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Abstract

An analysis of historical Corona images, Landsat images, recent radar and Google Earth® images was conducted
to determine land use and land cover changes of oases settlements and surrounding rangelands at the fringe of the
Altay Mountains from 1964 to 2008. For the Landsat datasets supervised classification methods were used to test
the suitability of the Maximum Likelihood Classifier with subsequent smoothing and the Sequential Maximum A
Posteriori Classifier (SMAPC). The results show a trend typical for the steppe and desert regions of northern China.
From 1964 to 2008 farmland strongly increased (+ 61 %), while the area of grassland and forest in the floodplains
decreased (- 43 %). The urban areas increased threefold and 400 ha of former agricultural land were abandoned.
Farmland apparently affected by soil salinity decreased in size from 1990 (1180 ha) to 2008 (630 ha). The vegetated
areas of the surrounding rangelands decreased, mainly as a result of overgrazing and drought events.

The SMAPC with subsequent post processing revealed the highest classification accuracy. However, the specific
landscape characteristics of mountain oasis systems required labour intensive post processing. Further research is
needed to test the use of ancillary information for an automated classification of the examined landscape features.
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Abbreviations:
SMAPC = Sequential Maximum A Posteriori Classifier
NDVI = Normalized Difference Vegetation Index
MLC = Maximum Likelihood Classifier
LUCC = Land use and land cover changes
GCPs= Ground Control Points

1 Introduction

During the last decades many landscapes have un-
dergone large structural changes given the introduction
of new management practices and the social, political,
and economic framework controlling land use (di Cas-
tri & Hadley, 1988; Turneret al., 2001). In China,
such processes have reportedly resulted in widespread
land degradation, often caused by population growth
and over-intensification of agriculture such as excessive
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application of mineral fertilizers, overgrazing of steppes
and excessive cutting of trees and shrubs for fuel wood
(Zhu & Chen, 1994), man-made salinisation and losses
of wetlands (Zhanget al., 2007). Climate change effects
(Hu et al., 2003) are also claimed as recent drivers of
land use change (Goaet al., 2002; Kleinet al., 2004).

In the arid parts of NW China the state and develop-
ment of oasis systems are of particular importance given
their dominant role in many landscapes of the Xinjiang-
Uyghur Autonomous Region (Liuet al., 2010). During
the last 50 years the population of this part of China
increased from 4.7 to 18.5 Mio. people and the area
of cultivated land expanded from 1.5 to 3.4 million ha
(Wiemer, 2004). Collectivisation programs fostered the
conversion of grassland into cropland and of herders
into agro-pastoralists (Millward & Tursun, 2004; Chu-
luun & Ojima, 2002). As a result of poor reclamation
of land, decreasing pasture areas, inefficient livestock
husbandry systems and rising demand of meat due to
rapid population growth and changes in food consump-
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tion preferences, the grazing pressure on the remain-
ing rangeland areas increased dramatically (Liu, 1993;
Graetz, 1994; Liet al., 2008). Since the 1980s, most
of the oases in Xinjiang are characterized by mecha-
nized cropping systems that depend on an intensive use
of irrigation water accompanied by often insufficient
drainage (Zhanget al., 2001; Bruelheideet al., 2003;
Graefeet al., 2004). As a consequence, land degra-
dation through salinisation and sand encroachment in-
creased (Brunner, 2005; Xiuling, 2001). In 2000 about
50 % of the total river water in Xinjiang was used for
oasis irrigation leading to a rise of salt content in rivers
and lakes (Liet al., 2001).

To detect and monitor land use and land cover
changes (LUCC) and ongoing desertification processes,
satellite remote sensing, in conjunction with geographic
information systems (GIS), has been widely applied and
been recognized as a powerful analytical tool (Xiaoa
et al., 2004; Jiaet al., 2004; Zhanget al., 2007).

For China, however, most LUCC studies examined
steppe and desert regions and only rarely targeted com-
plex oasis systems (Hao & Ren, 2009; Luoet al., 2008;
Li et al., 2004). These studies were either based on
visual image interpretation or on automated classifica-
tion algorithms. Other remote sensing studies in China
have been conducted to monitor desertification pro-
cesses (Hill, 2001; Baoping & Tianzong, 2001), quan-
tify rangeland biomass production (Runnström, 2003),
map vegetation types (Wanget al., 2002), and to anal-
yse the temporal and spatial development of urban areas
(Junet al., 2006). In contrast to the described studies,
our work focused on LUCC in complex oasis systems at
the foothills of the Altay Mountains. The objectives of
the study were (i) to determine LUCC of oasis systems
and their surrounding rangelands in the Altay Moun-
tains between 1964 and 2008 using remote sensing tech-
niques and (ii) to evaluate the effectiveness of auto-
mated procedures to determine land use and land cover
changes at a broader scale. In this context, the suitabil-
ity of the commonly used ‘Maximum Likelihood Classi-
fier’ (MLC) with subsequent smoothing (Pal & Mather,
2003; Booth & Oldfield, 1989) and the rarely used ‘Se-
quential Maximum A Posteriori Classifier’ (SMAPC,
Bouman & Shapiro, 1994) were compared. The latter
approach is often more accurate when classifying dif-
ferent types of crops cultivated on homogenous fields
(McCauley & Engel, 1995).

