
Fujaba Days 2011

Proceedings of
the 8th International Fujaba Days
University of Tartu, Estonia
May 11-13, 2011

Editor: Ulrich Norbisrath, Ruben Jubeh

1 Introduction

Fujaba is an Open Source UML CASE tool project started at the software engineering
group of Paderborn University in 1997. In 2002 Fujaba has been redesigned and became the
Fujaba Tool Suite with a plug-in architecture allowing developers to add functionality easily
while retaining full control over their contributions.

Multiple Application Domains Fujaba followed the model-driven development philoso-
phy right from its beginning in 1997. At the early days, Fujaba had a special focus on code
generation from UML diagrams resulting in a visual programming language with a special
emphasis on object structure manipulating rules. Today, at least six rather independent tool
versions are under development in Paderborn, Kassel, and Darmstadt for supporting (1)
reengineering, (2) embedded real-time systems, (3) education, (4) specification of distributed
control systems, (5) integration with the ECLIPSE platform, and (6) MOF-based integration
of system (re-) engineering tools.

International Community According to our knowledge, quite a number of research groups
have also chosen Fujaba as a platform for UML and MDA related research activities. In addi-
tion, quite a number of Fujaba users send requests for more functionality and extensions.

Therefore, the 8th International Fujaba Days aimed at bringing together Fujaba develop-
ers and Fujaba users from all over the world to present their ideas and projects and to discuss
them with each other and with the Fujaba core development team.

Organizing Committee

Ulrich Norbisrath, University of Tartu, Estonia

Ruben Jubeh, University of Kassel, Germany

Program Committee

Prof. Marlon Dumas (University of Tartu, Estonia)

Prof. Holger Giese (Hasso-Plattner-Institut Potsdam, Germany)

Prof. Jens Weber (University of Victoria, Canada)

Jendrik Johannes (Technische Universität Dresden, Germany)

Ruben Jubeh (University of Kassel, Germany)

Prof. Mark Minas (University of the Federal Armed Forces, Germany)

Ulrich Norbisrath (University of Tartu, Estonia)

Prof. Arend Rensink (University of Twente, Netherlands)

Christian Schneider (Yatta Solutions, Germany)

Prof. Andy Schürr (TU Darmstadt, Germany)

Prof. Wilhelm Schäfer (University of Paderborn, Germany)

Prof. Dr. Matthias Tichy (Universität of Augsburg, Germany)

Prof. Bernhard Westfechtel (University of Bayreuth, Germany)

Prof. Albert Zündorf (University of Kassel, Germany)

Content

1. Markus Von Detten, Jan Rieke, Christian Heinzemann, Dietrich Travkin and Marius
Lauder. A new Meta-Model for Story Diagrams. 1

2. Markus Fockel, Dietrich Travkin and Markus Von Detten. Interpreting Story Dia-
grams for the Static Detection of Software Patterns. 6

3. Ruben Jubeh, Albert Zuendorf and Simon-Lennert Raesch. A simple indoor naviga-
tion system with simulation environment for robotic vehicle scenarios. 11

4. Jörn Dreyer, Christoph Eickhoff and Albert Zündorf. SDM online. 14

5. Nina Geiger, Bernhard Grusie, Albert Zündorf and Andreas Koch. Yet another TGG
Engine? 18

6. Matthias Tichy. A Master Level Course on Modeling Self-Adaptive Systems with
Graph Transformations. 23

7. Artjom Lind, Ulrich Norbisrath and Ruben Jubeh. Using Fujaba in Systems Modeling
– A Teaching Experience Report. 28

8. Marie Christin Platenius, Markus Von Detten and Dietrich Travkin. Visualization of
Pattern Detection Results in Reclipse. 33

9. Tobias Eckardt and Christian Heinzemann. Providing Timing Computations for Fuja-
ba. 38

10. Andreas Koch and Albert Zündorf. UML Toolchain. 43

11. Andreas Scharf and Albert Zündorf. Difference Visualization for Models (DVM). 47

A new Meta-Model for Story Diagrams

Christian Heinzemann
∗
, Jan Rieke

∗
,

Markus von Detten, Dietrich Travkin
Software Engineering Group,

Heinz Nixdorf Institute,
University of Paderborn, Germany

[c.heinzemann|jrieke|mvdetten|travkin]
@uni-paderborn.de

Marius Lauder
†

Real-Time Systems Lab,
Technische Universität Darmstadt, Germany
marius.lauder@es.tu-darmstadt.de

ABSTRACT
Story-driven modeling (SDM) is a model-based specifica-
tion approach combining UML activity diagrams and graph
transformations. In recent years, the development in the
SDM community led to many incompatible meta-models for
story diagrams based on the same common concepts. The
diversity of meta-models hindered the reuse of tools and lim-
ited synergy effects. In this paper, we introduce the new
meta-model for story diagrams which was created in a joint
effort of the SDM community. The new EMF-based model
integrates the recent developments and paves the way for
the interoperation of SDM tools with each other and with
EMF-based tools.

1. INTRODUCTION
Story-driven modeling is a model-based specification ap-
proach which combines aspects from UML activity diagrams
and graph transformations into an expressive and intuitive
graph rewriting language, so-called story diagrams [3]. In
the past years, story diagrams have received significant at-
tention and have become the foundation of many different
software engineering techniques and tools.

Ever since their inception, story diagrams have been used in
widely different domains and for such different purposes as
meta-model integration [1] or the specification of real-time
systems [6]. Story diagrams can either be executed by gen-
erating appropriate code (e.g., [4]) or by interpretation [5].
These different approaches have led to a variety of exten-
sions and specialized dialects of the original story diagram
concept and were accompanied by a number of different tools
for the specification, application and analysis of story dia-
grams. Unfortunately, due to this development, a number of
different, incompatible meta-models for story diagrams have
emerged which are all based on the same common concepts.
Hence, reuse and the composition of tool chains is severely
limited by these technical differences.

To cope with these problems, a new meta-model for story
diagrams has been developed in a joint effort of the SDM
community. The new meta-model integrates a number of

∗supported by the International Graduate School “Dynamic
Intelligent Systems”
†supported by the ‘Excellence Initiative’ of the German Fed-
eral and State Governments and the Graduate School of
Computational Engineering at TU Darmstadt

useful concepts from the different dialects and provides an
extensible framework for future developments. It is based on
the Eclipse Modeling Framework (EMF) and thereby paves
the way for the interoperation of SDM tools with EMF-
based tools. In this paper, we present a slightly simplified
version of the actual meta-model to allow for more concise
explanations and the omission of technical details.

Before going into the details of the proposed meta-model,
we briefly recall the concepts of story diagrams in Section 2.
After introducing the meta-model in Section 3, we draw con-
clusions and sketch future work in Section 4.

2. STORY DIAGRAMS
Story diagrams allow to combine control flow with non-
deterministic graph transformation rules. By means of graph
grammars, they add a formal foundation to UML activity
diagrams for the specification of behavior and, thus, enable
their execution and analysis. A story diagram is a special
activity diagram that specifies control flow by activity nodes
and transitions (activity edges). In contrast to UML activity
diagrams, activity nodes in story diagrams contain so-called
story patterns.

A story pattern is a formal specification of a graph trans-
formation and specifies an object structure (subgraph) that
has to be matched in a model (host graph) as well as cor-
responding modifications of this structure. The structure is
specified by special object diagrams in which the modifica-
tions, i.e., creation and deletion of elements as well as at-
tribute value assignments, are designated accordingly. The
object diagrams are typed over a set of classes.

3. THE NEW META-MODEL
In this section, we introduce the new meta-model package by
package. Since the story patterns used for the specification
of story diagrams are typed over a set of classes, a class
model is required to specify story patterns. We model these
classes by means of an Ecore model, thereby avoiding to
define yet another meta-model for classes.

In Section 3.1, we give a short tour of the core elements.
Then, we introduce the packages for story patterns and ac-

tivities in Sections 3.2 and 3.3. Next, we discuss a simple
example in Section 3.4. Finally, the new expressions and calls

packages are presented in Sections 3.5 and 3.6, respectively.

1

3.1 Packages and Core Elements
The package structure of the new meta-model is outlined
in Figure 1. The modeling package contains the base classes
and an annotation mechanism. It also includes subpackages
for patterns, activities, expressions, and calls. The pack-
age patterns contains the meta-model classes for specifying
story patterns. These classes have been separated from the
package activities to enable the reuse of story patterns in
other pattern languages, e.g., TGGs [8]. The package expres-

sions contains a set of basic expressions while the package
calls comprises the classes for modeling invocations of other
story diagrams or operations. A detailed introduction to the
packages is given in the subsequent sections.

calls activities«uses»
«uses»

expressions patterns
«uses»

«uses»

«uses»

modeling

Figure 1: Package Structure

Figure 2 illustrates the core classes of our meta-model. The
class ExtendableElement, being the super class of all meta-
model classes, implements the annotation mechanism. Each
element can be extended by subclasses of Extension. Addi-
tionally, we support to annotate our model elements (EModel-

Elements) using EAnnotations.

The classes TypedElement, NamedElement, and CommentableEle-

ment are super classes of meta-model classes having a type,
a name, or the ability to carry a comment, respectively. They
are intended to be subclassed using multiple inheritance, if
necessary.

*

typedElement

0..1

/type

HasType 0..1

typedElement
0..1

genericType HasGenericType

*

eAnnotations

0..1

eModelElement

0..1

annotatedElement

*

annotation

HasAnnotation

*

extension

0..1

/owningAnnotation

*

extension

1

/base

HasExtendedObject

0..1

extendableBase

*

extension

HasExtension

0..1

/modelBase

*

/extension

HasModelExtension

Expression

NamedElement

name : String

CommentableElement

comment : String [0..1]

TypedElement

« Metaclass »

EGenericType

more...

« Metaclass »

EClassifier

more...

more...

« Metaclass »

EAnnotation

more...

Extension

ExtendableElement

getExtension (type : EClass) : Extension

provideExtension (type : EClass) : Extension

getAnnotation (source : String) : EAnnotation

provideAnnotation (source : String) : EAnnotation

« Metaclass »

EModelElement

more...

« Metaclass »

EObject

more...

Figure 2: Core of the new Meta-Model

3.2 Story Patterns
The central role in story diagrams is played by story pat-
terns, which are essentially in-place model transformation
rules. The corresponding package patterns is depicted in Fig-
ure 3. Story patterns define object patterns and their mod-
ifications. Such structures are specified using ObjectVariables

and LinkVariables. ObjectVariables are typed via the classifier

attribute that points to an EClass of the underlying class
model. LinkVariables are typed over the targetEnd attribute
that points to an EReference. In case of bidirectional refer-
ences, the derived attribute sourceEnd points to the according
opposite reference.

Story patterns can be applied to models that contain objects
and links which are instances of classes and references of the
class model. First, the pattern is matched in the model.
When there is a valid matching for the pattern (i.e., the
matching is successful) modifications can be applied to the
model. Otherwise, the matching fails and no modification is
carried out.

The bindingOperator attribute of ObjectVariables and LinkVari-

ables defines whether an element is to be created, deleted, or
just matched. If the attribute is set to CHECK ONLY or DE-

STROY, the according variables first have to be matched to
objects and links in the model. As soon as all these variables
have been matched, the model is modified: matched ele-
ments with the operator DESTROY are deleted and elements
with the operator CREATE are produced. An AttributeAssign-

ment alters an attribute value of an object represented by
an ObjectVariable. This happens after the matching and the
structural modification are completed.

In addition to the BindingOperator, variables have BindingSe-

mantics. For a successful matching, MANDATORY variables
have to exist in the model, while variables marked as NEG-

ATIVE denote objects that must not exist. In contrast, OP-

TIONAL denotes objects that may exist. For example, a
combination of OPTIONAL and CREATE is a compact way
to express that an appropriate element will be created if it
cannot be matched [7].

Since story diagrams consist of interconnected story pat-
terns, they allow for the reuse of previously matched ele-
ments. An ObjectVariable is referenceable by its name. If the
bindingState is UNBOUND, the pattern matching algorithm is
forced to find a new object, even if the variable was already
matched earlier in the story diagram. A BOUND ObjectVari-

able must have been matched previously. In case a BOUND

ObjectVariable was not matched before, the story pattern exe-
cution is considered unsuccessful. A MAYBE BOUND variable
is a combination of both: if the variable has been bound be-
fore, it is reused; otherwise a new match will be determined.

A special case of an ObjectVariable is an ObjectSetVariable that
matches an arbitrary number of objects of the same type.
The number of matched objects can be restricted by Object-

SetSizeExpressions.

Path and ContainmentRelation are special link variables. The
former is used to denote a connection via a sequence of links
determined by a pathExpression. The latter denotes that an
object is contained in a collection.

2

*

objectSetSizeExpression

1

set

HasSet

*

attributeValueExpression

1

object

HasObject

*

objectVariableExpression

1

object

ExpressionHasObject

1

objectVariable

*

attributeAssignment

ContainsAttributeExpression

0..1

objectVariable

*

constraint
ContainsConstraints

*

outgoingLink

1

source

HasSourceObject

*

incomingLink

1

target

HasTargetObject

*

linkOrderConstraint

1

referencingObject

LinkConstraintHasObjectVariable

1

pattern

*

objectVariable

ContainsObject

0..1

parentPattern

*

containedPattern

ContainsChildPattern

1

pattern

*

linkVariable

ContainsLinkVariables

0..1

pattern *

constraint

ContainsConstraints

*

firstLinkConstraint

1

firstLink HasFirstLink

*

secondLinkConstraint

0..1

secondLink

HasSecondLink

MatchingPattern

ObjectSetVariable ObjectSetSizeExpression

AttributeValueExpression

attribute : EAttribute

ObjectVariableExpression

«enumeration»

BindingSemantics

MANDATORY

NEGATIVE

OPTIONAL

«enumeration»

BindingState

UNBOUND

BOUND

MAYBE_BOUND

ObjectVariable

bindingState : BindingState = UNBOUND

bindingSemantics : BindingSemantics = MANDATORY

bindingOperator : BindingOperator = CHECK_ONLY

classifier : EClass « ... »

bindingExpression : Expression [0..1]

StoryPattern

bindingSemantics : BindingSemantics = MANDATORY

templateSignature : TemplateSignature [0..1]

AttributeAssignment

attribute : EAttribute

valueExpression : Expression

«enumeration»

BindingOperator

CHECK_ONLY

CREATE

DESTROY

Constraint

constraintExpression : Expression

«enumeration»

LinkConstraintType

FIRST

LAST

DIRECT_SUCCESSOR

INDIRECT_SUCCESSOR

INDEX

LinkConstraint

index : Integer

constraintType : LinkConstraintType = DIRECT_SUCCESSOR

negative : Boolean less...

AbstractLinkVariable

bindingSemantics : BindingSemantics = MANDATORY

bindingOperator : BindingOperator = CHECK_ONLY

bindingState : BindingState

LinkVariable

/sourceEnd : EReference [0..1] « ... »

targetEnd : EReference

qualifierExpression : Expression [0..1]

Path

pathExpression : Expression

ContainmentRelation

Figure 3: Story Patterns Meta-Model

The matching of a StoryPattern may be further refined us-
ing Constraints and LinkConstraints. A Constraint is a boolean
expression that must evaluate to true for a matching to be
successful. Its context is defined by its container, i.e., vari-
able or pattern. For instance, within an ObjectVariable, you
can directly access its attributes, while in a pattern, the
ObjectVariable’s name must be prefixed. The matching of a
LinkVariable whose targetEnd is an ordered list can be con-
strained using a LinkConstraint. This way, it can be specified
that the firstLink must either be the FIRST, LAST or a given
INDEX in the list. Furthermore, given two links (firstLink

and secondLink), the links’ indices could be required to be
DIRECT SUCCESSORs or INDIRECT SUCCESSORs in the list.

A MatchingPattern is a StoryPattern that is required to be non-
modifying, i.e., it must only contain CHECK ONLY variables
and must not have AttributeAssignments. This allows creating
side-effect-free story diagrams.

Finally, patterns are allowed to contain subpatterns. When-
ever such a subpattern is found in a story pattern, it is
matched as a whole. A subpattern may also be NEGATIVE

or OPTIONAL. In the former case, the subpattern as a whole
must not be found in the model, allowing more expressive
negative application conditions. In the latter case, the sub-
pattern is not required to be found. NEGATIVE subpatterns
are matched before OPTIONAL subpatterns, but after match-
ing the core (MANDATORY) pattern.

3.3 Activities
We developed a simplified meta-model for activity diagrams
which is closely related to the corresponding UML specifi-
cation. Our meta-model is depicted in Figure 4.

An activity diagram is represented by the Activity class. Ac-

tivityEdges connect ActivityNodes to specify the control flow.
JunctionNodes are used to split and join the control flow.
StructuredNodes are used to build a hierarchical activity di-

agram by embedding other activity nodes. StatementNodes

offer the opportunity to textually specify algorithms with
the help of expressions (see Section 3.5). Other activities
can be called by means of ActivityCallNodes.

StoryNodes embed a story pattern using the storyPattern refer-
ence. To simplify analyses of graph transformations, we dis-
tinguish MatchingStoryNodes and ModifyingStoryNodes. While
the former are only allowed to match a specified structure,
the latter ones are also allowed to perform modifications.
A MatchingStoryNode can for example be used to specify an
Activity’s precondition.

ActivityEdges can have guards, given by the guard attribute
and the enumeration EdgeGuard. ActivityEdges with the guards
SUCCESS and FAILURE distinguish the cases of (a) success-
fully executing the story pattern in the source activity node,
i.e., completely match and modify the specified structure,
and (b) missing to match the complete structure. NONE

enforces to choose the ActivityEdge in either case.

Loops can be defined using an activity’s forEach attribute.
An ActivityEdge with an EACH TIME guard is chosen for each
match of the preceding forEach activity, while an END Activi-

tyEdge is chosen if no such matching can be found anymore.

Boolean guard conditions (BOOL) are specified using the at-
tribute guardExpression. ActivityEdges can also be chosen if
an exception is thrown (EXCEPTION). In this case, the ex-
ception specified by the ExceptionVariable can be handled by
following activity nodes. The activity node that is reached
via the FINALLY edge is executed whether an exception is
thrown or not.

A story diagram can be used to specify the behavior of an
EOperation. We specify this with an OperationExtension which
connects an EOperation to an Activity.

3

0..1

owningActivityNode

*

ownedActivityNode ContainsChildNode

1

source

*

outgoing
HasOutgoingEdge

*

ownedActivityNode

0..1

owningActivity

ContainsActivityNode
*

incoming

1

target

HasIncomingEdge

1

activityEdge

*

guardException

ContainsGuardException

*

exceptionVariableExpression

1

exceptionVariable

1

owningActivity
*

ownedActivityEdgeContainsActivityEdge

*

activity

0..1

precondition

HasPrecondition

0..1

owningOperation

0..1

ownedActivity

HasActivity

*

activityCallNode

1..*

calledActivity

HasCalledActivity

StopNode

flowStopOnly : Boolean

returnValue : Expression [0..1]

JunctionNode StoryNode

forEach : Boolean

/storyPattern : StoryPattern « ... »

StatementNode

statementExpression : Expression

ModifyingStoryNode

ownedRule : StoryPattern

StructuredNodeStartNode

ActivityNode

ExceptionVariable

name : String

exceptionType : EClassifier [0..*] « ... »

genericExceptionType : EGenericType [0..*]

Activity

inParameter : EParameter [0..*]

outParameter : EParameter [0..*]
«enumeration»

EdgeGuard

NONE

SUCCESS

FAILURE

EACH_TIME

END

ELSE

BOOL

EXCEPTION

FINALLY

ActivityEdge

guard : EdgeGuard = NONE

guardExpression : Expression [0..1]

ActivityCallNode

MatchingStoryNode

ownedPattern : MatchingPattern

OperationExtension

/operation : EOperation [0..1] « ... »

returnValue : EParameter [0..1]

ExceptionVariableExpression

Figure 4: Activities Meta-Model

3.4 Example
Figure 5 shows the concrete syntax of an exemplary story
diagram.

Search for unused classSearch for unused class

c2: EClass

findUnusedClass() : void

c1: EClass

a: Annotation

text = “not used“

«create»

«create»
target

eSuperTypes

eType

c3: EClass

s: EStructuralFeature

eStructuralFeatures

neg

eContainingClass

[END]

Figure 5: Usage of a Negative Subpattern

The “double” border of the StoryNode denotes a forEach node,
i.e., it matches once for every possible matching in the model.
The story pattern inside matches when there is a class c1

which is not used by other classes.

The negative subpattern, denoted by the rectangle labeled
with neg, is a negative application condition that has to be
satisfied for a successful matching. In this case there must
not be a structural feature of another class c3 that references
c1. Another constraint is given by the crossed-out link which
specifies that c1 must not be subclassed by any class c2. If
a valid matching for this story pattern is found, the class c1

is marked as “not used” by a newly created annotation a.

The story pattern is applied to each class that satisfies these
constraints. Thus, after the execution of this story diagram,
all classes that do not have another class using them are
marked with a “not used” annotation.

3.5 Expressions
Although story diagrams are an expressive language, in some
cases textual languages are better suited and more compact,
e.g., for complex calculations or regular expressions.

Therefore, recent SDM tools allow to embed Java code in
story diagrams. When generating code for a story diagram,
the embedded Java code is included in the resulting code.
As a consequence, the embedded code cannot be checked at
modeling time (e.g., no type checking or model checking)
and interpreting story diagrams that contain arbitrary Java
code is hardly possible.

To improve this situation, the SDM community decided to
explicitly model textual expressions in story diagrams. The
expressions, on the one hand, still allow to embed textual
languages like Java and OCL and, on the other hand, enable
interpretation and type checking for most of them.

Our meta-model separates two cases: Either an arbitrary
textual expression is represented as String in the class Tex-

tualExpression or the expression is modeled explicitly by build-
ing an abstract syntax model of the expression. In the for-
mer case, arbitrary code can be embedded for code gener-
ation, but comes with the cost of missing opportunity to
analyze the expression. In the latter case, the expression
model is more complex, but can be type-checked.

With our meta-model, we try to cover most common expres-
sions in story diagrams and propose to explicitly model these
to enable type checking at least for these cases. Examples for
such expressions are matching constraints in story patterns
or assignments of a certain value to an object’s attribute.

Our story diagrams meta-model supports literals like 7, 3.1,
true, or "xy" whose type is explicitly given (EDataType).
Furthermore, we support logical expressions, arithmetic ex-
pressions, and comparing expressions. The expressions with
an operator combine other expressions to build more com-
plex expressions.

In addition, we allow for building expressions that represent
an object variable in a story pattern, the value of one of its
attributes, or the number of objects matched to an object set
variable. Furthermore, method calls (MethodCallExpression,
Figure 6), which are explained in the next section, can be
modeled, too.

4

*

invocation

0..1

callee

HasCallee

1

invocation

*

ownedParameterBindings

ContainsParameterBindings

0..1

parameterBinding

1

valueExpression

ContainsValueExpression

0..1

methodCallExpression

0..1

target

ContainsTarget

*

revInParameter

*

/inParameter

HasInParameter

*

revOutParameter

*

/outParameter

HasOutParameter

*

parameterBinding

0..1

parameter

HasParameter

0..1

owningOperation

0..1

ownedActivity

HasActivity

Invocation

Expression

MethodCallExpression

more...

ActivityCallNode

more...

Callable

«Metaclass»

EParameter

eOperation : EOperation [0..1] «... » ParameterBinding

OpaqueCallable

callExpression : MethodCallExpression

name : String

OperationExtension

/operation : EOperation [0..1] «... »

returnValue : EParameter [0..1]

Activity

Figure 6: Calls package of the Meta-Model

3.6 Activity and Method Calls
The calls package of the new meta-model supports the invo-
cation of so-called Callables directly from story diagrams (cf.
Figure 6). Callables are Activities (i.e., other story diagrams),
operations (represented by the wrapper class OperationEx-

tension, which references an EOperation), and OpaqueCallables.
EOperations are part of the model while OpaqueCallables are
not represented in the model, but may, for example, be part
of a library. A Callable can have in- and out-parameters as
indicated by the two references from Callable to EParameter.
While the number of parameters is unbounded in general,
OperationExtensions and OpaqueCallables may only have one
out-parameter. In contrast, Activities can have arbitrarily
many out-parameters. The same object may be used as in-
parameter and out-parameter, thereby emulating the in-out-
parameters from other transformation languages like QVT.

Callables can be invoked by Invocations which can either be Ac-

tivityCallNodes or MethodCallExpressions. ActivityCallNodes are
special ActivityNodes which can be used in story diagrams to
represent the call of another story diagram. MethodCallEx-

pressions represent the invocation of a method, i.e., either
an EOperation or an OpaqueCallable. The target of a Method-

CallExpression can be determined by an Expression which can,
for example, be a variable or the result of another method
invocation. Every Invocation must have a number of Param-

eterBindings that assign concrete arguments to the callee’s
parameters.

The calls package also provides a concept for the polymor-
phic dispatching of calls which is omitted here due to space
restrictions. Details can be found in [2].

4. CONCLUSIONS AND FUTURE WORK
We presented the new common meta-model for story dia-
grams which was developed in a joint effort of the SDM
community. It is the foundation for future projects as it pro-
vides a common basis for developments and facilitates the
interoperation of SDM tools. In comparison to the different
previous models, it especially simplifies static type checking
due to the explicit modeling capability for expressions.

To facilitate the execution of story diagrams, it is neces-
sary that the existing code generation and interpretation
approaches are adapted to the new meta-model. This will
be imperative for the development of SDM tools. In addi-
tion, all existing editors and tools will have to be adapted
accordingly.

In this paper, we focused mostly on the abstract syntax of
the story diagram meta-model and the semantics of some of
the newly integrated features. While the concrete syntax of
ActivityCallNodes has been defined in [2], a concrete syntax for
other new elements still has to be defined in future works.

Acknowledgments
We would like to thank all other participants of the SDM
unification task force for their ideas and contributions to
the new meta-model: Steffen Becker, Stephan Hildebrandt,
Ruben Jubeh, Elodie Legros, Carsten Reckord, Andreas
Scharf, Christian Schneider, Gergely Varró, and Albert Zün-
dorf.

