudes in the laboratory frame as

αx

αy
=

cosφ− i ǫ sinφ

sinφ+ i ǫ cosφ
=

1 − i ǫ tanφ

tan φ+ i ǫ
. (A.29)
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This equation can be solved for φ to obtain

φ = arctan

(
αy − i ǫ αx

αx + i ǫ αy

)

. (A.30)

The natural range of the arctan-function is [−π/2, π/2]. However, as we defined the
range of φ to be [0, π), we add π to φ if φ < 0. Alternatively, as e.g. in (Le et al.
[63]), φ can be expressed as

φ =
1

2
arctan2




cos δ

1/ tan
(

2 arctan
(
|αy |
|αx|

))



 , (A.31)

where arctan2
( y

x

)
is the arctan-function extended to the full 2π-complex domain

by taking into account the signs of x and y. The fact that the arctan2-function is
needed can be seen from the factor of 1

2 in Eq. (A.31). Only in the presented—
somewhat quaint—form with the double fraction is Eq. (A.31) numerically equal to
Eq. (A.30).

Now using Eq. (2.34) again to determine the complex prefactor c, we find the two
equivalent expressions

c =

√
1 + ǫ2

cosφ− i ǫ sinφ
αx =

√
1 + ǫ2

sinφ+ i ǫ cosφ
αy. (A.32)

A.2.1 Conversion algorithm

To perform the conversion, we need to distinguish between different cases. In partic-
ular, we have to exclude some special cases before we can use the general algorithm
to obtain the pulse parameters, mostly to prevent divisions by 0 (especially 0

0) from
occurring. In the order listed, the special cases below are therefore checked for
within some reasonable numerical limits.

A.2.1.1 Zero-pulse case

If the measured dipole moments |αx| and |αy| are equal to 0 within some numerical
margin, the pulse has 0 amplitude. That means that c is set to 0, while φ and ǫ are
undefined.

A.2.1.2 Linear polarization

This case is selected when the variable σ, defined in Eq. (A.23), is equal to 0 within
numerical limits, as that amounts to ǫ = 0 according to its definition. In addition,
linear polarization (ǫ = 0) is selected if |αx|2 ≫ |αy|2 or |αy|2 ≫ |αx|2 (in practice the
condition is that one component is larger than 108 times the other). In other words,
this is used as an alternative criterion for ǫ = 0. The reason is that the above-
mentioned requirement clearly amounts to the pulse being linear, as the electric
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field is orientated along one direction only. The reason that we need to incorporate
this second, in principle superfluous condition, is that for those pulses σ cannot
be accurately determined numerically, as relatively small errors on the scale of the
bigger component can be very big on the relatively scale of the small component.
For the case of linear polarization, Eq. (A.30) simplifies to

φ = arctan

(
αy

αx + ξ

)

, (A.33)

where ξ, a very small number, was added to prevent division by 0. As indicated
before, we add π to φ if φ < 0. Using Eq. (A.32), we obtain the numerically most
stable expression for c as

c =

{
αx

cos φ if |αx| ≥ |αy|
αy

sin φ else.
(A.34)

A.2.1.3 Circular polarization

We select the circular polarization case if σ
|α|2 is equal to ±1

2 within numerical limits.

Using Eq. (A.23) we set

ǫ =

{

1 if σ > 0

−1 else.
(A.35)

In the case of circular polarization, the polarization angle φ is not uniquely defined,
and changing it corresponds to multiplying c with a global complex phase factor.
We arbitrarily set φ = 0. Now Eq. (A.32) simplifies to

c =
√

2αx = −
√

2i ǫ αy. (A.36)

The best estimate for c is given by

c =
1√
2

(αx − i ǫ αy) . (A.37)

A.2.1.4 General case

Using Eqs. (A.27), (A.30) and (A.32), the pulse parameters are determined as

ǫ =
1 −

√

1 − 4
(

σ
|α|2
)2

2 σ
|α|2

, (A.38a)

φ = arctan

(
αy − i ǫ αx

αx + i ǫ αy + ξ

)

, (A.38b)

c =

{ √
1+ǫ2

cos φ−i ǫ sinφαx if |αx| ≥ |αy|√
1+ǫ2

sinφ+i ǫ cos φαy else,
(A.38c)

where ξ is again a very small number and for c we picked the numerically most
stable expression. Again we add π to φ if φ < 0.
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A.3 Projected 3D orbital