2 Materials and Methods

2.1 Study area

The study area is located in Qinghe County in the
NW part of the Dzungarian basin in the Xinjiang Au-
tonomous Region of China (Figure 1). The basin is sur-
rounded by the Altay range in the north and the Tian-

shan mountains in the south. The 482 km2 study area
(90°15’30” – 90°30’30” E and 46°24’30” – 46°48’30”
N) encompasses several oasis settlements at altitudes
between 1185 and 1890 m a.s.l, including the town of
Qinghe in the South and the village Buheba in the North
(Figure 2 and 3). From 1962 to 1997, the mean temper-
ature in Qinghe county was 1.1°C with a mean annual
precipitation of 40 – 80 mm (NCDC, 2009). Given the
short vegetation period, spring wheat (Triticum aestivum
L.) is the dominant crop, which, after sowing in April is
widely grazed to foster tillering. Intensive greenhouse
vegetable production as an alternative to the cultivation
of irrigated spring wheat only occurs in the immediate
proximity of or within oasis settlements. At present an
unknown number of (agro-) pastoralists practice sum-
mer transhumance, while the reminder reportedly man-
aging about 30-40% of Qinghe’s livestock, remain in
the agricultural area throughout the year with daily graz-
ing in the neighbourhood of the oasis area.

Since 2002, the local government has implemented
a forest policy, reconverting degraded arable land into
pasture or forest. Under this policy so far, 8,600 ha have
been reforested, and 3,800 ha of the reclaimed poplar
(Populussp.) forest area are protected from grazing by
fences. In addition, 40,000 ha of original forest in the
north of Qinghe county have been put under protection.

2.2 Data acquisition and pre-processing

To identify LUCC that occurred from 1964 to 2008
in the study area, different satellite image sources were
used, such as Corona, Landsat, Google Earth® images,
and TerraSAR-X (Synthetic Aperture Radar) radar im-
ages (Table 1). The earliest data resulted from two
panchromatic Corona (KH-4B) images taken in 1964 by
the U.S Geological Survey’s Earth Resources Observa-
tion and Science (EROS). During the Corona program
from 1960-1972, several camera systems, referred to by
their KEYHOLE (KH) designator, were used. Of these
the most advanced, KH-4B had its best resolution of
1.8 m at nadir. We further obtained cloud free Land-
sat 5 and 7 Level 1 terrain corrected images (L1T, res-
olution = 30 m) from EROS, which have radiometric,
geographic and topographic corrections. Since 2003,
Landsat 7 imagery has been interrupted and contains
data gaps due to the failure of the Scan Line Correc-
tor (SLC), which compensates for the forward motion
of the satellite (Chanderet al., 2009). Thus, an already
processed, gap-filled product was obtained to accurately
depict the land use and land cover conditions in August
2008.

All Landsat images covered the whole study area.
The two TerraSAR-X radar images displayed 85 % of
the oasis and 25 % of the surrounding area, while the
Google Earth® Quickbird images covered a total of
89 % of the study area.
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Fig. 1: Location of the study area (482 km2) in the Xinjiang autonomous region of NW China.

Fig. 2: The oasis settlement Qinghe and its surrounding in June 1964 (Corona image) and August 2002 (Google Earth image).
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Fig. 3: The oasis settlement Buheba and its surrounding in June 1964 (Corona image) and
August 2002 (Google Earth image).

Table 1: Provider, date of acquisition and spatial resolution (m) of the satellite images used for LUCC analysis in the
Dzungarian river basin, NW China.

Satellite Provider Date of Acquisition Spatial Resolution (m)

Corona KH-4B U.S. Geological Survey’s Earth
Resources Observation an Science

22 June 1964 1.80-7.6

Landsat-5 U.S. Geological Survey’s Earth
Resources Observation an Science

7 September 1990 Band 1-5, 7: 28.5

16 August 1999 Band 1-5, 7: 30; Band 8: 15
Landsat-7 U.S. Geological Survey’s Earth

Resources Observation an Science 8 August 2008 Band 1-5, 7: 25; Band 8: 12.5

TerraSAR-X German Aerospace Center May 2007 0.75

20 August 2002 <1
Google Earth® Geocentre Consulting

21 October 2006 <1
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All Landsat images have been co-registered to the
radar and the Google Earth® images, which have been
correctly georeferenced according to ground control
measurements. The scanned Corona images were geo-
referenced using readily recognizable features such as
roads and stone formations as ground control points
and verifying the results based on georeferenced topo-
graphic maps and satellite images (Number of GCPs: 33
and 25; Root mean square error: 0.00002 and 0.00014;
Transformation: Spline and 3rd Order Polynomial).

The available TerraSAR-X images were used to cre-
ate a high resolution image containing the spectral infor-
mation of the 2008 Landsat dataset to identify training
and validation sites for the subsequent classification pro-
cesses. One common problem in images acquired with
the SAR technique, is the so called ‘Speckle Effect’ hin-
dering a proper interpretation of these images (Oliver &
Quegan, 2004). For speckle noise reduction a combina-
tion of the Enhanced Frost Filter and the Local Sigma
Filter was applied using ENVI 4.2. (Research Systems,
Boulder, CO, USA). The fusion step of the HSV trans-
formed Landsat colour composites and the TerraSAR-X
images were processed based on the ‘Principal Compo-
nent’ technique (Pohl, 1999) using ERDAS IMAGINE
8.3. (Leica Geosystems GIS & Mapping LLC., Nor-
cross, GA, USA).