5. REFERENCES
[1] C. Amelunxen, F. Klar, A. Königs, T. Rötschke, and

A. Schürr. Metamodel-based tool integration with
MOFLON. In ICSE ’08 Proceedings, pages 807–810.
ACM, 2008.

[2] S. Becker, M. von Detten, C. Heinzemann, and
J. Rieke. Structuring Complex Story Diagrams by
Polymorphic Calls. Technical Report tr-ri-11-323,
University of Paderborn, Mar. 2011.

[3] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
Diagrams: A New Graph Rewrite Language Based on
the Unified Modeling Language and Java. In TAGT ’98
Selected Papers, volume 1764 of LNCS, pages 296–309.
Springer, 2000.

[4] L. Geiger, T. Buchmann, and A. Dotor. EMF Code
Generation with Fujaba. In Fujaba Days ’07
Proceedings, 2007.

[5] H. Giese, S. Hildebrandt, and A. Seibel. Improved
Flexibility and Scalability by Interpreting Story
Diagrams. In GT-VMT ’09 Proceedings, volume 18 of
Electronic Communications of the EASST, 2009.

[6] C. Priesterjahn, M. Tichy, S. Henkler, M. Hirsch, and
W. Schäfer. Fujaba4Eclipse Real-Time Tool Suite. In
MBEES ’07 Revised Selected Papers, volume 6100 of
LNCS, chapter 12, pages 309–315. Springer, 2009.

[7] S. Rose, M. Lauder, M. Schlereth, and A. Schürr. A
Multidimensional Approach for Concurrent Model
Driven Automation Engineering. In Model-Driven
Domain Analysis and Software Development:
Architectures and Functions, pages 90–113. IGI
Publishing, 2011.

[8] A. Schürr. Specification of Graph Translators with
Triple Graph Grammars. In G. Tinhofer, editor, WG
’94 Proceedings, volume 903 of LNCS. Springer, 1994.

5

Interpreting Story Diagrams for the Static Detection of
Software Patterns

Markus Fockel, Dietrich Travkin, Markus von Detten
Software Engineering Group, Heinz Nixdorf Institute,

University of Paderborn, Paderborn, Germany
[mfockel|travkin|mvdetten]@mail.uni-paderborn.de

ABSTRACT
Software maintenance tasks require knowledge about the
software’s design. Several tools help to identify implemen-
tations of software patterns, e.g. Design Patterns, in source
code and thus help to reveal the underlying design. In case
of the reverse engineering tool suite Reclipse [15], detection
algorithms are generated from manually created, formal pat-
tern specifications. Due to numerous variants that have to
be considered, the pattern specification is error-prone. Be-
cause of this, the complex, step-wise generation process has
to be traceable backwards to identify specification mistakes.
To increase the traceability, we directly interpret the detec-
tion algorithm models (story diagrams) instead of executing
code generated from these models. This way, a reverse en-
gineer no longer has to relate generated code to the story
diagrams to find mistakes in pattern specifications.

1. INTRODUCTION
Due to requests for new features and the discovery of de-
fects, software has to be continuously adapted and main-
tained. For this purpose, developers have to understand
the design of a given software. Software design patterns
[5] are approved, widely used solutions for design problems.
Knowledge about their usage in the software helps to un-
derstand how the original developers intended the software
to be extended or adapted and, thus, helps to avoid design
deviations or errors.

Incomplete documentation often complicates the task of iden-
tifying pattern implementations in source code. Several
tools have been developed to automate this tedious task
(Dong et al. give an overview [2]). Based on a formal speci-
fication of a pattern, usually represented by a set of condi-
tions, these tools automatically detect pattern implementa-
tions in source code.

Nevertheless, due to numerous implementation variants1 to
be considered during pattern specification, the task of spec-
ifying a pattern is error-prone which sometimes results in
missing pattern implementations (false negatives) or finding
more than are actually present (false positives). To correct
a specification, a reverse engineer has to identify the erro-
neous or missing conditions in the specification that lead
to the unexpected detection results which, in turn, requires
traceability of the detection process.

1For example, different loop implementations or the distinc-
tion between interfaces and classes in Java.

In case of the reverse engineering tool suite Reclipse2 [15],
the detection process is quite complex. Reclipse automat-
ically derives detection algorithms from pattern specifica-
tions, creates models of these algorithms in form of class
and story diagrams [3], generates code out of these models,
and executes this code to detect pattern implementations
in given source code [10]. To trace the detection process,
a reverse engineer has to observe the generated detection
code’s behavior, deduce the elements which are representing
this behavior in the generated story diagrams, and identify
the corresponding conditions in the pattern specifications.
Hence, the reverse engineer has to bridge two semantic gaps:
the one between code and story diagrams and the one be-
tween story diagrams and pattern specifications.

A pattern specification only describing a class declaration
and a contained method declaration already results in about
1000 lines of generated code. As example take the following
excerpt of code that would be generated based on such a
pattern specification. The lines 1 to 3 contain declarations
of two variables clazz and method to represent the decla-
rations and an auxiliary variable for the iteration through
all elements contained in a class. In lines 4 and 5 a part of
the code to be analyzed is assumed to be the specified class
declaration. The remaining lines describe the search for a
method declaration contained in the class represented by the
previously found class declaration. As a class can contain
several method declarations, this is done in a loop.

...

1 ATypeDeclaration clazz = null;

2 Iterator fujaba__IterClazzToMethod = null;

3 AMethodDeclaration method = null;

...

4 JavaSDM.ensure(_TmpObject instanceof

ATypeDeclaration);

5 clazz = (ATypeDeclaration) _TmpObject;

...

6 fujaba__IterClazzToMethod = clazz

.iteratorOfBodyDeclarations();

7 while (fujaba__IterClazzToMethod.hasNext()) {

8 _TmpObject = fujaba__IterClazzToMethod.next();

9 JavaSDM.ensure(_TmpObject instanceof

AMethodDeclaration);

10 method = (AMethodDeclaration) _TmpObject;

...

}

...

2http://www.fujaba.de/reclipse

6

The reverse engineer has to mentally bridge the semantic
gap between this code and the corresponding story diagram
and eventually the pattern specification. She has to find the
conditions in the pattern specification that are represented
by the variables in the generated code and then identify the
error in the specification by debugging the code execution.

We’re aiming to avoid the semantic gaps by directly inter-
preting the pattern specifications, thereby adding tracing
functionality to Reclipse’s pattern detection, similar to de-
buggers. As a first step, we remove the semantic gap be-
tween generated code and story diagrams by directly inter-
preting the story diagrams instead of generating code. As
there is an existing interpreter for story diagrams [7] with a
corresponding debugger being currently developed [8], this
is a promising solution. Furthermore, by exploiting runtime
information, interpreting story diagrams can be more effi-
cient than executing code [7].

In this paper we present the actions we have taken to inte-
grate the story diagram interpreter developed at the Hasso
Plattner Institute in Potsdam [7] into Reclipse, the chal-
lenges we faced and an evaluation of the results.

2. THE PATTERN DETECTION PROCESS
Reclipse’s current pattern detection process is depicted in
Figure 1. First of all, the design patterns have to be de-
fined manually as formal pattern specifications. Algorithms
(in form of story diagrams) that describe the search for the
specified patterns are automatically derived from the formal
pattern specifications. These detection algorithm models
are then used to generate code that is later called by the
inference algorithm. The code in which to search for imple-
mentations of the specified patterns has to be transformed
into an abstract syntax graph (ASG), which is done by Re-
clipse automatically. The inference algorithm receives the
ASG and the generated detection algorithm code as input.
It decides where in the ASG to search for a pattern and
executes the respective detection algorithm code to do so.
Finally, the output is an ASG in which the detected pattern
implementations are marked by annotations. As Reclipse is
based on the CASE tool Fujaba3 [9], all models have been
created or generated with that framework (signified in Fig-
ure 1 by the ellipses with the Fujaba inscription).

3. INTERPRETER INTEGRATION
In order to remove the semantic gap between story diagrams
and generated detection code, we integrated the story dia-
gram interpreter into the pattern detection process of Re-
clipse as illustrated in Figure 2. During that integration we
faced several challenges.

First, the interpreter is based on a story diagram meta-
model that is slightly different from the one used in Reclipse
(provided by Fujaba). Hence, we had to translate the story
diagrams from one dialect to another. Instead of generat-
ing Fujaba-conformant story diagram models from the pat-
tern specifications, we now generate story diagram models
that conform to the interpreter’s story diagram meta-model
(signified in Figure 2 by the different shape and number of
elements in the detection algorithm models).

3http://www.fujaba.de

Formal pattern

specifications

Detection

algorithm models

Inference

algorithm

Annotated

ASG

Generated

detection

algorithm code

Transformation

Data flow

Code ASGCode to analyze

Fujaba Fujaba

Fujaba Fujaba

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

Figure 1: Original pattern detection process.

Formal pattern

specifications

Detection

algorithm models

Code ASG

Annotated

ASG

Transformation

Data flow

Story diagram

interpreter

Code to analyze

Fujaba EMF

EMF EMF

Inference

algorithm

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

class XYZ {

 private B b;

 public D method() {

 ..

 }

}

Figure 2: Adapted pattern detection process.

Second, Reclipse and the story diagram interpreter are im-
plemented based on different frameworks. While Reclipse is
based on the CASE tool Fujaba with its model format and
API, the story diagram interpreter is based on the Eclipse
Modeling Framework (EMF)4 [14] and takes Ecore models
as input. Thus, we also had to adapt or convert the class
and story diagram models as well as the input ASG model
from one technology to another (signified in Figure 2 by the
ellipses with the EMF inscription).

Furthermore, instead of executing generated code we now
have to run the interpreter on a detection algorithm model
which enforces adaption of the inference algorithm.

3.1 Bridging the story diagram dialects
Reclipse and the story diagram interpreter use different story
diagram meta-models which have different expressive power.
Some things that can be modeled with Reclipse’s meta-
model cannot be modeled with the interpreter’s meta-model.
Other things are modeled differently. The Reclipse meta-
model, for instance, contains an element called statement
activity which can hold arbitrary Java code that is later in-
tegrated into the generated code. The interpreter obviously

4http://www.eclipse.org/modeling/emf/

7

does not generate any code, so its meta-model does not con-
tain such an element.

Thus, to use the story diagram interpreter the Reclipse story
diagram models had to be transformed into story diagram
models conforming to the meta-model of the interpreter.
This transformation had to take the meta-model differences
into account. That means, some things are transformed into
more complex ”workaround” models and others cannot be
transformed and thus may no longer be used in pattern spec-
ifications (unless the interpreter is extended).

For each element, we described a transformation rule from
the Fujaba story diagram meta-model to the interpreter’s
story diagram meta-model, if possible. In the following, we
describe the transformation of story patterns as an example.
The full list of transformations can be found in a Master’s
thesis [4].

Story diagrams describe graph transformations. They closely
follow UML activity diagrams and contain a number of story
patterns connected by transitions that define the control
flow. A story pattern contains a structure of objects that,
if it is matched in a host graph (e.g. found in the ASG), is
modified as defined by the story pattern (e.g. is annotated).

Figure 3 shows the meta-classes used to model story pat-
terns in Fujaba (top) and the corresponding meta-classes
of the story diagram meta-model used by the interpreter
(bottom). In Fujaba, a story pattern (UMLStoryPattern)
is contained in an activity (UMLStoryActivity). This activ-
ity can be marked as a for-each activity, which describes
a loop in the control flow. A UMLStoryPattern contains
a number of items (UMLDiagramItem) which are objects
(UMLObject), links (UMLLink) and method calls (UMLCol-
labStat). Additionally, a story pattern can contain textual
(Java) constraints (UMLConstraint) and maybe constraints
that weaken the matching rule (i.e. allow to map more than
one node in a story pattern to the same node in an ASG).

The story diagram meta-model of the interpreter in compar-
ison combines the two classes UMLStoryActivity and UML-
StoryPattern into one (StoryActionNode). It can contain
constraints that are described by a hierarchy of Expressions.
In the Fujaba model the Java constraints are integrated into
the generated code whereas the interpreter evaluates the ex-
pression hierarchy. Maybe constraints are not supported by
the interpreter. Objects and links are separately linked to
a StoryActionNode. Methods calls are handled by another
type of activity not shown in Figure 3.

This example shows that most elements can be translated
quite easily, but some elements (e.g. maybe constraints) can-
not be translated at all. We defined transformations for all
elements that could be translated. These also contained ele-
ments that are part of the interpreter’s meta-model, but not
yet evaluated by the interpretation engine itself. So, once
the engine is extended to evaluate these elements, they can
be used for pattern specification again.

3.2 Bridging technical differences
Reclipse is based on Fujaba and the story diagram inter-
preter is developed with EMF. Fujaba and EMF are not

Figure 3: Story patterns in the two story diagram
meta-models.

compatible. The saved models have different formats, the
models are on different meta levels (UML vs. eMOF [11])
and the generated code follows different implementation con-
ventions. To use the story diagram interpreter, we converted
the Fujaba-based models generated by Reclipse (esp. story
diagrams) and ASG models into EMF-based models.

The story diagram meta-model of the interpreter was cre-
ated using EMF. Using the transformation described in Sec-
tion 3.1, we could translate Fujaba story diagram models
into EMF story diagram models. Based on this transforma-
tion, the Reclipse component that generates detection algo-
rithm models from pattern specifications was replaced with
a new component that creates detection algorithm models
that are conformant to the interpreter’s EMF-based meta-
model. The new component was implemented manually.
This way, it could easily be derived from the former (also
manually implemented) component, so that it fits into the
process and conforms to its interfaces.

Because of the interpreter’s requirement to get EMF-based
models as input, we also switched from the Fujaba-based
ASG meta-model to an EMF-based ASG meta-model. The
former, hardly maintainable component for parsing source
code into an ASG was replaced by a manually implemented
slim component that uses an existing Eclipse plug-in for
parsing Java code (JDT5).

5http://www.eclipse.org/jdt/

8

3.3 Inference adaptations
In the original pattern detection process the inference algo-
rithm selects an element of the ASG and starts the search
for a pattern by executing the corresponding generated code.
As we removed the code generation step, the inference algo-
rithm had to be adapted so that it triggers the interpretation
of a story diagram rather than the execution of code.

In addition, the inference algorithm had to be adapted to
the use of EMF-based models instead of Fujaba-based mod-
els. Thus, we adapted existing interfaces and introduced
new ones in the inference algorithm’s implementation. This
way, the reverse engineer now can choose whether she wants
to use the former process based on code generation or the
one based on the interpreter. The needed code adaptations
and additions had to be done manually, because of the com-
plexity of the existing (manually evolved) code base.

4. EVALUATION
We applied the adapted pattern detection process to eval-
uate our success. The traceability of the process improved,
because the engineer no longer needs to bridge the gap be-
tween generated code and story diagrams. The interpreter
provides a log of all interpretation steps. The coming story
diagram debugger will further improve the traceability by vi-
sualizing the current state of execution and offering oppor-
tunities to observe and influence the execution. Although
there are some limitations in the use of the story diagram
interpreter, the first detection results are promising.

4.1 Limitations
Most story diagram elements could be translated from the
one meta-model to the other. Except for maybe constraints,
all non-translatable elements are provided in the interpreter’s
meta-model, but not yet supported by it’s execution algo-
rithm. For example, paths are not supported so far. A
path between two ASG nodes describes that there is a di-
rected, possibly indirect connection between the nodes. In
the meta-model paths are represented by a special type of
link between objects, but the execution algorithm does not
separately handle them. In the story diagram translation we
included these elements, so that they can be used as soon as
the interpreter supports them.

4.2 Detection results
We evaluated the adapted detection process by detecting
patterns in JUnit6 4.8.2 and comparing the detection results
with those obtained with our previously applied detection
process. For this purpose, we re-used an existing catalog
of design pattern [5] specifications and auxiliary subpattern
specifications.

The catalog had to be modified due to the limitations of
the interpreter and its story diagram meta-model (cf. Sec-
tion 4.1). Pattern specifications that could not be modeled
for use with the interpreter were removed for both detection
processes. Pattern specifications that had to be weakened
(some conditions had to be removed because of the lack of
expressiveness) for the interpreter use, were only modified
for the run of the adapted detection process.

6http://www.junit.org

Pattern SDI CodeGen

AbstractStructureImplementation 114 78
AbstractType 17 16
ContainerWriteAccessMethod 379 12
DirectGeneralization 77 75
Field 194 191
Implementation 29 29
IndirectGeneralization 66 31
InterfaceType 13 10
MultiReference 276 7
OverriddenMethod 157 122
SingleReference 135 115
TemplateMethod 86 11
Visitor 1 1

Table 1: Pattern detection results.

Table 1 contains the pattern detection results. The ”SDI”
column lists the number of pattern implementation candi-
dates detected by the adapted process using the story dia-
gram interpreter. The column ”CodeGen” lists the number
of candidates detected with the original process using gen-
erated code.

As some patterns had to be removed from the catalog be-
cause of the interpreter limitations, the only ”real” design
pattern implementations found by either detection process
were Template Method and Visitor. The latter was found
equally often. Candidates for the Template Method pat-
tern were found more often by the adapted process than by
the original. The same holds for most other patterns (e.g.
ContainerWriteAccessMethod and MultiReference). This is
a result of the weakened pattern specifications. For exam-
ple, the story diagram meta-model used by the interpreter
does not support paths. So, they had to be removed, mean-
ing that instead of searching for connected nodes, arbitrary,
possibly unconnected nodes satisfying all other conditions
are searched in the ASG. This results in more matchings.

Despite the fact that we have more false positives with our
adapted detection process, the results are promising. Avoid-
ing the code generation step significantly increases the trace-
ability of the pattern detection. Debugging the pattern spec-
ifications and the detection process is easier and will be even
more traceable with the interpreter’s debugger [8]. The re-
sults obtained with the interpreter deviate from the orig-
inal results (cf. Table 1) solely because of the weaknesses
in the current interpreter implementation. Our story dia-
gram translation already supports some story diagram ele-
ments that the interpreter does not yet consider. Thus, by
improving the interpreter the pattern specifications will be-
come more sophisticated and the detection results will equal
the results achieved by the original process.

5. RELATED WORK
The overall goal of our work was to simplify the debug-
ging of the detection process. The two main challenges with
our approach were the transformation of the story diagram
meta-models and the migration from Fujaba to EMF.

Geiger and Zündorf developed a tool to debug code gener-
ated by Fujaba and connect it at runtime to the correspond-

9

ing story diagrams [6]. As an alternative to using the story
diagram interpreter, we could have used this approach, but
that would have made the detection process more complex
instead of simplifying it and we could not have benefited
from the possible performance gain resulting from the use
of information that is only available at runtime [7].

There are numerous approaches for model-to-model trans-
formation which we could have used to translate the story
diagrams from one meta-model to the other. Among them
are Triple Graph Grammars (TGGs, [13]) and OMG’s QVT
(Query/View/Transformation, [12]). These approaches sup-
port model synchronization and bidirectional transforma-
tions. We decided against generating story diagrams con-
forming to one meta-model and then translating them to
story diagrams conforming to another meta-model during
each pattern detection. Instead, we decided to adapt the
story diagram generation once and omit the creation of ob-
solete story diagram models. Since we already had a genera-
tor for Reclipse’s story diagrams, we only had to replace the
creation of story diagram elements such that they conform
to the new meta-model. Furthermore, Java code represented
by plain text in generated story diagrams significantly com-
plicates the translation with TGGs and QVT.

Amelunxen et al. [1] developed an approach to tool integra-
tion using TGGs. This approach still requires manual code
adaptations and as it uses TGGs it has the aforementioned
disadvantages. Thus, we chose another solution.

6. CONCLUSIONS AND FUTURE WORK
To simplify the pattern detection process of the Reclipse
tool suite and support the engineer in finding mistakes in
his specifications, we integrated a story diagram interpreter
and removed the code generation step.

The used interpreter still has some limitations. It does
not yet support certain story diagram features that were
supported by the formerly used story diagram meta-model.
Adding these features is future work which is already started
by the SDM unification task force that aims to unify the
meta-models used by several teams from the Fujaba com-
munity.

Furthermore, the story diagram debugger [8] needs to be
integrated. This debugger would simplify the search for
pattern specification errors. The language used for pattern
specifications is partly very similar to story patterns. So,
if the debugger reveals an error in a story pattern, it will
be easy to find the corresponding element in the pattern
specification.

7. REFERENCES
[1] C. Amelunxen, F. Klar, A. Königs, T. Rötschke, and

A. Schürr. Metamodel-based tool integration with
MOFLON. In ICSE ’08: Proceedings of the 30th

International Conference on Software Engineering,
Leipzig, Germany, pages 807–810, 2008.

[2] J. Dong, Y. Zhao, and T. Peng. A Review of Design
Pattern Mining Techniques. International Journal of
Software Engineering and Knowledge Engineering
(IJSEKE), 19(6):823–855, Sept. 2009.

[3] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story Diagrams: A new Graph Rewrite Language
based on the Unified Modeling Language. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Proc. of the 6th International Workshop on Theory
and Application of Graph Transformation (TAGT),
Paderborn, Germany, LNCS 1764, pages 296–309.
Springer Verlag, November 1998.

[4] M. Fockel. Interpretation von
Graphtransformationsregeln zur statischen Erkennung
von Software-Mustern. Master’s thesis, University of
Paderborn, Oct. 2010. (In German).

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, USA, 1995.

[6] L. Geiger and A. Zündorf. Design Level Debugging
with Fujaba. In International Workshop on
Graph-Based Tools (GraBaTs), Barcelona, Spain,
2002.

[7] H. Giese, S. Hildebrandt, and A. Seibel. Improved
Flexibility and Scalability by Interpreting Story
Diagrams. In T. Margaria, J. Padberg, and
G. Taentzer, editors, Proceedings of the Eighth
International Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT 2009),
volume 18. Electronic Communications of the EASST,
2009.

[8] A. Krasnogolowy. Entwurf und Implementierung eines
Debuggers für Story-Diagramme. Master’s thesis,
Hasso-Plattner-Institut für Softwaresystemtechnik
GmbH, Potsdam, Germany, 2010. (In German).

[9] U. A. Nickel, J. Niere, and A. Zündorf. Tool
demonstration: The FUJABA Environment. In Proc.
of the 22nd International Conference on Software
Engineering (ICSE), Limerick, Ireland, 2000.

[10] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards Pattern-Based Design
Recovery. In Proc. of the 24th International
Conference on Software Engineering (ICSE), Orlando,
FL, USA, pages 338–348. ACM Press, May 2002.

[11] Object Management Group. Meta Object Facility
(MOF), Jan. 2006. OMG document
formal/2006-01-01.pdf.

[12] Object Management Group.
Query/View/Transformation (QVT), Apr. 2008. OMG
document formal/08-04-03.pdf.

[13] A. Schürr. Specification of Graph Translators with
Triple Graph Grammars. In G. Tinhofer, editor, 20th

Int. Workshop on Graph-Theoretic Concepts in
Computer Science, Heidelberg, Germany, volume 903
of Lecture Notes in Computer Science (LNCS), pages
151–163. Springer Verlag, 1994.

[14] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, 2nd edition, Dec. 2008.

[15] M. von Detten, M. Meyer, and D. Travkin. Reverse
Engineering with the Reclipse Tool Suite. In
Proceedings of the 32nd International Conference on
Software Engineering (ICSE 2010), Cape Town, South
Africa, 2010.

10

A simple indoor navigation system with simulation
environment for robotic vehicle scenarios

Ruben Jubeh, Simon-Lennert Raesch,
Albert Zündorf

University of Kassel, Software Engineering,
Department of Computer Science and Electrical

Engineering
Wilhelmshöher Allee 73
34121 Kassel, Germany

[ruben | lra | zuendorf]@cs.uni-kassel.de
http://www.se.eecs.uni-kassel.de/se/

Figure 1: Robot vehicle

ABSTRACT
Following the initial idea of using Lego Mindstorm Robots
with Fujaba, as the userbase in students grew larger, an in-
door positioning system and simulation environment were
required to allow for parallel work on components and pro-
jects. Limited resources in actual robots made it impossible
for all students to actively work on the development of their
projects and evaluating their progress. Sensors on the ac-
tual robots are difficult to configure and hard to put in an
environmental context. A global positioning system shared
among robots can make local sensors obsolete and still de-
liver more precise information than currently available sen-
sors. A simulator for robots programmed with Fujaba and
Java can be used by many developers and lets them evaluate
their code in a simple way, yet close to real-world results.

1. INTRODUCTION
Fujaba has been used to model robotic applications via Lego
Mindstorms for educational purposes since [3]. Using robotics
in Software Engineering courses and projects is very attrac-
tive to students, as programs and algorithms can interact
with real-world objects. This was shown already in [1] and
[2], where a robot solved the towers-of-hanoi game. But us-
ing robotics also has its drawbacks: simple actions like mov-
ing the robot to certain places is an advanced task, since
one needs to control the actuators (motors) and also verify
through sensors, that the action succeeded. We experienced
this with the towers-of-hanoi-robot, which had a certain un-

Figure 2: Webcam tracking

reliability using only light sensors for orientation. Generally,
interpreting the real world state by various sensors is com-
plex and often error-prone. Low level hardware interfacing
software is difficult to develop and test. Mainly because the
”Modeling with Robots”-Course at Kassel University was so
popular that more students enrolled to that course than we
had robotic kits, we decided to build a simulator around our
framework. This simulator allows to develop and test the
actual robot control code independently of the hardware. It
provides a higher level of abstraction, so students don’t have
to deal with different sensors and actuators directly. They
can rely on framework functionality, which behaves trans-
parently in simulation mode.