In this section we show how to numerically convert a 2D projection of an orbital
with rotational symmetry around the x-axis to the full 3D orbital. This section is
the numerical appendix to section 4.7. Because of the rotational symmetry of the
orbital, the following equality holds

ψ3D
0 (x, y, z) = ψ3D

0 (x, y,−z) = ψ3D
0 (x,

√

y2 + z2, 0). (A.39)

Let us now try to recover ψ3D
0 (x, y, z) from ψ0(r). We take the orbital to be centered

in the tomographic region Lx ×Ly, which means we can assume ψ3D
0 (x, y, 0) = 0 for

|y| ≥ Ly/2. Therefore we have that

ψ0(r) =

∫ Ly
2

−Ly
2

ψ3D
0 (x, y, z)dz = 2

∫ Ly
2

0
ψ3D

0 (x,
√

y2 + z2, 0)dz

= 2

∫
q

(
Ly
2

)2+y2

y

z′
√

z′2 − y2
ψ3D

0 (x, z′, 0)dz′,

(A.40)

where z′ =
√

y2 + z2 and z′√
z′2−y2

is the Jacobian factor dz
dz′ associated with the

change of integration variables in the last equality. Taking into account that ψ0(r) =

0 for r ≥
√

(
Ly

2 )2 + y2, this is an Abel transform (Weisstein [132]). Abel transforms
are often encountered in the analysis of spherically or cylindrically symmetric func-
tions and are Volterra integral equations of the first kind.

Because we want to solve the above equation discretely, we subtract the singularity
at the lower integration boundary and calculate it analytically, so that

ψ0(r) = 2

∫ Ly
2

y

z′
√

z′2 − y2

[

ψ3D
0 (x, z′, 0) − ψ3D

0 (x, y, 0)
]

dz′

+ 2

∫ Ly
2

y

z′
√

z′2 − y2
dz′ψ3D

0 (x, y, 0),

(A.41)

where we again used that the wave function is constrained to the tomographic region.

The integral in the second part on the right hand side evaluates to
√

(
Ly

2 )2 − y2.
Therefore we can write

ψ0(r) = 2

∫ Ly
2

y

z′
√

z′2 − y2

[

ψ3D
0 (x, z′, 0) − ψ3D

0 (x, y, 0)
]

dz′

+ 2

√

(
Ly

2 )2 − y2 ψ3D
0 (x, y, 0).

(A.42)

To solve this equation numerically we will start at y = Ly/2 and work our way
downwards. We define ψij = ψ0(xi, yj) and ψ3D

ij = ψ3D
0 (xi, z

′
j , 0). We also need to

discretize the Jacobian prefactor. We will denote it by Kij = K(yi, z
′
j) =

z′j
q

z′j
2−y2

i

.
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Using the trapezoidal integration rule the discrete version of Eq. (A.42) is

ψij = 2∆y




Kjj

2
(ψ3D

ij − ψ3D
ij ) +

Kj,Ny−1

2
(ψ3D

i,Ny−1 − ψ3D
ij ) +

Ny−2
∑

k=j+1

Kjk(ψ
3D
ik − ψ3D

ij )





+ 2

√

(
Ly

2 )2 − y2 ψ3D
ij

= 2∆y



−Kj,Ny−1

2
ψ3D

ij +

Ny−2
∑

k=j+1

Kjk(ψ
3D
ik − ψ3D

ij )



+ 2

√

(
Ly

2 )2 − y2 ψ3D
ij ,

(A.43)

where we made use of the fact that because of the boundary condition ψi0 =
ψi,Ny−1 = ψ3D

i0 = ψ3D
i,Ny−1 = 0. In the actual calculation we can again use the

rotational symmetry, so that we only have to calculate for j >
Ny−1

2 . In our cal-
culations we consider grids with an even number of grid points because the FFT is
faster then. That means we can go from the full 3D orbital to the projected orbitals
using the equations

ψij = 2



−∆y




Kj,Ny−1

2
+

Ny−2
∑

k=j+1

Kjk



+

√

(
Ly

2 )2 − y2



ψ3D
ij

+ 2∆y

Ny−2
∑

k=j+1

Kjkψ
3D
ik ,

for j >
Ny−1

2

(A.44a)

ψi,−j = ψij for j <
Ny−1

2 .
(A.44b)

For going from the projected orbital to the full orbital the following equations can
be used (starting at j = Ny − 1, and then going down)

ψ3D
i,Ny−1 = 0, (A.45a)

ψ3D
ij =

2∆y
Ny−2∑

k=j+1

Kjkψ
3D
ik − ψij

2

[

∆y

(

Kj,Ny−1

2 +
Ny−2∑

k=j+1

Kjk

)

−
√

(
Ly

2 )2 − y2

] for
Ny−1

2 < j < Ny − 1,

(A.45b)

ψ3D
i,−j = ψ3D

ij for j <
Ny−1

2 .