2.3 Data analysis and classification methods

For the supervised classification of the Landsat
datasets a ‘Maximum Likelihood Classifier’ (MLC)
with subsequent smoothing and a ‘Sequential Maximum
A Posteriori Classifier’ (SMAPC) were compared using
the open source software Quantum GIS 0.11.0 ‘Metis’
with the GRASS plugin (Quantum GIS Development
Team, 2009). The MLC is a simple pixel based method
which is often used for land use change detections (Pal
& Mather, 2003; Booth & Oldfield, 1989). The subse-
quent smoothing reduces the so called ‘salt and pepper’
effect characterized by scattered single pixels belong-
ing to another class than the majority of the neighbour-
ing pixels (Lillesand & Kiefer, 2000) and was applied
to improve the classification results. In its classifica-
tion the SMAPC also accounts for the spatial informa-
tion between neighbouring pixels and produces more
homogenous regions than obtained with the pixel-by-
pixel method which computes local image pyramids at
different scales (Bouman & Shapiro, 1994; McCauley &
Engel, 1995). At each scale the best segmentation is cal-
culated based on the previous coarser segmentation and
the observed data using a spectral class model known
as Gaussian mixture distribution (Bouman & Shapiro,
1994).

Based on field observations and visual inspections of
recent Google Earth® images, different land use classes
were detected within the study area (Table 2). The class
‘Urban Areas’ included all man-made facilities such as

houses in the countryside and bigger settlements as well
as industrial facilities. Water bodies were defined as
class 2 and riverbanks as class 3. The latter were situ-
ated next to the water bodies, and were defined as a sep-
arate class to avoid misclassifications with other ground
objects such as pathways or eroded land. To observe
the development of the agriculturally used land classes
4 to 6 were defined based on spectral and spatial in-
formation such as the appearance of irrigation channels
and the more or less rectangular shape of the fields as
additional criteria. These areas were further discrimi-
nated according to their status (harvested-not harvested-
degraded). Areas with soil degradation due to soil salin-
ity were identified to (i) investigate how many areas
were already degraded and (ii) determine the extent to
which degraded arable land was reclaimed into pasture
and forest land. The non-agricultural areas within the
floodplain of the oases are typically characterised by
woodlands (natural riverside forest ofPopulus diversi-
folia and plantations withPopulus alba) and grasslands
used for haymaking and grazing.

The non-vegetated and/or unutilized areas within and
outside the oases were allocated to class 9 (‘Mountains’)
and the vegetated areas in the proximity of the oases to
class 10 (‘Rangelands’). The definition of these classes
allowed the analysis of grazing effects on rangeland
areas.

To determine specific spectral reflectance patterns for
the supervised classification (Lillesand & Kiefer, 2000;
Sabins, 1997), training sites were defined for each class
based on the pan-sharpened Landsat image of 2008.
Subsequently, a signature file with the specific spec-
tral attributes for each class was calculated. A com-
parison of the Landsat histograms of the three differ-
ent years (1990, 1999 and 2008), which display the dis-
tribution of the digital numbers (DN) representing the
spectral reflection/absorption of the landscape (Wilkie
& Finn, 1996), revealed spectral differences for the year
1990, whereas 1999 and 2008 were more or less similar
(Figure 4).

It was therefore necessary to redefine the signature
files for the older Landsat images by using additional
training sites for 1990 and 1999. These have been visu-
ally identified using spectral information of pseudo-true
colour and standard false colour composites, whereby
the visual interpretation was calibrated based on al-
ready known spectral and shape characteristics (colour,
structure, size) of the year 2008. Finally, the mean
of the spectral reflectance patterns was calculated for
each class in 2008, 1999 and 1990 and compared among
years.

For the oasis area (class 1 to 9) a supervised classifi-
cation was conducted, whereby the surrounding range-
land area was further classified using the Normalized
Difference Vegetation Index (NDVI) based on the Land-
sat images. The NDVI is the ratio of the reflectance in
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Table 2: Predefined land use classes, number and total area (ha) of training sites (TS) and validation plots (VP) for the supervised
classification of LUCC in the Dzungarian river basin, NW China.

Class Number Class Name Ground Objects
Number and

size of TS
Number and
size of VP

1 Urban Areas single houses, settlements, cities,
industrial facilities

428 (7.0) 393 (7.2)

2 Water Bodies main river, branches, reservoirs 90 (7.0) 50 (4.3)

3 Riverbanks sandy areas next to class 2 54 (1.9) 45 (2.9)

4 Agricultural Land–Harvested
arable land (signs of soil

cultivation) harvested
78 (32.9) 65 (21.7)

5 Agricultural Land–Crops
arable land (signs of soil
cultivation) not harvested

110 (29.3) 96 (27)

6 Agricultural Land–Degraded
arable land (signs of soil

cultivation) degraded due to soil
salinity

68 (27.7) 46 (5.5)