In 2009, van Gorp et al. [4] presented multiple use-cases/sce-
narios the existing Fujaba Lego Mindstorms Library was
used for. During the last year, we concentrated on modeling
autonomous robotic vehicles. The robots are still remotely
controlled by a PC via a bluetooth connection. The vehi-
cles currently used are depicted in figure 1. Two big main
wheels allow differential steering and turning on the spot.
The yellow front fork is used to push things around, which

11

is a simplification for picking up or loading goods for trans-
port. On top of the robot, there’s an optical marker, which
is used to track the robot optically. The robot doesn’t use
any directly attached sensors, which simplifies programming
it a lot. A webcam is tracking all fiducial symbols in its view
and broadcasts positions via the network. A detailed expla-
nation of the technical realization can be found in section
3.1. By using this optical global-view tracking approach,
each robot individually sees its own position and the posi-
tion of other marked objects. This is the only sensory input
source used in the programming model. This approach sim-
plifies the simulator a lot, because we don’t have to simulate
any distance metering sensors like ultrasonic or laser/light
sensors. Only position data has to be generated out of the
movement simulation component. Details about the simu-
lator can be found in section 3.2.

2. USE-CASES AND SCENARIOS
In the last two university terms, we organized a robots mod-
eling project. Students were given a certain use-case sce-
nario, for example the BoxMoveGame presented in section
2.2. They had to implement the autonomous robot vehicle
control software and parts of the scenario as software for
the simulator. This also included extensions to the Simu-
lator GUI, as presented in section 3.2. At the beginning of
each project the scenario was a textual description of what
the robot vehicles had to achieve under given rules. Later
on, the scenario was implemented in actual code setting up
the robots etc. In case of a simulation, all the environment
has to be simulated as well. So, a scenario offers basically
two operation modes, controlling real robots in a real envi-
ronment, or simulating robots within a virtual environment.

2.1 Cat and Mouse
This scenario consists of two robots, one playing the role of
a cat (the hunter), the other playing a mouse (the prey).
The cat periodically scans for the mouse and tries to catch
it by driving to its position. The mouse moves randomly
around, until there is a cheese object (simply a box with a
fiducial marker) being placed in the field, which instantly
attracts the mouse’s attention. Because both control pro-
grams consist only of a single loop of evaluating positions,
then blindly drive to a position, the cat will take a while
to catch the mouse. What makes the scenario so attractive
is that people can interact with both robots by placing the
cheese somewhere, which enforces a reaction of the mouse
and might help to escape or being trapped. Figure 6 shows
cat and mouse together with an cheese object in the simu-
lator.

2.2 BoxMoveGame
The BoxMoveGame is a contest game scenario, where two
competing robots should move boxes from their home- to
their target field. Figure 3 shows the competition area:
Robots might drive on the dark areas, but not on white,
fields are marked with green boxes. One Robot has to move
its boxes from east to west, the other from north to south.
The challenge lies in the central traffic light: Depending on
the traffic light phase, it might be faster to use the outer
ring to drive between fields than possibly wait in front of
the traffic light.

Figure 3:
BoxMoveGame-Field

Students had to imple-
ment waypoint and path
finding. Another chal-
lenging task was to deal
with asynchronous and
synchronous control of
the vehicles motors; both
alternatives have their
pros and cons. It turned
out that it was quite
difficult to decide which
way to choose because of
unpredictable timing is-
sues via bluetooth remote
control. This scenario
shares some runtime ob-
jects over the two contestants: the traffic light is run on a
third machine as separate software component and coupled
via network (RMI). So, this scenario usually involves three
controlling instances, as shown in figure 5.

3. TECHNICAL REALIZATION
3.1 FIPS

Figure 4: Fiducial

FIPS stands for Fujaba|Fiducial
Indoor Positioning System. It’s
based on the reacTIVision1 frame-
work, which uses image recog-
nition techniques to detect pre-
defined optical markers via we-
bcam. These markers are called
fiducials, an example can be seen
in figure 4. Each symbol has an
ID which can be detected along
with the rotation and, of course,
the absolute position. Especially
having the exact rotation of the
robot helps a lot for precisely
navigating it, a feature that other in- or outdoor position
systems can only achieve by utilizing a magnetic field sen-
sor, which is unreliable even in indoor scenarios.

In our case, the webcam is statically mounted at the room’s
ceiling, covering an area of approx. 4x3 m. Depending on
the ambient light and tracking rate recognition, the camera
is usually driven at a resolution of 1280x960 pixels and 10
frames per second, which leads to a theoretical optical res-
olution of <0.5mm per pixel. This is good enough to use
fiducials at a size of 10x10 cm (small set, 24 distinguishable
symbols available) resp. 14x14cm (default set, 214 symbols
available). As shown in figure 5, the position information has
to be shared across multiple control machines, which is done
via UDP broadcast. Due to the image processing and net-
work transfers, position updates have a certain latency and
are initially limited by the webcam framerate. When a robot
moves too fast, the fiducial tracking fails. These properties -
resolution, update rate, update latency and maximum move
speed - are also considered in the simulator, which will be
described next.

1http://www.reactivision.org/

12

Figure 5: Architectual Overview

3.2 Simulator
The main motivation for the simulator is to allow transpar-
ent development of scenarios and control software without
the need for actual robot hardware. It features a simple 3D
graphical viewer written in Processing2. It doesn’t simulate
each driving motor separately, but attaches to the mind-
storms libraries’ Navigator interface and simulates linear
movements and rotation in 2D space. Robot movements
will be translated in x, y coordinates and a heading value.
The navigator is the only used actuator in all scenarios pre-
sented here, which abstracts the underlying two wheel driv-
ing motors. Additionally, there’s an integration of a simple
2D geometric/physics engine for collision detection between
robots and other geometric shapes, which updates these co-
ordinates as well. To close the simulation loop, the 2D posi-
tions of all objects (after a movement, rotation or collision)
have to be fed back to the FIPS, which is the only sensory
interface the robot control software uses. As mentioned in
section 3.1, some fuzzing transformations identified in real-
world tests are applied to the coordinates. This way, the
robot can see itself and other tracked objects as soon as
they are moving. Some scenarios, for example the robotic
beginner use case Follow a black line [4], also require exten-
sions to the simulator to allow light sensor feedback from a
virtual ground when being simulated. Therefore, the simu-
lator offers an open, extensible interface when a scenario is
run in simulation mode.

4. CONCLUSIONS AND FUTURE WORK
The initial idea to use the fiducial framework came from
Ulrich Norbisrath, Tartu University. A prototype setup was
prepared within a few hours and requires nothing more than
a webcam and some printed sheets of fiducials. This makes
this system very applicable for our department, as we are
software- but not hardware experts. The highly reduced
complexity compared to other indoor positioning systems
allow a quick and easy setup of the system on other sites.
Students can even rebuild it at home. As we decided to
abstract the 2D tracking and navigator interfaces for simu-
lation, the framework is limited to use cases where robots

2http://www.processing.org/

Figure 6: Simulator Screenshot

use (primarily) these sensors and actuators. Adding more
detail or other aspects to the simulation is not offered in the
framework, but can be plugged in, like for the FollowLine
use case. The framework still lacks a plug-and-play setup
when connecting different robot control nodes. For exam-
ple, the BoxMoveGame was the most complex scenario im-
plemented so far and real world runs require a complex setup
of connecting up to three machines, setting up fiducial IDs
etc. Adding shared objects like the traffic light increases the
complexity even more, as it requires a distributed software
components layer. We’re planning to integrate such a dis-
tributed component-based software layer for even more com-
plex scenarios with cooperative robot vehicles in the future.
Furthermore, the modeling methodology is insufficient. Us-
ing Fujaba statecharts in combination with story diagrams is
not intuitive enough, so students still fall back to program-
ming the robots using plain java source code after a while.
We finally observe that the Fujaba Indoor Positioning Sys-
tem in combination with a simulator that can be used to
realistically mimic robot behavior offer an easy to use yet
highly precise tool to make it easy for students to start de-
veloping their own robot-code.

5. REFERENCES
[1] I. Diethelm, L. Geiger, A. Zündorf. UML im Unterricht:

Systematische objektorientierte Problemlösung mit
Hilfe von Szenarien am Beispiel der Türme von Hanoi.
Erster Workshop der GI-Fachgruppe Didaktik der
Informatik, Bommerholz, Germany, Oct. 2002.

[2] I. Diethelm, L. Geiger, A. Zündorf. Fujaba goes
Mindstorms. Objektorientierte Modellierung zum
Anfassen; in Informatik und Schule (INFOS) 2003,
München, Germany, Sept. 2003.

[3] R. Jubeh. Simple robotics with Fujaba. In Fujaba
Days. Technische Universität Dresden, Sept. 2008.

[4] P. Van Gorp, R. Jubeh, B. Grusie, and A. Keller.
Fujaba hits the Wall(-e) – Beta working paper 294,
Eindhoven University of Technology.
http://beta.ieis.tue.nl/node/1487, Nov. 2009.

13

SDM online

Interpreting story diagrams in JavaScript for NT2OD

Jörn Dreyer
Kassel University

Wilhelmshöher Allee 73
Kassel, Germany

jdr@cs.uni-kassel.de

Christoph Eickhoff
Kassel University

Wilhelmshöher Allee 73
Kassel, Germany

cei@cs.uni-kassel.de

Albert Zündorf
Kassel University

Wilhelmshöher Allee 73
Kassel, Germany

zuendorf@uni-kassel.de

ABSTRACT
There is currently no story diagram interpreter implementa-
tion that can be used in a web browser. This prevents web
browser applications from executing story diagrams gener-
ated at runtime. Our new interpreter can be compiled to
JavaScript and works on a data model that supports re-
flective acces in JavaScript. This allows the web applica-
tion NT2OD to dynamically create story diagrams at run-
time and use the new interpreter to execute them in a web
browser.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

Keywords
NT2OD, NLP, object diagram, story diagram, interpreter,
Fujaba, GWT, FUP, JUnit, test driven development

1. INTRODUCTION
With NT2OD Online [3] we have created a web application
that generates simple object diagrams from scenario step de-
scriptions. To further improve the object diagrams we have
implemented a set of recommenders that examine the object
diagram generated by NT2OD. The hints they produce are
then visualized as a list of short story diagrams (see Fig-
ure 6). Applying the story diagrams to the object diagram
would require a story diagram interpreter in JavaScript. Un-
fortunately, none is readily available.

In this paper we present an implementation for a story dia-
gram interpreter that works on a simple data model suitable
for web browsers:

• We provide a reflection mechanism that can be used
with the Google Web Toolkit1 (GWT) (section 4).

1http://code.google.com/webtoolkit

• We provide a Java implementation of a story diagram
interpreter that can be compiled to JavaScript with
GWT (section 5).

• We explain the use of the interpreter in NT2OD. Point
your browser to http://www.nt2od.org to test the
current implementation (section 6).

2. THE PROBLEM
To provide tool support for the early steps in the Fujaba
Unified Process [5] (FUP) we created NT2OD [8]. NT2OD
generates simple object diagrams from native text to vi-
sualize scenario step descriptions. The current results are
promising, but the diagrams still lack technical details like
attribute and class type information [3].

We need these technical details before we can use the simple
object diagram to generate code for a JUnit [4] test. Take
e.g. the sentence in Listing 1.

Alice and Bob are playing Ludo.

Listing 1: Example sentence

After identifying the grammatical relations with the Stan-
ford parser [1] the current implementation of NT2OD pro-
duces the object diagram in Figure 1.

Figure 1: Object diagram for the example sentence

NT2OD identifies general concepts and links but there is
no technical information in the simple object diagram. A
seperate list of technical hints is vizualized, based on story
diagrams that have been generated by a set of recommenders
[2]. A simple web service parses URLs like http://nt2od.

org/fuml/diagram/story/[Alice]-playing-[Ludo],[Bob]-

playing-[Ludo].png and uses graphviz2 to produce the di-

2http://www.graphviz.org/

14

mailto:jdr@cs.uni-kassel.de
mailto:cei@cs.uni-kassel.de
mailto:zuendorf@uni-kassel.de
http://code.google.com/webtoolkit
http://www.nt2od.org
http://nt2od.org/fuml/diagram/story/[Alice]-playing-[Ludo],[Bob]-playing-[Ludo].png
http://nt2od.org/fuml/diagram/story/[Alice]-playing-[Ludo],[Bob]-playing-[Ludo].png
http://nt2od.org/fuml/diagram/story/[Alice]-playing-[Ludo],[Bob]-playing-[Ludo].png
http://www.graphviz.org/

agram images3. Although the data model for both types
of diagrams is available in the browser we cannot apply the
technical hints to the simple object diagram. A story dia-
gram interpreter written in JavaScript is missing.

3. INTERPRETING STORY DIAGRAMS IN
A BROWSER

Fortunately, we do not have to write JavaScript code but
can rely on GWT to compile Java source code to JavaScript.
This way we can reuse existing Java tool support for the de-
velopment of browser applications. First, we have to add
a reflection mechanism to the existing data model. In the
second step, the interpreter will use the new reflection mech-
anism to match the features and attributes of classes. Fi-
nally, we will be able to use the story diagram interpreter in
NT2OD to enhance the simple object diagram with techni-
cal hints.

4. ADDING REFLECTION TO THE DATA
MODEL

The data model for object diagrams (Figure 2) and story
diagrams (Figure 3) is quite simple, but it lacks a reflection
mechanism than can still be used after compiling Java to
JavaScript4. We decided to create a HasReflectiveAccess

interface (Figure 4) that the interpreter can use to interact
with the data model.

Figure 2: The object diagram data model

A JUnit test suite for both data models verifies the expected
behaviour for field access and attribute assignments. The
traditional test driven development allows us to implement
the HasReflectiveAccess interface for each class without
having to wait for the GWT compiler.

5. THE INTERPRETER
With the data model in place we can start working on the
interpreter itself. Every year our students have to imple-

3The object diagrams of NT2OD were originally visual-
ized by misusing the class diagrams produced by http:
//yuml.me. As their service suffered an extended downtime
we used the opportunity to create our own implementation
that supported object and story diagrams.
4see https://code.google.com/webtoolkit/doc/latest/
DevGuideCodingBasicsCompatibility.html

Figure 3: The story diagram data model

Figure 4: The HasReflectiveAccess interface

ment a story diagram interpreter5. Now it is time to do the
exercise ourselves. As in the lecture, we are using a stack
based approach for the matching algorithm in order to ease
debugging compared to a recursive implementation.

Figure 5 shows the three classes that make up the imple-
mentation:

• The Interpreter that is initialized by setting a Sto-

ryDiagram and an ObjectDiagram. The execute()

method is then used to match and apply the story
diagram to the first or all occurences.

• Internally a stack of Steps is used in the matching
process.

• Instances of the Feature class are used to remember
source and target objects for matched features in the
story diagram.

Using JUnit tests, we were able to, again, implement the

5see http://seblog.cs.uni-kassel.de/fileadmin/
se/courses/MDESS10/MDE04RuleMatching/
MDE04RuleMatching.html

15

http://yuml.me
http://yuml.me
https://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsCompatibility.html
https://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsCompatibility.html
http://seblog.cs.uni-kassel.de/fileadmin/se/courses/MDESS10/MDE04RuleMatching/MDE04RuleMatching.html
http://seblog.cs.uni-kassel.de/fileadmin/se/courses/MDESS10/MDE04RuleMatching/MDE04RuleMatching.html
http://seblog.cs.uni-kassel.de/fileadmin/se/courses/MDESS10/MDE04RuleMatching/MDE04RuleMatching.html

Figure 5: Important elements of the interpreter

complete matching algorithm without waiting for the GWT
compiler.

At the time of writing this paper the code already passes
the JUnit tests for matching the story diagram to the ob-
ject diagram and the execution of create and delete expres-
sions. Development is now focusing on negative and optional
matches.

6. USING THE INTERPRETER IN NT2OD
The NT2OD workflow for creating a JUnit test for a textual
scenario description consists of the following steps:

1. Parse the scenario description.

2. Render grammatical relations and simple object dia-
gram.

3. Create a working copy of the object diagram by cloning
it.

4. Collect meta information by asking recommenders for
story diagrams they would apply to the object dia-
gram.

5. Create a technical object diagram by executing the
story diagrams on the object diagram copy.

6. Use the technical object diagrams to generate a JUnit
test.

The mentioned recommenders are work in progress but we
have already implemented recommenders that work on back-
ends like YAGO2 [7] and vornamen.com. For the example

sentence in Listing 1 the vornamen.com based recommender
will create a story diagram as in Figure 6.

o:UMLObject
<create>
attributes

name==“Alice“
type==null
name:=null

type:=“Person“

a:UMLAttribute

name:=“name“
type:=“String“
value:=“Alice“

Figure 6: An example story diagram

NT2OD visualizes the list of story diagram under the “Tech-
nical hints” tab for the scenario step. In order not to irritate
the user with the internal data model we are working on
a graphical representation of story diagrams on the same
meta-level as the object diagram.

Nevertheless, in step 5 of the NT2OD workflow the simple
object diagram and story diagram are used to initialize and
execute our new interpreter. The resulting technical object
diagram now contains type information that can be used for
code generation.

7. RELATED WORK
Traditional story diagram interpreters rely on the Java re-
flection mechanism to inspect the working graph and the
story diagram. Unfortunately, JavaScript does not support
reflection natively and GWT does not generate a replace-
ment we could exploit. Therefore the interpreter implemen-
tation [6] working on an EMF based data model could not
simply be cross compiled to JavaScript. Nevertheless, their
work inspired us to start implementing our own interpreter
and data model with a reflection mechanism that still works
after cross compiling it to JavaScript.

8. CONCLUSION AND FURTHER WORK
In the context of NT2OD we are implementing tool support
for the early steps of the Fujaba unified process as a web
application. In this paper we add a reflection mechanism
to the data model that can be cross compiled and used in
JavaScript. We also implemented an interpreter that works
on this data model and is used in NT2OD to add technical
meta information to simple object diagrams. This is the
first and important step towards a browser based version of
Fujaba.

In the future we are planning to test several recommenders
that are based on resources like existing ontologies and class
diagrams. The user interface will also receive a diagram
editor, maybe based on GWT-UML6.

9. REFERENCES
[1] M.-C. de Marneffe, B. MacCartney, and C. D. Manning.

Generating Typed Dependency Parses from Phrase
Structure Parses. In Proceedings of the IEEE / ACL
2006 Workshop on Spoken Language Technology. The
Stanford Natural Language Processing Group, 2006.

6http://http://code.google.com/p/gwtuml/

16

vornamen.com
vornamen.com
http://http://code.google.com/p/gwtuml/

[2] J. Dreyer, C. Eickhoff, and A. Zündorf. Semantic
breadcrumbs - Applying sematic hints from the web to
NT2OD. In S. de Cesare, editor, ODISE’11:
Ontology-Driven Information Systems Engineering,
London, GB, Apr. 2011.

[3] J. Dreyer, S. Müller, B. Grusie, and A. Zündorf.
NT2OD Online - Bringing Natural Text 2 Object
Diagram to the web. In S. de Cesare, editor, ODiSE’10:
Ontology-Driven Software Engineering Proceedings,
Reno/Tahoe, Nevada, USA, Oct. 2010.

[4] M. Fowler. A UML testing framework. Software
Development, 7:41–46, April 1999.

[5] L. Geiger. Automatische JUnit Testgenerierung aus
UML-Szenarien mit Fujaba. Master’s thesis,
Braunschweig, Germany, 2004. Diploma Thesis.

[6] H. Giese, S. Hildebrandt, and A. Seibel. Improved
Flexibility and Scalability by Interpreting Story
Diagrams. Electronic Communications of the EASST,
18, 2009.

[7] J. Hoffart, F. M. Suchanek, K. Berberich, and
G. Weikum. YAGO2: a spatially and temporally
enhanced knowledge base from Wikipedia. Research
Report MPI-I-2010-5-007, Max-Planck-Institut für
Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken,
Germany, November 2010.

[8] A. Zündorf and J. Dreyer. NT2OD - From natural text
to object diagram. In P. V. Gorp, editor, Fujaba Days
2009: proceedings of the 7th international Fujaba days,
pages 56–58. Technische Universiteit Eindhoven,
November 2009.

17

Yet another TGG Engine?

Interpreted Triple Graph Grammars with Fujaba

Nina Geiger, Bernhard Grusie, Andreas Koch, Albert Zündorf
Kassel University, Software Engineering,

Department of Computer Science and Electrical Engineering,
Wilhelmshöher Allee 73,
34121 Kassel, Germany

[nina.geiger | bgr | andreas.koch | zuendorf]@cs.uni-kassel.de
http://www.se.eecs.uni-kassel.de/

ABSTRACT
Invented by Andy Schürr in 1994, Triple Graph Grammars
have become a decent way for bidirectional mapping and
transformation. However, there is still the impression that
there are more Triple Graph Grammar engines and approaches
out there than applications really using them. Despite this
knowledge, we have decided to build yet another TGG im-
plementation. The implementation described in this paper
is based on the work of Robert Wagner [6], but has some re-
markable differences. These differences lie in the execution
semantics and reuse of objects of the target document, as
well as in the less restricted conditions for source and target
models. We chose to have an interpreted rule execution be-
cause we wanted our design to be as flexible and incremental
as possible.

1. INTRODUCTION
The goal of the FAST European project [10] was to create

tools to build complex client side gadgets. These gadgets
run inside a web browser and are defined as small appli-
cations combining different screens and having a specified
screen flow. The client side gadgets rely on semantic back-
end services. Thus we had to deal with different ontologies
which had to be transformed into each other. Having our
background in software engineering we decided to treat the
ontologies as meta models and do the transformation using
Triple Graph Grammars.

1.1 Triple Graph Grammars
In 1971 T.W.Pratt invented pair grammars as declarative

approach for model transformations [7]. These pair gram-
mars were mostly designed to transform strings into graph
languages and vice versa. In 1994 Andy Schürr extended
these pair grammars to Triple Graph Grammars (TGGs)
[8]. Triple Graphs are defined as pairs of graphs which are
linked by a so called correspondence graph or traceability
graph. The TGGs always consist of a set of rules that are
defined on the meta model of the Triple Graph. This means
the rules contain meta model elements of the source and tar-
get graphs which will be transformed into each other. Ad-
ditionally the rules contain elements of the correspondence
graph which are used for the mapping of source and target
elements. The execution of TGGs is performed by specific
graph engines which will also determine the hierarchy of rule
execution. TGGs can be used for the transformation and
synchronisation of graph based models. The transformation

can be executed from source to target model (forward) and
vice versa (backward). The synchronisation uses the corre-
spondence graph to determine the mapping between both of
the models. The approach presented in this paper defines a
TGG engine with interpreted rule execution as well as rule
definition using existing editors.

1.2 Why another TGG engine?
The problem we had to solve was the transformation of

different ontologies into each other. Doing this using Triple
Graph Grammars was obvious for us. Since the whole de-
velopment process was based on Fujaba and we use Fujaba
for the generation of web enabled code, we wanted to stay in
this domain. Analyzing existing TGG engines, the work of
Robert Wagner [2] was inspected in more depth. The usage
of the MoTE and MoRTEn Fujaba plugins would have been
the first step, but we soon recognized some disadvantages.
First of all, these engine and plugins were implemented for
stand-alone Fujaba and we would have had to port the editor
and engine to Fujaba for Eclipse. Nevertheless, it still was
the only Fujaba compliant engine, since the others out there
use different meta models. After discussing pros and cons
of different approaches and solutions we decided to have a
completely new implementation based on the ideas of Robert
Wagner. Adding more value to the new one, we additionally
decided to break with the generation of forward, backward
and mapping rules as storydiagrams. Instead we wanted to
have a completely interpreted approach where rules can be
edited at runtime. To ease the edition of rules, we stayed
with the storydiagram editor of Fujaba and only changed the
semantics to use this as TGG rule editor. The approach pre-
sented in this paper shows the first version of our new TGG
interpreter which was implemented by Bernhard Grusie dur-
ing his master thesis [3].

The paper is structured as follows: Section 2 presents an
overview of the TGG interpreter and the associated rule
editor. Section 2.1 describes the execution semantics of our
approach and the graph-pattern matching in more depth.
Section 3 shows similarities and differences of the approach
presented and other TGG engines. Section 4 summarizes our
work and points out future work to be carried out, problems
which have to be solved and critical points which will have
to be reviewed.

18

Figure 1: Mapped example documents

2. INTERPRETED TRIPLE GRAPH GRAM-
MARS WITH FUJABA

The Triple interactive Graph grammar Interpreter (TiG)
[3] is used to interactively specify and run Triple Graph
Grammars on any data model. The rules specified with our
editor do not have to be compiled to source code. The ele-
ments of source and target models do not have to fulfill many
preconditions, except having a parameterless constructor.
This way, we are able to use the TiG for the transformation
and mapping of domain specific ontologies as used in the
FAST project. These ontology models have to be run in-
side the web browser and thus will be derived by the Object
class.

Using our approach rule execution can be monitored by
exploring the runtime object structure with eDobs [1]. While
the rules can be changed on the fly and the eDobs view is dy-
namically updated, the rule editing process can be done step
by step. The TiG approach uses standard Fujaba story dia-
grams [11] as rule editor. This has several advantages. First
of all, we did not need to implement or adapt any Triple
Graph rule editor. Secondly, the rule execution flow can be
determined by the story diagram control flow. This means,
we are able to describe rule hierarchies with the commonly
known patterns of storydiagrams. However, there exist some
remarks for the rule creation. To specify a new set of rules
for the TiG engine, the user has to create a storydiagram
called trafoSpec() in the associated Fujaba project. The
engine will automatically search the rules inside the body
of this storydiagram and read out the content at runtime.
The syntax of the TGG rules is based on the one of Robert
Wagner’s editor. Objects having no special signing (black
ones) will be treated as context of the rule. These objects
have to be present in the runtime structure for the rule to

be able to be executed. Objects having create or delete

stereotypes will either be created or deleted during the exe-
cution of the rule. The same holds for links. Attributes can
be assigned or checked the same ways it is done in storydia-
grams. The first story activity of the trafoSpec() diagram
always has to contain the axiomatic rule. This means it is
only valid if all contained objects and links have the create

stereotype assigned. The correspondence graph of the TiG
approach consists of objects of class MapNode. This class
has source and target associations to class Object. This
way, correspondence nodes can be linked to the appropri-
ate objects in the data structure. The reverse direction of
these links is implemented using hash tables within the rule
interpreter. Thus, the targeted objects do not need to im-
plement any predefined interface but our TiG interpreter is
applicable to general object structures. Rules can be spec-
ified using the standard storydiagram control flows. How-
ever, cycles inside the control flow will result in invalid rule
diagrams. The actual execution of the rules uses the eDobs
and the Java Debug Interface (JDI) [5] to retrieve the run-
time object structure from the heap. After retrieving the
runtime data TiG executes the specified rules and changes
the data structure accordingly. These changes are shown in
the eDobs view, instantly. An example eDobs structure is
shown in Figure 1.

