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Mais la vérité vous le savez, c’est ce qui simplifie
le monde et non ce qui crée le chaos. La vérité, c’est

le langage qui dégage l’universel. Newton n’a point
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d’une solution de rébus, Newton a effectué une opération
créatrice. Il a fondé un langage d’homme qui pût

exprimer à la fois la chute de la pomme dans un pré ou
l’ascension du soleil. La vérité, ce n’est point ce qui

se démontre, c’est ce qui simplifie.
Antoine de Saint-Exupéry,

Terre des hommes, Éditions Gallimard, 1939
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Abstract

In this Thesis, we develop and apply an accurate method to determine the ground-state prop-
erties of strongly-correlated electrons in the framework of lattice model Hamiltonians. In lattice
density-functional theory (LDFT) the basic variable is the one-particle density matrix γ. From a
generalized HK theorem, the ground state energy Egs[γgs] = minγ E[γ] is obtained by minimizing
the energy-functional E[γ] over all the physical or representable γ. The energy functional can be
divided into two contributions: the kinetic-energy functional T [γ], which linear dependence on γ is
exactly known, and the correlation-energy functional W [γ], which dependence on γ is not explicitly
known. Finding accurate approximations for W [γ] constitutes the actual challenge of this thesis.
Part of this work is based on previous studies which derive an approximation of W [γ] for the
Hubbard Hamiltonian based on scaling hypothesis and an exact analytical results for the Hubbard
dimer. However, this approach is limited to spin independent and homogeneous systems. In order
to extend the scope of LDFT, we have developed three different approaches to derive W [γ] in order
to study broken symmetry problems. First we extend the previous scaling functional to system
having charge transfer. By a systematic study of the dependence of W [γ] on the charge distribution
we find similar scaling properties as for the homogeneous case. An extension to the Hubbard model
on bipartite lattices is then derived and applied to finite and infinite systems with repulsive and
attractive interactions. The high accuracy of this functional is demonstrated. Nevertheless, this
approach is difficult to transfer to more complex systems, since the calculation of W [γ] applies to
the system as a whole. To overcome this problem, we derive another approximation based on local
scaling properties. This functional is formulated on-site so that it can be applied to any ordered
or disordered Hamiltonian with on-site interaction. As applications we study the metal-insulator
transition in the ionic Hubbard model in one- and two-dimensions, as well as the one-dimensional
Hubbard chain with first and second nearest neighbor hoppings. Finally, we develop a numerical
approach of W [γ], on the basis on exact diagonalizations of an effective many-body Hamiltonian
corresponding to a cluster surrounded by an effective medium. This effective Hamiltonian depends
on the density matrix γ and allows to derive approximation to W [γ] which improve systemati-
cally with increasing cluster size. The formulation is spin-dependent and allows a straightforward
generalization to multi-orbital correlated systems such spd-Hamiltonians. In addition it take into
account the effects of short-range charge and spin fluctuations in the functional. The accuracy
of the method is demonstrated for the Hubbard model by comparison with the Bethe-Ansatz so-
lution (1D) and quantum Monte Carlo simulations (2D). Finally, an outlook or relevant future
developments of the theory is provided.
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Abstrakt

In dieser Doktorarbeit wird eine akkurate Methode zur Bestimmung von Grundzustandseigen-
schaften stark korrelierter Elektronen im Rahmen von Gittermodellen entwickelt und angewandt.
In der Dichtematrix-Funktional-Theorie (LDFT, vom englischen lattice density functional theory)
ist die Ein-Teilchen-Dichtematrix γ die fundamentale Variable. Auf der Basis eines verallgemein-
erten Hohenberg-Kohn-Theorems ergibt sich die Grundzustandsenergie Egs[γgs] = minγ E[γ] durch
die Minimierung des Energiefunktionals E[γ] bezüglich aller physikalischer bzw. repräsentativer
γ. Das Energiefunktional kann in zwei Beiträge aufgeteilt werden: Das Funktional der kinetischen
Energie T [γ], dessen lineare Abhängigkeit von γ genau bekannt ist, und das Funktional der Korre-
lationsenergie W [γ], dessen Abhängigkeit von γ nicht explizit bekannt ist. Das Auffinden präziser
Näherungen für W [γ] stellt die tatsächliche Herausforderung dieser These dar. Einem Teil dieser
Arbeit liegen vorausgegangene Studien zu Grunde, in denen eine Näherung des Funktionals W [γ]
für das Hubbardmodell, basierend auf Skalierungshypothesen und exakten analytischen Ergebnis-
sen für das Dimer, hergeleitet wird. Jedoch ist dieser Ansatz begrenzt auf spin-unabhängige und
homogene Systeme. Um den Anwendungsbereich von LDFT zu erweitern, entwickeln wir drei
verschiedene Ansätze zur Herleitung von W [γ], die das Studium von Systemen mit gebrochener
Symmetrie ermöglichen. Zuerst wird das bisherige Skalierungsfunktional erweitert auf Systeme
mit Ladungstransfer. Eine systematische Untersuchung der Abhängigkeit des Funktionals W [γ]
von der Ladungsverteilung ergibt ähnliche Skalierungseigenschaften wie für den homogenen Fall.
Daraufhin wird eine Erweiterung auf das Hubbardmodell auf bipartiten Gittern hergeleitet und an
sowohl endlichen als auch unendlichen Systemen mit repulsiver und attraktiver Wechselwirkung
angewandt. Die hohe Genauigkeit dieses Funktionals wird aufgezeigt. Es erweist sich jedoch als
schwierig, diesen Ansatz auf komplexere Systeme zu übertragen, da bei der Berechnung von W [γ]
das System als ganzes betrachtet wird. Um dieses Problem zu bewältigen, leiten wir eine weitere
Näherung basierend auf lokalen Skalierungseigenschaften her. Dieses Funktional ist lokal bezüglich
der Gitterplätze formuliert und ist daher anwendbar auf jede Art von geordneten oder ungeord-
neten Hamiltonoperatoren mit lokalen Wechselwirkungen. Als Anwendungen untersuchen wir den
Metall-Isolator-Übergang sowohl im ionischen Hubbardmodell in einer und zwei Dimensionen als
auch in eindimensionalen Hubbardketten mit nächsten und übernächsten Nachbarn. Schließlich
entwickeln wir ein numerisches Verfahren zur Berechnung von W [γ], basierend auf exakten Diago-
nalisierungen eines effektiven Vielteilchen-Hamilton-Operators, welcher einen von einem effektiven
Medium umgebenen Cluster beschreibt. Dieser effektive Hamiltonoperator hängt von der Dichtem-
atrix γ ab und erlaubt die Herleitung von Näherungen an W [γ], dessen Qualität sich systematisch
mit steigender Clustergröße verbessert. Die Formulierung ist spinabhängig und ermöglicht eine di-
rekte Verallgemeinerung auf korrelierte Systeme mit mehreren Orbitalen, wie zum Beispiel auf den
spd-Hamilton-Operator. Darüber hinaus berücksichtigt sie die Effekte kurzreichweitiger Ladungs-
und Spinfluktuationen in dem Funktional. Für das Hubbardmodell wird die Genauigkeit der Meth-
ode durch Vergleich mit Bethe-Ansatz-Resultaten (1D) und Quanten-Monte-Carlo-Simulationen
(2D) veranschaulicht. Zum Abschluss wird ein Ausblick auf relevante zukünftige Entwicklungen
dieser Theorie gegeben.
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Chapter 1

Introduction

State of the art condensed matter electronic theories are mostly based on two complemen-
tary approaches. One of them is density functional theory (DFT) [1] which replaces the
wave function, which characterizes a quantum mechanical state completely, by the elec-
tronic density ρ(−→r ) as the fundamental variable of the many-body problem. In particular,
the energy E of any electronic system is expressed as a functional of ρ(−→r ) by splitting
it in two different terms. The first one depends explicitly on the system under study
through the external potential Vext(

−→r ) acting on the electrons. This typically involves the
ion-electron interaction and any other external fields. The second type of contributions
describes intrinsic properties of the electronic system, namely, the kinetic energy T [ρ] and
the interaction energy W [ρ]. These are universal functionals of ρ(−→r ) in the sense that they
are independent of the considered external potential describing a given specific system.
The ground-state properties can then be found by implementing a variational procedure
with respect to ρ(−→r ), for example, as in the Kohn-Sham scheme [2]. It is important to
remark that in order to use DFT, one needs explicit forms of these two universal function-
als. Since the beginning of DFT large number of studies have been devoted to deriving
approximations for the challenging T [ρ] and W [ρ]. In particular one should mention the
local density approximation (LDA), [2] which is the simplest and probably most success-
ful approximation and which takes the homogeneous electron gas as reference system.
Further improvements have been done by considering, for example, the dependence of T
and W on the gradient of the density. Nowadays many functionals of different types are
available [3, 4, 5]. The most important of these approaches is the generalized gradient
approximation (GGA) [6].
The DFT formulation is of general validity and has been successfully applied to a great
variety of physical problems, well-beyond the initial scope of the inhomogeneous electrons
gas. For example, it can be applied to obtain properties of atoms, molecules, periodic
systems, metallic alloys, etc [3, 4, 7]. Among the consider properties one can mention the
ground-state energy, spin and orbital moments, binding energy, phonon frequencies, mag-
netic anisotropies energy, etc. Nevertheless, it is also well known that the usual LDA and
GGA approximations to the exchange and correlation energy-functional EXC = W+T−T0,
which take into account all the correlation effects including the ones on the kinetic energy
T − T0 where T0 is the kinetic energy of a non-correlated system, fail systematically to
describe systems showing strong electron correlations in narrow bands [8, 9, 10, 11, 12, 13].
This is the case, for example, of problems involving a separation of charge and spin de-
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grees of freedom, or the ones showing correlation-induced localizations [14, 15]. For the
improvement of this theory, it is therefore important to understand the reasons behind
these drawbacks. Among the prenomen of current interest one should stress the impor-
tance of the separation of charge and spin degrees of freedom and the development of
insulating gap due to strong interaction, in order to extend its applicability, to more
complex strongly interacting systems.

The second main approach to condensed matter electronic theory is based on many-
body model Hamiltonians. In order to study more complex phenomena, such as strong
electronic correlations, it is compulsory to reduce the number of degree of freedom. No-
tice that strong electronic correlations generate many interesting and important effects in
condensed mater. Let us recall for example, magnetism, superconductivity, Mott insula-
tors, mixed valence systems, topological effects, etc. which detailed understanding still
remain a challenge. One of the most common and simple models to study these systems
is the Hubbard model [16] which describes the interplay between electronic delocalization,
charge redistribution and electronic correlations. From this model one can also derive,
in the limit of strong correlations, spin Hamiltonians like Heisenberg or tJ models. In
addition, from the Hubbard models related Hamiltonians is is possible to describe the
effects of magnetic a impurity as the Anderson model and Kondo models [17]. In the past
fifty years, an enormous research effort has been done to develop methods, both numerical
and analytical, for solving these models and for understanding the rich variety of effects
generated by the Coulomb interactions. However, there are few known exact results as the
Bethe-Ansatz for the one-dimensional Hubbard chain [18], the Nagaoka theorem [19] for
systems close to band filling at the atomic limit and the Lieb theorem [20] on the nature
of the ground state for bipartite lattice at half-band filling. Another way to approach
the solution to the Hubbard model is based on perturbation theory, such as the so called
Hubbard I approximation [16], or the cluster perturbation theory [21]. Many mean-field
approximations have also been developed, for example, the saddle-point slave boson the-
ory [22] or the dynamical mean field theory (DMFT) [23]. Some accurate through very
demanding numerical methods are also available, as for instance, the density matrix renor-
malization group (DMRG) method [24] for one-dimensional (1D) systems and quantum
Monte Carlo (QMC) method [25].

Taking into account that only few studies have been done to render DFT appli-
cable in the study of strongly correlated systems, as for instance the LDA+U [26] or
LDA+DMFT [27] which combine ab-initio DFT calculations for the electronic structure
with many-body technique to compute the correlation-energy functional. Therefore, the
development of DFT for lattice models Hamiltonians is challenging for both sides. On
one side, for density functional theory, which fails when electrons are strongly correlated,
it would allow to extend its applicability to strongly correlated systems. In addition, the
information inferred from DFT studies of lattice Hamiltonians could also provide new
insights on the properties of the universal kinetic- and interaction-energy functionals and
thus improve functionals used in ab-initio DFT codes. This would be helpful in order
to improve methods as LDA+U or LDA+DMFT. On the other side, since DFT has an
universal validity, it possible to apply it to model Hamiltonians. These new perspectives
give us the opportunity to develop a new strategy to study systems involving strongly
correlated electrons.

Recently, the application of DFT to lattice models was developed and applied to sev-
eral strongly correlated systems yielding interesting results. For example, one can mention
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Chapter 1. Introduction

the determination of band gaps in semiconductors [28], the study of the role of off-diagonal
elements of the density matrix and the non-interacting v-representability in strongly cor-
related systems [29], and the development of energy functionals of the density matrix with
applications to the Hubbard and Anderson models [30]. More recently, an exchange and
correlation energy-functional of the site occupations has been derived on the basis of the
Bethe-Ansatz to the one-dimensional (1D) Hubbard model [31]. Moreover, time dependent
effects have also been investigated [32].
It is also in this context, that lattice density functional theory (LDFT) have been intro-
duced, at the beginning of the new millennium [33, 34, 35]. One of the originalities of this
approach relies on the use of the single-particle density matrix (SPDM) as the fundamen-
tal variable, instead of considering only the electronic density as in conventional DFT.
This choice is motivated by the fact that for the lattice models it is the hopping term in
the Hamiltonian (connectivity matrix) and the energy levels at each site (diagonal level)
which determine the system under study: 1D, 2D, or 3D lattice, homogeneous or inho-
mogeneous system, magnetic field, etc. In addition, the energy associated to these single
particle contribution is the convolution between the hopping and energy level matrix and
the SPDM. Consequently, the SPDM imposes itself as the relevant variable to develop a
DFT for model Hamiltonians. This can be also justified by the fact that non-correlated
states and strongly correlated states often have the same charge distribution ni (for ex-
ample, homogeneous systems). Thus considering only electronic density is insufficient to
characterize the system. In general, previous studies show that by considering only the
local occupation ni as variable yields to interaction functionals which depend non-linearly
on the Coulomb and on the hopping integrals [31]. This is in contradiction with known
general results such as the Levy and Lieb formulation of DFT, which implies that the
correlation-energy functional depends linearly on the Coulomb integral and does not de-
pend on the hopping integral.
As in the case of conventional DFT, the variational principle and the one-to-one corre-
spondence theorem (generalization of Hohenberg-Kohn theorem for LDFT) are used to
determine the ground-state energy and SPDM. In LDFT the dependence of one particle
contribution on the SPDM is straightforward. The main challenge consists in having an
explicit approximation of the correlation-energy functional (CEF).
Several systematic studies of the CEF for the homogeneous Hubbard models. It has been
shown that W can be appropriately scaled as a function of g12 = (γ12 − γ∞

12)/(γ0
12 − γ∞

12),
where γ0

12 (γ∞
12) refers to the limit of weak (strong) electronic correlations. In other words,

the change in W associated to a given change in the degree of the NN charge transfer
and electron delocalization can be regarded as nearly independent of the system under
study [33, 34]). Consequently, an approximation of the CEF was introduced by taking
as a reference the simple and analytical case (the Hubbard Dimer) and using the scaling
properties with respect to the v−representability. Using this approximation, the model
was applied to several homogeneous systems [33, 35, 36, 37]. All these studies have shown
the relevance of this approach and, in particular obtain accurate results for ground states
properties performing very simple analytic calculations. In addition, in a previous works, a
new functional was derived in the context of LDFT for the Anderson impurity model [38].
An important limitation of these studies, refers to the non-local formulation of the CEF
which excludes any problem involving symmetry-breaking (non-periodic clusters, charge
density waves (CDWs), spin waves, inhomogeneities in general) in the range of applicabil-
ity of LDFT. Theses problems play a major role in physics. For example, nano-particles
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and in particular, magnetic nano-particles are one of the most challenging research sub-
jects nowadays. Moreover, strong correlations can also be important in this subject and
they could be studied in the framework of geometrically inhomogeneous Hubbard clus-
ters [39]. Inhomogeneous potentials, can also drive the formation of CDWs, resulting in
some exotic phase diagrams, for example, the metallic phase due to the interplay between
the ionic potential and the Coulomb-interaction in the 2D square lattice ionic Hubbard
model [40]. Inhomogeneity is also predominant to drive superconductivity in attractive
Hubbard model, in particular in cuprates [41].
It is the goal of this thesis to extend the scope of LDFT, to problems where inhomogeneous
chare distribution is important. In this work, we study systematically the dependence of
the CEF of the charge distribution by numerical Lanczos diagonalization [42] in inho-
mogeneous periodic clusters. From this study, we derive further approximations for the
correlation energy functional, which extend the scaling behavior already observed in the
homogeneous case [34]. Moreover, we also focus on obtaining a local or on-site formula-
tion of the CEF. Local formulations of a CEF provide a real advantages in order to study
inhomogeneous systems, since they should be particularity easy to transfer to any on-site
correlated systems. This implies, that the environment of a site is considered as a field
parameter by the density-matrix. Finally, in order to formulate a more general and po-
tentially more accurate approach we have developed a numerical method to approximate
W [γ]. It involves the exact diagonalization of an effective many-body Hamiltonian of a
cluster surrounded by an effective field. This effective Hamiltonian depends on the density
matrix γ. We show in the case of the Hubbard model that this method increases system-
atically the accuracies of ground states properties (about 0.5% relative error on ground
states energy for a nine sites cluster). By using a real space expansion, this method take
into account short-range charge and spin fluctuations, which are playing a major role at
the strongly correlated limit. This method is spin-dependent so that it can by applyed
directly to spin polarized systems. In addition, it is possible to extend it straightfor-
wardly to system having inter-site correlation. This provide an important step in order to
study multi-band Hamiltonian which are compulsary in order to study reallistic systems,
in particular those having 3d- or 4f -elements.

This thesis is organized as follows. In the first part, we briefly present the theoretical
background. The chapter 2 is devoted to review the Hohenberg-Kohn-Sham DFT in the
continuum. Chapter 3 presents the Hubbard model, its origin, some known exact results,
simple mean field approximations, and related models. We also point out at the end of
chapter 3 the possibility of using the Hubbard model within an attractive interaction.
The chapter 4 focus on presenting the concept of density functional theory on a lattice.
The second part focus on the dependence of the CEF on charge distribution and on
methods to approximate it. The chapter 5 study systematically the properties of the
CEF using numerical exact diagonalization. From the scaling properties, we derive a first
approximation for the interaction energy for bipartite Hamiltonians. We apply this new
formulation to finite size systems, as well as for the attractive Hubbard model. Our results
are then compared with exact Lanczos diagonalization (cluster), Bethe-Ansatz and DMRG
(one-dimensional systems). In chapter 6 we derive a local formulation of the correlation-
energy functional and apply it to study the metal-insulator transition (band-insulator and
Mott-insulator) in inhomogeneous systems and in the one-dimensional chain with next
nearest neighbors. Finally, in Chapter 7 we develop the cluster expansion and prove
that for the Hubbard model the accuracy is increased remarkably. Finally, we summarize
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Chapter 1. Introduction

the conclusions of this work and point out its challenging perspectives conserning further
development of LDFT.
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Chapter 2

Fundamentals on density
functional theory

Density functional theory (DFT) is one of the most popular and successful quantum me-
chanical approaches to condensed matter systems. Nowadays, it is routinely applied for
calculating properties (e.g., binding energy in molecules, band structures of solids, mag-
netic moments in nanoparticles, etc.) with very good agreement with experiments. More-
over, there exist many different ab-initio DFT implemented codes in the market solving
the Kohn-Sham equations with diverse characteristics (for example, by using the projector
augmented wave (PAW) as the Vienna ab-initio simulation package (VASP), using Green’s
function (GF) methods like the GF Korringa Kohn and Rostoker (KKR) method, etc...).
Historically, the first theory replacing the wave function |Ψ〉 by the electronic density ρ(~r)
was developed in the 20’s by Thomas and Fermi (TF) [43, 44]. The TF theory has been
rapidly abandoned as soon as one could show, short after its formulation and application
to atoms, that it could describe no molecular bonding. Until 1964, the density functional
(DF) approach was not used very intensively and was more considered as model or approx-
imation. From this perspective, the most important method is the Slater approach Xα
which was intend to simplify the cumbersome exchange interaction on Hartree-Fock (HF)
calculations by a phenomenological functional depending on the local density. The situ-
ation changed drastically in 1964 with a publication by Hohenberg and Kohn (HK) [1].
In this paper, the authors proved two fundamental theorems establishing that for the
ground-state energy, the Thomas-Fermi model can be consider as an approximation of an
exact theory, the density functional theory. This so called HK theorem, proves the exis-
tence of a functional relation between the ground state energy Egs[ρ(~r)] and the electronic
density ρ(~r). In addition, one can use the variational principle to determine Egs and ρ(~r).
However, DFT becomes really practical when it is formulated as an effective single-body
theory, a breakthrough achieved by Kohn and Sham (KS) [2]. In KS theory, the problem
is reduced to the solution of a one-particle electronic problem within an effective potential
that is also a functional of the density. In this chapter, we present, first of all, DFT in its
original version using the HK theorems but also a more modern version derived by Levy
and Lieb [45]. In section 2.2 we present the Kohn-Sham scheme together with a simple
but really successful approximation to the correlation-energy functional, the famous local
density approximation (LDA).
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Chapter 2. Fundamentals on density functional theory

2.1 DFT as a many-body theory

In this section we present the foundations of DFT in its original version by HK and a
more general one following the Levy and Lieb procedure. These are central properties
since they prove the validity of the theory, and its universality.

2.1.1 The Hohenberg-Kohn theorems

We start from the Schrödinger equation for a system of N interacting fermions in the
Born-Oppenheimer approximation. The electronic Hamiltonian reads

Ĥ =
−~

2

2m

∑

σ

∫

d~r ψ̂†
σ(~r)∇2 ψ̂σ(~r) +

∑

σ

∫

d~r ψ̂†
σ(~r)Vext(~r) ψ̂σ(~r)

+
1

2

∑

σ,σ′

∫

d~r d~r′ ψ̂†
σ(~r) ψ̂†

σ′(~r′)w(~r, ~r′) ψ̂σ′(~r′) ψ̂σ(~r), (2.1)

where ψ̂†
σ (ψ̂σ) is a creation (annihilation) operator of a fermion with spin σ. These opera-

tors respect the Pauli principle by satisfying the anti-commutation law {ψ̂†
σ(~r), ψ̂σ′(~r′)} =

δ(~r − ~r′)δσ,σ′ . Vext(~r) is a one-particle external potential describing the ionic potentials

where the electrons are moving and/or any other external fields. Finally, w(~r, ~r′) is the
electron-electron interaction (Coulomb repulsion, for example), which is independent of
the specific system under study. Following the presentation of Dreizler and Gross [4], we
define V as the ensemble of all local one-particle potentials such that |Ψgs〉 is the non
degenerate ground-state of the eigenvalue problem

Ĥ|Ψ〉 = (T̂ + V̂ext + Ŵ )|Ψ〉 = E|Ψ〉 (2.2)

Ĥ|Ψgs〉 = Egs|Ψgs〉,

with V̂ext ∈ V. Defining by Ψ the ensemble of states |Ψgs〉, we can stablish a transforma-
tion between the ensemble of external potentials V and the ensemble of N -particle wave
functions Ψ as

C : V −→ Ψ. (2.3)

By construction, this transformation is surjective. In other words, each element of Ψ is
mapped to at least one element of V.
For all wave functions in Ψ we can compute the associated density

ρ(~r) = 〈Ψ|
∑

σ

ψ̂†
σ(~r) ψ̂σ(~r)|Ψ〉 = N

∑

σ

∫

d~x2...

∫

d~xN |Ψ(~rσ, ~x2...~xN )|2, (2.4)

where ~xi = (~ri, σi) refers to position and spin coordinates. If we now call N the ensem-
ble of all densities derived from a non degenerate ground state, we can define another
transformation

D : Ψ −→ N. (2.5)

We are interested in establishing the inverse transformation of C and D. Assuming this
inversion is possible, the knowledge of C−1 would allow us to know from a N-particle wave
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2.1. DFT as a many-body theory

function |Ψ〉 ∈ Ψ the unique potential V̂ext ∈ V associated to |Ψ〉 and consequently the full
Hamiltonian. On the other hand the knowledge of D−1 would establish the correspondence
between a given electronic density ρ(~r) ∈ N and the associated ground-state wave function

|Ψ〉. The combination C−1D−1 would associate directly an external potential V̂ext to the
electronic density of the ground state ρ(~r). In other words, if C−1 and D−1 exist, the
ground-state energy of the Hamiltonian can be directly obtained as a functional of the
electronic density.
We establish now the existence of the inverse of C and D. This is equivalent to proving that
the transformation between V and Ψ is bijective. We focus first on the transformation C
and show that two potentials V̂ext and V̂ ′

ext ∈ V yield two different ground states |Ψ〉 and

|Ψ′〉, as soon as the V̂ext and V̂ ′
ext differ by more than a constant [V̂ext(~r)−V̂ ′

ext(~r) 6= const.].
From the Schrödinger equation, we have

(T̂ + Ŵ + V̂ext)|Ψgs〉 = Egs|Ψgs〉 and

(T̂ + Ŵ + V̂ ′
ext)|Ψ′

gs〉 = E′
gs|Ψ′

gs〉 (2.6)

We follow the proof by reductio ad absurdum. Supposing that |Ψgs〉 = |Ψ′
gs〉, then it

follows that
(V̂ext − V̂ ′

ext)|Ψgs〉 = (Egs − E′
gs)|Ψgs〉. (2.7)

Since Ψ(~r) = 〈~r|Ψ〉 cannot be zero in a domain of finite measure and Vext(~r) and V ′
ext(~r)

are well behaved it follows that V̂ext(~r) − V̂ ′
ext(~r) = (Egs − E′

gs) ∀~r ∈ R
3, in contradiction

with V̂ext(~r)− V̂ ′
ext(~r) 6= const. Consequently |Ψgs〉 6= |Ψ′

gs〉 if V̂ext − V̂ ′
ext 6= const, showing

that C is a bijection between V and Ψ, implying the existence of C−1.
We now consider the transformation D and show that if |Ψgs〉 6= |Ψ′

gs〉 then ρ(~r) 6= ρ(~r′).
On one hand, from the Rayleigh-Ritz variational principle for |Ψgs〉 6= |Ψ′

gs〉 and |Ψgs〉
non-degenerate, we obtain

Egs = 〈Ψgs|Ĥ|Ψgs〉 < 〈Ψ′
gs|Ĥ|Ψ′

gs〉. (2.8)

Moreover, we have

〈Ψ′
gs|Ĥ|Ψ′

gs〉 = 〈Ψ′
gs|(T̂ + Ŵ + V̂ ′

ext + V̂ext − V̂ ′
ext)|Ψ′

gs〉

= E′
gs +

∫

d~r ρ′gs(~r)[v(~r) − v′(~r)], (2.9)

where V̂ext =
∑N

i=1 vi(~ri). Replacing Eq. (2.9) in Eq. (2.8) one obtains

Egs < E′
gs +

∫

d~r ρ′gs(~r)[v(~r) − v′(~r)]. (2.10)

The same operation can be done beginning with |Ψ′
gs〉, i.e., replacing |Ψ〉 by |Ψ′〉. This

leads to

E′
gs < Egs +

∫

d~r ρ(~r)[v′(~r) − v(~r)]. (2.11)

We use again a proof by reductio ad absurdum and we suppose that ρgs(~r) = ρ′gs(~r) leading
to the contradiction

Egs + E′
gs < Egs + E′

gs. (2.12)
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Chapter 2. Fundamentals on density functional theory

We conclude that D is a bijection, so that D−1 exists. Note that the rather restrictive
assumption of non-degenerate ground-state is essential for the present proof. However, an
extension to degenerate ground-state is available [3, 4]
The existence of C−1 and D−1 and the fact that they are bijective imply that to any
electronic density ρ(~r) corresponds a unique ground-state wave function |Ψgs〉. This leads
to the HK theorems

HK theorem 1: The ground-state expectation value of any observable Ô is a unique
functional of the exact ground-state density:

〈Ψgs[ρgs(~r)]|Ô|Ψgs[ρgs(~r)]〉 = O[ρgs(~r)]. (2.13)

Proof: The full inverse map C−1D−1 : ρgs(~r) → v(~r) tells us that in the case of a
non-degenerate ground state, the knowledge of the ground-state density determines the
external potential of the system besides an irrelevant constant. Thus the entire Hamilto-
nian is a functional of ρ(~r) since the kinetic and interaction energies are operators that
are system independent.

HK theorem 2: It establishes the variational character of the energy functional

EV̂ext
[ρ(~r)] = 〈Ψ[ρ(~r)]|T̂ + V̂ext + Ŵ |Ψ[ρ(~r)]〉, (2.14)

where V̂ext is the external potential of the system.
Proof: The states |Ψ[ρ(~r)]〉 are generated via D−1 from the elements of N and from the
variational principle

Egs < 〈Ψ[ρ(~r)]|T̂ + V̂ext + Ŵ |Ψ[ρ(~r)]〉 = EV̂ext
[ρ(~r)]. (2.15)

In other words, EV̂ext
[ρ(~r)] is larger that Egs if ρ(~r) 6= ρgs(~r). Moreover, since D−1 is

bijective we have

Egs = 〈Ψgs[ρgs(~r)]|T̂ + V̂ext + Ŵ |Ψgs[ρgs(~r)]〉 = EV̂ext
[ρgs(~r)]. (2.16)

This proves the variational character of the functional EV̂ext
[ρ(~r)].

2.1.2 Consequences of HK theorems and representability issues

Now that we have enunciated and proved the HK theorems we discuss their consequences
as well as some issues related to the representability of electronic densities. These are the
conditions for a density ρ(~r) to be included in N.
A straightforward important consequence of the HK theorems is that the ground-state
density ρext(~r) can be determined by the minimization of the functional EV̂ext

[ρ(~r)]:

Egs = minρ(~r)∈NEV̂ext
[ρ(~r)] (2.17)

Since D−1 does not depend on the external potential V̂ext, we can rewrite the energy
functional as

EV̂ext
[ρ(~r)] = FHK[ρ(~r)] +

∫

d~r vext(~r)ρ(~r) (2.18)
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2.1. DFT as a many-body theory

where we have introduced the Hohenberg and Kohn functional

FHK[ρ(~r)] = 〈Ψ[ρ(~r)]|T̂ + Ŵ |Ψ[ρ(~r)]〉. (2.19)

Note that FHK[ρ(~r)] does not depend on the external potential. Therefore, it is a univer-
sal functional for every system. However, FHK[ρ(~r)] depends on the number of fermions

in the system, on their mass, charge, and form of their interaction Ŵ . Notice that the
HK functional is defined only for densities belonging to N. In other words, for a density
obtained from a non-degenerate ground state corresponding to some physical (well be-

haved) external potential V̂ext (transformation C). The condition that ρ(~r) derives from

the ground-state of an external potential V̂ext is known as the v-representability condi-
tion [3, 4]. The functional FHK as well as EV̂ext

are defined only for densities associated

with pure v-representable states, i.e., the densities resulting from states |Ψ〉 that are eigen-
vector of the eigenvalue problem (2.2). This condition limits seriously the practical appli-
cation of FHK. Unfortunately, the majority of wave functions |Ψ〉 are not v-representable
states and consequently one cannot use the HK theorems under this condition. For exam-
ple, Levy and Lieb [46] have proven that the density obtained from a mixed ensemble of
q degenerate wave functions cannot be associated with an external potential. In order to
prove this statement, they considered the density matrix

D̂ =

q
∑

i=1

wi|Ψi〉〈Ψi| (2.20)

with wi ≥ 0 and
∑q

i=1 wi = 1. From D̂ they compute the electronic density

ρD(~r) =

q
∑

i=1

wiρi(~r) where ρi(~r) = 〈Ψi|ρ̂|Ψi〉. (2.21)

They showed that ρD(~r) cannot be obtained from a pure v-representable wave function
despite the fact that by construction ρD(~r) is associated to an external potential. This
class of wave functions are called ensemble v-representable. They are obtained as an
incoherent superposition of pure state v-representable wave functions. Note that Englisch
and Englisch have proven that these well behaves functions ρD(~r) are not the ground-
state of any external potential. Therefore, it is not true that all well-behaved functions
are pure state or even ensemble v-representable [47]. These formal problems of the HK
functional may render its application unpractical. An extension of the domain of definition
of the functional FHK to any non negative density ρ(~r) whose integration gives the particle
number N is most desirable.

2.1.3 Levi-Lieb functional

Levy and Lieb (LL) were the first to make the extention of the domain of FHK [46]. They
proposed as an extension the definition of a new functional

FLL[ρ(~r)] = min|Ψ〉→ρ(~r)〈Ψ|T̂ + Ŵ |Ψ〉 (2.22)

where the minimization is done over all the fermion wave functions |Ψ〉 that give the same
electronic density ρ(~r). In other words, one selects the |Ψ〉 that gives the minimum sum
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Chapter 2. Fundamentals on density functional theory

of the of kinetic and correlation energy under the constraint of having a given ρ(~r). Note
that FLL[ρ(~r)] is independent to the external potential which defines the problem.
In order for FLL[ρ(~r)] to be a universal functional, independent of the external potential,
and that the minimization of the total energy

E[ρ(~r)] = FLL[ρ(~r)] +

∫

d~rv(~r)ρ(~r) (2.23)

to give the ground state energy, we need to prove the following two simple but important
theorems.

Levy’s theorem 1: To any density ρ(~r) associated with a N -particle wave function
|Ψ〉 corresponds a energy E[ρ(~r)] higher or equal to the ground-state energy Egs

E[ρ(~r)] = FLL[ρ(~r)] +

∫

d~r v(~r) ρ(~r) ≥ Egs (2.24)

Levy’s theorem 2: The ground-state energy Egs is obtained for the ground-state
density ρgs(~r) as

E[ρgs(~r)] = FLL[ρ(gs~r)] +

∫

d~rv(~r)ρgs(~r) = Egs (2.25)

Notice that it is not necessary to impose the non-degeneracy of the wave function
|Ψ〉. In this approach, the minimization runs over all densities ρ(~r) obtained from any
N -particle wave function |Ψ〉. This ensemble of densities is N -representable.
Before the proof of these two theorems, it useful to introduce some extra definition. In

this sense, we mean by |Ψρ(~r)
min 〉 the wave function which realizes the minimum on the right

hand side of Eq. (2.22), i.e.,

FLL[ρ(~r)] = 〈Ψρ(~r)
min |T̂ + Ŵ |Ψρ(~r)

min 〉. (2.26)

|Ψρ(~r)
min 〉 is the wave function that minimizes FLL among all |Ψ〉 which give the density

ρ(~r). Finally, we denote by Ψ
ρgs(~r)
min the wave function which minimizes FLL over all wave

functions |Ψ〉 giving the ground-state density ρgs(~r).

FLL[ρgs(~r)] = 〈Ψρgs(~r)
min |T̂ + Ŵ |Ψρgs(~r)

min 〉. (2.27)

Proof of Levy’s theorem 1:
Using Eq. (2.26) one obtains

∫

d~r v(~r) ρ(~r) + FLL[ρ(~r)] =

∫

d~r v(~r) ρ(~r) + 〈Ψρ(~r)
min |T̂ + Ŵ |Ψρ(~r)

min 〉 (2.28)

with V̂ext =
∑N

i=1 vi(~ri). It follows that

∫

d~r v(~r)ρ(~r) + FLL[ρ(~r)] = 〈Ψρ(~r)
min |T̂ + Ŵ + V̂ext|Ψρ(~r)

min 〉. (2.29)
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2.1. DFT as a many-body theory

Then, the variational principle implies

〈Ψρ(~r)
min |T̂ + Ŵ + V̂ext|Ψρ(~r)

min 〉 ≥ Egs, (2.30)

from which we deduce that
∫

d~r v(~r)ρ(~r) + FLL[ρ(~r)] ≥ Egs. (2.31)

This proves Levy’s theorem 1.