7 Floodplain–Wood woodland in the floodplain 69 (24.3) 66 (26.0)

8 Floodplain–Meadow
grassland and bushes in the

floodplain
49 (39.7) 51 (15.8)

9 Mountains non-vegetated areas, blank soil,
rocks within and outside the oasis

56 (139.8) 51 (124.0)

10 Rangelands
vegetated areas (grassland, bushes,
trees) in the proximity of the oasis

– † 128 (43.4)

† Classification based on NDVI thresholds only without the use of training sites

Fig. 4: Means of the spectral reflectance patterns of the five most important land use/land cover classes used for supervised
classification for the Landsat images of the Dzungarian River Basin, NW China, in 2008, 1999 and 1990.

the near-infrared (NIR) and red (RED) portions of the
electromagnetic spectrum (Tucker, 1979), and is calcu-
lated asNDVI = (NIR− RED)/(NIR+ RED). NDVI
values≥ 0.05 were used to separate between vegetated
(class 10= Rangeland) and non-vegetated rangeland ar-
eas (class 9= Mountains).

To classify the panchromatic, historical Corona im-
ages a visual image interpretation was conducted
(Antrop & Van Eetvelde, 2000). An automatically ob-
ject oriented classification approach did not generate
satisfactory results, mainly because of the high hetero-

geneity in size, shape and colour of the ground ob-
jects within the classes (such as small irregular shaped
agricultural fields within the floodplains versus nearly
quadrate fields outside the floodplains) and similar
characteristics of ground objects belonging to different
classes (irregular spaced patches of grassland and arable
land in the floodplains). Some ground objects were too
small to be separated from neighbouring objects such as
single houses next to trees.

Since the detection of differences in vegetation cover
is impossible in panchromatic data sets, vegetated and
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non-vegetated areas within the rangelands were not sep-
arated for the Corona images. Furthermore, classes
4 and 5 were combined to one class as it was not
detectable whether agricultural land was already har-
vested or not. Since salinity affected areas generally ap-
pear brighter than undisturbed agricultural land (Jensen,
2007), we further reclassified very bright areas of the
agricultural land (raster value> 225) to degraded land.

Visual inspections of the panchromatic Corona image
revealed, that some agricultural areas were located on
marginal sites characterised by shallow soils wich re-
stricted the water holding capacity. The interpretation
was based on the relief condition using a Digital Ele-
vation Model (NASA’s Shuttle Radar Topography Mis-
sion; resolution= 90m) as ancillary information and the
spectral properties of the image, whereby dry soils gen-
erally cause a higher reflectance compared to wet soils
(Wilkie & Finn, 1996). Since we expected land aban-
donment to particularly occur in these areas, the land
use changes of the marginal agricultural areas were ex-
amined separately in an additional step of analysis (Ta-
ble 6).

2.4 Accuracy assessment

To identify the most suitable classification method for
the study area, an accuracy assessment was conducted
based on independent validation plots (Table 2) gathered
from high resolution images and own field observations.
Since no historical high resolution images were avail-
able, accuracy assessment using the ‘kappa-coefficient’
and an ‘error matrix’ (Congalton & Green, 1999) was
only feasible for the year 2008. Based on the error ma-
trix the Producer‘s Accuracy (PA), the Consumer‘s Ac-
curacy (CA), the Error of Omission (EO) and the Er-
ror of Commission (EC) were calculated. The PA is a
measure to assess how correctly classes were classified,
whereas the CA reflects how reliable a classified map is.
The EO indicates which areas were wrongly excluded
from a class and the EC is a measure of which areas were

wrongly included in a class (Campbell, 2002). The ref-
erence data (Congalton & Green, 1999) for class 1 to 8
were identified using the pan-sharpened Landsat image
of 2008. For the classes 9 to 10 we used a HSV trans-
formed ‘standard false colour’ composite of the 2008
Landsat dataset, suitable to discriminate vegetated and
non-vegetated areas (Sabins, 1997).

2.5 Post processing

For the most suitable classifier (Table 4), the clas-
sified Landsat data were post-processed to further im-
prove classification accuracy. Some classes had simi-
lar spectral characteristics, resulting in a high error of
confusion, particularly, non-vegetated mountainous re-
gions, urban areas, riverbanks and degraded agricultural
land. During post-processing the urbanized and agri-
culturally used oasis areas were reclassified. The pan-
sharpened Landsat, the Google Earth® and the histori-
cal Corona satellite images allowed to visually identify
and digitize all urban areas from 1964-2008. Within this
potential urbanization zone, all areas misclassified as
‘Agricultural Land – Degraded’ and ‘Riverbanks’ were
reclassified as ‘Urban Areas’. Outside this zone, some
parts with sparsely vegetated arable land were misclas-
sified as ‘Urban Areas’ and had thus to be reclassified as
‘Agricultural Land – Crops’.

To correct further misclassification errors, we de-
fined a zone of riverbanks along water streams using the
buffer function of ArcGIS 9.3 (vers. 1.1; ESRI, Red-
lands, CA, USA). The location of the streams was de-
fined through an automated extraction of the drainage
network from the digital elevation model using the
ArcHydro Tools contained in ArcGIS 9. According
to visual inspections, the maximum extension of river-
banks next to the streams was around 75 m. Within this
buffer zone all misclassified areas were reclassified into
‘Riverbanks’. Outside this zone misclassified riverbanks
were corrected into the class ‘Agricultural Land – De-
graded’ (Table 3).