Using these technologies enables us to have an interac-
tive way of triple graph rule specification. It is possible to
change the rules inside the Fujaba story diagram and run
them directly to see how the specified rules change the ob-
ject structure. This way, we can have instant feedback of
our rule execution and we may change the rule again if their
effects do not reflect our intentions or expectations.

19

Figure 2: Example TGG transformation diagram

2.1 Pattern matching by running example
As running example for this paper we use the transforma-

tion of object structures describing motor races into object
structures of a marketing enterprise organizing promotion
events. In Figure 1, object r0 (upper left corner) represents
the root of the motor race data structure. In addition, Fig-
ure 1 shows on the left three Race objects r11, r3, and r15.
Each Race object stores the name of its series, the year of
its occurrence and the name of the race circuit. The root of
the marketing enterprise object structure is represented by
the PromotionOrg object p1 (upper right corner of Figure
1). The marketing enterprise object structure uses explicit
Year objects referencing Category objects for different kinds
of sport events occurring in that year. For example, Year y9

references two Category objects c12 and c10 for Formula 1
and Formula 3000 races, respectively. Each Category object
references all the Events of that sport in that year. In our
example, there is only one Event per Year and Category.

Adding a new Race to the RaceOrganisation object struc-
ture, a mapping to the PromotionOrg object structure should
create a new Events object and sort it into the existing
Year and Category object hierarchy. Only, if the new Race

uses a Category and Year combination that not yet exists,
new Category and or Year objects are created. Due to our
knowledge, the reuse of old object hierarchies is a problem
for traditional TGG approaches. Therefore, we have de-
veloped a new TGG semantics that tries to reuse existing
object structures whenever possible.

Figure 2 shows the TGG diagram used for our example
mapping. As stated above, the traditional Fujaba storydi-
agram editor is used for rule definition. Since one activity
always defines exactly one rule we are able to use the sto-

rydiagram transitions to express a hierarchy on the rules.
We do not use events or conditions on the transitions and
we consider cycles as invalid diagrams, yet. The execution
order of rules is determined by the control flow of the sto-
rydiagrams in the same way the Code Generator does. The
MapNodes of the correspondence graph do not contain any
hierarchical information and are not linked with each other.
The hierarchy of TGG rules in TiG is derived from the story-
diagrams only. The rule execution order is always computed
in a deterministic way, leading to exactly one rule being able
to be executed.

TiG is able to perform forward and backward transforma-
tions of object structures. Depending on the chosen option
the rules are interpreted in different ways. For a forward
transformation, the TGG interpreter searches for a match
of the context elements of a rule and for all elements of the
source object structure. A usual TGG approach would now
create a copy of the new elements of the target structure
and of the new MapNodes and insert it into the host graph.
In our approach there exists a difference between elements
of the target model being connected to MapNodes by the rule
and elements of the target model without direct connection
to MapNodes. Those elements with connection to a MapN-

ode will always be created during rule execution and linked
to the corresponding element in the source structure. The
elements of the target model without connection to MapN-

odes will be reused and connected with appropriate objects
in the target structure whenever possible. We achieve this
behavior by continuing the pattern matching process after
finding the match for the context and for the source struc-
ture. We additionally try to find matches in the target ob-
ject structure for as many target rule objects as possible. If

20

we find an existing object in the target structure that ful-
fills all available attribute and link conditions, we reuse that
existing object rather than creating a new object for the tar-
get structure. Only target objects that are already used by
another MapNode will not be reused. This way it is possi-
ble to reuse objects having additional links to other objects.
This may lead to additional information being valid in the
target object structure that was not explicitly intended by
the TGG rule. Often this additional information contains
annotations or layout information that do not violate any
object structure and is worth having. Rules can be specified
using attribute conditions, which normally leads to exact
object reuse and prevents the reuse of objects with wrong
information.

In our example, the second rule of Figure 2 relates a Race

object to an Events object ev that is attached to a Cate-

gory object cat that in turn is attached to a Year object y

that is attached to a context object po, the root of the Pro-

motionOrg structure. If we apply this TGG rule to a new
Race object that has not yet been mapped, the rule inter-
preter first matches the new Race object, its parent context
object ro of type RaceOrganisation, and the MapNode map1

that maps ro to the PromotionOrg object po. This forms
a valid match for the forward execution of our rule. Next,
the TGG interpreter checks whether the matched race ob-
ject has already a MapNode attached to it. If such a MapNode

exists, it determines the mapping for the Events object ev

of our rule. In our example, the new Race object of our host
graph has no MapNode attached to it and thus the TGG in-
terpreter knows that it has to create a new mapping. For
this new mapping, the TGG interpreter tries to reuse exist-
ing host graph objects whenever possible. Thus, the TGG
interpreter continues the matching process by trying to find
matches for the Year object y and the Category object cat.
Therefore, the TGG interpreter looks up years links leav-
ing the match of the PromotionOrg object po. Each Year

object that is found in the host graph is checked for the at-
tribute condition depicted in Figure 2. Note, we use Velocity
[9] templates as attribute condition languages. This allows
our interpreter to do some simple string manipulation, com-
putation, and comparisons on attribute values. If the year

attribute matches the season attribute of our Race, the Year
object is reused, otherwise a new Year object is created. Af-
ter handling the Year object, the interpreter continues to
search for a match of the Category object cat. If we have
reused an old Year object, there might also exist an old Cat-

egory object attached to that Year object that matches our
needs. In case of a new Year object, we will fail to find an
attached Category object. If we fail to find a matching old
Category object, the TGG interpreter will create a new one.

In our rule, the Events object ev is connected to a new
MapNode via a target link. Thus, the ev object is handled
differently. If the original Race has already got a MapNode at-
tached to it, this MapNode provides us with the Events object
to be reused for the mapping. If there is no old MapNode, as
in our example, the TGG rule will create a new MapNode and
a new exclusive Events object. Thus, in our example, the
TGG interpreter does not try to find existing Events objects
attached to the match of the Category object cat. Instead,
the TGG interpreter creates a new Events object and a new
MapNode object and the three links attached to these objects
and it executes the depicted attribute assignment.

In summary, our TGG interpreter distinguishes between

elements of the target model attached to MapNodes and el-
ements of the target model without MapNodes. Elements of
the target model without MapNodes are reused when possi-
ble. This is achieved by continuing the pattern matching
process for the elements of the target model without MapN-

odes. In principle, this approach has the disadvantage that
the degree of reuse somehow depends on our pattern match-
ing strategy. In case of a complex target object structure,
the TGG interpreter starts from the context elements in or-
der to find target objects for reuse. If there are alternative
paths how a certain object may be reached, the TGG in-
terpreter will use the ”most efficient” one for its search. If
this ”efficient” path fails on some early objects, that object
will be created and continuing search from that new node
will fail from that on. Thus, in complicated cases the TGG
interpreter might fail to reuse existing objects that it might
have found if it would have used another search strategy.
We tried to address this problem in our TGG interpreter by
using a kind of breadth-first strategy for the search plan con-
struction. This means, if there are multiple paths leading to
a target object and if one of this paths fails, the TGG inter-
preter first tries to follow alternative paths before it eventu-
ally creates a new node. Still, we are not sure whether this
guarantees maximal reuse in all cases. However, until now,
these problems did not occur in our applications translated
using the TiG approach.

A special problem for TGG approaches is the handling of
deleted source elements and of changes to source elements
that invalid existing mappings. For example the change of
the season attribute of a Race object requires that the cor-
responding Events object is moved to another Year object.
In our example, this also requires the move to another Cate-
gory object. In principle, the old Year and Category objects
might be deleted, if they are no longer used. Since our TGG
semantics advocates for the reuse of existing objects when-
ever possible, our TGG interpreter will just establish the
new target structure without deleting target elements of the
no longer valid old match. We keep the potentially unused
elements because later transformations might reuse them.
Thereby, we keep manual annotations on those old objects.
If a source element is actually deleted, our TGG interpreter
notices the orphan MapNode and deletes the corresponding
target node, too. However, additional target elements cre-
ated by the old rule execution but not attached to a MapNode

will be kept for later reuse.

3. RELATED WORK
As stated in 1.2 we based our interpreter on the work done

by Robert Wagner [6]. While this work needs the rules to
be compiled to source code before executing the rules, our
approach allows for runtime rule editing and does not need
any code generation. The Triple Graph implementation ex-
plained in [4] is also based on the work of Robert Wagner.
Similar to our approach it has support for incremental model
transformations and reuse of target model structures. How-
ever, while this approach uses connection form every source
or target object to correspondence nodes, the reuse mecha-
nism is slightly different from the one presented in our ap-
proach. In TiG it is possible to have elements in the source
or target object structure which do not have any connection
to correspondence nodes. This enables us to use e.g. one
Year object for multiple Category objects. Another differ-
ence to the approach presented in [4] is the creation of rule

21

execution orders. While the rule hierarchy of the Potsdam
implementation is built upon links in the correspondence
nodes, the TiG determines the rule order from the storydi-
agram control flow.

4. SUMMARY AND FUTURE WORK
Our TGG interpreter imposes a minimal impact on the

participating object structures. The MapNodes use hash
tables to store the reverse direction of their source and tar-
get links. Therefore, the application classes do not need to
implement any special interface.

Using an interpreter, our TGG approach is very flexible
and especially tuned for incremental mappings triggered by
change events. If e.g. the name of a Category object is
changed, this Category object could be used as a start-
ing point for the mapping of a backward execution of our
second TGG rule. Using multiple start points for the pat-
tern matching process is somewhat complicated for compiler
based approaches. In addition, the interpreter approach
facilitated the implementation of our partial object reuse
strategy for the target object structures. While it is surely
possible to do this with a compiler based approach, too, we
had no instant idea how this could easily be done. For the
interpreter this was easy to achieve.

Our TGG approach introduces a new TGG semantics. El-
ements of the target model attached to MapNodes are han-
dled as in classical TGG semantics. Elements of the target
model without MapNodes reuse existing host graph objects
in the target structure as much as possible. Classical TGG
approaches can reach this effect to a certain degree using
optional nodes. However, optional nodes usually have cer-
tain restrictions (two optional nodes may not be connected
by links) that restrict their general applicability. Thus, our
new TGG semantics gives the user additional flexibility.

Due to our experiences, our new TGG semantics is es-
pecially useful for incremental re-transformations. If rules
are executed again, after some changes to the source model,
our TGG interpreter manages to identify target objects that
do not longer match. In addition it frequently manages to
identify alternative target objects that now match. Thus,
the target structure is reconfigured using existing objects
instead of the creation of new objects. Thereby, additional
manual changes to reused target objects (and e.g. layout
information) survive.

We also have made promising experiences with the evo-
lution of transformation rules in case of existing mappings.
In our example projects, we have developed the transforma-
tion rules interactively. After applying a certain version of
the rules to an example object structure, we modified and
extended some rules and then we just re-ran the transforma-
tion. In most cases the TGG interpreter correctly removed
old mappings that were no longer valid and replaced them
by new appropriate mappings. During this remapping, the
reuse of target objects resulted in minimal changes to the
target structure keeping manual annotations and e.g. the
eDobs layout of the object structure almost intact.

Our current implementation has still some bugs under
work. In addition, the current TGG interpreter relies on
eDobs for the analysis of and access to the host graph. While
this has the advantage of an uniform access to applications
running remote or in the TGG interpreter VM or in a de-
bugger VM, this creates a certain runtime overhead. Gener-
ally, we have the problem that the TGG interpreter uses the

Fujaba editors to access the TGG rules. For a standalone
application, it would be nice to have a small runtime library
allowing to represent the TGG rules without the need to
add all the Fujaba jars to your application. Finally, we did
not yet implement the incremental triggering of TGG rules
by change events. This would enable a really incremental
approach, transforming only changed elements rather than
analyzing the whole source object structure. Once these
technical problems are solved, we plan to look into extended
rule features like negative elements. Further work lies in the
analysis of rule execution order from storydiagram control
flow. We plan to have additional features like conditions at
transitions between the activities, here.

5. REFERENCES
[1] L. Geiger and A. Zündorf. eDOBS - Graphical

Debugging for Eclipse. Natal, Brasil, September 2006.

[2] H. Giese and R. Wagner. Incremental model
synchronization with triple graph grammars. In
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio,
editors, Proc. of the 9th International Conference on
Model Driven Engineering Languages and Systems
(MoDELS), Genova, Italy, volume 4199 of Lecture
Notes in Computer Science (LNCS), pages 543–557.
Springer Verlag, 10 2006.

[3] B. Grusie. Ein objektorientierter, interaktiver triple
graph grammatik interpreter. Master’s thesis,
Universität Kassel, Fachgebiet Software Engineering,
2010.

[4] S. Hildebrandt. Effiziente modellsynchronisation mit
triple-graph-grammatiken durch wiederverwendung
von transformationsergebnissen, 2007.

[5] JDI - Java Debug Interface Specification.
http://download.oracle.com/javase/6/docs/jdk/api/
jpda/jdi/index.html, 2011.

[6] E. Kindler and R. Wagner. Triple graph grammars:
Concepts, extensions, implementations, and
application scenarios. Technical report, Software
Engineering Group, Department of Computer Science,
University of Paderborn, 2007.

[7] T. W. Pratt. Pair grammars, graph languages and
string-to-graph translations. J. Comput. Syst. Sci.,
5(6):560–595, 1971.

[8] A. Schürr. Specification of graph translators with
triple graph grammars. In in Proc. of the 20th Int.
Workshop on Graph-Theoretic Concepts in Computer
Science (WG ‘94), Herrsching (D. Springer, 1995).

[9] Apache Velocity User Guide.
http://velocity.apache.org/engine/releases/velocity-
1.5/user-guide.html,
2011.

[10] FAST. http://fast.morfeo-project.eu/, 2011.

[11] A. Zündorf. Rigorous object oriented software
development. Habilitation Thesis, University of
Paderborn, 2001.

22

A Master Level Course on Modeling Self-Adaptive Systems
with Graph Transformations

Matthias Tichy
Organic Computing, Department of Computer Science

University of Augsburg, Augsburg, Germany
tichy@informatik.uni-augsburg.de

ABSTRACT
A growing emphasis in software and systems development is
being laid on the integration of self-x characteristics like self-
healing, self-adaption, self-optimization. More often than
not those characteristics can be modeled in terms of graphs
and graph transformations. At the Organic Computing
group at the University of Augsburg we addressed the topic
of modeling self-adaptive systems in a semester long course
at the master level. It was designed to contain extensive
practical applications of software modeling tools to go along
with the lectures. We employed GROOVE and Fujaba as
tools for the practical assignments w.r.t. to graph transfor-
mations. We report about the course topics, the practical
assignments and lessons learned.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Design

Keywords
Self-X, model-driven development, graph transformations,
teaching, Fujaba

1. INTRODUCTION
The current trend for the increasing embedding of software
in technical systems is accompanied by requirements that
these technical systems should be working as good as pos-
sible by optimizing itself and adapting to changes in the
environment or the users needs.

This requirement adds additional complexity to the al-
ready complex distributed software in todays embedded sys-
tems. Model-driven development approaches are employed
to counter this growing complexity by abstracting from de-
tails of the hardware platform or the underlying middleware
as far as possible. Model-driven approaches are often built
on domain specific languages which are tailored to the prob-
lems and needs of a specific domain.

Kramer and Magee [10] suggest to adapt and to use the
three layer architecture of Gat [5] for self-adaptive systems
consisting of the following layers: (1) goal management, (2)
change management, and (3) component control. The com-
ponent control layer does contain the architectural configu-
ration of the self-adaptive systems, i.e. the components and

their connections that are active in a certain configuration.
Besides the execution of the components, this layer is re-
sponsible for the execution of reconfiguration plans. These
plans, which consist of actions like adding, removing, and
replacing of components and connectors, are stored in the
change management layer and are executed in response to
events. The plans are computed in the goal management
layer and correspond to goals.

The graph transformation formalism is a natural fit for
the specification of structural self-adaption as envisioned by
Kramer and Magee. A number of different approaches based
on graph transformations have been developed in the past
[17, 11, 19, 8] including our own [18] for the modeling of
self-adaptive systems.

In the master level course ”Modeling self-adaptive systems”
at the University of Augsburg in the winter term 2010/2011,
we took the challenge to give an overview about model-
driven approaches for the development of self-adaptive sys-
tems. The lectures contain material about all parts of the
three layer architecture. So, the students did learn about
components and architectures, the specification of behav-
ior for the components, specification of reconfiguration ac-
tions with graph transformations, automated planning for
the computation of reconfiguration plans, and requirements
for self-adaptive systems. We did focus on the aspect of
modeling reconfigurations using graph transformations. We
did employ GROOVE and Fujaba as tools. The course was
attended by nine students as the master program at the Uni-
versity of Augsburg as well as the Organic Computing chair
is rather new.

Sections 2 and 3 contain a presentation of the topics for
the lectures and the practical assignments, respectively. We
conclude with a summary of lessons learned and an outlook
on future work in Section 4.

2. LECTURE TOPICS
There is currently no standard approach for the development
of self-adaptive systems even less a standard text book which
can be used in lectures because this research area is new
and addresses a wide variety of problems. Additionally, we
intended to provide the students with lecture topics that
they can also use in non self-adaptive systems.

Therefore, we decided to build the lecture on the follow-
ing three themes being conscious of the fact that these

23

themes only cover a small part of the current research on
self-adaption: (1) model-driven development, (2) architec-
tural/structural approaches to self-adaption, and (3) prac-
tical experience with modeling tools.

The lecture was divided into the following content blocks:

Introduction In the introduction, we reviewed several ex-
amples of technical systems which include a heavy
amount of software as e.g. current airplanes. We fi-
nally did take a look at the autonomous vehicles of the
RailCab-project at the University of Paderborn. The
software of these autonomous vehicles exhibits many
characteristics of self-x systems like self-healing, self-
optimizing, self-adaption. We employed the RailCab-
project as a running example for the lectures.

Definitions This content block begins with an introduction
to modeling and model-driven development. The main
part of this lecture deals with the different terms which
are used in the research community like self-adaption,
organic computing. As there are currently no standard
definitions for this term, several different definitions
were given and discussed with the students.

Architecture One of the main themes of the lectures is
self-adaption by architectural reconfiguration. There-
fore, we reviewed in this content block definitions of
architecture, configuration and components as well as
architecture description languages. Our focus was laid
on the architectural patterns for self-adaptive systems.
This includes open and closed control loops as well as
patterns as the aforementioned three layer architecture
and the MAPE-K architecture [13].

Graph transformations We focus in the lecture on the
structural adaptation as one kind of self-adaptation.
We introduced graph transformations as basic formal-
ism for the specification of single structural changes.
As specific graph transformation formalism we intro-
duced GROOVE [14], Story Diagrams [3] and Compo-
nent Story Diagrams [18]. The last one is a variant of
Story Diagrams which specifically targets architectural
reconfiguration in self-adaptive systems.

Automated Planning According to the three layer archi-
tecture, plans are an ordered set of single actions which
fulfill a certain goal. Automated planning (cf. [7]) is
the discipline which targets the computation of such
plans. The Planning Domain Definition Language
(PDDL) [4] is a textual modeling language for planning
problems. In this content block of the lecture we in-
troduced the PDDL as well as different planning algo-
rithms. Graph transformations can be easily mapped
to actions in the PDDL with the exception of node
creation and deletion. Therefore, automated planning
approaches can be integrated with graph transforma-
tions.

Automata / Statecharts In this content block, we intro-
duced automata, timed automata and Statecharts and
their varying semantics for the model-driven develop-
ment of the state-based behavior of components in self-
adaptive systems.

Requirement Languages Finally, we did take a short
look on requirements languages for self-adaptive sys-
tems which focus on the inherent uncertainty of self-
adaptive systems. Specifically, we did take a look at
RELAX [20].

The lecture can be extended by content blocks about quanti-
tative analysis for self-adaptive systems like stochastic petri
nets or probabilistic automata for availability and reliability
analysis.

3. PRACTICAL ASSIGNMENTS
The lecture topics are accompanied by practical assignments
for groups of two students. We decided to use a tool-centered
approach for the practical assignments as we believe that
students are better motivated when using tools and trying
to get their solutions working than doing pen and paper
assignments – if the tools work.

After a presentation of the running example, we describe
those practical assignments which deal with graph transfor-
mations. We keep to simple examples due to space con-
straints.

3.1 Running Example
We use a self-healing distributed system as a running exam-
ple throughout the practical assignments. The example is
inspired from distributed embedded systems as e.g. in au-
tomotive systems. Currently, neither self-adaption nor self-
healing is employed in current automotive systems but en-
visioned in current research approaches [1, 12, 9].

The distributed system consists of a hardware layer and a
software layer. The hardware layer is built of nodes, called
electronic control unit (ECU), and busses which connect an
arbitrary number of nodes. The software layer consists of a
set of component types which need to be instantiated on the
ECUs in order for the system to be operating. Each com-
ponent type may be available in different variants. Compo-
nent types additionally specify required connections between
their instances. The corresponding connections of the com-
ponent instances are called links.

Finally, component variants and connections require certain
types of resources (e.g. RAM) from an ECU or a bus, re-
spectively. EUCs and busses provide those resources. We
refrained from using real hardware and kept the scenario to
simple simulations. This allowed us to concentrate on the
modeling part and not to mess with the additional complex-
ity of embedded hardware and software.

We employed other examples as e.g. the famous elevator
and ferryman examples in the practical assignments as well.
They are much simpler than the self-healing scenario and
therefore provide an easier introduction to the different mod-
eling formalism and corresponding tools.

3.2 Modeling the structure
The first assignment consisted of modeling the structure of
the self-healing system. Figure 1 shows the resulting class
diagram.

24

Figure 1: Class diagram of the self-healing example.

A second part of the structural modeling deals with a sim-
ulation environment. The simulation environment is event-
driven, i.e. it contains a sorted set of events. The events
are sorted with respect to the time the events should be
executed. Examples of events are failures of component in-
stance, busses and nodes as well as self-healing actions.

3.3 Modeling self-healing actions
Self-healing actions in the running examples are starting
and stopping of component instances, repairing of nodes and
busses as well as connection the component instances. The
practical assignments were initially restricted to stopping
and starting of component instances.

We initially used GROOVE as the tool for the specification
and execution of self-healing actions as it enables an easy and
fast way to introduce graph transformations to new people.
We switched to Fujaba after the students were familiar with
graph transformation in order to employ its code generation
facilities and tight integration with Java.

Figure 2 shows a story diagram which models the creation
of a new instance of a component. The story pattern se-
lects a running node and instantiates an arbitrary compo-
nent variant. Additionally, a failure event with a trigger
time is already created and added to the event queue.

In addition to the self-healing actions, the simulation envi-
ronment contains sensors which periodically measure system
properties like the system’s availability and output them to
files for post-processing (e.g. plotting).

3.4 Modeling a planning problem

The three layer architecture groups single actions into plans
which are executed in order to reach goals. In the context of
our self-healing system, goals could be that every component
is instantiated somewhere in the system and each component
instance is correctly connected.

(:action startComponent
:parameters (?n -Node ?inst - ComponentInstance)
:vars (?variant - ComponentVariant ?c - Component)
:condition (and

(not (instanceWorking ?inst))
(variants ?c ?variant)
(instances ?variant ?inst)
(working ?n)

)
:effect (and

(instanceWorking ?inst)
(running ?inst ?variant)
(runningOn ?n ?inst)

)
)

Algorithm 1: action startComponentInstance

We employed the planning software SGPlan in order to com-
pute repair plans for such self-healing systems. Algorithm
1 shows the specification of an action which instantiates a
non-working component. This action nicely resembles the
story diagram of Figure 2 without the event handling. The
event handling is not a part of the planning actions as they
are a part of the simulation environment.

Note that the PDDL does not support the creation and dele-
tion of objects. Therefore, we had to simulate that by the
predicate instanceWorking.

25

Figure 2: Event for instantiation of a component.

The following is a repair plan which is returned by SGPlan
which not only instantiates component CI1 but also moves
other component instances to other nodes (e.g. CI2 from
node E2 to node E4) in order to free up resources for the
instantiation of CI1 on node E2.

0.001: (UNCONNECTCOMPONENTINSTANCESBUS CI2 CI3 B2) [1]
1.002: (STOPCOMPONENT E2 CI2) [1]
2.003: (STARTCOMPONENT E2 CI1) [1]
3.004: (STOPCOMPONENT E4 CI3) [1]
4.005: (STARTCOMPONENT E3 CI3) [1]
5.006: (STARTCOMPONENT E3 CI2) [1]
6.007: (CONNECTCOMPONENTINSTANCESVIABUS CI1 CI2 B1) [1]
7.008: (CONNECTCOMPONENTINSTANCESVIAECU CI2 CI3) [1]

3.5 Integration with automated planners
Finally, the Fujaba models are integrated with the plans
which are returned by the SGPlan. For this, the Fujaba
models had to be closely aligned to the PDDL specification.
Then, after execution of the planner the resulting plan can
be executed by calling the story diagrams with the correct
arguments.

Due to time reasons, we did not consider the self-healing
scenario in these practical assignments., but only the simpler
ferryman problem.

4. CONCLUSIONS
We presented a course on modeling self-adaptive systems
with a focus on graph transformations in this paper. The
course is built around the three layer architecture for self-
adaptive systems and introduces techniques for several parts
of this architecture. We did focus on graph transformations
as formalism for the specification of actions. The course
was accompanied by practical assignments which heavily
employed existing tools like Fujaba.

4.1 Lessons Learned
We and the students learned a lot about self-adaptive sys-
tems as well as the pro and cons of requiring working with
concrete software tools. Overall the practical work with
tools increases the motivation of the students as they do
not only write text and draw boxes and lines on paper but
will test, refine, and improve their solutions until they work.
This is difficult using only pen and paper. However, the
employed tools have to be more polished than the typical
research prototype.