(A.45c)

Because of the rotational symmetry, ψ3D
ij contains all information about the three

dimensional orbital, as

ψ3D
ij = ψ3D

0 (xi, yj, 0) = ψ3D
0 (xi, 0, zj) = ψ3D

0 (xi, yj cos θ, zj sin θ) (A.46)

for all angles θ.
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A.4 SFA calculations

A.4.1 Classical HHG trajectories

In section 5.1.3 we found an expression for the HHG amplitude (Eq. (5.104)) and
also for aθ[−k(ω)] (Eq. (5.108)) as an expansion around γ = 0 on the basis of
classical electron trajectories. Since we only consider linearly polarized pulses we
consider one spatial dimension. The relevant classical trajectories ionize at time t′0
with initial momentum v(t′0) = 0 from position x(t′0) = 0, and return at time t0
to their initial position x(t0) = 0 with return momentum vrec = ±

√

2(ω − Ip) (see
Eq. (5.80)). To find the contributing classical trajectories for frequency ω, we solve
the equations of motion Eq. (2.7) in two steps. First we perform an initial rough
scan of all birth times to find the rough birth times of the contributing trajectories,
and then we perform a more accurate calculation to find the exact times.

For the initial rough scan we solve the equations of motion for Nt′ birth times t′ per
laser cycle by discretely propagating Eq. (2.7c) from t′ to two laser cycle periods
after the laser pulse is over. For the propagation we discretize Eq. (2.7c) using
the trapezium rule and we use half the number of time steps that are used for
the TDSE calculation for the same laser intensity and wavelength. If during the
propagation we cross x(t, t′) = 0 we estimate the time of the crossing t and the
return momentum k using a linear fit to the trajectory around the crossing, and we
store the return parameters (t′, t, k) in a list. After finishing the initial scan this list
is such that it contains a family of returns (t′, t, k) for each trajectory (t′0, t0, vrec)
that contributes to the spectrum. For each trajectory we select that return that has
k closest to ±

√

2(ω − Ip), but only under the condition that for this trajectory we
have found at least one return for which |k| ≥ |vrec| and at least one return for which
|k| ≤ |vrec|. This is to ensure that a contributing trajectory can be found for this
family of returns. We checked that using the employed (relatively high) Nt′ = 10, 000
(20,000) for λ < 900 nm (λ > 900 nm) the algorithm is reliably converged, i.e., all
contributing trajectories can be found from the list of returns.

We find the set of contributing trajectories {(t′0, t0, vrec)} for each frequency ω using
a secant procedure starting from the selected returns (t′, t, k). For the propagation
we now use the same time step as for a TDSE calculation for the same experimen-
tal parameters. For each trajectory we try to achieve a resolution that satisfies∣
∣
∣
k−vrec

vrec

∣
∣
∣ < 10−9, but if such a resolution cannot be achieved we do not reject the tra-

jectory unless the achieved accuracy in k is higher than 10−4. The secant procedure
has some exceptions built in to make it more numerically robust and prevent it from
getting stuck in loops; every iteration step the maximum step in t′ allowed is chosen
randomly in the range [10−6 a.u., T ), where T is the laser period. Furthermore, if
the error got bigger or no return could be found, first a smaller birth time step in
the same direction, and then a birth time step in the opposite direction is found.
If still the error got bigger or no return could be found, a new random birth time
close to the originally found return is used. After confirming that each entry in
{(t′0, t0, vrec)} is unique, we use the set to evaluate Eq. (5.104).
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[23] C. C. Chirilă and M. Lein. Explanation for the smoothness of the phase in
molecular high-order harmonic generation. Phys. Rev. A 80, 013405 (2009).



BIBLIOGRAPHY 175
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