Table 3: Identified region of reclassification, type of reclassification and extend of reclassified area
(ha) for the post processing of the classified Landsat data (acquired in 1990, 1999 and 2008) in the
Dzungarian river basin, NW China. For class abbreviations see Table 2.

Extend of the Areas (ha)
Region of Reclassification Type of Reclassification

1990 1999 2008

Inside urbanisation zone Class 3 to Class 1 15 5 38

Class 6 to Class 1 203 225 345

Outside urbanisation zone Class 1 to Class 5 489 221 528

Inside zone of riverbanks Class 1 to Class 3 127 38 222

Class 6 to Class 3 19 49 25

Class 9 to Class 3 90 97 67

Outside zone of Riverbanks Class 3 to Class 6 67 60 84
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3 Results

3.1 Reliability of the determined sets of training sites

Reliability of the determined sets of training sites For
the Landsat images of the years 2008 and 1999 the
means of the spectral patterns were similar indicating
that the training sites were identified correctly (Figure
4). They are slightly shifted due to different minimum
and maximum DN values. As the training sites for the
1990 Landsat dataset were identified in the same way as
the 1999 data, we assumed that they were also identified
correctly and that the differences of the spectral patterns
are only due to differences of the DN distribution.

3.2 Accuracy assessment of the classification results

The validation of the produced maps of the 2008 data
revealed that the best classification result was obtained
using the SMAPC method (Table 4). The subsequent
post processing to improve the accuracy of the classi-
fied urban areas and riverbanks increased the kappa co-
efficient from 0.90 to 0.92. The error matrices obtained
pointed to a major reduction of errors due to the post
processing (Table 5). Therefore this method was also
used for the classification of the 1990 and 1999 data.

Table 4: Accuracy assessment of the different classifiers (MLC
= Maximum Likelihood Classifier; SMAPC= Sequential A
Priori Classifier; Post Processing= post processing of the ur-
ban areas and riverbanks; Smooth= smoothing of the the-
matic map after classification and prior to the accuracy as-
sessment) for the 2008 Landsat data used to examine LUCC
in the Dzungarian river basin, NW China.

Classifier Special Steps Kappa - Coefficient

SMAPC – 0.8969

SMAPC Post Processing 0.9209

MLC Smoothing 0.8929

Some verified urban areas were misclassified as
‘Riverbanks’, ‘Agricultural Land – Degraded’ and
‘Agricultural Land – Crops’. Post-processing, allowed
to reduce errors and confusion between urban areas and
riverbanks or degraded agricultural land. Therefore the
PA for urban areas strongly improved (Table 5b).

The high EO of the class ‘Riverbanks’ was due to
misclassifications in ‘Urban Areas’ and ‘Mountains’,
and due to a confusion with agricultural land. Post-
processing successfully diminished the former misclas-
sification error, thereby improving the PA from 57 % to
91 %.

Even without post-processing, PA’s and CA’s of all
classes were> 90 %. Lower accuracies were only ob-
served for classes that depicted the more natural flood-
plain vegetation. The EO of these classes were mainly

due to misclassifications among each other and the ex-
clusion of areas misclassified as harvested or degraded
agricultural land as well as riverbanks. The PA of the
rangelands was< 90 % due to confusion with non-
vegetated areas near the oases. Nevertheless, a very high
CA of 100 % was achieved for this class, which was sim-
ilar to the classes ‘Urban Areas’ and ‘Water Bodies’.

3.3 Changes of the different classes by surface area

The urban areas constantly expanded from 285 to
814 ha in 1964 and 2008 respectively (+186 %, Table
6). The total agricultural land increased by 61 % and
reached 6,834 ha in 2008. The highest increments oc-
curred between 1990 (5,000 ha) and 1999 (6,400 ha).
Compared to 1964, more land was classified as degraded
agricultural land in the following years, whereas in 1990
a maximum of 1,180 ha was detected. From 1990 to
2008 degraded farmland, which was apparently affected
by soil salinity decreased in size (630 ha). The area in
the floodplain covered with trees decreased until 1999
(-45 %) compared to 1964, but expanded by 12 % since
then. The grassland interspersed with bushes in the
floodplain slightly increased by 3 % between 1964 and
1990 but decreased constantly in the following years,
reaching a size of 1400 ha in 2008. The extent of the
water bodies fluctuated over the years with a minimum
of 280 ha and a maximum of 500 ha in 1964 and 1999
respectively. The total size of the oasis increased from
8,310 up to 9,160 ha during the studied time span. It
could also be determined that the rangelands were about
60 km2 smaller in 2008 than in 1990.

3.4 Land use changes of marginal agricultural areas

In 1964 around 19 % of the total agricultural land was
located on marginal sites characterized by shallow soils
and steep slopes. A small part of this land (5 %) was ur-
banised in the following years. The majority of this for-
mer agriculturally used land (30 %) was abandoned and
classified as non-vegetated mountainous region in the
years after 1964. Most of land abandonment occurred
in 1990, whereby the agricultural use at marginal sites
increased again in 1999 and 2008 by 760 ha up to 880
ha. Conversely, the size of degraded agricultural land
increased from 240 ha in 1964 up to 490 ha in 1990
and declined until 2008, reaching an extent of 180 ha
(Table 7).