Concerning Fujaba, we decided to give the students an Augs-
burg version of Fujaba4Eclipse which we also used to develop
our sample solutions. According to our knowledge, in Pader-
born, Kassel, Tartu and elsewhere different individual ver-
sions of Fujaba4Eclipse are given to the students, too. We
did make an Ubuntu virtual machine available which con-
tained this Fujaba version as well as GROOVE and SGPlan.

In our opinion, it would be beneficial to join forces and de-
velop and maintain a single version of Fujaba for Education
similar to the old Fujaba Life [15] which would be available
at a central location.

This Fujaba for Education needs better, central and up-
to-date documentation than we have today. We provided
screencasts to demonstrate the standard activities like mod-
eling of class and story diagrams as well as code generation
and the integration with eDOBS similar to screencasts in
Kassel and Tartu. A central location for those screencasts
in the documentation (which must align with a single edu-
cational version of Fujaba) may also help.

Concerning Fujaba, the students were impressed with the
idea of graphical modeling of graph transformations and sub-
sequent code generation that can be actually used in normal

26

Java programs

Besides the question for better documentation, the students
did ask for automatic or better layouting. Another topic was
the support of design level debugging [6] in our version of
Fujaba which would greatly help in testing and debugging
the modeled specification. Finally, a better support for error
messages especially during code generation was on the stu-
dents’ wish list. The error messages (e.g. by the sequencer)
should be more specific about the error’s location or even
feed errors back as annotations or markups in the diagram.

We currently work on an automatic generation of PDDL
specifications from Fujaba models similar to [2]. PDDL ac-
tions more or less resemble story patterns but are more pow-
erful since universal and existential quantifiers are supported
in single actions. This was heavily used by the students when
implementing the PDDL actions. For a better integration,
we lobby for the inclusion of universal and existential quan-
tifiers in the new common SDM-Ecore model as proposed
by Stallmann [16] which is similar to the GROOVE syntax.

5. ACKNOWLEDGMENTS
Matthias Tichy is currently on leave from the Software En-
gineering Group at the University of Paderborn.

6. REFERENCES
[1] B. Becker, H. Giese, S. Neumann, M. Schenck, and

A. Treffer. Model-based extension of autosar for
architectural online reconfiguration. In S. Ghosh,
editor, MoDELS Workshops, volume 6002 of Lecture
Notes in Computer Science, pages 83–97. Springer,
2009.

[2] S. Edelkamp and A. Rensink. Graph transformation
and ai planning. In S. Edelkamp and J. Frank, editors,
Knowledge Engineering Competition (ICKEPS),
Canberra, Australia, September 2007. Australian
National University.

[3] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story Diagrams: A new Graph Rewrite Language
based on the Unified Modeling Language. In G. Engels
and G.Rozenberg, editors, Proc. of the 6th

International Workshop on Theory and Application of
Graph Transformation (TAGT), Paderborn, Germany,
LNCS 1764. Springer Verlag, 1998.

[4] M. Fox and D. Long. Pddl2.1: An extension to pddl
for expressing temporal planning domains. J. Artif.
Intell. Res. (JAIR), 20:61–124, 2003.

[5] E. Gat. Three-layer architectures. Artificial
Intelligence and Mobile Robots, 1997.

[6] L. Geiger and A. Zündorf. Design level debugging with
fujaba. In International Workshop on Graph-Based
Tools (GraBaTs), Barcelona, Spain, 2002.

[7] M. Ghallab, D. S. Nau, and P. Traverso. Automated
Planning: Theory and Practice. Morgan Kaufmann,
May 2004.

[8] M. H. Kacem, A. H. Kacem, M. Jmaiel, and K. Drira.
Describing dynamic software architectures using an
extended uml model. In SAC ’06: Proceedings of the
2006 ACM symposium on Applied computing, pages
1245–1249, New York, NY, USA, 2006. ACM Press.

[9] B. Klöpper, J. Meyer, M. Tichy, and S. Honiden.

Planning with utilities and state trajectories
constraints for self-healing in automotive systems. In
Proc. of the Fourth IEEE International Conference on
Self-Adaptive and Self-Organizing Systems Budapest,
Hungary, September 27-October 1, 2010, 2010.

[10] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In 2007 Future of Software
Engineering (May 23 - 25, 2007). International
Conference on Software Engineering, pages 259–268.
IEEE Computer Society, Washington, DC, USA, 2007.

[11] D. L. Métayer. Describing software architecture styles
using graph grammars. IEEE Transactions on
Software Engineering, 24(7):521–533, 1998.

[12] F. Nafz, H. Seebach, J. Holtmann, J. Meyer, M. Tichy,
W. Reif, and W. Schäfer. Designing self-healing in
automotive systems. In Proc. of the 7th International
Conference on Autonomic and Trusted Computing
(ATC 2010), Xi’an, China, 26-29 October, 2010.
Springer Verlag, 2010.

[13] M. Parashar, editor. Autonomic computing: concepts,
infrastructure, and applications. CRC Press, 2007.

[14] A. Rensink. The GROOVE simulator: A tool for state
space generation. In J. Pfalz, M. Nagl, and B. Böhlen,
editors, Applications of Graph Transformations with
Industrial Relevance (AGTIVE), volume 3062 of
Lecture Notes in Computer Science, pages 479–485.
Springer Verlag, 2004.

[15] C. Schulte, J. Magenheim, J. Niere, and W. Schäfer.
Thinking in objects and their collaboration:
Introducing object-oriented technology. Computer
Science Education, 13(4), December 2003.

[16] F. Stallmann. A Model-Driven Approach to
Multi-Agent System Design. PhD thesis, University of
Paderborn, Germany, 2009.

[17] G. Taentzer, M. Goedicke, and T. Meyer. Dynamic
change management by distributed graph
transformation: Towards configurable distributed
systems. In TAGT’98: Selected papers from the 6th
International Workshop on Theory and Application of
Graph Transformations, pages 179–193, London, UK,
2000. Springer-Verlag.

[18] M. Tichy, S. Henkler, J. Holtmann, and S. Oberthür.
Component story diagrams: A transformation
language for component structures in mechatronic
systems. In Postproc. of the 4th Workshop on
Object-oriented Modeling of Embedded Real-Time
Systems (OMER 4), Paderborn, Germany. HNI
Verlagsschriftenreihe, 2008.

[19] M. Wermelinger and J. L. Fiadeiro. A graph
transformation approach to software architecture
reconfiguration. Sci. Comput. Program.,
44(2):133–155, 2002.

[20] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng,
and J.-M. Bruel. Relax: Incorporating uncertainty
into the specification of self-adaptive systems. In RE
2009, 17th IEEE International Requirements
Engineering Conference, Atlanta, Georgia, USA,
August 31 - September 4, 2009, pages 79–88. IEEE
Computer Society, 2009.

27

Using Fujaba in Systems Modeling
A Teaching Experience Report

Artjom Lind, Ulrich Norbisrath
Institute of Computer Science, University of Tartu

J. Liivi 2, Tartu, Estonia
{FirstName.LastName}@ut.ee

Ruben Jubeh
University of Kassel
Kassel, Germany

ruben.jubeh@uni-kassel.de

ABSTRACT
In this paper, we will describe our experience in using Fujaba
in the Systems Modeling courses series at the University of
Tartu. The main focus is on the three aspects of modeling
Class Diagrams, Story Diagrams, and Story Boards in Fu-
jaba. We will outline how we taught the access to these skills
and how the students mastered them. We taught this course
with the strictly objects-first approach, first in theory, than
practically with Fujaba. We will show that Fujaba supports
strictly objects-first development conceptionally very good,
but is not accepted as a tool to help in doing the shift of
perspective by the students. Especially advanced students
deny the use of story driven modeling for their own devel-
opment projects. One major hurdle are here several serious
usability bugs in Fujaba4Eclipse, which we will point out.
These make the reasoning for the teacher actually employ-
ing Fujaba in their class even harder. We complement this
report with a couple of small tips and hints, which might be
useful for other teachers employing Fujaba in their classes
or teaching strictly objects-first and Story Driven Modeling.

1. INTRODUCTION
We have now taught systems modeling for four times at
the computer science department at the University of Tartu.
Three times, we employed Fujaba for showing Story Driven
Modeling (SDM) in this course. In the last version (fall
term 2010), we used Fujaba in more than two thirds of the
course. We covered the following parts: SDM with Fujaba,
design patterns, state machines, and petri nets. A specially
customized version of Fujaba4Eclipse from the University
of Kassel was used as practical support for the main part
of this course (excluding the state machines and petri net
part). This is the first time at the University of Tartu that
Fujaba was used for the major part of a compulsory course.
In the two courses before, Ruben Jubeh from University of
Kassel was teaching an intense week on story driven mod-
elling and design patterns as part of the course. We will
report here about the new course design and our experi-

ences teaching the course. The Fujaba related part of the
course was taught by one lecturer and one teaching assis-
tant. Our students are mainly master students, being often
employed by a software development company. This means
that most of the students have significant software develop-
ment experience, probably resulting in some of the problems
later explained.

It was a special requirement for this course to teach SDM
and strictly objects-first [1, 3]. As we have taught the sys-
tems modelling course already several times we discovered
that the students had major problems giving concrete exam-
ples and formulating scenarios. This was our main motivator
to teach story driven modelling and strictly objects-first in
such intensity this time. As Fujaba is still the only program
supporting SDM and generating fully executable code out
of models, it was for us a natural choice to use it here.

To give the course a concrete background, we provided three
cases: (1) The Study Right University, (2) The Card Game
MauMau, (3) The board game Mancala. The Study Right
University is a slightly more politically correct derivation
of the Rettet Ada case described in [2]. It was used in the
lectures to explain and motivate the strictly objects-first ap-
proach. MauMau is a very simple card game, which can be
easily extended with lots of rules making it a good candi-
date for using changing requirements. Several always ex-
tended versions of MauMau were used for several homework
tasks. Mancala is a very old strategy game, played with two
persons a couple of pits and stones or marbles. In a course
project, the students were supposed to develop a multiplayer
version of Mancala using SDM and the strictly objects-first
approach. In another iteration the course project was to
be refactored to reflect some major design patterns. These
cases all have in common that they have a very low com-
plexity and easily can be implemented by a small group of
students in the time frame of a 6 credit point course. Also
the number of attributes which have to be used in the in-
volved objects are very limited so that most of the system
behavior can be expressed with changing object associations.

2. GENERAL COURSE INFORMATION
In this section we describe the general course information
as well as our expectations and preparations we made be-
fore the course started. Here we explain the most important
decisions and changes we made based on our previous expe-
rience in teaching Fujaba.

28

Lectures Rate
Total 8 100%

Average 7.23 90.5%
Maximal 8 100%
Minimal 1 12.5%

Table 1: Lecture attendance

Lectures

Attended

Attendance

Rate

Students** Students

Rate

Avg.

Points*

Grade

8 100% 40 63.5% 87.6 B

7 87.5% 13 20.6% 82.5 B

6 75% 4 6.3% 71.8 C

<= 5 <= 62.5% 6 9.5% 59.8 E

Table 2: Students performance in relation to atten-
dance rate
* including the possible bonus points

** students count in respect to attendance rate

The course had 63 listeners in total and was scheduled once a
week for 4 academic hours (45 minutes) with one short brake
in between. There were no separate lab sessions for this
course. We decided to give 30-50 minutes practical tasks in
the lectures right after explaining new material. Therefore,
the students would be able to apply the acquired knowledge
(by working on their own laptops), immediately verify the
solutions, and get feedback. This approach proved its effi-
ciency: the students who were regularly attending lectures
had less trouble solving home tasks and less questions while
doing the course project. Table 2 and 3 illustrate the student
grades in respect to attendance and attendance in respect
to their grades. Giving immediate verification and feedback
for each single student in personal is not feasible in a 63
persons course. Therefore we, grouped the students into 15
teams (3 to 5 students per team, most teams consisted of 4
students).

There were 8 lectures in total where we covered the strictly
objects-first approach and continuously increased the level
of abstraction. From the previous courses we knew that
most of the students at this point are familiar with class-
based programming. This means they have no difficulties
in thinking abstract, but are usually stuck with thinking in

Avg.

Lectures

Attended

Avg. At-

tendance

Rate

Students** Students

Rate

Avg.

Points*

Grade

7.9 98.4% 23 36.5% 97.9 A

7.3 91.7% 18 28.6% 84.9 B

6.6 82.5% 10 15.9% 75.6 C

6.4 80.2% 12 19.0% 57.0 <= D

Table 3: Attendance rate in respect to final grades
* including the possible bonus points

** students count in respect to grade

concrete terms. We budgeted additional lectures explain-
ing more object-based thinking and solving practical tasks
on “concrete” and “abstract” examples. The way we set the
focus in our previous courses the students only remember
Fujaba as a class diagram modeling tool. The strength in
supporting SDM and the possibility to easily generate Tests
were usually quickly forgotten. However, these are the con-
cepts setting Fujaba apart from third party tools. There-
fore, we increased the focus on these features this time. The
previous Fujaba courses were much more focused on design
patterns. Therefore, the acquired knowledge was class dia-
gram related. This time we designed the lectures to cover all
the aspects of Fujaba in respect to SDM. The corresponding
task flow was the following:

(1) Explore the task and provide user scenarios
(2) Break scenarios into user stories
(3) Identify objects and associations, draw object
diagrams
(4) Generalize objects to classes, draw class dia-
grams
(5) Generalize user stories to use cases
(6) Identify methods from the actions in the user
stories
(7) Prepare test cases using user stories
(8) Implement methods, test the methods with
pre-made test cases

Each of the previous tasks was first of all explained as the-
ory in lectures, followed by direct practical training in small
exercises in the same lectures. For the homework, there was
a set of exercises similar to those covered in the lectures,
but with a changed context. Finally, we gave a larger scale
course project exercise to examine the student’s understand-
ing and applicability of the Story Driven Development pro-
cess. We demonstrated Fujaba solving the demo tasks in the
class and trained the students to use it in the practical ses-
sions and homework. From the previous experience we knew
that students had much trouble using Fujaba. We tried to
figure out the core of the complaints by not taking into con-
sideration the technical issues. It turned out that most of
the incorrect usage originated from breaking the rules of the
strictly objects-first approach. For the final project we were
not that strict about the tools the students used due to lots
of complaints about usability problems in Fujaba. However
we were strict about the application of the strictly objects-
first approach. With the final course project we wanted to
answer these secondary questions: (1) How many students
find it easier to follow object-first approach using Fujaba?
(2) What aspects of objects-first approach were mostly im-
plemented in Fujaba? (3) How many students are able to
follow the object-first approach using alternative tools? (4)
What aspects of objects-first approach were mostly imple-
mented using alternative tools?

3. STUDENT PERFORMANCE
In the previous section we described the changes we made
in order to make the subject more understandable to the
students and improve the overall teaching experience. In this
section, we describe how the students mastered the subject.

From the very beginning, it turned out to be extremely hard

29

Figure 1: The LEGO Object Game showing an ini-
tial situation from the Study Right University

for most of the students to get a grip on the objects-first
approach and especially the reason why to use Object Di-
agrams. Giving examples and being concrete seems to be
an extremely challenging task for our computer science stu-
dents. Therefore, we spent another lecture explaining the
change of perspective and the way how the objects are ac-
tually handled in a system like for example the Java Virtual
Machine (JVM). The object game turned out to be good
help to explain not only the change of perspective but also
the concept of links between the objects, attributes, refer-
encing and de-referencing objects. We built our object game
out of LEGO bricks, see Figure 1.

Before proceeding to application design in Fujaba, several
lectures were spent explaining and trying the Object-first
method, which included understanding User-Scenarios, User-
Stories, and Object-Diagrams. Corresponding to the strictly
objects first-methodology, the students design the tests be-
fore actually proceeding with the implementation. First, we
gave tasks to write user stories and draw corresponding ob-
ject diagrams. Initially, the students claimed these tasks to
be senseless. However later, we associated object-diagrams
to class-diagrams by letting students identify classes on the
object-diagrams. At this point we made the students use
Fujaba to design the class diagrams. Most of the students
mastered in spite of usability complaints the Fujaba class
diagram editor in a few practical sessions. The most often
complaints were:

- Problems with or invisibility of the Fujaba panel.
Also the fact that some actions are best triggered
via the panel and not via the menu.
- Resizing the elements brakes the layout.
- Automatic layout makes it nearly impossible to
read the diagram.
- Very unpredictable way to handle bends.

After introducing Fujaba Story Boards and explaining the
concepts of Story Driven Development the students were
able to associate user stories and object diagrams to Fu-
jaba. At this point the students were able to design the test

cases (based on User Stories and Object Diagrams) using
Fujaba Story Boards. However, it turned out that only few
of them used the Story Boards correctly. The preconditions
and postconditions were present as well as the call of the
action method, but there was a lot of confusion about the
“create”, “delete”, and “optional” modifiers of associations
and objects. In spite of multiple explanation, it was unclear
that there is no need to recreate all the objects and asso-
ciations from the preconditions block also in the postcondi-
tions block, only changed associations and objects have to
be mentioned. Also confusing for the students was the fact
that they had to give the create modifier to an object, which
is a singleton or initializes an attribute, but not to others.

There is near to no documentation for working with Fujaba
available – neither online nor offline. The information avail-
able is often erroneous or outdated and only applies to very
specific Fujaba versions. Most insightful are lectures from
Albert Zündorf1 which are screencasts of his lectures, but
they are in German and not easy to navigate in terms of spe-
cific problems. While teaching at University of Tartu (UT),
Ruben Jubeh was adapting this technique in courses taught
at UT to topic/task specific screencasts. We extended his
method with a screencast version, where a teaching assistant
is actually performing modeling in Fujaba and the lecturer
moves freely in the class while explaining and interacting
with the students in the class and the teaching assistant.
The screencasts created this way the students labeled as the
most helpful screencasts. They were a very popular solution
for students to use documentation and they quickly started
demanding more. We created the following screencasts dur-
ing the course:

Adding user libraries in eclipse; Use user libraries
in eclipse; Singleton in plain Java; Singleton in
Fujaba; Activity diagram modeling in lecture for
Study Right with Assignments; Getting started
with activity diagrams; Becoming faster: The
Alternate Editing Mode; Changing the memory
of the Fujaba virtual machine; Run tests and
eDOBS; Storyboards, Junit tests, and more build
path fixes; Setting special parameters in eclipse
to collapse the Fujaba menu and have some more
memory in the Java stack; Creating a new Fu-
jaba project; Simple Hanoi (story diagrams) 4x;
Distributed Modeling; Visitorpattern (and dele-
gating file); Catching an exception

In order to verify how the students mastered the presented
material they were given a homework each second week.
Initially we wanted to give them homework every week,
but such a workload cannot be handled with one lecturer
and one teaching assistant. The home tasks were follow-
ing the increasingly-more-abstract style applied in the lec-
tures. Before letting the students actually use Fujaba, they
had to master the concepts of Scenario, User-Story, Object-
Diagram, and Class-Diagram – especially how to identify
objects, associations, classes and inheritance, and how to
define operations on the objects on paper or in simple draw-
ing tools like dia or UMLet. Detailed feedback was given for
these exercises. We often used the MauMau game case for
the homework exercises. It was selected because it allowed

1http://seblog.cs.uni-kassel.de/category/
pastterms/ss10-pastterms/pm/

30

http://seblog.cs.uni-kassel.de/category/pastterms/ss10-pastterms/pm/
http://seblog.cs.uni-kassel.de/category/pastterms/ss10-pastterms/pm/

students to consider only really needed aspects of the game
following the strictly object-first method. Though the tasks
were very simple and concrete, several students regarded
these tasks as too easy and rather started to write about
abstract concepts like general GUI, network layer, or system
failure requirements instead of looking at a specific part of
the game logic. This again proves, how much our students
are dependent on the traditional classes-first method.

Regarding the homework we made the following observa-
tions. Only a few teams completed the tasks 100% correctly
in Fujaba, regardless the usability issues. They explored
bugs in Fujaba and tried to workaround bugs individually
without the help from our side. They successfully dealt with
strongly growing crt files, memory issues, and GUI problems.
These were the students, who already in advance had proven
to be among our strongest students. The following mail ex-
change illustrates how students helped out with finding a
workaround to a bug:

student: Fujaba slowdown As our .ctr file grows
and grows (around 200M now), the time it takes
to load Fujaba increases. Currently it can take al-
most 10 min to load. Other actions such as code
generation seem to be slowing as well. Is there
anyway to reduce the garbage (I can only assume
its garbage) in the .ctr file?
lecturer: As far as I know, there is something
to compact the undo-information, I contacted my
colleagues in Kassel. I hope I have something for
you soon.
lecturer (a little later): Chris, Ruben, and me
have kind of solved the compactification problem.
If anybody else has this problem (Fujaba file >100MB),
please contact me.

Most of the students mastered the objects-first method, how-
ever still had troubles using Fujaba. They especially com-
plained about usability issues, illustrated in the following
mail exchange:

student: What to do when Fujaba resists to save?
I just got this message:
An internal error occurred during: "Saving
Fujaba Model File [project]".
line could not be converted to change: ...
Error deserializing enclosing transaction.
That’s quite not funny...
lecturer: you can take the line out of the Fujaba
file.

Few students did not master the strictly objects-first method
and failed to use Fujaba mainly because of this reason, but
they claimed the usability as a first reason of their failure.
For example the students wanted to use explicit array index-
ing, but the use of objects is more preferable. The following
mail exchange illustrates such an attempt:

student: Is there a ”Fujaba” way of extracting
the index of an object in an ordered collection?
Given a Collection of Item, in a collaboration
statement I can do:
int i = Collection.indexOf(Item);
I just want to know if there is a more graphical
way.

Count* Points Fujaba Usage**

9 0 Not Used Fujaba

15 1 Correct design of Class diagrams and
Storyboards for tests

4 2 Intermediate

4 3 Incompletely designed or not functional
Story diagrams

0 4 Intermediate

29 5 Complete design and functional Story
diagrams. Full automatic code generation.

All tests cases are realized with Fujaba
Storyboards.

Table 4: Students count in respect to the Fujaba
usage Degree
* two students missing (one from the beginning, one from the

middle of the course)

** Every next level includes the statements from the previous

one

lecturer: Not in this explicit way - if you want
to be more graphical - I would reconsider how you
want to use this index - not sure where you need
it. So if you select the object you find it and then
can reuse it. Can’t you just use the object instead
of the index?

As an interesting side-note, also some students did not mas-
ter the object-first method, but succeeded with Fujaba ap-
plying the class-first method.

Conceptionally, Fujaba performed reasonably for the selected
complexity of the tasks carried out. However, the constant
complaints from the students about usability, lost data, and
very slow performance wear strongly on the teacher’s repu-
tation. This has a negative impact on the motivation of the
students as well as the teacher’s. Bending under the heavy
complaints of the students, we allowed in the course project
to use external tools. To raise the interest in implement-
ing with Fujaba artificially, we introduced bonus points for
using Fujaba in the course project.

In the course project, only a few teams used Fujaba for 100%
code generation. The main reason not to use it were the ex-
periences from the course, especially the Fujaba bugs. Ta-
ble 4 illustrates the Fujaba usage in the course project.

4. TASK-BASED ANALYSIS
In this section, we evaluate the Fujaba usage in respect for
solving specific tasks. It was very obvious that the most suc-
cessful task would be the designing of class diagrams. This
is mainly due to the fact that the students were familiar
to the classes-first method based on their previous devel-
opment experience. Therefore, they could solve the class
diagram tasks without actually visiting lectures and know-
ing the concepts of the strictly objects-first approach. How-
ever, this means that the Fujaba class diagram editor is in
spite of lots of complaints intuitive enough to handle with-
out much preparation. The complaints about the Fujaba
class diagram editor were mostly about bugs and not the

31

user interface. Concerning functional complaints, we heard
most about the complexity and amount of GUI-operations
to do simple things like renaming the class or adding at-
tributes. Most of these issues disappeared after showing the
advanced editing mode. The class diagram task was also the
most popular Fujaba task in the course project, even if the
usage of Fujaba was optional for the course project. Even
though it gave only one bonus point, most teams fulfilled this
tasks. We gave the point if at least the diagram picture was
present making it the cheapest one from the entire project.
It turned out that actually most of the students who got
only one point here did also generate a code skeleton out of
the class diagram. Code generation was not needed to get
another point. As the students still used it, we conclude that
they actually liked the code generation feature of Fujaba.

Another often fulfilled optional task was the use of the Fu-
jaba Story Boards to write tests. As we mentioned in the
previous section, students had first to write the User Stories
and next proceed to Object Diagrams and test cases. In the
home exercises most of the students performed well with the
Story Boards, however they complained about a lot of time
spent. Therefore, we let them choose how to design the test
cases in the course project – manually or with Story Boards
in Fujaba. We were expecting most of the students to fall
to the manual approach. In contrast, there was not much
difference in the numbers for each approach. That means,
half of the students found it easier or more attractive with
the promised bonus point to design test cases with Fujaba
Story Boards than to draw Object diagrams and to code
tests manually.

The most difficult point was the usage of Fujaba Story Dia-
grams. Only three teams completed the tasks 100% correctly
in Fujaba, getting all the bonus points. However, four teams
created Story Diagrams for activities, which actually did not
transform into executable code. We once honored this with
a bonus point, as some of the activities were actually cor-
rect. Overall this means that at least a third of the students
actually wanted to use Fujaba for modeling the behavior of
their designed systems. Personal inquiry to the respective
students why they did not manage to provide a running ver-
sion were all answered with the fact that they did not have
enough time to run the necessary tests and taking the intense
look at the produced source code of their Story Diagrams.

5. CONCLUSION
Fujaba is still the only CASE tool out there supporting
SDM and being able to generate fully executable code out
of purely graphical models. In theory, together with the
strictly objects-first approach and the use of eDOBS, a purely
graphical, object oriented development process should be
possible. However, we can conclude that in reality this ideal
is still far away. Fujaba is way too buggy to use it in a
complementary course. Some students always feel forced
to use something they do not like, do not understand and
therefore do not want to understand. The gap between tra-
ditional software development, especially the processes be-
ing practiced in the industry, and the Fujaba development
approach, is way too big. Several basic concepts clashed
in this course: textual versus graphical, Object-orientation
versus procedural programming, strictly objects-first versus
static type systems. Furthermore, it is difficult to change

someone’s perspective who already has in-depth experiences
of classic concepts to some very basic approaches like the
“LEGO Object Game”.