Proof of Levy’s theorem 2:
Again, the variational principle imposes that

Egs ≤ 〈Ψρgs(~r)
min |T̂ + Ŵ + V̂ext|Ψρgs(~r)

min 〉. (2.32)

In other words,

〈Ψgs|T̂ + Ŵ + V̂ext|Ψgs〉 ≥ 〈Ψρgs(~r)
min |T̂ + Ŵ + V̂ext|Ψρgs(~r)

min 〉. (2.33)

We now separate the contributions that depend on the external potential from those which
are independent of it:

∫

d~r v(~r)ρgs(~r) + 〈Ψgs|T̂ + Ŵ |Ψgs〉 ≤
∫

d~r v(~r)ρgs(~r) + 〈Ψρgs(~r)
min |T̂ + Ŵ |Ψρgs(~r)

min 〉. (2.34)

Consequently,

〈Ψgs|T̂ + Ŵ |Ψgs〉 ≤ 〈Ψρgs(~r)
min |T̂ + Ŵ |Ψρgs(~r)

min 〉. (2.35)

Moreover, from the definition we have

〈Ψgs|T̂ + Ŵ |Ψgs〉 ≥ 〈Ψρgs(~r)
min |T̂ + Ŵ |Ψρgs(~r)

min 〉. (2.36)

Eq. (2.35) and (2.36) impose that

〈Ψgs|T̂ + Ŵ |Ψgs〉 = 〈Ψρgs(~r)
min |T̂ + Ŵ |Ψρgs(~r)

min 〉. (2.37)

Using Eq. (2.27) we arrive to

〈Ψgs|T̂ + Ŵ |Ψgs〉 = FLL[ρgs(~r)]. (2.38)

Finally, by adding the term involving the external potential we obtain

FLL[ρgs(~r)] +

∫

d~rv(~r)ρgs(~r) = Egs. (2.39)

This proves Levy’s theorem 2.

It is important to recall that the Levy-Lieb variational scheme is not limited to non-
degenerate systems. It is defined for any N -representable density ρ(~r), i.e. from any ρ(~r)
which can be associated with the N -particle wave function. In fact, it is this formulation
which is used to derive LDFT, as will be shown in Chapter 4.
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Chapter 2. Fundamentals on density functional theory

2.2 DFT as an exact effective single-body theory

The variational principle of HK allows the determination of the exact ground-state density
of any N -particle system. The advantages of a replacement of the direct variation with
respect to the density by the intermediary orbital picture was first emphasized by Kohn
and Sham (KS) [2]. This results in a self-consistent scheme, which is nowadays used for
practical application of DFT. Many ab-initio computer codes solving the selfconsistent
KS equations are available. In section 2.2.1 we present the KS equations following the
book of Dreizler and Gross [4]. In particular, we show that this approach is exact by
considering that the exact ground-state density of a correlated system can be reproduced
by an auxiliary one-particle potential. Although the KS equations are exact, they include
a highly non trivial unknown, the exchange and correlation (XC) potential, for which
approximation have to be made. The most simple and famous approach is the local
density approximations (LDA), which we present in Sec. 2.2.2. This Ansatz is derived from
a reference system: the homogeneous interacting electron gas. Although LDA is a first
hand approximation for inhomogeneous system (for example, molecules, crystalline solid
alloys, etc.) it has been incredibly successful for predicting the ground-state properties of
these systems [7].

2.2.1 The Kohn-Sham equations

Following Kohn and Sham, one can transform a many-body particle system into a non-
interacting particle problem in a self-consistent field. The main idea behind of this trans-
formation is in the assumption that the ground-state density of the many-body interact-
ing system can be reproduced by an auxiliary potential V̂S.

1 We consider an auxiliary
N -particle non-interacting ĤS = T̂S + V̂S system described by the Hamiltonian

ĤS = T̂S + V̂S (2.40)

where T̂S is the kinetic operator and V̂S the auxiliary potential. The HK theorems state
that there is a functional energy

ES[ρ(~r)] = TS[ρ(~r)] + VS[ρ(~r)]

= TS[ρ(~r)] +

∫

d~r vS(~r) ρ(~r), (2.41)

for which the variational equation δES[ρ(~r)] = 0 gives the ground-state energy of ĤS. The
main hypothesis of the KS scheme is that there exists a one-particle potential associated
to the same electronic density as the interacting system:

ρ(~r) = ρS(~r) (2.42)

In other words, the density of the interacting system has to be v-representable with and
without interactions. If the ground state of ĤS is not degenerated, its density ρS(~r) has a
unique representation in terms of N one-particle orbitals:

ρS(~r) =
N

∑

i=1

|ϕi(~r)|2 . (2.43)

1The subscript S in this subsection is used to point out a single-particle system
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2.2. DFT as an exact effective single-body theory

By hypothesis ρS(~r) = ρ(~r). These orbitals have an energy εi and can be obtained by
solving the Schrödinger equation

[−~
2

2m
∇2 + V̂S(~r)

]

ϕi(~r) = εiϕi(~r); ε1 ≤ ε2 ≤ ... ≤ εN . (2.44)

The existence of the potential V̂S that generates the given density is an assumption, which
for the moment does not have a strict justification. However, the uniqueness of V̂S results
from HK theorems which of course applies to a non-interacting system (Ŵ = 0). This
implies that the one-particle orbitals ϕi(~r) are unique functionals of ρ(~r), i.e.,

ϕi(~r) = ϕi([ρ(~r)];~r). (2.45)

The same holds for the non-interacting kinetic energy

TS[ρ(~r)] =
N

∑

i=1

∫

d~r ϕi(~r)

(−~
2

2m
∇2

)

ϕi(~r). (2.46)

Now, we want to describe the system with N interacting electrons in an external potential
V̂ext using an auxiliary potential V̂S,ext leading to the same ground-state density ρgs(~r).
We then write

ρgs(~r) =
N

∑

i=1

|ϕi(~r)|2, (2.47)

where
[−~

2

2m
∇2 + V̂S,ext(~r)

]

ϕi(~r) = εiϕi(~r); ε1 ≤ ε2 ≤ ... ≤ εN . (2.48)

These equations indicate how to pass formally from the interacting problem to a non-
interacting system in an effective external field V̂S,ext. The key point now is to find the

form of V̂S,ext as a functional of ρ(~r).
In order to do that, we rewrite the functional energy EV̂ext

[ρ(~r)] as a sum of different
contributions, whose functional forms are explicitly known, and a term called exchange
and correlation (XC) potential, whose functional dependence is challenging. In the KS
scheme the kinetic contribution is divided into two parts. The first one, denoted by TS[ρ(~r)]
corresponds to the kinetic energy of the non-interacting system. The remaining kinetic-
energy contribution, reflecting the correlation effects, will be included in the XC energy.
In the case of the Coulomb interaction energy, we separate the Hartree energy, which is
given by the classical interaction of the electronic density ρ(~r) with itself. The remaining
exchange and correlation contributions of the interactions are included in the XC energy
EXC[ρ(~r)]. Rewritten in this form, one needs to impose that EV̂ext

[ρ(~r)] is stationary under

small variations of ρ(~r) around the ground state ρgs(~r) (stationarity condition). Then the
energy functional EV̂ext

[ρ(~r)] is written as

EV̂ext
[ρ(~r)] = TS[ρ(~r)] +

∫

d~r vext(~r) ρ(~r)

+
1

2

∫ ∫

d~r d~r′ ρ(~r) ρ(~r′)w(~r, ~r′) + EXC[ρ(~r)], (2.49)
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where the XC contribution is given by

EXC[ρ(~r)] = FHK[ρ(~r)] − 1

2

∫ ∫

d~r d~r′ ρ(~r) ρ(~r′)w(~r, ~r′) − TS[ρ(~r)]. (2.50)

The variational principle implies that EV̂ext
[ρ(~r)] has a stationary point for the ground-

state density ρgs(~r), which gives the minimum energy, i.e.,

0 = δEV̂ext
[ρgs(~r)] = EV̂ext

[ρgs(~r) + δρ(~r)] − EV̂ext
[ρgs(~r)]. (2.51)

Simple calculus of variations yields

δEV̂ext
[ρgs(~r)] = δTS[ρgs(~r)] +

∫

d~r Vext(~r) δρ(~r)

+

∫ ∫

d~r d~r′ δρ(~r) ρgs(~r′)w(~r, ~r′) +

∫

d~r
δEXC

δρ(~r)
δρ(~r), (2.52)

and

δEV̂ext
[ρ(~r)] = δTS[ρ(~r)] +

∫

d~r δρ(~r)

[

Vext(~r) +

∫

d~r′ w(~r, ~r′)ρ(~r′) + vXC(~r′)

]

, (2.53)

where we have introduced the XC potential vXC(~r) = δEXC/δρ(~r). Let us recall that
FHK[ρ(~r)] is defined only for v-representable densities with or without interaction. Con-
sequently, the variations of the density should be restricted to v-representable functions.
The variation of TS[ρ(~r)] is given by

δTS[ρgs(~r)] =
N

∑

i=1

∫

d~r

[

δϕ∗
i (~r)

(

− ~
2

2m
∇2

)

ϕi,gs(~r) + ϕ∗
i,gs(~r)

(

− ~
2

2m
∇2

)

δϕi(~r)

]

=
N

∑

i=1

∫

d~r

[

δϕ∗
i (~r)

(

− ~
2

2m
∇2

)

ϕi,gs(~r) + δϕi(~r)

(

− ~
2

2m
∇2

)

ϕ∗
i,gs(~r)

]

.

(2.54)

Here, in the last equation we have used Green’s theorem.2

From Eq. (2.47) we also know that,

[

− ~
2

2m
∇2 + V̂S,ext(~r)

]

ϕi(~r) = εiϕi(~r),

or equivalently

− ~
2

2m
∇2ϕi(~r) = [εi − V̂S,ext(~r)]ϕi(~r). (2.55)

Replacing Eq. (2.55) in Eq. (2.54) gives

δTS[ρgs(~r)] =
N

∑

i=1

∫

d~r
[

δϕ∗
i (~r)[εi − V̂S,ext(~r)]ϕi,gs(~r) + ϕ∗

i,gs(~r)[εi − V̂S,ext(~r)]δϕi(~r)
]

.

(2.56)

2
R

V
d~r [φ∇.∇ψ − ψ∇.∇φ] =

R

S
d~σ.[φ∇ψ − ψ∇φ]
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2.2. DFT as an exact effective single-body theory

Recalling that

δ|ϕi(~r)|2= |ϕi(~r) + δϕi(~r)|2= ϕ∗
i (~r) δϕi(~r) + ϕi(~r) δϕ∗

i (~r) (2.57)

one obtains

δTS =

N
∑

i=1

εi

∫

d~r δ|ϕi(~r)|2 −
N

∑

i=1

∫

d~r V̂S,ext(~r) δ|ϕi(~r)|2 . (2.58)

The normalization of ϕi(~r) + δϕi(~r) implies

δTS = −
∫

d~r V̂S,ext(~r) δρ(~r) (2.59)

Replacing Eq. (2.59) in Eq. (2.52) and requiring δEV̂ext
= 0 we obtain using the final

equation of the auxiliary potential

V̂S,ext(~r) = V̂ext(~r) +

∫

d~r′ w(~r, ~r′) ρgs(~r′) + vXC([ρgs(~r)], ~r). (2.60)

The auxiliary potential V̂S,ext(~r) is central to the KS formulation. It contains the unknown
XC contribution. In practice, one needs an approximation to vXC in order to be able to
apply the KS scheme. The goal of the next section is to present such an approximation.

2.2.2 Local density approximation (LDA)

The purpose of this subsection is to recall the local density approximation (LDA) to the
XC potential [see Eq. (2.60)]. This approximation was originally introduced by Kohn
and Sham who have taken the homogeneous electron gas as a reference system [2]. We
will see that the analytic form of vXC([ρgs(~r)], ~r) is unknown, even for the homogeneous
electron gas. Therefore, the LDA requires introduction of a parameterization for different
regimes [4, 48, 49, 50].
The LDA approximation is obtained directly from the energy of the homogeneous electron
gas

eLDA[ρ(~r)] =
ELDA[ρ(~r)]

N
= ehom[ρgs(~r)]|ρgs(~r)→ρ(~r). (2.61)

In the spin-polarized case or local spin density approximation (LSDA) the functional
depends on both up and down densities ρ↑(~r) and ρ↓(~r), or equivalently, on

ρ(~r) = ρ↑(~r) + ρ↓(~r) (2.62)

and

ζ(~r) =
1

ρ(~r)
(ρ↑(~r) − ρ↓(~r)), (2.63)

where ζ(~r) represents the relative magnetization at the point ~r.
The Hartree Fock approximation of the homogeneous electron gas yields directly the non-
interacting kinetic energy TS and the exchange energy EX (see for instance, Eqs. (6.103)
and (6.104) in Ref [4]). However, the dependence of the correlation energy EC as a func-
tional of the density is unknown analytically. In general, one uses some parameterization
of eC = EC/N for different density regimes. In order to use DFT, it is very useful to get
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Chapter 2. Fundamentals on density functional theory

a parameterization of vXC(~r) since it provides an analytical expression of the exchange
and correlation potential. Hedin and Lundqvist have proposed a formulation using two
parameters that is written as follows [48]:

ẽC[ρ(~r)] =
eC[ρ(~r)]

ρ(~r)
= −C

{

(1 + x3) ln

(

1 +
1

x

)

+
x

2
− x2 − 1

3

}

, (2.64)

where x = rs/A and

rs =
1

a0

[

3

4πρ(~r)

]1/3

(2.65)

is the Wigner-Seitz radius in units of the Bohr radius a0. The parameters C = 0.225[e2/a0]
and A = 21 give the results of Singwi [49], which are considered to be reliable in a density
interval 1 ≤ rs ≤ 6. For spin-polarized systems, von Bart and Hedin have proposed an
approximation, which is obtained by interpolation of the paramagnetic and ferromagnetic
limits [50]. This reads

ẽi[ρ(~r), ζ(~r] = ẽi[ρ, ζ = 0] + (ẽi[ρ, ζ = 1] − ẽi[ρ, ζ = 0])f(ζ(~r)), (2.66)

where i ≡ X (C) for the exchange (correlation) contribution. The interpolation function

f(ζ(~r)) =
(1 + ζ(~r))4/3 + (1 − ζ(~r))4/3 − 2

2(21/3 − 1)
(2.67)

is chosen to reproduce the exact dependence of the exchange contribution of the homoge-
neous gas. The exchange energy for ζ = 0 and ζ = 1 of the paramagnetic and ferromagnetic
cases are given by

ẽX(ρ(~r), ζ = 0) = −3e2

4

[

3ρ(~r)

π

]

and

ẽX(ρ(~r), ζ = 1) = 21/3ẽX(ρ(~r), ζ = 0). (2.68)

These limiting cases are also parameterized by using the Hedin and Lundqvist parameters,

C(ζ = 0) = 0.0225[e2/a0] and A(ζ = 0) = 30,

and

C(ζ = 1) = 0.0127[e2/a0] and A(ζ = 1) = 75. (2.69)

Using this parameterization of ẽXC = ẽX + ẽC one obtains an analytic expression for the
potential vXC = δẽXC/δρ(~r), namely

v
↑/↓
XC =

∂

∂ρ(~r)
{ρ(~r)ẽXC[ρ(~r), ζ(~r]}

= ẽXC + ρ
∂ζ

∂ρ
± (1 ∓ ζ)

∂ζ

∂ρ
. (2.70)

It is worth to stressing that, despite its simplicity, the LDA approximation has been
applied successfully for many physical problems [7]. However, multiple failures of this
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2.2. DFT as an exact effective single-body theory

approach have also been observed. Let us mention the semiconductor gap, for example
in silicium, whose experimentally observed value is largely underestimated by using DFT
within the LDA [8]. In this case, the error has been attributed to a discontinuity in
the exchange and correlation potential with the number of particles rather than to the
LDA itself [9, 10]. Systems with van der Waals interactions, which result from density
fluctuations are also beyond the scope of the LDA [7]. Another example where the LDA
as well as more advanced approximations such as the generalized gradient approximation
(GGA) fails concern calculations of band-gaps in strongly correlated systems, for instance
in transition metal, oxides, where the band-gaps are strongly underestimated [11, 12].
In this case, one of the explanations of this error, as given in the literature, is that the
mechanism of localization of LDA is given by a Stoner-like parameter, which is too small
to provide a good description of the gap [13].
Despite some attempts to describe properties of strongly correlated systems by using
improved local density approaches [51, 52, 53, 54], it is clear that this approximation
remains inadequate for these systems. Even though improvements have been achieved,
for example within the GGA approximation [6], which takes into account the gradient of
the density, or with hybrid approaches that combine the LDA with many-body techniques
such as the dynamical mean field theory, it is still true that dealing properly with strong
correlated materials remains a serious theoretical challenge. A profound improvement of
density functionals that are enables them to handle strong electron correlations is therefore
worthwhile.
Finally, to conclude this section, we would like to stress the universal character of DFT
and of the Hohenberg-Kohn-Sham formulation, which imposes no restriction at all on the
type of Hamiltonian. It is this universality of DFT, which opens the way to applications
to model Hamiltonians, as it will be shown in chapter 4. However, before coming to this
we shall review some of the main properties of many-body models taking the Hubbard
model as a particularly relevant example.
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Chapter 3

The Hubbard model

Electronic interactions play a major role in condensed matter physics. In general, for
metals having no open d or f shell, (Cu, Au, Ag, ...) a free electron-like picture is rather
accurate for the low lying excitations (Fermi-liquid theory). This is mainly due to the fact
that s and p orbitals are rather delocalized, so that the electrons are weakly coupled near
the Fermi energy due to the screening and the fermionic character of the electron. These
orbitals are generally responsible for chemical bonding and metallic behavior. However, in
transition-metals, where the d-shell is not filled, the situation is more complicated. The d
orbitals are rather localized around the atoms, implying that the Coulomb repulsion is no
longer negligible. On the other hand, these orbitals are in general also hybridized in the
bulk. In this case, the free electron gas does not provide any more a good starting model
to describe these systems. It is important in order to understand the physics of transition-
metal systems, to have a theory that takes into account correlation effects in d-bands and
to determine the interplay between electronic interactions and hybridizations. It is in this
context that J. Hubbard, M. C. Gutzwiller and J. Kanamori derived a model Hamilto-
nian, usually known as Hubbard model, that is intended to capture the physics of the
competition between delocalization, driven by hybridization, and localization of electrons
driven by the electronic interaction [16, 55, 56]. For simplicity, they proposed a theory
considering only a single orbital per atom having of course its two spin states. Although
it is clear that some important aspects of real d-electrons are lost with this modeling, it is
also reasonable to expect that the main physics of this interplay is captured in this theory.
In the first section of this chapter we describe a way to pass from an interacting gas of elec-
trons to the discrete Hubbard model on a lattice [16]. In section 3.2 we recall some cases
where exact solutions are available: the dimer model, the one-dimensional Bethe-Ansatz,
and the Nagaoka theorem near the atomic limit close to half-band filling. The section 3.3
concerns two basic mean-field treatments of the model, namely the Hartree-Fock approx-
imation and the slave-boson theory. In section 3.4 we discuss other models related to the
Hubbard Hamiltonians, in particular the tJ model and the Heisenberg model. Finally, in
the last section of the chapter, we discuss the relevance of the Hubbard model for treating
attractive electronic interactions and present a first hand approximation that is similar to
the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity.
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3.1. From the interacting electron gas to the discrete Hubbard Hamiltonian on a lattice

3.1 From the interacting electron gas to the discrete Hub-
bard Hamiltonian on a lattice

We consider a system composed by a narrow band containing n electrons. The case of a
single band is considered for simplicity although the actual motivation are narrow d or f
bands. We call ψk the Bloch function of the system which has an energy ǫk where k is the
wave vector. The actual choice of the basis wave function ψk is not decisive. For example,
we may assume that these wave functions are obtained from a spin independent effective
DFT or Hartree-Fock potential.

In order to write down the Hamiltonian of this problem, we denote as ĉ†k,σ (ĉk,σ) the

creation (destruction) operator acting on an electron in the Bloch state (k, σ), where
σ =↑ or ↓ is the spin label. Then we have

H =
∑

k,σ

ǫkĉ†k,σ ĉk,σ +
1

2

∑

k1,k2,k′
1
,k′

2

∑

σ1,σ2

〈k1,k2|
1

r
|k′

1,k′
2〉 ĉ†k1,σ1

ĉ†k2,σ2
ĉk′

2
,σ2

ĉk′
1
,σ1

−
∑

k,k′

∑

σ

{

2〈k,k′|1
r
|k,k′〉 − 〈k,k′|1

r
|k′,k〉

}

νk′ ĉ†k,σ ĉk,σ, (3.1)

where the sum runs over all k vectors in the first Brillouin zone and

〈k1,k2|
1

r
|k′

1,k′
2〉 = e2

∫

dr dr′
ψ∗

k1
(r)ψk′

1
(r)ψ∗

k2
(r′)ψk′

2
(r′)

|r − r′| (3.2)

The first term of Eq. (3.1) represents the band energies of the electrons, the second their
interaction and finally the last one subtracts the potential energy of the electrons in that
part of the Hartree-Fock field arising from the electrons of the s-band itself. Notice that
ψk could also be the Kohn-Sham orbitals obtained from a DFT ab− initio calculation. In
this case the last term of Eq. (3.1) should be replaced by the subtraction of electronic cor-
relations obtained with the exchange-correlation potential. This term has to be subtracted
in order to avoid double counting of the interaction. νk are the occupation numbers of the
bands in the Hartree-Fock calculation.
As the bands are considered to be narrow, it is convenient to change the basis since the
Bloch wave functions are delocalized. In this sense, we introduce a basis set of Wannier
functions, where the states are centered around the atomic position Ri

φ(x) =
1√
N

∑

k

ψk(x), (3.3)

where N is the number of atoms. One can also write

ψ(x)k =
1√
N

∑

i

eık.Riφ(x − Ri), (3.4)

where the sum runs over all atomic positions Ri. It is also useful to introduce creation
and annihilation operators on the new basis of Wannier function as

ĉk,σ =
1√
N

∑

i

e−ık.Ri ĉi,σ ĉ†k,σ =
1√
N

∑

i

eık.Ri ĉ†i,σ. (3.5)
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Chapter 3. The Hubbard model

Notice that the set of Wannier functions is a full orthogonal basis set, and that they vanish
for |r − Ri| → ∞.
It is now suitable to rewrite the Hamiltonian (3.1) in the new basis,

H =
∑

i,j

∑

σ

tij ĉ†i,σ ĉj,σ +
1

2

∑

i,j,k,l

∑

σ,σ′

〈ij|1
r
|kl〉 ĉ†i,σ ĉ†j,σ′ ĉl,σ′ ĉk,σ

−
∑

i,j,k,l

∑

σ

{

2〈ij|1
r
|kl〉 − 〈ij|1

r
|lk〉

}

νjl ĉ
†
i,σ ĉk,σ, (3.6)

where

tij =
1

N

∑

k

ǫkeık.(Ri−Rj) (3.7)

is the definition of the hopping integrals. Also,

〈ij|1
r
|kl〉 = e2

∫

dx dx′φ
∗(x − Ri)φ(x′ − Rj)φ∗(x − Rk)φ(x′ − Rl)

|x − x′| , (3.8)

and finally

νjl =
1

N

∑

k

νkeık.(Ri−Rj). (3.9)

Since we are dealing with narrow bands, the Wannier orbitals are quite localized around the
atoms. In these circumstances, it is a reasonable first approximation to neglect all integrals
that are not intra-atomic since these dominate. We limit the integrals in Eq. (3.8) to the
only intra-atomic orbital term U = 1

2〈ii|1r |ii〉. The other contributions are neglected.
Within this approximation, Eq (3.6) becomes

HHubbard =
∑

i,j,σ

tij ĉ
†
i,σ ĉj,σ + U

∑

i

n̂i,σn̂i,σ̄ − 2U
∑

i,σ

νin̂i,σ (3.10)

where n̂i = ĉ†i,σ ĉi,σ and νi = 1
N

∑

k νk = n/2, implying that the last term of Eq. (3.10) is
a constant and can be dropped.
Eq. (3.10) is called Hubbard Hamiltonian. Many extended versions of this Hamiltonian
can be found in the literature, considering for example, inter-orbital interactions in order
to be more realistic. Nevertheless, in general this model is a good starting point in order
to investigate the effects of electronic interactions in narrow-band systems.

3.2 Exact results

Despite the apparent simplicity of the Hubbard model, there are actually only few exact
results concerning the model. In this section we focus on some of them, which will be
referred to later on in this thesis. We focus first on the Hubbard dimer, for which the size
of the basis is small enough to allow us to diagonalize the Hamiltonian analytically. Later
on, we present the solution for the one-dimensional Hubbard model derived originally by
E. H. Lieb an F. Y. Wu [18]. Finally, near half-band filling and in the strongly interacting
limit U → ∞ the Nagaoka’s theorem [19] and its later extension by H. Tasaki [57] gives
us information about the stability of ferromagnetic ground states.
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3.2. Exact results

3.2.1 The inhomogeneous Hubbard dimer

We focus first on the simplest system, the inhomogeneous dimer at half-band filling and
Sz = 0. The dimer is composed of two sites numbered by i = 1 and 2 with different energy
levels εi and different on-site Coulomb repulsion Ui = U + (−1)i∆U . Since its Hilbert
space is composed of only four 2-body states, one can diagonalize the Hamiltonian easily
and obtain an analytic relation in particular for the dependence of the Coulomb energy
as a function of the density matrix. The Hamiltonian reads

Ĥdim = −t
∑

σ

ĉ†1,σ ĉ2,σ − t
∑

σ

ĉ†2,σ ĉ1,σ +
ε

2

∑

σ

n̂1,σ − ε

2

∑

σ

n̂2,σ +
2

∑

i=1,

Uin̂i,↑n̂i,↓. (3.11)

The elements of the basis are

|1〉 = ĉ†1,↑ĉ
†
1,↓|0〉 |2〉 = ĉ†2,↑ĉ

†
2,↓|0〉

|3〉 = ĉ†1,↑ĉ
†
2,↓|0〉 |4〉 = ĉ†2,↑ĉ

†
1,↓|0〉. (3.12)

And the matrix-form of the Hamiltonian (3.11) becomes

Ĥdim =









U + ∆U + ε 0 −t −t
0 U − ∆U − ε −t −t
−t −t 0 0
−t −t 0 0









. (3.13)

For the homogeneous case (ε = 0 and ∆U = 0) and U > 0 (repulsive interaction) the
ground state energy is given by

Egs =
U

2

(

1 −
√

1 +
16t2

U2

)

(3.14)

and the exited states have energies

E = 0, U, and
U

2

(

1 +

√

1 +
16t2

U2

)

(3.15)

Figure 3.1 displays the eigenenergies of the inhomogeneous Hubbard dimer for represen-
tative cases as a function of the strength of the Coulomb repulsion. One observes the well
known decrease of the ground state energy when U/t increases. It reaches its minimum
value Egs = 0 for U/t → ∞, when the electrons are fully and homogeneously localized.

The one-particle density matrix of the ground states γ =
∑

σ〈Ψgs|ĉ†i,σ ĉj,σ|Ψgs〉 is given in

terms of the coefficients of the ground-state wave function |Ψgs〉 =
∑4

i=1 αi|i〉 as

γ =

(

2α2
1 + α2

3 + α2
4 2α3(α1 + α2)

2α3(α1 + α2) 2α2
2 + α2

3 + α2
4

)

(3.16)

Without Coulomb interaction (Ui = 0), the ground-state energy is the result of the in-
terplay between the electron delocalization and the charge-transfer energy between the
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Figure 3.1: Eigenenergies of the inhomogeneous Hubbard dimer for representative values of
the energy level shift ε/t and of the difference ∆U between the on-site Coulomb repulsions,
as a function of the strength of the Coulomb repulsion U/t.
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two sites. The charge transfer between the two sites induced by the inhomogeneity is
∆n = γ22 − γ11 = 2(α2

2 −α2
1). For a finite value of ε/t the ground state is a charge density

wave, since one site contains more electrons that the other. Increasing the strength of
the Coulomb repulsion tends to localize the electrons and to cancel the kinetic energy
for U/t → ∞, since the probability amplitude of states |1〉 and |2〉 is suppressed. This
also renders the charge distribution progressively very homogeneous (∆n → 0). Using

Eq. (3.16) and the normalization condition of the basis set
(

∑4
i=1 α2

i = 1
)

we can com-

pute the average number of double occupations per site ω1 = α2
1 and ω2 = α2

2 as a function
of the density matrix. Thus, one finds

ωi =
γii

2
− γ2

12

4

(

1 +
√

1 − (∆n/2)2 − γ2
12

γ2
12 + (∆n/2)2

)

(3.17)

Notice that if one knows the ground-state density matrix, the Coulomb repulsion energy
can be directly obtained.
In the case of an attractive electronic interaction (U < 0) the same calculations can be
done. For example, one gets for the ground state energy of the homogeneous case

Egs =
U

2

(

1 +

√

1 +
16t2

U2

)

. (3.18)

In this case the process of localization is totally different. In fact, by increasing the
strength of the interaction, the amplitude of the neutral states |3〉 and |4〉 is suppressed.
The kinetic energy is then also reduced, but the nature of the ground state, where all
electrons are paired is totally different in comparison to the repulsive interaction case.

3.2.2 Exact solution for the 1D Hubbard model: The Bethe Ansatz

Even though the diagonalization can be solved analytically for the Hubbard dimer, dealing
with bigger systems is still a challenge. Due to the electronic interaction, one has to
consider the full N-body basis set to diagonalize the Hubbard Hamiltonian. The problem
lies in the fact that the size of this basis increases exponentially as a function of the size of
the system as is shown in Fig. 3.2. It is possible to diagonalize numerically the Hamiltonian
by using recursive methods (for instance the Lanczos method [42]) only for small clusters
(up to 16 sites). However, there is in general no exact solution for bigger systems. A
known solution is available in the case of one-dimensional homogeneous systems with NN
hopping. The method, named the Bethe Ansatz, was proved by Lieb and Wu [18]. It
takes the name from a similar method to solve the Heisenberg model in one dimension
introduced by Bethe [58].
In the following, we present just the results obtained by Lieb and Wu [18], as one can find
the complete demonstration in the literature [59]. Note that an investigation using the
Bethe Ansatz and LDFT has also been performed in Ref. [33].

At the thermodynamic limit, Na → ∞, at fixed band filling Ne/Na and a magnetization
M/Na, one obtains,

2πρ(k) = 1 + cos (k)

∫ B

−B

8Uσ(Λ)dΛ

U2 + 16(sin k − Λ)2
(3.19)
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Figure 3.2: Size of the N-body basis as a function of the size of the system Na at half-band
filling and Sz = 0.

and
∫ Q

−Q

8Uρ(k)dk

U2 + 16(sin k − Λ)2
= 2πσ(Λ) +

∫ B

−B

8Uσ(Λ′)dΛ′

U2 + 4(Λ − Λ′)2
, (3.20)

where the real number k and Λ are distributed continuously between −Q and Q ≤ π
and −B and B ≤ ∞, with density function ρ(k) and σ(Λ) respectively. Q and B are
determined by the conditions

∫ Q

−Q
ρ(k)dk =

Ne

Na
and

∫ B

−B
σ(Λ)dΛ =

M

Na
. (3.21)

Finally, the ground state energy is

Egs = −2Nat

∫ Q

−Q
ρ(k) cos (k) dk. (3.22)

The ground-state energy, the chemical potential, and the charge gap can be determined
by solving the equations (3.19), (3.20) and (3.21) with an iterative method. This was
done by Shiba [60]. In Fig 3.3 we show the results of the Bethe Ansatz for the ground
state energy of an infinite homogeneous chain as a function of the band filling n = Ne/Na.
Representative values of the Coulomb repulsion are considered as shown in the figure.
One observes that for low band filling (n ≤ 0.4) the correlation effects are weak, since
the electrons do not “see” each other. In contrast, the effect of correlations is really
important near half-band filling. These lead to a drastic reduction of the kinetic energy in
order to avoid double occupations. At the strongly correlated limit, the system becomes
more localized. Near half-band filling the model is then equivalent to the tJ model of
localized spins with hole conduction, as will be shown later on. It is also relevant to
compute chemical potentials at half-band filling µ+ = E(M + 1, M, U)−E(M, M, U) and
µ− = E(M, M, U)−E(M − 1, M, U), where E(Ne,↑, Ne,↓, U) is the energy of the chain for
a given Coulomb integral U , number of up electrons Ne,↑ and down electrons Ne,↓. Lieb
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Figure 3.3: Ground state energy per site Egs of an infinite homogeneous Hubbard chain
as a function of the band filling n = Ne/Na. Representative values of the strength of the
Coulomb repulsion are considered.

and Wu have shown that at half-band filling for an arbitrary small value of U the charge
gap ∆Ec = µ+ − µ− is always strictly positive. This result proves that for any U 6= 0 the
system is an insulator and that the 1D Hubbard chains do not have a Mott-transition at
finite U .

3.2.3 The Nagaoka theorem

In this section we present two theorems, originally proven by Nagaoka [19] which concern
the atomic limit of the Hubbard models near half band filling. Even though these two
theorems do not present a general solution for the Hubbard model, they give us a good
idea of the nature of the ground state at this limit. We will use these theorems to approx-
imate the strongly correlated limit of the density matrix for some implementations of our
method [61]. In order to present it, we follow the more general formulation by Tasaki [57].
Let us consider a lattice Λ of Na sites enumerated from i = 1, ..., Na. The Hubbard
Hamiltonian is given by

Ĥ =
∑

i,j,σ

tij ĉ
†
i,σ ĉj,σ + V (n̂i,↑ + n̂i,↓) + U

∑

i

n̂i,σn̂i,σ̄, (3.23)

where

V (n̂i,↑ + n̂i,↓) =
∑

i,σ

εi n̂i,σ +
1

2

∑

i,j,σ

Wij(n̂i,σ + n̂i,σ̄)(n̂j,σ + n̂j,σ̄) (3.24)

and εi, and Wij are arbitrary parameters. Furthermore, we assume that the Coulomb
repulsion U is infinitely large, so that each site is occupied by at most one electron. Let

34



Chapter 3. The Hubbard model

us recall the form of the spin operators by

Ŝ+ = (Ŝ−)† =
∑

i

ĉ†i,↑ĉi,↓,

Ŝz =
1

2

∑

i

(n̂i,↑ − n̂i,↓), (3.25)

and

Ŝ2 = Sz
2 +

1

2
(S+S− + S−S+). (3.26)

It is easy to see that Ŝ2 commutes with Ĥ. As usual, the eigenvalue of Ŝ2 are denoted by
S(S + 1). The conditions for the validity of the theorems are the following:

(i) All hopping matrix elements tij are non-negative.
(ii) The band filling is such that there is just one hole with respect to half filling, i.e.,

Ne = Na − 1. Electron-hole symmetry, if available will allow us to apply the theorem also
for Ne = Na + 1.

(iii) The Coulomb repulsion integral U is infinitely large, i.e., U → ∞.
(iv) The many-body Hilbert space of the model is connected. This condition, which is

specified later on in more detail, requires that all many-body configurations are connected
by the Hamiltonian operator. It is satisfied, for example, when the hopping matrix con-
nects all the lattice (e.g., for tij = −t for nearest neighbors (NN) ij).
Then, one can show the following theorem:

Nagaoka Theorem : Given the Hubbard Hamiltonian [Eq. (3.23)] with the conditions
(i) to (iii) there exist at least 2S + 1 = Na states with S = Smax ≡ (Na − 1)/2 and
Sz = −S, ..., S among the ground states of the model.

Tasaki’s extension (uniqueness): If, in addition, the condition (iv) is fulfilled, the
ground state having S = Smax ≡ (Na − 1)/2 is unique, besides the 2S + 1 spin rotational
degeneracy.