4 Discussion

4.1 LUCC in oases settlements and surrounding
rangelands

Overall, the trends of LUCC in mountain oases of the
present study were largely similar as compared to steppe
and deserted regions of northern China with decreasing
areas of grasslands and degraded land and expanding
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urban areas as well as farmlands (Liet al., 2004; Luo
et al., 2008; Hao & Ren, 2009; Yuet al., 2010). The
total size of the oasis settlements increased from 4,200
to 6,800 ha between 1964 and 2008. This expansion
was accompanied by an over-intensification of agricul-
ture (Zhu & Chen, 1994), and thus agricultural fields at
marginal sites were abandoned simultaneously (around
400 ha). Urban areas constantly expanded from 280 to
810 ha in the examined time span. This corresponds to

the population development of Qinghe county (Qinghe
County Administration, unpublished) and of Xinjiang
in the last decades (Wiemer, 2004). Furthermore, the
agricultural area used for cropping increased in size
along with a reduction of the floodplain area covered
with trees, bushes and grassland. Since 1990, the grass-
land area decreased by 53 % while livestock numbers re-
mained relative constant from 1997 to 2006 with a peak
in 2000 (Qinghe County Administration, unpublished).

Table 5: Error matrices (CA= Consumer‘s Accuracy; PA= Producer‘s Accuracy; EC= Error of Commission; EO=
Error of Omission) of the land use classes identified by the validation plots within the study area in the Dzungarian River
Basin of NW China. Data are based on the SMAPC classification results of the 2008 Landsat data before (a) and after (b)
post-processing. For class abbreviations see Table 2.

a)

Ground Truth Data

Class 1 2 3 4 5 6 7 8 9 10 Total CA (%) EC (%)

1 119 3 28 0 24 4 2 1 0 0 181 65.8 34.2

2 0 109 0 0 0 0 0 0 0 0 109 100.0 0.0

C
la

ss
ifi

e
d

M
a
p 3 19 1 47 1 0 1 0 1 0 0 70 67.1 32.9

4 0 0 1 376 17 0 7 5 0 0 406 92.6 7.4

5 14 0 1 4 495 7 14 6 0 0 541 91.5 8.5

6 19 0 1 0 0 117 0 0 0 0 137 85.4 14.6

7 0 0 0 0 0 0 441 38 0 0 479 92.1 7.9

8 1 0 0 0 0 0 40 245 0 0 286 85.7 14.3

9 0 1 4 0 0 0 0 0 1987 136 2128 93.4 6.6

10 0 0 0 0 0 0 0 0 0 670 670 100.0 0.00

Total 172 114 82 381 536 129 504 296 1987 8095007

PA (%) 69.2 95.6 57.3 98.7 92.4 90.7 87.5 82.8 100.0 83.1

EO (%) 30.8 4.4 42.7 1.3 7.6 9.3 12.5 17.2 0.0 16.9

b)

Ground Truth Data

Class 1 2 3 4 5 6 7 8 9 10 Total CA (%) EC (%)

1 157 0 0 0 0 0 0 0 0 0 157 100.0 0.0

2 0 109 0 0 0 0 0 0 0 0 109 100.0 0.0

C
la

ss
ifi

e
d

M
a
p 3 0 4 75 0 0 0 1 1 0 0 81 92.6 7.4

4 0 0 1 376 17 0 7 5 0 0 406 92.6 7.4

5 14 0 3 4 519 11 15 7 0 0 573 90.6 9.4

6 0 0 3 1 0 118 0 0 0 0 122 96.7 3.3

7 0 0 0 0 0 0 441 38 0 0 479 92.1 7.9

8 1 0 0 0 0 0 40 245 0 0 286 85.7 14.3

9 0 1 0 0 0 0 0 0 1987 136 2124 93.6 6.4

10 0 0 0 0 0 0 0 0 0 670 670 100.0 0.0

Total 172 114 82 381 536 129 504 296 1987 8065007

PA (%) 91.3 95.6 91.5 98.7 96.8 91.5 87.5 82.8 100.0 83.1

EO (%) 8.7 4.4 8.5 1.3 3.2 8.5 12.5 17.2 0.0 16.9
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Table 6: Post classification comparison showing the area (ha) of the different land uses classes in the Dzungarian river basin,
NW China (1964 – 2008). Calculated changes refer to 1964 for the classes of the oasis settlements and on 1990 for the classes of
the periphery.