Sometimes we have the feeling that the used Fujaba4Eclipse
Tool is a living monster, very difficult to tame. The user in-
terface is unintuitive and crude. Bugs are difficult to repro-
duce, no helpful error messages appear or cannot be found
easily. There is often only a single way to achieve a certain
task, and the single steps to that are secretly hidden. De-
bugging the generated source code is hard as the developers
are confronted with some textual artifact they do not under-
stand. Especially when you never looked “inside” Fujaba, its
metamodel and technical concepts, it is hard to understand
what happens under the hood and why. We suspect that
you have to be a Fujaba developer to use it successfully and
efficiently.

During the course preparation, the Kassel University team
claimed that Fujaba is actually mature enough to do a 60+
attendants course. We have the feeling that having an ex-
perienced developer team in the background helps a lot to
deal with the daily problems of the students. Active Fujaba
developers know what kind of bug a student experienced
even when getting a vague error description. The team can
fix vital bugs instantly and do a new software rollout. For-
tunately, our course was scheduled directly after Kassel’s
programming methodologies course finished, so we have the
most recent and stable Fujaba4Eclipse version available.

For use of Fujaba in the given teaching context, it definitely
has to improve usability and stability. However, always be-
ing an academic tool, this might never happen. Current
development efforts concentrate on the central metamodel
and story diagram interpreters. We hope that the commer-
cial spinoff, UMLLab, will provide a stable, free to use CASE
tool with an open interface, so that the promising SDM con-
cepts still can be used in a professional context. The recently
presented UMLLab-to-Fujaba-Adapter seems to be the most
promising approach.

6. REFERENCES
[1] Diethelm, I. Strictly models and objects first –

Unterrichtskonzept für objektorientierte Modellierung.
In Informatik und Schule – Didaktik der Informatik in
Theorie und Praxis – INFOS 2007 – 12. GI-Fachtagung
19.–21. September 2007, Siegen (Bonn, September
2007), S. Schubert, Ed., no. P 112 in GI-Edition –
Lecture Notes in Informatics – Proceedings,
Gesellschaft für Informatik, Köllen Druck + Verlag
GmbH, pp. 45–56. http://subs.emis.de/LNI/
Proceedings/Proceedings112/gi-proc-112-004.pdf

– geprüft: 19. Juni 2009.

[2] Diethelm, I., Geiger, L., and Zündorf, A. Rettet
prinzessin ada: Am leichtesten objektorientiert. In
INFOS (2005), S. Friedrich, Ed., vol. 60 of LNI, GI,
pp. 161–172.

[3] Diethelm, I., Geiger, L., and Zündorf, A.
Teaching modeling with objects first. In WCCE 2005,
8th World Conference on Computers in Education
(2005).

32

http://subs.emis.de/LNI/Proceedings/Proceedings112/gi-proc-112-004.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings112/gi-proc-112-004.pdf

Visualization of Pattern Detection Results in Reclipse

Marie Christin Platenius, Markus von Detten, Dietrich Travkin
Software Engineering Group, Heinz Nixdorf Institute,

University of Paderborn, Paderborn, Germany
[mcp|mvdetten|travkin]@mail.uni-paderborn.de

ABSTRACT
Reverse engineering tools can simplify the recovery of a soft-
ware system’s design by detecting design pattern implemen-
tations. This helps to understand a software system and
thereby supports the process of maintaining or extending a
software. Because the manual specification of patterns has
to maintain the balance between precision and generality,
detection results may contain incorrectly detected pattern
implementations. Usually, a detected candidate cannot be
displayed in detail so that interpreting the detection results
is difficult. In this paper, we present an approach for a com-
prehensive and comprehensible visualization of detection re-
sults in the reverse engineering tool suite Reclipse.

1. INTRODUCTION
Reverse engineering is the task of analyzing a software sys-
tem in order to understand its design. A helpful part in
the recovery of the design is the detection of design pat-
terns. Design patterns represent general, reusable, and com-
monly accepted solutions to frequently occurring problems
in object-oriented software design [4]. Knowledge about the
presence of pattern implementations in a software helps to
understand the software system by revealing the original de-
velopers’ design intentions. It thereby supports the process
of maintaining or extending a software. Reverse engineer-
ing tools can automatically detect pattern implementations
and thereby simplify the reverse engineering process. In the
last years, the detection of design pattern implementations
in source code has been the subject of many scientific pub-
lications (Dong et al. give an overview [3]).

To automate the detection, a formal specification of the pat-
terns is needed. However, patterns can be implemented in
several ways and there can be many different variants of a
pattern which are difficult to capture in a single formal spec-
ification. This leads to the fact that the detection results,
the so-called pattern candidates, can contain false positives.
This problem can be mitigated to a certain degree, by speci-
fying a mandatory pattern core which has to be present and
several additional conditions whose detection increases the
confidence in the correctness of a detected pattern imple-
mentation. As a consequence, the detection results must be
inspected and for each candidate it has to be decided if it is
a true or false positive.

The static pattern detection of the reverse engineering tool
suite Reclipse1[7, 8] detects pattern implementations in source

1http://www.fujaba.de/reclipse

code. The pattern detection results are currently displayed
as a simple list of pattern candidates in which the involved
classes are listed. An automatically calculated percental rat-
ing value indicates how much a pattern candidate conforms
to its specification. A low rating value means that the candi-
date does only contain the mandatory core and few or none
of the specified additional conditions. Therefore, this could
indicate that the candidate is a false positive.

As patterns are specified by the user, the specifications can
contain (possibly subtle) flaws. Such an incorrect specifi-
cation can result in erroneous detection results. Examples
are false positives, or misleading rating values that are too
high or too low. Currently, the user cannot distinguish these
cases by looking at the list of rated detection results and she
cannot see how the rating is calculated. Thus, more infor-
mation about the detected candidates is needed to make use
of the results.

In this paper, we present how the detection results can be
visualized in a comprehensive and comprehensible way. The
goal of the visualization is to provide a more detailed image
of the detected pattern candidates to the user and to make
the candidates’ rating more transparent.

The remainder of this paper is organized as follows: First, we
give a general overview of the pattern detection process, the
pattern specification and the current presentation of results
in Reclipse. In Section 3, requirements for a visualization of
detection results are proposed and in Section 4 our visual-
ization approach is presented. Section 5 deals with related
work. We finish with conclusions and ideas for future work.

2. PATTERN DETECTION IN RECLIPSE
The static pattern detection in Reclipse uses a graph match-
ing approach: The system, i.e. the source code under anal-
ysis, is represented by an abstract syntax graph (ASG) in
which an inference algorithm detects subgraphs that com-
ply to the structure of pre-specified graph patterns [5]. This
results in a list of so-called pattern candidates. The pattern
specifications consist of a number of conditions which have to
be satisfied for a successful match. A percental rating value
is computed for each candidate. The rating value determines
the ratio of a candidate’s satisfied conditions to all condi-
tions in the corresponding pattern specification. Thereby,
the rating quantifies the completeness of a candidate and,
thus, indicates if the candidate is a real pattern implemen-
tation or a false positive.

33

nc1:NonConcreteType nc2:NonConcreteType

additional

s:SetMethod

p:ASingleVariableDeclaration

setSubject:AMethodDeclaration

mi:AMethodInvocation

additional

call:MultiNeighborCall

ref:MultiReference

f:Field

notify:AMethodDeclaration

param:ASingleVariableDeclaration

observerClass:ATypeDeclaration

simpleName: String = RegExp: ".*listener" {additional}

:Observer

update:AMethodDeclaration

subjectClass:ATypeDeclaration

register:AMethodDeclaration

om:OverriddenMethod

SIZE ≥ 1

spObserver «create»«create»«create»«create»«create»

type
type

overriddenMethod

setMethod

class

type

parameters
methodBindingReference

callee caller

elements

referencedClass referencingClass

field accessMethod

bodyDeclarations

type

parameters
bodyDeclarations

«create»

observer
«create»

subject

bodyDeclarations

Figure 1: Observer structural pattern

In the following, the pattern specification and the presenta-
tion of the pattern detection results are explained in detail.

2.1 Pattern Specification
In Reclipse, a pattern’s structure is specified with a pat-
tern specification language based on graph grammars, the
so-called structural patterns. Throughout this paper, we use
the Observer pattern as an example. The Observer pattern’s
intent is to “define a one-to-many dependency between ob-
jects so that when one object changes state, all its depen-
dents are notified and updated automatically” [4]. Figure
1 depicts our specification of the Observer pattern. The
rectangular objects represent elements of the system’s ab-
stract syntax graph, e.g. classes and methods. The objects
are variables that are matched to real objects in the given
ASG during pattern detection. The ellipses are so-called
Annotations and represent subpatterns that are specified in
other diagrams. Each element is a condition of the pattern
specification.

When the depicted structure is detected in an ASG during
the patten detection process, the Observer annotation that
is marked with create is created. It tags the structure as
candidate for the Observer pattern and marks objects that
play key roles in the pattern (here the observer class and the
subject class).

The Observer pattern’s structure contains the classes sub-

jectClass and observerClass. The observer class has a
method update. The subject class has the methods regis-

ter and notify. The register method takes an object of
the type observerClass as parameter. The subpattern Mul-

tiReference expresses that a subject references arbitrarily
many observers. The subpattern MultiNeighborCall speci-
fies that the subject’s notify method contains multiple calls
of the observer’s update method.

The dashed lines (e.g. of the NonConcreteType annotations)
indicate objects that are not mandatory for the detection of
the Observer pattern. They form additional conditions. In
the same way, the subgraph in the rectangle to the lower left
marked with additional (a so-called additional fragment)

is not mandatory for the detection of an Observer pattern
implementation. Detected additional elements increase the
number of satisfied conditions and thus the candidate’s rat-
ing value. The observerClass element includes an addi-
tional condition on its simpleName attribute that defines a
condition for the name of the type bound to the observer
role. The name has to match the specified regular expres-
sion which, in this case, declares that the string should end
with “listener”.

The OverriddenMethod annotation om is drawn with a sec-
ond border and thereby marks the node to represent a set
of objects in the ASG. This means that an arbitrarily large
number of objects can be mapped to this element. The ex-
pression “SIZE ≥ 1” indicates that there has to be at least
one element in this set.

More details on the specification language used in Reclipse
can be found in other publications [5, 7, 10].

2.2 Pattern Detection Results View
Figure 2 shows the current results view of Reclipse. It
presents an excerpt of the detection results of a static pat-
tern detection on JHotDraw 5.1 [10]. Besides others, we
found some candidates for the Observer pattern. The view
lists one candidate with its annotated elements (i.e. ob-

serverClass and subjectClass) and additionally shows the
rating value and the detected subpatterns with their rat-
ings. In this example, Reclipse detected an Observer pattern
candidate with a class named StandardDrawing that plays
the role of the subject class and a class DrawingChangeLis-

tener that represents the observer class. All subpatterns
(Field, InterfaceType, MultiNeighborCall, MultiRefer-
ence and OverriddenMethod) were detected with a rating
value of one hundred percent. However, the Observer can-
didate as a whole only received a rating of 79.31%. That
means that some of the conditions in the pattern specifica-
tion are not satisfied. Unfortunately, the user is not able to
see where exactly the candidate deviates from the specifica-
tion, i.e. which conditions of the corresponding pattern are
not satisfied. Furthermore, it is not shown which other ob-
jects besides observer and subject class were matched. For

34

Figure 2: Detection results from a static pattern detection of JHotDraw 5.1

DrawingChangeListener

drawingInvalidated (e:DrawingChangeEvent):void

StandardDrawing

addDrawingChangeListener (listener:DrawingChangeListener):void

figureInvalidated (e:FigureChangeEvent):void

Observer
cdMatched Observer Pattern

observer
subject

Figure 3: The class view of the candidate

example, the user cannot see which concrete methods were
matched for the register, the notify, or the update method
roles from the specification.

Essentially, the user has no overview of the (un-)satisfied
conditions. As a result, it is not comprehensible why the
actual rating values are as they are and the detection results
can barely be interpreted.

3. VISUALIZATION REQUIREMENTS
Visualization is important for pattern detection tools be-
cause it helps to envision the detection results so that the
user can easily understand the system [3]. Backofen iden-
tified several requirements for an adequate visualization of
detection results of a static pattern detection [1]:

R1 To attain clarity and comprehensibility, a compromise
between a detailed visualization and a compact, well-
arranged view has to be found.

R2 The presentation of the detection results should show
which conditions of a pattern specification are satisfied
and which are not.

R3 To provide a better understanding of the pattern de-
tection results, it should be easy to relate the matched
pattern candidate to the pattern’s specification.

R4 All specification elements that were matched to the
pattern candidate should be visualized accordingly to
provide the user with detailed information about a can-
didate.

R5 The concrete values of an object’s attributes should be
presented to inform the user about the concrete reason
why a condition is (not) satisfied.

4. PATTERN MATCHING VIEWS
As an addition to the current presentation of detection re-
sults as a list of candidates, we developed a graphical visu-
alization, the pattern matching views. In the following the
new visualization approach is presented.

The Reclipse tool suite, which is based on Fujaba, is a col-
lection of plug-ins for Eclipse. The pattern matching views
were also realized in an Eclipse plug-in. There are three

different views: The class view, the pattern view and the ab-
stract syntax view. The views can be displayed for each de-
tected pattern candidate and satisfy the requirements iden-
tified in Section 3.

In the following, the three views are described in detail. As
an example, the Observer candidate from Figure 2 is used.

4.1 Class View
In Reclipse, we mostly deal with patterns at the design level
which are primarily concerned with classes. Accordingly,
their natural syntax is a class diagram. Because of this,
the class view shows the pattern candidate in a UML class
diagram. Class diagrams are a language that most users are
familiar with, so they can see immediately which classes play
the key roles in the candidate. In addition, this illustration
is very compact and thereby provides a convenient overview
to the user (cf. requirement R1).

Figure 3 shows the class view for the Observer candidate.
The DrawingChangeListener and the StandardDrawing class-
es from the example in Figure 2 are presented with their roles
in the Observer pattern.

4.2 Pattern View
The pattern view shows the pattern specification of a pattern
candidate, enhanced by information about which conditions
are satisfied by the selected candidate, and which are not
(cf. requirement R2). Satisfied conditions of the pattern are
shown in black. Conditions that are not satisfied are marked
as unsatisfied and are visualized in gray.

In Figure 4, the pattern view for the Observer candidate
is shown. In this example, the objects in the additional
fragment on the lower left are conditions that are not satis-
fied. That means, the candidate has no set method in the
Observer class that takes an object of the subject class as
parameter and calls the subject’s register method. Also, the
attribute expression for the name of the observer class is
not satisfied: the class’ name does not end with “listener”.
The NonConcreteType annotation on the right side is not
matched either, which means that the type which represents
the subject is neither abstract nor an interface.

4.3 Abstract Syntax View
The abstract syntax view shows the subgraph of the ASG
that was matched for the candidate. The advantage is that
this is similar to the syntax of the pattern specification,
which means that the user is able to easily compare the
candidate to the specification (cf. requirement R3).

In Figure 5, the Observer candidate is visualized in the
abstract syntax view. Here, all matched objects are pre-
sented (cf. requirement R4). For example, the observer class

35

nc1:NonConcreteType

{satisfied, total=1.0}
nc2:NonConcreteType

{unsatisfied, total=1.0}

additional {unsatisfied}

s:SetMethod

{unsatisfied, total=21.0}

p:ASingleVariableDeclaration

{unsatisfied}

setSubject:AMethodDeclaration

{unsatisfied}

mi:AMethodInvocation

{unsatisfied}

additional {unsatisfied}

call:MultiNeighborC...

ref:MultiReference

f:Field

notify:AMethodDeclaration

param:ASingleVariableDeclaration

observerClass:ATypeDeclaration

simpleName: String = RegExp: ".*listener" {additional, unsatisfied}

:Observer

update:AMethodDeclaration

subjectClass:ATypeDeclaration

register:AMethodDeclaration

om:OverriddenMeth...

SIZE ≥ 1

spObserver «create»«create»«create»«create»«create»«create»«create»«create»«create»

type
type

overriddenMethod

setMethod

class

type

parameters
methodBindingReference

callee caller

elements

referencedClass referencingClass

field accessMethod

bodyDeclarations

type

parameters
bodyDeclarations

«create»

observer
«create»

subject

bodyDeclarations

Figure 4: The pattern view of the candidate

nc1:NonConcreteType

100,00 % (InterfaceType)

call:MultiNeighborC...

100,00 %

ref:MultiReference

100,00 %

f:Field

100,00 %

notify : AMethodDeclaration

 name = "figureInvalidated"

param : ASingleVariableDeclaration

 name = "listener"

observerClass : ATypeDeclaration

 name = "CH.ifa.draw.framework.DrawingChangeListener"

simpleName = "DrawingChangeListener"

:Observer

79,31 %

update : AMethodDeclaration

 name = "drawingInvalidated"

subjectClass : ATypeDeclaration

 name = "CH.ifa.draw.standard.StandardDrawing"

register : AMethodDeclaration

 name = "addDrawingChangeListener"

om:OverriddenMeth...

SIZE = 1

odMatched Observer Pattern

type

overriddenMethod

callee caller

elements

referencedClass referencingClass

field accessMethod

bodyDeclarations

type

parameters

bodyDeclarations

observer
subject

bodyDeclarations

Figure 5: Abstract syntax view of the candidate

is named DrawingChangeListener and the subject class is
named StandardDrawing. Also the names of all other matched
objects are visualized (cf. requirement R5). The annotations
show that the matched subpatterns are all rated with one
hundred percent. Additionally, the size of the Overridden-

Method annotation is presented. In this example, the update
method is overridden only once as indicated by the expres-
sions SIZE = 1.

Figure 4 shows that the attribute expression of the observer
class’ name is not satisfied. The reason for this is revealed
in the abstract syntax view: The name of the class is Draw-

ingChangeListener. This does not match the regular ex-
pression “.*listener” from Figure 4. This hints at a flaw
in the specification. The expression could be corrected to
“.*(l|L)istener” to improve this condition.

4.4 Additional Features
To support the user in comparing the pattern candidate and
the specification, the three views provide a consistent selec-
tion. If an element in one of the views is selected, the cor-
responding elements in the other views are highlighted as
well.

To simplify the comparison, the layout of the elements shown
in the pattern view and in the abstract syntax view is based
on the layout of the pattern specification (cf. requirement
R3). The user is able to customize the layout of all three
views by dragging the elements to new positions.

To enable a clear, well-arranged view of the pattern candi-
date in abstract syntax, only attributes that have a corre-
sponding condition in the pattern specification are shown
(cf. requirement R1).

If the selected pattern candidate includes annotations that
represent subpatterns, the user is able to directly open the
matching views for the subpattern out of the currently opened
views. For example, from the visualized Observer candidate
in the abstract syntax view, the user can jump to the de-
tected candidate of the MultiReference pattern to see details
about the relation between the observer class and the sub-
ject class.

Furthermore, if the pattern specification contains sets of ob-
jects or annotations, the user can expand the contained ele-
ments for inspection by selecting an action from the context
menu. In the pattern view for the Observer candidate, for
example, the user can display all methods that are bound
to the OverriddenMethod annotation, i.e. all methods that
override the observer’s update method.

5. RELATED WORK
There are many approaches which deal with the detection of
patterns. In their survey paper, Dong et al. present several
pattern detection approaches that also provide visualization
support [3]. Most of those tools present their results as UML
class diagrams, in which the pattern roles are marked. One
of the approaches proposes a UML profile containing new
stereotypes, tagged values and conditions and thereby ex-

36

tends UML diagrams for visualizing pattern-related issues
[2]. Another visualization technique proposed by Dong et
al. is a class hierarchy in addition to class diagrams. There,
the first level nodes under the root are the classes partici-
pating in the pattern while the roles that a class plays are
defined as their children [3].

Wiebe et al. use a pattern detection approach similar to the
analysis Reclipse uses [12]. After executing a graph match-
ing algorithm, the detected pattern candidates are evaluated
and presented. However, the candidates are visualized ex-
clusively as UML class diagram.

Schauer and Keller present an approach where the pattern
candidate is juxtaposed with the description from literature
[6]. But the informal description is not equivalent to the
used formal pattern specification. Thus this approach is not
sufficient because it does not provide appropriate informa-
tion about the discrepancies between pattern specification
and candidate.

In summary, none of these pattern detection tools satisfies
all of the requirements described in Section 3.

6. CONCLUSIONS AND FUTURE WORK
With the pattern matching views, Reclipse provides a visu-
alization of pattern candidates that illustrates the detected
candidates in a comprehensive and comprehensible way. Our
visualization results in a more transparent rating and thereby
supports the user by simplifying the decision if a candidate
is a false positive or a real pattern implementation. Fur-
thermore, the user now can compare pattern candidates to
the specification. In our Observer example, we received a
more detailed view of the classes in JHotDraw which are
responsible for updating a drawing because the matching
views displayed the methods that play important roles in
this mechanism. Furthermore, we were able to correct our
Observer specification, because we noticed the flawed at-
tribute condition for the observer class name.

However, the visualization approach still provides space for
enhancements. For instance, only attributes that have a cor-
responding condition in the pattern specification are shown,
which is useful, but in some cases not sufficient. The user
should be given the additional possibility to view the values
of attributes which are not involved in the pattern specifi-
cation to get a more detailed view of the candidate. An ad-
ditional idea for the visualization of a candidate is a source
code view. Another interesting feature could be the com-
parison between several candidates of the same pattern.

Moreover, the detection results are non-persistent at the mo-
ment. The ability to save the results would allow the user
to review them later and to compare different results from
multiple analysis runs. This would further support the flaw
detection in pattern specifications.

Furthermore, Reclipse also provides a dynamic analysis that
analyzes a pattern candidate’s runtime behavior. The dy-
namic pattern detection can be used to reject or verify pat-
tern candidates from the static analysis based on their be-
havior [9, 11]. The results of the dynamic pattern detection
could be used to enhance the pattern matching views by ad-

ditional information. Thereby the user could gain an even
more comprehensive illustration of the detected design pat-
tern implementations in the analyzed software.

7. ACKNOWLEDGMENTS
We would like to thank Andre Backofen for his conceptual
work [1] on the approach and his help in implementing the
pattern matching views in Reclipse.

8. REFERENCES
[1] A. Backofen. Visualisierung von Musterfunden bei der

statischen Software-Muster-Erkennung. Bachelor’s
thesis, University of Paderborn, Nov. 2009.

[2] J. Dong, S. Yang, and K. Zhang. Visualizing design
patterns in their applications and compositions. IEEE
Transactions on Software Engineering, pages 433–453,
2007.

[3] J. Dong, Y. Zhao, and T. Peng. A Review of Design
Pattern Mining Techniques. International Journal of
Software Engineering and Knowledge Engineering
(IJSEKE), 2009.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, USA, 1995.

[5] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals,
and J. Welsh. Towards pattern-based design recovery.
In Proc. of the 24th International Conference on
Software Engineering (ICSE), Orlando, FL, USA,
pages 338–348. ACM Press, May 2002.

[6] R. Schauer and R. Keller. Pattern visualization for
Software Comprehension. In Proceedings of the 6th
International Workshop on Program Comprehension,
pages 4–12. IEEE, 2002.

[7] M. von Detten, M. Meyer, and D. Travkin. Reclipse –
a reverse engineering tool suite. Technical Report
tr-ri-10-312, University of Paderborn, Paderborn,
Germany, 2010.

[8] M. von Detten, M. Meyer, and D. Travkin. Reverse
Engineering with the Reclipse Tool Suite. In
Proceedings of the 32nd International Conference on
Software Engineering (ICSE 2010), Cape Town, South
Africa, May 2-8, 2010, volume 2, pages 299–300. ACM
Press, May 2010. Informal Research Demonstration.

[9] M. von Detten and M. C. Platenius. Improving
Dynamic Design Pattern Detection in Reclipse with
Set Objects. In Proceedings of the 7th International
Fujaba Days, pages 15–19. Eindhoven University of
Technology, 2009.

[10] M. von Detten and D. Travkin. An Evaluation of the
Reclipse Tool Suite based on the Static Analysis of
JHotDraw. Technical Report tr-ri-10-322, Universitiy
of Paderborn, 2010. Vers. 1.0.

[11] L. Wendehals. Struktur- und verhaltensbasierte
Entwurfsmustererkennung. PhD thesis, University of
Paderborn, September 2007. In German.

[12] E. Wiebe, S. Keul, S. Staiger, and G. Vogel.
Entwurfsmuster-erkennung mit bauhaus. In
Proceedings of the 10th Workshop Software
Reengineering, volume 126 of LNI, pages 181–185. GI,
2008.

37

Providing Timing Computations for FUJABA∗

Tobias Eckardt, Christian Heinzemann
Software Engineering Group,

Heinz Nixdorf Institute
University of Paderborn

Warburger Str. 100
D-33098 Paderborn, Germany

tobie|c.heinzemann@uni-paderborn.de

ABSTRACT
Model-based software engineering aims at specifying the system
under construction by abstract models that can be used for for-
mal verification of the system behavior. In the case of real-time
systems, such verification requires special algorithms dealing with
time computations. These computations can be performed effi-
ciently by using zone graphs [1, 3]. Current implementations,
however, cannot be used in FUJABA. Therefore, we introduce a
TCP/IP-based client/server architecture wrapping an existing im-
plementation in a server such that it can be used by arbitrary clients.
In our evaluation, we show that the TCP/IP overhead is negligible
compared to the total run-time.

1. INTRODUCTION
Model-based software engineering aims at specifying the sys-

tem under construction by abstract models that can be used for for-
mal verification of the system behavior. This approach can also be
used in the domain of real-time systems in order to build safe real-
time systems by using appropriate models and verification tech-
niques addressing the real-time characteristics [8]. The MECHA-
TRONIC UML approach is one technique for model-based devel-
opment of real-time systems [9].