We specify now the connectivity condition (iv) and prepare the proof. For Ne = Na−1
a complete set of basis states of the model can be defined as

|i, σ〉 = (−1)iĉ†1,σ1
ĉ†2,σ2

...ĉ†i−1,σi−1
ĉ†i+1,σi+1

...ĉ†Na,σNa
|0〉 (3.27)

where i denotes the position of the unique hole and σ = {σj}j 6=i is a multi-index defining
the Sz projector of the spin of each electron. One says that two states |i, σ〉 and |j, τ〉 of
the basis are directly connected to each other if

〈j, τ |tij(ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ)|i, σ〉 = −tij 6= 0 (3.28)

This is usually denoted by |i, σ〉 ↔ |j, τ〉. We also define that a lattice Λ satisfies the
connectivity condition (iv) if all states |i, σ〉 with the same value of Sz are connected to
each other in the formentioned sense.
Note that for finite systems it is obvious, that the statement of the theorem is also true
for finite but sufficiently large U when the conditions of the Tasaki extension are satisfied,
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except for condition (iii). However there is no information about how U large should be.

Proof of Nagaoka’s theorem: Let |Ψ〉 =
∑

(i,σ) ψi,σ|i, σ〉 be an arbitrary normalized

state. We define a state |Φ〉, having S = Smax, as |Φ〉 =
∑

i φi|i, {↑}〉 where φi =
(
∑

σ |ψi,σ|2
)1/2

. The multi-index {↑} represents that all electrons have up spin (i.e,
σi =↑, ∀i). It follows

〈Ψ|V (n̂i,↑ + n̂i,↓)|Ψ〉 =
∑

(i,σ)

|φi,σ|2 〈i, σ|V |i, σ〉 =
∑

(i,σ)

|ψi,σ|2 〈i, {↑}|V |i, {↑}〉

= 〈Φ|V (n̂i,↑ + n̂i,↓)|Φ〉 (3.29)

Using the Schwartz inequality, one obtains

〈Ψ|tij(ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ)|Ψ〉 =
∑

〈σ,τ〉

(−tij)ψ
∗
j,τψi,σ ≥ (−tij)φ

∗
jφi (3.30)

≥ 〈Φ|tij(ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ)|Φ〉

where the sum in Eq. (3.30) runs over all pairs of spin configurations σ, τ such that
|i, σ〉 ↔ |j, τ〉. This relation implies that the energy corresponding to the state |Φ〉 is alway
smaller or equal than the energy of the original state |Ψ〉. Then the proof of the theorem
is completed by considering that |Ψ〉 is one of the ground states and using the SU(2)

symmetry of the model (i.e., the spin rotational symmetry following from [~S, Ĥ] = 0).
Proof of Tasaki’s extension: To establish this theorem we use the Perron-Frobenius

theorem.1 The off-diagonal matrix element 〈j, τ |Ĥ|i, σ〉 = tij are non-vanishing when
|i, σ〉 ↔ |j, τ〉. Also, the connectivity condition ensures that in any subspace with fixed

Sz the matrix 〈j, τ |Ĥ|i, σ〉 is irreducible. Then by taking M = −Ĥ, the Perron-Frobenius
theorem implies, that in each sector with fixed Sz the state with minimum energy is
unique. Since the ground state is known to have S = Smax and the system has SU(2)
symmetry, the extension of Nagaoka’s theorem follows.

3.3 Mean field theories

As was already pointed out in the previous section, only few special cases of the Hubbard
model have an exact solution. A lot of approximations exist to approach the problem.
For example the Hubbard I approximation [16] using perturbation theory around the
atomic limit (t = 0). Many other approximations were developed later as for example the
dynamical mean-field theory (DMFT) [23] or numerical methods such as the density matrix
renormalization group [24]. In the following we present two mean field approximations.
The first one, is the most basic Hartree-Fock approximation. The main purpose here is
to demonstrate that the effects of correlation are very important and that simple mean-
field approximation fails to reproduce the physics of correlated materials. The second
example is the slave-boson theory in the saddle point approximation. Here, additional

1Let M = {Mij} be a Na × Na matrix with positive matrix elements (Mij ≥ 0 i 6= j). M is assumed
to be indecomposable in the sense that, for any i, j there is a sequence {i1, i2, ...iK} with i = i1 and
j = iK , and Mikik+1

6= 0 ∀k < K. Then the eigenstate of M with maximum eigenvalue is unique (up to
normalization), and give a linear combination of all the basis vectors with strictly positive coefficients.
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boson operators are introduced in order to trace back the many-body configurations of
the systems from a local perspective. The saddle point or mean field approximation applies
to these additional degrees of freedom. Both methods will be used later on in this thesis
for the sake of comparison.

3.3.1 Hartree-Fock approximation

For the sake of comparison, it is first convenient, to approach the problem within a simple
approximation. In this sense it is justified to present the Hartree-Fock approximation.
This approximation is well known and it is presented in many books of solid state physics
[see for example [14, 16]]. Unfortunately, this simple scheme fails to reproduce most of the
properties of this Hamiltonian as discussed at the end of the section.
One may obtain the effective one-particle Hartree-Fock Hamiltonian either by making
an ad hoc mean-field approximation or by applying the Wick theorem to a single Slater
determinant Ansatz wave function. n̂i,σn̂i,σ̄ = 〈n̂i,σ〉n̂i,σ̄+〈n̂i,σ̄〉n̂i,σ. Then the Hamiltonian
Eq. (3.10) becomes

HHF =
∑

i,j,σ

tij ĉ
†
i,σ ĉj,σ + U

∑

i,σ

〈n̂i,σ̄〉n̂i,σ. (3.31)

Performing a Fourier transform to reciprocal space in the homogeneous case (〈n̂i,σ〉 =
nσ ,∀i) we obtain

HHF =
∑

k,σ

(ǫk + Unσ̄) ĉ†k,σ ĉk,σ. (3.32)

This mean-field Hamiltonian describes a collection of non-interacting particle with a mod-
ified band structure. The eigenvalues of a (k, σ) state are shifted to ǫk + Unσ̄ and the
density of states ρσ(E) is equal to

ρσ(E) = ρ0(E − Unσ̄) = ρ0(E − Un + Unσ) (3.33)

where ρ0 is the density of states for the non interacting case. The number of particles
must be conserved, which requires

n↑ + n↓ = n. (3.34)

The self-consistency implied by the saddle-point or minimum energy condition is obtained
by calculating the number of electrons from the modified band structure:

nσ =

∫ µ

−∞
dE ρ0(E − Un + Unσ). (3.35)

Solving selfconsistent Eqs. (3.34) and (3.35) give the solution of the Hartree-Fock approx-
imation.
Notice that the Hubbard Hamiltonian defined in Eq. (3.10) has the SU(2) symmetry,
which means that it is spin rotation invariant. Without the presence of a magnetic field,
the solution should be non-magnetic (n↑ = n↓ = n/2). However, for large U it is possi-
ble to find a ferromagnetic solution which is energetically more stable. The condition of
ferromagnetism can be found from Eq. (3.33) as

1 = Uρ0(µ − Un/2). (3.36)
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In fact, if the condition Uρ0(E) > 1 is fulfilled for E equal to the paramagnetic Fermi
energy the Hartree-Fock approximation predicts a ferromagnetic state. This implies break-
ing the spin-rotational symmetry. Another drawback of this approximation concerns the
charge gap. It can be shown that the charge gap always vanishes in the paramagnetic phase
using Hartree-Fock approximation. This would mean that the system remains metallic,
even in the strongly correlated limit.

3.3.2 Slave-boson approximation

The slave-boson theory [22] was originally proposed in order to extend the original Fock
space of a Hubbard or Anderson Hamiltonian by introducing auxiliary bosons. Within
a saddle-point approximation, one gets an approximation of the problem which provides
an alternative interesting perspective. At zero temperature it leads to the results derived
from the Gutzwiller variational wave function [55].
For the Hubbard model, we enlarge the Fock space using for each site four bosons repre-

sented by the creation (annihilation) operators ê†i (êi) if the site i is empty, p̂†i,σ (p̂i,σ) if the

site i contains one electron with spin σ, and finally d̂†i (d̂i) if the site is doubly occupied.
For each site these bosons fullfil the normalization condition,

∑

σ

p̂†i,σp̂i,σ + ê†i êi + d̂†i d̂i = 1, (3.37)

which should be regarded as a operator identity. Moreover they have to respect the
electronic occupation on each site as given by the Fermion number operator.

ĉ†i,σ ĉi,σ = p̂†i,σp̂i,σ + d̂†i d̂i. (3.38)

In the physical subspace defined by Eqs. (3.37) and (3.38) the Hamiltonian can be written
by using both Fermion and Boson operators as

H̃ =
∑

i,j,σ

tijz
†
i,σzj,σ ĉ†i,σ ĉj,σ + U

∑

i

d̂†i d̂i (3.39)

with
ẑi,σ = ê†i p̂i,σ + p̂†i,σ̄d̂i. (3.40)

H̃ has the same matrix elements as the Hubbard model [Eq. (3.10)] in the original purely
fermionic Hilbert space.
In the following we focus on the homogeneous case (all sites are equivalent) at T = 0. In
order to calculate the ground-state properties we perform a saddle point approximation
in which the degrees of freedom of the bosons are treated as scalar fields. It is important
to note that at the non-interacting limit (U = 0) this approximation leads to incorrect
results, since the operator constraints (3.37) and (3.38) are only satisfied on average, i.e.,
not explicitly for each many-body configuration. For U = 0, the four bosonic degrees of
freedom have same probability (e2 = d2 = p2

σ = 1/4) and

〈ẑ†i,σ ẑj,σ〉 = e2p2
σ + d2p2

σ̄ + 2edpσpσ̄ = 1/4 (3.41)

rather than the unity as it should be for the non-interacting case where no renormal-
ization of the hopping integral is expected. Nevertheless, this problem can be solved by
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realizing that zi,σ can be consider as scalar product between vectors operator (ê†i , p̂
†
i,σ̄) and

(p̂i,σ, d̂i). In order that the scalar product yield 1, when the vectors are parallel, i.e., in
the uncorrelated limit, they must be properly renormalized. This is achieved by dividing
them by their respective norm. This implies that the hopping renormalization operator
zi,σ becomes

z̃i,σ =
(

ê†i ê
†
i + p̂†i,σ̄p̂i,σ̄

)1/2
ẑi,σ

(

d̂†i d̂
†
i + p̂†i,σp̂i,σ

)1/2
, (3.42)

which satisfies the expected behavior 〈z̃†i,σ z̃j,σ〉 = 1 in the U = 0 limit. Notice that in the
physical space z̃i,σ has the same matrix elements as the more intuitive ẑi,σ.
The resulting saddle-point energy obtained from the Hamiltonian (3.39) reads

ε = Ud2 + 2

∫ +µ

−∞
dξρ0(ξ)qξ, (3.43)

where q = 〈z̃†i,σ z̃j,σ〉, ρ0(ξ) is the single-particle density of states and µ the chemical

potential. Eq. (3.43) has to be solve together with the constraint

nσ =

∫ +µ

−∞
dξ ρ(ξ). (3.44)

derived from Eq. (3.38). The set of equations (3.43) and (3.44) define the solution of the
slave-boson mean-field approximation for a homogeneous lattice at T = 0.
In order to illustrate this approach, we follow Ref. [22] and consider a system with a sym-
metric density of states at half filling (n = 1). In this case µ = U/2 and q = 8d2(1−2d2). ε

is minimized by d2 = 1/4(1−U/Uc) with Uc = 16
∫ +∞
0 dξρ(ξ)ξ proportional to the energy

of the non-interacting case. For U = Uc the average number of double occupations is zero
as well as the kinetic energy (q = 0). This indicates that the system becomes an insulator
as a result of electron-electron interaction, which is usually denoted as Mott insulator.
Thus, the approximation is able to describe quanlitatively the metal-insulating transition
driven by correlations. For U < Uc the system is metallic but for U ≥ Uc it becomes
insulator. It should be recalled that for some systems a finite gap opens in the low-energy
spectrum already for arbitrary small U , for example, in the 1D and 2D homogeneous Hub-
bard model. Obviously, the paramagnetic or spin restricted slave boson theory provides
an upper estimate of the value of this critical Uc.

3.4 Related models: tJ and Heisenberg models

Besides the Hubbard model, other simple many body Hamiltonians have been proposed to
study the low energy electronic properties of strongly correlated materials. For example,
the tJ and Heisenberg Hamiltonians. The tJ and Heisenberg models, which can be derived
perturbatively from the atomic limit of the Hubbard model, focuses on different magnetic
orders of system with localized magnetic moments. In this section, we present a short
introduction of these models, focusing on the link with the Hubbard Hamiltonian. It
is also possible to find more detailed studies about the physics of these systems in the
literature [14, 17, 38, 62].

Even though this thesis does not focus on such models, it is useful to give a general idea
of the physics of these two Hamiltonians. In particular, it is instructive to show the direct
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relation with the Hubbard model at the atomic limit. Both the tJ and the Heisenberg
model are devoted to studying the magnetic properties of a system with localized spins.
In addition, the tJ model describes the interplay between the electronic interactions,
responsible for antiferromagnetic order at half band filling and the delocalization of an
extra electron or hole (kinetic energy).
These systems consider a ensemble of ions or atoms from which the low-energy states are
described by the spin operator ~Si for each site. The Hamiltonian of these two models are
given by

ĤtJ = t
∑

i,j,σ

(1 − n̂i,σ̄)ĉ†i,σ ĉj,σ(1 − n̂j,σ̄) +
∑

i,j

Jij

(

~Si.~Sj −
1

4

)

(3.45)

ĤH =
∑

i,j

Jij

(

~Si.~Sj −
1

4

)

(3.46)

The Heisenberg Hamiltonian has been very important to understand finite temperature
properties of magnetic materials. On the other hand, it is well justified from a microscopic
point of view when the magnetic moments are localized such as is the case for rare earth
elements. However, it is not appropriate for describing systems with itinerant electrons,
like for example transition metals, in particular for their metallic character. However, this
can be treated using the tJ model which includes the kinetic energy of holes.
Historically, the Heisenberg model has been proposed before the Hubbard model on sim-
ple symmetry arguments. We propose here to use the Schrieffer-Wolf transformations
(originally introduced in the context of the Kondo problem) [62] in order to derive the tJ
and Heisenberg Hamiltonians from the Hubbard model [63]. Starting from the Hubbard
Hamiltonian for a homogeneous system with NN hopping

H = t
∑

i,j,σ

ĉ†i,σ ĉj,σ + U
∑

i

n̂i,σn̂i,σ̄ (3.47)

we focus on the limit where U/t >> 1 is large enough (but not infinite) at half filling or
near to half-band filling. In this limit, the kinetic term can be treated as a perturbation.
Two terms contribute to order t or t2/U to the energy. The first one is the hopping term
associated to the motion of holes which is proportional to t, i.e., independent of U . This
energy vanishes at half-band filling n = 1 since there is one electron on each site. The
second contribution is the contribution of virtual hopping involving the creation and the
annihilation of a hole or electron-pair by NN hopping. The other processes are negligible,
since they contribute with an energy of order U . Taking into account these considerations
we transform the Hubbard model Eq. (3.47) to an effective Hamiltonian which describes
these processes. In order to do that we need, first of all, to divide the kinetic part of the
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Hamiltonian into various contributions:

HHubbard = Th + Td + Tmix + V where,

Th = t
∑

i,j,σ

(1 − n̂i,σ̄)ĉ†i,σ ĉj,σ(1 − n̂j,σ̄) ,

Td = t
∑

i,j,σ

n̂i,σ̄ ĉ†i,σ ĉj,σn̂j,σ̄ , (3.48)

Tmix = t
∑

i,j,σ

(1 − n̂i,σ̄)ĉ†i,σ ĉj,σn̂j,σ̄ +
∑

i,j,σ

n̂i,σ̄ ĉ†i,σ ĉj,σ(1 − n̂j,σ̄) and,

V = U
∑

i

n̂i,σn̂i,σ̄

Th describes the transport of a hole, Td the transport of double occupancy and finally
Tmix the hopping term involving a creation (or destruction) of a hole or electron double
occupancies. Notice that Th and Td do not connect different Hubbard bands in contrast
to Tmix.
In the limit of large U/t and near the half-band filling, the term to be considered as
perturbative is Tmix, since it involves the creation (or destruction) of a virtual electron-
hole pair as well as a double occupation. We now apply a canonical transformation

H̃ = eSHe−S = H0 + [S, Tmix] + ... (3.49)

where H0 = Th +Td +V and H̃ has no term which is first order in Tmix. This implies that

[H0, S] = Tmix. (3.50)

From Eq. (3.50) one can deduce the generator S as

S =
t

U





∑

i,j,σ

n̂i,σ̄ ĉ†i,σ ĉj,σ(1 − n̂j,σ̄) −
∑

i,j,σ

(1 − n̂i,σ̄)ĉ†i,σ ĉj,σn̂j,σ̄



 (3.51)

Using this transformation, one finds that

H̃ = Th + Td + V + HU + Hex + Hpair + O(t3/U) (3.52)

with

HU =
t2

U

∑

i,j,σ

(n̂i,σn̂i,σ̄ + n̂j,σn̂j,σ̄) (3.53)

Hex =
t2

U





∑

i,j,σ

(n̂i,σn̂j,σ̄ + n̂j,σn̂i,σ̄) − 1

2

∑

i,j,σ

(

ĉ†i,σ ĉi,σ̄

)(

ĉ†j,σ̄ ĉj,σ

)



 (3.54)

and

Hpair =
2t2

U

∑

i,j,σ

ĉ†i,σ ĉ†i,σ̄ ĉj,σ ĉj,σ̄ (3.55)
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The effective Hamiltonian can be then deduced by neglecting some less important contri-
butions. In fact, at large U/t and near the half filling the system has no double occupation.
One can then neglect Td, which represents the hopping of double occupations. For the
same reason, one can neglect HU [see Eq. (3.53)] and Hpair [see Eq. (3.55)] which implies
that double occupations do not contribute either. Then, one deduces the tJ model as the
effective Hamiltonian

Heff = Th + Hex = t
∑

i,j,σ

(1 − n̂i,σ̄)ĉ†i,σ ĉj,σ(1 − n̂j,σ̄) +
∑

i,j

Jij

(

~Si.~Sj −
1

4

)

(3.56)

Whith J = 4t2/U , which is valid in the large U/t limit and near half-band filling.
The Heisenberg model [see Eq. 3.46] is then obtained by considering the half filling case
where Hh does not contribute.
In conclusion, the strongly correlated limit of the Hubbard model is equivalent to a system
of localized spins interacting with an exchange coupling J = 4t2/U . This previous knowl-
edge is central to our understanding of the subtle U/t >> 1 limit. Moreover, it sets the
challenge for our theoretical investigation, namely, describing this limit with the concepts
of DFT.

3.5 Attractive electronic interaction

In this section we focus on the case of an attractive electronic interaction (U < 0). This
model was proposed in literature to explain exotic properties of the normal states and
the superconductor states of correlated Fermions [64, 65]. In the first section 3.5.1 we ex-
plain quanlitatively that an electron-phonon interaction can lead to an effective attractive
electron-electron interaction which drives the formation of Cooper pairs between electrons
and superconducting properties. In the second section we recall the BCS approxima-
tion, which gives a first approximation of properties of such correlated systems. Later-on
we will use this approximation to compare our own results for the attractive Hubbard
model [64, 65].

3.5.1 Attractive electron-electron interaction mediated by phonons

A common simplification in the condensed matter problem consists of separating the
movement of nuclei and electrons (Born-Oppenheimer approximation). This separation
finds its justification in the difference between the mass of nuclei and electrons. For
example, for the hydrogen atom the mass of the proton is 103 bigger than the mass of the
electron. Consequently, the time scale of the electronic motion is also around 103 smaller
than the one of the motion of the ion. This quantitative argument justifies the fact that
the electrons are nearly moving in a constant ionic potential and the Born-Oppenheimer
approximation. However, this approximation is actually far too simple, since the electron
motion couples with the lattice vibrations (phonon modes). This coupling, known as
electron-phonon interaction, can lead to an effective attractive electron-electron interaction
that we show in this sub-section.
Consider a simplified model for a solid formed by atomic nuclei and electrons. The total
system is described by the Hamiltonian

Ĥ = Ĥnuclei + Ĥel + Ĥel−ph, (3.57)
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Figure 3.4: BCS electron distribution function hk [see Eq. (3.68)] as a function of ξk =
ǫk − µ̃, the energy of the k state shifted by the chemical potential for a 1D infinite chain
at half-band filling and for different strengths of the attractive interaction |U |/t.

where Ĥnuclei is the Hamiltonian of the nuclei, Ĥel is the Hamiltonian of electrons con-
taining their kinetic energy and interaction and Ĥel−ph is the effective interaction between
electrons mediated by the phonons. The latter is normally written in the form [66]

Ĥel−ph =
1

2

∑

k,k′,q,σ,σ′

[ |gk−k′|2 ~ ωk−k′

(ǫk − ǫk′)2 − (~ωk−k′)2

]

ĉ†
k′,σ ĉ†

k+q,σ′ ĉk′+q,σ′ ĉk,σ (3.58)

where ĉ†k,σ (ĉk,σ) are the usual creation (annihilation) operators of an electron with spin
σ in a Bloch state with wave vector k associated with a single particle energy ǫk. The
interaction Eq. (3.58) is attractive for small ǫk−ǫk′ and generally believed to be responsible
for superconductivity. Cooper has shown that, neglecting the Coulomb interaction, and
when the interaction Eq. (3.58) is attractive, this leads to the formation of electron pairs
and superconductivity.

3.5.2 BCS approach for the Hubbard Hamiltonian

An alternative pairing mechanism is provided by the attractive Hubbard model. In this
section we recall briefly the BCS theory [67] introduced to understand the superconduc-
tivity in presence of an attractive interaction. We follow the grand canonical formulation
for a discrete lattice presented by K. Tanaka and F. Marsiglio [68] which is also described
in many books [69]. For simplicity we constrain ourselves to the case of nearest neigh-
bor hopping. With this condition, the Fourier transform in the k space of the Hubbard
Hamiltonian reads

H =
∑

k,σ

ǫkĉ†k,σ ĉk,σ − |U |
N

∑

k,k′,q

ĉ†k,↑ĉ
†
−k+q,↓ĉ−k′+q,↓ĉk′,↑. (3.59)

Here we consider a lattice with periodic boundary conditions in each dimension for N

sites. As usual, ĉk,σ (ĉ†k,σ) are the annihilation (creation) operators in the reciprocal space
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and ǫk = 2t cos(k.l) is the one-particle contribution (l is the lattice vector).
The BCS theory is based on a variational principle using an Ansatz wave function for a
given number of pairs ν of electrons. The BCS wave function is a superposition of states
with all the possible number of pairs {ν}:

|BCS〉 = c
∏

k

(1 + gkĉ†k,↑ĉ
†
−k,↓)|0〉, (3.60)

where |0〉 denotes the Fermi sea and the coefficient c normalizes the wave function properly.
This approximation do not conserve the particle number. Note that this formulation
contrarily as the usual presentation has only the variational parameter gk (and not the
usual uk and vk). Then we apply the variational principle to minimize the energy of the
Hamiltonian Eq. (3.59) with the BCS wave function Eq. (3.60). This can be done by using
the Lagrange constrained minimization and it can be read

L =
〈BCS|H − µN |BCS〉

〈BCS|BCS〉

= 2
∑

k

(ǫk − µ)
g2
k

1 + g2
k

− |U |
N

∑

k

g2
k

1 + g2
k

−|U |
N

∑

k,k′

gk

1 + g2
k

gk′

1 + g2
k′

− |U |
N

∑

k6=k′

g2
k

1 + g2
k

g2
k′

1 + g2
k′

(3.61)

where µ is the chemical potential (Lagrange multipliers which ensure the conservation of
the particle number). The first term of the precedent equation is the kinetic energy, the
following two term come from the Cooper pair scattering (q = 0) and the last term is the
Hartree term (scattering with q 6= 0). The reduced BCS Hamiltonian (q = 0 scattering
only) not take into account this last term since is generally only shift the real part of the
pole of Hamiltonian. However, it is important to keep it when one wants to compare BCS
theory with exact or approximate solution of the attractive Hubbard model.
The next step is to carry out the variation with respect to the gk. It reads

2(ǫk − µ̃)gk = ∆BCS [1 − g2
k] (3.62)

where

µ̃ = µ +
|U |
N

∑

k

g2
k

1 + g2
k

(3.63)

and

∆BCS =
|U |
N

∑

k

gk

1 + g2
k

. (3.64)

Which solution is

gk =
Ek − (ǫk − µ̃)

∆BCS
(3.65)

where Ek =
√

(ǫk − µ̃)2 + ∆2
BCS is the quasi-particle energy. It appears that ∆BCS is

shifting the quasi-particle energy (for ∆BCS = 0 the quasi-particles have the same energy
that the eigenvectors of the normal state) and play the role of minimum energy gap induce
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Chapter 3. The Hubbard model

by the attractive interaction. Since ∆BCS depends also of gk this solution is only implicit
and has to be determined by numerical iteration. The chemical potential is determined
by using the number equation as

n =
Ne

N
= 1 − 1

N

∑

k

ǫk − µ̃

Ek

. (3.66)

Finally the total energy of the system E = 〈H〉 = 〈L + µNe〉 is given by

E

N
=

1

N

∑

k

ǫk

(

1 − ǫk − µ̃

Ek

)

− |U |
(n

2

)2
− ∆BCS

|U | (3.67)

The function

hk =
1

2

(

1 − ǫk − µ̃

(ǫk − µ̃)2 + ∆2
BCS

)

(3.68)

corresponds to the distribution of the electrons in the k space. If Fig. (3.4) we present
hk as the function ξk = 2 cos(k) − µ̃, the energy of the k vector shifted by the chemical
potential (equal to the Fermi energy) for an infinite one dimensional chain and for different
value of the strength attractive interaction U . At the non-interactive limit (black full line)
one recognize the characteristic step function since only the k states having an energy
lower the Fermi level are occupied. For a small value of U/t (e.g |U |/t = 1, red dotted
curve), only the k states near the Fermi surface are interacting, lowering (increasing) the
occupancy of the states k < kF (k > kF ). As increasing |U |/t more k states are interacting
until the strong-interacting limit where all electrons are paired (full orange line) and all k
states are half occupied.

The BCS approach have been the first successful approach to explain superconductivity
and in particular the ground states energy of systems with attractive interaction. However,
it have been show that for some properties such as the energy gap or correlators are not
well reproduced [70].
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Chapter 4

Density functional theory on a
lattice

After having presented the generalities about DFT in continuum and about model Hamil-
tonians in the two previous chapters, we would like to recall the theoretical background
concerning LDFT. A general formulation of the approach presented by R. López-Sandoval
and G. M. Pastor [33, 34]. In Sec. 4.1 we summarize and discuss this formalism, given
special emphasis to the case of the inhomogeneous Hubbard Hamiltonians. In the sec-
tion 4.2 we present the method for computing the interaction-energy functional W [γij ]
numerically, which will be used at several stages throughout this thesis. Previous stud-
ies to N -representable density matrices have shown that is Kohn-Sham-like variational
scheme in LDFT involves in general non integer eigenvalues of the density matrix. We
recall this important results in the section 4.4. As in conventional DFT, the representabil-
ity issues, in LDFT is an important non trivial problem. For this reason and in order to
clarify the situation, we discuss the condition of representabilies by presenting numerical
results. Since minimizing the energy functional with respect to the full density matrix
is not evident in practice, we present a formal way to reduce the number of variables by
introducing a physically motivated degree of electronic delocalization.

4.1 Density-functional theory of model Hamiltonians

In order to be explicit we focus on the inhomogeneous Hubbard model which is expected
to capture the main interplay between electronic correlations and charge-density redistri-
butions. The Hamiltonian is given by

Ĥ =
∑

i,σ

εi n̂iσ +
∑

〈i,j〉σ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↓n̂i↑, (4.1)

where εi denotes the site-dependent energy levels, tij the nearest neighbor (NN) hopping

integrals, and U the on-site interaction1 [16]. As usual ĉ†iσ (ĉiσ) stands for the creation

1The LDFT formalism can be easily extended to arbitrary interactions HI = (1/2)
P

Vijklĉ
†
iσ ĉ†

kσ′ ĉlσ′ ĉjσ,
by replacing U

P

i n̂i↑n̂i↓ by HI in the expressions for the interaction-energy functional W [γ]. However,
note that the functional dependence of W on γ is crucially sensitive to the form of Vijkl. See also Refs. [34]
and [36].
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Chapter 4. Density functional theory on a lattice

(annihilation) operator for an electron with spin σ at site i (n̂iσ = ĉ†iσ ĉiσ). The values of
εi and tij define the distribution of different elements in the lattice, its dimensionality and
structure, and the range of the single-particle hybridizations (typically, tij = −t < 0 for
NN ij). They specify the system under study and thus play the role given in conventional
DFT to the external potential vext(~r). Consequently, the basic variable in LDFT is the
single-particle density matrix γij with respect to the sites i and j. The situation is similar
to the density-matrix functional theory proposed by Gilbert for the study of nonlocal
pseudopotentials [71], since the hoppings are nonlocal in the sites.

The ground-state energy Egs and density-matrix γgs
ij are determined by minimizing

the energy functional
E[γ] = EK [γ] + W [γ] (4.2)

with respect to γij . E[γ] is defined for all density matrices that derive from a physical
state, i.e., that can be written as

γij =
∑

σ

γijσ =
∑

σ

〈Ψ|ĉ†iσ ĉjσ|Ψ〉 , (4.3)

where |Ψ〉 is an N -particle state. Such γij are said to be pure-state N -representable. In
some cases it is also useful to distinguish the subset of so-called pure-state interacting v-
representable γij , or simply v-representable γij , which are those that can be derived from
a ground-state of Eq. (4.1), i.e., γij = γgs

ij for some values of εi, tij and U . An extension

of the definition domain of E[γ] to ensemble-representable density matrices

Γij =
∑

n

wn〈Ψn|
∑

σ

ĉ†iσ ĉjσ|Ψn〉 , (4.4)

with wn ≥ 0 and
∑

n wn = 1, is straightforward following the work of Valone [72].
The first term in Eq. (4.2) is given by

EK [γ] =
∑

i

εiγii +
∑

i6=j

tijγij . (4.5)

It includes all single-particle contributions, namely, the crystal-field energy and the kinetic
energy associated with the electron delocalization. Notice that both the diagonal and off-
diagonal parts of γ are taken into account exactly [34].

The second term in Eq. (4.2) is the interaction-energy functional

W [γ] = min
Ψ→γ

[

U
∑

i

〈Ψ[γ]|n̂i↑n̂i↓|Ψ[γ]〉
]

, (4.6)

which is given by Levy’s constrained search minimization [45]. Here the optimization runs
over all N -particles states |Ψ[γ]〉 that satisfy

〈Ψ[γ]|
∑

σ

ĉ†iσ ĉjσ |Ψ[γ]〉 = γij (4.7)

for all i and j. Thus, W [γ] represents the minimum possible value of the interaction energy
that is compatible with a given density matrix γij , i.e., with a given charge distribution
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4.1. Density-functional theory of model Hamiltonians

and degree of electron delocalization. W is a universal functional of γij in the sense that
it is independent of the external parameters εi and tij , i.e., it is independent of the system
under study. However, W [γ] depends on the number of electrons Ne, on the internal
structure of the many-body Hilbert space, as given by Ne and the number of orbitals or
sites Na, and on the kind of the many-body interactions, in the present case Hubbard’s
on-site form [16]. It is often convenient to express W in terms of the Hartree-Fock energy
EHF and the correlation energy Ec as W = EHF + Ec. Notice that, in contrast to the KS
approach, the expression for the kinetic, crystal-field, and exchange energies are exact, so
that Ec includes only the Coulomb correlation contributions.

Finally, the variational principle for the ground-state density matrix γgs
ij follows from

the relations [45]
Egs ≤ E[γ] = EK [γ] + W [γ] (4.8)

for all pure-state N -representable γij and

Egs = EK [γgs] + W [γgs] , (4.9)

where Egs = 〈Ψgs|Ĥ|Ψgs〉 refers to the ground-state energy.
It is interesting to analyze the dependence of W [γ] on the interaction parameter U , since
this reveals rigorous constraints to be satisfied by any explicit approximation. Once the
sign of U is defined, it is clear that the minimization in Eq. (4.6) and the representability
constraints (4.7) are independent of U . Therefore, we may write

W [γ] = U min
Ψ→γ

[

∑

i

〈Ψ[γ]|n̂i↑n̂i↓|Ψ[γ]〉
]

(4.10)

for all U > 0. The strict linearity of W [γ] with respect to U is an important non trivial
property that should be fulfilled by any approximation. It is a consequence of the fact
that the density matrix γ univocally defines all single-particle contributions. The situa-
tion is different in the DFT of the continuum, since the electronic density n(−→r ) is not
enough to define the kinetic energy unambiguously. Therefore the Hohenberg-Kohn or
Levy-Lieb functionals are the results of the compromise of minimizing the sum of kinetic
plus Coulomb interaction terms T + W for a given n(−→r ). In the context of lattice models
(in particular for the Hubbard model) there have been attempts to describe the many-body
problem in terms of the orbital occupation ni = 〈n̂i〉 = γii alone, in the spirit of continuum
DFT [28, 31]. In this case a non-linear dependence of the exchange correlation (XC) en-
ergy as a function of U/t needs to be assumed, since the kinetic energy is implicitly added
to the interaction term when constructing the XC functional. It should be moreover noted
that the kinetic energy of electrons in a lattice is not well-defined by the diagonal γii. For
example γii alone, which is independent of i in an homogeneous system does not allow one
to discern between weakly and strongly correlated states. While such occupation-number
approaches are formally correct, the resulting functionals are intrinsically non-universal.
They should not be transferred among different lattices (e.g., 1D, 2D and 3D) since the
corresponding kinetic-energy operators are different.

Once the minimization Eq. (4.6) is done, one can write

W [γ] =
∑

i

Ui〈ΨLL[γ]|n̂i↑n̂i↓|ΨLL[γ]〉 (4.11)
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where |ΨLL[γ]〉 denote the state yielding the minimum in Eq. (4.6). From the precedent
equation it is possible to extract a rigorous formulation of the local average of double
occupancy per site ωi:

ωi =
∂W

∂Ui
. (4.12)

In this way in possible to write the total correlation energy functional as a sum of local
contribution:

W [γ] =
∑

i

Ui ωi (4.13)

This expression will be used in the following section in order to derive the functional
dependence of ωi from analytical calculations on simple systems. Notice that the formalism
is the same considering an spin-symmetry braking by introducing an external magnetic
field hi(n̂i,↑ − n̂i,↓) instead of the diagonal disorder.

4.2 Computing the exact interaction-energy functional

In order to determine W [γ] we seek the extremes of

F = U
∑

l

(

〈Ψ|n̂l↑n̂l↓|Ψ〉
)

+ ε
(

1 − 〈Ψ|Ψ〉
)

+
∑

i,j

λij

(

〈Ψ|
∑

σ

ĉ†iσ ĉjσ|Ψ〉 − γij

)

(4.14)

with respect to |Ψ〉. Lagrange multipliers ε and λij have been introduced to enforce the
normalization of |Ψ〉 and the representability of γij . Derivation with respect to 〈Ψ|, ε and
λij yields the eigenvalue equations

∑

〈ij〉
σ

λij ĉ†iσ ĉjσ |Ψ〉 + U
∑

i

n̂i↑n̂i↓ |Ψ〉 = ε |Ψ〉 . (4.15)

and the auxiliary conditions 〈Ψ|Ψ〉 = 1 and γij = 〈Ψ|∑σ ĉ†iσ ĉjσ|Ψ〉. The Lagrange multi-
pliers λij play the role of energy levels (i = j) and hopping integrals (i 6= j) to be chosen
in order that |Ψ〉 yields the given γij . The pure-state representability of γij ensures that
there is always a solution.