1964 1990 1999 2008
Class

Area Area Changes (ha&%) Area Changes (ha&%) Area Changes (ha&%)

Urban Areas 285 646 361 (+127) 706 421 (+148) 814 529 (+186)

Water Bodies 280 344 65 (+23) 505 226 (+81) 366 86 (+31)

Riverbanks 69 258 189 (+272) 145 76 (+109) 333 264 (+381)

Agricultural Land-Harvested 3692 2583 – 1875 – 2668 –

Agricultural Land-Crops 1226 – 3802 – 3534 –

Agricultural Land-Degraded 544 1184 640 (+118) 720 176 (+32) 632 88 (+16)

Total Agriculture 4236 4993 757 (+18) 6397 2161 (+51) 6834 2598 (+61)

Floodplain – Forest 1402 840 -562 (-40) 773 -629 (-45) 868 -534(-38)

Floodplain – Meadow 2676 2763 87 (+3) 1749 -927 (-35) 1455 -1221 (-46)

Total Oases 8314 8596 282 (+3) 8919 605 (+7) 9158 843 (+10)

Mountains – 27452 – 29210 1758 (+6) 32590 5138 (+19)

Rangeland – 10860 – 8672 -2188 (-20) 4902 -5958 (-55)

Total Area 8314 48156 – 48157 – 48162 –

Table 7: Surface area (ha) and changes of cultivated and degraded agricultural land at marginal sites within oasis settlements in
the Dzungarian river basin, NWt China (1964 – 2008). ‘Cultivated’ refers to agricultural land harvested as well as covered with
crops.

1964 1990 1999 2008

Class
Area Area Changes (ha&%) Area Changes (ha&%) Area Changes (ha&%)

Cultivated Agricultural Land 1346 545 -801 (-60) 760 -586 (-44) 880 -466 (-35)

Degraded Agricultural Land 236 492 255 (+108) 290 53 (+23) 183 -54 (-23)

During winter times livestock is kept in the floodplains
and the fodder mainly consists of hay and wheat straw
(Banks, 2001). Thus, it can be assumed that the impor-
tance of grasslands as potential fodder source declined
while crop residues (available at larger scales) became
more important. The proportion of the area classified as
degraded agricultural land decreased from nearly 1,200
to 600 ha in 1990 and 2008 respectively; whereas the
level of degraded land was higher compared to 1964.
This indicates that the policy for reconverting degraded
land into pasture or forest land is already producing
measurable results. The expansion of woodland in the
floodplain by 12 % from 1999 to 2008 resulted from
reforestation efforts started in 2002. Management im-
provements have been undertaken as well to avoid soil
salinity and to reclaim degraded areas for agricultural
useas reported for other regions in northern China (Yu
et al., 2010).

However, the differences in the acquisition dates of
the Landsat datasets may also be a reason for the de-
crease of degraded land. The Landsat image of 1990
was recorded one month later and thus around 20 %
more land was already harvested compared to 1999 and
2008. As a result, more agricultural land was with-
out vegetation cover including land affected by low soil
salinity. These areas were not classified as degraded
in the images of 1999 and 2008, which were acquired
one month earlier, since the spectral information of the
cropped areas confounded the information of the soil
salinity. For a more precise estimation of the total ex-
tent of saline soils, imagery with a large amount of bare
soil taken outside the vegetation period during winter
times would reveal better results.

After 1964 a bigger area on the images was classi-
fied as ‘Water Bodies’. This accords well with the find-
ings of Li et al.(2001) who reported that the water table
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within the oasis systems has been raised due to the large
scale application of irrigation water. The fluctuation of
the amount of irrigation water can be explained by dif-
ferences in the inflow of melt-water from the surround-
ing mountains, which feds most of the river systems in
northern China (Banks, 2001).

According to the results in the present study, range-
lands decreased by nearly 60 km2 from 1990 to 2008.
Generally, the reduction of rangeland areas in arid and
semi-arid regions can be explained by two contrary
models. One is the non-equilibrium model, whereby the
extent and productivity of rangelands is mainly deter-
mined by precipitation (Sullivan & Rohde, 2002). The
equilibrium model in contrast identifies overgrazing as
a major cause for declining productivity and palatability
of the rangelands, through a reduction of biodiversity
and changes in species composition (Christensenet al.,
2003; Vetter, 2005). Overgrazing can make pasture land
more susceptible to wind erosion resulting in a decline
of rangeland areas (Baoping & Tianzong, 2001). For
our study area, the causes for the degradation of range-
land areas remain unclear since precipitation data does
not cover the whole time span and is only available un-
til 1997 (NCDC, 2009). Furthermore, it was impossi-
ble to diminish inter- and intra-annual effects of precip-
itation based on monthly NDVI calculations (Richard
& Poccard, 1998; Weisset al., 2001), due to a lack of
sufficient Landsat datasets. Nonetheless, drought events
have been detected for 1989 and 1990. That similar re-
current drought events caused the observed reduction in
vegetation cover until 2008 is not very likely, indicating
that overgrazing may also be responsible for the degra-
dation of the rangelands as explained by the equilibrium
model.

4.2 Evaluation of the conducted classification

Oasis systems in arid NW China are vulnerable micro
ecosystems encompassed by very large rangeland areas.
These two ‘ecosystems’ differ substantially in produc-
tivity and species composition as it has been reported for
comparable regions in Mongolia (Hilbig & Tungalag,
2006). This is mainly due to differences in water avail-
ability. The productivity of oasis systems is based on ir-
rigation water supplied by rivers fed by melt-water, the
surrounding rangelands instead depend on scarce pre-
cipitation events (Banks, 2001; Wang & Cheng, 2000).
Taking these characteristics into account, both ecosys-
tems were classified separately to gather more accurate
results for the analysis of LUCC. Furthermore, a pre-
study revealed various misclassifications between vege-
tated rangeland areas and land use classes of oases (such
as un-harvested agricultural land, grassland and bushes
of the floodplain). However, the separation of oasis set-
tlements and rangeland areas as an additional step dur-
ing the classification process is time consuming, partic-
ularly on a broader scale.