A suitable formalism to model the behavior of real-time systems
is given by timed automata [1] that have been extended to real-time
statecharts [7] in the MECHATRONIC UML. Timed automata have
successfully been used in Uppaal as a formal model for the verifi-
cation of real-time behaviors [3]. Uppaal, however, cannot be used
for all analysis techniques being applied in MECHATRONIC UML
like refinement checking [10] or a behavioral synthesis [6]. Thus,
such algorithms have to be implemented separately which requires
the implementation of time computations in the case of real-time
systems.

Time computations, as they are needed for our analysis tech-
niques, can be efficiently performed by using so-called zone graphs
[1] that are also used in Uppaal [3]. For Uppaal, there exists a
C++ library, the Uppaal DBM library [4], implementing the neces-
sary functionality for computing zone graphs. Additionally, a Ruby
binding of this library exists. Both implementations have in com-

∗This work was developed in the course of the Collaborative Re-
search Center 614 – Self-optimizing Concepts and Structures in
Mechanical Engineering – University of Paderborn, and was pub-
lished on its behalf and funded by the Deutsche Forschungsgemein-
schaft.
This work was developed in the project "ENTIME: Entwurfstech-
nik Intelligente Mechatronik" (Design Methods for Intelligent Sys-
tems). The project ENTIME is funded by the state of North Rhine-
Westphalia (NRW), Germany and the EUROPEAN UNION, Euro-
pean Regional Development Fund, "Investing in your future".

mon that they cannot be used in FUJABA directly.
We try to overcome this problem by providing a TCP/IP-based

client/server architecture that allows to use the existing Uppaal
DBM library by clients being implemented in arbitrary program-
ming languages supporting TCP/IP. On the one hand, our architec-
ture consists of a server, written in Ruby, that directly uses the ruby
binding of the Uppaal DBM library. On the other hand, we provide
a reference Java interface and a TCP/IP-based implementation of
this interface managing the communication with the server. That
interface can be used directly in FUJABA to implement the timing
computations needed for our analysis techniques.

An alternative to our TCP/IP based client/server architecture
would be, obviously, to write specific adapters to the Uppaal DBM
library for each programming language and compile it for each op-
erating system. In case of Java, a JNI (Java Native Interface) bind-
ing to the C++ library would be possible. Probably, such binding
would be more efficient than our approach, but it restricts the usage
of the library to one specific language and requires to re-compile
the library for all required operating systems. The latter was sim-
ply not possible in our case due to missing third-party libraries.

The contribution of this paper is a TCP/IP-based client/server
architecture providing efficient clock zone computations to all pro-
gramming languages supporting TCP/IP.

The paper is structured as follows. First, we introduce the foun-
dations of the paper (Section 2). Afterwards, the general architec-
ture of our approach is described in Section 3. Then, we discuss
the client and the server in detail in Sections 4 and 5, respectively.
Finally, we present our evaluation results concerning the TCP/IP
overhead in Section 6 before we conclude the paper in Section 7.

2. FOUNDATIONS
For the illustration of the possibilities using clock zones and clock
zone operations we employ a timed automaton as a behavioral
model with timing constraints as it can be specified in Uppaal (Fig-
ure 1).

Informally, a timed automaton consists of finite sets of locations,
transitions and real-valued clocks. Starting in the initial location, it
may either rest in a location or switch between locations using tran-
sitions and corresponding event occurrences. Events are modeled
using a synchronous channel concept, where events can either be
thrown using the special symbol “!” or received using the special
symbol “?”.

The example automaton in Figure 1 describes the behavior of
a simple lightswitch. By pressing the switch once the light is
switched to dim; by pressing the switch twice within 10 ms the
light is switched to bright. If pressing the switch a second time
does not happen within 10 ms, the light is switched of again. If
the light is currently switched to bright, it can also be switched off

38

by the press operation. If this is not performed, it switches to off
automatically inbetween 59.5 s and 60 s.

Figure 1: Example of a Timed Automaton describing a
lightswitch

The timing of the behavior is specified using time guards, clock
resets and location invariants. Initially, all clocks’ values are set
to zero. From then on, time can only pass, i.e. all clocks’ values
increase by the same value, while the automaton rests in a location,
not while a transition is executed. Clocks can be reset using clock
resets and the execution of a transition can be constrained to an
integer-bound interval of clock values using clock constraints.

In the example, the clock x is used to measure the time that the
system rests in dim. The time guard x<=10 at transition dim to
bright further specifies, that this transition can only be executed if
the value of x is between 0 and 10. If it is greater and the press-
signal occurs, the transition from dim to off will be executed corre-
sponding to its time guard x>10.

Finally, location invariants may be used to describe progress
conditions. A location invariant describes an upper bound for the
clock values in a certain location. In the example, the location in-
variant of location bright (in combination with the empty transition
from bright to off) is used to specify that the light switches to off
again automatically after 1 minute (60000 ms) at the latest, if the
switch was not pressed before.

2.1 Analysis of Timing Specifications
While the untimed behavior of a state based specification can

simply be performed by examining the states and transitions be-
tween states, this becomes more complex for timed specifications.
Here, clock values, clock resets and clock constraints have to be
taken into account. A suitable formalism for analyzing sets of clock
values is the clock zone formalism [2, 1, 3] that is briefly described
in the following.

A clock zone is syntactically described by a boolean conjunc-
tive formula where the atomic propositions are inequialities with
clock references and integer values describing clock value lower
and upper bounds. Semantically, it describes an infinite, integer-
bound set of clock values that can be visualized as a convex set
in a k-dimensional euclidean space for k clocks being contained in
the zone [1]. An example of a clock zone describing all values of
clock x between 0 and 10 and all values of clock y higher than 20
is x < 10 ∧ y > 20.

If a clock zone is combined with a system state, for example
a timed automaton location, this clearly defines a distinguishable
timed state of the system, where the timing part is respresented as
a set of clock values. For the calculation of transitions between
states, whose execution is restricted to a distinct time interval only,
for the consideration that time may elapse in some states and for
the case that clocks may be resetted, operations on clock zones are
provided. Four of these operations, which are the most important
ones, are explained in the following.

The time elapse operation (↑), also called up-operation, describes
the elapse of an arbitrary amount of time for a clock zone. It is

realized by removing all upper bounds of a clock zone. The time
elapse operation applied, for example, on the above given zone,
denoted (x < 10 ∧ y > 20)↑ results in y > 20.

The clock reset operation describes the appliance of clock resets,
that is setting the value of a set of clocks to zero. Applying this
operation on the clock y and the example zone, denoted (x < 10∧
y > 20)[{y} := 0], results in the zone (x < 10 ∧ y = 0).

The intersection of clock zones (∧), also called and-operation,
describes the set of clock values that are in both of the intersected
zones. Intersecting the example zone with the zone x > 5, denoted
(x > 5)∧(x < 10∧y > 20) results in (x > 5∧x < 10∧y > 20).

The subtraction operation on clock zones subtracts one clock
zone from another. This means that the subtrahend set of clock
values is removed from the minuend set of clock values. An ex-
ample is (x < 10 ∧ y > 20) − (x <= 5) which results in
(x > 5 ∧ x < 10 ∧ y > 20).

In case of substractions on zones, the convexity of the set of
clock values is no longer guaranteed. In this case, a time interval
can be removed from the zone. The result is a non-convex set of
clock values, called a federation [3], that can be represented by a
finite number of convex sets (zones).

To give an example for the application of clock zones and corre-
sponding operations, we show how a timed analysis model of the
example timed automaton (Figure 1) can be created in the follow-
ing. This timed analysis model (Figure 2), also called the zone
automaton or zone graph [1], can, for example, be used to perform
a reachability analysis over the timed system states.

off
(x=0)

press?,x:=0 press?,(x<=10)

press?,x:=0

press?

press?,x:=0

dim
(x=0)

bright
(x<=10)

off
true

off
(x>10)

press?,(x>10)

off
(x>=59500)

(x>=59500)

press?,x:=0

Figure 2: Zone Automaton of the Timed Automaton of the
Lightswitch Example According to [1]

The zone automaton is created by starting in the first location,
and the zone where all clocks are set to zero, in this case (x = 0).
For each outgoing transition, a successor zone location is now cre-
ated by (1) applying the time elapse operation on the original zone,
(2) applying an intersection with the location invariant of the source
location, (3) applying an intersection with the time guard of the
transition, (4) applying the clock resets of the transition and, fi-
nally, (5) applying an intersection with the location invariant of the
target location. The resulting clock zone describes those clock val-
ues that are possible at the moment where the next target location is
entered. In the example, the transition from (off,x=0) with the clock
reset x:=0 leads to (dim,x=0) as the clock x must be zero when en-
tering dim. On the other hand the transition from (dim,x=0) with
the time guard x<=10 leads to bright with the zone x<=10 as the
exact value of clock x is not known when entering bright, only that
it is somewhere between 0 an 10.

After computing a successor zone in a zone automaton, a so-
called normalization can be applied [3]. The normalization com-
putes a canonical form of the zone and guarantees that the corre-
sponding zone automaton of a timed automaton is always finite.

39

Other application examples, appart from model checking timed
automata, are checking a refinement of timed automata as described
in [6] or applying a reachability analysis on timed graph transfor-
mation systems as described in [11].

3. GENERAL ARCHITECTURE
The Uppaal DBM1 library (UDBM, [4]) is a C++ library that

was originally designed for the Uppaal model checker [3]. It im-
plements operations on clock zones and federations (cf. Section
2.1) using DBMs [5] as an internal data structure for efficient mem-
ory management. We integrated this library into FUJABA using a
client/server approach. The general architecture is shown in Fig-
ure 3.

UDBM Server

UDBM Client

UDBM Binding
Interface

TCP/IP-based
implementation TCP/IP

Figure 3: Architecture of the UDBM Integration

The UDBM Server executes the DBM operations using the Up-
paal DBM library implementation. The UDBM client consist of an
abstract UDBM Binding interface which can be used by applica-
tion programs and a TCP/IP-based implementation of the interface
managing the communication with the server in order to execute
the operations requested by the application programs. Detailed in-
formation on our server and client implementation can be found in
the subsequent Sections 4 and 5.

The client/server architecture allows to implement more than one
client (even in different languages) for the same server as well as
implementing more than one realization of the DBM computations
without changing the client interface. Additionally, our architec-
ture allows to execute client and server on different machines using
different operating systems.

4. UDBM SERVER
The UDBM server is implemented in Ruby2 and uses the pre-

compiled Ruby binding of the Uppaal DBM library. The server
manages the communication with the client and delegates DBM
operation requests to the UDBM library. By default, the server
opens a socket on port 8326 on localhost for client communication,
but it is possible to pass a different port and hostname to the server
on start up as a parameter.

The server implements the statemachine shown in Figure 4 that
specifies the protocol to interact with it. The events before the "/"
have to be passed as strings to the server, the events after the "/"
are sent as strings back to the client. Strings in italics denote ruby
code that is passed and directly executed by the server as described
below.

The server starts in state idle. First, a so-called context has to be
created by passing the command createContextReq to the server.
A context is required for the execution of the DBM operation as
it defines the names of the clocks to be used. The server answers
1http://www.cs.aau.dk/~adavid/UDBM/
2http://www.ruby-lang.org

Idle CreateContextReq

ClockVarDefReq

ExecuteFedOperation

createContextReq/
createContextAck(contextNumber)

clockVarDefReq
/clockVarDefAck

clockVarDefReq
/clockVarDefAck

executeFedOpReq
/executeFedOpAck

disconnect

operationString
/ result

CreateContextAck

contextString
/contextCreated

ClockVarDefAck

clockVarString
/clockVarDefined

CheckFedProperty

checkFedPropertyReq
/checkFedPropertyAck

operationString
/ result

Figure 4: Statemachine of the UDBM Server

with an acknowledgement and a unique number for the next con-
text to be created. Then, the client can submit an operation creat-
ing a context. This operation is submitted as ruby code which is
then directly interpreted by the Ruby interpreter. In our example,
a context for one clock x has to be created using the ruby code
c = Context.create(’c0’,:x) for the context number 0.

The server answers with contextCreated to acknowledge the
creation of the context before switching to CreateContextAck.
The creation of a new context can be omitted if the context did
not change compared to the last operation being executed. That al-
lows to reuse contexts from prior operations thereby reducing the
memory consumption of the server.

The second step is defining the clock variables. In order to use
clock variables for the specification of clock constraints, the clocks
being defined in the context have to be bound to variables. The
client submits a clockVarDefReq to the server which switches into
ClockVarDefReq. Again, the definition of the variables is encoded
into ruby code submitted as a string. For our clock x, the submitted
ruby code would be x=c0.x; As before, the server acknowledges
the operation and switches to ClockVarDefAck.

The state ClockVarDefAck has two outgoing transitions repre-
senting the two possible classes of DBM operations. First, a prop-
erty of a DBM can be checked. Such an operation always evaluates
to either true or false. Second, an operation can be executed on a
DBM such as intersection with another DBM. Such an operation
always evaluates to a DBM. The client can select the desired oper-
ation by submitted either checkFedPropertyReq or executeFe-
dOpReq to the server. Then, the actual operation to be executed
has to be passed as ruby code as before and is directly interpreted.
The result, either a Boolean or a DBM, is returned to the client. For
instance, the operation ((x>=0)).and!(x<=10) will evaluate
to the DBM ((x>=0)&(x<=10)).

After all operations have been executed, the client can send dis-
connect to the server causing it to switch to idle.

Then, a new context having a different number of clocks com-
pared to the prior context can be created. That allows to support
changing DBM sizes during the run of an algorithm on the client
side.

5. JAVA UDBM CLIENT
In addition to the server, we have implemented a Java side client

for the UDBM server. As introduced in Section 3, the client con-
sists of an abstract interface for modeling DBMs as shown in Figure
5 as well as a TCP/IP-based implementation managing the commu-
nication with the server. Both are implemented as Eclipse plugins

40

http://www.cs.aau.dk/~adavid/UDBM/
http://www.ruby-lang.org

TrueClockConstraint FalseClockConstraint

DifferenceClockConstraint

ClockConstraint

SimpleClockConstraint

Federation

up ()
down ()
and (federation:Federation)
equals (federation:Federation):Boolean
subtract (federation:Federation)
applyResets (clock:HashSet<Clock>)
normalize (maxValues:HashMap<Clock,Integer>)
diagonalNormalize (maxValues:HashMap<Clock,Integer>)
isEmpty ():Boolean
clone ():Object
and (constraint:ClockConstraint)
and (constraints:HashSet<ClockConstraint>)
getUpperBound (clock:Clock):Integer

ClockZone

Clock
id: String = ""
name: String =

ComparativeClockConstraint
value: Integer = 0

«enum»
RelationalOperator

LessOperator: String
LessOrEqualOperator: String
EqualOperator: String
GreaterOperator: String
GreaterOrEqualOperator: String

FederationFactory

createZeroFederation (clocks:HashSet<Clock>):Federation
createFederation (clocks:HashSet<Clock> , clockConstraints:HashSet<ClockConstraint>):Federation
createFederationFromClockZones (clocks:HashSet<Clock> , clockZones:HashSet<ClockZone>):Fede

cdClassDiagram

id

1

0..n

minuend

1

0..n

subtrahend

0..n

1
has

1

0..n

clock

0..10..n

has

0..n

1
has

0..1operator

Figure 5: Class Diagram of the UDBM Java Client

and can be used in any Eclipse based tool such as FUJABA.
The bottom part of the client model allows the definition of clock

constraints as defined in Section 2.1. In the two simplest cases, a
clock constraint is either true or false represented by the classes
TrueClockConstraint or FalseClockConstraint. In a Compara-
tiveClockConstraint, a comparison with an integer is supported.
Therefore, these clock constraints have a value and an operator. In
a SimpleClockConstraint, the value of one clock is compared to
the integer while in a difference clock constraint the difference of
two clocks is compared to this value. In our example, x <= 10 of
x == 0 are instances of a SimpleClockConstraint using the clock
x. The classes can be used to model all valid clock constraints.

The left hand side of the model (ClockZone and Federation) is
used to model clock zones and federations. For the sake of consis-
tency, each zone must be contained in a federation even if there is
only one zone in the federation. In our example in Figure 2, each
represented zone can be represented in one zone and thus, each
federation consists of one zone, only.

The class Federation also defines the interface to the operations
which can be performed on a federation. The operation and, e.g.,
allows to intersect a federation with additional clock constraints or
another federation. The executed operation is then transformed into
a query to the server and the provided result and parsed back into a
federation.

Clocks are assigned to federations because all zones in one fed-
eration must be specified over the same set of clocks. In order to
improve memory efficiency, clocks can be used for different feder-
ations. In our example, all federations share the same clock object
x.

The Java interface allows to add and remove clock instances

from federations. The addition and removal of clocks can be easily
done on the object level. Clocks being added to a federation are
initialized with the value 0.

In some application scenarios, e.g. the reachability analysis in-
troduced in [11], fast equivalence checks on DBMs are required.
Therefore, the client interface implements a hash algorithm on fed-
erations fulfilling the general hash function contract.

f1 ≡ f2 ⇒ hash(f1) = hash(f2)

That means whenever the federations are equal, their hash values
are equal as well. Thus, the equality check invoking the server only
has to be executed in case of equal hash values.

6. EVALUATION
We evaluated the performance of our server and the TCP/IP con-

nection using a socket via localhost utilizing the rechability anal-
ysis and the example presented in [11]. There, nine samples for
run-times of a reachability analysis were presented. We choose to
use this example, although it produces some odd numbers of DBM
operations, because we wanted to have a realistic sample of DBM
operations. During the reachability analysis, the size of the DBM
varies such that multiple contexts have to be created (cf. Section 4).
The results are summarized in Table 1. In the table, one DBM oper-
ation refers to the execution of one operationString in the protocol
of Figure 4.

The runtime results have been obtained by first measuring the
runtime on the Java side in order to obtain a runtime result includ-
ing the TCP overhead. Second, we measured the runtime inside the
ruby server to obtain a runtime result without the TCP overhead.
Finally, the TCP overhead has been obtained by arithmetics. The

41

Table 1: Evaluation results
of DBM Operations Run-time of DBM Operations in s Server memory in MB

Server incl. TCP Server excl. TCP TCP
108 0,3 0,3 0,0 15
342 1,0 1,0 0,0 15
737 3,4 3,1 0,3 16

1329 8,5 8,0 0,6 25
2154 17,1 16,4 0,7 25
3248 33,4 32,4 1,0 31
4647 61,1 59,1 2,0 35
6387 109,9 106,4 3,4 45
8504 190,1 185,3 4,8 63

run-time results in Table 1 are the sum of all executed DBM oper-
ations. The results show that the runtime increases slightly faster
than the number of executed DBM operations. This is due to the
fact that the maximum size of the DBMs increases from row to row.
Thus, the additional runtime results from the fact that operations on
larger DBMs consume more computation time. The overhead in-
troduced by the TCP/IP connection to the server is approximately
3% of the overall runtime which we consider as quite low.

The memory consumption of the server includes the memory
consumption of the ruby interpreter running the server script and
the ruby binding of the Uppaal DBM library. Due to the reuse
of contexts, the memory consumption increases only slowly for a
large number of DBM operations. In cases where the DBM di-
mension does not change during runtime, the increase in memory
consumption will be 0.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced a client/server architecture for inte-

grating time computations into FUJABA. The Java client allows to
model clock as well as constraints on these clocks that can be repre-
sented by clock zones. The server uses the Uppaal DBM library to
perform the actual time computations. Our presented architecture
is flexible as the server can be used by application programs written
in any programming language supporting TCP/IP communication.
Additionally, our client interface is independent of the actual server
implementation. The overhead introduced by the TCP/IP commu-
nication is negligible according to our evaluation results.

Our implementation allows for an easy integration of time com-
putations in any real-time analysis algorithm.

In our future work, we will try to apply further optimizations to
our implementation. One of these optimizations is the support of
concurrency in the server by allowing and processing multiple con-
nections in parallel. Additionally, different server implementations
could be evaluated for obtaining the most efficient realization of
time computations.

8. REFERENCES
[1] R. Alur. Timed Automata. In N. Halbwachs and D. A. Peled,

editors, Proceedings of the 11th International Conference on
Computer Aided Verification (CAV ’99), July 6-10, 1999,
Trento, Italy, volume 1633 of Lecture Notes in Computer
Science (LNCS), pages 8–22. Springer Verlag, 1999.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill, and
H. Wong-Toi. Minimization of timed transition systems. In
Proceedings of the Third International Conference on
Concurrency Theory (CONCUR ’92), Lecture Notes in
Computer Science (LNCS), pages 340–354, London, UK,
1992. Springer-Verlag.

[3] J. Bengtsson and W. Yi. Timed Automata: Semantics,
Algorithms and Tools. In J. Desel, W. Reisig, and
G. Rozenberg, editors, Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science,
pages 87–124. Springer, 2003.

[4] A. David. UPPAAL DBM Library Programmer’s Reference,
Oct. 2006. http://www.cs.aau.dk/~adavid/
UDBM/manual-061023.pdf.

[5] D. L. Dill. Timing assumptions and verification of finite-state
concurrent systems. In J. Sifakis, editor, Automatic
Verification Methods for Finite State Systems, International
Workshop, Grenoble, France, June 12-14, 1989,
Proceedings, volume 407 of Lecture Notes in Computer
Science (LNCS), pages 197–212. Springer Berlin /
Heidelberg, Feb. 1990.

[6] T. Eckardt and S. Henkler. Component behavior synthesis for
critical systems,. In Architecting Critical Systems, volume
6150 of Lecture Notes in Computer Science, pages 52–71.
Springer Berlin / Heidelberg, 2010.

[7] H. Giese and S. Burmester. Real-time statechart semantics.
Technical Report tr-ri-03-239, Lehrstuhl für Softwaretechnik,
Universität Paderborn, Paderborn, Germany, June 2003.

[8] H. Giese, S. Henkler, M. Hirsch, V. Roubin, and M. Tichy.
Modeling techniques for software-intensive systems. In
D. P. F. Tiako, editor, Designing Software-Intensive Systems:
Methods and Principles, pages 21–58. Langston University,
OK, 2008.

[9] H. Giese, M. Tichy, S. Burmester, W. Schäfer, and S. Flake.
Towards the compositional verification of real-time uml
designs. In Proc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, pages 38–47. ACM
Press, September 2003.

[10] C. Heinzemann, S. Henkler, and A. Zündorf. Specification
and refinement checking of dynamic systems. In P. V. Gorp,
editor, Proceedings of the 7th International Fujaba Days,
pages 6–10, Eindhoven University of Technology, The
Netherlands, November 2009.

[11] C. Heinzemann, J. Suck, and T. Eckardt. Reachability
analysis on timed graph transformation systems. In
Proceedings of the Eighth International Workshop on Graph
Based Tools (GraBaTs 2010), volume 31 of Electronic
Communications of the EASST, 2010.

42

http://www.cs.aau.dk/~adavid/UDBM/manual-061023.pdf
http://www.cs.aau.dk/~adavid/UDBM/manual-061023.pdf

UML Toolchain

Using Fujaba and UML Lab in a toolchain

Andreas Koch, Albert Zündorf
Kassel University, Software Engineering,

Department of Computer Science and Electrical Engineering,
Wilhelmshöher Allee 73,
34121 Kassel, Germany

[andreas.koch | zuendorf]@cs.uni-kassel.de
http://www.se.eecs.uni-kassel.de/

ABSTRACT
Every CASE-Tool has its strengths and weaknesses. Of
course, Fujaba is not apart from this rule. Thus, why not
combine the strengths of Fujaba with another application in
a toolchain.

This paper introduces a toolchain covering Fujaba and
UML Lab. Traditionally a toolchain is based on the use
of an im-/export functionality to transfer data between the
different tools by persisting this data with a common file
format. As the requirements of the introduced toolchain
cannot be fulfilled by this mechanism, a synchronization of
models based on the Fujaba respectively UML Lab meta-
model is implemented. One requirement is to ensure that
changing anything in the model of one tool has an immedi-
ate impact on the related model in the other tool. Therefor
the model synchronization handles every change separately
by analyzing change event objects resulting from each model
modification and ensures a (preferably) immediate handling
of changes.

1. INTRODUCTION
Each software application is developed in terms of a spe-

cific purpose. In the context of this purpose the application
can (or at least it should) provide any necessary functional-
ity. However, the requirements of an user often exceed these
functionalities or the user prefers a similar approach offered
by another application. Either way, one application alone
cannot satisfy the requirements of this user. Therefore the
creation of a toolchain containing all necessary applications
to complete the desired task is recommendable.

The concept of a toolchain can be interpreted differently.
It can describe an unidirectional order of tools (see figure
1(a)) as well as a bidirectionally traversable chain (see figure
1(b)) or any other set of tools. Depending on the structure
creating a new toolchain is affected by different challenges,
but a main task always refers to the data exchange between
the included tools. This problem can be separated into two
connected sub tasks. The first task addresses the general
way how data, created in one tool, can be transferred into
the next tool (in the chain) to proceed working. The second
task deals with handling subsequent changes in an inbound
document. This means to define how, if at all, the modifi-
cation of data in one tool can be applied to existing data in
another tool.

A traditional approach to provide the data exchange is
the use of an im-/export functionality: at first, all necessary

data is persisted by exporting it with tool A. Afterwards
tool B imports this data and the user can continue to work.
This approach lacks, amongst other things, in the necessity
of a (manual) intervention each time a data exchange is per-
formed. Additionally, with a common and standardized data
format, there can be difficulties persisting any tool specific
data (e.g. positioning of GUI elements) or preserving this
data after a future export by another tool. This lost data
is usually not relevant in an unidirectional toolchain, but
impedes the usage of a bidirectional traversable toolchain.
There, every step back would result in the, at worst manual,
restoration of all lost data.