In practice, one usually varies λij systematically in order to scan the full domain
of representability of γij . For given λij , the eigenstate |Ψ0〉 corresponding to the low-
est eigenvalue of Eq. (4.15) yields the minimum W [γ]. Any other |Ψ〉 satisfying γij =

〈Ψ|∑σ ĉ†iσ ĉjσ|Ψ〉 would have higher ε and higher W , since γij and EK are fixed. These
are the so-called interacting v-representable γij , which can be derived from a ground-state
of Eq. (4.15) or (4.1). They are the physically relevant ones, since they necessarily include
the absolute minimum γgs

ij of E[γ]. However, one also finds pure-state representable γij ,

which correspond to excited states or to linear combinations of eigenstates of Eq. (4.15).
Therefore, the domains of v- and N -representability are in general different, as it will be
discussed below.

Equation (4.15) can be solved numerically for finite lattices with different structures,
boundary conditions, and band fillings. In this case we expand |Ψ[γij ]〉 in a complete set
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4.3. Representability of the density matrix

of basis states |Φm〉 which have definite occupation numbers νm
iσ at all orbitals iσ, i.e.,

n̂iσ|Φm〉 = νm
iσ |Φm〉 with νm

iσ = 0 or 1. The values of νm
iσ satisfy the usual conservation

of the number of electrons Ne = Ne↑ + Ne↓ and of the z component of the total spin
Sz = (Ne↑ − Ne↓)/2, where Neσ =

∑

i ν
m
iσ . For not too large clusters, the ground state

|Ψ0[γij ]〉 of Eq. (4.15) can be determined by sparse-matrix diagonalization procedures, for
example, by using the Lanczos iterative method [42]. In practice we usually calculate
|Ψ0[γij ]〉 in the subspace of minimal Sz, since this ensures that there are no a priori
restrictions on the total spin S. In addition, spin-projector operators may be used to
investigate the dependence of W [γ] on S [73].

Interesting examples of non-v-representable γij are found when there is a discontinuous
change in the nature of the ground state as a function of external or interaction parameters.
Consider for instance the Hubbard model on a bipartite finite ring with Na = 4k sites (k a
positive integer) and sub-lattices energy levels ε1 and ε2 [see Eq. (4.1)]. In the homogeneous
case (∆ε = ε2 − ε1 = 0) the Fermi energy corresponding to half-band filling is degenerate
(n = 1). This degeneracy is removed for arbitrary small values of U or ∆ε. However, the
nature of the ground state is completely different for U > 0 (∆ε = 0) and ∆ε > 0 (U = 0).
In the first case the charge distribution remains homogeneous for all U > 0, while in the
second case a CDW state sets in, with a finite amplitude ∆n0 even for arbitrary small ∆ε.
As a result, the density matrices having 0 < γ11 − γ22 < ∆n0 and off-diagonal γ12 close to
the uncorrelated limit γ0

12 are not pure state v-representable. Consequently, the domain of
v-representability is concave. In fact, for the examples to be discussed in Sec. 4.3 it is not
simply connected, since the level crossing occurs even for U/t → +∞. Notice, however,
that this is a finite size effect which tends to disappear as the length Na = 4k of the ring
increases. For large Na the contribution of the Fermi level to γij and to its discontinuity
becomes negligible. This last case will be more extensively discussed in the next section.

In the non-v-representable domain of values of γij Levy’s constrained-search minimum
|Ψ0[γij ]〉 is given by a linear combination |Ψ〉 = a|α〉+ b|β〉 of the two ground states which
level crossing is at the origin of the discontinuity of γgs

ij (〈α|β〉 = 0). The coefficients a > 0

and b =
√

1 − a2eiϕ are obtained by minimizing W [γ] under the constraint 〈Ψ|ĉ†iσ ĉjσ +

ĉ†jσ ĉiσ|Ψ〉 = γijσ + γjiσ. Without loss of generality we assume that the hopping integrals
are always real so that the energy functionals depends only on the sum of γij and γji

(tij = tji). It is easy to see that any intermediate γij is not pure-state v-representable

but that it can be derived from a ket of the form |Ψ〉 = a|α〉 + i
√

1 − a2|β〉. In this

range the density matrix has the form γij = a2γα
ij + (1 − a2)γβ

ij , where γα
ij and γβ

ij are the

density matrices corresponding to |α〉 and |β〉. The interaction energy associated to |Ψ〉 is
W = a2Wα +(1−a2)W β . It necessarily yields the minimum of Levy’s constrained search,
since |Ψ〉 is one of the ground states of the Hubbard model. Any other state representing
the same γij would have the same kinetic energy and therefore an equal or higher W . This
shows that the N -representability domain is convex, even if the v-representability domain
is concave. This simple result is of crucial importance for practical applications, in which
a minimization in the respect to γ needs to be performed.

4.3 Representability of the density matrix

Representability is a fundamental property of any SPDM. For a given γ it tells us if
there is an associated pure ground-state wave-function (v-representability), an pure oth-
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erwise arbitrary eigen-wave function (N -representability), or an incoherent mixed state
(ensemble N -representability). The type of state from which γ is derived plays a role in
determining which mathematical domain is relevant to prossed the minimization of SPDM.
Unfortunately, to our knowledge, there is no necessary and sufisant condition (NASC) for
characterizing N -representability. However, there is a well-known NASC for ensemble
representability [33]:

If the eigenvalues ηk of a density matrix γ such as 0 ≤ ηk ≤ 1 and
∑

k ηk = Ne, then
this γ is ensemble N -representable.

In order to illustrate the problem of representability, we present in the following a
numerical study of the representability domain of inhomogeneous Hubbard rings. For
simplicity, we focus on bipartite lattices consisting of a sub-lattice S1, where the energy
levels εi = ε1 = ε/2, and a sub-lattice S2, where εi = ε2 = −ε/2. Moreover we choose
γ12 > 0 and tij = −t < 0 for NN ij. Non-bipartite lattices can be treated analogously
by considering positive and negative domains of γ12 separately. Positive (negative) values
of γ12 are relevant for negative (positive) hopping integrals. As shown in Ref. [34] for
homogeneous density distributions, non-bipartite lattices show scaling properties of W [γ]
that are similar to the bipartite case. In Figs. 4.1 and 4.2 the NN density matrix element
γ12 of the ground state of the inhomogeneous Hubbard model is shown as a function of the
electron density γ11 at one of the sub-lattices. Fig. 4.1 shows the representability-domain
as a function of the size Na of 1D and 2D Hubbard clusters having periodic boundary
conditions, from sizes Na = 2 to Na = 16 sites, and half band filling n = Ne/Na = 1. In
Fig. 4.2 the band-filling dependence for a bipartite ring having Na = 14 sites is presented.
They were obtained from Lanczos exact diagonalization for representative values of the
Coulomb repulsion strength U/t > 0 by varying systematically the difference ∆ε = ε1 −
ε2 > 0 between the energy levels of the sub-lattices. The curves, given only for 0 ≤ γ11 ≤ 1,
are symmetric with respect to the homogeneous case γ11 = 1 [(γ11 + γ22)/2 = n = 1].
They display the correlation between diagonal and off-diagonal elements of the density
matrices γij , as derived from the ground state of the model for different values of the
parameters that define the system (i.e., the energy level difference ∆ε and the NN hopping
t). These density matrices are referred to as pure-state interacting v-representable, or
simply v-representable, by analogy with the DFT of the inhomogeneous electron gas. In
the continuum theory the electron densities ρ(~r) derived from exact ground states are
called interacting v-representable, since they stay in one-to-one correspondence with an
external potential vext(~r) [1, 3, 4]. While the v-representable domain contains all the
ground state γgs

ij , it is also important to investigate the properties of the more general
N -representable γij , which constitute the domain of definition of the Levy-Lieb functional
W [γ].

For each γ11, or charge transfer ∆n = γ22 − γ11, the upper bound γ0
12 for the NN

γ12 corresponds to the largest possible value of the kinetic energy, which is achieved by
the uncorrelated ground-state for the given ∆n. Since the underlying electronic state is a
single Slater determinant, the interaction energy is given by the Hartree-Fock value W 0 =
W [γ0] = UNa(γ

2
11 + γ2

22)/8, except eventually in special cases with unusual degeneracies
in the single-particle spectrum (e.g., Na = Ne = 4 and ∆n = 0). The uncorrelated γ0

12

is largest for an homogeneous density distribution (∆n = 0) and decreases monotonically
as the charge transfer increases. It vanishes in the limit where only one sub-lattice is
occupied (see Fig. 4.1). This can be understood by recalling that in an uncorrelated state
an increase of ∆n is the result of an increasing difference ∆ε in the energy levels of the
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4.3. Representability of the density matrix

Figure 4.1: NN bond order γ12 between the two sub-lattices as a function of the charge den-
sity γ11 on the sub-lattice S1 delimiting the representability domain of bipartite Hubbard
clusters at half band fillings. The solid (dashed) black line refers to the non-correlated
(strong correlated) limits. The blue solid (yellow dashed) zone corresponds to the v-
representable (ensemble-representable) domains. One dimensional wires and 2D square
lattices of various number of atoms Na are considered.
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Figure 4.2: NN bond order γ12 between the two sub-lattices as a function of the charge
density γ11 on the sub-lattice S1 delimiting the representability domain of 1D bipartite
Hubbard rings having Na = 14 sites and different band fillings. The solid (dashed) black
line refers to the non-correlated (strong correlated) limits. The blue solid (yellow dashed)
zone corresponds to the v-representable (ensemble-representable) domains.
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sub-lattices, which reduces the possibility for the electrons to delocalize. In the limit of
complete charge transfer (γ11 → 0) no charge fluctuations at all are possible.

For γ12 < γ0
12, and a given ∆n, the number of linearly independent many-body states

yielding the given γij is larger. Therefore the electrons can reduce the optimum value of
the interaction W , for a fixed γij , by reducing the number of double occupations (U > 0).
The minimum value of the interaction energy per site is W∞ = U(1 − γ11)/2 for n = 1
and γ11 ≤ 1. We shall denote by γ∞

12 the largest possible value of γ12 compatible with
the minimum number of double occupations W∞/U . γ∞

12 defines the lower bound for the
v-representable γij and corresponds to the the ground state of the model for U → +∞
[W (γ∞

12) = W∞, see Fig. 4.1]. Smaller values of γ12 are still pure-state N -representable.
To show this one may consider a linear combination of two states having the same γ11

and opposite γ∞
12 . One of them is the ground state yielding γ∞

12 for negative tij and the
other for positive tij (U → +∞). It is easy to see that these states have all the same
minimal interaction energy W∞. Therefore, W is independent of γ12 and equal to W∞

for |γ12| ≤ γ∞
12 . Although they are pure-state representable, these γij can never match a

ground state, since there are states having the same ∆n and W but larger γ12.

In the absence of charge transfer (γ11 = γ22 = 1) the minimum W∞ = 0 can only
be achieved by any of the 2Na fully localized states for which γ∞

12 = 0 spin degeneracy.
This corresponds to the well-known Heisenberg limit of the homogeneous Hubbard model.
However, as charge transfer increases it is possible to delocalize part of the electrons, even
in the limit of strong correlations (i.e., W = W∞). Therefore, γ∞

12 > 0 for 0 < γ11 < 1.
Although the details of the strongly correlated ground state are quite complex, one can
easily estimate that γ∞

12 should be larger than the γ12 of a Slater determinant having one
localized (e.g., up) electron in the sites of the sub-lattice 2 (γ22 > 1), while the remaining
(e.g., down) electrons occupy delocalized states following an average occupation γ22−1 on
sub-lattice 2 and γ11 on sub-lattice 1. Consequently, γ∞

12 should be largest for intermediate
values of the number of delocalized electrons per site. This corresponds roughly to a half-
filled delocalized subband (γ11 = γ22−1 ∼ 1/2 and ∆ε/U ∼ 1). The resulting γ∞

12 presents
therefore a maximum as a function of γ11, vanishing only for ∆n = 1 and ∆n = 0, where
the number of delocalized electrons or holes is zero (see Fig. 4.1). Notice that the actual
maximum of γ∞

12 is found for γ11 < 1/2.
Fig. 4.1 shows 1D chains (Na = 4, 8, 12) and are interesting example of a disconnected
domain of v-representability. These correspond to the result of the crossing between the
two lowest S = 0 levels. One of them favors a strong CDW state and is the ground state for
large ∆n, while the other yields a rather uniform density distribution and dominates for
γ11 close to 1. The ground-state density matrix γgs

ij is discontinuous at the level crossing,

as indicated by the dashed lines in Fig. 4.1(a). For U = 0 the discontinuity appears for
an arbitrary small ∆n. As U > 0 increases, γgs

12 decreases and the transition from an
homogeneous to an inhomogeneous density distribution shifts to a finite increasing ∆ε.
In contrast, the discontinuity in γ11 remains approximately constant, even for U → +∞
[see Fig. 4.1(a)]. This leads to a whole range of γij that cannot be attained by the ground
state of the Hubbard model. Therefore, the domain of pure-state v-representability is
not simply connected. In this intermediate region, γij can be represented by a linear
combination of the two orthogonal degenerate ground-states at the origin of the level
crossing. As discussed in Sec. 4.1, Levy’s constrained search functional W corresponds
here to the interpolation of the interaction energies in the two degenerate states as given
by the straight dashed curves in Fig. 4.1(a).
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Figure 4.3: Occupation numbers ηk (k = 1, .., 14), as a function of the strength of the
Coulomb interaction in the ground state of a bipartite Hubbard ring having Na = 14 sites
and half band filling (n = 1). Results are presented for two representative values of the
energy level shift ε/t = 0 (left) and ε/t = 4 (right). For symmetry reason, only 8 of the 14
eigenvalues are different. Spin up and spin down occupations are the same in the singlet
ground state (ηk = ηk,↑ = ηk,↓).

4.4 Variational equations

The previously presented Levy-Lieb formulation proves the existence of a functional re-
lation between the ground-state energy of a many-particle system Egs and the density
matrix γ. In this section we show that one needs to satisfy specific condition in order to
derive variational relations, which are analogous to the Kohn-Sham equations in conven-
tional DFT. We follow the presentation made by R. López-Sandoval and G. M. Pastor for
N -representable density matrix [33].
The variational principle can be implemented by using Lagrange multipliers. One consid-
ers the auxiliary function

L = E[γ] − µ





∑

k,σ

ηk,σ − Ne



 −
∑

k,σ

εk,σ

(

∑

i

| uik,σ |2 −1

)

(4.16)
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4.4. Variational equations

where

γij,σ =
N

∑

k=1

u∗
ik,σηk,σujk,σ,

0 ≤ ηk,σ ≤ 1, (4.17)

N
∑

k=1

| uik,σ |2 = 1

The matrix γ is characterized by its eigenvalues ηk,σ and its eigenvectors uik,σ, also known
as the natural orbitals. The function L is composed, from left to right, by the energy E[γ]
for the N -representable SPDM, the constraint of the number of particle for the SPDM,
and the normalization of the natural orbitals for SPDM.

Differentiation of L with respect to u∗
ik,σ yields the saddle point condition

∂L
∂u∗

ik,σ

=
∑

i′jσ′

∂E

∂γi′jσ′

∂γi′jσ′

∂u∗
ik,σ

− εkuik,σ = 0. (4.18)

Using that
∂γi′jσ′

∂u∗
ik,σ

= ηk,σujk,σδii′δσσ′ (4.19)

one obtains
∑

j

(

∂E

∂γijσ
− λk,σδij

)

ujk,σ = 0, λk,σ =
εk

ηk,σ
. (4.20)

This is an eigenvalue equation equivalent to a one-particle effective Hamiltonian Ĥeff with
eigenenergy λk,σ.
Differentiation of L with respect to ηk,σ yields the condition

∂L
∂ηk,σ

=
∑

i′jσ′

∂E

∂γi′jσ′

∂γi′jσ′

∂ηk,σ
− µ = 0 (4.21)

at the saddle point, which is equivalent to

∑

i





∑

j

∂E

∂γijσ
ujk,σ



 u∗
ik,σ = µ. (4.22)

Finally, using Eq. (4.20), we obtain
λk,σ = µ. (4.23)

This previous result could seem surprising since it means that all eigenvalue λk,σ of the

effective Hamiltonian Ĥeff are degenerated (see Eq. 4.23) and associated with a fractional
occupation number ηk,σ for the eigenvalue problem associated to the N -representable
matrix γ. This is different from the usual KS approach which describes the electronic
density with auxiliary orbitals having integer occupation numbers. However, also in KS
theory the eigenvalues εk = µ for all k having 0 < ηk < 1, as shown by Janak [4]. In
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Figure 4.4: NN bond order γ12 and degree of delocalization Γ2
i as a function of the strength

of the Coulomb interaction U/t in homogeneous Hubbard rings having Na = 6 (black),
Na = 10 (red) and Na = 14 sites (blue). The dashed line refers to γ12, the full-line to the
approximation of Γ2

i : Eq. (4.26) and symbol to the exact Γ2
i .

LDFT the degeneracy of λk,σ is a direct consequence of the electronic correlation. That
the eigenvalues are equal to the chemical potential is formally correct when the occupation
numbers are fractional. This behavior is shown in Fig 4.3 where we show the occupation
number ηk = ηk,↑ = ηk,↓ in the ground state of a 14 sites Hubbard ring at half band filling
S = 0. One observes that an arbitrary small value of U/t is enough for all the ηk to become
fractional, independently of the energy level shift ε/t between the two sub-lattices.

4.5 Relevant part of the density matrix, degree of electronic
delocalization

As we have presented above, the energy is a functional of the SPDM. However, minimizing
over all the elements of the SPDM, appears to be a complicated numerical problem. It
would be therefore useful if one could define a variable common of any system which is
able to describe how much the system is delocalized without the need of the full density
matrix. To approach this problem, we present a dimensionless variable derived from the
ensemble N -representable NASC (see Sec. 4.3), which is bounded between zero and one,
and which can be useful to describe the degree of electronic delocalization. Starting from
the NASC for the ensemble N -representability, in [38] it has been shown that

57



4.5. Relevant part of the density matrix, degree of electronic delocalization

If a density matrix γ is N -ensemble-representable then

0 ≤ Γ2
i,σ ≤ 1 , with Γ2

i,σ =

∑

j 6=i | γij,σ |2

γii,σ(1 − γii,σ)
. (4.24)

Proof: If γ is N -ensemble-representable then all its eigenvalues ηk,σ ∈ [0, 1]. Since
ηk,σ ≤ 1 then 1 − γσ is also positive definite and its eigenvalues are also less or equal to
1. Then we have that γ(1 − γ) is also positive definite and

〈i | γσ − γ2
σ | i〉 ≥ 0 (4.25)

From this inequality it follows that:

〈i | γσ − γ2
σ | i〉 ≥ 0

γii,σ − ∑

j γij,σγji,σ ≥ 0

γii,σ − γ2
ii,σ − ∑

j 6=i γij,σγji,σ ≥ 0

γii,σ(1 − γii,σ) ≥ ∑

j 6=i | γij,σ |2 ⇒ Γ2
i,σ ≤ 1.

The fact that Γ2
i,σ ≥ 0 is obvious.

Note that unless some model parameter diverges γii,σ is never strictly zero or one in a
connected quantum mechanical system. Another properties of Γ2

i,σ can be mentioned.
At the non-correlated limit the occupations number ηk of γ are zero or one. Then γ =
γ2 and all Γ2

i,σ = 1. In contrast, Γ2
i,σ = 0 when there is no electronic delocalization

γi6=j,σ = 0 ∀i, j, σ. i.e., these two properties are valid for any system at any band
filling. Moreover, starting from the non-correlated limit having Γ2

i,σ = 1, by increasing

the Coulomb interaction, Γ2
i,σ decreases until it reaches its minimum value for U → ∞.

However, Γ2
i,σ > 0 except for some system at half-band filling for which Γ2

i,σ = 0 for U → ∞,

e.g, square lattice. Γ2
i,σ could be use to describe the degree of electronic delocalization

of a system since for Γ2
i,σ = 1 (Γ2

i,σ = 0) the systems is fully delocalized (localized).

Intermediate values of Γ2
i,σ correspond to the interplay between localization induced by

the Coulomb repulsion, and delocalization.
In the case of infinite dimensions and for the dimer, Γ2

i,σ =
γi,j,σ, ijNN

γ0
i,j,σ, ijNN

where γ0
i,j,σ, ijNN

is the electronic delocalization between two NN at the non-correlated limit. However we
show that for other system, considering only the NN bond order in the calcul of Γ2

i,σ is a
good approximation.
In Fig 4.4 we are showing the NN bond order γij and Γi =

∑

σ Γi,σ for the ground state of
homogeneous 1D Hubbard chains having Na = 6, 10, and 14 as a function of the strength of
the Coulomb repulsion U/t. The exact results (symbols) of γij as well as its approximation
taking only into account the NN bond order

Γ2
i,σ ≃

γ2
12,σ

γ0
12,σ

2 (4.26)

are bounded between zero and one. This is not the case of γi,j which is system dependent.
One sees also in this figure that Γ2

i is nearly independent of the system size, so that it can
be a good approximation for a degree of delocalization. In addition, by considering only
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Chapter 4. Density functional theory on a lattice

the first NN in its calculation one obtains quantitatively its value. The scalability of Γ2
i

will be studied later on in this work. It is also very important to be able to define a variable
which can describe the degree of delocalization or localization for any system. In this sense,
these previous results are promising concerning Γ2

i,σ, since it has been shown that it can
be reduce to only the NN contribution without lost of much information. This is a useful
property since for a large system, minimizing the energy-functional over all the element
of the density matrix can be difficult in practice. With Γ2

i,σ we have defined a convenient

variable, describing the degree of electronic delocalization of any systems (Γ2
i,σ = 1 fully

delocalized, Γ2
i,σ = 0 fully localized). In addition, we have shown that knowing only the

NN bond order and its non-correlated limit, one can give a good approximation of Γ2
i,σ

and of the degree of delocalization.
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Chapter 5

Scaling approximation for
bipartite systems

Once the LDFT formalism has been presented, we focus now on the main challenge of
the problem: the derivation of an accurate approximation to the correlation-energy func-
tional (CEF) for inhomogeneous system. In a previous work on homogeneous systems,
it is shown that the CEF admits several scaling properties from which simple and quite
accurate approximations to the CEF can be inferred [33, 34, 35, 36, 37] . Following this
phylosophy we show that theses properties are also present in inhomogeneous system hav-
ing charge transfert between sites. In order to simplify the problem, we focus on the
bipartite Hubbard model. In the first section, we make a systematic study of the CEF in
finite systems in order to extract the scaling properties. Then we propose an extention
of the scaling approximation based on the inhomogeneous Hubbard dimer. Finally, we
apply the Ansatz and compare our results with other available methods for representative
examples.

5.1 Exact numerical studying of the correlation-energy func-
tional W [γ]

Before developing an approximation to the CEF W [γ], it is very useful to study its proper-
ties as obtained from exact diagonalizations following the method described in Sec. 4.2. As
already mentioned, for homogeneous systems the CEF presents quite remarkable scaling
properties which are suitable for introducing simple and efficient approximations. In this
section we study the effect of a bipartite diagonal potential on the scaling properties of
W [γ], a systemactic study on finite bipartite lattices.

Let us first discuss exact results for W [γ] in the 1D Hubbard rings, which were obtained
from Lanczos diagonalizations by varying systematically γij , the band filling n, and the
number of sites Na. In Fig. 5.1 W is shown as a function of γ12 for representative values
of ∆n = γ22 − γ11. Despite the strong dependence of W on ∆n the are several important
qualitative properties shared by all the curves:
(i) As already discussed, the domain of N representability of γ12 is bounded by the bond
order γ0

12 in the uncorrelated limit. γ0
12 decreases monotonously as ∆n increases vanishing

for ∆n = 2. This is an important contribution to the ∆n dependence of W which reflects
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Chapter 5. Scaling approximation for bipartite systems

Figure 5.1: Interaction energy W of the Hubbard model on 1D rings as a function of NN
density-matrix element γ12: (a) Na = 12 and (b) Na = 14 sites at half-band filling n = 1.
The different charge transfers ∆n = γ22 − γ11, are indicated by the numbers labelling
the curves. The dashed curve (blue) shows the Hartree-Fock upper bound EHF = W 0 =
UNa[n

2 +(∆n/2)2]/4. The dotted curve (red) corresponds to the strongly correlated limit
where γ12 = γ∞

12 and W = W∞ = UNa∆n/4 for n = 1. Notice that W is constant for
0 ≤ γ12 ≤ γ∞

12 .
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5.1. Exact numerical studying of the correlation-energy functional W [γ]

the interplay between charge transfer and electron delocalization.
(ii) In the delocalized limit, W (γ0

12, ∆n) = W 0 = EHF for all ∆n, since the electronic
state yielding the largest γ12 is a single Slater determinant. Moreover, one observes that
∂W/γ12 diverges at γ12 = γ0

12. This is a necessary condition in order that the ground-state
density matrix satisfies γgs

12 < γ0
12 for arbitrary small U > 0, as expected from perturbation

theory.
(iii) Starting from γ0

12, W decreases with decreasing γ12, reaching its lowest possible value
W∞ = UNa(γ22 − 1)/2 for γ12 = γ∞

12 (W∞ = UNa∆n/4 for n = 1). The decrease of W
with decreasing γ12 means that the reduction of the Coulomb energy due to correlations
is done at the expense of kinetic energy or electron delocalization. Reducing γ12 beyond
γ∞

12 cannot lead any further reduction of W for the given ∆n.
(iv) The strongly correlated γ∞

12 is in general finite showing a non-monotonous dependence
on ∆n. It vanishes only for ∆n = 0, where the electrons are localized evenly at all sites
keeping just their spin degree of freedom. It also vanishes for ∆n = 2, where all the
electrons form localized pairs on one sublattice. In the latter case both γ∞

12 and γ0
12 are

zero.
(v) In the limit of small γ12−γ∞

12 > 0, one observes that W ∝ U(γ12−γ∞
12)2. Therefore, for

U/t ≫ 1, (γgs
12 − γ∞

12) ∝ t/U and Egs − W∞ ∝ t2/U , a result expected from perturbation
theory and which corresponds to the Heisenberg or t-J limit of the homogeneous Hubbard
model [14].

In order to compare the functional dependence of W for different ∆n and to analyze
its scaling behavior we focus on the v representable domain γ∞

12 ≤ γ12 ≤ γ0
12 where W

is not trivially constant. To this aim it is useful to bring the domains of representability
for different Na to a common range and to scale W with respect to the Hartree-Fock and
strongly correlated values. We therefore consider (W − W∞)/(W 0 − W∞) as a function
of g12 = (γ12 − γ∞

12)/(γ0
12 − γ∞

12) as displayed in Fig. 5.2 (W 0 = EHF ). In this form the
results for different Na appear as remarkably similar, showing that the largest part of the
dependence of W on γ12 and ∆n comes from the domain of representability of γij and the
limiting values for weak and strong correlations. An analogous scaling behavior has been
found in previous numerical studies of W for an homogeneous charge distribution [34].
In this case one also observes that W (g12) depends weakly on system size Na provided
it is measured in units of the Hartree-Fock energy EHF and if γ12 is scaled within the
relevant domain of representability [γ∞

12 , γ0
12]. In the present context, Fig. 5.2 implies that

the change in W associated to a given change in the degree of delocalization g12 can be
regarded as nearly independent of system size.

The very good scalability of W as a function of g12 for different system sizes is not
obvious. In fact, if one considers W (g12) for different charge transfers ∆n, one observes
much more significant deviations. This is demonstrated in Fig. 5.3 where the results for a
1D ring with Na = 14 sites are compared for different ∆n. Qualitatively, the dependence
of W on the degree of delocalization g12 is similar for different ∆n. Notice, for instance,
the behavior for weak and strong correlations (g12 ≈ 0 or 1) and the overall shape in
the crossover region. This shows that the scaling hypothesis works satisfactorily even for
different ∆n. However, the quantitative differences between the scaled W for various ∆n
are more significant than those found for different sizes (see Figs. 5.2 and 5.3). This is
actually not very surprising, since the nature of the electronic correlations are expected
to evolve as we move from purely metallic to strongly ionic-like bonds. It is therefore
important to investigate systematically the functional dependence of W for different ∆n
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Figure 5.2: Scaled interaction energy W of the 1D Hubbard model as a function of the
degree of electron delocalization g12 = (γ12 − γ∞

12)/(γ0
12 − γ∞

12). W 0 = EHF and γ0
12 refer

to the uncorrelated limit (U = 0) while W∞ and γ∞
12 to the strongly correlated limit

(U/t → +∞). Results are given for band filling n = 1, all even numbers of sites Na = 2–
14, and different charge transfers ∆n. Open circles (red) correspond to Na = 2 and crosses
(blue) to Na = 4. The other sizes are very difficult to tell apart.
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Figure 5.3: Charge transfer dependence of the the scaled interaction-energy functional
W of the 1D Hubbard model. Results are given as a function of the degree of electron
delocalization g12 = (γ12 − γ∞

12)/(γ0
12 − γ∞

12) for Na = 14, n = 1 and different charge
transfers ∆n = 0.0–1.8.

in order to elucidate its scaling behavior and evaluate the possibilities of transferring it
from simple to complex many-body problems.

In Fig. 5.4 the band-filling dependence of W in a Na = 10 site Hubbard ring is shown
for Ne ≤ Na and γ12 ≥ 0. The same functional dependence is obtained for Ne > Na

or γ12 < 0 due to electron-hole symmetry and the bipartite symmetry of the lattice
[W (γ12, ∆n) = W (±γ12,±∆n)]. While W (γ12) depends strongly on n and ∆n, several
qualitative features are common to all the curves:
(i) As in the half-filled band case, the domain of v-representability of γ12 is limited by the
bond orders in the uncorrelated and strongly-correlated limits: γ0

12 ≤ γ12 ≤ γ∞
12 , where

γ0
12 (γ∞

12) corresponds to the ground state of the model for U = 0 (U → +∞). Notice that
γ0

12 increases monotonously with Ne as the single-particle band is filled up. In contrast
the behavior of γ∞

12 is more complex, showing either a monotonous increase with n for
∆n ≥ 1 or non-monotonous band-filling dependence for ∆n < 1 (see Fig. 5.4). As already
discussed, the dependence of γ0

12 and γ∞
12 on n and ∆n are of central importance to the

band-filling dependence of W .
(ii) In the weakly correlated limit, W (γ0

12, ∆n) = W 0 is given by the Hartree-Fock energy
EHF /Na = U(n2 + ∆n2/4)/2, since the underlying state is a single Slater determinant1.
Moreover, the divergence of ∂EC/∂γ12 for γ12 = γ0

12 shows that γgs
12 < γ0

12 for arbitrary
small U > 0, as expected from perturbation theory.
(iii) Starting from γ12 = γ0

12, W decreases monotonously with decreasing γ12 reaching its
lowest possible value W∞ = UNa max{0, n − 1 + ∆n/2}/2 for γ12 = γ∞

12 . As already dis-

1In the presence of degeneracies in the single-particle spectrum one may find that Levy’s minimum W
does not derive from a single Slater determinant and that W 0 < EHF. However, this is a finite-size effect
which importance decreases with increasing Na.
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Figure 5.4: Interaction energy W of the 1D Hubbard model as a function of NN density-
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below which W = W∞ remains constant.
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5.1. Exact numerical studying of the correlation-energy functional W [γ]

cussed for n = 1, γ∞
12 defines the lower bound of the domain of v-representability. Smaller

γ12 are still pure-state representable but W = W∞ is constant in this range. For the
sake of clarity, the values of γ∞

12 are indicated by vertical dashed lines. Notice that W∞

vanishes for small electron density, provided that the charge transfer is not very strong
(i.e., n + ∆n/2 = γ22 ≤ 1). The decrease of W with decreasing γ12 illustrates, once more,
how the correlation-induced reduction of the Coulomb energy occurs at the expense of
kinetic energy or electron delocalization.
(iv) γ∞

12 always represents the largest NN bond order that can be achieved under the con-
straint of minimal Coulomb repulsion energy. As the uncorrelated γ0

12, γ∞
12 vanishes when

the occupation of one the sublattices is either 0 or 2 (i.e., γ11 = 0 under the assumption
γ11 < γ22 and n ≤ 1). However, in the strongly correlated limit, γ∞

12 also vanishes when
the occupation of one the sublattices is strictly 1, since this leaves no possibility for the
electrons or holes to delocalize without involving charge fluctuations (bipartite lattice).
This is of course only possible for n ≥ 1/2. One therefore finds, assuming γ11 < γ22, that
γ∞

12 = 0 for γ22 = n + ∆n/2 = 1.
(v) For small n or ∆n, where both γ11 and γ22 are smaller than 1, it is possible to approx-
imate the strongly correlated state (minimal W ) by a fully-polarized Nagaoka state, as in
the homogeneous case [35]. Here γ∞

12 is largest for ∆n = 0, decreasing monotonously with
increasing ∆n, and vanishing for γ11 = 0 (∆n = n) or γ22 = 1 [∆n = 2(1 − n)] whatever
occurs first. This explains the non-monotonous dependence of γ∞

12 as a function of n with
a maximum for n = 1/2 for ∆n < 1 (i.e., nearly half-filled fully-polarized-spin band).
(vi) In the other regime, for ∆n > 1 [1/2 < n < 1 and γ22 = (n + ∆n/2) > 1] one can
obtain a lower bound for γ∞

12 by assuming localized electrons in sublattice 2, for instance
with spin up, so that γ12 is given by the remaining Ne − Na/2 down electrons. While
this Ansatz neglects spin fluctuations and is therefore rather poor quantitatively, it ex-
plains the monotonous increase of γ∞

12 with increasing n for fixed ∆n > 1 as the down
band is filled up (see Fig. 5.4). The approximation remains qualitatively correct provided
that γ22 = (n + ∆n/2) > 1. In particular it explains that γ∞

12 vanishes for γ11 = 0
and γ22 = 1, and that, for a given n, it shows a local maximum for ∆n not far from 1
[2(1 − n) ≤ ∆n ≤ 2n], i.e., for γ11 ≃ γ22 − 1, when the delocalized electrons are evenly
distributed among the two sublattices (see Fig. 5.4, for example, for Ne = 8).
The results for different band fillings are compared in Fig. 5.5 by considering the scaled

interaction energy (W −W∞)/(W 0 −W∞) as a function of g12 = (γ12 − γ∞
12)/(γ0

12 − γ∞
12).

Once the relevant v-representable domains are brought to a common range, one observes a
remarkably similar behavior for all band-fillings. Fig. 5.5 shows that the largest part of the
band-filling dependence of W in the inhomogeneous Hubbard model comes from its lim-
iting values W 0 = EHF = UNa(n

2 + ∆n2/4)/2 and W∞ = UNa max{0, n− 1 + ∆n/2}/2,
and on the corresponding bounds γ0

12 and γ∞
12 of the domain of representability. Similar

conclusions are inferred from calculations for other sizes and lattice structures. Notice
that the strongest dependence of the scaled interaction on n is found for a nearly homo-
geneous charge density (small ∆n) and for intermediate values of g12. As we approach
the strongly correlated limit (g12 ≤ 0.4) the dependence of n is relatively weak even for
∆n ≃ 0 One concludes that a properly scaled interaction energy follows approximately a
universal behavior.
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5.2 Scaling Ansatz for W [γ]

The challenge now is to exploit the scaling properties shown in the previous section. The
above study revealed that the dependence of W as a function of the NN bond order γ12

can be considered to be approximately independent of the system size, lattice dimension
and band filling n, provided that two simple scaling conditions are taken into account.
First, W (γ12) must be scaled between the limit of weak correlation W 0 =

∑

i γii↑γii↓ and
the limit of strong correlation W∞ =

∑

i max[γii−1, 0], corresponding to the given charge
distribution γii. Second, γ12 must be scaled accordingly in the range γ∞

12 < γ12 < γ0
12

between the strongly correlated limit γ∞
12 and the weakly correlated limit γ0

12. This range
represents the domain of v-representability of γ. Mathematically, this means that for a
given density distribution {γii} it is a good approximation to regard

w =
W − W∞

W 0 − W∞
(5.1)

as a function of the degree of electron delocalization

g12 =
γ12 − γ∞

12

γ0
12 − γ∞

12

. (5.2)

In other words, the relative change in W associated to a change in the degree of electron
delocalization g12 can be considered as nearly independent of the system under study.
This extends the conclusions of previous investigations on the homogeneous Hubbard
model to the inhomogeneous case [34]. Notice, however, that the relation between w and
g12 does depend on γii, and in particular on the charge transfer ∆n = γ22 − γ11 between
the sub-lattices of a bipartite structure2. Consequently, a sound general approximation
to W can be obtained by scaling the functional dependence of W on γij corresponding
to a simple reference system, which already contains the fundamental interplay between
delocalization, charge transfer, and correlations.

The Hubbard dimer is the smallest and simplest system that fulfills these conditions.
We therefore propose the scaled dimer approximation Wsc, which is given by

Wsc − W∞

W 0 − W∞
=

W2 − W∞
2

W 0
2 − W∞

2

, (5.3)

where the subindex 2 refers to the dimer. Using the definition of w [Eq.(5.1)] one may
write Eq. (5.3) in a compact form as wsc(g12, ∆n) = w2(g12, ∆n), which implies

Wsc = W∞ + (W 0 − W∞)
W2 − W∞

2

W 0
2 − W∞

2

. (5.4)

Notice that all the terms on the right-hand side of Eq. (5.4) are simple functions of γij .
The uncorrelated and strongly correlated bounds in the dimer (Ne = Na = 2) are given
by W 0

2 = [1 + (∆n/2)2]/4 and W∞
2 = ∆n/4. For an arbitrary system, these bounds are

given by W 0 =
∑

i γii↑γii↓ (Hartree-Fock limit) and W∞ =
∑

i max[γii − 1, 0] (minimal

2Numerical results reported in Sec. 5.1 show that the dependence of W on ∆n is not very strong in
general, always much weaker than the dependence on g12.
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double occupations).3 Finally, the exact dimer interaction-energy functional for Ne = 2 is
given by

W2

UNa
=







1 − γ2
12

2

1+
√

1−(∆n/2)2−γ2
12

(∆n/2)2+γ2
12

, if γ∞
12 < γ12 < γ0

12

∆n/4, if |γ12| < γ∞
12 .

(5.5)

Despite its simplicity, Eqs. (5.4) and (5.5) reproduce several important exact properties
that are common to all systems:
(i) The definition of W [γ] is conditioned by the domain of v representability of the NN
bond order γ12, which is given by γ∞

12 ≤ γ12 ≤ γ0
12. The lower bound γ∞

12 corresponds to
the strongly correlated limit and represents the maximum electron delocalization under
the constraint of minimal double occupations. The upper bound γ0

12 is the non-interacting
limit of γ12 yielding the maximum degree of delocalization, irrespectively of the value of
the double occupations. Notice that both γ∞

12 and γ0
12 depend on the band filling n, on the

charge transfer ∆n, and on the NN connectivity of the specific lattice under study. For
the half-filled dimer (n = 1) we have γ∞

12 =
√

∆n(2 − ∆n)/2 and γ0
12 =

√

1 − (∆n/2)2.
(ii) At the non-correlated limit, the underlying electronic state Ψ[γ0

12] is a single Slater
determinant and W (γ0

12) = WHF = UNa[n
2 + (∆n/2)2]/4. Moreover, ∂W/∂γ12 diverges

for γ12 = γ0
12. This is a necessary condition in order that an arbitrary small U yields

a non-vanishing change in the ground-state density matrix γgs
12, which is expected from

perturbation theory.
(iii) For any fixed charge distribution {γii}, W decreases with decreasing γ12, reaching
its lowest possible value W∞ = UNa(max[n−∆n/2− 1, 0] + max[n + ∆n/2− 1, 0])/2 for
γ12 = γ∞

12 . The monotonic decrease in W upon decreasing γ12 means that any reduction
in the Coulomb energy resulting from correlations is achieved at the expense of kinetic
energy or electron delocalization. Notice that in most cases γ∞

12 > 0. Reducing γ12 beyond
γ∞

12 cannot lead to any further decrease in W for the given {γii}. Therefore, W is constant,
equal to W∞ in the range of |γ12| ≤ γ∞

12 .
(iv) The strongly correlated γ∞

12 shows a non-monotonous dependence on charge transfer
∆n. On a bipartite lattice γ∞

12 vanishes for ∆n = 2 − 2n if n ≥ 1/2. In this case, all
sites of one sub-lattice contain strictly one electron, while the sites of the other sub-lattice
contain 2n − 1 electrons (γ22 = 1 and γ11 = 2n − 1). Since the occupation of one of the
sub-lattices is equal to one, no electronic hopping can occur in the strongly correlated
limit. In addition, γ∞

12 also vanishes for extreme charge transfers, where one of the sub-
lattices is completely empty (γ22 = 2n, γ11 = 0 and ∆n = 2n, for n ≤ 1) or completely
full (γ22 = 2, γ11 = 2n− 2 and ∆n = 4− 2n, for n ≥ 1). In this case the uncorrelated γ0

12

also vanishes.
The general validity of these properties relies on the universality and transferability

of the interaction-energy functional. In order to exemplify the previous general trends we
present in Fig. 5.6 results for Wsc as a function of g12 for different representative values
of ∆n. To evaluate the accuracy of the scaled dimer approximation these results are
compared with the exact Levy-Lieb functional Wex[γ], which was calculated by performing
the minimization in Eq. (4.6) for a finite ring having Na = 10 sites and different numbers of
electrons Ne. The constraints on |Ψ〉 given by Eq. (4.7) are imposed for i = j (γ11 +γ22 =
2n and γ22−γ11 = ∆n) and for NN ij along a periodic ring (γij = γ12) by using the method

3In case of degeneracies at the Fermi energy of the single-particle spectrum in a finite system, W 0 can
be calculated by applying degenerate perturbation theory (W 0 < WHF).
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Figure 5.6: Comparison between the scaled dimer functional Wsc[γ] as a function of the
degree of electron delocalization g12 = (γ12 − γ∞

12)/(γ0
12 − γ∞

12) [solid curves, Eq. (5.4)] and
the exact functional Wex derived from Lanczos diagonalization (symbols). Results are
shown for a 1D bipartite ring having Na = 10 sites, different band fillings n = Ne/Na and
representative charge transfers ∆n = γ22−γ11. The inset figures display the corresponding
relative errors ∆W = (Wsc − Wex)/(W 0 − W∞).
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of Lagrange multipliers. In this way the constrained minimization amounts to computing
the ground state of an effective Hubbard model, which has been done numerically by means
of the Lanczos method [34, 74]. The calculations demonstrate the above discussed trends
(i)–(iv). In addition, one observes that the proposed approximation Wsc follows quite
closely the exact functional Wex all along the crossover from weak to strong correlations
(see Fig. 5.6). This is quite remarkable taking into account the strong dependence of the
boundary values W 0, W∞, γ0

12 and γ∞
12 on band filling n and charge transfer ∆n. The

quantitative discrepancies are in general small [i.e., |Wsc−Wex|/(W 0−W∞) ≃ 0.008–0.06]
except for Ne = 6 and ∆n = 1, where |Wsc − Wex|/(W 0 − W∞) ≃ 0.1). Moreover, the
largest deviations between Wsc and Wex occur for rather large values of γ12 (g12 ≃ 0.8–0.9)
which concern mainly the weakly correlated regime where the kinetic energy dominates.
Consequently, a good general performance of the method can be expected. Although the
dependence of W on the degree of delocalization g12 is similar for different ∆n, one observes
significant differences between Figs. 5.6 (a)–(d), which reflect the changes in the nature of
the electronic correlations as we move from purely metallic to strongly ionic like bonds.
These are well reproduced by the scaling Ansatz Wsc. In the following section several
applications of LDFT are presented by using Wsc as approximation to the interaction-
energy functional.

5.3 Applications to bipartite clusters

For the applications of the theory we consider the inhomogeneous Hubbard model on
bipartite 1D and 2D clusters consisting of a sub-lattice S1, where the energy levels εi =
ε1 = ε/2, and a sub-lattice S2, where εi = ε2 = −ε/2 [see Eq. (4.1)]. Besides the
band-filling n = Ne/Na, the system is characterized by two dimensionless parameters: the
bipartite potential ε/t, which controls the degree of charge transfer ∆n = γ22−γ11 between
the sub-lattices, and the Coulomb repulsion strength U/t, which measures the importance
of correlations. The ground-state properties of the model are the result of a subtle interplay
between the kinetic energy associated to electronic hopping and delocalization, which is
proportional to tγ12, the charge-transfer energy ∆ECT = −ε∆n/2, and Coulomb-repulsion
energy W . Bipartite clusters with periodic boundary conditions (PBC) are interesting to
study for two reason. First, the finite size of these system allow us to compare our method
with exact diagonalization results (for clusters having Na ≤ 16) in order to validate our
theory before applying it to more challenging infinite systems. Second, they present non-
trivial finite-size effects also due to their hight symmetry, which lead to degeneracies having
often huge consequences on the properties. As an example, we display in Fig. 5.7 the non-
correlated one-particle spectra of some representative 1D and 2D bipartite clusters for
different values of the energy level shift ε/t. The ground state of an homogeneous non-
correlated cluster with PBC is a Slater determinant and its eigenstates are plane waves
with wave number kn = 2πn/Na. The translation symmetry imposes that E(k) = E(−k)
leading to a highly degeneracy spectrum. One can clearly see, the high degeneracy of
these spectra and the future consequence on the charge gap calculation. For example, at
half band filling, the Na = 12 site ring with ε/t = 0 has a charge gap ∆Ec/t = 0, while it
is finite and equal ∆Ec/t = 0.88 for Na = 14. Another interesting point is that the energy
level shift ε/t not break the degeneracy in the 1D case. It only breaks some part of the
degeneracies in the 2D case. The reason is that the bipartite potential does not break the
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inversion symmetry and consequently the states having k and −k stay degenerate.

The physical behavior of bipartite cluster is analyzed from the homogeneous to the
strongly ionic regimes, as well as from weak to strong correlations, by computing the
ground-state energy Egs, the NN bond order γ12, the charge transfer ∆n, the average
number of double occupations per site W/UNa and the charge gap ∆Ec. The accuracy
of the scaled dimer approximation is quantified by systematically comparing the LDFT
results with exact Lanczos diagonalization [42] on finite 1D rings or 2D squares with
periodic boundary conditions. These systems also provide an interesting opportunity to
assess the ability of LDFT to deal with discrete single-particle spectra and with possible
degeneracies at the Fermi energy, which often leads to non-trivial charge transfers as a
function of the model parameters.

Figure 5.8 shows the ground-state properties of a 1D ring having Na = 14 sites as a
function of the Coulomb repulsion strength U/t. Different values of the energy level shift
ε/t are considered at half band filling n = 1. First of all, for the homogeneous case (ε/t = 0
and ∆n = 0) one observes the well-known monotonous increase of Egs with increasing U/t,
reaching Egs = 0 for U/t → ∞, where both electronic hopping and double occupations
vanish. At the same time γ12 and W decrease monotonously with U/t [see sub-figures (b)
and (d)]. A number of new features appear when the bipartite level shift ε is finite. In
this case, as we go from weak to strong correlations, the system undergoes a qualitative
change from a delocalized charge-density-wave (CDW) state (∆n ≃ 0.9–1.6 and γ12 ≃ 0.3–
0.6) to a nearly localized state having an homogeneous charge distribution (∆n < 0.01
and γ12 < 0.1). Starting from the weakly correlated CDW state and increasing U/t, one
observes a decrease in ∆n, since inhomogeneous charge distributions necessarily imply
larger average double occupations [see sub-figures (c) and (d)]. Nevertheless, a nearly
homogeneous charge distribution is only reached for U ≫ ε.

An interesting effect, which becomes more distinctive as ε/t increases, is the non-
monotonous dependence of the kinetic energy and bond order γ12 as a function of U/t.
Notice that the maximum in γ12 does not correspond to the non-interacting limit but to
a finite value of U/t [see sub-figure (b)]. In fact, for U ≃ ε the Coulomb repulsion on
the doubly occupied sites on sub-lattice S2 compensates the energy difference between the
two sub-lattices (ε1 = ε/2 = −ε2 > 0). This allows a nearly free-like motion of the γ11

electrons occupying sub-lattice S1, together with the extra γ22 − 1 electrons on sub-lattice
S2 (γ11 < γ22 for ε > 0). Consequently, the delocalization of the electrons is enhanced
for U ≃ ε, yielding a maximum in γ12. The effect is more pronounced for ε/t ≫ 1, since
this implies a stronger CDW at U = 0 and a larger crossover value of U = ε. Moreover,
it is interesting to observe that for large ε the maximum in γ12 corresponds to ∆n = 1
[compare sub-figures (b) and (c)]. Indeed, for U/t ≃ ε/t ≫ 1 (in practice U/t ≃ ε/t ≥ 4)
one electron is essentially locked in the sub-lattice S2, and the remainder electron in the
unit cell is evenly distributed among the two sub-lattices.

For n = 1 this implies γ11 ≃ 1/2 and γ22 ≃ 3/2, or equivalently, ∆n = 1. Concerning
the comparison between LDFT and exact results one observes that all the considered
ground-state properties are very well reproduced by the scaled dimer Ansatz. This holds
for all values of the energy level shift between the sub-lattices, not only close to the weak
and strongly correlated limits but also in the intermediate interaction region. Moreover,
the fact that γ12, ∆n and W are all obtained with a high level of precision shows that
the results for Egs are not the consequence of a strong compensation of errors. It is
also interesting to note that the accuracy actually improves as the charge distribution

72



Chapter 5. Scaling approximation for bipartite systems

Figure 5.7: One-particle spectra at U/t = 0 for Hubbard bipartite rings having Na = 12
and 14 sites and for a 4 × 4 cluster with periodic boundary conditions (Na = 16 sites).
Representative values of the energy level shift ε/t are considered.
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becomes more inhomogeneous, i.e., as ε/t and the CDW are stronger. In other words,
the homogeneous case, which was investigated in detail in Refs. [34] and [35], is the most
difficult one. This seems reasonable, since large values of ε enhance the importance of
single particle contributions to the energy and somehow tend to decouple the 1D chain in
dimers, within which correlations are taken into account exactly. A similar improvement
of the accuracy of the scaled dimer functional has already been observed in dimerized
chains with homogeneous charge density [36]. One concludes that LDFT, combined with
Eqs. (5.4) and (5.5) for W [γ], provides a very good description of electron correlations
and of the resulting interplay between kinetic, charge-transfer and Coulomb energies in
1D lattices.

In Fig. 5.9 the band-filling dependence of Egs is shown for a 1D ring having Na = 14
sites and representative values of the Coulomb repulsion U/t and of the energy level shift
ε/t. For low electron densities, up to quarter filling n = 1/2, one observes that Egs

decreases for all U/t as the band is filled up. Notice in particular the weak dependence of
Egs on the Coulomb repulsion strength, even for U/t ≫ 1. This implies that for low carrier
densities charge fluctuations are very efficiently suppressed by correlations. Consequently,
the kinetic and crystal-field energies dominate over the Coulomb energy (n ≤ 1/2). This
is quite remarkable, since ignoring correlations would have lead to a quadratic increase
in the Coulomb energy (EHF ∝ Un2). Comparing different crystal fields ε/t, one notes
that the role of electron interactions is most important in the homogeneous case, where
our results coincide with previous calculations [35]. As ε/t increases the electrons tend
to be localized on one sub-lattice in order to take advantage of the crystal field, thereby
reducing the importance of both kinetic and Coulomb contributions. Consequently, Egs is
nearly independent U/t (ε/t ≥ 4 and n ≤ 1/2). Beyond quarter filling the n dependence
of Egs changes qualitatively, since double occupations become unavoidable, not only for
delocalize electronic states but also for ionic states with significant charge transfer to the
most stable sub lattice. In this case (n ≥ 1/2) Egs continues to decrease with increasing
n only if the Coulomb interactions are weak (U/t < 4). Otherwise, for U/t > 4, Egs goes
first over a minimum at n = 1/2, where the decrease in kinetic and crystal-field energies
is approximately canceled by the increase in Coulomb energy. Then, it increases with n
as we move to even higher densities (n > 1/2). These trends are qualitatively similar
for all values of the bipartite potential. However, the crossover from low- to high-density
behavior becomes more abrupt as ε/t increases [compare Figs. 5.8 (a)–(d)]. As in Fig. 5.8
the agreement between the LDFT results (solid curves) and the Lanczos diagonalization
(symbols) is most satisfying for all values of n, U and ε. The scaling approximation
reproduces all the previous trends very accurately. Moreover, as already mentioned in
the context of Fig. 5.8, the quality of the results for Egs is not the consequence of a
compensation of errors on different contributions (i.e., ECD, EK and W ). This is probably
the reason behind the favorable outcome for all band fillings and interaction parameters.

The charge excitation gap

∆Ec = E(Ne + 1) + E(Ne − 1) − 2E(Ne) (5.6)

is a property of considerable interest in strongly correlated systems, which measures the
insulating or metallic character of the electronic spectrum as a function of ε/t, U/t and
n. It can be directly related to the discontinuities in the derivatives of the single-particle
and correlation energies per site with respect to the electron density n. Therefore, the
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calculation of ∆Ec constitutes a more serious challenge than the calculation of Egs, par-
ticularly in the framework of a density-functional approach. In Fig. 5.10 results are given
for ∆Ec as a function of band filling n < 1, which correspond to a 1D Hubbard rings
having Na = 14 sites and different ε/t and U/t. The half-filled-band case deserves special
attention and is considered in Fig. 5.13.

Finite bipartite rings have a discrete single-particle energy spectrum, which is condi-
tioned by the two important inversion and electron-hole symmetries. The former requires
εα(k) = εα(−k), where α = 1, 2 refers to the two bands of the unit cell, and the latter
implies that for each eigenenergy εα(k) the inverse −εα(k) is also an eigenvalue. In the
following we restrict ourselves to Na even, as imposed by the periodic boundary conditions.
In the homogeneous case (ε = 0) we have one atom per unit cell and −π/a ≤ k ≤ π/a.
The single-particle energies are given by εk = −2t cos(ka), where k = 0, k = ±νπ/aNa

with ν = 1, . . . (Na−1), and k = π/a. For Na/2 even, this yields a doubly degenerate level
in the middle of the band corresponding to k = ±π/2a, while for Na/2 odd k = ±π/2a is
not allowed and there is a gap in the middle of the band between two doubly degenerate
states (k = ±4π/7a and k = ±5π/7a for Na = 14). For Na/2 even, the alternating bipar-
tite potential (ε 6= 0) couples the states having k = ±π/2a and opens a gap ε at half band
filling (n = 1), while for Na/2 odd, one observes simply an enhancement of the existing
gap between doubly degenerate states. The results for ∆Ec in the non-interacting limit
(U/t ≪ 1) can be interpreted in terms of the single-particle spectrum. In particular for
Na = 14 one finds that for U = 0 the charge gap ∆Ec = 0 for Ne = 3–5, 7–9 and 11–13
due to the presence of double degenerate states. Any small Coulomb interaction U 6= 0
removes the double degeneracy yielding a finite ∆Ec for Ne = 4, 8 and 10. This explains
the even-odd alternations as a function of Ne for small U/t [see Figs. 5.10 (a) and (b)].

For strong interactions (U/t > 4) the single-particle picture breaks down and simple
detailed interpretations seem difficult. One may however observe that for low carrier
density (n < 1/2) the gap tends to decrease as ε/t increases, even for large U/t, since
the two sub-lattices progressively decouple from each other. In contrast, an increasingly
important gap develops for large U/t at n = 1/2, which tends to ∆Ec = ε for U/t → +∞.
This contrasts with the corresponding gap in the weakly correlated limit, which vanishes for
Na/2 odd and is finite (of the order of t/Na) for Na/2 even. The origin of the finite charge
gap for large U/t is the energy difference between adding an electron in the sub-lattice S1

(having ε1 = ε/2) and removing an electron in the sub-lattice S2 (having ε2 = −ε/2). In
fact, for U/t ≫ 1 the kinetic energy is very weak, ECD dominates over EK, and therefore
the sub-lattice S1 is essentially empty in the strongly correlated ground state (n ≤ 1/2).
Notice that a finite ∆Ec ≃ ε for n = 1/2 and large U/t is also found in the thermodynamic
limit, as well as for finite Na with Na/2 even.

As for any excitation, obtaining accurate results for ∆Ec within a density functional
approach is more delicate than for the ground-state properties. Nevertheless, it seems fair
to say that LDFT with the present approximation to W performs quite well quantitatively,
except for intermediate values of ε/t and U/t [see, for example, ε/t = 1 and U/t = 12 in
Fig. 5.10(b)]. In particular the removal of degeneracies due to the interactions and the
resulting even-odd oscillations, the crossover from weak to strong correlations, and the
development of a finite gap ∆Ec ≃ ε at quarter filling for U/t ≫ 1 are very well reproduced.
As we have seen, an important gap opens at quarter band filling with increasing the
strength of the Coulomb repulsion. This phenomena is studied in particular in Fig 5.11
where we present the charge gap ∆Ec/t at quarter filling (n = 1/2) as predicted by LDFT
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representative values of the bipartite potential ε. The curves refer to LDFT with the
scaled dimer functional Wsc and the symbols to exact diagonalization.

within the scaling approximation (solid curves) and by exact diagonalizations (symbols).
Different values of the energy level shift are considered as indicated in the figure. Besides
the very good agreement between LDFT and exact diagonalizations, one observes the
increase of the gap as a function of U/t particularly for finite values of ε/t. In the non
correlated case, the gap is ∆Ec/t = 0, since the degeneracies of the spectrum is not broken
by the bipartite potential (see Fig. 5.7). For the homogeneous case (ε/t = 0) a gap opens
as U/t increases (reaching ∆Ec/t = 0.5 for U → ∞). In contrast the thermodynamic limit
presents a metallic behavior. This is a finite size effect due to the Coulomb repulsion which
break the degeneracy k, −k and opens a gap between these two states. For a finite value of
ε/t and as the Coulomb interaction increases the gap increases reaching ∆Ec/t = ε/t for
U → ∞. Starting from the non-correlated case where the gap in zero and the ground states
is a CDW, increasing the Coulomb repulsion enhances the stability of the less energetic
sub-lattice. At U → ∞ all the electrons are localized on the most favorable sub-lattice.
An additional electron on the system will be necessary on the higher energy sub-lattice,
since double occupation are not allowed. Consequently, adding this electron implies an
energy increase of about ε/t.

The charge gap at half band filling has the specificity of involving an extra double
occupation for Ne = Na + 1, which is unavoidable even in a strongly correlated state, in
contrast to any smaller band filling Ne ≤ Na. This implies that a contribution of the
order of U to ∆Ec must be taken for granted. It is therefore more meaningful to consider
(∆Ec −U)/t as reported in Fig. 5.12 and 5.13, which represents the nontrivial kinetic and
correlation contributions.
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In Fig 5.12 we present the size dependence of the non trivial part ∆Ec − U of the
charge gap for representative values of U/t and ε/t for 1D Hubbard chain with periodic
boundary conditions and half band filling. These calculation allow us to study the tran-
sition from finite size objects to the thermodynamic limit. We observe first of all for
ε/t = 0 super-even oscillations, which come from the properties on the one-particle spec-
trum which is degenerate at the Fermi level for Na = 4n, n integer n ≥ 1. In this case
the degeneracy at the Fermi level implies that the charge gap is zero at the non correlated
limit where in the other case the charge gap is finite. As the size increase, the value of
the charge gap converge to the infinite chain limit since the discrete spectrum becomes
continuous (∆Ec = 0 for U = 0). As the strength of the Coulomb repulsion increases the
oscillatory behavior disappears, as shown by the exact diagonalization results (Na ≤ 14,
big circles). Since our scaling Ansatz use the scaling properties of the v-representability
domain, the correlation-energy functional is strongly affected by the oscillations of the
limits of the v-representability domain. Consequently, even for strong correlations, LDFT
gives an oscillatory behavior for the charge gap. Nevertheless, the results are qualita-
tively comparable, and seem to converge at infinite-size limit to an underestimation of the
charge gap. For ε/t = 4 and at weak correlation (U/t ≤ 1) the oscillations are weaker
due to the important charge transfer ∆n between the two sub-lattices (∆n ≃ 1.6). At
the non-correlated limit, the energy level shift breaks the degeneracies and increasing the
charge gap as ε/t increases. The convergence to the infinite-size limit is faster. The case
U = ε = 4 is interesting since there is again an important oscillatory behavior. In this
case, the charge transfer energy compensate the Coulomb repulsion (∆n ≃ 0.5) and conse-
quently the kinetic energy which induces the oscillatory behavior play an important role.
As for the homogeneous case, at the strongly correlated limit, LDFT preserves the oscilla-
tory behavior, and gives qualitative good results, underestimating the charge gap. Notice
that the LDFT results obtain within the exact γ∞

ij and the approximation of γ∞
ij [61] are

quantitatively comparable. At the strongly correlated limit, and near to half band filling,
the electronic density is nearly homogeneous since U >> ε. In this case the approxima-
tion of γ∞

ij is very good. The largest error made by our approximation of γ∞
ij occurs for

∆n ≃ 1.0 near to half band filling. This would require ε ≃ U/t → /t∞ which is physically
unrealistic.

In Fig. 5.13 we present the non trivial part of the charge gap ∆Ec as a function of the
Coulomb repulsion strength. We present results for 1D systems having Na = 12, 14 sites
and at the thermodynamic limit (Na → ∞). Are also considered representative value of
the energy level shift ε/t. In the homogeneous case without interactions (ε = 0 and U = 0)
the gap vanishes for Na/2 even, while it remains of the order of t/Na for Na/2 odd. ∆Ec−U
decreases monotonously as U/t increases, reaching a common limit ∆Ec = U − 2wb for all
Na, where wb represents the kinetic energy gained through the delocalization of the extra
electron or hole. In the homogeneous case wb = 2t coincides with the single-particle band
width, since the ground-state for Ne = Na±1 is the fully-polarized ferromagnetic Nagaoka
state [19]. The structureless shape of ∆Ec as a function of U/t hides a profound change
in the nature of the underlying charge excitation along the crossover from weak to strong
interactions, namely, from a single-particle electron-hole excitation to a strongly-correlated
low-spin to high-spin excitation [18, 19, 75]. The simplicity ∆Ec versus U/t should not
understate the merit of the LDFT results in comparison to exact diagonalization (Na = 12
and 14).

For non-vanishing bipartite potential and U = 0 the charge gap is positive, equal
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Figure 5.13: Charge gap ∆Ec = E(Ne + 1) + E(Ne − 1) − 2E(Ne) as a function of
the Coulomb repulsion strength U/t in 1D Hubbard rings having a band filling n = 1,
representative values of the bipartite potential ε, and (a) Na = 12 , (b) Na = 14 and
(c) Na = ∞ sites. The curves refer to LDFT with the scaled dimer functional Wsc and
the symbols to exact diagonalization. In the inset figure the ring-length dependence of
∆Ec − U/t is shown for ε/t = 4 and U/t = 4.

to ε for Na/2 even, and slightly larger than ε for Na/2 odd (for example for Na = 14,
∆Ec/t = 1.32, 4.08 and 8.08 for ε/t = 1, 4 and 8, respectively). The underlying excitation
involves the promotion of an electron across the single-particle gap opened by the bipartite
potential. This corresponds to a delocalized electron-hole excitations between CDW states,
which are more or less strong depending on the value of ε/t. As U/t increases ∆Ec − U
decreases and eventually changes sign, since the Coulomb repulsion brings the energy of
the states with doubly-occupied configurations on sub-lattice S2 closer to the energy of
singly-occupied configurations on sub-lattice S1 (ε1 = −ε2 = ε/2 > 0). For U > ε the
system undergoes a transition to an homogeneous state, after which the gap becomes
essentially linear in U . In the strongly correlated limit ∆Ec = U − 2wb for all Na, where,
as in the homogeneous case, wb represents the energy gained through the addition of the
extra electron or hole. These are the same due to the electron-hole symmetry of the
bipartite lattice. In the homogeneous case, the extra electron occupies the k = 0 state of
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the minority-spin band, while the majority band is full (Nagaoka state) [19]. Therefore,
wb = 2t coincides with the single-particle band width. In the presence of a finite bipartite
potential the situation is similar, since an extension of Nagaoka’s theorem also holds in
the presence of inhomogeneous energy levels εi [57]. However, notice that the bipartite
potential introduces a shift of the energy ε0 of the k = 0 single-particle state, which
stabilizes the system with Ne = Na ± 1 electrons relative to the half-filled case (Ne = Na).
For example, ε0/t = −2.83 for ε/t = 4 and ε0/t = −4.47 for ε/t = 8. Consequently, the
strongly correlated limit of (∆Ec − U)/t decreases with increasing ε/t.

The comparison between LDFT and exact diagonalization shows a very good agree-
ment. This confirms the previously observed trend to a slight improvement of accuracy
as the strength of the bipartite potential ε/t increases. Fig. 5.13 also reports LDFT re-
sults for the charge gap in the thermodynamic limit. In this case γ∞

12 is obtained from a
Nagaoka-like variational state in which the spin-up orbitals of sub-lattice S2 are occupied
(γ22 > γ11) and the remaining γ11 +γ22−1 spin-down electrons are delocalized throughout
the entire lattice [61]. The trends observed for Na = ∞ are essentially the same as for
Na = 12 or 14. The dependence of ∆Ec on the chain length is given in the inset of Fig. 5.13
(c). The accuracy of the LDFT calculations for different Na is quantified by comparison
with exact results.

Figure 5.14 shows the ground-state properties of the 2D Hubbard model on a square
cluster having Na = 16 sites and periodic boundary conditions. The results are given as a
function of the Coulomb repulsion strength U/t for different values of the energy level shift
ε/t at half band filling n = 1. First of all, one observes a number of qualitative similarities
with the ground-state properties of 1D rings presented in Fig. 5.8. Among these let us
mention the monotonous increase of Egs with increasing U/t, the stabilization associated
with the bipartite potential ε, and the convergence of all Egs curves to the ε = 0 case when
U & ε [see Fig. 5.14(a)]. The convergence of Egs to the homogeneous limit occurs for U/t
larger than the value at which the NN bond order γ12 is maximal, once the charge transfer
∆n = γ22 − γ11 and the interaction energy W drop. These features are comparable to the
behavior observed in the 1D case and can be understood in similar terms. They reflect the
change form a weakly correlated CDW state to a strongly correlated nearly homogeneous
state as the strength of the Coulomb interactions is increased. However, in the present 2D
periodic cluster one observes distinctive discontinuities in γ12, ∆n and W as a function of
U/t, that are absent in the 1D results for Na = 14 (compare Figs. 5.8 and 5.14). These
discontinuities are a finite-size effect resulting from the six-fold degeneracy of the single-
particle spectrum at the Fermi energy εF . They are not specific to the 2D geometry, since
similar effects are also found in finite 1D chains with periodic boundary conditions. In the
present case, four of the degenerate states at εF admit a charge transfer of one electron
between the sub-lattices [~k = (±π/2a,±π/2a)], while the two others show an homogeneous

charge distribution [~k = (π/a, 0) and ~k = (0, π/a)]. Two of the former CDW states are
stabilized by the bipartite potential, although they involve a higher average number of
double occupations than the latter. The number of electrons at half band filling is such
that only three of the six degenerate states are occupied for both spin directions (U = 0).
In the weakly correlated limit and for ε 6= 0 two of the states with strong charge transfer
are occupied. Thus, the ground state corresponds to a CDW state. This configuration
remains stable for rather large values of U/t, until U becomes larger than ε. At this
point a sharp transition to a nearly homogeneous state takes place. Short before the
discontinuities occur γ12 goes over a maximum, as the energy to transfer an electron from
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Figure 5.14: Ground-state properties of the half-filled Hubbard model on a 2D square
cluster having Na = 4 × 4 sites and periodic boundary conditions (n = Ne/Na = 1). Re-
sults are given for (a) ground-state energy Egs, (b) NN bond order γ12, (c) charge transfer
∆n = γ22 − γ11, and (d) interaction energy W . LDFT (solid curves) and exact diagonal-
ization (symbols) are compared as a function of the Coulomb repulsion strength U/t for
representative values of the energy level shift ε between the sub-lattices, as indicated in
(a). The discontinuities in the exact results for γ12, ∆n and W are a consequence of the
degeneracy of the single-particle spectrum and the finite cluster size.
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a doubly occupied site of sub-lattice S2 to an empty site on sub-lattice S1 vanishes. It
is worth noting that such discontinuous jumps only take place for specific band fillings
which match the degeneracies of the single-particle spectrum. They are not observed
for other band fillings or in the thermodynamic limit. For example, for Ne = 10, no
discontinuities in the ground-state properties are observed, since the Fermi level is not
degenerate. The importance of this finite-size effect decreases with increasing system size
typically proportional to 1/Na. In the present case the change in ∆n resulting directly
from the changes of occupation among the degenerate levels is 0.5, which corresponds to
the transfer of two electrons per spin in an Na = 16 cluster.

Comparison with exact diagonalization shows that LDFT with the scaled dimer ap-
proximation yields quantitatively good results both for U significantly smaller and larger
than ε. However, the approximation fails to reproduce the sharp transition. Instead, a
continuous crossover is predicted, which becomes sharper and thus more accurate as ε/t
increases (see Fig. 5.14). The shortcomings of the scaling approximation can be traced
back to the particular form of the pure-state v-representability domain of the density ma-
trix in the square 4×4 cluster, which is composed of two disjoint regions as a function of γ11

and γ12 for γ11 +γ22 = 2. In other words, the pure-state representability domain is neither
convex nor simply-connected at half band filling. It is therefore not surprising that the
scaling approximation yields a continuous crossover, since the scaling hypothesis implicitly
assumes a convex or at least path-connected representability domain. Nevertheless, aside
from this restriction, the overall predictions of LDFT always remain correct. Moreover, in
the absence of degeneracies at εF (e.g., for Ne = 12 and Na = 16 in 2D) LDFT recovers
its usual performance for all model parameters. A more detailed discussion of the effects
of degeneracies on the representability of the density matrix may be found in Ref. [74].

Finally, it is worth noting that the LDFT results for Egs are invariably very accurate,
even close to the transition and in spite of the discontinuities observed in other exact
calculated properties. This is in fact the result of a compensation of errors between the
charge-density energy ECD = −ε∆n/2 and the interaction energy W . Indeed, in the
transition region the scaling Ansatz overestimates both ∆n and W . In contrast, the bond
order and thus the kinetic energy are obtained quite precisely [see Figs. 5.14 (b)–(d)].

It would be also interesting to investigate the site dependence of the on-site Coulomb
repulsion integrals in order to achieve a more realistic modeling of some transition-metal
oxides. However the most fundamental and straightforward consequence of the inhomo-
geneity of a system is the lack of translational invariance of the associated single-particle
potential. This is described by the so-called external potential v(~r) of density-functional
theory in the continuum and by the site-dependence of the energy levels εi in lattice models.
It is for this reason that our attention has been focused on the effect of the site-dependence
of εi until now. In any case, it is important to stress that neither the formulation of LDFT
nor the derivation of an accurate approximation to the interaction-energy functional W
are conditioned by the simplifying assumption that U is independent of the site. The
fact that U can be factored out of W reduces the number of parameters of the model but
is not at all essential. Since the formulation of LDFT (see Sec. 4.1) is formally correct
for systems with inhomogeneous Coulomb integrals the challenge consists of in finding an
accurate corelation energy functional. For bipartite systems the global scaling correlation
functional can be straightforwardly extended considering a dimer within U1 6= U2. The
results shown in Fig. 5.15 were obtained by using such a scaled dimer approximation,
which generalizes the case considered previously. This generalization at half band filling is
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based on the exact analytical solution of the interaction-energy functional for the Hubbard
dimer with different Coulomb repulsions U1 and U2. In this case the equation (5.5) has to
be replace by a more general one:

W2

Na
=



















∆n
4 (U2 − U1) + (U2 + U1)

[

1
2 − γ2

12

4

(

1+
√

1−(∆n/2)2−γ2
12

(∆n/2)2+γ2
12

)]

if γ∞
12 < γ12 < γ0

12

U1∆n/4, if |γ12| < γ∞
12 , γ11 > γ22

U2∆n/4, if |γ12| < γ∞
12 , γ11 < γ22

(5.7)
As an example we report in the figure 5.15 a comparison between exact and LDFT results
for the ground-state energy Egs, NN bond order γ12 and charge transfer ∆n in a Hubbard
ring with N = 14 sites, and alternating Coulomb repulsions U1 = U + ∆U/2 and U2 =
U − ∆U/2. The results indicate that the accuracy of LDFT is similar or better for site-
dependent Ui than for the case where the Coulomb repulsions are assumed to be the same.
Moreover, a detailed analysis reveals a much richer behavior. The interplay between kinetic
energy and charge transfer due to the inhomogeneity of the potential (energy levels) and
of the Coulomb interactions is far from trivial and deserves special attention. In the case
with ε/t = 0, the ground state energy is maximum for ∆U = 0, which correspond to a
minimum of the NN bond order γ12. The reduction of kinetic energy can be explained by
the fact that when ∆U = Ū one sub-lattice is not correlated and the other has a Coulomb
integral U = 2Ū inducing a charge transfer between the two sub-lattices of the order of
∆n = 0.8 → γ11 = 1.4 γ22 = 0.6. Consequently, there is a minimization of the double
occupations on sub-lattice S2 and a maximum of the kinetic energy due to the hole created
on sub-lattice S2. The ground states for ∆U 6= 0 is a CDW in order to optimize the kinetic
energy and minimize the average double occupations on the less favorable sub-lattice.

The case ε/t = 4 is more interesting since for ∆U < 0 one observe an interplay
between ∆U , which excludes localization on sub-lattice S1 and the single-particle potential
which favors the occupation on this sub-lattice. The consequence of this interplay are
discussed in the following. Notice that for ∆U = 0, the kinetic energy have a resonance
at this point (see fig.5.8) since for U ≃ ε the Coulomb repulsion on the doubly occupied
sites on sub-lattice S2 compensates the energy difference between the two sub-lattices
(ε1 = ε/2 = −ε2 > 0). This allows a nearly free-like motion of the γ11 electrons occupying
sub-lattice S1, together with the extra γ22 − 1 electrons on sub-lattice S2 (γ11 < γ22 for
ε > 0). Consequently, the delocalization of the electrons is enhanced for U ≃ ε, yielding
a maximum in γ12 as already discuss previously.
The ground-state energy decreases as ∆U increases. This can be understood as the result
of the competition between ∆U , which excludes localization on sub-lattice S1, and the
single-particle potential, which favors the occupation on this sub-lattice. When ∆U > 0
both ∆U and ε/t favor occupations on the same sub-lattice. This phenomena is also
seen on ∆n. Consequently, the ground-state energy decreases and the charge transfer
increases, the electrons populate the favorable sub-lattice. An interesting remark is that
γ12 admits a maximum near that ∆U = 0 but for ∆U < 0. As discussed previously, for
∆U = 0, U1 = U2 = ε1 = ε/2, there is a nearly free-like motion between the two sub-
lattices. By decreasing ∆U , the charge transfer also decreases allowing a more free-electron
like motion and enhancing sensibly the kinetic energy. This phenomena is stopped when in
one sub-lattice the Coulomb energy becomes too important and the electrons are localized.
At the limit ∆U = −8, it leads to an nearly homogeneous configuration, minimizing the

87



5.4. Applications to the attractive Hubbard model

double occupations on the sub-lattice having Ui = 8. When ∆U > 0 the localization on
sub-lattice S1 becomes more favorable to reach a charge transfer ∆n = 1.75 at ∆U = 8
reducing automatically the kinetic energy and the ground state energy.

5.4 Applications to the attractive Hubbard model

As it was explained in Section 3.5, the Hubbard model with an attractive interaction is
suitable to study the electronic pairing which, under some conditions (doping, low tem-
perature), is at the origin of superconductivity. In the past year this approach has been
studied on different systems by using various methods. One of the first studies used the
quantum Monte Carlo method for a 2D Hubbard model [64]. In this work the authors argue
that doping away from half-filling leads to superconductivity below a certain temperature
TC . Clearly other mechanisms can also accomplish this. For example, a next-nearest-
neighbor hopping can also favor superconductivity [76] or a nearest-neighbor interaction
V also leads to a superconducting transition at half band filling for 0 < |V | < 2t2U and a
phase separation at V = 2t2U . Other works are devoted to comparing the BCS approx-
imation with exact results for the attractive Hubbard model [65, 68, 70, 77]. They find
that generally, the BCS approach is an excellent approximation for the Hubbard model
ground state energy but not for the energy gap, in 1D finite [68] and infinite systems [65]
as well as in 2D [70]. These studies have also revealed even-odd and super-even effects in
the value of the charge gap as a function of the number of electron in finite structures.
It would be also interesting to study the effect of a diagonal disorder (different energy
level shift for example) since without interactions these system are stabilized with CDWs.
In a CDW-state the electrons are paired on the most favorable sub-lattice, and an at-
tractive electronic interaction should, then, enhance this phenomenon. These studies are
also motivated by the fact that most known superconductors present diagonal disorders
as for example the cuprates [78]. In this section we present an extention of the global
scaling approximation derived above to the attractive interaction in a bipartite Hubbard
model. Secondly, we compare our results for representative finite and infinite one- and
two-dimensions systems with available exact results (exact diagonalization, Bethe-Ansatz)
and with the BCS mean field approximation.

Before looking if the scaling properties of the interaction-energy functional are pre-
served for attractive interactions, it appears important to study the representability do-
main of the single-particle density matrix. In Fig. 5.16 we present the NN bound order
between two NN as a function of the electronic density in one sub-lattice. The curves,
given only for 0 ≤ γ11 ≤ 1, are symmetric with respect to the homogeneous case γ11 = 1
[(γ11 + γ22)/2 = n = 1]. They display the correlation between diagonal and off-diagonal
elements of the density matrices γij , as derived from the ground state of the model for
different values of the parameters that define the system (i.e., the energy level difference
∆ε and the NN hopping t). These density matrices are known as pure-state interacting v-
representable, or simply v-representable, by analogy with the DFT of the inhomogeneous
electron gas. In the continuum theory the electron densities ρ(~r) derived from exact ground
states are called interacting v-representable, since they stay in one-to-one correspondence
with an external potential vext(~r) [1, 3, 4]. While the v-representable domain contains all
the ground state γgs

ij , it is also important to investigate the properties of the more general
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Figure 5.16: Representability domain of the 1D Hubbard chain having Na = 14 sites
and at half band filling. The red curve refers to the non correlated limit (full circles)
and the strongly correlated limit (open circles). The dependence on the ground-state NN
bond order γ12 as a function of the charge density γ11 on one sub-lattice is also shown for
representative values of the strength of the local attractive interaction U < 0.

N -representable γij , which constitute the domain of definition of Levy’s functional W [γ].
For each γ11, or charge transfer ∆n = γ22 − γ11, the upper bound γ0

12 for the NN
γ12 corresponds to the largest possible value of the kinetic energy, which is achieved by
the uncorrelated ground-state for the given ∆n. Since the underlying electronic state
is a single Slater determinant, the interaction energy is given by the Hartree-Fock value
W 0 = W [γ0] = UNa(γ

2
11 + γ2

22)/8, except possibly in cases with unusual degeneracies
in the single-particle spectrum (e.g., Na = Ne = 4 and ∆n = 0). The uncorrelated γ0

12

is largest for a homogeneous density distribution (∆n = 0) and decreases monotonically
as the charge transfer increases. It vanishes in the limit where only one sub-lattice is
occupied (see Fig. 5.16). This can be understood by recalling that in an uncorrelated
state an increase of ∆n is the result of an increasing difference ∆ε in the energy levels of
the sub-lattices, which reduces in its turn the possibility for the electrons to delocalize. In
the limit of complete charge transfer (γ11 → 0) no charge fluctuations at all are possible.

For γ12 < γ0
12, and a given ∆n, the dimension of the subspace of accessible many-

body states is larger and therefore the electrons can decrease the optimum value of the
interaction W for a fixed γij by increasing the number of double occupations (U < 0).
The maximum value of the interaction energy per site is W∞/U = Ne/2Na for Ne even
and W∞/U = (Ne − 1)/2Na for Ne odd. We shall denote by γ∞

12 the largest possible
value of γ12 compatible with the maximum number of double occupations W∞/U . γ∞

12

defines the lower bound for the v-representable γij and corresponds to the the ground
state of the model for U → −∞ [W (γ∞

12) = W∞, see Fig. 5.16]. Two different cases
have to be taken into account, when the system has an even or an odd number of elec-
trons. In the case of an even number of electron, when U → −∞, all electrons are paired
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limit.

implying that γ∞
ij = 0. In the other case, Ne odd, all electrons except one are paired

(W∞/U = (Ne − 1)/2Na). This single electron is then free to move in the one particle
potential provide by the bipartite potential. The largest possible value of γ12 compatible
with the maximum number of double occupations is consequently the kinetic energy of a
free electron in the lattice and equal to γ∞

ij =
√

γ11(2 − γ11)/zNa where z corresponds to
the number of NN. Notice that this is a finite size effect since when Na → ∞, γ∞

ij → 0,
but it plays an important role for properties like the charge gap as we will discuss later.
In order to extand the scaling approximation to attractive interaction, we should check
whether the scaling properties described above for the Coulomb repulsion are still valid
in this case. First of all, in Fig. 5.17 W is shown as a function of γ12 for representative
values of ∆n = γ22 − γ11. Despite the strong dependence of W on ∆n there are several
important qualitative properties shared by all the curves:
(i) As already discussed, the domain of N representability of γ12 is bounded by the bond
order γ0

12 in the uncorrelated limit. γ0
12 decreases monotonously as ∆n increases, vanishing

for ∆n = 2. This is an important contribution to the ∆n dependence of W which reflects
the interplay between charge transfer and electron delocalization.
(ii) In the non-correlated limit, W [γ0

12, ∆n] = W 0 = EHF for all ∆n, since the electronic
state yielding the largest γ12 is a single Slater determinant. Moreover, one observes that
∂W/γ12 diverges at γ12 = γ0

12. This is a necessary condition in order for the ground-state
density to satisfy γgs

12 < γ0
12 for arbitrarily small U < 0, as expected from perturbation

theory.
(iii) Starting from γ0

12, W increases with decreasing γ12, reaching its largest possible value
W∞ = 1/2 (Ne = 14, even case) for γ12 = γ∞

12 . The increase of W with decreasing γ12
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means that the increase of the interaction energy due to correlations is done at the expense
of the kinetic energy or electron delocalization.
(iv) The strongly correlated γ∞

12 is 0 for even number of electrons or with odd number of
electrons at the termodynamic limit Na → ∞. γ∞

12 shows a non-monotonous dependence

on ∆n if Ne is odd and Na is finite (γ∞
ij =

√

γ11(2 − γ11)/zNa).

In order to compare the functional dependence of W for different ∆n and to analyze
its scaling behavior, we focus on the v-representable domain γ∞

12 ≤ γ12 ≤ γ0
12 where W

is not trivially constant. To this aim it is useful to bring the domains of representability
for different Na to a common range and to scale W with respect to the Hartree-Fock and
strongly correlated values. We therefore consider (W − W∞)/(W 0 − W∞) as a function
of g12 = (γ12 − γ∞

12)/(γ0
12 − γ∞

12) as displayed in Fig. 5.18 (W 0 = EHF ). In this form the
results for different Na appear as remarkably similar, showing that the largest part of the
dependence of W on γ12 and ∆n comes from the domain of representability of γij and
the limiting values for weak and strong correlations. Fig. 5.18 implies that the change
in W associated to a given change in the degree of delocalization g12 can be regarded
as nearly independent of the size of the system. As already discussed in Sec. 5.1 for the
repulsive interaction, the very good scalability of W as a function of g12 is not obvious
for different system sizes. In fact, if one considers W (g12) for different charge transfers
∆n, one observes more significant deviations. This is demonstrated in Fig. 5.19 where the
results for a 1D ring with Na = 14 sites are compared for different ∆n. Qualitatively, the
dependence of W on the degree of delocalization g12 is similar for different ∆n. Notice,
for instance, the behavior for weak and strong correlations (g12 ≈ 0 or 1) and the overall
shape in the crossover region. This shows that the scaling hypothesis works satisfactorily
even for different ∆n. However, the quantitative differences between the scaled W for
various ∆n are more significant than those found for different sizes (see Figs. 5.18 and
5.19). This is actually not very surprising, since the nature of the electronic correlations
are expected to evolve as we move from purely metallic to strongly ionic-like bonds. It
is therefore important to investigate systematically the functional dependence of W for
different ∆n in order to elucidate its scaling behavior and evaluate the possibilities of
transferring it from simple to complex many-body problems. The band-filling dependence
of W is also expected to present the same scaling properties as in the case of a repulsive
interaction.
It has been shown that as in the case of a repulsive interaction, W can be appropriately
scaled as a function of ∆n and g12 = (γ12 − γ∞

12)/(γ0
12 − γ∞

12), where γ0
12 (γ∞

12) refers to the
limit of weak (strong) electronic correlations. In other words, the change in W is associ-
ated to a given change in the degree of NN charge transfer and electron delocalization can
be regarded as nearly independent of the system under study.

Following the derivation of the scaling Ansatz presented in Sec. 5.2 for positive U , the
numerical studies presented above confirm the same scaling properties; then we propose
that

Wsc − W∞

W 0 − W∞
=

W2 − W∞
2

W 0
2 − W∞

2

, (5.8)
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Figure 5.18: Scaled interaction energy W of the attractive 1D Hubbard model (U < 0) as
a function of the degree of electron delocalization g12 = (γ12−γ∞

12)/(γ0
12−γ∞

12). W 0 = EHF

and γ0
12 refer to the uncorrelated limit (U = 0) while W∞ and γ∞

12 refer to the strongly
correlated limit (U/t → −∞). Results are given for band filling n = 1, all even numbers
of sites Na = 2–14, and different charge transfers ∆n.
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Figure 5.19: Charge transfer dependence of the the scaled interaction-energy functional
W of the attractive 1D Hubbard model (U < 0). Results are given as a function of the
degree of electron delocalization g12 = (γ12 − γ∞
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12) for Na = 14, n = 1 and
different charge transfers ∆n = 0.0–1.6.

where the subindex 2 refers to the dimer. We can rewrite Eq. (5.8) in a compact form:

Wsc = W∞ + (W 0 − W∞)
W2 − W∞

2

W 0
2 − W∞

2

. (5.9)

The exact dimer interaction-energy functional for Ne = 2 for attractive interaction is given
by

W2

UNa
=







1 − γ2
12

2

1−
√

1−(∆n/2)2−γ2
12

(∆n/2)2+γ2
12

, if γ∞
12 < γ12 < γ0

12

n/2 − Mod[Ne, 2]/Na, if |γ12| < γ∞
12 .

(5.10)

Most of the properties of the interaction-energy functional reproduce several exact prop-
erties discussed above. In addition, some of them are similar to the one for a repulsive
interaction [see Sec. 5.2].

For application we consider the same bipartite Hamiltonian [see Eq. (4.1)] except that
U < 0. Representative systems are analyzed like a finite ring having Na = 14 sites, from
which finite size effects are studied. They result from the discrete nature of the one par-
ticle spectrum [see Fig 5.7]. In the case of repulsive Coulomb repulsion, finite size effects
induce oscillations in the charge gap from U = 0 to finite U and we show that they are also
present and accentuated in the case of an attractive interaction. We present also results
concerning the thermodynamic limit (Na → ∞) in one and two dimensions.
Figures 5.20, 5.21 and 5.22 present the ground-state properties of, respectively, a 1D ring
having Na = 14 sites, a one-dimensional infinite chain and a two-dimensional infinite
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Figure 5.20: Ground-state properties of bipartite Hubbard rings having U < 0, Na = 14
sites and half band filling n = 1 as a function of the attractive interaction strength |U |/t.
Different values of the energy level shift ε between the sub-lattices are considered as
indicated in (a). Results are given for (a) ground-state energy Egs, (b) NN bond order
γ12, (c) charge transfer ∆n = γ22 − γ11 and (d) average number of double occupations per
site W/UNa. The solid curves refer to LDFT using the scaling approximation Wsc [see
Eq. (5.9)] while the symbols are the results of exact Lanczos diagonalizations.
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Figure 5.21: Ground-state properties of infinite bipartite Hubbard rings at half band filling
n = 1 as a function of the attractive interaction strength |U |/t. Different values of the
energy level shift ε between the sublattices are considered as indicated in (c). Results
are given for (a) ground-state energy Egs, (b) NN bond order γ12, (c) charge transfer
∆n = γ22 −γ11 and (d) average number of double occupations per site W/UNa. The solid
curves refer to LDFT using the scaling approximation Wsc [see Eq. (5.9)], the symbols
are the results of DMRG calculations, and the red dashed line corresponds to the BCS
approximation for ε/t = 0.
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Figure 5.22: Ground-state properties of the attractive Hubbard model on a 2D square
periodic lattice as a function of the attractive interaction strength |U |/t. The band filling
is n = 1. Different values of the energy level shift ε between the sub-lattices are considered
as indicated in (c). Results are given for (a) ground-state energy Egs, (b) NN bond order
γ12, (c) charge transfer ∆n = γ22 − γ11 and (d) average number of double occupations
per site W/UNa. The curves refer to LDFT by using the scaling approximation Wsc [see
Eq. (5.9)].
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system as a function of the attractive interaction strength |U |/t. Different values of the
energy level shift ε/t are considered at half band filling n = 1. First, we describe the
general trend of the properties common to all the systems. First of all, for the homoge-
neous case (ε/t = 0 and ∆n = 0) one observes a decrease of Egs with increasing |U |/t
reaching Egs = nU/2 for |U |/t → ∞, where electronic hopping vanishes and double occu-
pations are maximum W/|U |Na = 1/2. At the same time γ12 decreases and W increases
monotonously with |U |/t [see sub-figures (b) and (d)]. This picture is accentuated when
the bipartite level shift ε is finite. In this case, as we go from weak to strong correlations,
the system undergoes a qualitative change from a delocalized charge-density-wave (CDW)
state (∆n ≃ 0.9–1.6 and γ12 ≃ 0.3–0.6) to a full localized charge-density-wave (CDW)
state (∆n = 2 and γ12 = 0). Starting from the weakly correlated CDW state and in-
creasing |U |/t, one observes an increase in ∆n, since inhomogeneous charge distributions
necessarily imply larger average double occupations [see sub-figures (c) and (d)]. The
behavior of kinetic energy and bond order γ12 as a function of |U |/t, in contrast to the
case where U > 0, is monotonous since the reduction of the NN bound order is made at
the price of an increasing of double occupations on the most favorable lattice.
An important remark concerning the transition from a homogeneous distribution to a
CDW is that an arbitrarily small value of ε/t implies this transition. Especially the
charge transfer between the two sub-lattices will be more important as |U |/t increases.
Concerning the comparison between LDFT and exact or numerical results [Fig. 5.20 with
Lanczos diagonalization and Fig. 5.21 with DMRG] one observes, as with a repulsive
interaction, that all the considered ground-state properties are very well reproduced by
the scaled dimer Ansatz. This holds for all values of the energy level shift between the
sub-lattices, not only close to the weakly and strongly correlated limits but also in the
intermediate interaction region. Moreover, the fact that γ12, ∆n and W are all obtained
with a high level of precision shows that the results for Egs are not the consequence of a
strong compensation of errors. It is also interesting to note that the accuracy is actually
improved as the charge distribution becomes more inhomogeneous, i.e., as ε/t and the
CDW are stronger. This is a particular advantage since at the strong interaction limit
and with an arbitrarily small value of ε/t the electrons are fully localized on the most
favorable lattice where the scaling approximation has a better accuracy. This seems rea-
sonable, since large values of ε enhance the importance of single particle contributions to
the energy and somehow tend to decouple the 1D chain in dimers, within which correla-
tions are taken into account exactly. In Fig. 5.21, in the case ε/t = 0, we also compare our
results with the BCS approximation [see Sec. 3.5.2]. The BCS results are obtained using a
homogeneous finite lattice for simplicity, large enough for the properties to have converged
to their bulk limit. In contrast to LDFT within the scaling approximation, the reasonably
good agreement between DMRG and BCS is the result of error compensation between the
kinetic and correlation energies. Especially, for small |U |/t BCS theory predicts a really
slow increase of W until |U |/t ∼ 1.5 (|U |/(|U | + 4t) ∼ 0.27), underestimating consider-
ably the average number of double occupations. This is compensated in the ground state
energy since the γ12 is also nearly constant until |U |/t ∼ 1.5, overestimating the kinetic
energy. The maximum of discrepancies in BCS occurs for the smaller contributions of
the energy, in the small interaction regime for the average number of correlation energy
and at the strong interaction regime for the kinetic energy. Notice that BCS predicts a
good strongly correlated limit (all electrons paired). Nevertheless, if BCS gives a quite
accurate ground-state energy, the error made on the different contributions can lead to a
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Figure 5.23: Band-filling dependence of the ground-state energy of 1D Hubbard rings
having U < 0, Na = 14 sites, and different bipartite potentials ε. The solid lines con-
necting discrete points refer to LDFT with the scaled dimer functional Wsc. The symbols
correspond to exact numerical results. Representative values of the attractive interaction
strength |U |/t are considered as indicated.

bad description on more subtle properties as we see later on for the charge gap.

In Figs. 5.23, 5.24 and 5.25 we present the band-filling dependence of the ground-state
energy Egs of, respectively, a 1D ring having Na = 14 sites, a one-dimensional infinite
chain and a two-dimensional infinite system. Beside the finite size effect in Figs. 5.23
which will be discussed later on, the three figures present general similarity. Egs decreases
monotonously when the band filling increases for all value of |U |/t and ε/t until n = 1.
This trend is trivial in the noncorrelated case since by adding electrons, one fills one by one
the one-particle states having a negative energy (E(~k) = −2t(cos (kx)+cos (ky)+cos (kz))).
For finite values of the attractive interaction, the electrons are partially paired decreasing
the energy (U < 0). Adding a bipartite potential also contributes to decreasing the energy
since the electrons will form a pair on the most favorable sub-lattice. For a strong enough
attractive interaction |U |/t > 4 and for finite size systems (see Fig. 5.23), the ground state
energy oscillates since passing from an odd number to an even number of electron leads
to an important reduction of the energy (creation of a pair) while when passing from an
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Figure 5.26: Charge gap ∆Ec = E(Ne + 1) + E(Ne − 1) − 2E(Ne) as a function of the
number of electrons Ne in 1D Hubbard rings having Na = 14 sites and different bipartite
potentials ε. The solid lines connecting discrete points refer to LDFT with the scaled
dimer functional and the symbols to exact Lanczos diagonalization. Representative values
of the attractive interaction strength |U |/t are considered. Results for n = 1 are given in
Fig. 5.27.

even to an odd number of electrons only increases the kinetic energy which contributes
less at this regime. These oscillations disappear at the thermodynamic limit (Na → ∞).
These size effects are also responsible for the even-odd and super-even effects in the charge
gap [68] as a function of the band-filling. To show these effects, we present in Fig. 5.26 the
charge gap ∆Ec = E(Ne + 1) + E(Ne − 1)− 2E(Ne) dependences on the band filling for a
1D Hubbard ring having Na = 14 sites. Representative values of the attractive interaction
|U |/t are considered as well as two different values of the bipartite potential, in (a) ε/t = 0
and in (b) ε/t = 4. The first remark is that the gap for Ne odd is negative when the one
for Ne even is positive producing oscillations. The amplitude of these oscillation increases
as |U |/t increases. The physics behind this behavior is understood in the sense that for
a finite value of |U |/t, adding an electron to a system with an odd number of electrons
makes the formation of a new (partial) pair possible. The added electron brings also a
contribution which reduces the kinetic energy and we have E(Ne + 1) < E(Ne). On the
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other hand removing an electron from a system with an odd number of electrons does not
destroy a pair since in this case the maximum number of pairs is (Ne −1)/2; consequently
only the kinetic energy is increased and E(Ne) < E(Ne − 1). However, as we see in the
non-correlated case in Fig. 5.10, the difference of the kinetic energy between adding and
removing an electron is compensated leading to ∆Ec < 0 for finite values of |U |/t and Ne

odd. The same reason explains the positive gap in the case of Ne even, since removing
an electron can (partially) destroy a pair and adding an electron only affects the kinetic
energy. More subtle super-even effects for small values of |U |/t,which are consequences
of the nature of the one-particle spectrum, are also observed (see blue line and symbol
in Fig. 5.26). The charge gap for Ne = 6 and Ne = 10 is enhanced compared to other
even numbers of electrons. This behavior disappears for |U |/t > 4. We can explain this
phenomenon, which is also present in the case of a Coulomb repulsion (already explained
in Sec. 5.3), by looking at the one-particle energy spectrum in Fig. 5.7. The effect of
a one particle bipartite potential is to enhance the amplitude of the oscillation since it
determines a most favorable sub-lattice where double occupations are promoted. The
mechanism discussed above is consequently enhanced when the double occupations are
more localized on a less energetic sub-lattice.
Again, the accuracy of LDFT with the scaling approximation to W is remarkable in all
cases, and the maximum of discrepancies seems to appear for Ne = 4m + 2, m iteger ≥ 1
and |U |/t ≥ 4 where LDFT overestimates the gap. LDFT has the tendency to keep the
super-even effect even for large |U |/t. This can be explained by the strong dependence
of the correlation energy Wsc on the non-correlated value of the off-diagonal part of the
density matrix γ12. As previously, the accuracy is better within an external bipartite
potential.

Figs. 5.27 and. 5.28 present the charge gap dependence on the attractive interaction
strength |U |/t for different systems at half band filling. The LDFT results are compared
with exact calculations (exact diagonalization, Bethe Ansatz) and the BCS approximation.
In both cases the dashed line represents the linear in |U |/t asymptotic strongly correlated
limit, the inset figure focuses on the charge gap dependence at the weakly correlated limit.
General trends can be deduced from these two figures, like the monotonous increase of the
charge gap as |U |/t increases, in particular for |U |/t > 8; the increase is linear since all
the electrons are already nearly paired and the nature of the ground states do not change.
In the case of the finite ring having Na = 14 sites, displayed in Fig. 5.27 and for ε/t = 0,
the charge gap at the noncorrelated limit is finite due to finite size effects already discussed.
An interesting point is the effect of the bipartite potential: for ε = 4 the gap increases
from the weakly to the strongly correlated limit nearly linearly in |U |/t. In this case, the
electrons are already paired on the most favorable sub-lattice at the non-correlated limit
[W/|U |Na ∼ 0.425 and γ22 ∼ 1.85 (∆n ∼ 1.70), see Fig. 5.20].

At the thermodynamic limit Na → ∞, displayed in Fig. 5.28, we focus on the ho-
mogeneous case for one- and two-dimensional systems. For the one-dimensional case we
compare our results with the BCS theory and the exact Bethe Ansatz. Generally LDFT
provides a better approximation than the BCS theory except at the weakly correlated
limit |U |/t < 1.5. Using the Bethe Ansatz, the charge gap at half band filling is given by:

∆EBA
c =

8t

π

∞
∑

m=1

1

2m + 1
K1

(

2πt

|U | (2m − 1)

)

, (5.11)
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Figure 5.27: Charge gap ∆Ec = E(Ne + 1) + E(Ne − 1) − 2E(Ne) as a function of the
the attractive interaction strength |U |/t in 1D Hubbard rings having Na = 14 sites at half
band filling n = 1 for different values of the bipartite potentials ε. The solid blue curve
corresponds to LDFT with the scaled dimer functional, and the symbols to exact Lanczos
diagonalizations. The dashed black curve shows the asymptotic behavior of the charge
gap for large values of |U |/t. In the inset small values of |U |/t are highlighted.

where K1(x) is the first-order modified Bessel function. In the weak coupling regime this
reduces to an exponential contribution

∆Ec
BA
weak =

4

π

√

|U |t exp

(−2πt

|U |

)

. (5.12)

On the other hand, the BCS gap at the weak coupling limit is given by [65]

∆Ec
BCS
weak = 8t exp

(−2πt

|U |

)

(5.13)

From Eq. (5.12) and (5.13) we see the same dependence in |U |/t but a different pre-factor.
For the homogenous system, the charge gap within the scaling approximation can be
obtained at half band filling as [33]:

∆Ec
LDFT = UεC(γLDFT

12 ) +

[

U

2εC(γLDFT
12 )

(γLDFT
12 − γ∞

12)2

(γ0
12 − γ∞

12)3
∂γ0

12

∂γii

]

(5.14)

−
[

U

2εC(γLDFT
12 )

{

(γLDFT
12 − γ∞

12)2 − (γLDFT
12 − γ∞

12)(γ0
12 − γ∞

12)

(γ0
12 − γ∞

12)3

}

∂γ∞
12

∂γii

]

with γLDFT
12 = γ∞

12 +
(γ0

12−γ∞
12)2√

(γ0
12−γ∞

12)2+(U/4zt)2
minimizing the energy using the scaling approxi-
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Figure 5.28: Charge gap ∆Ec = E(Ne + 1) + E(Ne − 1) − 2E(Ne) as a function of the
attractive interaction strength |U |/t for the attractive Hubbard model in 1D (black) and
2D (red) periodic lattices. The band filling is n = 1 and ε = 0. The solid curves correspond
to LDFT with the scaled dimer functional, the dotted curve with open circles to BCS (1D),
the dotted curve with crosses to the exact Bethe-Ansatz solution (1D). Dashed curves show
the asymptotic behavior of the charge gap for large values of |U |/t. In the inset small values
of |U |/t are highlighted.

mation and W = (U/4)(1 − εC) is the correlation energy with εC =

√

1 −
(

γLDFT
12 −γ∞

12

γ0
12−γ∞

12

)2
.

One finds at the weak correlation limit a quadratic behavior (∆Ec
LDFT
weak ∝ (U/t)2) over-

estimating the charge gap. Nevertheless, LDFT captures the main physics of the charge
gap in contrast to BCS, especially for |U |/t ≥ 4. This can be related to the important
errors in the kinetic and on the correlation energy done by the BCS approximation seen
and discussed previously in Fig. 5.20.

5.5 Conclusion on the global scaling approximation

Based on investigations of the scalability and transferability of W [γ], and on exact analyti-
cal results for the Hubbard dimer, we have proposed in this chapter a simple approximation
to W , which takes advantage of its scaling behavior. In this way a unified description of
the interplay between correlations and charge redistributions is achieved from weak to
strong coupling and for all band fillings. Using this approximation, several important
ground-state properties as well as the charge excitation gap of 1D and 2D lattices with
repulsive and attractive interaction have been successfully determined as a function of the
Coulomb repulsion strength and of the external bipartite potential.
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Chapter 5. Scaling approximation for bipartite systems

The accuracy of the results confirm the pertinence of the scaling approximation and
the transferability of the interaction-energy functional. Among the reasons for the success
of the present scaled dimer approximation one should first of all mention the universality
of the correlation-energy functional as stated by Hohenberg-Kohn’s or Levy-Lieb’s formu-
lations. Moreover, the present approach has the asset of incorporating exact information
on W [γ] at the two most important limits of weak and strong correlations. These funda-
mental boundary conditions —somehow analogous to the sum rules of the local density
approximation in the continuum— provide a useful guide for the development of the the-
ory and are a further reason for the good performance of the method. The locality of the
dominant interactions is in fact a characteristic of strongly correlated phenomena, which
will be exploited more systematically in the forthcoming chapters. In this way it should be
possible to improve the flexibility of the explicit approximations to W [γ], thereby extend-
ing the range of applicability of LDFT. In particular, a local formulation of W [γ] would be
worthwhile. We have shown that the global scaling approximation offers the possibility to
study a system with an inhomogeneous Coulomb integral. However, this approach is lim-
ited to bipartite lattices. A way to extend the applicability of the scaling Ansatz consists
in developing an on-site formulation of the correlation energy functional W [γ], offering
the possibility to study a much larger variety of physical situations including disordered
systems. This is the goal of the next chapter.
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Chapter 6

A local approximation to W [γ]

Extending the work on homogenous systems, we have shown in the last chapter, that a
good approximation to the correlation-energy functional (CEF) can be derived using global
scaling properties. However, this approach is difficult to transfer to an arbitrary systems
due to its non-local definition. In the present chapter we derive a local formulation for the
CEF as a function of an universal degree of delocalization Γiσ as given by Eq. (4.12). After
proving the local scaling properties of the CEF, we derive the local scaling approximation
(LSA) for ωi in Sec. 6.1. In Sec. 6.2, applications of this generalization are presented
for the metal-insulator transition in the bipartite Hubbard model (also known as ionic
Hubbard model). The Hubbard chain with first and second nearest-neighbor hopping is
considered in Sec. 6.3. Successes and limitations of this approach are discussed in Sec. 6.4.

6.1 Local Ansatz for ωi[γ].

In this section we derive a local formulation of the interaction-energy functional, by using
the definition of the average number of double occupations Eq. (4.12). A local formulation
is a real advantage, since it allows a generalization of the CEF for all on-site interacting
Hamiltonians. Furthermore, γ depends also implicitly on the size of the system, the band-
filling and the charge distribution. An important consequence of these dependences is
that γij is bounded by a system-specific v-representability domain. Thus, for a given
system, band-filling and charge distribution {γii}, we must have γ∞

ij ≤ γij ≤ γ0
ij , where

γ∞
ij represents the maximum possible electronic delocalization with a minimum number of

double occupations (at the strongly correlated limit) and γ0
ij corresponds to the maximum

of electronic delocalization without any restrictions (at the noncorrelated limit). It is
therefore desirable to derive a dimensionless expression for the degree of electron delocal-
ization (DED) which is independent of any external condition such as the size, geometry,
band-filling and which could be transferred to any other system. Likewise, it is useful to
consider a dimensionless degree of electronic correlation (DEC), since ωi is bounded by ω∞

i
and ω0

i , where ω∞
i and ω0

i refer respectively to the average number of double occupations
at the strongly correlated and noncorrelated limits.
To be explicit, we focus first on the Hubbard dimer where the dimensionless DED and
DEC appear quite naturally. In a dimer at half filling, the average number of double
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Figure 6.1: Transferability of the Dimension-less DEC wi [Eq. (6.3)] as a function of the
DED g [Eq. (6.6)] for different one dimensional bipartite rings (Na = 4−14, symbols) and
different number of free charges per site ni. The black line with symbols refers to exact
Lanczos diagonalization results and the red dashed line to Eq. (6.5).
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6.1. Local Ansatz for ωi[γ].
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Figure 6.2: DEC wi [Eq. (6.3)] as a function of the DED g [Eq. (6.6)] for a homogeneous
(ε = 0 see [Eq. (4.1)]) 1D ring having Na = 10 sites and for different band filling n =
Ne/Na. Symbols refer to different n, full line to exact diagonalization, dashed red line to
the universal scaling approximations [Eq. (6.5)] and the dotted line to the simple scaling
approach [34, 35, 36].

occupations defined in Eq. (4.12) is given by

ωi =
1

2

(

γii −
γ2

12

2

1 +
√

γii(2 − γii) − γ2
12

(1 − γii)2 + γ2
12

)

. (6.1)

In this case, the v-representability domain is defined by the charge distribution {γii}
(0 ≤ γii ≤ 2) and by the maximum and minimum values of the off-diagonal γ12. These
are given respectively by

γ0
12 =

√

γii(2 − γii)

γ∞
12 =

{

√

2γii(1 − γii) if γii ≤ 1
√

2(γii − 1)(2 − γii) if γii > 1
(6.2)

If one defines the DED gi and DEC wi on the site i as

g2
i =

γ2
12 − γ∞

12
2

γ0
12

2 − γ∞
12

2
(6.3)

wi =
ωi − ω∞

i

ω0
i − ω∞

i

, (6.4)
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Chapter 6. A local approximation to W [γ]

The Eq. (6.1) is simplified as a function of these dimensionless variables, so that, for a
repulsive interaction (U > 0) we have

wi =
(1 − χi)

2

1 − δiχi
(6.5)

where χi =
√

1 − g2
i and δi = min{γii, 2−γii}. Notice that δi represents the “free available

charge” taking into account the electron-hole symmetry. Note that Eq. (6.5) connects
the DED, the DEC, and the “free available charge” without other explicit or implicit
system-specific dependencies. Therefore, it is reasonable to assume that this relation is
transferable to any other system with a properly extended definition of the DED gi and
DEC wi. This is discussed in the following.
We have discussed in Sec. 4.5 that the ensemble-N -representability condition in real space
introduces a dimensionless degree of delocalization Γ2

i,σ of a site i with its environment

[see Eq. (4.24)]. At half filling and Sz = 0 this reads that Γ2
i,σ =

∑

j 6=i |γij,σ |2. This
can be viewed as a norm of the column vector i of the density matrix by taking out the
square of the diagonal term γ2

ii. It is then by definition invariant under any canonical
transformation among the orbitals j 6= i. It has been shown previously that at half filling
and for square lattice systems (γ∞

ij = 0), that the sum in Γ2
i,σ can be restricted only to the

relevant non-diagonal terms for which tij 6= 0. A straightforward scaling Ansatz for the
DED reads

g2
i,σ =

Γi,σ
2 − Γ∞

i,σ
2

Γ0
i,σ

2 − Γ∞
i,σ

2
. (6.6)

In practice, for a Hubbard system with NN hoppings the only considered terms are the
NN γij : Γ2

i,σ =
∑

j NN of i |γij,σ|2. For a Hubbard system with up to next NN hoppings we

consider the NN and next NN γij : Γ2
i,σ =

∑

j NNor nNNof i |γij,σ|2. Since the DEC is defined

independently for each site i, the previous definition of gi [see Eq. (6.3)] can be applied
for any site in an arbitrary environment. Accordingly, from Eq. (6.4), the average number
of double occupations at site i in any system is given by

ωsc
i = ω∞

i + wi[γii, g
2
i ](ω

0
i − ω∞

i ), (6.7)

where ω∞
i and ω0

i are simple functions of γii. In most of the cases ω∞
i = max[γii − 1, 0]

and ω0
i = γii,↑γii,↓ = γ2

ii/4. The set of Eqs. (6.5), (6.6), and (6.7) define the generalized
local scaling approximation (LSA) of the on-site correlation energy for any system.
This LSA can be regarded as an effective medium theory in the sense that the effect of the
rest of the system or environment on each site i is mapped into a single orbital of a site.
The local contribution of site i to the interaction energy functional is then calculated on
this reduced two-level system, which has the same charge density γii at site i as the actual
system under study, and a renormalized effective degree of electronic delocalization g.

In Fig. 6.1 we demonstrate the transferability of the relation between the local DEC
and the local DED [see Eq. (6.5)] by considering different sizes of one dimensional bipartite
Hubbard rings at half filling n = 1 and different charge densities δi (free charge) on the
considered site i. Symbols refer to exact results obtained with the Lanczos diagonaliza-
tion method [42] and the red dashed curves refer to the LSA Eq. (6.5). The results for wi

as a function of gi for different sizes are remarkably similar, showing the pertinence and
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Figure 6.3: Renormalization of the kinetic energy EK/E0
K for th one- (black) and two-

dimensional (red) homogeneous Hubbard system. LDFT results (full line) are compared
with slave boson mean field theory (SBMF, dashed line), DMRG (for 1D, cross) and
QMC [79] (for 2D, square). The inset figure shows the weakly correlated limit of EK/E0

K

(region in rectangle in the figure).

transferability of Eq. (6.5).
Another important feature of this approximation is that it takes into account the charge
density on the site γii, thereby respecting the electron-hole symmetry. This contrasts with
previous dimer scaling approximations [34, 36]. In Fig. 6.2 we show the dependence on
the band filling n of the relation between w and g [Eq. (6.5)] for a homogeneous Hubbard
ring with Na = 10 sites. Full curves refer to exact results obtained with Lanczos diago-
nalization, the blue crossed curve to the homogeneous scaling approximation [34, 36], and
the dashed red curves to Eq. (6.5). Since the LSA takes into account the specific charge
density per site, even if the system is homogeneous, the accuracy is considerably enhanced
as compared to this previous scaling approximation. Notice that at half filling, the LSA
and the scaling approximation are equivalent.
As a first application of the LSA, which can be viewed as an effective medium theory,

it is interesting to look at the effective renormalization of the kinetic energy EK/E0
K or

equivalently of the hopping integral teff/t, where E0
K is the kinetic energy at the noncorre-

lated limit. The results are displayed in Fig. 6.3 for homogenous one- and two-dimensional
systems at half filling. LDFT within the LSA is compared with the slave-boson mean-field
theory (SBMF) (see Sec. 3.3.2), with the DMRG method (1D) and with quantum Monte
Carlo simulations (2D) [79].
Within a mean-field theory, the saddle point is calculated to minimize the energy, which
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Chapter 6. A local approximation to W [γ]

can be written as
Egs

Na
= −zqtγ0

12 + U〈ω〉 (6.8)

where z is the coordination number. The renormalization of the hopping integral is defined
by teff = qt and 〈ω〉 represents the average number of double occupations per site. In this
case, the renormalization of the hopping integral represents the reduction of the kinetic
energy due to the electronic correlations. For a homogeneous system at half filling, the
analytic solution of LDFT within the LSA minimization yields

qLSA =
1

√

1 + (2U/D)2
(6.9)

with D = 8ztγ0
12 and

〈ωLSA〉 =
1

4

(

1 −
√

1 − 1

1 + (2U/D)2

)

. (6.10)

On the other hand, in the spin-restricted slave-boson mean-field theory, one obtains at the
saddle point:

qSBMF = 1 −
(

U

D

)2

(6.11)

and

〈ωSBMF〉 =
1

4
(1 − U/D) (6.12)

where D is proportional to the kinetic energy of the noncorrelated system. The first
remark is that the spin-restricted slave-boson approximation predicts that teff vanishes for
a critical value of the Coulomb integral Uc. This would imply that the system undergoes
a Mott-insulator transition (teff/t = 0, ωi = 0) as it has been described in more detail
in Sec. 3.3.2. In contrast, the exact solution and LDFT within LSA do not present such
a transition since they predict an insulating behavior for an arbitrarily small value of
U/t. The insulating behavior of these systems is discussed in more detail in the following
section. Fig. 6.3 clearly demonstrates that LDFT is indeed far more accurate than the
SBMF, especially for strong interactions. At the weakly correlated limit, displayed in the
inset of Fig. 6.3, it is shown that the LSA underestimates the renormalization in contrast
to SBMF which overestimates it. These differences can be explained by the fact that
LSA of the correlation-energy functional depends explicitly on the renormalization of the
hopping integral, while in SBMF theory the average double occupancy depends only on
the ratio U/D.

6.2 From band insulator via metal to Mott insulator

In this section we present results of LDFT using the LSA for the bipartite Hubbard model,
in the thermodynamic limit (Na → ∞). The model is given by

Ĥ =
∑

i,σ

εi n̂iσ +
∑

〈i,j〉σ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↓n̂i↑. (6.13)
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6.2. From band insulator via metal to Mott insulator

In the last chapter we have already discussed the physics of this model by focusing on
finite clusters. Let us recall that in the past years considerable efforts have been devoted
to analyzing the physics of this Hamiltonian, since it undergoes a transition from band to
Mott insulator for a finite value of the bipartite potential. For some particular systems this
transition is realized by passing through an intermediate metallic phase. Examples of this
situation are the 2D square lattice, as shown by using quantum Monte Carlo methods [40],
and the 2D Bethe lattice by using DMFT [80]. One-dimensional bipartite systems with
NN hopping and the generalized ionic Hubbard model ABn [81] do not present a metallic
phase [82]. The latter only appears when one includes next NN hoppings [83].
An analysis of various limiting cases at half filling allows us to characterize the transitions,
by using rigorous arguments. In fact, at the noncorrelated regime (U/t = 0) of the bipartite
model an arbitrarily small value of the energy-shift level ε/t opens a gap of width ε/t in
the one-particle density of states leading to a band-insulating behavior. In this limit, the
Hamiltonian is diagonal in reciprocal space,

H =
∑

k,σ

Ekĉ†k,σck,σ (6.14)

where Ek = ±
√

ǫ(k)2 + (ε/2)2, and ǫ(k) is the energy of a free-particle of wave vector k.
The sum runs over half of the Brillouin zone. The eigenenergies are split into two bands
with an energy gap equal to ε separating them. Fig. 6.4 shows an example of the density
of states at the noncorrelated limit of a two-dimensional square lattice in (a) the metallic
phase ε/t = 0 and (b) the band insulator phase for ε/t = 1.
In the atomic regime, t = 0 (isolated atoms, no hopping integral), the picture is quite
different. As long as U < ε, the system is a band insulator (with a gap ∆ = ε−U). In this
case one sub-lattice S2 is fully occupied (i.e., n2 = 〈n̂i〉 = 2, for i ∈ S2) and the other one
is empty (n1 = 〈n̂i〉 = 0, for i ∈ S2)). The gap ∆ = (ε−U) decreases as U increases until
at U = ε the homogeneous singly occupied states (n1 = n2 = 1) and the inhomogeneous
one (n2 = 2 on S2) are degenerate. Finally, at large values of U , U > ε, we have a Mott
insulator with a homogeneous electronic distribution on the system (n2 = n1 = 1) and a
gap proportional to U .
Even though the solution of the ionic Hubbard model might sound trivial in the atomic
regime, it clearly shows that the Coulomb repulsion is able to suppress the band-insulating
gap. It is then understandable that due to electronic delocalization an intermediate metal-
lic phase can appear during the band insulator Mott insulator transition.

In this section we want to apply LDFT using the LSA to this problem and compare
the results with previous studies [40, 82]. For simplicity, LDFT results are obtained using
finite 1D and 2D lattices, which are large enough so that the properties have converged
to the thermodynamic limit. First, we present the ground-state properties, which are
changing dramatically across the transition, second, we focus on the charge-gap analysis
and draw the phase diagram of these systems. In particular, we discuss the contradiction
in the phase diagram predicted in this work using LSA and in the previous study [40] for
the 2D lattice. Figures 6.5 and 6.6 display ground-state properties of infinite Hubbard
systems in one and two dimensions as a function of the Coulomb repulsion strength U/t.
Different values of the energy level shift ε/t are considered at half filling n = 1. The
behavior of the ground-state energy Egs, charge transfer ∆n = γ22 − γ11, and the NN
bound order γ12 is very similar to the case of the 1D ring with Na = 14 sites, which was
presented in Fig. 5.8 and discussed in the previous chapter.
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Figure 6.4: One-particle density of states ρ(ω) for the two dimensional noncorrelated
bipartite Hubbard model (U/t = 0) at half filling (N = 1) for different values of the ionic
potential ε/t. The insulating gap is clearly visible in (b) (band insulator ε/t = 1) while
the metallic states ε/t = 0 show gapless excitations.

Here we also compare the ground-state energy of the homogeneous 2D system with
available QMC [25] and VMC [84] results and note a good agreement with both of them.
Indeed, this is already a meaningful success of the LSA, since the LDFT solution is much
easier to obtain than the QMC calculations, which are numerically highly demanding.
Furthermore, the present local definition of the correlation-energy functional allows us
to derive the average number of double occupations at each site [see sub-figure (d) of
Figs. 6.5 and 6.6]. This contrasts with the previous approximation, which provides the
global information on the system. In the homogeneous case, the average ωi is evidently
the same for all i, but for a finite value of ε/t an interesting small transfer of double
occupations occurs. In fact, by increasing U/t ωi decreases on the most filled sub-lattice
[S2, negative values on sub-figure (d) of Figs. 6.5 and 6.6]. On the other hand, ω1 has a
non monotonous behavior, reaching a maximum value for a finite U/t. Starting from the
noncorrelated limit, and increasing U/t, ω1 increases slowly until it reaches a maximum
value. Then it decreases more rapidly. This phenomenon is directly linked with the
reduction of the charge transfer and favors the increase of γ12. Furthermore, when U/t
increases, ω2 decreases on the most favorable sub-lattice S2 leading to a charge transfer.
Consequently, the electronic density increases on the less favorable sub-lattice S1 as well
as the double occupations and allows the enhancement of γ12. Finally, when the Coulomb
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Figure 6.5: Ground-state properties of bipartite Hubbard chains at half filling as a function
of the strength of the Coulomb repulsion U/t and for different values of the energy level
shift ε/t. Presented, are in (a) the ground state energies Egs, in (b) the charge transfer
between the two sub-lattices ∆n, in (c) the NN bound order γ12, in (d) the interaction
energy ωi for the sub-lattice S1 (positive values) and S2 (negative values) and in (e) the
local spin momentum S2

i . Solid curves refer to LDFT within the LSA and symbols to
DMRG.
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Figure 6.6: Ground-state properties of an infinite 2D bipartite Hubbard system at half
filling as a function of the strength of the Coulomb repulsion U/t and for different values
of the energy level shift ε/t. Presented, are in (a) the ground state energies Egs, in (b) the
charge transfer between the two sub-lattices ∆n, in (c) the NN bound order γ12, in (d) the
interaction energy ωi for the sub-lattice S1 (positive values) and S2 (negative values) and
in (e) the local spin momentum S2

i . Curves refer to LDFT within the LSA. In the inset in
sub-figure (a) crosses refer to quantum Monte-Carlo [25] and variational Monte-Carlo [84]
simulations.
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Figure 6.7: Charge gap ∆Ec for a bipartite Hubbard chain at (a) quarter filling (n = 1/2)
and (b) half band filling (n = 1). LDFT within the LSA results (curves) are presented for
representative values of the energy shift level ε/t. They are compared with DMRG results
(symbols) and with the Bethe Ansatz (dotted curve with crosses).

repulsion becomes too important, ω1 decreases to reduce the interaction-energy.
The local magnetic moments S2

i = 3
4〈(n̂i↑ − n̂i↓)

2〉 = 3
4 (γii − 2〈n̂i↑n̂i↓〉) at the different

sites i [see Figs. 6.5 (e) and 6.6 (e)] provide an alternative perspective of the electronic
correlation and localization occurring as U/t increases. If one focuses on S = 0 states,
S2

i can be directly interpreted as the variance of the local magnetic moment. In the
case of half filling, even in the presence of an external potential, Si is the same on the
two sub-lattices due to electron-hole symmetry. This property is strictly respected by
the LSA, as shown in Eq. (6.5). In this case, using Eqs. (6.7) and (6.5) one obtains
S2

2 = 3
4 (γ22 − 2ω2) = 3

4 (2 − γ11 − 2ω∞
2 + 2ω1) = 3

4 (γ11 − 2ω1) = S2
1 . In the uncorrelated

limit n̂i↑n̂i↓ = γ2
ii/4 and therefore S2

i depends only the density distribution γii. For
example, for n = 1 one observes that S2

i decreases with increasing ε/t, namely, from
S2

i = 3/8 for ε/t = 0 to S2
i = 0 for ε/t = ∞. In the latter case all electrons are paired on

one sub-lattice (U = 0 and n = 1). If now the Coulomb repulsion is increased, one finds
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Figure 6.8: Charge gap ∆Ec for a two-dimensional bipartite Hubbard system at (a) quarter
filling (n = 1/2) and (b) half band filling (n = 1). LDFT within the LSA results are
presented for representative values of the energy level shift ε/t.

a reduction of charge fluctuations and thus an enhancement of S2
i . Finally, for U/t ≫ 1

and U ≫ ε the largest possible S2
i = 3/4 is reached, irrespectively of the value of ε/t. At

this point all sites are singly occupied and the variance of S2
i is maximal (S = 0).

Figures 6.7 and 6.8 display the charge gap ∆Ec = E(Ne + 1) + E(Ne − 1) − 2E(Ne)
as a function of the repulsive interaction strength U/t for a one- and two-dimensional
infinite system at quarter and half filling. Different representative values of the energy
level shift ε/t are considered. At quarter filling and in the noncorrelated limit the gap
is zero for any value of the bipartite potential ε/t, since the most favorable sub-lattice is
not full. However, increasing the Coulomb repulsion opens a gap even for an arbitrarily
small value of U/t. In the case of ε/t 6= 0, and starting from U/t = 0, the ground state
corresponds to a delocalized charge-density wave, and the interplay between the kinetic
energy and the potential energy determines the electronic density on the sub-lattices.
Increasing U/t causes the double occupations to be energetically less favorable and leads
to a decrease of the kinetic energy. At the same time the electrons become fully localized
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Figure 6.9: Phase diagram of the bipartite Hubbard model in (a) one dimension and (b)
two dimensions at half filling (n = 1). The solid curve with crosses is the LDFT within
LSA. In (a) the curve with dots represents the DMRG phase boundary. In (b) the dotted
blue curve with squares and the dotted red curve with circles refers to quantum Monte
Carlo calculations [40]. They indicate a metallic phase (∆Ec = 0) not found using the
LSA to LDFT.
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on the most favorable sub-lattice. Under these conditions, the addition of an electron
occurs necessarily on the less favorable sub-lattice, since double occupation are highly
unprobable. Consequently, this enhances the energy by about ε/t (U/t → +∞). The
more important the energy of the charge transfer is, as compared to the kinetic energy,
the faster the transfer happens. This explains the fact that in the 1D case the charge
gap converges faster to its strongly correlated limit than in 2D since in two dimensions
the hybridization is more important than in 1D (for instance for ε/t = 8, ∆Ec = 7.9 for
U/t ∼ 6 in 1D, and for U/t ∼ 12 in 2D).
In the following, we focus on systems at half filling. As is already well known, in one-
and two-dimensional systems there is no Mott transition at a finite value of U/t, for the
homogeneous case (ε/t = 0). This means that for an arbitrarily small value of U/t the
charge gap is already positive, and therefore, the system always exhibits an insulating
behavior. At the non-interacting limit, and in the absence of ε/t, the system is metallic
(∆Ec = 0). However, a finite value of ε/t opens a gap in the one-particle spectrum and the
system becomes a band insulator. On the other hand, at the strongly correlated limit, the
charge gap increases linearly with U/t. The reason for this is that all electrons are localized
and that adding an electron leads inevitably to a double occupation and to an energy
increase of about U . Introducing inhomogeneities induces a non-monotonous behavior of
the charge gap. At the noncorrelated limit the charge gap is already finite and takes a
value of the order of ε/t. Remarkably, increasing the strength of the Coulomb repulsion
U , ∆Ec initially decreases nearly linearly, until it reaches a minimum for U/t ≃ ε/t + 1.
Further increase of U implies that ∆Ec increases nearly linearly in U/t. Starting from the
noncorrelated limit, an increase in the strength of the interaction causes an increase of the
kinetic energy [see Figs. 6.5 and 6.6] since for U ≃ ε the Coulomb repulsion on the doubly
occupied sites on sub-lattice S2 compensates the single-particle energy difference ε between
the two sub-lattices. This allows a nearly free motion of the γ11 electrons occupying sub-
lattice S1, together with the extra γ22−1 electrons on sub-lattice S2 (γ11 < γ22 for ε > 0).
Consequently, adding an electron on such a system is energetically less expensive due to
the importance of the induced kinetic energy associated to its delocalization. At this
point the system is nearly metallic, since the charge gap is weak. In fact, quantum Monte
Carlo simulations predict a metallic phase in two dimensions [40] which is not observed
in the LSA to LDFT. The minimum of the charge gap indicates a kind of critical point,
namely, a band insulator (BI) to Mott insulator (MI) phase transition. In two dimensions,
the minimum of the charge gap is smoother than in one dimension since in this case
the hybridization is stronger (larger band-width). Finally, when the Coulomb repulsion
becomes larger than both the kinetic energy and the charge-transfer energy (U ∼ ε + t),
the electrons become localized throughout the whole lattice, leading to a linear increase
of the charge gap, as in the homogeneous case.
We compare LDFT results with the exact Bethe-Ansatz solution for the one-dimensional
homogeneous case in Fig. 6.7. The strongly correlated limit is well reproduced by LDFT
but at the weakly correlated limit the gap is overestimated. As was already discussed
in the case of attractive interaction in Sec. 5.4, LSA predict also a quadratic increase in
U/t of the gap at the weakly correlated limit. This is in contrast to the Bethe-Ansatz
which predicts a gap which depends exponentially on −t/U . For the sake of comparison
we also show, in Fig. 6.7, DMRG method predictions for finite values of the energy level
shift ε/t. At the limit U ≫ ε and U ≪ ε, LSA and DMRG results are in good agreement.
However, near the critical point, some differences are present. First, the critical value Uc
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6.3. The 1D Hubbard chain with second nearest neighbor hoppings

for which the charge gap is minimal is slightly under-estimated in the LSA. For example
for ε/t = 4, ULDFT

c ≃ 5.2 and UDMRG
c ≃ 5.5. The strongest differences between LSA and

DMRG is the overestimation of the value of the charge gap near the critical point. In 2D
(see Fig. 6.8) this overestimation implies that using the LSA, no metallic phase is found
between the BI and the MI phase in contrast to QMC simulations. The overestimation
of the charge gap done by using the LSA at the weakly correlated limit or at the BI-MI
phase transition point results from the behavior of the charge gap of the dimer in a similar
situation. For the dimer, the charge gap at the weakly correlated limit is quadratic in U/t
and an significant gap at the BI-MI phase transition point (consequences of its discrete
spectrum). Consequently, the LSA reproduces quantitatively this behavior for any system,
since the dimer serves as the reference system to derive this approximation. Finally, to
summarize, we present in Fig. 6.9 the phase diagram for (a) the one-dimensional and (b)
the two dimensional bipartite Hubbard model. The solid black curves with crosses refer
to the BI-MI phase transition predicted by LDFT within LSA. Note that in the atomic
regime (isolated atoms, t = 0) the transition occurs for ε = U since at this point the
singly occupied states are degenerate with the inhomogeneous one (n2 = 2 on S2). For
the 1D case DMRG predictions are also plotted showing a good agreement between the
two methods. For the 2D case we also show the results of QMC simulations [40] which
predict a metallic phase between the BI and the MI ones. However, it is expected that
the LSA provides qualitatively good results at the strongly correlated limit.

It has been shown that the LSA captures the main physics resulting of the interplay
between electronic delocalization, charge distribution and Coulomb repulsion in the ionic
Hubbard model. In particular, the important changes in the ground-state properties are
well reproduced during the transition from a band insulator having a charge density wave
to a Mott insulator where the charge is homogeneously localized in the systems. This the
case for example of the ground-state energy, the NN bound order γ12, the charge transfer
between sub-lattices ∆n, the correlation energy as well as the local spin momentum. This
transition also occurs in the inhomogeneous dimer, and the changes in the ground-state
properties appear remarkably transferable to any system through the LSA approximation.
However, some discrepancies appear in the study of the charge gap at the weakly cor-
related limit and near the BI-MI phase transition point, where the LSA is significantly
overestimating the charge gap. Moreover, these discrepancies are more pronounced in
2D than in 1D. One could argue that the fact that 1D systems are closer to the dimer
than a 2D system implies a better description for the charge gap. The overestimation
of the charge gap could be attributed to the nature of the reference system (the dimer)
from which the LSA is derived. Possibilities to improve the charge gap at these limits are
discussed at the end of this chapter.

6.3 The 1D Hubbard chain with second nearest neighbor
hoppings

The success of LDFT within LSA to reproduce accurately most of the ground state prop-
erties, encourages us to explore more complicated physical systems. In the last section it
was shown that the LSA captures the effects of an inhomogeneous charge distribution in
a correlated system through the study of the ionic Hubbard model, specially in 1D sys-
tems. A particularly important extension is to consider magnetically frustrated systems.
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Chapter 6. A local approximation to W [γ]

Figure 6.10: Phase diagram of a 1D Hubbard chain with first and second NN hopping
in the noncorrelated limit (U = 0). The solid curves separate the two regimes (two or
four Fermi points) and the inset figures illustrate the behavior of the dispersion relation
[Eq. (6.17)] for the corresponding parameter range. The Fermi energy is represented by
horizontal red lines.

In this sense the Hubbard chain with first and second NN hopping appears an ideal system
to test LDFT. Indeed, a realistic description of materials often requires modifications of
the simplest original Hubbard model. For example, to study quasi 1D organic conductor
(TMTSF2)X (X=PF6, ClO4), the so-called Bechgaard salts [85], or other related systems
like Copper oxide Pr2Ba4Cu7O15−δ [86], one needs to introduce second-nearest neighbor
hoppings in order to describe the physics of such systems. In past years, this Hamiltonian
has been intensively studied from a theoretical point of view [87, 88].
In this case the Hubbard Hamiltonian reads:

Ĥ =
∑

i,σ

t1ĉ
†
i,σ ĉi+1,σ +

∑

i,σ

t2ĉ
†
i,σ ĉi+2,σ + U

∑

i

n̂i↓n̂i↑ , (6.15)

where t1 (t2) is the hopping integral between first (second) NNs. As was described in the
previous section, for a homogeneous chain with NN at half filling, electronic correlation
leads to a finite charge excitation gap and thus insulating behavior for an arbitrarily small
value of the Coulomb repulsion U/t. The introduction of next-nearest-neighbor hoppings
could change this picture dramatically. It brings a sort of frustration to the spin degrees
of freedom as well as some coupling between spin and charge degrees of freedom. In the
strong coupling regime, the Hubbard model (6.15) can be developed perturbatively into
a frustrated Heisenberg chain by using the Schrieffer-Wolf transformation (see Sec. 3.4).
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Figure 6.11: Ground-state properties of a Hubbard chain with nNN hopping at half filling
as a function of the Coulomb repulsion strength U/t. Different values of the strength
of the nNN hopping integral t2/t1 are considered as indicated in (b). Results are given
for (a) ground-state energy Egs, (b) kinetic energy EK and (c) average number of double
occupations per site W/UNa. The solid curves refer to LDFT using the LSA approximation
while the symbols are the DMRG results.
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Figure 6.12: Charge gap ∆Ec as a function of the Coulomb repulsion strength U/t in a
Hubbard chain with nNN hopping having t2 = t1 = 1 and at half filling. The curves refer
to LDFT within the LSA approximation and the symbols to DMRG calculations.

One then obtains

H =
∑

i

J1SiSi+1 + J2SiSi+2 (6.16)

where J1 = 4t21/U and J2 = 4t22/U . Without the second NN hoppings and at half band fill-
ing, the ground state is known to be antiferromagnetic. However the second NN hoppings
lead to a geometric frustration since the spin at one site cannot be aligned antiferromag-
netically with both first and second neighbors. At weak coupling, the second NN hopping
changes the band structure of the system, in particular the number of Fermi points (equiv-
alent to the Fermi surface in 1D). At this limit the dispersion relation is given by

ǫ(k) = −2t1 cos k − 2t2 cos 2k (6.17)

where we have considered the lattice constant equal to one. The ground state phase dia-
gram in this limit is displayed in Fig. 6.10. For | t2/t1 |< cos [(2 − n)π/2]2 / sin [(2 − n)π]2,
the system has two Fermi points at k = ±nπ/2, and the properties of such a system are very
similar to that for t2 = 0. In the other case, for | t2/t1 |> cos [(2 − n)π/2]2 / sin [(2 − n)π]2,
there is four Fermi points (two branches) ±kF1 and ±kF2 [88]. This leads, as we shall see
later on, to important modifications of the properties, especially the charge gap.
In Fig. 6.11 the ground-state properties of a Hubbard chain with up to second NN hop-
pings are shown at half filling, as a function of the Coulomb repulsion strength U/t1.
Different values of the second NN hopping integral t2 are considered. DMRG results are
also displayed (symbols) in order to compare. First of all, one observes the well-known
monotonous increase of Egs with increasing U/t, reaching Egs = 0 for U/t → ∞, where
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both electronic hopping and double occupations vanish. By increasing t2, the average
number of double occupations (kinetic energy) decreases (increases) slowly. This can be
explained by considering that the presence of the second NN increases the band width w
of the system (for example w/t1 = 4 for t2/t1 = 0 and w/t1 = 6.25 for t2/t1 = 1). Con-
sequently, one needs a larger value of U/t1 to reduced by the same amount the average
number of double occupations for a system with larger t2/t1. We find a relatively good
agreement between the LDFT and DMRG predictions, in particular for small values of
t2. As t2 increases, one observes some deviations in the average value of double occupa-
tions, even at the weakly correlated limit. For example ∆W/W ≃ 0.20, for t2/t1 = 1.0
and U/t1 = 4. In contrast, the kinetic energy is very well reproduced at the weak corre-
lated limit. However, by increasing U/t, LSA becomes less accurate describing the kinetic
energy, specially for cases where t2 ≥ 1.

Figure 6.12 shows the charge gap of a Hubbard chain with first and second NN hopping
having t2 = t1 = 1 at half filling. In this case the 1D chain is actually a two leg triangular
stripe. The comparison between LDFT and DMRG is qualitatively in disagreement. In
fact, DMRG predicts a Mott transition for a critical value of the Coulomb repulsion
strength Uc/t = 3.2 which is, around half the band width of the noncorrelated system
Uc ≃ w/2 where w = 6.25 unlike LDFT which predicts a Mott insulator for any small
value of the Coulomb repulsion.
For U > 4, LDFT predicts a quasi linear dependence in U when for DMRG, ∆Ec is
growing exponentially slowly after Uc and then increases linearly for U/t > 6.

The one dimensional chain with first and second NN hoppings appears more difficult
to reproduce for the LSA than systems with only NN hoppings. The deviations observed
in the ground-state properties and the more serious failure in the description of the charge
gap are due to the nature of the reference system at the basis of the LSA. For instance in
the dimer geometric frustrations do not exist. This fact is responsible for the discrepancies
between DMRG and LSA kinetic energy for moderate hopping ratio t2/t1 ≥ 0.5 in the
strongly correlated limit (U/t > 4). Moreover, at half filling, the nature of the noncorre-
lated ground-state are qualitatively different in a dimer and in a chain with t2/t1 > 0.5,
since in the former the lowest single-particle state is the even (k = 0-like) state while in
the latter the minimum in the dispersion relations occurs for a non-zero k (see Fig. 6.10).
Consequently at the weakly correlated limit and for t2/t1 > 0.5 the average number of
double occupancies predicted by the LSA is less accurate. In addition, the dimer is an
insulator for any finite value of U/t, making it evident that it cannot be a good reference
system to describe a metal-insulator transition at a finite value of U/t.

6.4 Discussion

In the two previous sections, it has been shown that LDFT within the LSA approximation
for the correlation-energy functional predicts quite accurately the ground-state properties
of on-site correlated systems, even in the presence of inhomogeneities in the external po-
tential or first and second NN hoppings. However, we saw that at half filling it always
predicts an insulator for any arbitrarily small value of the Coulomb repulsion. In the
case of one- and two-dimensional homogeneous square lattices this is in accordance with
other numerical or exact solutions, but the charge gap is still overestimated at the weakly-
correlated limit. Adding inhomogeneities, as for example in the bipartite ionic Hubbard
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model, one also observes that the charge gap is still overestimated in our calculations near
the critical point where a BI-metal-MI phase transition predicted by QMC calculations
occurs. In fact, this implies that LDFT within LSA does not predict a metallic phase
in two dimensions as it was obtained in QMC simulations. In the case of the chain with
nNN hopping it is now well known that a Mott transition occurs and that the system is
metallic up to a finite critical value of the Coulomb repulsion. Also in these cases the LSA
to LDFT results always overestimate the charge gap, predicting an insulator for all non
vanishing values of U .
In this context it is worth noting that the charge gap is a very subtle property. For ex-
ample, at the weakly correlated limit, perturbation theory predicts a power-law decay of
the kinetic energy (or of the NN bond-order) as a function of the correlation energy in
the case of a NN hopping system. Moreover, in Hartree-Fock approximation, the charge
gap is always zero, which implies a metallic phase even for U/t → ∞. Improving the LSA
functional in order to reproduce correctly the weakly correlated limit of the charge gap
still remain a challenge for theory. Different ways can be considered such as combining the
LSA functional, which is very performant at the strongly correlated limit, with another
functional which could be derived from perturbation theory. The latter should allow to
increase the accuracy in the weakly correlated limit.
However, as was already pointed out, most of the discrepancies observed using the LSA
result from the nature of the reference system basis of this approximation, namely the
inhomogeneous dimer. In fact, the low-dimensionality and the non-frustrated nature of
the dimer inferred in the LSA functional explains that it can not reproduce effects of
a large band width or magnetic frustration. In this sense, it could be very interesting
to study the transferability of a functional derived from a high-dimensional system. In
particular, one should be able to obtain a functional of the infinite-dimensional Hubbard
model (d → ∞) where exact results are known (for example from DMFT which is exact
at the d → ∞ limit [23]). Moreover, the d → ∞ limit of the Hubbard model is very
relevant since it presents remarkable similarity with 2D and 3D systems. In addition, one
can imagine the construction of a hybrid functional as an interpolation of the LSA and a
d → ∞ functionals. Such a combination could reproduce more accurately the properties
of systems in intermediate dimensions.
Another possibility consists in computing W [γ] for a bigger system of finite size, by per-
forming a cluster-expansion either in real- or reciprocal-space, in order to take into account
at least the short range dependence of the correlation-energy functional. This of course
implies a more important computational effort but it should include the spatial depen-
dence of the correlation-energy functional. This is the challenge to which we try to provide
a solution in the next chapter. As we shall see, the nature of the cluster embedding plays
a major role in describing correctly properties involving exited states.
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Chapter 7

Renormalized cluster expansion of
the interaction-energy functional

During the previous chapters we have built up approximations to the correlation-energy
functional W [{γij}] based on a scaling hypothesis in which the Hubbard dimer plays
the role of the reference system. We have shown that major ground-state properties are
correctly described within these approximations, and that the relative errors are in the
worst case around 20%. In particular, the LSA approximation can be applied to any spin
independent on-site correlated system but excludes in principle applications to systems
having inter-orbital correlations. However, in order to reproduce realistic systems, and
in particular the ones including 3d- or 4f -elements, it is in general necessary to consider
multi-band model Hamiltonians. These models include in general inter-orbital interaction
as for example the exchange interaction between orbitals which is at the origin of Hund’s
rules. In addition, in many physical systems, spatial charge fluctuations are not negligible
and could for example be the source of frustrations. In this case, it has been shown that
a functional derived from the dimer could not correctly describe these effects. Generally,
frustration effect are important at the strongly correlated limit, where it has been shown
that the Hubbard systems can be mapped on a spin Hamiltonian like the tJ or Heisenberg
model. These systems are physically interesting since a lot of materials display frustrated
lattices (triangular, Honey-comb, etc...). In order to approach these systems correctly, one
needs to take into account short-range charge and spin fluctuations.

The aim of this chapter is to present a more general and potentially more accurate
approximation of W [γ] which can be applied to spin dependent systems with inter-orbital
interaction and which is able to describe short-range charge and spin fluctuations. For
simplicity, we focus first on the simple Hubbard model. As we shall see the formalism
used to derive the approximation of W [γ] is spin dependent and can be straightforwardly
extended to systems having also inter-site interactions or multiple bands.

The main idea is to split the Hamiltonian in three parts, one acting on a defined cluster,
one on the rest of the system (the environment) and the last contribution is the interaction
between the cluster and the environment. We intend to map the cluster-environment
contribution to an effective Hamiltonian acting only within the cluster, and then uncouple
the cluster from the environment. This effective Hamiltonian is constrained, by using
a set of Lagrange parameters, such that it have a given ground state density matrix γ.
The correlation-energy functional W [γ], is then obtained by diagonalizing the effective
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Hamiltonian and by minimizing its energy.

7.1 Single-site approximation

In order to explain the approximations made in the cluster expansion, it is helpful to start
with the simplest cluster: a single site. Given an arbitrary Hubbard system one can define
a local basis {|ϕα

c 〉} = {|0〉, | ↑〉, | ↓〉, | ↑↓〉}, for any site i, obtained with the four possible
configurations, namely, empty, singly occupied or doubly occupied site. If we now split
the system into a cluster, here a site, and the environment, we can rewrite the ground
state |Ψ〉 as

|Ψ〉 =
4

∑

α=1

∑

µ

cα,µ |ϕα
c 〉⊗| ϕµ

E〉, (7.1)

where {|ϕµ
E〉} is a generic many-body basis of the environment and α = 0, ↑, ↓, and ↑↓

denotes the configurations of the cluster c, in this case the site i.
Let us now assume that the site i and the environment are uncoupled which is true in
the atomic limit t = 0. In this case, the ground state of the total system is written as
| Ψ〉 =| ψc〉⊗ | ψE〉, where |ψc〉 =

∑4
α=1 aα |ϕα

c 〉 involves only the cluster degrees of
freedom and |ψE〉 =

∑

µ bµ |ϕµ
E〉 only the environment. Strictly speaking, this is not

true since one should instead write |Ψ〉 =
∑4

α=1

∑

µ cα,µ |ϕα
c 〉⊗ | ϕµ

E〉. For example in
the limit U → 0 the ground-state is known to be very delocalized. However, we shall
see that this approximation gives good results even at this limit. This is not a trivial
approximation since we consider that the probability amplitude of states of the cluster’s
local basis {| ϕα

c 〉} are uncoupled from the rest of the environment, i.e, cα,µ = aαbµ.

The one-particle density matrix elements γiβ,σ = 〈Ψ | ĉ†i,σ ĉβ,σ | Ψ〉 between the site i
representing the cluster and all its zi connected sites can then be expressed as:

γii,σ = a2
2 + a2

1σ (7.2)

and
zi

∑

β=1

γiβ,σ = ξa∗0a1σ + ξ′a∗1σ̄a2, (7.3)

where ξ and ξ′ provide the overlap with the environment,

ξ =

zi
∑

β=1

∑

ϕµ
E

∑

ϕν
E

〈ϕµ,Ne−1
E | ĉβ,σ | ϕν,Ne

E 〉

ξ′ =

zi
∑

β=1

∑

ϕµ
E

∑

ϕν
E

〈ϕµ,Ne−2
E | ĉβ,σ | ϕν,Ne−1

E 〉 (7.4)

and {ϕµ,X
l } is a basis for the environment having X electrons. ξ (ξ′) corresponds to

removing an electron from the environment when the system is empty (singly occupied).
Given the previous equations of the coefficients ξ and ξ′, then the average number of
double occupations, i.e., the on-site correlation energy functional

ωi[γ] = a2
2 (7.5)
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7.1. Single-site approximation

can be obtained by expressing a2 as a function of γii and γij by using the system of
equations (7.2) and (7.3) with the normalization constraint

a2
0 + a2

1↑ + a2
1↓ + a2

2 = 1. (7.6)

The challenge is therefore to find an approximation for ξ and ξ′ such that

ξa∗0a1σ + ξ′a∗1σ̄a2 = 〈Ψ | ĉ†i,σ ĉj,σ | Ψ〉 (7.7)

for the coupled system. As a preliminary step, if we consider that the environment is very
large (at the thermodynamic limit) so that it has an infinite number of electrons, one can
consider that ξ = ξ′. In addition, since the Hamiltonian can be chosen to be real, we
consider the coefficients aα real too. In the following, we propose two different strategies
to approximate ξ.

7.1.1 Self-consistent approach

Considering that the system is homogeneous and translationally invariant, such that

γiβ,σ = γ12,σ and that ai
α = aβ

α for all sites i and β. One obtains

ξ = zi(a0a1σ + a1σ̄a2). (7.8)

leading to
γ12,σ = a2

0a
2
1σ + a2

1σ̄a2
2 + 2a0a1σa1σ̄a2. (7.9)

Both sides of the previous equation have to be normalized. For instance, at the noncorre-
lated limit and at half-band filling (a2

0 = a2
1↑ = a2

1↓ = a2
2 = 1/4) one finds that γ12,σ = 1/4.

Moreover, this should correspond to the limit of γ12,σ/γ0
12,σ = 1 where γ0

12,σ is the noncor-
related value of γ12,σ. In order to reproduce this limit correctly, one has to renormalize
the γ12,σ with γ0

12,σ but also a2
0a

2
1σ + a2

1σ̄a2
2 + 2a0a1σa1σ̄a2. Indeed Eqs. (7.3) and (7.8) can

be interpreted as a scalar product between vectors which need to be normalized. In fact,
the ratio −1 ≤ γ12,σ/γ0

12,σ ≤ 1 is actually the cosine of the angle between these vectors.
One obtains

γ12,σ

γ0
12,σ

= ξ(a2
0 + a2

1σ)−1/2(a0a1σ + a1σ̄a2)(a
2
2 + a2

1σ̄)−1/2

ξ = (a2
0 + a2

1σ)−1/2(a0a
∗
1σ + a1σ̄a∗2)(a

2
2 + a2

1σ̄)−1/2, (7.10)

so that Eq. (7.3) can be rewritten as

γ12,σ

γ0
12,σ

=
a2

0a
2
1σ + a2

1σ̄a2
2 + 2a0a1σa1σ̄a2

(a2
0 + a2

1σ)(a2
2 + a2

1σ̄)
. (7.11)

It is interesting to note that these equations are analogous to the slave-boson theory
(see Sec. 3.3.2 and Ref. [22]). At half-band filling, one finds ωi = 1

4

(

1 −√
1 − q

)

with
q = γ12,σ/γ0

12,σ, and consequently the total energy of the system [see Eq. (4.8)] is minimized
for

q = 1 −
(

U

8ztγ0
12

)2

. (7.12)

Finally, the single-site local functional is given by

ωi =
1

4

(

1 − U

8ztγ0
12

)

. (7.13)
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Chapter 7. Renormalized cluster expansion of the interaction-energy functional

7.1.2 Scaling approach

The other strategy to approximate ξ is to derive it by considering that the environment
has a metallic behavior, i.e., the environment can always exchange an electron with the
cluster without any energy restriction. This implies that the coefficient ξ does not depend
on the variation of the density matrix and then it can be deduced from equation (7.3) at
the noncorrelated limit. Consequently, one obtains

ξ =

∑zj

β=1 γ0
iβ,σ

〈ĉ†i 〉
0 , (7.14)

where 〈ĉ†i 〉
0

represents the rate of adding an electron on the cluster or equivalently to the
environment at the noncorrelated limit. Then, if the environment can always exchange
an electron with the cluster without any energy restriction this rate is equal to one and
ξ =

∑zj

β=1 γ0
ij,σ. For a translationally invariant model with nearest-neighbor hopping,

Eq. (7.14) and the system of equations [(7.2), (7.3), (7.6), and (7.14)], yield the relation
between the average number of double occupation per site ωi = a2

2, the charge density γii,
and the NN bound order γ12. One obtains

ωi =
1

2



γii −
γ2

12,σ

2γ0
ij,σ

2

1 +
√

γii(2 − γii) − (γ12,σ/γ0
12,σ)2

(1 − γii)2 + (γ12,σ/γ0
12,σ)2



 . (7.15)

This equation is very similar to the local scaling approximation [Eq. (6.7)], the only dif-
ference being that in this case the degree of electronic delocalization is scaled only with
respect to the noncorrelated limit, i.e., g2

i = (γ12,σ/γ0
12,σ)2.

Note that the self-consistent approach requires that the studied Hamiltonian is ho-
mogeneous, i.e., all sites are equivalent. This condition is not necessary in the scaling
approach. The latter just needs the knowledge of the noncorrelated density matrix γ0

ij,σ
at the noncorrelated limit. Another important advantage is that the formulation is spin
dependent and can then be applied to spin polarized systems.

7.2 General formulation of the density-matrix renormalized
cluster expansion

In this section we generalize the scheme proposed in the previous section to a cluster of
Nc sites, in order to include into the correlation-functional the effects of spatial spin and
charge fluctuations. For simplicity, we consider here only the simple Hubbard Hamiltonian
but the generalization to systems with inter-site correlation is straightforward. The idea
is to start from the Levy-Lieb definition of the interaction energy functional and to derive
an effective local Hamiltonian for the cluster. The interaction energy functional is written
as

W [{γij}] = minΨ→{γij}〈Ψ[{γij}]|
∑

i Uin̂i↑n̂i↓|Ψ[{γij}]〉, (7.16)

which can be rewritten by using the Lagrangian formalism, as

L = 〈Ψ|
∑

i

Uin̂i↑n̂i↓|Ψ〉 −
∑

i,j,σ

λi,j,σ

(

〈Ψ|ĉ†i,σ ĉj,σ|Ψ〉 − γij,σ

)

− ε (〈Ψ|Ψ〉 − 1) , (7.17)
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7.2. General formulation of the density-matrix renormalized cluster expansion

where λij and ε are Lagrange multipliers to conserve the fixed density matrix and the
normalization of the state vector |Ψ〉. The Lagrange equations are given by





∑

i

Uin̂i↑n̂i↓ −
∑

i,j,σ

λi,j,σ ĉ†i,σ ĉj,σ



 |Ψ〉 = ε|Ψ〉, (7.18)

〈Ψ|ĉ†i,σ ĉj,σ|Ψ〉 = γij,σ, (7.19)

and

〈Ψ|Ψ〉 = 1. (7.20)

The challenge is to approximate the solution of this set of equations Eq. (7.18) corresponds
to an eigenvalue problem, with an effective corresponding Hamiltonian

Ĥ[λ] =
∑

i

Uin̂i↑n̂i↓ −
∑

i,j,σ

λi,j,σ ĉ†i,σ ĉj,σ (7.21)

that is a function of the Lagrange parameters λi,j,σ. These are determined by the condi-
tions Eq. (7.19) and (7.20). We want to split the Hamiltonian Eq. (7.21) into two parts,
one acting on the cluster and the other on the rest of the system or environment. However,
the operator Ĥ[λ] cannot be separated since the kinetic operator can not be considered as
the sum of two independent contributions acting on separate noninteracting portions of
the system. Nevertheless, in the following, we will show that the information which gets
lost by calculating W [γij ] locally, corresponds to long range charge fluctuations, which
are less significant in the strongly correlated limit. In addition, we shall see that this
approximation gives good results even for U = 0. Given a site i of the system we want to
determine 〈n̂i↑n̂i↓[γ]〉 = ∂W [γ]/∂Ui. We can then define a cluster surrounding the site i
and split the Hamiltonian Eq. (7.18) into three parts H = Hc +HE +HcE , where the first
part acts only on the sites belonging to the cluster, the second on those belonging to the
rest of the system (the environment) and the third part contains the interaction between
cluster and environment sites:

Ĥc =
∑

i

Uin̂i↑n̂i↓ −
∑

i,j,σ

λi,j,σ ĉ†i,σ ĉj,σ + h.c., (7.22)

ĤE =
∑

β

Uβn̂β,↑n̂β↓ −
∑

β,δ,σ

λβ,δ,σ ĉ†β,σ ĉδ,σ + h.c., (7.23)

and

ĤcE = −
∑

j,β,σ

λj,β,σ ĉ†j,σ ĉβ,σ + h.c., (7.24)

where the indices i, j run over cluster sites and the indices β and δ over the environment
sites.
The challenge is then to derive an effective Hamiltonian H̃[λ] acting only on the cluster
that takes into account the effect of the environment. One of the problems in order
to accomplish this goal is essentially due to the anti-commutative nature of fermionic
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Chapter 7. Renormalized cluster expansion of the interaction-energy functional

operators which induces a phase effect. HcE is the term which contains the cluster-
environment interaction. It can be rewritten as

ĤcE = −
∑

j,β,σ

λj,β,σ ĉ†j,σ ĉβ,σ + h.c.

= −
∑

j,σ

ĉ†j,σ
∑

β

λj,β,σ ĉβ,σ + h.c.

= −
∑

j,σ

λj,σ

(

ĉj,σΞ̂†
j,σ + ĉ†j,σΞ̂j,σ

)

, (7.25)

where

Ξ̂†
j,σ =

1

λj,σ

zj
∑

β=1

λjβ,σ ĉ†β,σ and Ξ̂j,σ =
1

λj,σ

zj
∑

β=1

λjβ,σ ĉβ,σ. (7.26)

Here zj is the coordination number between j and its neighbors β in the environment. One

would like to map the effect of ĤcE as an effective Hamiltonian acting within the cluster.

The simplest idea to do so is to replace Ξ̂j,σ by its average value ξj,σ =
〈

Ξ̂j,σ

〉

and to

neglect only fluctuations around its mean value. Nevertheless, one quickly realizes that
such a transformation is not invariant under a unitary transformation among the single
particle basis of the cluster. Consider for example the case where j is the first element

of the basis, then the transition induced by ξj,σ ĉ†j or ξj,σ ĉj,σ would have the same phase
independently of the many-body state of the cluster since no anticommutation is needed
in order to restore normal ordering. It is clear then, that this would not hold if j is the
second or any other element of the basis. In order to solve this problem one needs to
replace Ξ̂j,σ by an operator ξ̂j,σ acting within the cluster, which is proportional to the

average value ξj,σ =
〈

Ξ̂j,σ

〉

but yields the same phase for all states in the many-body

basis of the cluster. In this way the effect of the environment preserves the important
property of being invariant with respect to any unitary transformations among the many-

body states. In other words, the operator ξ̂j,σ is a scalar equal to ξj,σ =
〈

Ξ̂j,σ

〉

within

each subspace of the cluster. Note that this is the only reasonable choice for ξ̂j,σ, since
the only matrix commuting with all unitary transformations is a scalar matrix. Formally,
one can define ξ̂j,σ such that it anticommutess with all ĉi for i < j, commute with all ĉi

for j > i and ξ̂j,σ|vac〉 = ξj,σ|vac〉. Note that ξj,σ =
〈

Ξ̂j,σ

〉

=
〈

Ξ̂†
j,σ

〉

since in equilibrium

the rate to create or annihilate an electron on one site must be the same.
With this approximation the cluster and the environment are uncoupled and can thus be
treated separately. We then rewrite the set of equations defining the correlation-energy
functional of the cluster [Eqs. (7.18), (7.19) and (7.20)] such that for i, j in the cluster we
have





∑

i

Uin̂i↑n̂i↓ −
∑

i,j,σ

λi,j,σ ĉ†i,σ ĉj,σ +
∑

i,σ

λi,σ

(

ξ̂†i,σ ĉi,σ + ĉ†i,σ ξ̂i,σ

)



 |ψc〉 = ε|ψc〉, (7.27)
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7.2. General formulation of the density-matrix renormalized cluster expansion

The eigenvalue problem (7.27) corresponds to an effective Hamiltonian acting only on the
local basis of the cluster

H̃[λ] =
∑

i

Uin̂i↑n̂i↓ −
∑

i,j,σ

λi,j,σ ĉ†i,σ ĉj,σ −
∑

i,σ

λi,σ

(

ξ̂†i,σ ĉi,σ + ĉ†i,σ ξ̂i,σ

)

. (7.28)

The Lagrange parameters λi,j,σ and λi,σ ensure that the ground-state of (7.28) respects
the condition of the density matrix given by

〈ψc|ĉ†i,σ ĉj,σ|ψc〉 = γij,σ, (7.29)

and

〈ψc|ξ̂j,σ ĉ†j,σ|ψc〉 =

zj
∑

β=1

γjβ,σ, (7.30)

where β is a site of the environment that is connected to j. Notice that only the relevant
terms of the density matrix need to be considered (i.e., for which tij 6= 0). Finally the last
condition imposes that

〈ψc|ψc〉 = 1 (7.31)

As in the single-site-cluster case, we propose two ways of determining ξj,σ. To this
aim, we focus on the homogeneous and translationally invariant Hubbard model with only
NN hoppings. From Eq. (7.30) we have that

zj
∑

β=1

γjβ,σ = zjγ12,σ = ξj,σ

〈

ξ̂†j,σ
ξj,σ

ĉj,σ

〉

. (7.32)

Moreover, if all sites are equivalent, we can write that

ξj,σ = zj

〈

ξ̂j,σ

ξj,σ
ĉ†j,σ

〉

(7.33)

which leads to
ξ2
j,σ = z2

j γ12,σ. (7.34)

This equation establishes the proportionality between ξ2
j,σ and γ12,σ. However, to ensure

that the noncorrelated limit is correctly reproduced, one has to renormalize this relation.
Actually, we must have (ξ0

j,σ)2 = z2
j γ

0
12,σ. Thus one obtains

ξ2
j,σ =

γ12,σξ0
j,σ

2

γ0
12,σ

, (7.35)

where γ0
12,σ is the noncorrelated value of the NN bond order and ξ0

j,σ is the noncorrelated

value of the rate on the site j. ξ0
j,σ is calculated numerically solving the set of equa-

tions (7.27), (7.29) and (7.31) with Uj = 0 for all sites and respecting the noncorrelated
density matrix in the cluster γ0

ij . Without the embedding, the cluster cannot have the

same density matrix γ0
ij as the system that we want to study. ξ0

j,σ is then the strength of
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Chapter 7. Renormalized cluster expansion of the interaction-energy functional

the embedding effect needed at U = 0 to reproduce γ0
ij in the cluster. We will refer to this

approach as self-consistent embedding (SCE).
A simpler and more general way to approximate ξi,σ, is obtained by following the

scaling approach of the one-site cluster. The idea is to approximate the strength of the
environment as independent of the variations of the density matrix. In other words, the
environment can always exchange an electron with the system without any restrictions.
ξi,σ can be then calculated at the noncorrelated limit. From Eq. (7.30) we have

ξj,σ =

∑zj

β=1 γ0
jβ,σ

〈

ξ̂†j,σ

ξj,σ
ĉj,σ

〉0 . (7.36)

The uncorrelated ,

〈

ξ̂†j,σ

ξj,σ
ĉj,σ

〉0

= ξ0
j,σ is calculated as for the SCE numerically by solving

the set of equations (7.27), (7.29) and (7.31) with Uj = 0 for all sites and by respecting
the noncorrelated density matrix in the cluster γ0

ij . Notice that in contrast to the one-site

cluster, ξ0
j,σ is in general not equal to one since ξ̂j,σ takes into account effects of fermionic

anticommutation. We will refer to this approach as scaling embedding (SE).
Finally, when the set of equations (7.27), (7.29) and (7.31) is solved numerically for

the ground state, the correlation functional per site is obtained by calculating ωi[γ] =
〈ψc|n̂i↑n̂i↓|ψc〉 in the center of the cluster in order to minimize boundary effects.

Notice that as for the case of the one-site cluster, the scaling approach to the embedding
coefficient ξj,σ does not require any particular property of the Hamiltonian. In addition,
this method can be directly applied to spin-polarized systems. The extension of the method
to inter-site correlation in the cluster is straightforward by adding this contribution in Ĥc.
The process to split the cluster to the environment is unchanged, and the interaction
functional is computed in the same way as for ωi[γ].

7.3 Applications to the Hubbard model: size convergence

In order to study the accuracy of the method we propose to treat the simplest case, namely
the homogeneous Hubbard model with NN hopping:

Ĥ =
∑

〈i,j〉σ

tij ĉ
†
iσ ĉjσ + U

∑

i

n̂i↓n̂i↑, (7.37)

We focus first on the one-dimensional case for which exact results are available. We start
by showing the relative error on the ground state energy of a 1D infinite chain at half-
band filling considered as a function of the Coulomb repulsion strength and the cluster
size Nc (see Fig. 7.1). We employ the two above-mentioned approximations to treat the
environment, and display the results in (a) for the scaling embedding (SE) and in (b)
the self-consistent embedding (SCE). Results are presented only for clusters with an odd
number of sites but a similar accuracy is also found for even cluster sizes. The accuracy
systematically increases by increasing Nc, particularly at the strongly correlated limit.
These remarkable results show the relevance of the method used to derive the effective
Hamiltonian H̃[λ] given in Eq. (7.28). For a NN system, the effective contribution of the
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Figure 7.1: Relative error ∆E/E of the renormalized cluster expansion on the ground-
state energy of a homogeneous infinite chain at half-band filling. The exact results are
obtained from the Bethe Ansatz solution. ∆E/E is given as a function of the Coulomb
repulsion strength and for different cluster sizes Nc. The environment is approximated
following (a) the SE and (b) the SCE.
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environment acts only at the boundary of the cluster so that its effect decreases as increases
Nc. In addition, a larger cluster takes into account a larger range of the spatial charge
fluctuations (up to the size of the cluster). This explains the important improvement of
the accuracy at the strongly correlated limit, since at this limit only short range charge
fluctuations are relevant. Notice that the U = 0 case is exact since the embedding was
renormalized in order to recover this limit. However, the finite cluster-expansion yields
very modest or no improvement for the limit where U → 0 since here the delocalized
nature of the single particle state cannot be recovered in a finite cluster.
The two approaches for the cluster embedding lead to very different behavior of the relative
error. First of all for the one-site case, the SE is much better that the SCE, especially in the
strong coupling regime. This is mainly due to the fact that the SCE embedding predicts
a finite value Uc of the strength of the Coulomb repulsion corresponding to vanishing
double occupation and consequently vanishing kinetic energy (Egs = 0 for U ≥ Uc). By
increasing Nc, the relative error is systematically reduced, and for Nc = 7 the results of the
two embeddings are qualitatively equivalent. This can be explained by the fact that the
embedding acts at the boundary of the cluster. Consequently, for a large enough cluster,
the different embeddings have very similar effects at the center of the cluster where ωi[γ]
is obtained.

In Fig. 7.2 we show results for the Lagrange multiplier λ = λij in the middle of the
cluster. These Lagrange multipliers ensure that to the ground state of the effective cluster
Hamiltonian (7.28) corresponds a given density matrix γ. In other words, λ represents
the renormalization of the hopping integral due to the embedding. At the limit of an
infinite cluster (Nc → ∞) the effect of the embedding at the boundary of the cluster does
not affect anymore its center. Then, λ = t = 1 for all values of U/t since all short and
long range charge and spin fluctuations would be included with the cluster. At half-band
filling and in the atomic limit (U ≫ t), when γij = 0, all sites are uncoupled, then the
cluster expansion is exact and one expects no hopping renormalization, i.e. λ/t = 1. In
this sense, λ/t is a good measure of the effect introduced by the finite size of the cluster
or equivalently by the effect of the environment. Therefore, we expect that λ/t increases
when the cluster size increases and that it converges to 1 for Nc → ∞. Indeed, for both
approximations of the embedding, λ/t increases when Nc increases. The only exception is
the SCE approximation for Nc = 2, which we will discuss later. Moreover, as the Coulomb
repulsion strength U/t increases, it converges more rapidly to its atomic limit λ/t = 1 (see
for example for U/t = 12, λ/t ≥ 0.99 for Nc ≥ 7 in both case) and in particular for U/t ≥ 4.
In fact, for large values of U/t, only short-range charge fluctuations are relevant and they
are mainly captured within the cluster expansion. In the case of the SCE, λ/t = 0 for
Nc = 2 and U/t = 12. This has to be related with the one-site and the SCE approximation
which predicts a Mott transition for Uc ≃ 10.2 in one dimension. In this case the slave
boson theory predicts γ12 = 0 and ωi = 0. Then, to obtain γ12 = 0, one requires that
λ/t = 0. Furthermore, in one dimension and for any finite value of U/t, the system is an
insulator, γij 6= 0 in contrast to the slave boson theory. This explains why a value λ/t 6= 1
is obtained for Nc = 3 whereas LDFT predicts γ12 = 0.205.
The value of λ/t can be considered as a convergence criterion indicating for which cluster
size the correlation-energy functional is converged, but it can also help in choosing the
most accurate approximation for the embedding. For instance at weak coupling (see for
example U/t = 1) and for small cluster size (Nc < 5) the SCE leads to higher values of
λ/t and a better accuracy of the ground-state energy than the SE.
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Figure 7.2: Cluster size dependence of the Lagrange parameter λij constraining γij at the
center of the cluster and representing the renormalization of the hopping integral. Results
are shown for a homogeneous infinite chain at half-band filling. Representative values of
the Coulomb repulsion U/t are considered. The environment effects are approximated by
(a) the SE and (b) the SCE. The lines connecting the points are a guide to the eyes.

136



Chapter 7. Renormalized cluster expansion of the interaction-energy functional

Table 7.1: Ground state energy per site Egs/Nat of a two-dimensional infinite Hubbard
system at half filling for different values of the Coulomb repulsion strength. Results of
LDFT using the cluster expansion with Nc = 1 and Nc = 9 and the SE approximation
are compared with predictions of other standard many-body methods as quantum Monte-
Carlo (QMC), variational Monte-Carlo (VMC) and modified random phase approximation
(MRPA).

U/t 2 3 4 6 8 10 12 16

QMC [25] -1.17 -0.88 -0.48

QMC [79] -0.864

VMC [84] -0.987 -0.841 -0.629 -0.493 -0.401 -0.336

MRPA [89] -1.173 -0.850 -0.522 -0.361 -0.282

LDFT 9 sites -1.176 -0.849 -0.646 -0.518 -0.368 -0.284

LDFT 1 site -1.201 -1.032 -0.905 -0.709 -0.588 -0.499 -0.410 -0.916

In Table 7.1 we compare for the 2D homogeneous Hubbard model LDFT results with
the correlation energy obtained from a cluster made up of one and nine sites and using
the SE with available quantum Monte Carlo (QMC) [25, 79], variational Monte Carlo
(VMC) [84] and modified random phase approximation (MRPA) [89]. LDFT with a one-
site cluster results are qualitatively equivalent to the ones obtained with other methods,
with a tendency to overestimate the ground-state energy. The cluster expansion corrects
most of this overestimation showing the excellent accuracy of the method.

It was shown in this chapter, that the cluster expansion method predicts with high
accuracy the ground-state properties of correlated systems, and in particular for large
values of U/t. In addition, the accuracy increases systematically when the size of the
considered cluster increases. However, at the weak coupling limit, the cluster expansion
yields very modest or no improvement due to the delocalized nature of the ground-state at
this limit, which cannot be captured on a finite-size cluster. The reason of this failure is due
to the fact that we perform the cluster expansion in real space focusing only on short-range
charge and spin fluctuations, which play a major role for large values of U/t. However, it
should be possible to develop a similar cluster expansion in the reciprocal space, devoted
to reproducing with very high accuracy the effects of the electronic interaction for small
values of U/t. Nevertheless, in this case, the approximation will be less accurate at the
strongly correlated limit.
The results presented for the simple Hubbard model in one and two dimensions are in
fact very promising, since the method is general and can be applied to study much more
complex systems. In this sense, it would be very interesting to apply it to systems with
broken spin symmetry, to the periodic Anderson model, or to a multi-band Hamiltonian.
In particular, the present cluster approach seems well adapted to studying 3d and 4f
elements since the dominant correlations are intra-atomic and the d- and f -orbitals are
localized so that U/t is large.
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7.3. Applications to the Hubbard model: size convergence

A limitation of this method concerns the charge gap ∆Ec. Indeed, using any of the
proposed embedding approximations, the charge gap is not well reproduced for all values
of U/t. First of all, in the case a the single-site cluster, using the SE the charge gap is
zero for any value of U/t. Moreover, the SCE predicts, for any system at half filling,
a Mott transition at a finite critical value of U/t. In fact, this transition is known to
take place at half filling only for systems with NN hopping and for dimensions higher or
equal to three. In addition, in this case, the SCE overestimates considerably the critical
value of U/t for the onset of the Mott phase and predicts no kinetic energy (γ12 = 0) and
no double occupancy which is far from true. By increasing the size of the cluster, the
prediction of the charge gaps are improved only for large values of U/t. In both cases,
the system is metallic up to an overestimated threshold value of U/t and then becomes
an insulator. However, for Nc ≥ 5, at large U/t, by using both SE and SCE approaches
the value of the charge gap is very well reproduced and has its correct value for U/t → ∞
where ∆Ec = U − 2w with w the band width of the system. The poor predictions at
the weakly correlated limit result, once again, from the real space nature of the cluster
expansion, which cannot take properly into account long-range charge fluctuations. As
already mentioned, a similar cluster expansion in the reciprocal space could improve the
quality of the predictions concerning the charge gap at the weakly-correlated limit.
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Chapter 8

Summary and Outlook

LDFT is in principle applicable to any lattice Hamiltonian, since there exists a functional
relation and an associated variational principle between the ground-state energy and the
ground-state density matrix γ. Consequently, the ground-state energy of a many-body
system can be obtained through minimization over all physical density matrices. How-
ever, this process requires the knowledge of an unknown quantity, the interaction-energy
functional. The main challenge of the theory consists then, in deriving an accurate ap-
proximation for this unknown.

Previous formulations of the interaction-energy functional were limited to the homoge-
neous Hubbard model and were hardly transferable to other lattice Hamiltonians. These
previous studies have shown the remarkable scaling properties of the correlation-energy
functional (CEF) when it is expressed as a function of a universal degree of delocaliza-
tion, that is scaled between the non-correlated and strongly correlated limits. Using these
properties, an analytical approximation of the CEF was derived and applied to several
homogeneous systems. The success of such a simple approach was the motivation of this
thesis in order to further develop and extend the applicability of LDFT to more realis-
tic problems including broken symmetry charge-density distributions, as often found in
oxides, band-insulators, finite clusters or magnetic materials.

First, we have presented a systematic study of the functional dependence of W of the
bipartite Hubbard model as a function the NN density-matrix element γ12 and charge
transfer ∆n = γ22 − γ11. Rigorous numerical results have been obtained from exact Lanc-
zos diagonalization on finite clusters with periodic boundary conditions. The functional
dependence of W has been analyzed by varying the degree of charge transfer and electron
delocalization between the sub-lattices, as well as the number of sites Na and the band
filling n = Ne/Na. It has been shown that W can be appropriately scaled as a function
of ∆n and g12 = (γ12 − γ∞

12)/(γ0
12 − γ∞

12), where γ0
12 (γ∞

12) refers to the weak (strong) limit
of electronic correlations. In other words, the change in W associated to a given change
in the degree of NN charge transfer and electron delocalization can be regarded as almost
independent of the system under study. This pseudouniversal behavior of the scaled inter-
action energy functional provides a unified description of correlations from weak to strong
coupling regimes. Moreover, it encourages transferring the results from clusters to infinite
systems with different lattice geometries.

Based on these investigations of the scalability and transferability of W [γ], and on
exact analytical results for the Hubbard dimer, we have proposed a simple approximation
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to W , which takes advantage of its scaling behavior. In this way a unified description of
the interplay between correlations and charge redistributions is achieved, from weak to
strong coupling, and for all band fillings. Using this approximation, several important
ground-state properties, as well as the charge excitation gap of 1D and 2D lattices, have
been determined successfully as a function of the Coulomb repulsion strength and of the
external bipartite potential.

The accuracy of the results confirms the pertinence of the scaling approximation and
the transferability of the interaction-energy functional. Among the reasons for the success
of the present scaled dimer approximation one should first of all mention the universality
of the correlation-energy functional as stated by Hohenberg-Kohn’s or Levy-Lieb’s formu-
lations. Moreover, the present approach has the asset of incorporating exact information
on W [γ] at the two most important limits of weak and strong correlations. These funda-
mental boundary conditions —somehow analogous to the sum rules of the local density
approximation in the continuum— provide a useful guide for the development of the theory
and are a further reason for the good performance of the method.

Motivated by the interest to apply the present scaling approximation to other types of
interactions, we have considered the attractive Hubbard model, where the nature of the
electronic correlations and the resulting properties of the functional W [γ] are fundamen-
tally different. The same holds for the conditions of v-representability of γij , which depends
on the explicit form of the Hamiltonian. However, the notion of N -representability, which
involves the whole Hilbert space of the system, only depends on the number of sites and
electrons. For U < 0, W corresponds to the maximum number of double occupations
for a given γij . As for the repulsive case, the scalability of the correlation functional
has been shown. Then, based on the exact solution of the attractive Hubbard dimer, a
scaling functional was derived and applied to clusters and infinite systems. It has been
shown that LDFT within the scaling approximation reproduces also very accurately the
properties of the attractive inhomogeneous Hubbard Hamiltonian when it is compared
with the exact results (Bethe-Ansatz), and accurate numerical methods such as DMRG.
It improves considerably standard approximations such as the BCS theory.

The locality of the dominant interactions and correlations is in fact a characteristic of
strongly correlated phenomena, which could be exploited more systematically. In this work
we have shown that is possible to obtain a local formulation of the scaling approximation
of the correlation energy, namely, the local scaling approximation (LSA), which improves
the flexibility of the explicit approximations to W [γ]. Moreover, the LSA can be applied
to any on-site correlated Hamiltonian. In this thesis we have focused on the Hubbard
model with translational invariance to compare and predict new results using the LSA.
However, it would be interesting to study in the framework of LDFT within the LSA
other systems as for example the Anderson impurity model, disordered systems, or one-
dimensional case since LDFT reproduces accurately both the ground states properties
and the phase diagram. However, in two dimensions, the ground-state properties are well
reproduced, but the LSA does not predict the metallic phase occurring along the transition.
The metal-insulator transition was also studied in the one-dimensional chain with nearest
neighbor hopping. Once again, the ground-state results are satisfactory but the local
scaling approximation fails to reproduce the Mott transition occurring at finite U/t. These
facts highlight the importance of accurately treating the weakly correlated limit in the
scaling functional. Some possibilities of improvements have been discussed. In particular,
we should mention the importance of the properties of the inhomogeneous Hubbard dimer,
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Chapter 8. Summary and Outlook

which is the basis of the scaling approximation. For instance, the quadratic dependence
in (U/t)2 of the charge gap of the dimer at the weakly-correlated limit is transferred to
any system through the LSA. In other words, some discrepancies observed in ground-state
properties obtained by using the LSA result from differences between the studied system
and the dimer. In this sense, it would be most interesting to study the transferability of
the CEF based on other systems. In particular, the case of the Hubbard model in infinite
dimensions (d → ∞) could be a good candidate, since accurates solution are known.
Moreover the d → ∞ Hubbard model presents many similarities with 2D and 3D systems.
Maybe it would be possible to construct a hybrid approximation of the CEF based on an
interpolation of the functionals derived from the Hubbard dimer and the limit of infinite
dimensions.

In Chap. 7 we have developed a general method to approximate W [γ] based on the idea
of a renormalized cluster expansion. In this approach we have split the Hamiltonian into
three parts, one acting on a finite cluster, one on the rest of the system (the environment)
and the last one representing the interaction between the cluster and the environment. The
latter and more subtle contribution has been mapped on to an effective Hamiltonian acting
only within the cluster. In this way a decoupling of the cluster and the environment is
achieved. This Hamiltonian is constrained, by using Lagrange parameters, in order that its
ground-state is associated to a given density matrix γ. The correlation-energy functional
is then obtained by diagonalizing the effective Hamiltonian. The results presented for
the simple homogeneous Hubbard model with NN hoppings are most promising, since it
has been shown that the accuracy of the ground state energy is systematically increased
by increasing the size of the cluster, in particular at the strongly correlated limit. For
example, we have shown that in one dimension, within a cluster having Nc = 7 sites, the
relative error on the ground state energy is at most one percent. However, in the weakly
correlated limit the cluster expansion does not particularly increase the accuracy, since the
ground-state is very delocalized at this limit and the long-range charge fluctuations cannot
be captured by a finite cluster. This fact explains also that the charge gap at the weakly
correlated limit is not well reproduced in contrast to the strongly correlated limit, where
the charge gap is already recovered with good accuracy for a cluster larger or equal to
Nc = 5 sites. It has been pointed out that a possible remedy to the problem at the weakly
correlated limit, one could derive a similar cluster expansion in reciprocal space. In this
way one expects that long-range charge fluctuations should be described more accurately
at the expense of the short-range ones. This could result in a very good description of
the weakly correlated limit, but probably in a less accurate one for large values of U/t.
It is important to note that the method is very general, in particular, the formalism is
spin dependent, so that a direct application to systems with broken spin symmetry can
be performed. In addition, we mention that the extension to inter-site correlations is
rather straightforward. This constitutes a promising basis for future developments, since
it allows investigation of more realistic systems like multi-band Hamiltonians, describing
the physics of complex systems, for example materials including d- of f -valence orbitals.

In order to summarize, in this work we have considerably extended the scope of LDFT
to nearly any lattice Hamiltonian. A variety of novel applications of the theory in con-
densed matter and material sciences are thereby opened. Extensions to finite temperatures
and time-dependent Hamiltonians constitute two remarkable challenges for the future
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