The SMAPC and the MLC method with subsequent
smoothing resulted in similar classification accuracies.
The former performed slightly better which agrees with
the findings of McCauley & Engel (1995) indicating that
this classifier is more efficient for classifying different
types of crops cultivated on homogenous fields. How-
ever, a post processing of the classified Landsat data
was still necessary, as misclassification among urban ar-
eas, riverbanks, degraded agricultural land, and moun-
tainous areas occurred frequently. The post processing
of the classified Landsat datasets improved considerably
the PA values of the classes ‘Urban Areas’ and ‘River-
banks’ by 22 % and 34 %, respectively. Most of the land
use classes were classified in an acceptable way with
PA values> 90 %. On the other hand, post-processing
slightly increased the error of confusion among river-
banks, degraded agricultural land as well as agricul-
tural land covered with crops. Additionally, some wood-
land areas of the floodplains were misclassified as river-
banks and agricultural land after post-processing. The
assumed zone of riverbanks used during post processing
still depends on some uncertainties, whereby the real ex-
tent of riverbanks was under- as well as overestimated
for some areas.

The use of ancillary information for a more powerful
and accurate automated classification is recommended.
For instance, Stefanovet al. (2001) used, among oth-
ers, the results of a texture analysis for the identification
of urban areas in a semi-arid region of Arizona, USA.
They reported that the occurrence of houses, streets and
paths caused more texture compared to homogenous
agricultural fields. However, if a texture analysis suc-
cessfully identifies small-scale structures in the present
study (scattered houses in the floodplains, single bushes
or trees) remains questionable. To quantify soil salini-
sation more precisely, a correlation analysis between re-
flectance spectra of the Landsat datasets and measured
soil electric conductivity (EC) could be conducted. This
would facilitate a better identification of areas poten-
tially at risk of salinisation (Yuet al., 2010).

The low classification accuracies and misclassifica-
tions among trees, grassland interspersed with bushes
and agricultural used land can be explained by their sim-
ilar reflectance characteristics, since all classes depict
highly productive landscape features. Another reason
is the patchy structure of the floodplains with small-
scale changes of different land use types. These may
enhance the classification of ‘mixed pixels’ contain-
ing the spectral information of different ground features
(Wilkie & Finn, 1996). Hence, a fuzzy classification ap-
proach (Tso & Mather, 2001) would be more suitable
to classify these floodplain areas. Since each ground
object covered by one pixel contributes to the recorded
brightness value, the brightness of mixed pixels changes
slightly as the ratio of the covered ground objects vary.
By means of fuzzy rules and weighting factors, the re-
searcher can define in which range of brightness values
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a mixed pixel should be dedicated as a member of a cer-
tain class (Tso & Mather, 2001). For instance, in the
present study mixed pixels contained information from
cultivated agricultural land and its surrounding vegeta-
tion (grass, bushes), whereat a corresponding range can
be applied to intensify the weighing of cultivated land
and finally assess the biggest extension of farmland.

The specified NDVI threshold of 0.05 to classify the
studied rangelands revealed accurate classification re-
sults with a CA of 100 %. Wanget al. (2008) detected
even lower NDVI values for vegetated areas within arid
rangelands of NW China, but non-vegetated soils can
generate also slightly higher values than 0.05. How-
ever, reddish areas in a standard false colour image of
the 2008 Landsat dataset, indicating vegetation cover
(Sabins, 1997), were mostly concurrent to areas char-
acterised by NDVI values of 0.05 and higher.

For the panchromatic mode of the Corona images,
cumbersome visual image interpretation was necessary,
whereby harvested and non-harvested agricultural land
as well as vegetated and no-vegetated rangelands could
not be well differentiated and was thus not performed.
Even though visual interpretations are time consuming,
such methods facilitate the simultaneous processing of
texture, grey-colour level tones and geometric features,
and thus offer a rather accurate and realistic way of inter-
pretation (Ruellandet al., 2010). Furthermore, some ob-
served land cover changes may be overestimated as a re-
sult of possible biases in post-classification comparison
resulting from different classification approaches (visual
interpretation of Corona images versus automatic clas-
sification of Landsat images).

5 Conclusions

Remote sensing methods for the analysis of land-
scape transformations processes are important monitor-
ing tools in fast developing countries, such as North-
ern China, where dramatic land use changes occurred in
the last 50 years. The current method used was adapted
to the specific landscape characteristics of the present
study area, whereas the SMAPC with subsequent post-
processing revealed most accurate results. The extrap-
olation of this method is feasible for similar arid and
semi-arid environments, but for a broad scale applica-
tion the labour costs might be a limiting factor (digi-
tizing urban areas per hand, separation of oasis from
periphery), especially for the visual interpretation of
Corona images. However, for the detection of small-
scale changes within complex oasis systems this method
gives more reliable and accurate results compared to
standard classification methods.

The use of ancillary information during classification
process such as a digital elevation model, precipitation
data, agricultural statistics or the correlation between re-
flectance spectra of the Landsat datasets and measured

soil electric conductivity is recommended to increase
the classification accuracies of urban areas, abandoned
land and degraded land.
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