(a) (b)

Figure 1: Structure of different toolchains

The introduced UML Toolchain with the CASE-Tools Fu-
jaba, to be more precise Fujaba4eclipse, and UML Lab is tar-
geted on a tight integration of their functionalities and bidi-
rectional traversable. Therefore it is necessary that changes,
for example on a model in Fujaba, are immediate applied to
the equivalent model in UML Lab. Using an im-/export
functionality does not fulfill these requirements in several
points. Besides the manual interaction to im-/export any
data, this approach does not rely on altering existing data,
but storing and restoring (means deleting and recreating) of
all available data. To address these problems an automat-
ical synchronization of equivalent parts of the metamodels
in both tools has been implemented. Additionally, this syn-
chronization depends on the usage of event objects triggered
by each modification of a model. This means: every change
is handled separately.

43

Figure 2: screenshot of UML Lab showing source code and the resulting class diagram

2. UML LAB
UML Lab is a modeling IDE developed by the Yatta So-

lutions GmbH[7]. As it is based on the eclipse platform
[2], the implementation of the UML specification 2.x[6] for
the eclipse platform is used as metamodel. The influence of
Fujaba during the development of UML Lab is reflected in
the effort to combine code generation and reverse engineer-
ing. Based on the concept “From UML to Java and back
again” a language independent synchronization of source
code and model was developed and integrated into UML
Lab. This Round-Trip-EngineeringNG[1] uses textual tem-
plates for generation as well as reverse engineering to enable
the parallel work in source code and diagram as shown in
figure 2.

3. DEFINING THE TOOLCHAIN
To define the core requirements of the introduced toolchain

two different groups of users have to be analyzed.
The first group consists of users, that are familiar with Fu-

jaba. They usually work with UML Lab only, if it provides a
noticeable advantage. The Round-Trip-EngineeringNG, ac-
cessible through the toolchain, enables the synchronization
of generated source code with the Fujaba class diagram and
therefore falls into this category. Additionally, as UML Lab
uses the implementation of a current version of the UML
metamodel, the toolchain provides access to new features of
the UML specification without the necessity to change the
Fujaba metamodel.

The second group of users are familiar with UML Lab.
These consider using Fujaba only where UML Lab does not
provide the appropriate tools. Especially the concept of
Story Driven Modeling(SDM)[3] [8] in Fujaba has to be men-
tioned in this context. This includes the creation/editing of
story diagrams, which can (now) be based on Fujaba and
UML Lab models. An additional use case is to integrate
source code for these modeled story diagrams into UML
Labs generated source code. An explicit request apart from
this is, that legacy projects from Fujaba shall be usable (and
editable) in UML Lab.

To satisfy both groups needs, the effort to use the other

tool has to be kept as low as possible. In addition, as one
wants to use his tool-of-choice, a class diagram has to be
editable with both tools.

4. IMPLEMENTING THE TOOLCHAIN
To discuss the details of the implementation, an example

usage of the toolchain is given:

1. Reverse Engineering of existing source code (UML Lab)

2. Extend one class with an additional method (Fujaba
or UML Lab)

3. Create a story diagram for this method (Fujaba)

4. Generate code (UML Lab (with Fujaba))

After one or more existing classes are reverse engineered
with UML Lab (step 1), the resulting class diagram can be
edited with both tools - depending on one’s preferences. In
step 3 switching to Fujaba is necessary to create the story
diagram for a formerly created method. The last step, the
code generation, needs more explanation. As both tools pro-
vide an own code generation, each tool can solely generate
executable code. However, UML Lab does not generate code
for story diagrams and the code generation of Fujaba is not
automatically linked to the previously reverse engineered
classes. Accordingly, the combined generation with both
tools is recommended: first of all the source code for story
diagrams is generated with Fujaba; afterwards it is passed
to UML Lab and integrated into its generated source code.
Therefore switching back to UML Lab is required again.

As steps like these are executed regularly and in an un-
defined order, one has to switch between Fujaba and UML
Lab frequently. Two requirements result from this conclu-
sion. First of all, as much as possible should be done without
any explicit user interaction. This includes the automatical
synchronization of model changes or the combined code gen-
eration. With the automatic model synchronization one has
not to take care about the currently active tool, because
both models (Fujaba and UML Lab) are always consistent
with each other. Secondly, features of the other tool have to

44

Figure 3: Usage of the story diagram editor in the UML Lab class diagram editor

be accessible directly. A simple example: to create and edit
story diagrams while using the class diagram editor of UML
Lab, its context menu is extended with a new menu entry to
open the story diagram editor and switch to it automatically
(figure 3).

All those features are provided externally and added by
using plugin mechanisms; on the one hand to avoid depen-
dencies between the tools, on the other hand because they
shall not (Fujaba) or cannot (UML Lab) be modified. For
this reasons an adapter is used to connect Fujaba and UML
Lab. This adapter takes care of the model synchronization
and the extension of the tools; for example the additional
entries in context menus.

5. MODEL SYNCHRONIZATION
The model synchronization is not discussed in detail in

this paper, but we will give a brief overview of its general
idea and structure. For the implementation details see [5].

To perform a valid synchronization of two models their
metamodels need to be examined and similar parts identi-
fied. By analyzing the metamodels of Fujaba and UML Lab
one common part concerning class diagrams can be found.
Accordingly the synchronization is restricted to this common
elements. These elements are afterwards used to find suit-
able mappings; for example FMethod (Fujaba metamodel)
can be mapped to Operation (UML 2.x metamodel). Based
on this mappings different handlers are implemented, each
responsible for one field of one metamodel element pair;
for example one handler synchronizes the return type of
FMethod with Operation and vice versa.

Imagine the following scenario: there are two already syn-
chronized models in Fujaba and UML Lab that contain a
method (assemble()) associated with a story diagram. This
method is extended by a new parameter (wheel:Wheel) us-
ing the UML Lab class diagram editor. After switching back
to its story diagram, this new parameter should be immedi-
ately added and usable. The result is shown in figure 3 with

the class diagram editor on the left and the story diagram
editor on the right side.

As both metamodels provide an implementation of the ob-
server/listener pattern, these are used to synchronize every
change separately; for example events are fired after the cre-
ation of the new parameter, the change of its name or adding
it to a method. These events are analyzed and delegated to
the responsible handlers. The only information that can-
not be extracted from these events is the target object the
change should be applied on. For this purpose the adapter
manages all known object mappings and makes them avail-
able to the handlers. These mappings are generated every
time a new object is created as well as after loading and
scanning of associated models. Finally the handler combines
the informations from the event with the mapped object to
synchronize the change.

Avoiding inconsistent models was a main challenge dur-
ing the creation of the synchronization mechanism; espe-
cially asymmetric structures were problematic. For example
Property needs to be mapped to FAttr or FRole depending
on attribute values of a Property object. Therefore every
time a Property object is changed the mapped target object
has to be evaluated correctly. As a result some events have
to be collected and not synchronized until a consistent result
can be ensured.

6. SUMMARY AND FUTURE WORK
UML Toolchain can be used to work in parallel with Fu-

jaba and UML Lab. This means one can create/edit class
and story diagrams, generate code or reverse engineer exist-
ing code without a manual switch between the tools. There-
fore every model change is automatically synchronized i.e.
immediately applied to the related model in the other tool.

For the future work two topics can be examined sepa-
rately. The first deals with the ideas to expand the toolchain;
not by integration another tool, but by extending the syn-
chronized part of the metamodels. This includes for ex-

45

ample the synchronization of story diagram when they are
integrated into UML Lab. Additionally, the usability can
be improved in some points for example to administrate the
synchronized models. This includes a temporary disconnect
of models or a general overview to show all synchronized
(loaded or not loaded) models.

The second issue is aimed onto the model synchroniza-
tion. As the example uses a programmatically implemen-
tation, the framework provides interfaces to easily attach
other mechanisms. For example the integration of the triple
interactive graph grammar (TiG) interpreter[4] is planned
in the near future.

7. REFERENCES
[1] M. Bork, L. Geiger, C. Schneider, and A. Zündorf.

Towards roundtrip engineering - a template-based
reverse engineering approach. In I. Schieferdecker and
A. Hartman, editors, ECMDA-FA, volume 5095 of
Lecture Notes in Computer Science, pages 33–47.
Springer, 2008. http://dblp.uni-
trier.de/db/conf/ecmdafa/ecmdafa2008.htmlBorkGSZ08.

[2] Eclipse platform. http://www.eclipse.org/eclipse/.

[3] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
diagrams: A new graph rewrite language based on the
unified modeling language. In Proc. of the 6th

International Workshop on Theory and Application of
Graph Transformation. Paderborn, Germany, 1998.

[4] B. Grusie. Ein objektorientierter, interaktiver Triple
Graph Grammatik Interpreter. Master’s thesis,
University of Kassel, Kassel, Germany, 2010.

[5] A. Koch. Echtzeit Synchronisierung von UML-Modellen
unterschiedlicher technischer Basis am Beispiel von
UML Lab und Fujaba. Master’s thesis, University of
Kassel, Kassel, Germany, 2010.

[6] Implementation of the UML 2.x metamodel for the
Eclipse platform. http://wiki.eclipse.org/MDT-UML2.

[7] Yatta Solutions GmbH.
http://www.uml-lab.com/en/uml-lab/.

[8] A. Zündorf. Rigorous object oriented software
development. Habilitation Thesis, University of
Paderborn, 2001.

46

Difference Visualization for Models (DVM)

Visualizing model changes directly within diagrams

Andreas Scharf, Albert Zündorf
Kassel University, Software Engineering,

Department of Computer Science and Electrical Engineering,
Wilhelmshöher Allee 73,
34121 Kassel, Germany

[andreas.scharf | zuendorf]@cs.uni-kassel.de
http://www.se.eecs.uni-kassel.de/

ABSTRACT
Today’s software development and maintenance is time con-
suming, cost-intensive and particularly an iterative process.
Since models and diagrams are the main artifact in the devel-
opment process of numerous research institutes and software
companies, it is necessary to show and merge differences as
the model evolves. While there are plenty of difference tools
available for textual artifacts (like source code) this does not
hold for diagrams.

This paper presents an approach to show and merge deltas
of different model versions directly within the corresponding
diagram editor. This is done by integrating the Difference
Visualization for Models (DVM) framework into existing ed-
itors with as little effort as possible.

1. INTRODUCTION
Modern software consists of several million lines of code

which are changed frequently by software development teams.
Producing software does not mean to simply write the code
once and never touch it again. In fact it is an iterative pro-
cess: Bugs have to be fixed and the team has to take care
for changing requirements which increases the code size. Ev-
ery change (or delta) can be interpreted as a new version of
the source code. This in turn leads to different versions of
the same document which are mostly managed with version
control systems like CVS or subversion.

During the development phase of a software project there
often is the need of showing deltas between different ver-
sions of the same document. In the majority of cases these
documents are interpreted as flat and unstructured text -
content and logical configuration are not considered. The
user then gets information about added, deleted and modi-
fied lines and is able to merge both versions of the document.
The tool support for visualizing such changes for unstruc-
tured text documents like source code is excellent. However
for more and more developers the source code is not the
primary artifact anymore.

To design structure and behavior of large software projects
the Unified Modeling Language (UML) [3] is used by devel-
opers. Particularly class diagrams are utilized to describe
(parts of) systems. Like source code, diagrams are subject to
frequent modifications which also raises the requirement of
visualizing and merging these changes. Unlike source code,
diagrams are structured files. Hence the traditional algo-
rithms and tools to compute, visualize and merge deltas can
not be applied in a meaningful way.

Existing approaches for visualizing model based changes
are either difficult to use or hard to implement. The EMF
Compare [5] for example provides a generic tree editor which
is difficult to use because the UI is completely different from
your usually used editor. The approach presented in [2] on
the other hand integrates such a mechanism into Fujaba.
This allows you to visualize differences directly in the class-
diagram editor by the cost of duplicating the meta model to
annotate the model elements with delta information.

We present an approach to visualize model based deltas di-
rectly within their corresponding diagram editors. Because
you are already familiar with these editors you don’t have to
invest time to learn a new tool. Instead overlays techniques
are used to enhance the existing GUI to visualize the deltas
and give you the possibility to merge the different versions.
The Difference Visualization for Models (DVM) framework
may be integrated into existing Eclipse diagram editors build
with the Graphical Editing Framework (GEF). This is done
by providing new classes on the one hand and by expos-
ing some Eclipse extension-points on the other hand. EMF
Compare is used to calculate the delta between two model
versions but the DVM framework is open for your model
compare framework. To evaluate the DVM framework it
has been integrated into the modeling IDE UML Lab [6].

2. MOTIVATION
Software artifacts like source code or models are changed

frequently. If the software contains bugs and you know the
point in time where everything worked well you might con-
sider to have a look at the changes that were applied to the
code between these two times. Another scenario is using a
version control system: Before you update or commit your
changes you often review the changes between your working
copy and the remote files.

Thus, the correct computation and particularly the visu-
alization of deltas is a central aspect in a team for an error-
free and efficient work process. For you as the developer it
is crucial to understand which changes occurred, if they are
meaningful or not and if they correlate with your work in
any way. Besides the visualization it is important to also
provide merge functions to combine your local and remote
artifacts.

The described features are well supported concerning un-
structured text files like source code. If you use the syn-
chronizing view in eclipse for example to review changes in
shared software artifacts like source code, algorithms like the

47

Longest Common Subsequence (LCS) [1] are used to com-
pute the delta between different versions of files. You then
get a line based comparison of the changes mostly displayed
in a simple text editor. While this approach is sufficient for
unstructured artifacts like source code this does not hold
for the model based development approach because of two
reasons:

• Computing the delta of models by using algorithms like
the LCS is not possible. Even if you consider a XMI
representation of your model there are several disad-
vantages using a text based approach. As an exam-
ple moving a model element yields removed and added
lines in the XMI document and you loose the semantic
of the move operation.

• Because models are modified by using special diagram
editors displaying the differences in a simple text editor
is not an option. Furthermore it is eligible to really use
your existing and well known editor rather than using
a dedicated tool because this saves time to learn a new
tool.

Even though we did not focus on computing the delta of
models we want to point out some approaches to better un-
derstand the requirements that a proper framework should
meet. The technique presented in [4] is based on record-
ing every single change that occurs in a model and simply
save the change stream. This way it is possible to compute
the delta in an elegant way. Using heuristics to match el-
ements of different model versions and then compute the
delta is another way to solve this problem even if finding
good heuristics is not a trivial task. EMF Compare uses
several weighted heuristics to compute the delta and serves
as the diff-algorithm in our solution.

Mostly you are in the situation that you already have
a diagram editor and only want to integrate the described
functions with as little effort as possible. This requires a
potential framework to be as generic and flexible as possible
regarding the computation, visualization and merge func-
tions. To our knowledge there exists no suitable solution
which meets all the mentioned requirements. The approach
presented in [2] is the closest match because it integrates a
delta visualization mechanism into the classdiagram editor
of Fujaba but does not provide any merge functionality and
is really limited to this editor.

3. THE DVM FRAMEWORK
As already mentioned it is a good idea to visualize model

based deltas directly within their corresponding diagram ed-
itors. In the eclipse environment the preferred technology to
create diagram editors is GEF. The DVM framework allows
you to add the difference visualization and merge function-
ality into existing GEF based editors with as little work as
possible.

To be able to recognize the deltas within the diagram at
first sight and distinguish them from other diagram elements
we decided to use an overlay technique. This has some ad-
vantages:

• Overlays can be distinguished from your diagram ele-
ments easily.

• The UI for visualizing deltas does not depend on the
UI used by the diagram editor which means that the

overlays can be used generically. Changing the editors
UI does not affect the delta visualization.

• To integrate the delta UI elements with your existing
editor you don’t need to change your figures.

• The design of the delta UI elements is very similar
to the presentation used by conventional text based
editors. Thus you intuitively know what is meant by
a given delta UI element.

In the following sections we point out some details of the
DVM framework beginning with the UI representation of
differences, followed by the merge mechanism and then dis-
cussing some implementation details.

3.1 Overlay technique
Figure 1 shows an example used to visualize a delta con-

cerning a changed attribute of a class within a classdiagram.

Figure 1: Tooltips provide detailed information

Beside the visualization for any type of node (e.g. classes,
attributes, operation etc. in classdiagrams) it also important
to support diagram edges. Figure 2 shows how the DVM
framework visualizes a deleted association. In addition to
the edge itself, all elements that belong to this edge are are
overlayed with a delta annotation.

As you can see from figure 2 it is not clear at the first sight
what exactly has been changed. To provide more informa-
tion about the change and support merging of deltas the
overlays are extended with special markers. Hovering over
these markers populates a tooltip which displays detailed
information about the delta. Figure 1 shows an example of
a changed visibility of the attribute bezeichnung:String.

3.2 Context dependent delta visualization
The kind of the delta of course has great influence on the

overlay generated by the DVM framework. Table 1 gives an
overview of the possible delta types along with the letters
used for the special markers and the default colors.

Type Abbr. Description
ADD A Element added

DELETE D Element removed
MODIFY C Element modified

MOVE M Element moved

Table 1: Default colors of delta types

The DVM framework takes care for choosing the correct
overlay in case of added or removed elements. This operation
is context dependent. An example: Let’s assume that you
have a class Person in your local model which does not exist

48

Figure 2: Overlay to visualize a delta for an association

in the remote version. Further your local version of the
model is newer than the one on the server then this means
that the class Person has been added and thus the DVM
framework generates an overlay of type ADD. If the remote
version is newer than your local one then the framework
generates an overlay of type DELETE. In the former case this
can be called forward-diff and in the latter backward-diff.

3.3 Merging deltas
We already talked about the special marker which extends

every overlay. Besides the tooltip which gives detailed in-
formation about the delta, the marker is clickable allowing
you to trigger merge actions. Figure 3 shows a marker menu
exemplary for a delta of type MODIFY. This enables you to
either accept oder discard this change.

Figure 3: The merge menu

The displayed text in this menu also depends on the delta
kind. If you have a delta of kind ADD for example then you
have the choices Keep and Remove instead of those shown
in figure 3.

3.4 Diff Algorithms
As already stated we did not focus on implementing a

new diff algorithm to compute the delta between different
versions of a model. Instead we provide a DiffAlgorithm

and a Merger interface. The former provides access to the
underlying diff algorithm while the latter is able to execute
merge operations. The DVM engine uses the DiffAlgo-

rithm interface to compute the delta between two versions
of a model and transforms the result of this operation into
an internal DiffViewerModel. This model is then used for
further operations like generating the overlays or trigger-
ing merge actions. Using an additional model rather than
simply use the EMF Compare model has the advantage of
decoupling the DVM framework from special diff and merge
implementations.

The default DiffAlgorithm is the EMFCompareDiffAlgo-

rihthm which is able to compare ecore based models. The
EMFCompareMerger is used to merge the deltas

3.5 How to use DVM
We now want to give a brief overview of how the DVM

framework can be integrated into existing GEF diagram ed-
itors. To display the generic overlays you have to anno-
tate your model with the delta information provided by the
DVM DiffViewerModel. This is done by implementing the
DiffViewerAnnotator interface and executing the following
steps:

1. Merge the delta into your local model if the delta kind
is DELETE. This is necessary to display local deleted
elements.

2. Find the element related to the delta in your local
model and register it in the DVM framework

3. Undo any changes made in the first step if the delta
kind is DELETE. Note that care must be taken to not
remove any visual representation of your local element
because otherwise the deleted element can not be dis-
played.

Steps 1 and 3 need a bit more explanation: If you want
to display a locally deleted element (which means that you
do not have the element in your domain model) you first
have to get this element into your domain model and create
the corresponding visual representation. This also means
that the DVM framework needs to modify your local domain
model even if you just want to display the differences. We
decided to undo any of these changes made in the domain
model but keep the visual representation in Step 3. Another
way could be to not undo the changes, keep track of the
modified elements and undo the changes for discarded deltas
and do nothing for accepted ones. This really is the most
difficult step while integrating the DVM framework into your
editor. We did not find a generic way to do this because the
mechanism to undo changes is specific to your application.

After implementing the DiffViewerAnnotator you have
to expose this class to the DVM framework using a special
eclipse extension point provided by the DVM framework.
In the last step two new GEF EditPolicies, DiffVisualiza-
tionNodeEditPolicy and DiffVisualizationEdgeEditPol-

icy, are used to visualize the generic overlays and provide
support for merge actions. EditPolicies in GEF are the con-
trollers in the MVC design pattern which means that they
can get information for both model and the corresponding
visual representation. Depending on whether your EditPart
is a node or an edge you register the former or the latter Ed-
itPolicy on your EditPart. If now a new delta is registered
in step 2, both EditPolicies are able to find the correct GEF
figure, determine it’s size and position and finally create the

49

generic overlay. To visualize all deltas in a new diagram
you have to implement the DVM DiagramCreator interface.
Existing diagrams can be found by implementing the Dia-

gramFinder interface.
As you can see, integrating the DVM framework is rela-

tively easy. To evaluate the framework it has been success-
fully integrated into the classdiagram editor of the modeling
IDE UML Lab. Figure 4 contains a screenshot of the classdi-
agram editor of UML Lab extended by DVM delta overlays.

4. RELATED WORK
To our knowledge the number of comparable work is very

low and there is no framework like the DVM. However we
want to present two approaches to compare models and vi-
sualize deltas.

We already mentioned the EMF Compare framework. This
framework consists of a couple of eclipse plugins and thus
is intended to be used inside the eclipse environment. EMF
Compare provides algorithms to calculate the delta between
two versions of an ecore model. Therefore as long as your
model is an ecore model you can use the generic diff al-
gorithm of EMF Compare. Besides the diff functionality
EMF Compare provides a generic tree editor to visualize
and merge the differences. This generic tree editor both has
advantages and disadvantages: On the one hand you can use
your ecore model without modification. On the other hand
it means that you have to learn new tool instead of using
your own diagram editor.

The solutions presented in [2] integrates the visualization
of deltas into the classdiagram editor of Fujaba. This is
done by importing a special XMI file which contains the
model elements along with the delta information. To anno-
tate the model elements a duplicate of the meta model which

Figure 4: DVM framework integrated in UML Lab

is extended by the delta model elements is necessary. Fur-
thermore special components are required to finally display
the changes within the classdiagram editor. The workflow
to compute and visualize the delta between two versions of
a model is complex in this approach because you have to
provide the mentioned XMI file by yourself with third party
tools. Additionally the delta visualization support is limited
to the classdiagram editor and it is not possible to merge any
differences.

5. SUMMARY AND FUTURE WORK
In this paper we have presented an approach to visualize

differences between models directly within the correspond-
ing diagram editors. The DVM framework can be integrated
in GEF based diagram editors in the eclipse environment
and supports both visualizing and merging of deltas. We
evaluated the DVM framework by integrating it into the
classdiagram editor of the modeling IDE UML Lab and saw
that the approach works as intended.

The framework lacks some features. For example a three-
ways-diff is not possible by the time writing this paper. The
DVM framework therefore cannot visualize any conflicts as
they involve three versions of a model: The local, the remote
and the base. As this is necessary while working in a team
which uses some kind of version control system we plan to
implement this feature as soon as possible.

Furthermore we have some ideas where the DVM frame-
work could be used as well. One example is the visualization
of the delta triggered by a refactoring operation. If the refac-
toring is complex it may not be obvious what exactly has
changed in the model. Thus visualizing these changes is a
useful feature.

50

6. REFERENCES
[1] L. Bergroth, H. Hakonen, and T. Raita. A survey of

longest common subsequence algorithms. In Proc.
Seventh International Symposium on String Processing
and Information Retrieval SPIRE 2000, pages 39–48,
Sept. 27–29, 2000.

[2] S. Lück. Ein differenzanzeige- plugin für
klassendiagramme in fujaba. Master’s thesis,
Universität Siegen, 2004.

[3] Object Management Group. Unified modeling language.

[4] C. Schneider. CASE Tool Unterstützung für die
Delta-basierte Replikation und Versionierung
komplexer Objektstrukturen. Master’s thesis,
Technische Universität Braunschweig, 2003.

[5] N. Skrypuch. EMF Compare.
http://www.eclipse.org/modeling/emf/?project=compare.

[6] Yatta Solutions GmbH. UML Lab.
http://www.uml-lab.com/, 2009.

51

$�������

��-�5-
���!�D��������+!��

�+!���?����.��G�%������:����	����

�+!�5�(���)����������������$�����������.	�G����7�	�@�����������<���;��7���'���	�����

>���9�.��������������/��*7������������	�&�����

�+!45������#�������$�����������.	���������$�������������������$���)����
������	�G����7�	�

���7�������������/��*7����������7�	�@���������

��!�5���!45�'����������7

��!45��-�=�����4������������	�����G�?��������.�����������*���#��	����������#�G�

(7��$����

��!���4-�(�	�.#������������*��������	�	��.�)����	�.����������*����.����������������*����

����	�������	�G�;�����<������(������E������������$�.���&�������;��	��

�
!�����!���&���������7

��!���$����������G�<F�����������'���	��#�� ��7���������(������EC�����

�4!���B�����������/==� �����H����:����=�������D��������=��	����(������EC����������(��

����	�1���

�4!����5!���'����������7

�5!���(���	����&�*���'���	��������������$����(��#��*��$�	��.	�)����=��#��/���	����

.�����	�G��������	�/����

�5!���%	��������������$�	��.	����������G�(�/�������� 0#��������;�#����G�(����.�&�����

%������:����	����������;�����<����

�6!����6!���'����������7

�6!�����!��������.���	�		���	����/�������������������:�)�����.�����2����.���3

�+!���$�������*����2	�����I�����7	�I�	���7	���������	��������������/����3

�
-�5-
���!�D����������!��

��!���J1������J�(�����.�������������������)����%�&�&���G�(�����	�$�����

��!���'����������7

��!���@�	����9���������
�����������������;�	���	����;����#	��G�������'���	����
�������	��

���7�	�@�����������������������/��*7��

�
!���
��*������/�.����'�.#�������	������������G�/����	� �7���������'���	�����>���9��

.���

�
!����4!���&���������7

�4!���%�&�/���������G�(�����	�1��������(������EC�����

�4!��������������@�	����9���������������	�2�@�3�G�(�����	�$����������(������EC�����

�5!����5!���'����������7

�5!����#���������#��������	�		���	

�##��0-��+!���
�99�I����7	�����������*��	���

��-�5-
���!�D��������+!��

�+!�����!���
��������	�		���	

��!���=������

�
!�����!��������������

��#������

