
On the Benefits of Abstraction

in Concurrent Haskell

DISSERTATION

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

im Fachbereich 16 (Elektrotechnik/Informatik)

der Universität Kassel

vorgelegt von

Michael Christian Lesniak

Datum der Disputation: 1. Juni 2012

Summary
Nowadays, even commodity hardware consists of several processing units. This allows for

parallel computing, i.e. a problem is split into several tasks that can be run in parallel.

However, parallel programming is still difficult, even for experts. One possibility to ease the

implementation of parallel programs is abstraction. While traditional programming languages

work on a rather low level of abstraction, functional programming languages such as Haskell

provide techniques for sophisticated abstractions.

In this thesis, we aim at analyzing how well different kinds of abstraction support program-

ming with Concurrent Haskell, a library for shared-memory parallel programming in Haskell.

Our research is focused on two areas of interest. First we compare synchronization approaches

which differ in their level of abstraction. Second we investigate how abstraction techniques can

be used to hide details of parallelization.

For a comparison of synchronization approaches, we considered locks, compare-and-swap

operations, and software transactional memory, chiefly in the context of two problems. First,

we implemented a thread safe priority queue on top of the skiplist data structure. Second,

to compare the approaches in a more high-level scenario, we implemented the taskpool design

pattern for different taskpool variants (global taskpools, and private taskpools with and without

task stealing). Additionally, we provided an abstraction layer that allowed for a convenient

and idiomatic formulation of taskpool algorithms.

For analyzing if Haskell’s abstraction techniques allow to hide complex details of the paral-

lelization, we first examined stencil-based algorithms. For this purpose we developed a library

that allows for a declarative description of stencil-based algorithms as well as their parallel

execution. By means of the declarative interface, the thread-based parallel implementation is

completely hidden from the user. Subsequently, we developed an embedded domain specific

language (EDSL) for vertex-centric graph algorithms as well as an execution platform that al-

lows for their automatic parallel execution. We provided several examples which demonstrated

that the EDSL allows for a concise yet understandable formulation of graph algorithms.

iii

iv

Zusammenfassung
Heutzutage haben selbst durchschnittliche Computersysteme mehrere unabhängige Rechenein-

heiten (Kerne). Wird ein rechenintensives Problem in mehrere Teilberechnungen unterteilt,

können diese parallel und damit schneller verarbeitet werden. Obwohl die Entwicklung par-

alleler Programme mittels Abstraktionen vereinfacht werden kann, ist es selbst für Experten

anspruchsvoll, effiziente und korrekte Programme zu schreiben. Während traditionelle Pro-

grammiersprachen auf einem eher geringen Abstraktionsniveau arbeiten, bieten funktionale

Programmiersprachen wie z.B. Haskell, Möglichkeiten zur fortgeschrittenen Abstrahierung.

Das Ziel der vorliegenden Dissertation war es, zu untersuchen, wie gut verschiedene Arten

der Abstraktion das Programmieren mit Concurrent Haskell unterstützen. Concurrent Haskell

ist eine Bibliothek für Haskell, die parallele Programmierung auf Systemen mit gemeinsamem

Speicher ermöglicht. Im Mittelpunkt der Dissertation standen zwei Forschungsfragen. Erstens

wurden verschiedene Synchronisierungsansätze verglichen, die sich in ihrem Abstraktionsgrad

unterscheiden. Zweitens wurde untersucht, wie Abstraktionen verwendet werden können, um

die Komplexität der Parallelisierung vor dem Entwickler zu verbergen.

Bei dem Vergleich der Synchronisierungsansätze wurden Locks, Compare-and-Swap Op-

erationen und Software Transactional Memory berücksichtigt. Die Ansätze wurden zunächst

bezüglich ihrer Eignung für die Synchronisation einer Prioritätenwarteschlange auf Basis von

Skiplists untersucht. Anschließend wurden verschiedene Varianten des Taskpool Entwurfs-

musters implementiert (globale Taskpools sowie private Taskpools mit und ohne Taskdieb-

stahl). Zusätzlich wurde für das Entwurfsmuster eine Abstraktionsschicht entwickelt, welche

eine einfache Formulierung von Taskpool-basierten Algorithmen erlaubt.

Für die Untersuchung der Frage, ob Haskells Abstraktionsmethoden die Komplexität par-

alleler Programmierung verbergen können, wurden zunächst stencil-basierte Algorithmen be-

trachtet. Es wurde eine Bibliothek entwickelt, die eine deklarative Beschreibung von stencil-

basierten Algorithmen sowie ihre parallele Ausführung erlaubt. Mit Hilfe dieses deklarativen

Interfaces wurde die parallele Implementation vollständig vor dem Anwender verborgen. An-

schließend wurde eine eingebettete domänenspezifische Sprache (EDSL) für Knoten-basierte

Graphalgorithmen sowie eine entsprechende Ausführungsplattform entwickelt. Die Plattform

erlaubt die automatische parallele Verarbeitung dieser Algorithmen. Verschiedene Beispiele

zeigten, dass die EDSL eine knappe und dennoch verständliche Formulierung von Graphalgo-

rithmen ermöglicht.

v

vi

Chapter 0

Contents

List of Figures xi

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 7

1.3 Structure . 10

1.4 Acknowledgments . 10

1.5 Disclaimer . 11

2 Foundations 13

2.1 An Introduction to Parallel Programming 14

2.1.1 Basic Terms . 14

2.1.2 Designing Parallel Algorithms . 16

2.1.3 Why Parallel Programming is Hard 18

2.2 The Functional Programming Language Haskell 20

2.2.1 History . 20

2.2.2 Important Language Concepts . 21

2.2.3 Further Reading . 26

2.3 Parallel Programming in Haskell . 26

2.3.1 Threads in Concurrent Haskell . 27

2.3.2 Data Synchronization . 27

2.3.3 Lazy Evaluation and Concurrency 33

2.3.4 Other Parallelization Approaches in Haskell 34

3 Thread-safe Priority Queues based on Skiplists 39

3.1 Introduction . 40

3.2 An Introduction to Skiplists . 41

3.2.1 The Data Structure . 41

3.2.2 Duplicate Key Handling . 43

3.2.3 Skiplist complexity . 44

vii

3.3 A Priority Queue Typeclass for Skiplists 45

3.4 Thread-safe Priority Queue Variants . 46

3.4.1 Lock-based Skiplists . 46

3.4.2 Software Transactional Memory based Skiplists 50

3.4.3 Skiplists based on Atomic Compare and Swap Operations 51

3.4.4 Coarse-Locked Heap-based Priority Queue 54

3.4.5 Testing the Implementations . 55

3.5 Benchmarks . 55

3.5.1 Scenarios . 55

3.5.2 Comparison of Difficulty and Code Size 59

3.6 Related work . 60

3.7 Summary and Conclusion . 61

4 A Comparison of Lock-based and STM-based Taskpools 63

4.1 Introduction . 64

4.2 Taskpool Variants . 66

4.2.1 Taskpool Criteria . 66

4.2.2 Global Taskpools . 66

4.2.3 Private Taskpools . 67

4.2.4 Shared Taskpools . 67

4.3 A Monadic Taskpool Interface for Taskpools 68

4.3.1 Typeclass and Monad . 68

4.3.2 Core Taskpool Functions . 69

4.3.3 Exchanging Return Values . 72

4.3.4 Example: Fibonacci sequence . 72

4.3.5 Example: Nested Task Dependencies 74

4.4 Taskpool Implementations . 76

4.4.1 Global taskpools . 76

4.4.2 Private Taskpools . 84

4.4.3 Shared Taskpools . 90

4.5 Benchmarks . 92

4.5.1 Requirements for Benchmark Problems 93

4.5.2 Calculating Digits of Pi . 93

4.5.3 A Synthetic algorithm . 95

4.5.4 LU Decomposition . 98

4.5.5 Summary . 101

4.6 Related work . 101

4.7 Summary and Conclusion . 102

viii

5 Declarative Description and Parallelization of Stencil Computations 105

5.1 Introduction . 106

5.2 An Introduction to the Library . 108

5.2.1 The Voltage Diffusion Problem 108

5.2.2 Modeling, Solving and Visualizing Voltage Diffusion 109

5.3 Implementation . 114

5.3.1 Lists versus Algebraic Data Types and Tuples 114

5.3.2 Internal Grid Representation . 115

5.3.3 Parallel Execution of Stencil-based Algorithms 116

5.3.4 Implementation of a Multidimensional Cache-aware Grid 120

5.3.5 Dependency Computation . 122

5.4 Benchmarks . 126

5.4.1 Jacobi Stencil . 126

5.4.2 Gauss-Seidel Stencil . 126

5.4.3 Summary . 127

5.5 Related Work . 127

5.6 Summary and Conclusion . 129

6 Describing and Executing Graph Algorithms 131

6.1 Introduction . 132

6.2 Palovca’s Computational Model . 134

6.2.1 The Bulk Synchronous Parallel Model of Computation 134

6.2.2 Graphs and BSP . 135

6.3 An EDSL for Vertex-Centric Graph Algorithms 135

6.3.1 The Palovca language . 135

6.3.2 Example: Pagerank . 138

6.3.3 Example: Single source shortest path 140

6.3.4 Example: Semi-Clustering . 140

6.3.5 Example: Bipartite Matching . 143

6.4 Implementation . 147

6.4.1 Implementing Palovca in Haskell 147

6.4.2 Dynamic Arrays and Parallel Vertex Evaluation 151

6.5 Benchmarks . 152

6.5.1 Pagerank . 154

6.5.2 Single Source Shortest Path . 154

6.5.3 Semi-Clustering . 155

ix

6.5.4 Bipartite Matching . 155

6.5.5 Summary . 155

6.6 Related Work . 157

6.7 Summary and Conclusion . 158

7 Perspectives and Closing Remarks 159

7.1 Future Work . 160

7.2 Closing Remarks . 162

List of Publications 165

References 167

Statement 183

x

Chapter 0

List of Figures

1.1 Topics of this thesis . 8

2.1 Three-step approach for the parallelization of algorithms. 16

2.2 Illustration of lazy evaluation . 21

2.3 Thread blocking on empty and full MVars 29

2.4 Overview of common Chan operations. 30

2.5 Example of transactions in software transactional memory 31

2.6 Overview of common STM operations . 32

2.7 Overview of functions for semi-explicit parallelization. 34

2.8 Overview of functions for parallel computations in the Par monad 35

3.1 Overview of synchronization variants and priority queue implementations 41

3.2 Example of a skiplist with three nodes. 42

3.3 Example search in a skiplist . 42

3.4 Example of Skiplist predecessor collection 43

3.5 Duplicate insertion in a sequential Skiplist 44

3.6 Visualization of pointer traversal in skiplists 44

3.7 The PriorityQueue typeclass. 45

3.8 Base types for the lock-based skiplist implementation. 47

3.9 Illustration of lock-based insertion . 48

3.10 Illustration of lock-based deletion . 49

3.11 External representation of duplicate keys 50

3.12 Base types for the STM-based skiplist implementation 50

3.13 Illustration of the naive and sophisticated STM-based variant 51

3.14 Atomic compare-and-swap and test-and-set functions 52

3.15 Base types for the compare-and-swap-based implementation 52

3.16 Consistency problems with concurrent deletion with CAS 53

3.17 Deletion of marked traversed nodes in CAS 54

3.18 Base types for the coarse-locked heap-based implementation. 54

3.19 Code for π calculation. 56

xi

3.20 Scalability with computational load . 58

3.21 Scalability without computational load 58

3.22 Scalability with large computational load 58

3.23 Comparison of speedup . 58

4.1 Overview of taskpool variants, synchronization primitives, and language

constructs . 65

4.2 Illustration of a global taskpool . 67

4.3 Illustration of a private taskpool . 67

4.4 Illustration of a shared taskpool . 68

4.5 A typeclass for taskpool operations . 69

4.6 A monad for taskpool operations . 69

4.7 Write-once blocking mutable taskpool variables. 72

4.8 Illustration of the waitFor function for the Fibonacci example 74

4.9 Illustration of task dependencies in a matrix 74

4.10 Data structure for lock-based global taskpool 77

4.11 Flowchart of the get operation (lock-based global taskpool) 78

4.12 Data structure for lock-free global pool 82

4.13 Illustration of thread-local storage . 85

4.14 Flowchart of the get operation (lock-based private taskpool) 85

4.15 Flowchart of the get operation (lock-based shared taskpool) 91

4.16 Benchmark function for π calculation . 93

4.17 Speedup graph for pi-small . 95

4.18 Speedup graph for pi-large . 96

4.19 Benchmark function for the synthetic calculation 97

4.20 Speedup graph for syn-small . 97

4.21 Speedup graph for syn-large . 98

4.22 Illustration of LU task distribution . 99

4.23 Implementation of a task-based LU decomposition 100

4.24 Speedup graph for LU decomposition . 101

5.1 Overview of the library . 107

5.2 Illustration of the voltage diffusion problem 109

5.3 Jacobi- and Gauss-Seidel stencils . 111

5.4 Results of voltage diffusion computation 113

5.5 Results of voltage diffusion computation (3D) 114

5.6 Grid partitioning for the voltage diffusion problem 115

xii

5.7 Block division of a grid . 117

5.8 General overview of the (parallel) element computation 118

5.9 Illustration of the BlockArray data structure 119

5.10 Overview of computations for parallel element update 119

5.11 Simplified illustration of memory alignment for a two-dimensional grid . 120

5.12 Illustration of correct order of element updates 122

5.13 Illustration of initial block computation 123

5.14 Example for the computation of block dependencies 124

5.15 Illustration of valid, invalid and initial positions in a grid 125

5.16 Speedup graph for Jacobi stencil . 127

5.17 Speedup graph for Gauss-Seidel stencil 128

6.1 Overview of Palovca . 133

6.2 Visualization of superstep-based computation in the BSP model 134

6.3 Illustration of the connection between graphs and the BSP model 135

6.4 Overview of core functions in Palovca . 136

6.5 Exemplary data format for graph descriptions 137

6.6 Visualization of the aggregation function 137

6.7 Overview of aggregator functions . 138

6.8 Exemplary pagerank computation . 138

6.9 The pagerank algorithm in the Palovca EDSL 139

6.10 The pagerank algorithm in C++ using the Pregel API 139

6.11 Visualization of the single source shortest path algorithm 140

6.12 The SSSP algorithm in the Palovca EDSL 141

6.13 Examples of various semi-clusters . 141

6.14 Examples of different bipartite matchings 144

6.15 Visualization of the four phases in the bipartite matching algorithm . . . 144

6.16 Core types of Palovca . 148

6.17 Illustration of buffered message handling in Palovca 149

6.18 Illustration of the GArray.mapM function 152

6.19 Visualization of the GArray.foldM function 152

6.20 Speedup graph for the pagerank algorithm 154

6.21 Speedup graph for the SSSP algorithm 155

6.22 Speedup graph for the semi-clustering algorithm 156

6.23 Speedup graph for the bipartite-matching algorithm 156

xiii

xiv

Chapter 1

Introduction

1

1. Introduction

1.1 Motivation

The effective exploitation of his powers of abstraction must be regarded as one

of the most vital activities of a competent programmer.

Edsger W. Dijkstra [42]

Over the last sixty years, computing power increased enormously. In 1953, the main-

frame IBM 650 could execute 0.06 thousand instructions per second [203]. It had a

price of $150.000 [105], which is, taking inflation into account, about $1.287.000 today.

Nowadays, a commodity computer which costs a few hundred dollars can easily execute

10.000 million instructions per second [203]. One of the most important reasons for

this enormous increase in computing power as well as the decrease in price were the

technological advancements in the development of transistors [173].

Transistors are the basic building blocks of any modern central processing unit (CPU).

In the last decades, transistors did not only become cheaper in production but they

also became smaller and faster. Hence, more transistors can be assembled to form a

processing unit and the CPU’s clock rate can be increased. In 1965, this development

has been predicted by Gordon Moore: Moore’s Law states that ”the density of transistors

on chips doubles every 24 months” [147]. However laws of nature make it increasingly

difficult to meet this prediction [116, 210]: Due to the heat generated by millions of

active transistors which run with a high clock rate and which are packed on a small area,

it becomes increasingly difficult to keep the temperature of the CPU low. In addition,

quantum effects begin to play a major role in the interaction of transistors. Active

transistors may influence their neighbors accidentally. Therefore, in the last years a

different approach has been taken to satisfy the continuous demand for faster computers.

Instead of increasing the clock rate and the number of transistors of a single processor,

the number of distinct computation units (cores) is increased [106]. This transition is

widely called the multicore revolution.

Unfortunately, the availability of several cores does not automatically increase the

speed in already existing programs. A program which has been developed for the exe-

cution on a single processing unit will still run on a single core, despite the availability

of others. Some speed can be gained since the operating system can schedule different

programs to run on different cores [194]. For example, a web browser remains usable on

a system with two cores despite the execution of a spreadsheet application performing

2

1.1. Motivation

CPU intensive operations at the same time. Nevertheless, in the long run modern hard-

ware will consist of dozens and even hundreds of cores (manycore era) [106]. To allow

for an efficient usage of this hardware, programs have to be parallelized.

As of yet, the parallelization of a program is difficult, even for experts. Over the

years, different approaches to develop parallel programs have emerged. These approaches

differ in their flexibility as well as their degree of abstraction. As a rule of thumb, the

more flexible an approach is, the less abstract is its underlying programming model.

In the following we describe some widely used libraries as well as standards for parallel

programming. Several other, less common approaches, are for example presented in [117,

124, 162].

A well-known low-level library for parallel programming in C and C++ is POSIX

Threads [20, 205]. It is based on the concept of threads, where a thread is an inde-

pendently running part of a program [123, 124]. In thread-based parallel programming,

a program consists of multiple concurrently running threads that communicate by ac-

cessing shared memory. Concurrent access to this memory must be synchronized. The

POSIX Threads library implements functions for thread control and synchronization,

which operate on a low level. Unfortunately, the low degree of abstraction combined

with programming in rather low-level languages gives rise to numerous potential sources

for errors [162, 184]. Although tools like Halgrind [199] are able to find some typical

programming errors, parallel programming with POSIX Threads remains a tedious and

error-prone task.

OpenMP (Open Multi-Processing) is a standardized application programming inter-

face for parallel programming [28, 150, 151] available for different programming languages

(C, C++ and Fortran) and platforms (Unix, Windows, etc.) [151]. Programming with

OpenMP is less error-prone than programming with POSIX Threads since OpenMP

works on a higher level of abstraction. In contrast to using POSIX Threads, a developer

does not have to handle the mundane details of thread-based parallel programming with

OpenMP. Instead, code that is meant to be run in parallel is annotated. The actual

parallelization, i.e. thread creation, task distribution, and thread synchronization, is

supported by the compiler. Although OpenMP allows for a more abstract formulation

of parallel programs, the supported programming languages do still not provide sophis-

ticated abstraction techniques (see below). Hence it is still complicated to write correct

and efficient programs [193].

A third approach is based on the idea of explicit message passing. In this model,

threads do not have direct access to data of other threads. Instead, they send mes-

sages and receive messages. Message passing programs tend to have fewer bugs than

3

1. Introduction

shared-memory programs, since synchronization of shared state is a common source of

errors [52, 54, 132]. On the other hand, designing a parallel algorithm which uses message

passing tends to be more complicated, since task distribution and data locality are more

important for the parallel performance than in shared-memory parallel programming.

The de-facto standard for parallel programming with message passing is MPI (Message

Passing Interface) [44, 68, 183]. Similar to OpenMP, MPI defines an interface that has

been implemented by different vendors. While OpenMP focuses on shared-memory par-

allel programming, MPI is often used for distributed memory machines. MPI offers a

wide range of communication primitives. For example, it defines functions for block-

ing as well as non-blocking point-to-point communications and collective operations for

broadcasting or gathering data [183]. Similar to POSIX Threads and OpenMP, MPI is

a low level approach. For example, when sending messages, their size in bytes has to be

stated.

A different approach to parallel programming is taken by novel programming lan-

guages like Chapel [26, 27, 37], X10 [29, 175, 209], or Fortress [3]. These kinds of lan-

guages especially support abstractions for data parallelism, task parallelism, and data

distribution amongst others in their language design. They also support a variety of

types with a high level of abstraction, e.g. for matrices. Operations on these types are

(partially) parallelized automatically. The introduced novel programming languages are

not yet commonly used and are still an active area of research.

To allow for the development of programs for the multicore area, parallel program-

ming has to become easier. Hence, approaches with a higher degree of abstraction are

necessary.

A programming paradigm which supports quite sophisticated abstraction techniques

is based on the notion of functions as regular types. This paradigm is called functional

programming [97]. In 1930, the era of functional programming began with Church’s de-

scription of the λ-calculus [204]. The λ-calculus is a formal system to describe aspects of

computability by means of functions, their application and their definition [93, 204]. A

program in a functional language is stated as an expression. The compiler and runtime

system decide how and when to evaluate its subexpressions [161]. This allows for more

freedom and therefore more possibilities for optimization. In particular, functional pro-

gramming languages are amenable for automatic parallelization: Since subexpressions

can not influence each other, theoretically they can be evaluated in parallel.

Unfortunately, identifying tasks is not sufficient for an efficient parallelization. Prob-

lems like task selection or task distribution have to be solved, too [71]. Therefore, as far

as we know, automatic parallelization of arbitrary code has not yet been implemented

4

1.1. Motivation

successfully for any general-purpose functional programming language. On the other

hand, automatic parallelization for a particular domain, e.g. array or list computations,

is quite successful: For example, SAC (Single Assignment C) [67, 174] is a functional

programming language with a syntax similar to C. SAC treats multi-dimensional arrays

as first-class types and the SAC compiler automatically generates parallelized code for

array operations for different target architectures. Another example is DPH (Data Par-

allel Haskell) [23, 24, 111] (see also Section 2.3.4). DPH defines a special notation for

finite lists (arrays). Operations on them are automatically compiled to parallelized code.

In general, research of (automatic) parallel programming approaches within the func-

tional programming paradigm has a long history. We refer to [14, 71, 129, 172, 176] for

detailed surveys. In the following we describe some of today’s widely used functional

programming languages as well as their approach(es) to parallel programming.

Erlang is a functional programming language specifically designed for the develop-

ment of telecommunication applications [8, 9, 50, 51]. It supports concurrent program-

ming, hot swapping of code in a running application [9], and especially fault tolerance.

Parallel programming is based on the actor model [2] in which independently running

processes communicate by means of asynchronous messages.

Several functional programming languages are based on LISP (LISt Processing) [65,

177]. LISP programs are written as abstract syntax trees which can easily be manip-

ulated by macros [121]. In addition, LISP’s syntactic flexibility is often used to define

domain specific languages [56, 65]. Invented in 1950 [141], LISP is special among the

mentioned functional languages because it still influences programming language devel-

opment. While the original LISP is seldom used, different languages that are based on

LISP, emerged. Common LISP [186] supports procedural, functional as well as object-

oriented programming, and has a large standard library. Nevertheless, the standard

does not define functions for parallel programming. As an addition to the standard,

Bordeaux-Threads [35] define an interface to thread-based shared-memory parallel pro-

gramming. This interface is part of several Common LISP implementations [35]. In

contrast to Common LISP, Scheme [185] has been designed to be easy to understand

and implement. Therefore its language and library definition is quite small. In partic-

ular, Scheme is often used in teaching [1]. The Scheme standard does not define any

functions for parallel programming, although different implementations define their own

primitives, e.g. [169]. A novel member of the LISP family is Clojure [33, 70]. Since

Clojure is executed on the Java Virtual Machine [126], Clojure programs can access all

libraries of the Java platform, including Java threads [63]. In addition, Clojure supports

parallel programming with actor-based message passing as well as synchronization with

5

1. Introduction

software transactional memory [32].

OCaml is a functional programming language with additional support for imperative

and object-oriented programming [21, 145, 182]. It implements many of the properties

of a modern functional language, e.g. a static type system, type inference and pattern

matching. The standard OCaml system supports only low-level parallel programming

with threads and mutexes [182]. OCaml is special amongst functional languages since it

serves as the basis for F# [181]. While functional programming languages are usually

neglected regarding commercial support, F# is fully supported by Microsoft as part of

the .NET platform [143]. Similar to Clojure, F# programs can access all constructs

of .NET for parallel programming [22].

One of the most well-known and currently researched functional programming lan-

guages is Haskell [89, 100, 135]. Haskell supports many advanced concepts of functional

programming, e.g. polymorphic types, type inference, or monads amongst others. Par-

ticularly it allows for the parallelization of algorithms with various programming tech-

niques [112, 114, 134] that differ in their degree of abstraction, efficiency and drawbacks:

On the one hand, semi-explicit parallel programming allows to annotate expressions

which can be evaluated in parallel [134]. The runtime system decides when and how to

evaluate these expressions (in parallel). On the other hand, Haskell supports more con-

ventional parallel programming with threads [160] (see below). For synchronization of

data, it offers low-level approaches like locks [160] and atomic compare-and-swap opera-

tions [90, 191] but also sophisticated techniques like software transactional memory [72].

Given the number of published research papers, research focused on semi-explicit pro-

gramming in the last years. We think that this focus was motivated by Trinder et al.’s

seminal paper Algorithm + Strategy = Parallelism [197] which introduces the idea of eval-

uation strategies. Evaluation strategies are lazy higher-order functions which implement

a separation of algorithmic and parallel code. Over the years, the approach of evaluation

strategies and semi-explicit annotations has been continuously refined [137, 138, 139].

The focus on this approach led to the neglect of Haskell’s other approaches for para-

llelism, in particular, of Concurrent Haskell. Concurrent Haskell [160] is a concurrency

extension (library) that allows for explicit parallel programming similar to programming

with POSIX Threads. It defines functions for thread control as well as different low-

level data structures for synchronization. Hence, by using Concurrent Haskell, parallel

algorithms can be implemented in a rather traditional way but with the benefits of a

high-level functional language with sophisticated abstraction techniques.

In this thesis, our goal is to analyze how well abstraction at different degrees supports

programming with Concurrent Haskell. How can traditional imperative data structures,

6

1.2. Contribution

design patterns and programming approaches be adapted to a modern functional pro-

gramming language? Do commonly used idioms of the functional paradigm as well as

high-level constructs of Haskell such as monads allow to hide the complexity of par-

allel programming with Concurrent Haskell? Or, more generally speaking, what are

the particular advantages and disadvantages of a modern functional language for paral-

lel programming? Since answering these questions in general is difficult, we focus our

research on two different areas: Synchronization is crucial for shared-memory parallel

programs, hence we first compare the synchronization techniques available in Concurrent

Haskell regarding their parallel performance as well as their development effort. Second

we explore how well advanced techniques of Haskell can hide the complexity of parallel

programming in Concurrent Haskell. For examination of these areas we chose four dif-

ferent topics of parallel programming that vary in their degree of abstraction and their

approach to parallelization. These topics are described in detail in the next section.

1.2 Contribution

The main part of this thesis covers two areas of interest: 1) comparison of synchronization

approaches and 2) exploration of abstraction techniques to hide details of parallelization.

Each area of interest is the focus of two sections of this thesis (see Figure 1.1 on the

following page). Particular topics are chosen to cover different aspects of parallel pro-

gramming by means of Concurrent Haskell as well as to examine how different concepts

of abstraction in Haskell (e.g. monads, higher-order functions, or typeclasses), can be

used to hide the complexity of parallel programming.

First, by means of a concurrently accessible data structure we examine the advan-

tages and disadvantages of low-level synchronization techniques in Concurrent Haskell

versus high-level ones. Second, the implementation of a parallel design pattern allows

us to compare synchronization techniques as well as different abstraction approaches of

Haskell to provide an additional problem-specific layer to this design pattern. Third, by

implementing a library we show how complex aspects of thread-based parallel program-

ming can be completely hidden behind a declarative interface. Fourth, we show how a

specialized language can be used to hide parallelization in cases where a more flexible

problem description is necessary. In the following we describe each topic in detail.

Data structures, e.g. priority queues, stacks and trees, are fundamental building

blocks in almost any parallel algorithm, and their efficient and correct implementation

is of great importance [146]. We examine priority queues which are a well-known data

structure to store and retrieve elements from some ordered set [36]. Priority queues sup-

7

1. Introduction

Data structure
(Priority queues)

Design Pattern
(Taskpools)

Library
(Stencils)

Language
(Graphs)

low high- Degree of abstraction -

} }Synchronization Abstraction techniques

Figure 1.1: Topics of this thesis, ordered by degree of abstraction.

port at least two operations: insert adds an element to the queue, and deleteMin removes

and returns the minimal element. The operations are non-trivial to implement and allow

many optimizations. For the underlying implementation we use skiplists [164, 165], since

they are more efficient [164] than binary heaps [36]. Skiplists provide a general dictionary

interface but can also be used as priority queues. Internally they have a pointer-based,

list-like structure which allows to experiment with Concurrent Haskell’s different syn-

chronization approaches (locks, compare-and-swap (CAS), and software transactional

memory (STM), see Section 2.3). Hence, we can examine the advantages and disad-

vantages of high-level approaches to synchronization in a scenario with high contention.

We compare the different synchronization approaches regarding their parallel perfor-

mance on the one hand and their development and debugging complexity on the other.

To briefly describe the results of our experiments, the low-level lock-based and CAS-

based approaches scale comparably well. The high-level STM variant is always slower

by some order of magnitude since it does not scale well if a synchronized operation takes

a long time. A coarse-locked heap-based variant [36] is developed for comparison with

a straightforward implementation of a priority queue. It scales as well as the low-level

approaches due to its better cache locality. Regarding the complexity of development,

STM has been much easier to apply and easier to debug. Unfortunately, STM does not

yet support the scalability that is necessary for developing thread-safe data structures in

general. For today’s use cases and a relatively low number of cores, a rudimentary and

straightforward implementation, i.e. coarse-locked heaps, can also be sufficient.

Data structures work on a fairly low level regarding the implementation of a whole

software system. Design patterns are more abstract as they try to formalize software

engineering principles within a framework of a common vocabulary [60]. Such patterns

also exist for parallel and functional programming [140, 167]. One of the best-known

and most relevant parallel patterns is the taskpool [140]. It is used to distribute tasks

to different threads. The taskpool is a building block for many parallel algorithms.

We analyze different variants of taskpools which differ in their functionality, complexity

8

1.2. Contribution

of development and synchronization approach. For the description of taskpool-based

algorithms we use high-level functional approaches such as typeclasses and monads to

hide the underlying parallelization by means of Concurrent Haskell. For synchronization,

locks as well as software transactional memory are used. The criterion for comparison is

their parallel performance as well as their usability. In contrast to the previous results

for the skiplist, STM scales well since synchronized operations are rather short. At the

same time, it allows for an easier development.

Libraries are collections of functions which are used to solve a particular problem

class. Internally they often use abstract data types and (parallel) design patterns so

their design becomes more comprehensible and their implementation easier to maintain.

A library can support a declarative description, i.e. the user does not have to state

how a problem should be solved. Instead, he simply states the properties of the prob-

lem. Then an underlying implementation is used to compute a solution based on this

description. Hence, the library becomes easier to use and problem-specific optimizations

are easier to apply. To examine the concept of declarative libraries, we design and im-

plement a prototype of such a library which is used for multi-dimensional stencil-based

algorithms. Stencil-based algorithms work on a grid and perform computations on each

grid element iteratively. A stencil is a pattern that defines the dependencies within such

computations. The library consists of types and functions for a declarative description

of stencil-based algorithms as well as a prototype for a parallelized execution platform.

We analyze the scalability of the developed library using different well-known stencils.

Results demonstrate that Haskell allows for a concise declarative description of stencil

problems and enables their scalable parallelization.

From a user’s point of view, a problem should be stated in its natural context con-

taining a problem-specific vocabulary. This approach to describe a problem is known as

a domain specific language (DSL) in software engineering [56]. For its users, the limited

vocabulary is more intuitive and results in less errors during development. While devel-

oping the underlying execution platform, DSLs, like declarative libraries, offer potential

for efficient optimizations. Nevertheless, DSLs are seldom developed from scratch. The

implementation of a compiler as well as the whole ecosystem that a modern language

provides (debuggers, profilers and libraries) is rarely justified. Instead, modern DSLs

are typically embedded into a host language which provides an underlying infrastructure.

These kinds of DSLs are called Embedded Domain Specific Languages (EDSLs). Graph

algorithms such as finding shortest paths, clustering or matching can be described by

a limited vocabulary: Graphs consist of vertices and edges, hence the number of op-

erations and types is rather small. Nevertheless, it can be quite challenging to write

9

1. Introduction

and optimize graph algorithms, in particular for multicore hardware [66]. We develop

an EDSL that allows for the concise description of graph algorithms. We also develop

an execution platform which facilitates an automatic parallel execution of these graph

algorithms. Results indicate that advanced functional concepts (e.g. monads) are par-

ticularly useful for the implementation of a concise language. Additionally, they allow to

hide all details of the implementation. Concurrent Haskell allows for the implementation

of the execution platform which scales very well.

1.3 Structure

The rest of this thesis is structured as follows. In Chapter 2 we describe basic terms

and concepts of parallel and functional programming. We start with an introduction to

parallel programming in general. Then we depict Haskell and its different parallelization

and synchronization concepts. In chapter 3 we explain skiplists and their synchroniza-

tion approaches and describe the implementation of thread-safe priority queues. We

analyze the performance as well as the development effort of the different synchroniza-

tion approaches. In Chapter 4 we examine several variants of the taskpool pattern and

analyze their development effort and their scalability. In Chapter 5 we describe our

declarative stencil library. We show how to describe standard stencils and describe the

implementation for their parallelized computation. In Chapter 6 we give an introduc-

tion to (E)DSLs, describe the design and implementation of our EDSL, give examples

of concisely formulated graph algorithms and benchmark the parallel performance. In

Chapter 7 we outline possible future work and reflect on our research.

All contributions have already been published in separate papers. This is reflected in

the structure of the four main chapters: after reading Chapter 2, each of the following

chapters can be read independently.

1.4 Acknowledgments

I owe my deepest gratitude to Prof. Dr. Claudia Fohry. She gave me the opportunity

to do research about the exciting combination of parallel programming and functional

languages. While giving me the room to work my own way she was always willing to

discuss my questions and ideas.

My special gratitude also goes to Dr. Clemens Grelck. I feel fortunate that he has

agreed to become my second supervisor. Albeit (too) few, I really enjoyed our telephone

conferences discussing various topics about my thesis.

10

1.5. Disclaimer

Without Susanne Jurkowski, this thesis would not have been possible. I would like

to thank her for her encouragement, understanding and patience when I was lost in the

dark realms of type errors and deadlocks. From the bottom of my heart I can say that

we match the type signature love :: -> -> .

I would also like to thank my parents for their continuous support during all those

years. Although they might have never understood why I spent so much time in front of

boring gray boxes instead of going outside, they always encouraged and supported me

in any way they could. Thanks!

There are numerous other people who deserve a special thank you: Claudia Huerkamp

for supporting all my, sometimes rather fancy, wishes for office supplies. Raffaele Bis-

cosi for keeping all the machines running that I have used and providing hundreds of

interesting facts. The people from Kassel’s Ki-Aikido Dojo helped to keep me calm and

relaxed, even in times of approaching deadlines. Finally, I would also like to thank my

students. Their questions and their curiosity made it possible for me to combine theory

and practice.

1.5 Disclaimer

Trademarks and brand names have been used without indicating them explicitly. The

absence of trademark symbols does not imply that a name or a product is not protected.

All trademarks are the property of their respective owners.

11

1. Introduction

12

Chapter 2

Foundations

In this chapter we first present an overview of important concepts

and approaches of parallel programming. We also describe the key

concepts of the functional programming language Haskell as well as

the different concurrency constructs of Haskell which are used in this

thesis.

13

2. Foundations

2.1 An Introduction to Parallel Programming

In this section first we introduce basic terms of parallel programming and briefly explain

a systematic approach to the design of parallel algorithms. Afterwards, we show why

(functional) parallel programming is, despite much research, still difficult compared to

sequential programming. Since Concurrent Haskell works on shared-memory systems

only, we focus our introduction on this paradigm.

2.1.1 Basic Terms

In the following we briefly introduce some of the most common terms of shared-memory

parallel programming, which are used throughout the thesis. A more thorough definition

of these and related terms can be found in introductory parallel programming books, for

example [123, 124, 166, 207].

In parallel computing, a problem is split into several tasks that can be run in parallel.

Key reasons for parallelization include the decrease of a program’s running time, and

the natural parallelism in the underlying algorithm [124]. A thread is a single sequential

flow of control within a program [63]. In a concurrent application, multiple threads of

control are executed. Depending on the underlying hardware and scheduling, they are

executed simultaneously. This allows for the parallel computation of tasks by means of

threads.

One is often interested in how much faster a parallel program runs compared to

its sequential counterpart under the precondition that both programs solve the same

problem instance. The ratio between sequential and parallel running time is called the

speedup Sp

Sp =
T1
Tp

T1 is the running time of the best sequential implementation and Tp is the running time

of the parallel variant when using p threads. In most cases a linear speedup is not to be

expected due to the overhead of the parallelization. In particular, [123, 124] state three

reasons for a sub-linear speedup. First, many parallel programs require time-consuming

communication between threads. Second, parallel programs often have sections of non-

parallelizable code (see below, Amdahl’s Law). Third, thread management and task

distribution induce a certain overhead. Depending on the problem, threads may become

idle when tasks are not evenly distributed. On the other hand, a superlinear speedup

(Sp > p) might occur due to a better utilization of caches, as well as for other rea-

sons [123].

14

2.1. An Introduction to Parallel Programming

Most parallel programs include sequential sections which can not be parallelized. To

determine the theoretically maximum speedup of a parallel program, Amdahl’s Law can

be used [5]. Amdahl’s Law states that the maximum speedup Ap is determined by

Ap =
1

Ps + Pp

p

Ps is the proportion of the program that can not be parallelized and Pp is the proportion

that can be parallelized. For example, a program with a sequential proportion of only 5%

which runs using 16 threads can only gain a maximal speedup of (0.05 + 0.95
16

)−1 ≈ 9.14.

Amdahl’s Law is rather pessimistic. Fortunately, in many parallel programs the

proportion of the sequential sections decreases with larger problem instances. In this

case, Gustafson’s Law is applicable [47, 69]. According to Gustafson, users want to

compute solutions to their problem instances within a practical time limit. If hardware

with more cores is available, users will utilize these cores to compute larger problem

instances. Hence, the proportion of parallelizable work increases. Thus, an arbitrary

speedup Sp < p can be achieved by choosing problem instances that are large enough.

Memory access time is an important factor for the performance of (parallel) pro-

grams [45, 104]. Many shared-memory systems are based on symmetric multiprocessing

(SMP): the access time to any memory cell is identical for each core. Other architectures

have non-uniform memory access due to independent memory banks being dedicated to

different cores. To improve access time, many systems have a hierarchy of different

memory types which differ in their respective access time and size. A particularly fast

albeit small type of memory is called cache. When a core accesses a memory cell, the

cell’s value and the values of adjacent cells are loaded into the core’s cache; the set of

loaded cells is called cache line. Subsequent accesses to these memory cells from this

core are served by the cache. If one of the memory cells is modified by another core, the

cache line is reloaded. Keeping data of the cache synchronized with the shared mem-

ory is a complex topic and we refer to [104, 195] for more information. While caches

allow for improved access times, they also increase the difficulty of performance-oriented

programming. Two aspects which have to be kept in mind are false sharing and data

locality. False sharing occurs when threads share a cache line unintentionally. Even in

case threads never share data, their common cache line will be updated if one thread

updates its local data. By paying attention to data locality, data necessary for a com-

putation should be stored in memory continuously (spatial locality) and accesses to the

same data should be concentrated in time (temporal locality). Hence data is loaded into

the cache with few memory accesses.

15

2. Foundations

2.1.2 Designing Parallel Algorithms

Understanding the design phase of a parallel algorithm eases understanding the design

and implementation decisions we have made in subsequent chapters. Therefore, we de-

scribe a three-step approach for designing parallel algorithms for shared-memory systems

(see Figure 2.1). It is loosely based on similar approaches, e.g. by Grama et al. [123] or

by Foster [55]. In the following we explain the single steps in detail.

Identify tasks that can
be computed concurrently

Map task on several threads
Manage access to data
shared by multiple threads

Figure 2.1: Three-step approach for the parallelization of algorithms.

Identifying Parallelizable Work

In the parallelization of an algorithm the first step is the identification of tasks which can

be processed in parallel. The process of identifying these tasks is called decomposition.

Depending on the algorithm to be parallelized, different approaches are possible. With

recursive decomposition tasks are generated using a divide-and-conquer strategy: a

problem is recursively divided into a set of sub-problems until a subproblem’s size reaches

a certain limit. For algorithms which work on large data sets, data decomposition

is a viable strategy: depending on the problem, either the structure of input data,

output data, intermediate data, or a combination of them is used for partitioning and

thus task derivation. Exploratory decomposition is used for search or optimization

problems. Tasks are derived by partitioning the search space. For algorithms with

computationally expensive branches, speculative decomposition can be used. By

this approach, different tasks (pre-)compute different branches while the right one is

selected. Note that efficient parallelization might require the combination of different

decomposition strategies.

Mapping Techniques

After parallelizable tasks have been identified, they have to be mapped to available

threads. An efficient mapping aims at assigning tasks such that all threads are busy

(load balancing), caches are well utilized (data locality), and the overall computation is

finished as quickly as possible. While perfect load balancing is desirable, its computation

is NP-complete, if possible at all [38]. Hence, different heuristic approaches have been

developed. Depending on the task characteristics (e.g. time for task generation, task

16

2.1. An Introduction to Parallel Programming

size, a priori knowledge of task size, or size of associated data) different approaches are

appropriate. These approaches can be classified into two categories, static and dynamic.

By using a static mapping, tasks are assigned prior to the execution of the al-

gorithm. A common static mapping is data partitioning, which is especially useful if

data decomposition has been used for task identification. There are different approaches

which differ in their compromises between an effective load balancing and good data lo-

cality [150]. By using a block distribution, contiguous data blocks are distributed equally

among all threads. Hence, data locality is good, but this distribution can lead to load

imbalances if the computation time varies too much between blocks. An approach which

favors load balancing over data locality is a cyclic distribution, where the block size is

chosen to be minimal, such that many more blocks than threads are available and are

assigned in a round-robin manner. A good compromise between these two approaches is

a block-cyclic distribution. For this distribution, data is divided into more blocks than

threads, although not as many as in a cyclic distribution. Then these blocks are mapped

in a round-robin manner.

If tasks are generated dynamically, or if the computation time varies much between

tasks, a dynamic mapping is often more efficient. By using a centralized dynamic

distribution, all available tasks are managed by means of a synchronized central data

structure called taskpool. If a thread wants to acquire a task or store a new one, it

accesses the taskpool. While this approach can often be implemented in a straightforward

way, special care has to be taken to ensure scalability and to prevent load imbalances.

To increase scalability for the price of a more complicated implementation, a distributed

dynamic distribution is viable. Available tasks are distributed among the threads and

each thread may send tasks to other threads and receive tasks from others.

There are many more and sometimes quite problem-specific mapping techniques. An

elaborate overview of these techniques as well as a detailed description of the mentioned

ones can be found in [55, 123, 166] for example.

Access Management

Since we focus our description on shared-memory parallel programming, all threads

share a common address space and thus can access all data immediately. To prevent

corruption, e.g. due to inconsistent write operations, synchronization of concurrent

accesses is necessary. In general, the correct and efficient handling of concurrent access

to shared data is quite platform- and language-specific. Therefore, problem-independent

guidelines are difficult to give. Various techniques for data synchronization by means of

Concurrent Haskell are described in detail in Section 2.3.2.

17

2. Foundations

2.1.3 Why Parallel Programming is Hard

In this section we describe why parallel programming is more difficult compared to

sequential programming [16, 62, 142, 189, 190]. Our discussion is organized in three parts.

These parts reflect the lifetime of a parallel program: planning and implementation,

testing and debugging, and optimization. In addition we briefly discuss the lack of

information and education about parallel programming. Finally, we describe reasons

why parallel programming might be even more difficult in the functional programming

language Haskell than in imperative programming languages.

Planning and Implementation

In the phase of designing a new parallel program, difficult decisions have to be made

(see Section 2.1.2). In contrast to sequential programming, well-tested and published

knowledge about best practices for these decisions are still in their infancy. Therefore,

personal experience with parallel programming is still one of the most important factors

for an efficient parallel design (see below). This is even more so if an already existing

algorithm or program should be parallelized, since many algorithms were designed with

single-core performance in mind. For example, there might be artificial and unnecessary

task dependencies, but which improve the performance on single cores. Another aspect

which complicates porting of a sequential algorithm is that, depending on the parallel

programming approach, intermediate steps can not be tested and examined indepen-

dently. An algorithm to be parallelized often has to be refactored until its parallelization

is completely done.

Testing and Debugging

The parallel programming model for shared-memory systems which is well-supported by

many mainstream languages uses threads as well as manual synchronization of shared

data. Often, difficult to control scheduling of threads and subsequently the non-deter-

minism of the data access patterns cause various problems: First, reasoning about a

program becomes more difficult, since the order of execution of instructions is not deter-

mined. Second, debugging and testing becomes more difficult. For testing, in sequential

programming unit tests are usually used. While these tests can guarantee the correct

functionality in the context of a single-threaded program, they are nearly useless to find

errors like deadlocks or data races which occur because of the scheduling. Traditional

debugging techniques, e.g. debuggers or even the simple printing of expressions might

lead to a different scheduling and thus the disappearance of the observability of the bug.

18

2.1. An Introduction to Parallel Programming

Due to the rise of parallel programming in the last years, nowadays there is tool support

for parallel debugging for mainstream languages [107]. In some parallel programming

systems, e.g. OpenMP, the mentioned problems are not as severe since the developer

has better control over some aspects of the parallel execution.

Optimization

Optimizing parallel programs is more difficult than optimizing their sequential counter-

parts. Despite a relatively high degree of abstraction in modern languages and high-level

libraries, the underlying hardware is still an important factor for a program’s execution

time. For example, the cache behavior of a program is generally important for its efficient

execution [45]. In general, optimizing for the purpose of a good, hardware-independent

performance on today’s multicore processors is complicated, since they might share

caches, their cores are connected differently etc.

Lack of Information and Education

Despite the fact that multicore processors are common nowadays, parallel programming

is still not mainstream regarding the education of computer science students. Students’

curriculum consists mostly of programming courses for sequential programming. In many

cases a course on parallel programming is only optional. Furthermore, it is still difficult to

find books or online resources about parallel programming, especially for beginners. The

current introductory books focus mainly on high-performance computing or numerical

problems.

Additional Problems with Parallel Programming in Haskell

Parallel programming in Haskell causes additional problems and the mentioned issues

are emphasized, respectively.

Lack of tools. The commercial interest in (parallel) programming in Haskell is negli-

gible. Besides, in our opinion, the development of tools is disrespected in the academic

community. For these reasons there are only few tools for the optimization of parallel

programs. Except of Threadscope [109], we are not aware of any parallel profilers or

other approaches to analyze parallel performance.

19

2. Foundations

Lack of information. The amount of online information about parallel functional

programming is smaller than the information for mainstream languages. While intro-

ductory tutorials and books exist (e.g. [112, 127, 134]) and of course research papers are

published, intermediate textbooks simply do not exist.

Lazy Evaluation. Haskell is a lazy evaluated language. This evaluation strategy is

quite beautiful for sequential programming but it complicates parallel programming in

Haskell. We discuss this problem as well as possible solutions in detail in Section 2.3.3.

2.2 The Functional Programming Language Haskell

We provide an introduction to the functional programming language Haskell. First, we

give an abstract of the history of Haskell. Then we present an overview of interesting and

important concepts of the Haskell language (laziness, side-effect free programming and

the type system). We close this section mentioning introductory and advanced resources

for further reading.

2.2.1 History

In 1930, Alonzo Church introduced the λ-calculus, which is a formal system to describe

different aspects of computability by means of functions [204]. This system forms the

basis for many functional programming languages. The ideas of the λ-calculus were used

for the development of LISP (LISt Processing) by McCarty in 1950 [141]. In the following

decades, many functional languages and concepts were developed, although none of

these were widely-used, except LISP. In 1985, the lazy functional language Miranda was

introduced and became quite popular [198]. Miranda was a commercial product hence

usage and further development by the academic community were nearly impossible. At

the Functional Programming Languages and Computer Architecture Conference in 1987,

researchers discussed the general situation of functional programming development in the

scope of an informal meeting:

”[...] there had come into being more than a dozen non-strict, purely func-

tional programming languages, all similar in expressive power and semantic

underpinnings. There was a strong consensus at this meeting that more

widespread use of this class of functional languages was being hampered by

the lack of a common language.” [113]

20

2.2. The Functional Programming Language Haskell

This discussion led to the definition of Haskell (named after the logician Haskell B.

Curry). The first version of the language definition (Haskell 1.0) appeared in 1990.

Haskell 98, the first complete language standard enclosing a definition of the standard

library, was published in 1998 [113]. The latest standard is Haskell 2010 [135]. A

detailed report of Haskell’s historical development including the languages that effected

its development can be found in [100].

2.2.2 Important Language Concepts

As explained in the following, Haskell is non-strict (lazy) as well as side-effect free. It

is based on an expressive type system with automatic type inference. In the following

sections, we briefly describe each of these aspects.

Lazy Evaluation

A programming language with lazy evaluation postpones the computation of an expres-

sion until the expression’s value is actually needed. In the meantime only a thunk is

generated. This thunk represents the computation (see Figure 2.2).

1 let a = 2^1000
2 b = 2^1000
3 print a

a
b

2^1000

2^1000

b)

a
b 2^1000

c) 10...376 Symbol table

Unevaluated thunk

Fully evaluated expressiona
b

d)
2^1000

a
b 10...376

e)

a)

Without sharing With sharing

Figure 2.2: Illustration of lazy evaluation without and with sharing. a) source code.
b) symbol table after the execution of lines 1 and 2 (without sharing). c) symbol table
after the execution of line 3 (without sharing). d) analogous (with sharing) e) analogous
(with sharing)

A technique often mentioned in the context of lazy evaluation is sharing. If the

evaluation strategy supports sharing, equal expressions share the same thunk. Thus

unnecessary computations are prevented. In the framework of the compiler used in this

thesis, Glasgow Haskell Compiler 7.0.3 [92], sharing of common subexpressions is sup-

ported in let-bindings [76]. More sophisticated sharing strategies must be implemented

manually.

Advantages. In a lazily evaluated programming language, unnecessary computations,

for example, the evaluation of parameters in a function call, are prevented. One ex-

21

2. Foundations

emplary use case is the definition of additional control structures without any language

support for macros. Consider the function when [75]

when : : Monad m => Bool −> m () −> m ()

when p s = if p then s else return ()

In the framework of a programming language with strict evaluation, the second parameter

s is evaluated unconditionally.

Lazy evaluation can not only be used to define control structures but it also allows

for an efficient composition of functions. The function any returns True, if any of the

elements in the list meets the given predicate [11]:

any : : (a −> Bool) −> [a] −> Bool

any p = or . map p

With a lazily evaluated language, the evaluation of the expression any (>100) [1..10^6]

terminates after the list element 100 has been examined. With a strict language all values

of the list are examined.

Our last example examines infinite data structures, in particular infinite lists. In this

case, lazy evaluation allows a concise and elegant formulation of self-referencing lists.

For example, the Fibonacci series can be defined recursively by

f i b o n a c c i : : [Int]

f i b o n a c c i = 0 : 1 : zipWith (+) f i b o n a c c i (tail f i b o n a c c i)

Although the function definition has no explicit termination condition, lazy evaluation

strategy ensures that only necessary elements of the list are computed: head fibonacci,

for instance, immediately evaluates to 0 without any further computation.

A more thorough introduction to the advantages of lazy evaluation (and higher order

functions) can be found in the seminal paper Why Functional Programming Matters by

John Hughes [101].

Disadvantages. Lazy evaluation complicates reasoning about the time- and space-

behavior of a program, especially compared to reasoning under strict evaluation. Con-

sider this definition of the foldl function

foldl : : (a −> b −> a) −> a −> [b] −> a

foldl y [] = y

foldl f x (y : ys) =

let x ’ = f x y in

foldl f x ’ ys

22

2.2. The Functional Programming Language Haskell

as well as the expression foldl (+) 0 [1..10000]. Due to lazy evaluation, instead of

aggregating the intermediate result in successive calls, many thunks are generated :

foldl (+) 0 [1 . . 1 0 0 0 0]

−> foldl (+) (0+1) [2 . . 1 0 0 0 0]

−> foldl (+) ((0+1)+2) [3 . . 1 0 0 0 0]

.

These thunks are only evaluated if the result of the expression is actually needed, e.g. by

printing it. While this does not cause any memory problems for small lists, computations

with larger lists can fail due to excessive memory consumption.

Lazy evaluation also complicates parallel programming. If a program computes ex-

pressions in parallel, only thunks for these expressions are generated unless explicit

evaluation is enforced. Techniques to allow for the strict evaluation of expressions are

described in Section 2.3.

Programming Without Side Effects

Haskell is a side-effect free (pure) language: each function returns the same result given

the same input in each call. In consequence, expressions in Haskell are referentially

transparent. That means that any expression can be replaced by its computed value.

For example, in the function

f : : [Int] −> Int

f = (+2ˆ20) . sum . map (\x −> x + 2ˆ20)

the expression 2^20 can be bound to a variable n and the function can be rewritten as

f : : [Int] −> Int

f xs =

let n = 2ˆ20 in

(+n) $ sum $ map (\x −> x + n) xs

Note that this transformation can also be done in reverse: each occurrence of a variable

can be replaced by its definition. This allows for safe refactoring of functions. In addition,

reasoning about properties of functions is easier because external factors, e.g. global

variables, can not change the semantics of a function.

Unfortunately, side effects are an important part of many computations. A function

that returns input from the keyboard would be useless if it had to be pure. On each call

it would have to return the same input. The concept for handling side effects in Haskell

is based on monads. Since monads are a well-discussed topic we refer to [85, 99, 127]

23

2. Foundations

as well as Section 2.2.3 for a list of resources that explain monads in detail. Haskell’s

most important monad for concurrent programming and mutable data structures is the

IO monad [112]. There are several types of computations that are executed in the

context of the IO monad, for example computations that have to execute input- or

output operations, or computations that have side effects on mutable data. The type

system ensures that pure functions can be called by non-pure functions but not vice

versa.

Note that a programming language which supports referential transparency is a strong

candidate for today’s multicore systems: since evaluations of different expressions can not

influence each other, expressions can be evaluated in parallel. While this approach works

in theory, practice has shown that in many cases too many parallelizable evaluations are

generated[71]. For most of these evaluations, parallelization is not worth the additional

overhead.

Haskell’s Type System

Haskell features a static type system, i.e. the types of expressions are checked at compile

time. This type system supports many sophisticated techniques and concepts, e.g. au-

tomatic type derivation, type classes and polymorphic types. We briefly illustrate these

techniques and concepts by means of examples.

Polymorphic Types. Polymorphic types allow the user to generalize the type of a

function call by means of a type variable. A type variable indicates that any type can be

used. Hence, a function’s signature can contain not only types but also type variables.

For a polymorphic function the standard example is the map function

map : : (a −> b) −> [a] −> [b]

map [] = []

map f (x : xs) = f x : map f xs

Its first parameter is a function f that receives a value of type a and returns a value of

type b. By means of map, the function f is applied to all elements of a list of values,

whereby all list elements have type a. Thereby, a list of values of type b is generated.

Type Classes. A type classes defines a set of functions to enforce their implementa-

tion. The implementation must be in a type that is an instance of the type class. A

popular example is the type class Eq. It defines the functions == and /=:

24

2.2. The Functional Programming Language Haskell

class Eq a where

(==) : : a −> a −> Bool −− t e s t on e q u a l i t y

(/=) : : a −> a −> Bool −− t e s t on i n e q u a l i t y

A developer can define an instance of Eq for his own data types. Then all functions

with a type variable which must be an instance of Eq can be used. For the exemplary

algebraic data type D

data D = A | B Int

an instance of Eq is defined by

instance Eq D where

A == A = True

A == = False

B n == B m = n == m

The function elem :: Eq a => a -> [a] -> Bool checks if a list contains a given ele-

ment by comparing elements pairwise. After defining the Eq instance for D, the expression

elem (B 3) [A, B 6, A, B 3] is valid, for example.

Automatic Type Inference. In many traditional programming languages with a

static type system, e.g. Java and C++, types of variables have to be declared explic-

itly. In contrast, Haskell’s type inference system uses the Hindley–Milner type inference

mechanism [39, 94, 144] to derive the types of expressions at compile time automatically

(unless they are stated explicitly). Hence the developer has the chance to omit type

signatures while finding type-based programming errors is still possible. We illustrate

the basic idea of this mechanism by an informal example. Consider the function

f x n =

let cs = show x in

replicate n cs

In this case the goal is to infer the type of the function f. For this purpose, the inference

engine tries to find a consistent set of types that match the parameters of the called

functions. Assuming that the function replicate has the type Int -> a -> [a], which

is defined by the standard library, the first parameter of replicate must be of type

Int. Therefore n must have type Int. Since the second parameter of replicate is

polymorphic, no information for cs can be derived by the call. But cs is bound to the

expression show x and the function show has the type Show a => a -> String. Hence,

two informations can be derived. First, x must be an instance of the Show type class and

25

2. Foundations

second, cs is of type String. Therefore the function f must have the type f :: Show a

=> a -> Int -> [String]. A more through discussion of Haskell’s type checker (and

an implementation in Haskell itself) can be found in [110, 154].

2.2.3 Further Reading

In this section we could only give a short insight into the programming language Haskell.

Many different books, research articles and blog articles have been written, and we

especially recommend the following resources to gain a deeper understanding of Haskell

and functional programming in general.

An introduction is Graham Hutton’s Programming in Haskell [103]. This book covers

most of the important concepts of functional programming (in Haskell), e.g. recursive

functions, lazy evaluation, higher-order functions, and monadic effects. An introductory

book which focuses on the concept of monads and less on the theoretical details of func-

tional programming in general is Lipovaca’s Learn You a Haskell for Great Good! [127].

A book that demonstrates that Haskell is by no means only an academic language is

Real World Haskell by O’Sullivan et al. [157]. It covers binary data parsing, barcode

recognition, database access as well as multicore and network programming, to name

just a few examples.

Haskell’s website (and the corresponding wiki) presents an overview of recent devel-

opments of the language as well as different implementations. It also provides a general

list of links for numerous functional programming topics [89]. The Haskell mailing lists

haskell-cafe and haskell-beginners are both active and cover topics from recent devel-

opments in functional programming research to beginner questions [84]. Finally, the

internet relay chat (IRC) channel #haskell allows beginners as well as advanced users

to discuss various topics about Haskell in realtime [83].

2.3 Parallel Programming in Haskell

In this section we describe the different approaches for parallelization in Haskell. We

focus on Concurrent Haskell as we introduce Haskell’s thread model and the existing

approaches to synchronize mutable shared data. As stated before, lazy evaluation com-

plicates an efficient parallelization. We elaborate on the reasons and show approaches

to handle lazy evaluation in the context of parallelization. We conclude with a brief

overview of other parallelization concepts in Haskell which are outside of Concurrent

Haskell. Further information about these topics can be found in [112, 114, 134].

26

2.3. Parallel Programming in Haskell

2.3.1 Threads in Concurrent Haskell

Haskell’s parallel runtime systems allows for the execution of several independently run-

ning control flows at the same time. We call each control flow a thread. Since threads run

concurrently, they can be used to implement parallel algorithms. A thread is generated

(forked) by calling the function

forkIO :: IO () -> IO ThreadId

This function requires an arbitrary function f as its parameter. The function f will be

executed in a new thread [82]. forkIO returns a thread identification that can be used to

control the thread’s state, e.g. terminating it. The following example forks ten threads

which run concurrently. Each thread prints a particular number ranging from 0 to 9 and

then terminates:

let numberThreads = 10

range = [0 . . numberThreads−1]

forM range $ \number −> forkIO $

print number

The thread that executes the main :: IO () function of a program is called the main

thread. A specific feature of Concurrent Haskell is that the main thread does not wait on

the termination of forked threads. Instead, the program (and thus all threads) finishes if

the main thread finishes. Other languages, e.g. Java, wait until all spawned threads are

finished [152]. Although this complicates a fork-join-based parallelization, it is straight-

forward to implement a modified fork-function that spawns a number of threads and

awaits their termination (see Section 2.3.2)

2.3.2 Data Synchronization

There are three ways to synchronize mutable data which is shared by multiple threads:

with IORefs, with MVars, and with software transactional memory. These ways differ in

their level of abstraction and their performance, and are described in the following.

Synchronization with IORefs

An IORef, defined in the module Data.IORef [90], is a container for a mutable variable

inside the IO monad. The following example illustrates how an IORef is generated, read

and modified by storing a new value:

27

2. Foundations

r e f <− newIORef 0 : : IO (IORef Int) −− Generate a new IORef

−− f o r Int s t o rage

print =<< readIORef r e f −− Read and pr in t

−− (p r i n t s 0)

writeIORef r e f 1 −− wr i t e 1

print =<< readIORef r e f −− Read and pr in t

−− p r i n t s 1

The function modifyIORef :: IORef a -> (a -> a) -> IO () simplifies the modifi-

cation of a value stored in an IORef. It allows to change the value by specifying a function

which consumes the old value and returns a new one. For example, incrementing the

value stored in the ref variable can be written as

modifyIORef r e f (\n −> n + 1)

The modification of IORefs by means of the aforementioned operations, in particular

modifyIORef, is not thread-safe. Between reading the value, applying the update func-

tion, and writing the updated value, the value might be altered by another thread. To

ensure a thread-safe modification, the function atomicModifyIORef :: IORef a ->

(a -> (a,b)) -> IO b can be used. It ensures that the three mentioned operations of

modifyIORef (read, apply function, and write) are atomic and thus prevents corruption.

The possibilities for thread-safe modifications of IORefs are limited, since one can

only use pure functions to alter the value. While a pure function is sufficient to implement

compare-and-swap operations [191, 206], this limitation complicates the implementation

of sophisticated synchronization approaches, as we will see later. A more common and

flexible technique for synchronization in Concurrent Haskell are MVars which we describe

in the next section.

Synchronization with MVars

Similar to an IORef, an MVar is used to store a mutable value [160]. However, compared

to IORefs, MVars provide support for thread-safe modifications and can also be used to

block threads. That is, an MVar is in one of two states. Either it is empty or full. If a

thread tries to read from an empty MVar, this thread is blocked until a value is stored

by another thread. If reading succeeds, then the MVar becomes empty and the read

operation returns the previously stored value. If a thread tries to write to an already

full MVar, this thread is blocked until the value is read by another thread. Otherwise, if

a thread tries to write a value to an empty one, the value is stored and the MVar is full.

Figure 2.3 illustrates these concepts.

28

2.3. Parallel Programming in Haskell

Thread1 Thread2Main thread

mvar <- newEmptyMVar
-- Trying to take a value
t <- takeMVar mvar

-- Storing a value
putMVar mvar 1

-- t contains 1

Thread running

Thread blocked
putMVar mvar 2

putMVar mvar 3

t <- takeMVar mvar
-- t contains 2 -- mvar contains 3

tim
e

Figure 2.3: Illustration of thread blocking on an empty as well as a full MVar. Thread1

blocks since the MVar is empty, Thread2 blocks since the MVar is full.

As already mentioned in Section 2.3.1, the main thread does not wait until forked

threads are terminated. As a use-case of MVars we demonstrate how a function forkForList

can be defined. The function forks a number of threads such that each thread processes

one element of a given list. The calling thread waits until all list elements have been

processed. The function forkForList is implemented as follows. First, a list of empty

MVars is generated:

1 f o rkForL i s t : : [a] −> (a −> IO ()) −> IO ()

2 f o rkForL i s t xs f = do

3 let l en = length xs

4 mvars <− rep l i cateM len newEmptyMVar

Then threads are forked. After a thread has finished its work, the respective MVar is

filled:

5 forM (zip xs mvars) $ \(x , mvar) −> forkIO $ do

6 f x

7 putMVar mvar ()

By trying to read the initially empty MVars, the main thread waits until all threads are

finished:

8 mapM_ takeMVar mvars

MVars are also the basis for more advanced concurrency primitives, e.g. unbound

channels [160]. An (unbound) channel (Chan) can store multiple elements of the same

type in a thread-safe manner. Similar to an MVar, a thread is blocked if it tries to read

from an empty channel. However, storing a value is always possible. Figure 2.4 on

page 30 presents an overview of common channel operations.

29

2. Foundations

newChan : : IO (Chan a)
readChan : : Chan a −> IO a
writeChan : : Chan a −> a −> IO a
−− (deprecated due to p o s s i b l e race c o n d i t i o n s)
isEmptyChan : : Chan a −> IO Bool

Figure 2.4: Overview of common Chan operations.

Despite supporting more sophisticated synchronization than IORefs, MVars still work

on a fairly low level. In contrast to that, a high level approach for synchronization is

software transactional memory.

Synchronization with Software Transactional Memory

Software transactional memory (STM) is a modern approach for synchronizing concur-

rent access to shared data. STM adapted the idea of a transaction from database research

to combine multiple modifications of shared data and handle them as one operation. In

this section we describe Haskell’s STM primitives [72, 154] as well as some examples of

its usage.

General approach. In the framework of STM, shared mutable data is stored in a

transactional variable. Such variables can only be modified within a transaction. If

concurrent transactions modify values inconsistently, only one transaction succeeds and

updates the shared data by its modifications. All other transactions are restarted with

the updated values (see Figure 2.5).

STM primitives. In the Haskell implementation, STM’s key type is the STM monad.

In this monad only function calls to modify transactional variables and the evaluation

of pure functions are possible. In particular, the monad does not permit the execution

of functions of the IO monad. This is important since transactions might be restarted

several times and the effects of IO functions might be irreversible.

Transactional variables have type TVar. For executing transactions, the function

atomically is called. Figure 2.6 on page 32 presents an overview including the respective

function signatures; the operations retry and orElse are described below. We can now

formulate the example depicted in Figure 2.5:

30

2.3. Parallel Programming in Haskell

Thread1 Thread2 Thread31

2

i <- read
write (i+1)

3

write 2 write 3 i = 1

i <- read
write (i+1)

i = 3

initial
value

tim
e

shared transactional
variable

transaction

succeeded transaction

failed and restarted
transaction

i <- read
write (i+1)

write 3 i = 2

4

Figure 2.5: Illustration of software transactional memory. Note that in successive runs
the order of succeeded and failed transactions might be different.

main : : IO ()

main = do

tvar <− a tomica l l y (newTVar 1)

forkIO $ atomica l l y $ −− Fork Thread 1

writeTVar 2

forkIO $ atomica l l y $ −− Fork Thread 2

writeTVar 3

forkIO $ atomica l l y $ do −− Fork Thread 3

i <− readTVar tvar

writeTVar (i +1)

STM operations. To allow more control over the restart of a transaction, or over the

composition of two transactions, there are the functions retry and orElse, respectively.

The function retry blocks the current thread until one of the transactional variables,

which have already been read in the current transaction, changes. When one of these

variables was changed by another thread, the transaction is restarted. In contrast to

automatically restarted transactions, a finer control and thus less contention can be

achieved. Consider the following example which manages the synchronized access to an

integer-valued resource [72]:

type Resource = TVar Int

putR : : Resource −> Int −> STM ()

31

2. Foundations

−− Transact iona l v a r i a b l e s
data TVar a
newTVar : : a −> STM (TVar a)
readTVar : : TVar a −> STM a
writeTVar : : TVar a −> a −> STM ()

−− Executing t r a n s a c t i o n s
a tomica l l y : : STM a −> IO a

−− Cont ro l l i ng t r a n s a c t i o n s
r e t r y : : STM a
orE l s e : : STM a −> STM a −> STM a

Figure 2.6: Overview of common STM operations [72].

putR r i = do

v <− readTVar r

writeTVar (v+i)

getR : : Resource −> Int −> STM ()

getR r i = do

v <− readTVar r

if (v < i)

then r e t r y

else writeTVar r (v−i)

If the function getR is called, the underlying transaction pauses for v < i. That means,

the thread is blocked until the variable r is modified. Then the transaction is restarted.

The function orElse composes two transactions, i.e. the expression a ‘orElse‘ b

means that the transaction a is run first. If a has to be restarted, the transaction b is

started and the effects of a are abandoned. If b is retried, the composed transaction

is retried as a whole. Furthermore, transactional variables read by either a or b are

watched for modifications. Thus, a non-blocking getR can be implemented by [72]:

nonblockGetR : : Resource −> Int −> STM Bool

nonblockGetR r i =

(get r i >> return True) ‘ orElse ‘ return False

32

2.3. Parallel Programming in Haskell

2.3.3 Lazy Evaluation and Concurrency

Lazy evaluation complicates parallel programming by means of Concurrent Haskell. If

the evaluation of an expression is not actually forced within a thread, only a thunk

is generated. Hence, the actual computation could be started long after the thread is

finished. The following example illustrates this problem. Although two threads are

started to perform two computations, the results of the computations are only evaluated

within the main thread when the result is printed:

1 main : : IO ()

2 main = do

3 var1 <− newEmptyMVar

4 var2 <− newEmptyMVar

5

6 forkIO $ do

7 let a = < . . . expens ive computation> : : [Int]

8 putMVar var1 a

9 forkIO $ do

10 let b = < . . . expens ive computation> : : [Int]

11 putMVar var2 b

12

13 a <− readMVar var1

14 b <− readMVar var2

15 print (sum var1 + sum var2)

To perform the expensive computations within the forked threads, their evaluation has

to be enforced. The evaluation of an expression can be in different states (forms): An

expression in weak head normal form is evaluated to its outermost data constructor

and its subexpressions may or may not be evaluated. In contrast, an expression in

normal form can not be evaluated any further. The common approach to enforce an

evaluation to weak head normal form is to use the function seq :: a -> b -> b. It

evaluates its first parameter to weak head normal form and returns its second element.

Unfortunately, for parallel computations weak head normal form is not sufficient. For

example, in the weak head normal form of a list only the list’s first element is evaluated;

for the Maybe type it is only determined if the value reduces to Just or Nothing, etc. For

a deep evaluation, i.e. to normal form, the common technique is applying the function

deepSeq. The expression a ‘deepSeq‘ b evaluates a to normal form and returns the

(lazily evaluated) value of b. In the given example, the parallel computation of var1

33

2. Foundations

and var2 can be enforced by rewriting the computation as follows:

6 forkIO $ do

7 let a = < . . . expens ive computation> : : [Int]

8 a ‘ deepSeq ‘ putMVar r e s1 a

9 forkIO $ do

10 let b = < . . . expens ive computation> : : [Int]

11 b ‘ deepSeq ‘ putMVar r e s2 b

Technically, the function deepSeq uses the typeclass NFData to enforce evaluation: Each

type a that should be evaluated by deepSeq must be an instance of NFData and therefore

has to define a function rnf :: a -> (). The function call rnf x should reduce x to

normal form by using a combination of deepSeq and seq.

2.3.4 Other Parallelization Approaches in Haskell

Outside Concurrent Haskell, Haskell supports other techniques for parallel programming.

In this section we briefly describe three high-level approaches: semi-explicit paralleliza-

tion by means of the par function(s) [114, 137], the recently developed Par monad [139],

and Data Parallel Haskell [24].

Parallelization of Pure Functions with par

Pure functions seem to be ideal for (automatic) parallelization. Since no side effects can

occur, all expressions can be evaluated in parallel, at least theoretically. Unfortunately

this approach does not scale well, because usually too many small tasks are generated.

Instead, the family of par-functions (see Figure 2.7) allows us to annotate expressions

which are worthwhile to be parallelized. Since this approach has been subsumed recently

par : : a −> b −> b
pseq : : a −> b −> b

Figure 2.7: Overview of functions for semi-explicit parallelization.

by the Par monad (described in the following section), we keep the following description

short. The expression a ‘par‘ b notifies the parallel runtime system that the evaluation

of the subexpression a in parallel with the subexpression b is worthwhile. The result of

a ‘par‘ b is the result of b’s evaluation. Note that the parallel runtime system does

not have to evaluate expressions in parallel. Instead, this is merely a suggestion. Note

also that the previously mentioned problem about lazy evaluation still remains. But it

34

2.3. Parallel Programming in Haskell

can be resolved by the pseq function. The pseq function enforces the evaluation of its

first subexpression. In a ‘pseq‘ b, for example, a is evaluated to weak head normal

form and the result of lazily evaluating b is returned. Although this approach works

well, it is quite cumbersome in practice. That is especially true for a functional language

which has many functions to work on lists, e.g. map and the functions in the fold-family.

To allow for an easier formulation of parallelization for list-based algorithms, strategies

are used [137]. A strategy defines how a particular expression should be evaluated.

Combined with new higher-order functions, e.g. parList to evaluate list elements in

parallel, parallel computations of complex data structures can be expressed more easily.

Parallelization with the Par Monad

Evaluating expressions by using semi-explicit parallelization combined with strategies

as introduced in the previous section is still cumbersome. The parallel evaluation of

data structures which are more complex than lists ”can be something of an art” [139].

Another approach for parallelizing the evaluation of pure functions has been described

recently [139]. It is based on the so called Par monad, in which computations are

parallelized and results are collected (see Figure 2.8). A computation c in the Par

newtype Par a

−− Extract va lue from a p a r a l l e l computation
runPar : : Par a −> a

−− ”Fork” computations
f o rk : : Par () −> Par ()

−− Communicate us ing IVars
new : : PVar (IVar a)
get : : IVar a −> Par a
put : : NFData a => IVar a −> a −> Par ()

Figure 2.8: Overview of functions for parallel computations in the Par monad. [139]

monad is initiated by passing a function with result type Par a to the function runPar.

To spawn a new computation, the function fork is called inside the Par monad. The

spawned computation is executed in parallel to the computation c. Between different

spawned functions communication is achieved by means of IVars. IVars are single

assignment mutable references that block if they are read and no value has been stored.

35

2. Foundations

Note that the value which is stored by the put function must be an instance of NFData.

Hence it can be fully evaluated and so problems with lazy evaluation are prevented.

The following example, in which a parallel map function is implemented, illustrates

the usage of the Par monad: The spawn function forks a new computation and returns

an IVar which contains the result of the computation as soon as it is finished:

spawn : : NFData a => Par a −> Par (IVar a)

spawn p = do

i <− new

fo rk $ do

x <− p

put i x

return i

The parMapM function uses spawn to fork a computation for each element of a list.

Afterwards, results are collected:

parMapM : : NFData b => (a −> Par b) −> [a] −> Par [b]

parMapM f xs = do

i v a r s <− mapM (spawn . f) xs

mapM get i v a r s

Summarizing , the Par monad allows a deterministic and comfortable definition of the

parallel evaluation of pure functions. By using IVars and NFData combined with put,

problems regarding late evaluation due to laziness cease to exist. Due to the recency

of this approach it is still an open question if it can compete with Concurrent Haskell

with respect to performance. The latter allows both the parallel computation of pure

and impure functions and thus provides a greater flexibility for performance-oriented

optimizations.

Parallelizing Array Computations with Data Parallel Haskell

Data Parallel Haskell (DPH) is a compiler extension to the Glasgow Haskell Com-

piler [92]. It supports (nested) data parallel computations [23, 24, 111] through the

concept of parallel arrays and corresponding operations. In contrast to (lazily evalu-

ated) lists, these parallel arrays are strict. That is, if the value of one of its elements is

retrieved, the whole array is evaluated in parallel. However, similar to lists, DPH sup-

ports array comprehensions as well as many list operations that work on lists of finite

length. For example, parallel computing of the dot product of two DPH arrays with the

type [:Double] is implemented by

36

2.3. Parallel Programming in Haskell

dotp double : : [: Double :] −> [: Double :] −> Double

dotp double xs ys = sumP [: x ∗ y | x <− xs | y <− ys :]

DPH only supports a restricted number of array operations and is still work in progress.

For instance it does not support type classes and defines only some of the Prelude

functions for arrays. Particular attention must be paid when mixing code of DPH and

standard Haskell code. Therefore, we decided against including DPH into our study.

37

2. Foundations

38

Chapter 3

Thread-safe Priority Queues

based on Skiplists

Although Haskell supports mutable data structures, first and foremost

it is a side-effect free language. In consequence, there has not been

much research about the implementation of mutable data structures,

and in particular not on the different synchronization approaches that

make mutable data structures thread-safe (locks, software transac-

tional memory, compare-and-swap). We compare these approaches to

each other with respect to parallel performance and development ef-

fort, referring to the example of a priority queue implemented with

skiplists. For an additional comparison with a straightforward to im-

plement priority queue, we present results for a coarse-locked heap-

based priority queue.

39

3. Thread-safe Priority Queues based on Skiplists

3.1 Introduction

A priority queue is a data structure that allows the user to store and retrieve elements

from a sorted set S [36]. It is often used as a basic building block for (parallel) algorithms.

In this chapter we solely examine min-priority queues, i.e. priority queues that allow fast

access to the smallest element of S. There are several and slightly different definitions of

a min-priority queue, but consensus exists that it must support at least two operations

such as insert(S, x) and deleteMin(S). The former inserts x into the set S and the

latter removes and returns the smallest element of S.

A priority queue is called thread-safe if concurrently executed priority queue opera-

tions do not lead to errors such as returning any other element than the minimal one,

failing insertion of an element, or leaving the priority queue in an undefined state. Being

thread-safe is obviously of great importance and besides scalable performance the crucial

aspect of any concurrently used implementation of a data structure.

Many different ways to implement a (thread-safe) priority queue exist. Tradition-

ally priority queues are implemented with self-balancing binary search trees [180] or

heaps [36, 102]. Although the sequential implementation of these data data structures is

straightforward, their thread-safe and scalable implementation is difficult and other, less

known data structures can have particular advantages. Among these alternative data

structures is the skiplist [164]. A skiplist is a multi-level linked list data structure with

shortcuts to randomly chosen elements. It has originally been invented for dictionaries,

but its operations can be used for the implementation of priority queues as well. For

programming languages like C and C++, skiplists outperform traditionally implemented

priority queues with different synchronization approaches [53, 131, 165, 192].

For Haskell, prior to our work, there were no scalable thread-safe priority queue im-

plementations. Moreover, to the best of our knowledge only one research paper about the

advantages and disadvantages of different synchronization approaches for data structures

has been published at all, and it referred to linked list [191]. Therefore we examined how

different synchronization techniques scale and compare to each other for a thread-safe

priority queue based on skiplists: traditional locks [160], software transactional mem-

ory [72], and compare-and-swap operations [191] (see Figure 3.1). For an additional

comparison with a straightforward to develop and yet thread-safe priority queue, we also

implemented a coarse-locked heap-based priority queue [36]. Unlike many other imple-

mentations, our priority queues fully support duplicates, i.e. multiple elements may have

the same key. Duplicates are frequently needed in practice.

This chapter is structured as follows. In Section 3.2 we give an introduction to the

40

3.2. An Introduction to Skiplists

Software
Transactional

Memory
Locks

Compare
and

Swap

Heap-basedSkiplist-based

Coarse-locked

Priority Queue Typeclass} }
Figure 3.1: Overview of the different synchronization variants and priority queue im-
plementations, which are examined.

(sequential) skiplist data structure and describe some of its algorithmic properties. In

Section 3.3 we describe how a priority queue can be implemented with skiplist operations

and we also define a typeclass for priority queue operations. In Section 3.4, we describe

our different thread-safe implementations in detail and explain our test environment. In

Section 3.5 we give reasons for the different benchmark scenarios that were used to com-

pare performance, present benchmark results and analyze the outcomes. In Section 3.6

we discuss related work. Finally, in Section 3.7 we summarize this chapter and draw

conclusions.

3.2 An Introduction to Skiplists

In this section we explain the design of the non-optimized and concurrency-unaware

skiplist data structure as it has been invented for dictionaries [164]. We also describe

support for duplicate keys and sketch algorithmic complexity. In this (sequential) version

there is no need for handling synchronization. Hence we postpone the discussion of

different synchronization approaches to Section 3.4.

3.2.1 The Data Structure

Basically a skiplist is a sorted linked list with additional levels for each node. By means

of these additional levels partial linked lists are defined. A partial linked list typically

connects only some of the nodes. Therefore it provides shortcuts from one element to

distant elements by allowing to skip over elements of lower levels. In consequence, the

time for typical linked-list operations is decreased. Analogous to linked lists, a skiplist

has a Begin node which points to the first node of the list and additionally an End node

with a key that is larger than any insertable key. Figure 3.2 on page 42 shows an example

of a skiplist with three nodes of varying height.

41

3. Thread-safe Priority Queues based on Skiplists

1 2 3Begin End

L
ev

el

0
1
2
3

Figure 3.2: A skiplist of height 4 storing keys 1, 2 and 3. The nodes with keys 1 and
3 have height 3, the node with key 2 has height 1. There is no node with height 4.

A skiplist provides a dictionary-like interface that allows to search, insert and delete

comparable key-indexed elements. The elements can be sorted either in increasing or

decreasing order. Since we are interested in the implementation of min-priority queues,

elements are sorted in increasing order such that the smallest element is stored after

the Begin-node. As a dictionary, a skiplist S has to support at least the following three

operations: 1) search(S, k) returns an element with the key k from S, 2) insert(S, k, v)

inserts a new element v with key k into S and, (3) delete(S, k) removes an element with

key k from S. If the key does not exist or if several nodes with the same key are stored,

the behavior of the operations is implementation-dependent (see Section 3.2.2).

Searching for a given key k starts on the Begin node at the highest level of the

skiplist. At each level the linked list is traversed by using look-ahead. If the key exists,

it is found at the highest level of the first node that contains the key. If the key ahead

is larger than k, traversal continues at the next lower level. If a node with a key larger

than k is found at the lowest level, the given key does not exist. Figure 3.3 shows an

exemplary search in a skiplist with six elements and a maximum of four levels.

3 4 5Begin End21 6

L
ev
el

0
1
2
3

Figure 3.3: Search for the element with key 5. By using the shortcut on level 2,
keys 1 and 2 are skipped. By using the shortcut on level 1, key 4 is skipped. The red
arrows show the search order. Note that the search looks ahead to the next node.

Both insert- and delete-operations have to change pointers on the different levels.

Therefore, a list of predecessors (one per level) is collected by a procedure that is similar

to the search-operation but prior to advancing to a lower level, the last node on each

42

3.2. An Introduction to Skiplists

1 3 7Begin End

a)

1 3 7Begin End

b)

Begin

1

1

3

Resulting
predecessor vector

c)

Figure 3.4: Predecessor collection for a) deleting the node with key 7. b) inserting the
node with key 5. c) the resulting predecessor array. For deletion, the node to be deleted
has only height 3 so the 4th level of the predecessor array will be ignored. Predecessors
are marked yellow.

level is stored as the level-specific predecessor. If the key is found, traversal continues

nonetheless up to the lowest level. For deletion, this approach allows to collect all direct

predecessors of the node to be deleted (see Figure 3.4a)). For insertion a node with the

given key and a random height is created first and then the predecessors are collected

(see Figure 3.4b). After all predecessors have been found, the insert or delete operations

for linked lists are applied level-wise. Note that in the sequential case the order of these

level-wise modifications is of no importance.

3.2.2 Duplicate Key Handling

Many algorithms, e.g. finding shortest paths, rely on priority queues that support du-

plicate keys. In this case, the insertion of a key that already exists in the skiplist must

not overwrite the existing one but create an additional element. In (sequential) skiplist

implementations duplicate key handling is supported without an increase of the imple-

mentation complexity:

The look-ahead predecessor search traverses to the lower level if the search leads to

a larger or equal key on the current level. Therefore, if an element with an already

existing key is inserted, it is added in front of the others (see Figure 3.5 on page 44).

The other operations work comparably, i.e. both search- and delete-operations return or

remove the element with a given key that was added latest. As described in Section 3.4,

duplicate support becomes more complex if threads apply operations concurrently.

43

3. Thread-safe Priority Queues based on Skiplists

1 2Begin End 1 22'Begin End

Initial state State after insertion of 2'

Figure 3.5: Insertion of the node 2’, which has the same key as the node 2.

3.2.3 Skiplist complexity

In this section we describe briefly the computational complexity of skiplists. A more

detailed formal analysis with elaborate proofs can be found in [164].

In contrast to many classical data structures the complexity of probabilistic data

structures such as skiplists does not only depend on their deterministic operations but

also on additionally required randomness. For skiplists such randomness is introduced by

a probability p which determines the height of a newly inserted node: with probability

p a node that is accessible over a linked list on level k should also be accessible on the

respective list on level k + 1.

The choice of p influences the search efficiency. If p is small many nodes have a low

height and many pointers have to be traversed horizontally (see Figure 3.6a)) If p is

large, some nodes have a large height. In consequence more nodes can be skipped over

but vertical traversal is more time consuming (see Figure 3.6b)).

a) b)

Figure 3.6: Visualization of pointer traversal for a skiplist with a) p = 0.2 and b)
p = 0.8. The orange bars are the Begin and End node. The green bar shows the key to
be searched. The yellow line shows the pointer traversal.

Based on this observation and the formal analysis in [164], for our implementation we

defined p = 1
2

and limit the maximum height. This value of p balances the advantages and

disadvantages and allows for a complexity that is comparable to classical data structures.

Employing p = 1
2
, skiplists have a probabilistic time complexity of O(log n) and a worst-

44

3.3. A Priority Queue Typeclass for Skiplists

case complexity of O(n) for all dictionary operations. Note that skiplists have the same

average complexity as e.g. balanced trees [120], but are typically easier to implement

especially in concurrent scenarios [165].

3.3 A Priority Queue Typeclass for Skiplists

As stated in Section 3.1, (min-)priority queues have to support at least two operations,

namely insert and deleteMin. Skiplists sort their elements in increasing order. The

smallest element can therefore be accessed in O(1) and, since the maximum height of a

skiplist is fixed (see Section 3.2), the first element can be removed in O(1). Since the

smallest element is always the first element after the Begin-node an explicit predecessors

search is not necessary. Furthermore modifying pointers to point to the node after the

smallest element takes constant time. Therefore skiplists can be used as efficient data

structures for implementing priority queues.

To ease experimentation with the different synchronization approaches, we defined a

typeclass PriorityQueue which is instantiated by all skiplist variants (see Figure 3.7).

The deleteMin function returns the key and value of the minimal element wrapped in

Just or Nothing if the queue is currently empty. The insert function adds a key and

its value to the queue.

{−# LANGUAGE MultiParamTypeClasses ,
Funct ionalDependencies #−}

class Ord k => Prior i tyQueue pq k v | pq −> k , pq −> v where

deleteMin : : pq −> IO (Maybe (k , v))
insert : : k −> v −> pq −> IO ()

Figure 3.7: The PriorityQueue typeclass.

The deleteMin-function uses the type parameters k and v of the multi-parameter

typeclass solely in its return type. Therefore with standard Haskell it is not possible to

correctly type-check this definition. To allow type-checking we use a language extension

called functional dependencies [115]. By stating pq -> k, pq -> v, we state that the

return type of the function (k and v) can be derived from another type parameter (pq).

45

3. Thread-safe Priority Queues based on Skiplists

3.4 Thread-safe Priority Queue Variants

In this section we describe three variants of thread-safe skiplists, which are based on

different synchronization approaches. The first uses locks, the second software trans-

actional memory and the third compare-and-swap operations. Although we are solely

interested in the implementation of priority queues, we implemented a complete dictio-

nary interface and built the priority queue operations on top of them. We also briefly

describe a heap-based priority queue which is synchronized with a coarse lock. This vari-

ant should not be compared to the previously mentioned ones regarding the efficiency

of its synchronization mechanism, since the underlying priority queue implementation

is fundamentally different. Instead, it serves as an example of the achievable parallel

performance of a naive solution.

3.4.1 Lock-based Skiplists

Our lock-based implementation is based on the original lock-based concurrent variant

of Pugh [165]. Pugh’s approach has two properties that reduce lock contention and

make the implementation scalable: First, locking is fine-grained, i.e. both insert and

delete operations lock only a small part of the skiplist and merely for a short time.

Second, an efficient lock-less traversal through the list is possible by using multiple-

reader single-writer locks. This permits fast search operations and an efficient collection

of predecessors.

The base types Skiplist and Node as well as necessary configuration variables are

shown in Figure 3.8. Each skiplist is globally configured with two parameters, maxLevel

and probability. The former defines the maximum node height and the latter the

probability p for node level generation (see Section 3.2.3). The type Skiplist defines

the Begin and End node only. The actual information is stored in the type Node. Each

Node holds a key-value pair (if it is not the begin or end node), a unique id for handling

duplicates, a deletion marker for signaling deletion to other threads, its height, as well

as references to its successors at each level.

Pugh’s approach requires multiple-reader/single-writer locks. This type of locks sup-

ports both concurrent reading of a shared value and its exclusive writing. While a

thread holds the lock, other threads may still read the stored value. However, threads

are blocked if they try to get the lock. Since Haskell’s standard concurrency libraries do

not have a built-in type for this type of locks, we developed a basic type by using IORefs

and MVars. While IORefs allow storing a mutable value, they can not be used to block

threads to attain exclusive access. On the other hand, MVars can be used to block threads

46

3.4. Thread-safe Priority Queue Variants

−− S k i p l i s t−wide c o n f i g u r a t i o n
maxLevel : : Level

maxLevel = 32

p r o b a b i l i t y : : Double

p r o b a b i l i t y = 0 .5

−− Data s t r u c t u r e
data (Ord k) => Skiplist k v = Skiplist {

sk ipBegin : : Node k v
, skipEnd : : Node k v

}

data (Ord k) => Node k v = Node {
nodeValue : : NodeValue k v

, nodeId : : Unique
, nodeGarbage : : IORef Bool

, nodePointer : : Pointers k v
, nodeLevel : : RWLock Level

}

−− Type d e f i n i t i o n s
data NodeValue k v = Value (k , v) | Begin | End deriving Eq

type Level = Int

type Pointers k v = IOArray Level (RWLock (Node k v))

Figure 3.8: Base types for the lock-based skiplist implementation.

but do not permit an efficient non-blocked reading of their contents. To implement a

multiple-reader/single-writer lock, we combined both approaches and thereby defined a

new type RWLock. RWLock encapsulates a modifiable value in an IORef and uses an MVar

to attain the blocked locking:

data RWLock a = RWLock {
rwLockValue : : IORef (Maybe a) ,

rwLockLock : : MVar ()

}

Note that the value can be empty, i.e. Nothing. This simplifies the implementation, since

the initial value does not need to be supplied when a new lock is generated. To prevent

unauthorized access, the internal details of the RWLock are hidden by Haskell’s module

system. Concurrent reading is implemented by readIORef. Obtaining the exclusive lock

is attained by taking the value of the MVar and releasing it by storing ().

47

3. Thread-safe Priority Queues based on Skiplists

Initially, each skiplist is empty. All maxLevel pointers of the begin node point to the

end node.

The insert and delete operations work level by level. Thereby locking is solely used

to control shared access to the successor pointers of each node. Both operations ini-

tially need to generate an array of predecessor nodes (as marked in Figure 3.4a) and

Figure 3.4b) on page 43).

By the use of the given key and value the insert operation at first generates an

unlinked new node of random height. This node is inserted level by level, beginning with

level 0. After insertion on the first level, the node can be found in a search operation. The

additional levels provide shortcuts to reduce search time. On each level, insertion works

as follows: The successor of the new node is set to the former successor. Afterwards

the successor pointer of the predecessor is locked and this pointer is set to the newly

generated node (see Figure 3.9).

Predecessor Successor

a) b)

Predecessor Successor

New node

c)

Predecessor Successor New node

d)

Predecessor Successor

New node

Figure 3.9: Locking to insert a node into the list on a particular level. a) initial state
b) locking of successor pointer of the predecessor c) insertion of new node d) unlocking
of the locked pointer.

To implement deleteMin we use a helper function delete which implements the

delete function belonging to a dictionary data structure. Note that a general delete

function is necessary for good scalability: If deleteMin was implemented as a function

that can remove the first element of the skiplist only, multiple deleteMin operations

would hinder each other. After predecessor search, delete checks the current state of

a node’s possible deletion: if nodeGarbage is false, no other thread deletes the node

and it is set. Otherwise deletion is stopped and the operation may be repeated by

searching for another node with the same key. Note that marking nodes to be deleted is

solely an optimization, not strictly necessary: If a node was not marked, threads would

concurrently try to delete it throughout its different levels. Since operations are still

synchronized this would not corrupt the data structure, but it would decrease scalability.

If the thread is able to delete the found node, it is removed level by level starting with the

highest one. This is a safe operation since pointers on levels larger than 0 are shortcuts

and so removing them does not lead to a (partially) corrupted skiplist. Thus a node

48

3.4. Thread-safe Priority Queue Variants

is deleted if it is removed from level 0. Since other threads should be able to traverse

through the node currently being deleted, a backreference to the node’s predecessor is

set. This allows continuous traversal (see Figure 3.10).

node to be
deleted

Predecessor Successor

a)

node to be
deleted

Predecessor Successor

b)

node to be
deleted

Predecessor Successor

c)

node to be
deleted

Predecessor Successor

d)

backreference backreference

Figure 3.10: Deleting and locking of a node at a certain level. a) initial state b) locking
of successor pointer of the predecessor c) setting new successor pointer of the predecessor
and generating the backreference d) unlocking of the locked pointer.

The deleteMin operation reads the key of the successor belonging to the begin node

and tries to delete it. If deletion is successful, the element is returned. Otherwise another

thread deleted the element simultaneously and consequently the operation is restarted.

The lock on the node level (nodeLevel) is necessary to prevent corruption when a

node is concurrently inserted and deleted. When a node is inserted, the lock is taken

and released when insertion is finished. Deletion takes this lock prior to removing the

node. This prevents the following case: A node with key k and height n is not fully

inserted yet, e.g. insertion is currently at level m < n and the key k should be deleted.

Deletion will thus start at level m and work downwards, insertion will continue until

all predecessor pointers on level m + 1 . . . n have been set. As a consequence, pointers

without a corresponding node exist on these levels.

The order of concurrently inserted elements with the same key is not predetermined

at different levels. Instead it depends on thread scheduling. One thread can insert a

key k at level n, but another thread is first inserting another element with the same

key k at level n + 1 (see Figure 3.11a) on page 50). Without additional information,

the predecessor search would find the wrong pointers (see Figure 3.11b) on page 50). If

key k should be deleted, a predecessor search finds m as the predecessor at level n + 1.

At level n, the correct predecessor is k (and not m). To distinguish between different

nodes with the same key, an unique identifier is added to each node. Thus a predecessor

search finds the correct nodes at each level by comparing both the key and the unique

identifier.

49

3. Thread-safe Priority Queues based on Skiplists

k k'

n
n+1

k k'

n
n+1

m

a) b)

Figure 3.11: Illustration of a skiplist with two keys k (marked with different colors).
a) Due to scheduling, the order of the keys is different between levels n and n + 1.
b) Predecessor search for deletion of key k. Predecessor are marked yellow.

3.4.2 Software Transactional Memory based Skiplists

For the second implementation we used software transactional memory for synchroniza-

tion. As STM is a high-level approach, it is especially interesting to analyze if the promise

of easier programming can compensate for the additional overhead of the transactional

model.

We developed two variants of the STM skiplist. First a naive one in which the whole

functionality for each operation is enclosed in one atomic block. Second a sophisticated

one in which the different steps for each operation are divided into separate atomic

blocks. The data types are similar to the lock-based ones except that TVars are used

instead of IORefs and MVars (see Figure 3.12).

data (Ord k) => Node k v = Node {
nodeValue : : NodeValue k v

, nodeId : : Unique
, nodePointer : : Pointers k v
, nodeLevel : : TVar Level

}

type Pointers k v = TArray Level (Node k v)

Figure 3.12: Base types for the STM-based skiplist implementation.

In the naive variant there is no need for a shared variable containing the deletion

state. The deletion state is managed by the underlying transaction model implicitly.

The STM based approach can be transcribed directly from the sequential variant by

modifying mutable variables to TVars and enclosing each operation in one atomic block

(see Figure 3.13a)). As we illustrate in Section 3.5, the performance of this variant is

rather insufficient due to the possibly long time each transaction takes and the high

probability of conflicts and restarts.

A more reasonable approach is to dissect the transactions into independent level-wise

sub-transactions. Now both the insert and the delete operations have two phases. In

the first phase the predecessors for the correct position are searched. In case of deletion,

50

3.4. Thread-safe Priority Queue Variants

the corresponding node is marked as to be deleted. In the second phase, the new node

is deleted or inserted at the correct position, respectively. For each level a new atomic

transaction is started to execute the previously mentioned linked-list operations (see

Figure 3.13b)).

1 3 7Begin End 1 3 7Begin End

a) b)

Figure 3.13: Illustration of the second phase of pointer modifications. Predecessor
search is not shown, transactions are marked red a) naive transactional variant. One
transaction is used for a whole operation. b) sophisticated transactional variant. For
each operation independent transactions are used at each level.

It is possible to get on with the lock-based solution by dissecting the level-based trans-

actions, i.e. a new transaction is started for each pointer modification. This approach

would be identical to the lock-based approach. Thus all advantages of programming in

the transactional model would be lost and the overhead would be higher.

3.4.3 Skiplists based on Atomic Compare and Swap Operations

Lock-free synchronization with atomic compare-and-swap operations promises to deliver

better performance than both transaction- and lock-based synchronization. The reasons

for this are the more fine-grained control of the operations as well as the absence of

waiting for synchronization. Basically, skiplists are advanced linked lists. So we adopted

the ideas about a lock-free implementation of linked lists from Harris and Fomitchev [53,

73], extending them to work at multiple levels. As stated in Section 3.4.1, deletion works

downwards and insertion upwards level by level.

Atomic compare and swap operations guarantee consistency of shared variables by

means of two atomic functions: test-and-set (TAS) and compare-and-swap (CAS). A

TAS applies a function to the current value of the shared variable. Then it swaps the

stored value with a new value if the function returns True. A CAS checks if the shared

variable contains a specific value (usually the value of the variable read previously).

Only if this is the case, CAS stores the new value. For both operations a returned flag

indicates the outcome. Haskell code for modifying shared IORefs by TAS and CAS is

shown in Figure 3.14 on page 52. Both operations use atomicModifyIORef internally.

Therefore they are thread-safe and atomic.

51

3. Thread-safe Priority Queues based on Skiplists

−− I f the t e s t func t i on c a l l e d with the c u r r e n t l y s to r ed
−− value i s true , s t o r e the new value .
atomTAS : : Eq a => IORef a −> (a −> Bool) −> a −> IO Bool

atomTAS ptr t e s t new = do

atomicModifyIORef ptr $ \ cur −>
if t e s t cur then (new , True) else (cur , False)

−− I f the c u r r e n t l y s to r ed value i s a l s o the passed value ,
−− s t o r e the new value .
atomCAS : : Eq a => IORef a −> a −> a −> IO Bool

atomCAS ptr o ld new = atomTAS ptr (==old) new

Figure 3.14: Atomic compare-and-swap and test-and-set functions.

Again, data types are similar to the lock-based ones, and are shown in Figure 3.15.

Instead of protecting pointers of successor nodes with a lock, they are stored in an

IORef and modified by CAS and TAS operations. Similar to lock-based synchronization,

pointers have to be marked in some way to signal their (future) modification. But with

a lock-free synchronization model obviously it is not possible to mark them by locking.

A common approach for compare-and-swap synchronization is to add a flag for each

pointer. The flag can have the values Unmarked or Marked. A single CAS can be used

to set the flag from Unmarked to Marked. Thereby a node is marked for the purpose of

signaling its removal state. Therefore a Pointer contains a tuple which stores its marked

state as well as the successor of the node at a particular level. The tuple is changed as

described below. Instead of using a flag many low-level implementations modify the

least significant bits of a memory address [53, 73, 202]. However, this architecture- and

compiler-dependent approach is not directly applicable to Haskell with IORefs.

data Ord k => Node k v = Node {
nodeValue : : NodeValue k v

, nodeId : : Unique
, nodeGarbage : : IORef Bool

, nodePointer : : Pointers k v
, nodeLevel : : Level

}

data Mark = Marked | Unmarked
type Pointer k v = (Mark , Node k v)
type Pointers k v = IOArray Level (IORef (Po inter k v))

Figure 3.15: Base types for the compare-and-swap-based implementation.

52

3.4. Thread-safe Priority Queue Variants

Using CAS operations, insertion is similar to the lock-based approach, yet deletion

needs to be more complicated to handle the case of interfering insertions and deletions

(see Figure 3.16). To prevent corruption, the deletion is subdivided in two phases. In the

first phase, the predecessor pointer of the node to be deleted (called Nd in the following)

is searched and Nd’s successor pointer is logically deleted using CAS. The search is

repeated if CAS fails. This can be the case if another thread has already marked the

pointer. This phase prevents concurrently running insertions from modifying this pointer.

In the second phase, the node is actually deleted physically from this level (using a second

CAS) by setting the pointer of the predecessor node to the successor of Nd. If another

concurrent operation changed a pointer and the CAS failed, the node will be removed

by an initiated search operation for the key as described in the following.

The key function used by both operations is the search for the predecessor. While

searching, all nodes that are traversed and have previously been marked for removal by

other threads are also deleted (see Figure 3.17 on page 54).

1

3

1b)

Begin1 3

1a)

Begin

1c)

Begin

2

3

1

1 3

2a)

Begin 3

2b)

Begin

1

2

Figure 3.16: Consistency problems with concurrent deletion of node 1 and insertion of
node 2: 1a) initial state 1b) use of a single CAS (modifying the successor of the Begin-
node) 1c) concurrent insertion can lead to new nodes that are not reachable anymore.
Solution using a two-phase deletion: 2a) deletion phase 1: logically mark the node as to
be deleted 2b) after physical deletion and concurrent insertion.

53

3. Thread-safe Priority Queues based on Skiplists

1 2

a)

Begin 3 4 5

b)

Begin 3 4 5

Figure 3.17: Illustration of deleting traversed nodes on a particular level by means of
searching for a node with key 3. a) initial state: The marked nodes were marked by
other threads b) state after traversal: The search function returns the beginning node
as the predecessor and node 4 as the successor. Non-traversed nodes (e.g. node 5) are
not influenced.

3.4.4 Coarse-Locked Heap-based Priority Queue

To compare the different variants of skiplists we implemented a coarse-locked heap-based

priority queue which is easy to implement and synchronize.

Although a heap is tree-based, it is usually implemented by means of an array. To

allow for traversal that is similar to a binary tree (traversing to right, left and parent

nodes) nodes are mapped to specific indexes: For a node i the parent is accessible at

index b i
2
c, its left child at 2i and its right child at 2i+1. For the priority queue operations,

we applied the approach for heaps, described in e.g. [36].

The base types are shown in Figure 3.18. Note that all elements are stored in a

mutable array whose elements are stored in memory as a continuous block. A single

MVar prevents the heap from being concurrently accessed and modified. Note that in

our benchmarks (see Section 3.5) the initially allocated array is large enough to store all

values and thus there is no need to resize dynamically.

−− Coarse−l o c k in g through a s i n g l e MVar
data Skiplist k v = Skiplist {

r e f : : MVar (Heap k v)
}

data Ord k => Heap k v = Heap {
heapData : : IOArray Int (k , v)
−− Pos i t i on o f f i r s t f r e e element

, heapLast : : IORef Int

−− Maximum capac i ty (f o r dynamic r e s i z i n g)
, heapMax : : IORef Int

}

Figure 3.18: Base types for the coarse-locked heap-based implementation.

54

3.5. Benchmarks

3.4.5 Testing the Implementations

It is difficult to develop concurrent programs. Hard to find errors can be overlooked

easily, e.g. slight corruptions of the data structure. Proving the correctness of an im-

plementation is still a topic of ongoing research [187]. To at least test the requested

functionality, we implemented Johnson’s algorithm [123]. It calculates the single-source

shortest path (SSSP) [36] in sparse graphs in parallel using a thread-safe priority queue

as its basic data structure. This algorithm uses both insert and deleteMin operations in

a realistic scenario, and emphasizes the duplicate key support (since many duplicate keys

occur). Moreover, it allows an easy comparison with a desired outcome: For reference,

we developed a simple sequential implementation.

A test consists of a randomly generated graph and the execution of Johnson’s algo-

rithm. We ran each test a few hundred times for all four skiplist implementations and

the heap-based variant. A test was evaluated to be successful when the result was equal

to the sequential reference implementation.

We did not use the algorithm for performance measurement, since the effort per

extracted element is exceptionally low. Johnson’s algorithm can be improved in this

respect (and it is very reasonable to do so in a real-world application), but this further

development is not trivial and a research topic on its own right [158, 188]. Therefore it

is out of scope regarding our research topic.

For testing in Haskell a common tool is Quickcheck [31]. We did not use this tool,

however, since it is primarily targeted at side-effect free code and not appropriate for

testing concurrent code which is executed in the IO-monad. In particular, its strength

of automatic test case generation does not necessarily apply to non-deterministic bugs

that are generally found in concurrent programs.

3.5 Benchmarks

We ran experiments on a 2.3 GHz 16-core AMD Opteron 6134 with 32 GB RAM running

a Linux-kernel 2.6.38-8 with GHC 7.0.3. Garbage collection times ranged from 1% up

to 10% for all benchmarks.

3.5.1 Scenarios

We examined two scenarios: First we tested the scalability of the implementations by

means of a benchmark adapted from the literature [192]. Second we examined the

speedup using a synthetic benchmark. This benchmark simulates a divide-and-conquer

55

3. Thread-safe Priority Queues based on Skiplists

algorithm. As stated in Section 3.4.5 we did not implement a real-world algorithm, since

even for simple algorithms the design space is large and currently mostly unexplored in

Haskell.

Scalability

In the scalability benchmark each concurrent thread performs 1000 initial insertions,

followed by 10000 operations, randomly chosen to be 50% deleteMin or insert. Keys

were randomly chosen from the integer interval (0, 106). These values and probabilities

were adopted from other papers, e.g. [192]. We repeated each benchmark three times and

report the average execution times for the three runs. Since the thread-specific random

number generators are (re-)initialized with the same initial (but thread-specific) seed, the

same sequential operations are performed in all runs as well as all implementations. This

procedure guarantees reproducibility. Since each thread performs 11000 operations, the

total number of operations increases with the number of threads. We conducted three

experiments with varying workload after each deleteMin operation:

In the first experiment the thread that executes deleteMin receives the key-value k

and computes π on k
35000

digits (see Figure 3.19). We chose the divisor 35000 such that

−− Calcu la te p i to a s p e c i f i c number o f d i g i t s and
−− d i s ca rd r e s u l t s .
import Data . Number . CReal

ca lcPiPure : : Int −> ()
ca lcPiPure d i g i t s =

showCReal (fromEnum d i g i t s) Prelude . pi ‘seq ‘ ()

Figure 3.19: Code for π calculation.

for k = 106 this calculation takes 0.002s, which is a reasonable amount of computational

work. For this amount of computational work results are shown in Figure 3.20 on

page 58. Keep in mind that in all figures the time-axes are logarithmic. We also do not

show times over 1000s so the lower graphs are more distinguishable. Both transactional

variants perform badly, since the amount of computational work can not compensate

for the overhead of the synchronization model. Nevertheless the advantage of dissecting

the transactions is clearly visible. The CAS variant which does not lock explicitly and

thus should outperform explicit locking, performs magnitudes of orders better than the

transactional variants, but it is about three times slower than the lock-based and heap

variants. This unexpected result can be explained by the high level of abstraction of the

56

3.5. Benchmarks

atomic CAS operations. Related work with C as the underlying language also describes

a better performance of CAS-based skiplist implementations as compared to lock-based

variants. Since C has a low level of abstraction and uses real pointers, CAS operations

are much faster, especially as there is a supported assembly instruction since 1970 [206].

Although GHC internally uses these CAS instructions they were not available for types

of a higher level or for mutable references at the time of development.

The good scalability of the lock-based variant was expected, since the implementation

does not hold any global lock and to a large extent MVars are used, which are optimized.

We were surprised tough, by the good scalability of the straightforward and easy to

implement heap-based variant. Its coarse locking impairs performance, however this

drawback is compensated by a cache-friendly memory layout: all operations are executed

on a continuously allocated memory block. This provides a much better spatial locality

and a better cache usage than the potentially distributed and small data chunks of

skiplists. Note that this result does not imply that coarse-locking scales generally better

as compared to the other synchronization variants, since the underlying priority queue

implementations were fundamentally different. Instead, the result demonstrates that for

some scenarios a less complex implementation might be a viable alternative.

In a second experiment we omitted the workload to analyze the impact of high

contention. The results are shown in Figure 3.21 on page 58. As anticipated, the

transactional variants perform quite bad since transactions are restarted (overall or on a

level basis) very often. The compare-and-swap variant still scales well. Although both the

heap and the lock-based variant scale better than the others, concurrent accesses to the

heap occur so often that its cache advantage is dominated by frequent synchronizations.

It is interesting to analyze scalability in case of a higher amount of computational

load since this occurs in algorithms (e.g. scheduling) as well. In our third experiment

π was computed on k
2000

digits (about 0.035s for n = 106). We additionally reduced the

number of initial insertions and operations. Results are shown in Figure 3.22 on page 58.

While the different variants converge, the overall ranking stays the same.

Speedup

Our second scenario, a synthetic speedup benchmark, initially fills a priority queue with

10000 random elements. Computation takes up to 0.002s per element using the π calcu-

lation mentioned above. If an element is extracted from the queue for the first time, it

is additionally reinserted two times with half its original value (approximately halving

its next computation time). In addition, π is computed on k
35000

digits, with k being

the extracted number. Thus it represents a computational intensive divide-and-conquer

57

3. Thread-safe Priority Queues based on Skiplists

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.10

1.00

10.00

100.00

1000.00

Threads

T
im

e
 (

in
 s

),
 lo

g
a

ri
th

m
ic

Heap

Explicit

CAS

STM1

STM2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1.00

10.00

100.00

1000.00

Threads

T
im

e
 (

in
 s

),
 lo

g
a

ri
th

m
ic

Heap

Explicit

CAS

STM1

STM2

Figure 3.20: Scalability of priority queue
implementations with computational load.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.10

1.00

10.00

100.00

1000.00

Threads

T
im

e
 (

in
 s

),
 lo

g
a

ri
th

m
ic

Heap

Explicit

CAS

STM1

STM2

Figure 3.21: Scalability of priority
queue implementations without computa-
tional load.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.10

1.00

10.00

100.00

1000.00

Threads

T
im

e
 (

in
 s

),
 lo

g
a

ri
th

m
ic

Heap

Explicit

CAS

STM1

STM2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1.00

10.00

100.00

1000.00

Threads

T
im

e
 (

in
 s

),
 lo

g
a

ri
th

m
ic

Heap

Explicit

CAS

STM1

STM2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.10

1.00

10.00

Threads

T
im

e
 (

in
 s

),
 lo

g
a

ri
th

m
ic

Heap

Explicit

CAS

STM1

STM2

Figure 3.22: Scalability of priority queue
implementations with larger computational
load. .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.10

1.00

10.00

100.00

1000.00

Threads

T
im

e
 (

in
 s

),
 lo

g
a

ri
th

m
ic

Heap

Explicit

CAS

STM1

STM2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1.00

10.00

100.00

1000.00

Threads

T
im

e
 (

in
 s

),
 lo

g
a

ri
th

m
ic

Heap

Explicit

CAS

STM1

STM2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.10

1.00

10.00

Threads

T
im

e
 (

in
 s

),
 lo

g
a

ri
th

m
ic

Heap

Explicit

CAS

STM1

STM2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1.00

10.00

100.00

1000.00

Threads

T
im

e
 (

in
 s

),
 lo

g
a

ri
th

m
ic

Heap

Explicit

CAS

STM1

STM2

Figure 3.23: Speedup of different priority
queue implementations.

58

3.5. Benchmarks

algorithm. The results are shown in Figure 3.23. The transactional variants performed

quite bad ranging from 1862s and 1132s for one thread up to 1925s and 983s for 16

threads for STM1 and STM2, respectively. Thus they are only sketched in Figure 3.23.

In accordance with the scalability results the lock-based variant and the heap show the

best speedup although the compare-and-swap variant performs quite similar. The two

transactional variants show a small speedup but are three orders of magnitudes slower

than the other variants.

Summary

In summary, both the lock-based variant and the heap-based variant perform best. Tak-

ing into account the better scalability of the lock-based variant compared to the heap-

based variant, the former should be preferred especially if future large multicore and

manycore systems will be used. The compare-and-swap variant also shows good scala-

bility but the constant factors need to be improved to be competitive. The transactional

variants are not practical under circumstances of high contention. Nonetheless, their

development is much easier in scenarios with lower contention.

3.5.2 Comparison of Difficulty and Code Size

Finally we reconsider two non-performance oriented criteria: effort of programming and

code size.

The heap-based variant was easy to develop: coarse-locked synchronization is concep-

tually simple to implement and array-based binary trees are well-documented (although

we were not aware of any Haskell implementation).

The naive transactional variant was by far the easiest skiplist implementation. As

stated in Section 3.4.2 a thread-safe variant could be developed by just using TVars

for mutable variables. The dissected transactional variant could also be developed eas-

ily. Although we had to implement dissected level-based traversal, we did not have to

consider common synchronization problems such as deadlocks.

The lock-based variant was more difficult to develop, despite the fact that it is the

most researched one and the author was experienced in this approach. It had the well-

known problems of rarely occurring deadlocks and thus difficult debugging. An advantage

of the lock-based approach is its explicit semantics: if a potential cause for a bug has been

identified, it is easy to reason about the behavior of the program and resolve the problem.

The compare-and-swap variant was the most difficult to develop: programming errors

did not entail any observable deadlocks. More often a slightly corrupted data structure

59

3. Thread-safe Priority Queues based on Skiplists

resulted. This could result in errors that occurred much later in the execution and so

debugging and reasoning about potential errors was very difficult.

While the code size varies from one developer to the other depending on their pro-

gramming style, a comparison with one programmer approaches the complexity of the

different implementations from a different angle. In each variant we counted source code

lines, excluding comments and empty lines. The heap-based variant was the smallest

with 125 lines of code. The transactional variants STM1 and STM2 were comparable

with 237 and 250 lines of code, respectively. The two skiplist variants were significantly

larger: each one contained 401 lines each.

3.6 Related work

A huge amount of research has been conducted on efficient and thread-safe implemen-

tations of priority queues. Generally they are implemented using binary heaps [36]. A

common parallel variant that uses locks is described in Hunt [102]. A review of thread-

safe priority-queue implementations as well as a discussion about their properties for

coarse locks and transactional versions is given by Bauer et al. [13]. The review dis-

cusses Hunt heaps, parallel Fibonacci heaps, lock-free skiplists, and quantizing queues.

A probabilistic data structure that allows for the implementation of a priority queue

is the skiplist. A sequential as well as a lock-based skiplist were first developed by Pugh

[164, 165]. Both implementations yielded better performance than binary heaps. In

Lotan et al. [131] one can find a detailed discussion about the performance characteris-

tics of lock-based priority queues using skiplists. An algorithmic performance analysis of

lock-free linked lists as well as future prospects for skiplists is described in Fomitchev [53].

Experimental results and a comparison between the performance of lock-free implemen-

tations and the performance of lock-based variants (Hunt, Lotan-Shavit) are illustrated

in Sundell [192]. The contributions of Sundell and Fomitchev are both based on the

implementation of lock-free linked lists as described in Harris [73], which itself was an

improvement of the algorithms for lock-free linked lists from Valois [202]. A thread-safe

skiplist implementation in Java can be found in the concurrency-aware collections of the

standard library [153].

Sulzmann et al. analyzed the performance of concurrent linked list implementations

in Haskell [191]. Like our work, they examined synchronization using MVars, IORefs and

STM. But their benchmark depended on GHC’s internal thread scheduling to a greater

extent than our implementation: 8 threads were started and the number of utilized

processors was varied. In contrast to the results demonstrated in Section 3.5, in [191]

60

3.7. Summary and Conclusion

the lock-free CAS implementation outperformed the other variants. A possible reason

for this difference is that their benchmarks a ratio of 2 searches to 1 delete to 4 inserts:

searches need no synchronization at all and insertions and deletions are distributed all

over the linked list. Our benchmarks have no searches and deletions cause more conflicts

since deleteMin always tries to delete the first accessible element.

Although priority queues are a basis for many parallel algorithms, (as far as we

know) there is no literature about thread-safe priority queue implementations in Haskell.

There is also only few literature about mutable thread-safe data structures for explicit

concurrency in general. The common way to implement a thread-safe data structure is

to protect a pure data structure [149] by means of a coarse thread-safe container (e.g.

a MVar or IORef). For example, this approach has been applied in the new GHC 7

IO manager [156]. One possible reason for the lack of research is that thread-safe data

structures still work on a quite low level of abstraction. Haskell provides alternatives

which allow for a more abstract definition of parallel algorithms (as we will also show in

the following chapters).

3.7 Summary and Conclusion

We implemented thread-safe priority queues based on skiplists in Haskell. Synchroniza-

tion of shared mutable variables was implemented using lock-based or lock-free tech-

niques. Our lock-based variant uses MVars, whereas the lock-free variants use software

transactional memory (STM) or atomic compare-and-swap (CAS) operations, respec-

tively. For STM, we developed two variants: a naive transformation of the sequential

implementation and a variant that dissects the transactions into several parts. For an

additional comparison with a straightforward to implement priority queue, we also im-

plemented a coarse-locked heap-based variant. We tested the functionality of all variants

by means of Johnson’s algorithm for the single source shortest path problem on sparse

graphs. Results were compared to a reference implementation.

For evaluation of the different synchronization approaches four different criteria were

applied: scalability, speedup, programming effort and code size. The lock-based variant

scaled best. We suppose that it will scale well even with more cores since it does not use

any global lock. Typical problems of lock-based synchronization, e.g. deadlocks, made

the development difficult. Surprisingly, the coarse-locked heap performed comparably

well for many scenarios with low contention, but we suppose it will do worse the more

concurrent threads are running. The coarse-locked heap could be developed easily. The

compare-and-swap variant scaled well but its absolute performance was restricted by a

61

3. Thread-safe Priority Queues based on Skiplists

slow atomic compare-and-swap operation. Since absolute performance is not on par with

a well-tuned lock-based variant it can not yet be recommended before a more efficient

compare-and-swap operation for mutable variables is available in Haskell. According to

[136], a low-level CAS operation for IORefs will be available in one of the next versions

of GHC. Development of the CAS variant was cumbersome since programming errors

were difficult to find. The transaction-based implementations were easy to develop, but

the initial overhead of the transactional approach as well as the costs for synchronization

under the condition of high contention are much too high. So this approach does not seem

to be a good choice for the synchronization of thread-safe data structures. Nevertheless,

if the particular problem limits the number of concurrent accesses, they are a good

alternative to traditional approaches.

To draw a conclusion we suppose that a well-designed lock-based synchronization

is currently the best approach to synchronize shared data structures in Haskell, espe-

cially in case of high contention. This approach is well researched and will scale well

on future multicore machines. Given the results from related work, compare-and-swap

synchronization can outperform lock-based synchronization if the internal operations

are optimized. For prototyping, few cores or low contention, synchronization with coarse

locks or software transactional memory are viable alternatives. In contrast to coarse lock-

ing, transactional synchronization has the advantage that transactions can be combined

easier which allows for more flexibility and more modularity in the program’s design.

Summarizing on the usefulness of abstraction, the outcome of this chapter was rather

negative. While high-level synchronization by STM allows for a convenient implementa-

tion of a thread-safe data structure, this advantage comes at a significant performance

penalty. Possibly there are other data structures where STM-based synchronization

scales better than in this case. Unfortunately, the synchronization approach must be

developed from scratch and can not easily be based on existing implementations. This

might limit the advantages of using a high-level synchronization approach in the first

place.

62

Chapter 4

A Comparison of Lock-based

and STM-based Taskpools

Design Patterns formalize principles of software engineering within

a framework of a common vocabulary. Such patterns also exist for

parallel and functional programming. One of the best-known and

frequently used parallel design patterns is the taskpool. A taskpool

allows to distribute tasks to threads. Therefore it is used as a building

block for more sophisticated parallel algorithms. In this chapter we

demonstrate how to implement different variants of the taskpool pat-

tern. We implemented global and private taskpools with and without

task stealing. We used locks as well as software-transactional memory

for synchronization. Locks are a low-level approach to synchronization

while software transactional memory provides an additional abstrac-

tion layer and therefore eases synchronization. We depict our bench-

mark scenarios and report on the scalability of the different variants

of taskpools using two synthetic algorithms as well as LU decomposi-

tion.

63

4. A Comparison of Lock-based and STM-based Taskpools

4.1 Introduction

Design patterns are fundamental for the development of large software systems. They

formalize reliable solutions and bring them together within a framework of a common

vocabulary. Such a vocabulary eases communication between developers, comparison

of different approaches, and the implementation of programs. While traditional design

patterns often enclose object-oriented knowledge [60], parallel design patterns describe

building blocks for parallel programs [168].

Task-based parallel algorithms partition a computation-intensive problem into tasks

that can be processed independently. The parallel computation of these tasks is the key to

an increase in computation speed. In general, tasks compute data that is needed by other

tasks. Hence, dependencies are induced, which may or may not be known at compile

time. Depending on the particular algorithm, tasks may start other tasks when being

processed. Task dependencies can be modeled by means of a directed acyclic graph called

task-dependency graph. In this graph, each node represents a task and each edge denotes

a dependency. A task can be computed if all input tasks have finished. Some task-based

algorithms such as LU decomposition (see [123] and Section 4.5.4) work in iterations. In

each iteration, tasks are processed in parallel. Before the next iteration starts, all tasks

of the current iteration must have been processed. In the dependency graph, therefore

all tasks of an iteration are connected to all tasks of the successive iteration. See, for

example, [55, 123, 140], for an overview of different types of dependency graphs.

A taskpool is a parallel design pattern that enables the load-balanced processing of

independent and irregular tasks [123, 168]. All tasks are stored in a shared data structure

which can be modified by at least two operations. For a taskpool T and a task t these

operations are put(T, t) and get(T). The former operation adds t to the taskpool T

and the latter retrieves a task from T . The semantic of these two operations depends

on the particular implementation of the taskpool as well as on special requirements of

the application. For example, get can either return or wait if the taskpool is empty. We

present our definition in more detail in Section 4.3.

Task-based algorithms using a taskpool generally work as follows: First, the taskpool

is generated and filled with initial tasks. Then threads are either created explicitly or

already existing threads are deployed. The threads process one task at a time in parallel.

Task processing finishes, when a particular condition is fulfilled or when all tasks have

been processed.

The taskpool pattern allows us to examine different synchronization techniques as

well as the abstraction mechanisms of Haskell: First, the number of tasks and the number

64

4.1. Introduction

of concurrent accesses to a taskpool are often large. Therefore the underlying parallel

runtime system performing the particular synchronization mechanism is constantly under

load. Second, taskpools are widely used in real-world applications. Mainly we were in-

terested in analyzing if high-level synchronization constructs, e.g. software-transactional

memory, could compete with traditional lock-based synchronization regarding scalabil-

ity. As a second issue we examined if language constructs like monads and higher-order

functions are able to facilitate the formulation of irregular task-based algorithms. We did

not include compare-and-swap operations for their low-level nature. We based our inves-

tigation on three taskpool variants: global taskpools, as well as private taskpools with

and without task stealing. For conciseness, we call a private taskpool with task stealing

a shared taskpool. For each variant, synchronization was implemented by means of locks

as well as software transactional memory. Furthermore, each variant was examined with

three example problems: two synthetic algorithms with varying task structures and the

LU decomposition of a matrix.

All six taskpool implementations are based on a custom typeclass and a monad. In

addition, they refer to an identical set of core functions that allow the convenient for-

mulation of task-based algorithms. An overview of the relation between the different

synchronization techniques, taskpool variants, and language constructs is shown in Fig-

ure 4.1. Each taskpool variant implements the functions defined in the typeclass. The

monad defines a taskpool-variant independent environment. Core functions provide a

high-level interface to taskpool operations. These functions are executed in the environ-

ment defined by the monad and use the taskpool operations of the respective variant.

Global
Taskpool

Private
Taskpool

Shared
Taskpool

Lock-based
synchronization

} Global
Taskpool

Private
Taskpool

Shared
Taskpool

Software transactional
memory-based
synchronization

}
Typeclass - operations

 (put, get, ...)

- thread spawning
- taskpool generation
- task handling
- ...

Core functions

- environmentMonad

Figure 4.1: Relation between different taskpool variants, their synchronization primi-
tives, and language constructs.

This chapter is structured as follows: In Section 4.2, we introduce the different

taskpool variants. In Section 4.3 we use examples to describe a taskpool-independent

typeclass as well as a monad for taskpool operations. In Section 4.4 we explain the

various implementations in detail. In Section 4.5 we explain our example problems and

65

4. A Comparison of Lock-based and STM-based Taskpools

experimental settings, and discuss the results. In Section 4.6, we compare our results

with related work. Finally, in Section 4.7 we summarize this chapter and conclude.

4.2 Taskpool Variants

In this section we describe criteria for the usefulness of taskpools. Subsequently we

explain the variants used in our experiments, and sketch some of their general advantages

and disadvantages.

4.2.1 Taskpool Criteria

While designing the interface to the taskpools and implementing the different taskpool

variants we were guided by three requirements:

1. Performance. The taskpools’ implementation should allow for good performance

and scalability, such that modern multicore systems can be utilized effectively. In

addition, the overhead of the taskpools should be low so that there is a great deal

of processing power left for computing the actual tasks.

2. Usability. The taskpool’s interface should be simple to understand and use. Ad-

ditionally, the interface should support the idioms of the underlying programming

language, e.g. higher-order functions, typeclasses, and monads. Different variants

of taskpools should be exchangeable so experimentation is easy.

3. Task independence. The taskpool’s performance and usability should be inde-

pendent from the underlying task structure. In addition to simple task structures

the taskpool should also support complex task structures that involve dynamically

generated tasks and arbitrary dependencies.

We chose the following variants since they cover a range of issues such as synchronization

and access to thread-local storage.

4.2.2 Global Taskpools

In this variant all threads access a common memory area (see Figure 4.2). Global

taskpools are easy to implement, since any thread-safe container is sufficient. On the

other side, they scale badly when they are accessed frequently because synchronization

is necessary for each operation. To prevent contention and thus enhance scalability, one

approach is to add additional thread-local storage. This approach is implemented by a

private taskpool and shown in the next section.

66

4.2. Taskpool Variants

Taskpool

ThreadThread

get put

Figure 4.2: A global taskpool and two threads. The thread on the right side adds a
task, the thread on the left side receives one.

4.2.3 Private Taskpools

A private taskpool uses a global taskpool and additionally for each thread a thread-

local (private) storage (see Figure 4.3). Instead of transferring one task at a time,

each access to the global taskpool transfers a set of tasks and stores it in the private

storage. Successive get-operations of a thread are served from private storage until it

is empty. It is rather difficult to determine how many tasks should be taken from the

global taskpool at once. In our own implementation a get-operation transfers as many

tasks as possible. The put-operation always adds new tasks to the global taskpool. Of

course, other heuristics are possible [122, 193]. We chose the described approach since it

is easy to implement and our focus is on synchronization. An advantage of using private

storage is that only a few costly accesses to the global taskpool are necessary. Hence

the scalability of this variant is usually better than that of a global taskpool. On the

other side some task distributions may inhibit an effective load-balancing. For example,

if a thread retrieves a set of computationally expensive tasks out of the global taskpool,

other threads are idle, since they can not access those tasks anymore. In the next section

an approach to allow idle threads to steal tasks and to continue task processing is shown.

Taskpool

Thread Thread

get
get

Local
Storage

put

Figure 4.3: A private taskpool and two threads. When retrieving tasks, each thread
tries to access its local storage first. If the local storage is empty, the global taskpool is
accessed.

4.2.4 Shared Taskpools

A shared taskpool resembles a private taskpool but has an extended operation to transfer

new tasks (see Figure 4.4 on page 68). If the thread’s local storage as well as the global

67

4. A Comparison of Lock-based and STM-based Taskpools

taskpool are empty, the thread-local storage of another thread is accessed and tasks are

stolen from there. So threads do not have exclusive access to their thread-local storage.

While this approach prevents threads without tasks, it requires more synchronization.

Therefore, a shared taskpool is more complicated to implement than the previously

mentioned variants.

TaskpoolThread Thread

put

get

Local
Storage

Figure 4.4: A shared taskpool and two threads. When retrieving tasks each thread
tries first to access its local storage. If a get-operation can not find tasks in either the
local storage nor the global taskpool, it tries to steal tasks from working threads next.

4.3 A Monadic Taskpool Interface for Taskpools

In this section we describe our general taskpool interface for Haskell. We also discuss

the relevance as well as the implementation of core functions. These functions ease the

description of task-based algorithms as well as the sharing of data between tasks. For a

better understanding of the internal operations of the taskpool monad we deliberately

depict a lot of source code.

4.3.1 Typeclass and Monad

The common interface to all taskpools is defined by a typeclass that defines a set of

common operations for all taskpools. Building upon them, core functions are provided.

These core functions provide a high-level interface for the implementation of task-based

algorithms. The core functions as well as the taskpool operations use the environment

that is defined by the custom monad. Thus, their definition is independent of a particular

taskpool-variant.

The typeclass is shown in Figure 4.5. Its parameters pool and task refer to the

underlying taskpool variant and the type of the tasks, respectively. The functional

dependency [115] pool -> task covers the type dependency between the taskpool and

the task’s type. The put-function adds a task to the taskpool. It is called both to

add initial tasks and dynamically generated tasks. Initial tasks are added sequentially

prior to the computation. Dynamically generated tasks are tasks which are added by

68

4.3. A Monadic Taskpool Interface for Taskpools

class Taskpool pool task | pool −> task where

put : : task −> TPMonad pool ()
get : : TPMonad pool (Maybe task)
wait : : TPMonad pool ()

Figure 4.5: The typeclass Taskpool which defines taskpool operations.

other tasks during their computation. The get function retrieves a task. If a task t

is available, it returns Just t. The get function blocks if no tasks are available while

other threads are still working. If all threads are finished, it returns Nothing. The wait

function blocks until all threads are finished. Therefore this function can serve as a

barrier between iterations (see Section 4.1 and Section 4.3.5).

As shown in Figure 4.5, the taskpool functions work in a monad named TPMonad.

Its definition is shown in Figure 4.6. The monad’s state stores the taskpool which is

used by all threads as well as additional thread-specific data. In our implementations of

the taskpool variants, an integer was the only additional data. Its purpose is explained

in Section 4.4. The monad is implemented with a StateT transformer [88]. By using

type TPMonad pool a = StateT (Index , pool) IO a

−− Thread−s p e c i f i c s t a t e
type Index = Int

Figure 4.6: The monad TPMonad which encapsulates taskpool operations.

this transformer instead of a read-only ReaderT, this design is future proof: Since the

state can be modified, threads can store performance statistics, for instance. We had

to wrap the state around the IO monad, since explicit concurrency and synchronization

only work in the IO monad. Beneficially using the IO monad, tasks can consist of both

pure and impure computations.

4.3.2 Core Taskpool Functions

Core functions allow for a concise and easy formulation of task-based algorithms. For ex-

ample, there are core functions for thread control, or for task processing. These functions

use the get, put and wait functions defined in the typeclass, as well as the state defined

in TPMonad. To illustrate the interaction between the different concepts, we describe

some of the common (core) functions in the following.

The function newTaskpool generates a new taskpool. This function is defined in each

of the different taskpool variants. Each taskpool variant is defined in a separate module.

69

4. A Comparison of Lock-based and STM-based Taskpools

Hence, by importing a particular module the specific newTaskpool function is defined.

For example, for the lock-based global taskpool, which is implemented in the module

GPool, newTaskpool is defined by

module GPool

newTaskpool : : TPMonad (GPool task) () −> IO (GPool task)

newTaskpool i n i tFunc t i on = do

pool <− newGPool

let noState = undefined

State . runStateT in i tFunc t i on (noState , pool)

return pool

By defining initFunction accordingly, initial tasks can be added. For example, the

tasks represented by integers 1 :: Int, 2 and 3 are added with

pool <− newTaskpool $ do

put 1

put 2

put 3

The function eachTask processes all tasks from the taskpool including dynamically gen-

erated tasks. This higher-order function receives the generated taskpool as well as a

function to process a single task. It generates thread and waits until all tasks have been

processed. eachTask is defined independently of the taskpool variant as

type TaskProcess ing pool task = task −> TPMonad pool ()

eachTask : : Taskpool pool task => pool −> TaskProcess ing pool

task −> IO ()

eachTask pool f = do

State . runStateT work (undefined , pool)

return ()

where work = do

forkN numCapabi l i t i e s (thread f)

−− Wait u n t i l a l l t a sk s have been proce s s ed .

wait

The function eachTask uses two helper functions, one for thread handling (forkN) and

one for task handling (thread). The forkN function creates the given number of threads.

70

4.3. A Monadic Taskpool Interface for Taskpools

Additionally, it inserts thread-specific information into the monad’s state. Each thread

is executed inside the StateT monad. The StateT’s state includes the accessible parts

of the taskpool and the thread’s own thread-specific data:

type NumberThreads = Int

−− Forks threads that execute the func t i on f . Returns the

−− ThreadIds o f the c rea ted threads .

forkN : : Taskpool pool task => NumberThreads −> TPMonad pool

() −> TPMonad pool [ThreadId]

forkN num f = do

pool <− getPool

i o $ forM [0 . . num−1] $ \ threadState −>
forkIO $ do

State . runStateT f (threadState , pool)

return ()

where getPool = snd ‘ fmap ‘ StateT . get

i o = l i f t I O

We made forkN available in the TPMonad to allow for greater flexibility. As shown in

Section 4.3.5, this approach allows to handle complex task dependencies. The function

thread is called for each forked thread and controls the handling of tasks:

−− Thread us ing the d i f f e r e n t ta skpoo l implementat ions .

thread : : Taskpool pool task => TaskProcess ing pool task

−> TPMonad pool ()

thread f = do

task <− get

case task of

Nothing −> return ()

Just task ’ −> do

f task ’

thread f

Thus, the function tries to get a task out of the pool by using the taskpool-specific get-

operation. Then it calls the function f with the task as the parameter. Task retrieval

is repeated until no more tasks are available. For more complex scenarios we defined

additional functions that allow more control of the different steps. We will describe them

at the appropriate location in the next sections.

71

4. A Comparison of Lock-based and STM-based Taskpools

4.3.3 Exchanging Return Values

Most of the task-based algorithms do not only process tasks but also require a mechanism

to store or combine the results of their calculations. Intermediate and final results

can be stored in an algorithm-specific data structure if the problem at hand allows

it. In particular, the tasks must access different parts, or the data structure must be

synchronized. The LU decomposition, for example, uses a mutable array, and different

threads modify different parts (see Section 4.5.4). If the algorithm does not use mutable

structures, a mutable variable type named TPVar can be deployed for data exchange.

Basically, a TPVar is an MVar with an additional operation waitFor operation to wait

for the results of submitted tasks (see Figure 4.7). Internally, a new thread is forked to

compute the forthcoming result. So the currently active thread can process a new task.

The next section shows an example for using TPVars.

data TPVar a = TPVar {tpVar : : MVar a}

waitFor : : Taskpool pool task =>

TPVar a −> (a −> TPMonad pool ()) −> TPMonad pool ()
waitFor (TPVar var) f = do

s t a t e <− State . get
i o $ forkIO $ do

value <− readMVar var
State . runStateT (f va lue) s t a t e >> return ()

return ()

−− A TPVar supports other f a m i l i a r ope ra t i on s . Here , only
−− t h e i r type s i g n a t u r e s are shown and the t y p e c l a s s
−− annotat ion Taskpool pool task => i s omitted .
newTPVarIO : : IO (TPVar a)
readTPVarIO : : TPVar a −> IO a
newTPVar : : TPMonad pool (TPVar a)
writeTPVar : : TPVar a −> a −> TPMonad pool ()
readTPVar : : TPVar a −> TPMonad pool a

Figure 4.7: Type and functions for a blocking mutable variable TPVar.

4.3.4 Example: Fibonacci sequence

In this section we show how to calculate the Fibonacci sequence for any n in parallel

using a taskpool. In particular we demonstrate the use of TPVars. Note that without

72

4.3. A Monadic Taskpool Interface for Taskpools

memoization and switching to a sequential implementation for small n the given paral-

lelization approach is rather ineffective, but the sole purpose of this example is to show

the use of the functions and types mentioned in the last sections.

In Haskell, the function for calculating the n-th element of the Fibonacci sequence is

typically defined recursively by

f i b 1 = 1

f i b 2 = 1

f i b n = f i b (n−1) + f i b (n−2)

We begin by generating a taskpool pool as well as a variable result for the final result.

The taskpool is initialized with a tuple consisting of the starting value and the result

variable

1 f i b o n a c c i : : Int −> IO Int

2 f i b o n a c c i n = do

3 r e s u l t <− newTPVarIO : : IO (TPVar Int)

4 pool <− newTaskpool $

5 put (n , r e s u l t)

If the numerical value of the task is less than 3, the base case of the recursion has been

reached and the result is stored:

6 eachTask pool $ \(task , var) −> do

7 if task <= 2

8 then writeTPVar var 1

If the value is greater than 2, two new tasks are spawned and two new TPVars are

generated:

9 else do

10 v1 <− newTPVar

11 v2 <− newTPVar

12 put (task −1, v1)

13 put (task −2, v2)

The waitFor function waits until a value is stored in the given variable and then executes

the provided function. In the Fibonacci example, we have to wait until the results of

both subtasks have been computed. Then the result is stored in the result variable of

the task (see Figure 4.8 on page 74):

73

4. A Comparison of Lock-based and STM-based Taskpools

14 waitFor v1 $ \ r1 −>
15 waitFor v2 $ \ r2 −>
16 writeTPVar var (r1+r2)

When all tasks have been processed, the final result has been stored in result, which is

read and returned:

17 readTPVarIO r e s u l t

Computation Thread

put (task-1, v1)
put (task-2, v2)
waitFor v1

Input: (task, result)
<... base case handling>

<... thread continues>

waitFor v2

waitFor v1 Thread

<task - 1 is finished>

<combine and store result>

waitFor v2 Thread

<task - 2 is finished>

Figure 4.8: Illustration of the waitFor function for the Fibonacci example.

4.3.5 Example: Nested Task Dependencies

Some task-based algorithms have more complex dependencies. In this section we demon-

strate that the wait-operation permits a concise and clear formulation of such algorithms,

using a simplified version of a matrix algorithm as an example.

Consider a two-dimensional matrix with dependencies between elements (see Fig-

ure 4.9). While all elements in a column can be calculated in parallel, their particular

value depends on the prior calculation of the value in the previous column. Although a

A B

Computation of cell B
depends on the value
of cell A

Figure 4.9: Example matrix of task dependencies. Sets of tasks that can be processed
in parallel are colored differently.

74

4.3. A Monadic Taskpool Interface for Taskpools

manual spawning of subtasks might work for this simplified example, it is more compli-

cated in general. A better approach is to divide the calculation into separate iterations.

In our example an iteration consists of all tasks in a particular column. These depen-

dencies are formulated by using the wait operation as follows. We begin by generating

a taskpool without initial tasks and defining the width and height of the matrix:

1 type Coordinates = (Int , Int)

2

3 nestedExample : : IO ()

4 nestedExample = do

5 −− Create new g l o b a l ta skpoo l .

6 pool <− newGPool : : IO (GPool Coordinates)

7

8 let width = 5

9 he ight = 5

Instead of using eachTask we use a function taskpool that works similar to eachTask,

but neither forks threads nor waits for their processing. Instead, it allows to execute any

function in the TPMonad:

10 ta skpoo l pool $ do

11 −− I n s i d e TPMonad . No threads fo rked

12 −− and no wai t ing f o r t h e i r complet ion .

Inside the monad we fork threads that process each task. The function threadForever

works similar to the introduced function thread (see page 71), except that when the

taskpool is empty, it continues waiting for tasks instead of returning Nothing. Note that

we store the thread identifiers (tids) of the forked threads:

13 t i d s <− forkN numCapabi l i t i e s (threadForever $

14 −− Arbi t rary task proce s s ing , e . g . :

15 \(x , y) −> i o (print (x , y))

In the next step the set of tasks for a particular column is added. Then the threads

started with forkN process these tasks. This procedure is repeated until all columns

have been processed:

16 forM [x | x <− [1 . . width]] $ \x −> do

17 forM [y | y <− [1 . . he ight]] $ \y −> do

18 put (x , y)

19 wait

75

4. A Comparison of Lock-based and STM-based Taskpools

Since a successive iteration can add new tasks, threads do not finish when the taskpool

is empty. Therefore they need to be killed explicitly by exitThreads

20 exitThreads t i d s

This function iterates over all thread identifiers and calls killThread [82] for each. Note

that our own implementation can be easily modified to encapsulate thread identifier

handling and thread termination in the taskpool state by either modifying TPMonad or

adding a state transformer on top of TPMonad.

Nested task dependencies can also be modelled by multiple newTaskpool and each-

Task calls. The described approach does not divide iteration handling and has lower

overhead, since threads are not spawned for each iteration.

4.4 Taskpool Implementations

In this section we describe our lock-based and software transactional memory-based im-

plementations for global, private and shared taskpools. We draw a comparison between

each taskpool variant by demonstrating how to implement them using both lock-based

and STM-based synchronization. We explain the global taskpool implementations in de-

tail because they are the basis for the other two variants. For each taskpool variant we

start with a general description of the used data structures and types. Then we describe

taskpool initialization as well as the get, put and wait operations. We emphasize the

get operation since it is the most interesting operation with respect to synchronization.

4.4.1 Global taskpools

Given the criteria of Section 4.2.1, no thread should terminate until all tasks have been

processed. That means, threads should wait for new tasks even if the global taskpool

is empty, because currently processed tasks could still add new subtasks. Therefore

threads should only terminate if they are all idle and the global taskpool is empty.

Also correctness should not depend on the order of (initial) taskpool operations. For

example, threads should not terminate if they have been forked while the taskpool is

still empty. This allows for a more natural formulation of some task-based algorithms

(see Section 4.3.5).

Lock-based Implementation

The complete data structure of the lock-based global taskpool is shown in Figure 4.10.

While gPool stores the tasks to be processed, the other elements exist solely for termi-

nation detection and efficient handling of waiting for new tasks.

76

4.4. Taskpool Implementations

data GPool a = GPool {
−− Task s to rage .

gPool : : Chan a

−− Synchron izat ion and terminat ion d e t e c t i o n .
, gState : : IORef GState
, gFin i shed : : Chan (MVar ())
, gWorking : : MVar (Set ThreadId)
, gWaiting : : IORef [MVar ()]

}

data GState = I n i t | Wait

instance Taskpool (GPool a) a where

put = putGPool
get = getGPool
wait = waitGPool

Figure 4.10: Data structure and typeclass instance definition for the lock-based global
taskpool.

Taskpool Generation. The function newGPool generates all elements of the data

structure. It sets the gState to Init, and sets all other elements to their respective

empty states, i.e. empty sets and empty lists.

Getting tasks. Getting a task out of the pool is the most complex operation (see Fig-

ure 4.11 on page 78). It includes both accessing the taskpool and termination detection.

In simple terms, the get operation works as follows: The executing thread acquires the

lock that is shared by the put and get operations (1). Then it checks, if there are any

tasks in the global taskpool. If so, one of them is retrieved, the lock is released, and

the task is returned (3). In case there are no tasks, the thread checks if it is the last

working thread (2). If other threads are working, the thread removes itself from the

set of working threads. Then it begins to wait and releases the lock (4). If the thread

has been the last working thread, termination (of this iteration) begins (5).

In the following we give a more detailed explanation of this operation and we show

how different parts of the data structure are accessed. The get operation starts as it

retrieves the single elements of the monad’s and thus taskpool’s state:

1 getGPool : : TPMonad (GPool a) (Maybe a)

2 getGPool = do

3 state@ (, (GPool pool s t a t e f i n i s h work wai t ing)) <−

77

4. A Comparison of Lock-based and STM-based Taskpools

Working
threadsL

oc
k

Idle
threads

Tasks

GPool data structure Get operation

No

Finished
threads

Add to idle threads and wait

Release lock

Remove from working threads

No

Wake up idle thread

Release lock

Add to finished threads
and wait

Last working thread?

Yes

Return task

Release lock

Get task

Yes

1
2

3

4

5

Acquire lock

Tasks available?

Figure 4.11: Flowchart of the get operation in the context of the global lock-based
taskpool implementation.

4 State . get

5 i o $ do

When a task is retrieved from the taskpool, a global lock (gWork) is taken to block other

concurrent operations (1):

6 s e t <− takeMVar work

An MVar can not only be used as a lock but also stores a value. In the context of

the global lock-based taskpool the set of concurrently working threads is stored. These

threads are defined by their ThreadIds. Instead of simply counting the number of active

threads we chose to store the set of ThreadIds . This approach allows a more thorough

overview of the taskpool’s functionality. Since the number of active threads is usually

small and set-operations work in O(log n) [87], this decision did not cause a significant

performance penalty. The next step is deciding if the taskpool is empty:

7 empty <− isEmptyChan pool

Obviously, without blocking, race conditions could occur. If the taskpool is not empty,

a task can simply be read by means of the Chan’s interface [82]. The lock is released and

the retrieved task is returned:

78

4.4. Taskpool Implementations

8 if (not empty)

9 then do

10 task <− readChan pool

11 putMVar work s e t

12 return (Just task)

We used a Chan to store tasks. Hence tasks are stored in FIFO order. Other task

orderings, e.g. LIFO, can be implemented by using the types of Data.Sequence [86].

Since these types are not thread-safe by design, additional care has to be taken to ensure

thread-safety in the other operations. If the taskpool is empty, the next steps depend

on the taskpool’s current state: If the taskpool is in the initial state Init, threads could

have been forked before adding tasks; these threads have to wait. If the taskpool is in

the Wait state (which indicates that task processing has started), a thread has to check

if other threads are still working. If so, the thread has to wait (4). If no other threads

are working, the current thread starts the termination of the current iteration (5). In

the following we describe the handling for the Init and Wait states in detail.

Init state. In this state, threads may have been forked or tasks may have been added.

The wait function has not been called yet, i.e. threads have to wait for new tasks and

the start of task processing. This is implemented for each thread by generating an empty

MVar by using the function makeBlockVar (see below). This empty MVar is added to the

list of waiting threads:

13 −− ta skpoo l i s empty

14 else do

15 op <− readIORef s t a t e

16 t i d <− myThreadId

17 let set ’ = Set . delete t i d s e t

18 case op of

19 I n i t −> do

20 tmp <− makeBlockVar wai t ing

21 putMVar work set ’

22 takeMVar tmp

23 < . . . r e s t a r t get−opera t i on >

To describe our implementation of waiting for new tasks in detail, at this point it is

appropriate to explain two general ways to implement waiting: First, a thread can

generate an empty MVar and block until it is filled (blocked waiting). Second, it can

79

4. A Comparison of Lock-based and STM-based Taskpools

acquire a lock, check if a certain event occurred, release the lock, wait some time and

retry (busy waiting). With busy waiting, the event source does not have to be aware

of all listeners, but many locking operations are required and contention is increased.

For scalability we used the first approach. It is implemented as follows: A thread that

wants to be informed of newly arrived tasks generates an empty MVar by means of the

function makeBlockVar:

makeBlockVar : : IORef [MVar a] −> IO (MVar a)

makeBlockVar mvars = do

var <− newEmptyMVar

modifyIORef mvars (var :)

return var

This function adds the generated empty variable to the list of other blocked variables.

Therefore the gWaiting field of GPool contains a list of all threads that are currently

idle and wait for new tasks. Albeit using only modifyIORef, this operation is thread-

safe since the thread modifying gWaiting still possesses the global lock. After storing

the empty variable, the lock is released by writing the set of working threads in which

the current one is removed. Afterwards the thread tries to access its blocking variable.

When this variable is unblocked, a new task was added or the current iteration should

finish (see below). In both cases, the get operation is restarted.

Wait state. The Wait phase is started when the main thread calls wait. This state

implies that initial tasks have been added and thus task processing can begin. If the

taskpool is empty and other threads are still working (and can thus add tasks), the

thread waits by generating a blocking variable in the same way as described above:

24 Wait −> do

25 if (not (Set . null set ’))

26 −− Other threads s t i l l working .

27 then do

28 < . . . analogous to 20−23>

If no other threads are working, the set of working threads is empty. Therefore the

currently running thread has been the last one and all tasks of the current iteration have

been finished. The current thread generates a new empty MVar blockVar and writes

it to the finished channel. There it will be processed later by the wait operation.

Afterwards a waiting thread is woken up (see below) and the current thread waits for

the release of blockVar. This process continues until all threads have written their

80

4.4. Taskpool Implementations

blockVars to the finished channel. After the MVars in waiting have been unblocked,

the current iteration is finished. Consequently the get operation returns Nothing for all

threads:

29 else do

30 blockVar <− newEmptyMVar

31 writeChan f i n i s h blockVar

32 unblock wai t ing

33 < . . .>

34 takeMVar blockVar

35 return Nothing

To wake up a thread, the first element of the list of blocking MVars is taken and the

value () is stored. This action releases the block on takeMVar and the respective thread

continues:

unblock : : IORef [MVar ()] −> IO ()

unblock w = do

l i s t <− readIORef w

unless (null l i s t) $ do

let (m: ms) = l i s t

putMVar m ()

writeIORef w ms

Note that the implementations of makeBlockVar and unblock imply a LIFO order. By

means of the list operations, waiting threads are added to the front or removed from the

front, respectively. So the last added thread will be the first to be unblocked. In practice

this is not a problem, since it is of no importance which waiting thread processes a task.

Adding Tasks. To add a new task to the taskpool, the task is written to the global

channel and a waiting thread is woken up. For this purpose, the set of working threads

is locked (to prevent interferences of concurrent get operations) and an idle thread is

woken up as described above.

Waiting for termination. The wait function is called by the main thread. This

function controls the handling of dependencies between iterations (see Section 4.3.5). It

waits until all initially and subsequently added tasks have been processed. When wait

is called, the taskpool’s state is set to Wait, and idle threads from the Init state are

unblocked.

81

4. A Comparison of Lock-based and STM-based Taskpools

After task processing has started, the main thread waits until the get functions of all

threads have added a blocking variable to the finished channel. In case there have been

as many blocking variables collected as threads have been forked, all threads are blocked

and wait for the current iteration to finish. Then a new iteration might be started. In

any case, the taskpool’s state is reset to Init and all blocking variables are released.

In the next section we will show how software transactional memory simplifies the

implementation. The lock-based and the STM-based implementation are compared re-

ferring to the get operation.

STM-based Implementation

The STM-based implementation is simpler than the lock-based one since it does not

require locks to protect the taskpool’s data structure from concurrent access nor blocked

variables for waiting on new tasks. The STM-based data structure is shown in Fig-

ure 4.12. Note that there is still an STM-based channel sgFinished of type TChan [74]

to handle waiting between iterations.

data STMGPool a = STMGPool {
−− Task s to rage .

sgPool : : TChan a

−− Termination d e t e c t i o n .
, sgState : : TVar GState
, sgF in i shed : : TChan (TMVar ())
, sgWorking : : TVar (Set ThreadId)

}

< . . .>

Figure 4.12: Data structure and typeclass instance definition for the STM-based global
taskpool.

Taskpool creation. A taskpool is created the same way as in the lock-based variant.

All properties are empty and the initial state is Init.

Getting tasks. Again, get is the most complex operation. While its implementation

is similar to the lock-based variant (see Figure 4.11 on page 78), the retry operation of

the STM monad reduces the overall complexity to a great extent.

First the get operation starts a transaction in which the current thread is removed

from the list of working threads:

82

4.4. Taskpool Implementations

1 getSTMGPool : : TPMonad (STMGPool a) (Maybe a)

2 getSTMGPool = do

3 STMGPool ta sk s s t a t e f i n i s h e d working <−
4 fst <$> StateT . get

5 i o $ do

6 t i d <− myThreadId

7 a tomica l l y $ do

8 work <− Set . delete t i d <$> readTVar working

9 writeTVar working work

Second, in a new transaction it is checked if there are still tasks available in the taskpool.

If possible, a task is read, the thread is stored in the list of working threads again, and

the task is returned by wrapping it into the Right type (see also line number 32 for

handling of this result type):

10 r e s u l t <− a tomica l l y $ do

11 empty <− isEmptyTChan chan

12 work <− readTVar working

13 op <− readTVar s t a t e

14

15 if (not empty)

16 then do

17 task <− readTChan chan

18 writeTVar working (Set . insert t i d work)

19 return (Right task)

If the global taskpool is empty, further processing depends on the taskpool’s current

state. If it is in the Init state, the function waits by using retry until the state of

the global taskpool changes. Note that in this case we do not have to generate blocking

variables. If it is in the Wait state, the number of working threads is checked. If none of

the threads are working, an empty TMVar is created and written to the finished-channel.

In this case, we use the same approach as described in the last section:

20 else do

21 case op of

22 I n i t −> r e t r y

23 Wait −> do

24 if Set . null work

25 −− No other threads working .

83

4. A Comparison of Lock-based and STM-based Taskpools

26 then do

27 f <− newEmptyTMVar

28 writeTChan f i n i s h e d f

29 return (Left f)

30 else r e t r y

Note that the use of retry simplifies synchronization. By means of this function threads

will be woken up automatically if tasks are inserted. Finally, get processes the result

of the transaction. If the result matches to Right a, a task has been returned. If the

result matches to Left b, all threads are finished. Then the thread waits until the next

iteration is started or task processing is finished:

31 case r e s u l t of

32 Left f i n i s hV a r −> do

33 a tomica l l y $ takeTMVar f i n i s hV ar

34 return Nothing

35 Right task −> return (Just task)

Adding tasks. Adding new tasks is simple. Due to the retry operation we do not

have to take care of waking up blocked threads. Instead, a task is simply written to the

global channel.

Waiting for termination

The STM-based wait operation works similar to the lock-based one. The function waits

until the number of blocking variables matches the number of threads. Then it reset the

state to Init, unblocks all variables and the threads continue.

In the next sections we describe two additions to the global taskpool, private thread-

local storage and task stealing. Both additions are based on the global taskpool, hence

the following descriptions focus on the particular differences.

4.4.2 Private Taskpools

The largest difference between global and private taskpools is that private taskpools

have an additional thread-local storage. This storage is used to store a set of processable

tasks. For both the lock-based and the STM-based variants this storage is implemented

as follows. A private taskpool contains an additional field for an array [80, 81]. Each

element of the array handles the local storage for one thread (see Figure 4.13). When

84

4.4. Taskpool Implementations

the get operation is called (see Figure 4.14), it first checks if the local storage contains

any tasks (1). If so, they are taken without accessing the global taskpool (2). Hence

there is no contention. If no tasks are available locally, the thread tries to retrieve as

many tasks as possible from the global taskpool (3). Then these tasks are stored in the

thread’s local storage (4). In the following, we describe the way thread-local storage

was implemented in detail. We also explain how the operations of the lock-based and

the STM-based global taskpools were modified.

Global array

Thread 0 Thread 1 Thread n-1

Local storage

Thread n

Figure 4.13: Implementation of thread-local storage. All threads have access to a
common array, which is indexed by the thread’s local data. The array is used to store
thread-local tasks.

Working
threadsL

oc
k

Idle
threads

Tasks

GPool data structure Get operation

Finished
threads

1

Global Array

L
oc

al
 S

to
ra

ge
 T

1

L
oc

al
 S

to
ra

ge
 T

2

L
oc

al
 S

to
ra

ge
 T

n

...

Task available in local
storage?

Yes

Return task

Get task

Return task

Release lock

Get many tasks

Store all but one
in local storage

Rest similar to global taskpool

No

Tasks available

2

3

4

Acquire lock
Similar to global taskpool

No tasks available

Figure 4.14: Flowchart illustrating the handling of local storage in the context of the
get operation of a lock-based private taskpool.

85

4. A Comparison of Lock-based and STM-based Taskpools

Lock-based Private Taskpools

For the purpose of thread-local storage a global taskpool is enhanced to a private taskpool

(PPool) as follows:

data PPool a = PPool {
−− Task s to rage .

pPool : : CChan a

−− Local s t o rage .

, pPr ivate : : IOArray ThreadIndex (Local a)

, pS ize : : S i z e −− s i z e o f the l o c a l s t o rage .

< . . .>

}

type S i z e = Int

type ThreadIndex = Int

To simplify matters, the new types CChan and Local are explained later on page 87. In

the following, the semantics of the function calls should be obvious from the function

names, e.g. newX to generate a new instance, readX to read a value type of X.

Taskpool Generation. In addition to the initialization of the already known fields,

local storage has to be set up. When a new private taskpool is generated, the size of the

local storage must be specified. For each thread the local storage is generated as follows:

newPPool : : S i z e −> IO (PPool a)

newPPool s i z e = do

chan <− newCChan

queues <− rep l i cateM numCapabi l i t i e s (newLocal s i z e)

p r i v a t e <− newArray (0 , numCapabi l i t ies −1)

forM (zip [0 . . numCapabi l i t ies −1] queues) $ \(i , l) −>
writeArray p r i v a t e i l

< . . .>

Getting tasks. When the get operation is called, each thread first accesses its own

local storage addressed through the global array and checks if it can serve the request

from it:

86

4.4. Taskpool Implementations

1 getPPool : : TPMonad (PPool a) (Maybe a)

2 getPPool = do

3 (index , (PPool pool p r i v a t e s i z e s t a t e f i n i s h e d working

4 wai t ing)) <− ge tSta t e

5

6 i o $ do

7 l o c a l <− readLoca l p r i v a t e index

8 empty <− isEmptyLocal l o c a l

9 if (not empty)

10 then do

11 < . . . Read an element from l o c a l s t o rage>

If the local storage is empty, a similar approach as for the global taskpool is applied.

That is, if the global taskpool is empty, blocking variables are generated. Hence, waiting

is initiated either for a change of the taskpool’s state, or for the addition of new tasks.

If the global taskpool is not empty, as many tasks as can be stored in the local storage

are read at once. Then these tasks are stored in the local storage:

12 else do

13 < . . .>

14 −− g l o b a l ta skpoo l i s not empty :

15 (task : r e s t) <− readCChan pool (s i z e +1)

16 wr i t eLoca l l o c a l r e s t

17 < . . .>

18 return (Just task)

Adding Tasks and Waiting for Termination. As the wait and put operations

do not access the taskpools, they are implemented in the same way as for the global

taskpool.

Global Task Storage with CChan. The global taskpool uses a Chan to store and

retrieve tasks as well as to check if the taskpool is empty. Unfortunately, a Chan blocks

on reading if it is empty. That is not sufficient for private taskpools, since their get

operation retrieves many tasks at once. Therefore we extended a channel by a counter of

the number of stored elements, and a non-blocking retrieve operation. The type CChan

is defined (internally) by

87

4. A Comparison of Lock-based and STM-based Taskpools

data CChan a = CChan {
cqLock : : MVar ()

, cqL i s t : : Chan a

, cqS i ze : : IORef Int

}

This allows for locking and counting. When a task is written, it is stored in the channel.

At the same time the internal counter is increased. When tasks should be retrieved,

special effort is put into preventing the operation to block: If k elements are requested

and n elements are stored, min(k, n) elements are returned and the internal counter is

modified accordingly.

Thread-local Storage with Local. All threads require a mechanism to store and

retrieve their local tasks. Although any container-like structure would be sufficient, we

used an array, because it allows a straightforward implementation and fast access, and it

also eases the later implementation of task stealing (see Section 4.4.3). The type Local

is defined by

data Local a = Local {
aL i s t : : IOArray ThreadIndex a

, aCur : : IORef Int

, aMax : : IORef Int

}

This type stores the array, the index of the next returnable element and the array’s maxi-

mal size. At this point we omit the implementation details for newLocal, isEmptyLocal,

readLocal and writeLocal since they are self-explanatory.

STM-based Private Taskpools

The STM-based variant of a private taskpool uses the same approach as the lock-based

one. That means the STM-based variant uses an additional array to store thread-local

data. Therefore, the STM-based private taskpools has the type STMPPool:

data STMPPool a = STMPPool {
−− For task s to rage .

stmChan : : STMCChan a

−− For l o c a l s t o rage .

88

4.4. Taskpool Implementations

, stmPrivate : : TArray ThreadIndex (LocalSTM a)

, stmSize : : Int

< . . .>

}

We also use a counting channel STMCChan as well as a global array that stores LocalSTMs.

The taskpool operations are similar to the lock-based operations described in the previous

section. Instead of generating and using arrays as well as channels in the IO monad we

apply the respective functions in the STM monad. For comparison between the STM-

based variant and the lock-based variant regarding the get operation, we describe the

way tasks are retrieved by means of this operation as well as the implementation of

LocalSTM.

Getting tasks. If the get operation is called, each thread first accesses its own local

storage by retrieving it from the global array private. Then it checks if it can serve the

request from it:

1 getSTMPPool : : TPMonad (STMPPool a) (Maybe a)

2 getSTMPPool = do

3 (index , (STMPPool pool p r i v a t e s i z e s t a t e f i n i s h e d

4 working wai t ing)) <− ge tSta t e

5

6 i o $ do

7 −− Access l o c a l pool and check s t a t e .

8 (l o c a l , empty) <− a tomica l l y $ do

9 l o c a l <− readArray p r i v a t e index

10 empty <− isEmptyLocal l o c a l

11 return (l o c a l , empty)

12

13 if (not empty)

14 then do

15 < . . . Read an element from l o c a l s t o rage>

If the local taskpool is empty and there are tasks available in the global taskpool, the

tasks are retrieved in the same way as mentioned above. They are then stored in the

local storage:

89

4. A Comparison of Lock-based and STM-based Taskpools

16 else do

17 r e s u l t <− a tomica l l y $ do

18 −− g l o b a l ta skpoo l i s not empty :

19 (task : r e s t) <− readSTMCChan pool (s i z e +1)

20 writeLocalSTM l o c a l r e s t

21 < . . .>

22 < . . .>

Global Task Storage with STMCChan. Likewise the lock-based case, the STM-based

get operation has to transfer a set of tasks at once. Therefore, we implemented a

counting channel for the STM monad. This channel is defined by

data STMCChan a = STMCChan {
s c q L i s t : : TChan a

, s cqS i z e : : TVar Int

}

Its definition is similar to the definition of CChan, although no lock is necessary. The

implementation of the respective functions is straightforward and congruent to its CChan

counterpart.

Local STM-based Storage with a LocalSTM. In accordance with the lock-based

type Local in the IO monad we implemented an STM-based version for STM which uses

the STM counterpart of an IOArray, TArray [74]. Its type definition is

data LocalSTM a = LocalSTM {
a s L i s t : : TArray Int a

, asCur : : TVar Int

, asMax : : TVar Int

}

4.4.3 Shared Taskpools

In a shared taskpool idle threads try to steal tasks from working threads (see Fig-

ure 4.15). First a thread checks if tasks in its local storage are available (1). If so, one

is returned (2). If no tasks are available in the local storage and the global taskpool is

empty too (3), the thread checks if it is the last working one (4). If so, the approach

described for the previous variants is applied. If other threads are working, the thread

90

4.4. Taskpool Implementations

accesses the local storage of a randomly chosen working thread and retrieves some of its

tasks (5). These tasks are then stored in the thread’s own local storage.

Working
threadsL

oc
k

Idle
threads

Tasks

GPool data structure Get operation

NoFinished
threads Last working thread?

Yes
Yes

1

Global Array

L
oc

al
 S

to
ra

ge
 T

1

L
oc

al
 S

to
ra

ge
 T

2

L
oc

al
 S

to
ra

ge
 T

n

...

Task available in local
storage?

Yes

Return task

Get task

3 Acquire lock

Tasks available?

No 2

Store in own local storage

Get tasks from local storage of
a working thread

Return task

Release lock

No

...

...

4

5

Figure 4.15: Flowchart of the get operation in a lock-based shared taskpool.

Lock-based Shared Taskpools

For task stealing a private taskpool’s original data structure has to be modified in two

ways: First, to synchronize concurrent accesses, all operations using local storage have

to be protected by a lock. Second, the type of the set of working threads is enhanced. In

addition to the thread identification the set also stores the array index to the thread’s

local storage. Hence, the type SPool for a shared lock-based taskpool is defined by

data SPool a = SPool {
sPr iva t e : : IOArray ThreadIndex (LocalLock a)

, sWork : : MVar (Set (ThreadIndex , ThreadId))

< . . .>

}

Since task stealing is only implemented in the get-operation the wait and put operations

do not require any modifications.

In the get operation, if the global taskpool is empty, one of the working threads is

chosen randomly and some of its locally stored tasks are stolen, i.e.

91

4. A Comparison of Lock-based and STM-based Taskpools

< . . . code s i m i l a r to a p r i va t e ta skpoo l>

else do

−− Other threads are working .

ta sk s <− s t e a l working p r i va t e

if (null ta sk s)

then < . . . t ry again>

else < . . . s t o r e l o c a l l y>

The steal function chooses a working thread randomly. By means of the global array

this function accesses the local storage of that thread and removes some of its tasks. In

all implementations half of the available tasks are stolen.

STM-based Shared Taskpools

The STM-based variant supporting task stealing is similar to the lock-based one intro-

duced above. Its type STMSPool is defined by

data STMSPool a = STMSPool {
sstmWorking : : TVar (Set (ThreadIndex , ThreadId))

, s stmPrivate : : TArray ThreadIndex (ArrayListSTM a)

< . . .>

}

Compared to the lock-based variant the only difference worth mentioning is the lack of

explicit synchronization for the LocalSTMs.

4.5 Benchmarks

We executed experiments with the different taskpool implementations on a 2.3 GHz

16-core AMD Opteron 6134 with 32 GB RAM running a Linux-kernel 2.6.38-8 with

GHC 7.0.3. Each benchmark consisted of a benchmark problem and a taskpool variant.

We ran each benchmark three times from one to sixteen cores. For speedup calculation

the mean value of these runs was used. The baseline for the speedup calculations were

sequential implementations for each problem. For all taskpool variants the local storage

had space for 256 tasks. We chose instance sizes such that absolute runtime with sixteen

cores was about thirty seconds.

92

4.5. Benchmarks

4.5.1 Requirements for Benchmark Problems

For examining the taskpool performance and scalability we selected benchmark problems

based on the following three considerations:

1. The problems should be processable independently of problem-dependent data

structures. For example a problem in which results of all tasks were stored in

synchronized linked lists, was inappropriate. Its additional synchronization oper-

ations would be time-consuming and allow many taskpool-independent optimiza-

tions [191].

2. The tasks should have different and unpredictable computation time. As mentioned

in the introduction, this aspect is one main motivation for using a taskpool instead

of a static distribution of tasks.

3. The tasks generated by the problem should not require much (dynamic) memory:

since we test the implementations by means of a large number of tasks, that would

stress the garbage collector and thus complicate the interpretation of the results.

4.5.2 Calculating Digits of Pi

Our basic and somewhat artificial first problem refers to the calculation of π for any

number of digits. The main section of the benchmark function is shown in Figure 4.16

on page 93. The tasks consist of a list of numbers. Each number specifies the calculation

benchmarkPi : : IO ()
benchmarkPi = do

< . . .>
ta sk s <− < . . . c r e a t e l i s t o f random numbers> : : IO [Int]
pool <− newTaskpool $

mapM_ put ta sk s
eachTask pool c a l c P i

ca l c P i : : Int −> ()
c a l c P i d i g i t s =

showCReal (fromEnum d i g i t s) Prelude . pi ‘ pseq ‘ return ()

Figure 4.16: Benchmark function for π calculation.

of π to the given number of digits. This problem has the following properties: First, tasks

do not spawn subtasks. Hence if the taskpool is empty, all tasks have been processed.

93

4. A Comparison of Lock-based and STM-based Taskpools

Second, since only arithmetic operations are used, the calculation is memory efficient.

Third, since the overall number of tasks is known, we can assign tasks to threads manually

beforehand, leaving out the taskpool. We can use this particular property to measure

the maximal speedup and to derive the overhead of the taskpools for this scenario.

We benchmarked the π-calculation using two scenarios. The first scenario contains

131272 tasks with a random task size of 100±10 (pi-small, ca. 0.0028s/task), the second

scenario contains 8192 tasks with a random size of 1000± 100 (pi-large, ca. 0.09s/task).

Since the tasks in pi-small are so short-lived, threads access the taskpool frequently to

obtain new tasks. The benchmark in which tasks were assigned manually to threads

beforehand is labeled Manual. The speedup graphs for pi-small and pi-large are shown

in Figure 4.17 and Figure 4.18 on page 96, respectively. In the following we describe and

discuss our observations:

a. For short-lived tasks the speedup is better if a lock-based variant is used: Since

accesses to the taskpool occur extremely often, the overhead of the STM imple-

mentation is measurable.

b. For short-lived tasks, the lock-based shared taskpool performs better than manual

distribution: In a manual distribution each thread receives a chunk of all tasks.

Since tasks are generated randomly, threads become idle when they have processed

their individual chunks. This is prevented if threads are allowed to steal tasks.

c. For sixteen cores, the global STM-based taskpool performs slightly better than the

lock-based one. We suppose that STM’s optimistic transactional approach [72] as

well as its earlier restart of waiting threads (namely, when a transactional variable

is changed) are the reasons for this small advantage. We also assume that these

are the reasons for the surprisingly small difference between the lock-based and

STM-based variants.

d. For large tasks the STM-based variants perform comparably well to the lock-based

variants. In some benchmark runs they even slightly outperform the respective

lock-based variants. Since the computation time per task is larger the taskpool

is not accessed as often. Hence the impact of the transactional overhead on the

runtime is not as significant.

e. The extraordinary jumps for both the private lock-based and private STM-based

taskpools for large tasks can be explained by an unfortunate task distribution:

larger tasks were stored in the thread-local storage and so idle threads could not

process them.

94

4.5. Benchmarks

Summarizing the results of this benchmark, STM-based and lock-based taskpools

have a comparable speedup. This result refers to a scenario with an irregular task

distribution and without any addition of new tasks. In the next section the speedup is

analyzed in a scenario in which tasks are dynamically generated.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

Threads

S
p
e
e
d
u
p

Manual

Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Figure 4.17: Speedup graph for pi-small: 131272 tasks with a random task size of
100± 10, average time ca. 0.0028s/task.

4.5.3 A Synthetic algorithm

The next benchmark problem is a synthetic algorithm [122] that involves spawning of

subtasks: each task A(i) typically generates two new subtasks, A(i− 1) and A(i− 2).

A(i) =


{10f} for i ≤ 0

{1f}A(i− 2){5f}A(i− 1){10f} for i > 0

The values in curly braces describe artificial tasks that are computational intensive. As in

the last section we chose the calculation of π. By varying f , the amount of computation

per task can be modified. By varying the initial i, the number of tasks as well as the

degree of irregularity can be chosen. In the base case (i ≤ 0) a single calculation is done

and no dynamically generated tasks are spawned. In the normal case (i > 0) increasingly

95

4. A Comparison of Lock-based and STM-based Taskpools

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

Threads

S
p
e
e
d
u
p

Manual

Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

Threads

S
p
e
e
d
u
p

Manual

Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Figure 4.18: Speedup graph for pi-large: 8192 tasks with a random task size of 1000±
100, average time ca. 0.09s/task.

larger calculations are interleaved with spawning of smaller dynamically generated tasks.

An implementation of the synthetic algorithm is shown in Figure 4.19.

We benchmarked the synthetic algorithm using two problem instances: 1) very small

tasks (f = 1) and a large depth (i = 24), leading to 196418 tasks (syn-small), and 2)

larger tasks (f = 100) and a smaller depth (i = 15), leading to 2584 tasks (syn-large).

The speedup graphs are shown in Figure 4.20 and Figure 4.21 on page 98, respectively.

The results are quite similar to those for calculating π in the previous section. Ad-

ditionally we made the following observations:

f. For short-lived tasks, the performance of the private and the shared STM-based

variants is very low. We suppose that the overhead of the software transactional

memory for (synchronized) thread-local storage is high: since the tasks are smaller

than in pi-small, the storage is accessed more often. Note that without thread-local

storage, the global STM-based variant performs comparably well.

g. For larger tasks, the speedup of the different variants is again comparably high. The

private variants are slower, since large tasks remain unreachable for idle threads.

96

4.5. Benchmarks

benchmarkSynthetic : : IO ()
benchmarkSynthetic = do

< . . .>
let co s t = < . . . f>

depth = < . . . d>
pool <− newTaskpool $

put depth
eachTask pool $ \ i −>

if i > 0
then do f o r c e $ c a l c P i (1∗ f + i − i)

put (i −2)
f o r c e $ c a l c P i (5∗ f + i − i)
put (i −1)
f o r c e $ c a l c P i (10∗ f + i − i)

else f o r c e $ c a l c P i (10∗ f + i − i)

f o r c e : : v −> IO ()
f o r c e = v ‘seq ‘ return ()

Figure 4.19: Implementation of the synthetic algorithm. Note that the subexpression
+i-i is necessary to prevent compiler optimizations. The function force is used to
enforce evaluation of the calculated value inside the processing thread.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

Figure 4.20: Speedup graph for syn-small: 196418 tasks with a task size of 1..

97

4. A Comparison of Lock-based and STM-based Taskpools

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

Figure 4.21: Speedup graph for syn-large: 2584 tasks with a task size of 100.

4.5.4 LU Decomposition

Solving a system of linear equations described by Ax = b (with A ∈ Rn×n and x, b ∈ Rn)

is common in many scientific applications. A well-known approach is the Gaussian

Elimination Algorithm. If the system has to be solved for multiple b, the algorithm

can be repeated, but a more efficient approach uses the LU-decomposition of A. This

decomposition computes a lower triangular matrix L as well as an upper triangular

matrix U . If the equation Ax = b has to be solved and L and U are given, Ly = b and

Ux = y can be calculated using forward and backward substitution, respectively.

Our approach to parallelizing LU is task-based and uses a block-based technique

described in [123]. Let n be the width of the matrix. Then we consider submatrices

from n × n to 1 × 1. Initial computations have to be done before each submatrix can

be processed. We did not parallelize these initial computations since at most n values

need to be computed, even for large matrices. Afterwards for each submatrix the rows

can be computed independently (see Figure 4.22). These computations constitute the

tasks which are added to the taskpool. After the last submatrix has been computed, the

initial array contains both the L and the U matrices. The implementation is shown in

Figure 4.23 on page 100.

There are two differences compared to the previous benchmark scenarios: First,

both the number of tasks and the computation time per task decrease as decomposition

98

4.5. Benchmarks

_______ Task _______

_______ Task _______

_______ Task _______

_ Task ________

_ Task ________

1st iteration

Initial computations
for the current iterations

Submatrix for the
current iteration

Elements with the
correct value

2nd iteration

Figure 4.22: Submatrices, initial computations, and tasks for the first and the second
iteration of the LU decomposition of a 4×4 matrix. Simplified for presentation purposes.

progresses. Second, the calculation works in data dependent iterations. With progressing

decomposition, the number and size of tasks decreases. For better performance one

would apply a sequential algorithm if tasks become too small. We did not apply this

optimization to study our taskpools with high contention, too.

In our experiments we measured the decomposition time for a randomly generated

1000 × 1000 matrix. For the different synchronization variants the speedup graphs are

shown in Figure 4.24 on page 101. For the global STM-based implementation computa-

tion took about 14 seconds with 12 cores. Hence this was the best implementation. The

sequential runtime was about 84 seconds.

We made the following observations:

h) All variants except the shared STM-based and global STM-based ones have a low

speedup. The reasons can be seen in the simplicity of the sequential variant, which

is implemented by means of a straightforward nested loop. The loop kernel solely

consists of math and array operations, which can be efficiently optimized by the

compiler. We think that the overhead of the taskpools in combination with the

complex task structure led to the bad speedup. Without further optimizations,

such as the previously mentioned switch to a sequential variant, it is difficult to

achieve a better speedup.

i) Quite unexpectedly, both the global and the shared STM-based implementation

perform significantly better than all other variants. We suppose that the optimistic

synchronization approach of STM (see Section 2.3.2 and c)) is a reason. In addition,

the initially high computation costs of each task led to less contention.

99

4. A Comparison of Lock-based and STM-based Taskpools

benchmarkLU : : IO ()
benchmarkLU =

< . . . a r r conta in s the matrix va lue s>
−− Shortens l a t e r code :
bounds <− getBounds ar r
let rm = readMatrix bounds ar r

wm = writeMatr ix bounds ar r

ta skpoo l pool $ do

forkN numCapabi l i t i e s
(threadForever (workRow rm wm n))

forM [0 . . n−2] $ \k −> do

forM [k +1. .n−1] $ \ i −> do

put (i , k)
wait

−− c a l c u l a t e the va lue s f o r one row
where workRow rm wm n (i , k) = i o $ do

akk <− rm (k , k)
a ik <− rm (i , k)
let l i k = a ik /akk
wm (i , k) l i k
−− c a l c u l a t e r e s t o f row
forM [k +1. .n−1] $ \ j −> do

a i j <− rm (i , j)
akj <− rm (k , j)
wm (i , j) (a i j − l i k ∗ akj)

t h r e a d f o r e v e r f = do

task <− get
case task of

nothing −> do

i o y i e l d
return ()

j u s t t −> f t
t h r e a d f o r e v e r f

Figure 4.23: Implementation of a task-based LU decomposition.

100

4.6. Related work

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16
Global-Lock

Global-Free

Private-Lock

Private-Free

Shared-Lock

Shared-Free

Threads

S
p
e
e
d
u
p

Figure 4.24: Speedup graphs for LU decomposition of a 1000× 1000 matrix.

4.5.5 Summary

For typical taskpools, synchronization with software transactional memory has proven to

be a useful alternative to a traditional lock-based approach. However, for taskpools with

thread-local storage, benchmarks reveal a better result for lock-based implementations

compared to STM-based implementations. Perhaps the outcome for the STM-based

variants could be enhanced by the implementation of a compiler-supported thread-local

storage (which would in turn better support STM), or a fundamentally different ap-

proach for the implementation of STM-based arrays. Nevertheless, with a transactional

approach the developer gives up control. Hence, it can be difficult to anticipate the

performance characteristics of an application.

4.6 Related work

There is a huge amount of parallel algorithms that use the taskpool pattern (see Rauber

et al. [170] or Grama et al. [123] for an overview). An extensive discussion of the large

taskpool design space has for example been given by Mattson [140].

For particular kinds of dependencies between tasks, the other parallelization ap-

proaches of Haskell (see Section 2.3.4) can be applied. Data Parallel Haskell can be used

if tasks do not dynamically generate tasks and tasks only use pure computations. Then

processable tasks are stored in a list and are automatically computed in parallel. The

101

4. A Comparison of Lock-based and STM-based Taskpools

Par monad is an option if tasks do dynamically generate tasks, but their computation is

side-effect free. Due to these limitations, our approach is more general and due to the

provided abstractions also easier to use. The nofib-benchmark suite [159] defines several

(task-based) benchmark problems for semi-explicit parallelization. Example benchmarks

are the calculation of mandelbrot sets, matrix multiplication, or raytracing. The respec-

tive tasks have an irregular structure, similar to ours, but use only pure computations.

An analysis of occurring problems, e.g. space leaks and scalability issues, as well as a

discussion of possible solutions is described by Marlow et al. [137]. An analysis similar to

ours, but for the implementation of concurrent linked-lists instead of taskpools, has been

done by Sulzmann et al. [191]. The authors used different synchronization approaches

(STM, MVars and IORefs). Their study revealed similar results regarding the scalability

and performance of STM. In contrast to our work, the other synchronization variants

performed quite differently. We think that the main reason for this are the different

techniques used for linked-list operations.

The parallel programming language Eden (Loogen et al. [130]) is an extension of

Haskell. Eden adds constructs to control the parallel evaluation of expressions. Espe-

cially it eases the definition of skeletons [168] and allows a general and efficient definition

of e.g. taskpool-based algorithms, as is shown by Berthold et al. [15]. The programming

language Java had always supported parallel programming by means of threads [148].

In the last years, its support for more abstract approaches to parallel programming has

been improved: For example, the Executor class of the concurrency framework [63] al-

lows the definition of tasks and of their dependencies. Then these tasks are executed

in parallel, whereby the developer does not have to control thread behavior or task de-

pendency handling. For C++, the Intel Threading Building Blocks provide a template

library for high-level parallel programming [171]. The developer only has to define the

dependency graph of the tasks by means of a skeleton (see above).

Comparison of different taskpool variants as well as irregular tasks with synthetic

problems has been made (for Java) by Korch et al. [122] and (for OpenMP) by Wirz et

al. [208]. These studies revealed comparable results regarding the performance differences

between global, private and shared taskpools.

4.7 Summary and Conclusion
We have described the implementation of different variants of the taskpool pattern

(global taskpools, as well as private taskpools with and without task stealing) in Haskell.

Synchronization was implemented by using lock-based as well as STM-based approaches.

Each taskpool was benchmarked using two synthetic problems as well as the LU decom-

102

4.7. Summary and Conclusion

position of a matrix. The following lessons about the difficulty of implementing the

taskpool pattern, the respective performance of the variants, and the complexity of op-

timizations, were learned:

• The implementation of parallel programs using STM is easier and less error-prone

than the implementation of their lock-based counterparts. With an STM-based

approach, the developer does not have to keep synchronization issues in mind.

• The performance of lock-based and STM-based taskpools is comparable. Due to

the optimistic nature of transactional synchronization, STM-based taskpools can

even outperform lock-based ones. The sometimes worse performance of the STM-

based variants is caused by two reasons: first, in scenarios with high contention

the overhead of the transactional model is large. Second, the implementation

of particular data structures, e.g. arrays, is at the moment not efficient in the

transactional model.

• Finding performance bottlenecks is difficult for lock-based and even more difficult

for STM-based programs. For both implementations there are neither advanced

profilers nor other development tools. Reasoning about the performance is more

difficult for STM than for locks since important details are hidden.

Drawing a conclusion, STM is useful for the implementation of parallel design patterns:

it is easier to comprehend, more expressive, and performs comparably well to a lock-

based approach. However, this only holds on the assumptions that first the contention

is not too high and second the problem at hand does not require thread-local storage.

In contrast to the results of the previous chapter, STM performs much better. We think

that the main reason is that transactions are shorter, take less time and are therefore

less often restarted for taskpools.

Summarizing on the usefulness of abstraction, the experiments in this chapter have

shown that abstraction allows for a simpler formulation of task-based algorithms. In

particular, Haskell’s support for monads and higher-order functions allows to hide de-

tails of the underlying parallelization and allows the user to focus on task handling. It

is rather difficult to come to a general conclusion regarding low-level synchronization

approaches versus high-level ones, since both approaches have their particular advan-

tages and disadvantages (see above). In general, by using the abstraction techniques of

Haskell shown in this chapter, it is possible to first use STM for synchronization since it

is easier to use. If performance problems occur, this synchronization approach can easily

be replaced with a lock-based one.

103

4. A Comparison of Lock-based and STM-based Taskpools

104

Chapter 5

Declarative Description and

Parallelization of Stencil

Computations

In computer simulations the problem space is often partitioned in a

grid. To the grid’s elements, computations that use the values of ad-

jacent elements, are applied. Stencils are patterns to describe the

dependencies within such computations. In this chapter we demon-

strate how stencil-based algorithms can be described declaratively in

an idiomatic and convenient way. Furthermore, we explain the imple-

mentation of an execution platform that performs the computations

in parallel. Finally we present benchmarks that show the scalability

of this approach.

105

5. Declarative Description and Parallelization of Stencil Computations

5.1 Introduction

Besides applied and pure sciences, computer simulation (computational science [179]) is

an important research method. Some computer simulations of real-world phenomena ap-

proximate solutions by superimposing the real-world problem space with a discrete grid.

Then to each grid element a computation function is applied iteratively. Thereby, the el-

ement’s value is updated. The values of the function parameters are defined by a spacial

pattern called stencil. A stencil describes the dependencies within these computations

by stating the relative positions of accessed elements. The values at these positions are

used in the computation to update the value at the current position. Algorithms that

use stencils are called stencil-based algorithms (or stencil algorithms).

Despite progress in both hardware and software development the demand for increas-

ing processing power for stencil computations is still prevailing. Increased processing

power allows for a finer grid resolution and thus more detailed simulations, or reduces

the time necessary for finishing a computation. One approach to speed up stencil com-

putations is parallelization. Unfortunately, parallelization of stencil algorithms causes

more complexity regarding algorithm design as well as regarding their implementation.

To manage this complexity, a library can be used. A library serves as an abstraction

layer, such that rather complex details of the parallelization are hidden from the user.

Furthermore, a library can provide (semi)automatic techniques to select problem-specific

optimizations. This is even more so, if the library supports a declarative description of

the problem. By means of a declarative description, the user does not have to state how

the stencil-based algorithm has to be executed. Instead, he simply states the problem.

A useful library should fulfill some properties:

• The provided functions and types should be flexible enough to be applied to dif-

ferent problems within the problem domain. At the same time, simple problems

should be easy to describe.

• The library may offer different underlying implementations if there is not a single

most efficient one, and assist or even automatize the choice for the most efficient

one out of these. This approach is especially useful if the problem description is

declarative.

• The library should efficiently use the available resources of modern shared-memory

multicore hardware. Its design should allow for good scalability.

Although many different libraries are listed on the Haskell repository for libraries [79],

just a fraction deals with concurrency and parallelization. In particular, there is no

106

5.1. Introduction

library for a concise description of stencils. Thus our research objective is to support

stencils in Haskell and therefore to examine, how well parallelization can be hidden for a

restricted problem context. For this purpose we implemented the prototype of a library

that allows for a declarative description and parallelization of stencil-based algorithms

(see Figure 5.1). We implemented just a prototype because a full-featured library has

Types and functions
- declarative stencil definition

Execution platform
- parallel computation of stencil algorithms
- automatic dependency computation

}

L
ib

ra
ry

Figure 5.1: Overview of the library

many properties that are unnecessary for exploring the feasibility of the declarative

approach, e.g. proper error handling, documentation or competitive performance. A

particular feature of the declarative description is that the user is able to define any

n-dimensional stencil. The purpose for this design decision was to examine how well

stencils of any type can be parallelized with a single algorithm. In this chapter we

describe

• The definition of types and functions to declaratively describe stencil-based algo-

rithms with arbitrary n-dimensional stencils in Haskell.

• An implementation of an execution platform that allows the parallel computation

of stencil-based algorithms on shared-memory multicore systems. In particular,

the user does not have to keep parallelization in mind at all.

• An analysis of the scalability of the execution platform. For this purpose we

benchmark two stencils which are commonly used in scientific applications, the

Jacobi stencil and the Gauss-Seidel stencil.

The execution platform used in the present work is a further development of a previously

described prototype [125]. In the previous version we supported two-dimensional grids

with additional and limited support for three-dimensional grids. The user had to define

additional dependency functions manually for each stencil. In contrast, in the presented

work there are no limitations on the number of dimensions. Furthermore, preparations

for the parallelization of the stencil computation are no longer needed.

107

5. Declarative Description and Parallelization of Stencil Computations

Note that most examples in the present work use problems in two dimensions. The

reason lies only in a less complex presentation and not in a general limitation of the

declarative description scheme.

The following chapter is structured as follows. In Section 5.2 we give an introduction

to stencil-based algorithms. By using voltage diffusion as a running example we demon-

strate how our library allows a concise yet understandable formulation of stencil-based

algorithms. In Section 5.3 we explain the declarative description scheme as well as the

parallel execution platform in detail. Section 5.4 deals with the scalability of the execu-

tion platform. In Section 5.5 we compare our work to related research and Section 5.6

contains a summary and a conclusion.

5.2 An Introduction to the Library

In this section we introduce the basic concepts of our library. We explain the voltage

diffusion problem which will be our running example in this chapter. We also show how

the problem can be described concisely by functions and types of our library. To simplify

the visualization of the voltage distribution we focus on two dimensions. Moreover, we

sketch the extension to three dimensions for completeness.

5.2.1 The Voltage Diffusion Problem

A well-known problem for stencil-based algorithms is the voltage diffusion problem [162].

Here the task is to determine the voltage diffusion of a conductive metal sheet with

predefined voltage at particular positions. Figure 5.2a) shows a simplified illustration

of this problem for a two-dimensional metal sheet. A solution describes the voltage

diffusion for the whole metal sheet. Although the problem can be modeled algebraically

by a linear partial differential Laplace Equation

∂v2

∂x2
+
∂v2

∂y2
= 0

a solution can only be approximated numerically, for example by applying the Jacobi Re-

laxation Method. The Jacobi Relaxation Method works as follows: Initially the problem

space is superimposed with a discrete grid (see Figure 5.2b)). For each element of the

grid the average value over all directly adjacent neighbors is computed iteratively. For

example, for the two-dimensional metal sheet with V k
i,j denoting the voltage at point (i, j)

108

5.2. An Introduction to the Library

of the grid in iteration k, the voltage diffusion can be computed by iteratively evaluating

V
(k)
i,j =

V
(k−1)
i−1,j + V

(k−1)
i+1,j + V

(k−1)
i,j + V

(k−1)
i,j+1

4
.

Typically, this computation terminates if ∀(i, j) : |V k
i,j − V k−1

i,j | < ε, i.e. for all points the

difference of their respective voltage is less than ε in successive iterations. We call this

termination condition ε-condition. In the next section we show how this formula and the

underlying grid can be formulated declaratively in Haskell using our library.

Voltage unknown

Predefined voltage
at boundaries

Internal points

Predefined voltage
at boundaries

a) b)

Figure 5.2: a) Voltage diffusion problem for a conductive two-dimensional metal sheet.
Voltage is applied at the top and at the bottom. b) Discretized voltage diffusion problem.
Voltage is only determined for some points.

5.2.2 Modeling, Solving and Visualizing Voltage Diffusion

In this section we describe the voltage diffusion problem in Haskell by using types and

functions of our library. We also show how its solution can be computed and visual-

ized. In addition to the two-dimensional variant we briefly sketch the extension to three

dimensions.

Modeling Voltage Diffusion

Each (declarative) problem formulation consists of three parts:

• The stencil that defines the dependencies to update the current element.

• The initial grid’s dimension as well as the grid’s values.

• The definition of the computation function which is used to compute updated

values for each grid element.

In the following we describe each part in detail.

109

5. Declarative Description and Parallelization of Stencil Computations

Stencil definition. To update an element, the Jacobi relaxation method uses values

of adjacent elements from the previous iteration. In our library, a stencil (type synonym

Stencil) consists of a list of dependencies (type synonym Dependency). Each depen-

dency consists of a list of integers. The integer list’s first element states the iteration of

the referred element: it is 0 for the current iteration, 1 for the previous one and so on.

The rest of the list elements define the relative position for each dimension separately.

The two-dimensional Jacobi stencil can thus be defined by

1 computeVoltageDi f fus ion : : IO ()

2 computeVoltageDi f fus ion = do

3 let s t e n c i l = −− Jacobi s t e n c i l

4 [[1 ,−1 , 0] : : Dependency

5 , [1 , 0 , −1]

6 , [1 , 1 , 0]

7 , [1 , 0 , 1]] : : S t e n c i l

Another well-known stencil is the Gauss-Seidel stencil. Here, the referred values of the

left and upper element are retrieved from the current iteration instead of the previous

one. Apart from that, the Gauss-Seidel stencil is analogous to the Jacobi stencil. While

the Gauss-Seidel stencil converges faster, it complicates parallelization as we will show

in Section 5.3. The two-dimensional Gauss-Seidel stencil can be formulated as

3 let s t e n c i l = −− Gauss−S e i d e l s t e n c i l

4 [[0 ,−1 , 0] : : Dependency

5 , [0 , 0 , −1]

6 , [1 , 1 , 0]

7 , [1 , 0 , 1]] : : S t e n c i l

For comparison, both stencils are shown in Figure 5.3. Note that both stencils can be

used for the voltage diffusion problem.

Grid initialization. Grid initialization starts by stating the grid’s size. On the one

hand, the larger the grid, the more grid elements exist and hence the more detailed the

simulation is. On the other hand, the more grid elements exist, the more time is needed

for their computation. For our example, the grid’s dimension is 40× 40:

8 s i z e = [4 0 , 40] : : Dimension

The grid’s size is annotated by a type synonym called Dimension. After the grid’s size

has been stated, the grid has to be filled with initial values. Our library defines functions

110

5.2. An Introduction to the Library

Vi,jVi-1,j Vi+1,j

Vi,j-1

Vi,j+1a)

Vi,jVi-1,j Vi+1,j

Vi,j-1

Vi,j+1
b)

Value of current iteration

Value of previous iteration

Dependency

Figure 5.3: Visualization of a a) Jacobi stencil and b) a Gauss-Seidel stencil. In
the following figures we use the coloring of values to refer to the current and previous
iterations without explicitly stating so.

to comfortably fill values at the boundaries of two-dimensional grids; other fill patterns

are easy to add. For our example, at the bottom the voltage is 50 (B 50) and at the top

it is 100 (T 100). Each boundary value has the type Border:

9 borders = [B 50 , T 100] : : [Border]

10 g r id <− getGrid s t e n c i l s i z e

11 gr idBorder s g r id borders

The function getGrid returns an empty grid whose boundaries are filled by gridBorders.

From the user’s point of view, a grid resembles an array and provides typical functions

to access its values.

Computation function definition. To update the elements, the values of the neigh-

bors referred to by the stencil have to be combined in a computation. For the Jacobi

relaxation method, for instance their average is computed. Computation functions are

annotated with the type synonym Function. A Function receives the position of the

currently computed element as well as the values of the neighbors referred to by the

stencil. Note that the element’s position is not a typical part of a stencil computation.

Nevertheless, it allows for more flexibility in the grid definition. For example, to simulate

non-conductive areas, particular areas of the grid can have a constant value. Since for the

Jacobi relaxation method the position of the element is not necessary, the computation

of the average is defined by

12 compute : : Function

13 compute = (\ va lue s −> sum va lue s / 4)

In this section we have demonstrated how to model a stencil-based algorithm for the

simulation of voltage diffusion using just a few lines of Haskell. We did not have to

111

5. Declarative Description and Parallelization of Stencil Computations

specify informations outside of the problem domain. In particular, some stencils, e.g.

the Gauss-Seidel stencil, create dependencies between different elements within the same

iteration. Since our library allows to describe the problem declaratively, the user does

not have to pay any attention to the details of the computation. In the next section we

show how the stencil computation can be initiated.

Computing Voltage Diffusion

The focal idea of a declarative stencil library is to solve a stencil-based problem without

the user having to state explicitly how elements should be updated. For that reason this

section is quite short. To compute the solution to the voltage diffusion problem for an

ε-condition with ε = 0.1, we call the run function as follows:

14 let cond i t i on = Eps i lon 0 .1 : : Condit ion

15 run g r id s t e n c i l compute cond i t i on

After the run function is finished, the voltage of each element is stored in the grid. For

saving the grid’s values the library defines various file-based output formats, e.g. a table

for two-dimensional matrices or a list of points with their respective values. The saved

values can be visualized, as we show in the next section.

Visualizing the Voltage Diffusion Solution

To graphically present two-dimensional and three-dimensional grids, we wrote shell

scripts for a standard Linux system which use the well-known graph plotting program

gnuplot [58].

Before the result of a computation can be visualized, it has to be stored in a file first.

To save the result in a file named output, the following code can be used:

16 let s t r i n gRepr e s e n ta t i on = show g r id

17 writeFile ” output ” s t r i ngRepr e s en ta t i o n

To present the result on screen, we call

$ v i s u a l i z e S o l u t i o n output

in a command shell. Other output formats, e.g. storing the visualization as an image,

can also be defined. Figure 5.4a) shows the voltage diffusion if voltage is applied to the

top as well as the bottom of the metal sheet. Another example, with the voltage source

in the center is shown in Figure 5.4b).

In the next section we briefly depict how the description has to be extended to

compute a solution for the three-dimensional variant of the voltage diffusion problem.

112

5.2. An Introduction to the Library

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

V
ol

ta
ge

"m" matrix

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

V
ol

ta
ge

a) b)

Figure 5.4: a) Voltage distribution on a conductive two-dimensional metal sheet
with voltage applied at top and bottom. b) Voltage distribution on a conductive two-
dimensional metal sheet with a voltage source in the center.

Defining, Computing and Visualizing a Three-Dimensional Voltage Diffusion

The three-dimensional voltage diffusion problem is similar to the two-dimensional one,

but the additional third dimension has to be kept in mind when the problem is defined.

Hence, the three-dimensional voltage diffusion problem can be described as follows:

1 computeVoltageDi f fus ion : : IO ()

2 computeVoltageDi f fus ion = do

3 let s i z e = [2 0 , 20 , 20] : : Dimension

4 s t e n c i l = −− 3D Jacobi s t e n c i l

5 [[1 ,−1 , 0 , 0] : : Dependency

6 , [1 , 1 , 0 , 0]

7 , [1 , 0 , −1, 0]

8 , [1 , 0 , 1 , 0]

9 , [1 , 0 , 0 , −1]

10 , [1 , 0 , 0 , 1]] : : S t e n c i l

11 compute : : Function

12 compute = (\ va lue s −> sum va lue s / 6)

13 < . . .>

For presentation purposes of the visualization we reduced the resolution of the grid.

Voltage is applied at both sides of the cube (code not shown). The run function is called

analogous to the two-dimensional case. Again the result is visualized, see Figure 5.5 on

page 114. The illustration takes two different perspectives into account.

113

5. Declarative Description and Parallelization of Stencil Computations

V
ol

ta
ge

V
ol

ta
ge

a) b)

Figure 5.5: Voltage distribution in a conductive three-dimensional metal sheet with
different voltages applied at the left and right side. a) isometric view b) side view.

5.3 Implementation

In this section we describe the design and implementation of the library. First we mo-

tivate the use of lists combined with type synonyms for the definition of stencils. Con-

tinuing the running example, the internal representation of the two-dimensional voltage

diffusion problem is illustrated. Then we describe the implementation of the execu-

tion platform which allows for a parallel execution of a stencil-based algorithm. Finally

we describe the multi-dimensional grid structure as well as the automatic dependency

computation which is necessary for the parallel execution.

5.3.1 Lists versus Algebraic Data Types and Tuples

The core of a stencil-based algorithm is the definition of the stencil. Since the library

should allow to model stencil problems of any dimension, we can neither use algebraic

data types nor tuples. Both approaches are limited at compile time regarding their

number of parameters. Thus they do both not allow for an easy formulation of a stencil

whose length depends on the problem at hand. Instead for the definition of stencils we

use lists since they can be of any length.

Type safety is a common problem with lists, especially if different lists contain ele-

ments of the same type. For example, the type system can not determine that [100,100]

is to be used as the grid dimension and that its incidental usage in a stencil definition is

to be dealt with as an error. To prevent these kinds of problems we use type synonyms

to distinguish between different types of lists as well as to annotate functions. In our

particular use case we think that type synonyms entail to an easier reading of the code

compared to types defined by newtype. For example, if stencils were wrapped in types

instead of being annotated by type synonyms, the definition of the Jacobi stencil (see

page 110) would be written as

114

5.3. Implementation

3 let s t e n c i l = S t e n c i l

4 [Dependency [1 ,−1 , 0]

5 , Dependency [1 , 0 , −1]

6 , Dependency [1 , 1 , 0]

7 , Dependency [1 , 0 , 1]]

In contrast to type constructors, type synonyms can be omitted conveniently. If the user

decides to add them explicitly (as shown in the previous section), the compiler can still

find type errors.

5.3.2 Internal Grid Representation

In this section we illustrate the internal grid representation by using the voltage diffusion

problem and the Gauss-Seidel stencil for an example: The metal sheet is partitioned into

a grid with dimensions 6× 6 (see Figure 5.6a)). Since the Gauss-Seidel stencil refers to

current elements as well as to elements from the previous iteration, a copy of the grid is

used to refer to past values.

a) b)

d1

d2 } k

Figure 5.6: a) Grid partitioning of the metal sheet from the voltage diffusion problem.
The second grid allows to refer to values from the previous iteration. b) Generalized
illustration of the internal grid structure of a two-dimensional grid with dimensions
d1 × d2 and a stencil referring to k previous iterations at maximum.

Generally, elements of previous iterations are stored by using an additional dimension

in the grid: For a grid with dimensions d1 × d2 × . . . × dn and a stencil which refers to

k previous iterations at maximum, a grid with dimensions k × d1 × d2 × . . . × dn is

used internally (see Figure 5.6b)). By translating the reference to an iteration, it is

guaranteed that the values of the previous k iterations are accessible: In iteration i, the

115

5. Declarative Description and Parallelization of Stencil Computations

element at grid position x1 × x2 × . . . × xn of iteration j can be accessed at position

((i + j) mod (k + 1))× x1 × x2 × . . .× xn. The details of the grid implementation are

discussed in Section 5.3.4.

5.3.3 Parallel Execution of Stencil-based Algorithms

In this section we motivate the use of blocks as a fundamental design choice. Then we

describe how element updates are computed in parallel taking their dependencies into

account.

Using Blocks for Parallelization

In a stencil-based computation, grid elements can be computed in parallel. Nevertheless

it would be inefficient to do so on a per-element basis. Since the computation of a single

element is usually fast, the overhead of synchronization would be much larger than the

gain achieved by parallelization. The common approach to reduce the parallel overhead

is combining many small tasks into a group (see [123, 140] and Section 2.1). We follow

this approach and call such a corresponding group of elements a block.

A block is an n-dimensional continuous part of the grid that is processed by a single

thread. A block consists of a list of separate intervals for each dimension, i.e.

type Block = [I n t e r v a l]

type I n t e r v a l = (Int , Int)

The size of a block (block size) is the cross product of the lengths of each dimension. The

block size is an important factor in determining the amount of possible parallelization:

If the block size is too small, threads process their respective blocks too fast. Therefore

to get a new block they have to synchronize frequently and the overall performance

is low. If the block size is too large, threads may become idle. This causes bad load

balancing and again results in bad overall performance. For our implementation, we

define a minimal length of 20 for each block dimension. In practice, grids are much

larger, such that a sufficient number of blocks is available for parallel processing. We

chose 20 by experimentation on our test machine, but the user can specify other values.

This might result in better performance on his particular system, e.g. due to other cache

sizes.

Similar to stencil dependencies, blocks have dependencies from other blocks: block B

is said to depend on the block A (or, block B has a dependency on block A), if elements

in B depend on elements in A. Analogously, an element depends on another element, if

a dependency from iteration 0 refers to it.

116

5.3. Implementation

Continuing our running example, Figure 5.7a) shows an exemplary block division

with a block size of [2,2] for the voltage diffusion problem. Figure 5.7b) shows its formal

representation by means of the introduced types. Note that the formal representation is

hidden from the user and only used internally.

A

B

C

a) b)

A = [(0,1), (0,1) :: Interval] :: Block
B = [(2,3), (2,3)]
C = [(2,3), (4,5)]

Figure 5.7: a) Block division of the voltage diffusion grid. Blocks are marked orange.
b) Formal representation using the types Interval and Block.

Computing Element Updates (in Parallel)

The computation of grid elements is divided in two phases (see Figure 5.8) on page 118.

First we present an overview of these phases. Then each phase is described in detail.

In phase I, repeatedly used components are precomputed (1). For that purpose,

first blocks that do not depend on other blocks are determined. We call these blocks

initial blocks. Second, the correct order of element updates for single blocks is computed

in parallel. A correct order in which elements are updated is necessary for particular

stencils (e.g. Gauss-Seidel). This prevents that values of elements from the current

iteration are referenced, although they have not been updated yet. A more detailed

explanation of the problem as well as our solution is given in Section 5.3.5. Afterwards,

the threads which process blocks are started (2).

Phase II is the iterative part of the stencil-based computation. Blocks which have

their dependencies fulfilled are stored in a shared queue; note that this approach is similar

to a taskpool-based algorithm (see Chapter 4). At the beginning of each iteration this

queue is filled with the positions of the precomputed initial blocks of phase I (3). Each

thread accesses the queue to retrieve a block (4). Using the precomputed order, elements

of the retrieved block are updated. Afterwards, the dependencies of yet unprocessed

blocks are checked. If the processed block is the last one that is needed to fulfill all

dependencies of an unprocessed block, this block is added to the queue. Threads retrieve

blocks until every block of the present iteration has been computed (5). To determine

termination, the termination condition is checked. If it is not fulfilled, the initial blocks

are added again to the queue to start the next iteration (3). Otherwise computation

stops (6).

117

5. Declarative Description and Parallelization of Stencil Computations

Compute
initial blocks-
computation order
of elements in
each block

-

Fill queue of processable blocks with initial blocks

Phase I (Preprocessing) Phase II (Iteration)

Until every block
has been computed

Convergence condition
fulfilled?

Initialization of queue

Thread1
For each processed block:
- compute fulfilled dependencies
- add new blocks

Compute elements
in block in
respective order

Threadn

Computation of blocks

... ...

Fork threads ()

No

Computation
finished

Yes

1

2

3

4

5

6

...

Figure 5.8: General overview of the (parallel) element computation.

Phase I (Preprocessing). In the preprocessing phase parallelization is straightfor-

ward. While the computation of the initial blocks is fast and thus parallelization is

unnecessary, computing the order of element updates is computationally expensive and

thus parallelized as follows: First, the position of every block is computed and stored in

a channel. Then threads are forked. Until all blocks have been processed each thread

retrieves one block at a time and computes the order for element updates for this par-

ticular block. To allow fast access to the order of elements of a block in phase II, the

order is stored in a structure with type ElementOrder:

type ElementOrder = BlockArray (IOArray Int Pos i t i on)

type BlockArray a = IOArray Int a

A BlockArray is a one-dimensional array. Each block is mapped to a unique position in

this array (see Section 5.3.4 for the basic idea of this mapping). This type of mapping

is called block-indexed. Each array element contains another array. This array stores an

order of positions for element updates in the respective block.

Continuing our running example (although slightly modified for presentation pur-

poses), Figure 5.9 shows a part of a BlockArray and a possible order of correct element

updates for an upper left 4× 4 block and a Gauss-Seidel stencil. Phase I is finished by

forking threads which will process blocks. Subsequently, phase II is started.

Phase II (Iteration). In phase II, blocks of the grid are processed repeatedly until the

predefined termination condition of the problem is fulfilled. Figure 5.10 shows a detailed

illustration of this phase. Each of the threads forked at the end of phase I executes

118

5.3. Implementation

a) b)

BlockArray

15 1614 6 8 7 11 1210

[(0,3), (0,3)]

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
...

Figure 5.9: Storing element updates. a) A grid divided into 4×4 blocks. The upper left
block is shown in detail. The numbers define the order in which elements are updated
for a Gauss-Seidel stencil. b) The block array and a possible order for the correct update
of elements for a Gauss-Seidel stencil.

the following five steps: First, a thread retrieves a block from the input channel (1).

Second, the precomputed positions for the element updates are retrieved (2). Since

the orders of element updates are never modified, no synchronization is necessary. By

means of these positions, elements are then updated in the correct order (3). To

determine which blocks have their dependencies fulfilled, another block-indexed array of

type BlockArray (MVar [Block]) is used. If a block has been processed, the (fulfilled)

dependencies of dependent blocks are updated (4). Since several threads may access

a block’s dependencies at the same time, each array element is synchronized by an

MVar. If all dependencies of a block are fulfilled, it is stored in the input channel for

processing (5). Finally, the maximal ε-difference is sent to the response channel which

has the type Chan Double. The ε-values of all blocks are used to compute the maximal

ε value of the iteration.

Input channel

Response channel
...

p1 p2 p3 ...

p1 p2 p3 ...

Element update order

'

ε
ε

...
Block dependency

1

2

3

4

5

protected by an MVar

...

Figure 5.10: Flowchart for the phase II in the parallel element update.

119

5. Declarative Description and Parallelization of Stencil Computations

5.3.4 Implementation of a Multidimensional Cache-aware Grid

In this section we describe the design and implementation of a multidimensional grid

type which is used to store the grid elements. It is difficult to design a general cache-

aware algorithm or data structure (e.g. [59]), but in our approach we use the particular

access structure of stencil algorithms such that caches can be well utilized.

Our design focuses on minimizing the effects of false sharing while increasing data

locality at the same time (see Section 2.1). In stencil-based computations, the update

of an element requires only values of adjacent neighbors as well as values from previous

iterations. If blocks are arranged such that all elements of a block and elements from

previous iterations are aligned in memory continuously, data locality is improved (see

Figure 5.11). With the aid of such an alignment, a thread which processes a block will

predominantly affect memory cells that are only present in its own cache line. Thus

unnecessary cache reloading is reduced. In the following we explain the core type and

core function of our implementation.

Depth 0
(Current iteration)

Depth 1
(Previous iteration)

1 2
3 4

5 6
7 8

9 10
11 12

13 14
15 16

a)

Memory layout

b) 1 2 3 4 9 10 11 12 5 6 7 8 13 14 15 16

...

Figure 5.11: Simplified illustration of memory alignment for a two-dimensional array
and the Gauss-Seidel stencil. a) Two-dimensional grid for storing values of the current
and the previous iterations. b) Actual memory layout. Different colors denote memory
areas that are used for processing one block.

The grid is implemented as an one-dimensional array of type IOUArray Int Double.

The core function of our implementation is the translation operation from an n-dimensional

list-based position to an one-dimensional array index whereat the desired memory layout

is ensured. It is defined by

type Pos i t i on = [Int] −− Absolute p o s i t i o n o f an element

−− (without the i t e r a t i o n index)

type Dimension = [Int] −− Dimension o f the g r id

t r a n s l a t e : : Dimension −> Pos i t i on −> Int

120

5.3. Implementation

t r a n s l a t e dim pos = f ’ dim pos

where f ’ [] [x] = x

f ’ (w: ws) (p : ps) = p + w ∗ f ’ ws ps

All but the first list values of the position are used to map the n-dimensional block

position to the array. As mentioned in Section 5.3.2, the first value of a position de-

termines the referenced iteration. This value is handled separately such that blocks of

successive iterations are aligned continuously, hence improving data locality. Since this

additional alignment is based on the same principle as the previously described one, its

implementation is not shown here.

Since the list-based operations for determining a particular array index are com-

putationally expensive, we implemented specializations for grids which are often used

in stencil computations: For example, many stencil-based algorithms work on a two-

dimensional grid. In this case, a translate-functions which works solely by means of

arithmetic functions and without list operations is used to compute the array index.

This approach improves access time to a large extent. Although this optimization is also

possible with a non-declarative description, a declarative one greatly eases its implemen-

tation.

Finally we cite reasons for our design decisions:

• It was not appropriate to use the predefined array type IOUArray. Although

IOUArray supports any number of dimensions, the actual number has to be known

at compile time. While it would be possible to extract this information from the

stencil at compile time, e.g. by using Template Haskell[178], we would still have

no control over the actual memory alignment.

• We chose to support only primitive types (e.g. Doubles) as array elements. Al-

though all stencil-based computations we are aware of are numerical, the imple-

mentation can easily be further developed to allow arbitrary types. Note that such

a more generalized approach might cause a performance degradation, since un-

boxed arrays (IOUArray) have to be replaced by the more general but less efficient

boxed arrays (IOArray) [80].

• To further reduce the effects of false sharing a common approach is padding. By

padding, dummy elements are added at the boundaries of blocks. This approach

prevents reloading of the cache line if adjacent threads modify their data. In

stencil-based computations, values of adjacent blocks are needed anyway. Therefore

we think that padding will not improve cache efficiency significantly but it will

complicate the implementation.

121

5. Declarative Description and Parallelization of Stencil Computations

5.3.5 Dependency Computation

In a stencil-based algorithm computation order of elements has to respect dependencies

(see Figure 5.12). In our previous implementation we used a database in which the correct

1 2

5

2

3

3

3

4

4

1 2

3

1

3

2

1

3

2

1 1

1

1

1

1

1

1

1

Gauss-Seidel stencil Jacobi-Stencil Left-referencing stencil

Vi,jVi-1,j Vi+1,j

Vi,j-1

Vi,j+1

Vi,jVi-1,j Vi+1,j

Vi,j-1

Vi,j+1

Vi,jVi-1,j Vi+1,j

Figure 5.12: A possible correct order of element updates for different stencils. A
computation order is indicated by numbers. Equal numbers denote elements which can
be computed in parallel.

order of evaluation was defined for commonly used stencils. Although this approach

allowed to hide stencil-dependent data from the user, it only supported stencils that

were already in the database. It was quite easy to add further stencils, nevertheless it

weakened the promise of a declarative library. For the current prototype, we implemented

the automatic deduction of block dependencies as well as the deduction of a correct order

of element updates from a given stencil. In the following we first describe the automatic

dependency computation for the block order and then briefly explain the approach for

their respective elements. As you will see, these two approaches are quite similar.

Dependency Computation for Blocks

The dependency computation for blocks is used in two cases. First, initial blocks have to

be computed. These blocks are processed at the beginning of an iteration (see Figure 5.8

on page 118, 3). Second, after a block has been processed, dependent blocks have to be

determined to check if these can be processed in turn (see Figure 5.10 on page 119, 4).

In both cases, the same approach is used.

The block dependency computation has to take into account only dependencies of

the current iteration, i.e. dependencies whose first coordinate is 0. Blocks, respectively

their elements, from previous iterations can always be referred to and thus do not induce

any dependency. The subset of a stencil S with this property also defines a stencil: we

call this subset current S. For example, the current Gauss-Seidel stencil is

s t e n c i l = −− cur r ent Gauss−S e i d e l s t e n c i l

[[−1 , 0] : : Dependency

, [0 , −1]] : : S t e n c i l

122

5.3. Implementation

By comparison, the current Jacobi stencil is [] :: Stencil, since none of the depen-

dencies refer to the current iteration.

Initial Block Computation. To determine initial blocks, the following procedure is

applied to every block of the grid (see Figure 5.13): First, the coordinates of the boundary

elements of each block are computed. For each of these coordinates, the stencil is applied.

A block is an initial block, if the stencil’s application results in a coordinate which is

outside the grid’s dimension. Element values at these coordinates have to be predefined

by the problem definition.

b) c)

valid reference
invalid reference

border element

invalid border
element

initial blocks

a)

2D 3D

Figure 5.13: Illustration of initial block computation. a) Boundary elements for a two-
dimensional block and isometric view of some boundary elements for a three-dimensional
block. b) All boundary elements in a 9×9 grid with blocks of size 3×3 c) Magnification
of the dashed area. For each boundary element, dependencies are shown for a current
Gauss-Seidel stencil. The blocks surrounded by the red line are initial blocks.

Continuing our running example, we show that block A from Figure 5.7 on page 117

is an initial block with respect to a current Gauss-Seidel stencil. However, this is not

the case for block B from the same figure. The coordinates of the boundary elements for

each of the two blocks are

eleA = [(0 , 0) , (0 , 1) , (1 , 0) , (1 , 1)]

e leB = [(2 , 2) , (2 , 3) , (3 , 2) , (3 , 3)]

If the stencil is applied to each dependency separately, the referred coordinates of each

boundary element are

appA = [(−1 , 0) , (−1 ,1) , (0 , 0) , (0 , 1) −− f o r [−1 ,0]

, (0 ,−1) , (0 , 0) , (1 ,−1) , (1 , 0)] −− f o r [0 ,−1]

appB = [(1 , 2) , (1 , 3) , (2 , 2) , (2 , 3) −− f o r [−1 ,0]

, (2 , 1) , (2 , 2) , (3 , 1) , (3 , 2)] −− f o r [0 ,−1]

Some coordinates in appA are negative and thus outside the grid’s dimension. Thus

block A is an initial block. In contrast, the coordinates in appB are all inside the grid’s

dimension. Hence dependencies of B’s boundary elements can be fulfilled and B is not

an initial block.

123

5. Declarative Description and Parallelization of Stencil Computations

Dependent Block Computation. Dependent blocks of a block (called source block)

are computed in two steps: stencil inversion and block computation. In the first step,

the current stencil is inverted. For that purpose, all elements of each dependency are

multiplied by −1 which inverses their respective direction. For example, the inverted

current Gauss-Seidel stencil is

−− i nve r t ed cur r ent

−− Gauss−S e i d e l s t e n c i l

s t e n c i l =

[[1 , 0] : : Dependency −− (1)

, [0 , 1]] : : S t e n c i l −− (2)

In the second step, the inverted stencil is applied to the source block to compute the

coordinates of dependent blocks. For each dependency of the inverted stencil, the source

block coordinates are translated into the respective direction (see Figure 5.14). This

approach results in the dependent blocks. Invalid blocks, i.e. those with coordinates

outside the grid’s dimension, are filtered.

a) b)

p1 = x1 + lx .
p2 = x2 + lx .
p3 = y1 + ly .
p4 = y2 + ly .

Dependency
set

Original
stencil

Inverted
stencil

{ , }

p1 p2

p3

p4

x1 x2y1

y2

}lx

}
ly

Computed
dependent block

Source block

Figure 5.14: Exemplary computation of block dependencies. a) A current Gauss-Seidel
stencil, its inversion and the subset of the stencil dependencies. b) Illustration of the
computation to determine the respective dependent blocks.

For example, for a source block A = [(0,1), (0,2)] and a block size of 2 × 3 (for

the purpose of a clearer illustration we deviate from the usual 2×2 blocksize), dependent

blocks are

−− Using (1) , i . e . [−>, V] = [1 , 0]

−− x−coo rd ina t e s :

−− l x = 2

−− −> = 1

−− p x1 = 0 + l x ∗ −> = 2

−− p x2 = 1 + l x ∗ −> = 3

124

5.3. Implementation

−− y−coo rd ina t e s :

−− l y = 3

−− V = 0

−− p y1 = 0 + l y ∗ V = 0

−− p y2 = 2 + l y ∗ V = 2

B1 = [(2 , 3) , (0 , 2)]

−− Using (2) , ana logous ly

B2 = [(0 , 1) , (3 , 5)]

Element Order Computation

Figure 5.12 on page 122 showed examples for a correct evaluation order of of block

elements. Since this order depends on the stencil it has to be computed at runtime. For

each block the following two steps are performed, which are similar to the dependent

block computation (see Figure 5.10 on page 119).

First, the valid boundary of a block is computed. This is a set of positions (called

valid positions), which are closest to the block’s boundary but do not have dependencies

outside the grid. By using the valid positions, the initial positions are determined. An

initial position is a valid position which does not have a dependency to other valid

positions (see Figure 5.15). In the second step, initial positions are stored in a queue

and processed successively: For each position, its dependent positions are determined by

applying the inverted stencil. For each such position it is checked if all its dependencies

are fulfilled. If that is the case, the particular position is added to the queue. The

computation is finished, if the queue is empty, hence all reachable positions have been

computed and are stored. The correct order of the positions is stored in a BlockArray

and is accessed when a block is updated in phase II.

valid positions /
valid boundary
invalid position

initial positions
(no dependencies to
other valid elements of
the block)

a) b)

Figure 5.15: Illustration of valid, invalid and initial positions for a 9×9 grid and a block
size of 3 × 3. a) For the current Gauss-Seidel stencil b) For the current left-referencing
stencil (see Figure 5.12 on page 122).

125

5. Declarative Description and Parallelization of Stencil Computations

5.4 Benchmarks

We performed our experiments on a 2.3 GHz 16-core AMD Opteron 6134 with 32 GB

RAM running a Linux-kernel 2.6.38-8 with GHC 7.0.3. We ran each benchmark three

times from one to sixteen cores. The mean value was used for speedup calculation. In

contrast to other chapters we did not compare the parallel version to a sequential ver-

sion but to our implementation running on a single core: Any sequential version that

implements only one stencil-based algorithm will be more efficient than our implemen-

tation since it is less general. Therefore such a comparison would favor the sequential

version. We chose the grid sizes so that the absolute runtime on sixteen cores was about

30 seconds.

We tested our implementation with the Jacobi stencil as well as the Gauss-Seidel

stencil. Since the results were similar, we do not present results of benchmark runs of

similarly structured stencils, e.g. for image processing [118].

5.4.1 Jacobi Stencil

For benchmarking a Jacobi-Stencil we chose a two-dimensional grid with dimensions

400 × 400 and an ε-based convergence criterion of ε = 0.1. Until the convergence cri-

terion was reached, 243 iterations had to be calculated. The Jacobi stencil allows to

examine the scalability of a stencil which has no dependencies on elements of the current

iteration. Hence, all blocks can be computed in parallel. The benchmark result is shown

in Figure 5.16.

Compared to our published paper, speedup results were similar and we could also

measure speedup beyond eight cores. Similar to other benchmark results in this thesis,

we achieved a typical speedup curve and reached a maximum speedup of nearly 10 when

using 16 cores.

5.4.2 Gauss-Seidel Stencil

Compared to the Jacobi stencil, the Gauss-Seidel stencil limits the available maximal

parallelism. This stencil induces dependencies for its left and upper elements of the

current iteration. This causes dependencies between blocks which limits the possible

scalability. Besides using the Gauss-Seidel stencil, all other parameters of the previous

benchmark were taken. The speedup graph is presented in Figure 5.17 on page 128.

For up to 8 cores the speedup is similar to the previous benchmark. However, as

expected the block dependencies reduce the maximal available parallelism and thus the

speedup.

126

5.5. Related Work

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

50

100

150

200

250

Speedup

Time

Linear

Threads

Sp
ee

du
p

T
im

e
(s

)

9.24

6.89

Figure 5.16: Speedup graph and absolute computation times for voltage diffusion
simulation with a Jacobi-stencil on a 400× 400 grid and ε = 0.1.

5.4.3 Summary

In this section we illustrated the results of speedup benchmarks for two commonly used

stencils. The results show a reasonable scalability of this particular execution platform.

Note that the absolute performance of the execution platform is not optimal yet. It

is well known that list-based computations in Haskell have a huge overhead compared

to fixed-size data types. Compile time optimizations, as for example applied in [118],

might enable a better absolute performance.

5.5 Related Work

Stencil-based calculations are one of the key patterns in scientific computing [10]. For this

reason, much research has been done to describe stencils and stencil-based algorithms

as well as to improve their performance by using parallelization. Traditionally, stencil

algorithms are written in C/C++[207] and parallelized using OpenMP for shared- and

MPI for distributed-memory architectures. For example, the C++-framework Janus by

Gerlach et al. [61] provides a template-based system to express (among other mesh-like

structures) stencil-based calculations and to calculate them in parallel using both MPI

and OpenMP.

127

5. Declarative Description and Parallelization of Stencil Computations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

50

100

150

200

250

Speedup

Time

Linear

Threads

Sp
ee

du
p

T
im

e
(s

)

7.28

6.13

Figure 5.17: Speedup graph and absolute computation times for voltage diffusion
simulation with a Gauss-Seidel stencil on a 400× 400 grid and ε = 0.1.

Outside Haskell, the general idea of providing a high-level framework for parallel

stencil calculations is an active research topic: Dursun et al. describe a parallel frame-

work that uses different levels of parallelization which depend on the given stencil to

provide an efficient parallel calculation [46]. Kaushik et al. demonstrate how an opti-

mization strategy for a stencil can be determined automatically [40]. Christen et al. go

even further by describing a domain specific language and a compiler which generate

optimized code to compute stencils using OpenMP and CUDA [30]. These ideas are

quite promising and interesting, especially with a purely declarative stencil description

which can guide the optimizations as well as the compilation.

Another approach to parallel stencil calculation are by using novel high-level pro-

gramming languages, like Chapel[26], Fortress[3], or SAC [67], which provide automatic

parallelization of array-based operations. For stencils without dependencies to the cur-

rent iteration this is a viable approach. For example, Barret et al. describe how to

implement stencil algorithms in Chapel using seemingly sequential code [12]. In such

high-level languages stencil calculations are easy to express. Thus they are an interesting

alternative to our description, although they limit the possibilities of stencil-dependent

optimizations.

128

5.6. Summary and Conclusion

Since our first paper has been published in 2010, the interest for stencil-based compu-

tations in the Haskell community has risen. Orchard describes a graphical approach to

define one- and two-dimensional stencils called Ypnos [155]. It allows to describe stencils

and their dependencies visually in source code. It does not provide a parallel execution

platform. Although our library allows a convenient description of multi-dimensional sten-

cils it is still in a prototypical state. For high-performance computations with arrays,

there is the parallel array library REPA [118]. In particular, Lippmeier et al. describe a

similar declarative approach for stencil algorithms by means of REPA [128]. While the

approach is not as flexible as our library regarding the handling of convergence condi-

tions, benchmarks using stencils for image processing show a performance comparable

to the industry standard image library OpenCV.

5.6 Summary and Conclusion

In this chapter we have shown how to define general stencil-based algorithms in Haskell

and how to execute them in parallel by means of Concurrent Haskell. Our contributions

are twofold. First, we introduced types and a list-based notation which allow a flexible

and yet concise and understandable formulation of n-dimensional stencil problems. Our

notation should feel natural to most Haskell developers, since lists are one of Haskell’s

main data structures. In particular, our approach allows for the fully declarative for-

mulation of stencil problems: besides stating the problem, i.e. dependencies, initial grid

values, and grid dimensions, no further information is necessary. Second, we described

the implementation of a prototypical platform that allows the parallel computation of

the declaratively described stencil problem. To briefly state our results, for stencils that

do not refer to elements of the current iteration (e.g. Jacobi stencil), speedup is about

9.2 for 16 threads. For stencils with such dependencies (e.g. Gauss-Seidel), speedup is

about 7.2 for 16 threads. To summarize, we have shown that stencil computations can

be fully described declaratively in Haskell in an idiomatic way. Although our execution

platform is just a prototype it shows that a scalable implementation for parallel stencil

computations by means of Concurrent Haskell is possible.

As far as abstraction is concerned, we have shown that complex details of parallel

programming can be hidden from the user by providing a declarative interface. In

general, a declarative approach for a well-defined problem domain does not only free

the user from handling unnecessary details but also allows for more freedom regarding

problem-specific optimizations.

129

5. Declarative Description and Parallelization of Stencil Computations

130

Chapter 6

Describing and Executing

Graph Algorithms

Graph algorithms have fundamental applications in the real world but

can be both cumbersome to implement in traditional languages and

difficult to execute efficiently on modern multicore hardware. The

Bulk Synchronous Parallel model of computation allows for the def-

inition of vertex-centric computations on graphs. In this chapter we

describe an embedded domain specific language for specifying such al-

gorithms, and show an implementation of an execution platform that

allows to execute them on multicore systems in parallel. We provide

several examples which demonstrate that the EDSL allows for a con-

cise yet understandable formulation of graph algorithms.

131

6. Describing and Executing Graph Algorithms

6.1 Introduction

Graph algorithms such as finding shortest paths, clustering or matching have fundamen-

tal applications in the real world. It can be quite challenging for non-experts to write

and optimize them, in particular on multicore hardware [66].

A new approach to implement graph algorithms is based on Valiant’s Bulk Syn-

chronous Parallel (BSP) model of computation [200, 201]. BSP models a concurrent

computation as a set of independent processing nodes with local state that communicate

solely by explicit message passing. This model has recently been adapted to support

a new vertex-centric approach for graph algorithms called Pregel [133]. In Pregel, an

algorithm performs local (sub)computations for each vertex: these computations do not

have direct access to the whole graph structure but only to the local vertex state, a

list of the vertex’ neighbors and received messages. Pregel uses C++ as the underlying

description language and defines a class Vertex which methods are overwritten to im-

plement the actual vertex behavior. In our opinion, the usage of C++ has drawbacks

for both users and implementators of the system. For users, concepts like iterators and

inheritance are rather unintuitive in the context of graph algorithms. For implementa-

tors, problem-specific optimizations are difficult, since the vertex-centric C++-code can

involve arbitrary functions. A solution to both problems is to restrict the description of

graph algorithms to a small sublanguage.

Domain specific languages (DSLs) are a well-known software-engineering concept to

describe solutions or problems in a restricted domain [56]. Successful examples of DSLs

are Verilog for hardware design [196] and SQL for databases [34]. For DSL users, the

reduced vocabulary is more intuitive and makes development less error-prone. For imple-

mentators, DSLs offer potential for efficient implementation, since boundary conditions

and particular features of the problems are known in advance and can be used for opti-

mizations such as parallelization on shared-memory multicore machines. Although DSLs

have both theoretical and practical advantages, e.g. are easier to prove for correctness

and are self-documenting, they are seldom developed from scratch. The implementation

of a compiler as well as the whole ecosystem that a modern language offers (debuggers,

profilers and libraries) is rarely justified. Instead, modern DSLs are typically embedded

into a host language, which provides the underlying infrastructure. These DSLs are

called Embedded Domain Specific Language (EDSL). Haskell is well-suited as a host

language due to its high degree of abstraction [98] such as support for higher-order func-

tions and monads. Successful Haskell EDSLs have been developed for hardware design

[4], programming GPUs [48], describing graphics [49] and financial contracts [115].

132

6.1. Introduction

In this chapter we combine the advantages of an EDSL and the ideas of the bulk

synchronous parallel model and Pregel (see Figure 6.1). We call our combination of the

language and its execution platform Palovca for PArallel LOcal Vertex Calculations in

hAskell. Our contributions are

• The definition of an embedded domain specific language to describe vertex-centric

graph algorithms and an evaluation of Haskell’s suitability as a host language for

this purpose.

• The implementation of an execution platform that runs on shared-memory mul-

ticore systems. It is based on explicit concurrency, i.e. manual synchronization

through locking and explicit thread control.

• An experimental investigation of the platform with various benchmarks.

To summarize our results, the expressiveness of the EDSL is high and allows a concise and

comprehensible formulation of vertex-centric algorithms. Our experiments have shown

that the implementation scales very well. Depending on the particular graph, its edge

distribution and the computational load per vertex, we achieve speedups between 9 and

11 with 16 threads.

Bulk synchronous parallel model

EDSL

Parallel execution platform
(shared memory)

Palovca}
Figure 6.1: Overview of Palovca.

The rest of this chapter is structured as follows. Section 6.2 describes Palovca’s

underlying computational model. Section 6.3 shows its syntax and examples of vertex-

centric algorithms and their implementation in Palovca. Section 6.4 describes the im-

plementation of the language and execution platform in detail. Section 6.5 explains our

benchmarks and discusses the experimental results. In Section 6.6 we review related

work and Section 6.7 contains a summary and a conclusion.

133

6. Describing and Executing Graph Algorithms

6.2 Palovca’s Computational Model

In this section we briefly introduce the BSP model and show how it can be applied to

directed graphs. To keep the presentation simple we only give an informal description

and refer to [133, 200, 201] for formal definitions.

6.2.1 The Bulk Synchronous Parallel Model of Computation

The BSP model that Palovca is based on independent processing nodes and message

passing as its core concepts [200, 201]. A BSP computation is divided into a sequence

of discrete steps called supersteps (see Figure 6.2). In each superstep nodes work inde-

pendently and are allowed to

1 perform computations on their local data

2 receive messages sent in the previous superstep

3 send messages to other nodes

These three operations can be arbitrarily interleaved. Each superstep finishes with a

barrier that guarantees that all operations of the previous superstep have finished. In

particular, all messages sent in superstep n are delivered and may be retrieved in super-

step n+ 1.

1

Superstep n

2 3 1

Superstep (n + 1)

2 3

Message from the
previous superstep
Message to the
next superstep
Node with computation

Barrier

... ...

Figure 6.2: Visualization of superstep-based computation in the BSP model.

An advantage of BSP is its conceptual simplicity. By restricting communication to

message passing, synchronization problems such as race conditions and deadlocks do

not occur. By allowing solely computations on local data, modularity is enforced. In

particular, developing algorithms as well as reasoning about their properties becomes

easier.

134

6.3. An EDSL for Vertex-Centric Graph Algorithms

6.2.2 Graphs and BSP

The central idea behind Pregel and Palovca is the application of BSP to graph prob-

lems by mapping vertices and edges to components in the BSP model. We call graph

algorithms in this model vertex-centric algorithms. The mapping is as follows: Vertices

correspond to nodes and (directed) graph edges define the source and destination for

messages. A message sent from a vertex is delivered to all vertices that are connected

to the source vertex by an edge (see Figure 6.3).

A

B

C

a) b)
A

B

C

... ...

Figure 6.3: Example: a) source graph with 3 connected vertices b) BSP-based model
of the source graph showing a single superstep with computations and communications.

To handle termination, each vertex is in one of two activity states, active or inactive.

Initially all vertices are active and run the vertex computation. In each superstep, a

vertex can switch to the inactive state and is only reactivated by receiving new messages

in the following superstep. When all vertices are inactive, the computation is finished.

With this approach, graph algorithms can be expressed quite elegantly, in particular

with the Palovca language, as will be shown in the following section. Moreover, we show

in Section 6.5 that it also allows for an efficient parallelization.

6.3 An EDSL for Vertex-Centric Graph Algorithms

In the following we describe the syntax and core functions of the EDSL. Several examples

of well-known graph algorithms formulated with the vertex-centric paradigm illustrate

that the syntax is concise but easy to understand. We focus on directed graphs whose

vertices as well as edges can be tagged with values.

6.3.1 The Palovca language

A major design requirement for the Palovca language was to allow a concise yet under-

standable formulation of vertex-centric algorithms. Therefore many functions typical for

graph algorithms and BSP are part of the language, e.g. size to get the number of ver-

tices in the graph, or step to get the number of the current superstep, with supersteps

being numbered 0, 1, . . .

135

6. Describing and Executing Graph Algorithms

The language is internally based on a type that describes graphs (Graph), and a

custom monad (GraphM) that handles the global state and the local vertices’ states.

Both have type parameters v, e and m for the local vertex value, the edge values and

the value of the messages, respectively. All types need to be instances of NFData (see

Section 6.4) but we omit that in nearly all type signatures for conciseness. An initial

graph is typically created by calling one of the file-based input functions mentioned

below. Palovca only supports directed graphs, although undirected graphs can easily be

created by inserting symmetrical edges. A calculation with a graph is expressed with

the function

run :: Graph v e m -> GraphM v e m () -> IO ().

It receives a graph and a function working in the GraphM monad as parameters. The

function is executed for each active vertex (in accordance with the computational model

mentioned in the last section) until all vertices are inactive.

Figure 6.4 gives an overview of core functions. The local vertex state is accessible and

modifiable by the get and set functions, respectively. A graph-wide unique identifier for

each vertex is obtained by identifier. A vertex switches to inactive by calling halt.

The number of connected vertices (neighbors) is obtained by neighbors. Messages

sent in the previous superstep are obtained by calling messages, messages for the next

−− Graph query
s i z e : : GraphM v e m Int

s tep : : GraphM v e m Int

−− Vertex m o d i f i c a t i o n s
modi fyVert i ce s : : Graph v e m −> GraphM v e m () −> IO ()

−− Vertex l o c a l s t a t e
i d e n t i f i e r : : GraphM v e m Index −− type Index = Int
get : : GraphM v e m v
s e t : : v −> GraphM v e m ()
ha l t : : GraphM v e m ()

−− Message pas s ing
messages : : GraphM v e m [m]
send : : m −> GraphM v e m
sendEdges : : (e −> m) −> GraphM v e m ()
ne ighbors : : GraphM v e m Int

Figure 6.4: Overview of core functions in Palovca.

136

6.3. An EDSL for Vertex-Centric Graph Algorithms

superstep are sent by send and sendEdges. While send sends the same message to all

neighbors, sendEdges allows to modify the message with respect to the edge value of

each particular neighbor.

For file-based input we defined a data format that specifies the vertex value, its

neighbors and their possible edge values (see Figure 6.5). Parsers for frequent types

are predefined in Palovca. Moreover, adding own parsers to support arbitrarily complex

graphs and vertex and edge values is easily possible.

a) b)
0 1.0 1,1
1 2.0 0,2
2 0.1 0,-1 3,0.4
3 0.2

02

13

0.1 1

20.2

12
0.4

-1

Figure 6.5: Example: a) source graph. Blue numbers denote vertex values, and green
numbers edge values. b) definition of this graph in a Palovca-supported format.

Some algorithms use a global convergence criterion to check for termination. In addi-

tion, collecting statistical data between supersteps might be useful. Therefore, Palovca

supports aggregators (see Figure 6.6 and Figure 6.7 on page 138): In each superstep a

vertex can send a value to an aggregator with aggregate (1). To reduce the number of

type parameters, the aggregated value must currently have the same type as the vertex

value. All aggregated values of a superstep are combined to a single value using a previ-

ously defined aggregator function (2). The new value is available in the next superstep

and accessible by calling aggregator (3).

Other algorithms, e.g. clustering or matching, need to change the graph topology.

Our current version of Palovca supports adding and removing edges, and adding new ver-

Sending value for aggregation

Value from one node
Combined aggregated value
(available in the next superstep)

f Aggregation function

Aggregated values

2
3

...
1

...

f

Figure 6.6: Visualization of the aggregation function.

137

6. Describing and Executing Graph Algorithms

setAggregator : : Graph v e m −> ([v] −> v) −> IO ()
aggregate : : v −> GraphM v e m ()
aggregator : : GraphM v e m v

Figure 6.7: Aggregator functions for global communication between supersteps.

tices. Moreover, Palovca contains various functions that ease the formulation of vertex-

centric graph algorithms such as selective sends and random neighbor selection.

In the following we describe several examples of vertex-centric algorithms and show

their concise and understandable implementation in our EDSL. The examples serve as

an introduction to the Palovca EDSL as well as a general introduction to vertex-centric

algorithms.

6.3.2 Example: Pagerank

The pagerank algorithm [18] is widely known for being the foundation of the Google

search engine: the pagerank of a webpage is a numerical value that is the higher the more

pages point to it. In our modeling of this scheme vertices stand for pages, and edges

denote links. An example is shown in Figure 6.8. The formulation of this algorithm in

Palovca is shown in Figure 6.9 and the C++-based Pregel version is shown in Figure 6.10.

a)
0.083

0.0375

0.053

0.0375

b)0.25 0.25

0.250.25

Figure 6.8: Visualization of the a) initial state and b) final state of the pagerank
computation. Larger radiuses denote larger pagerank values for the example graph.

Both vertices and messages are of type Double and edges are of type None (a type

synonym for ()), i.e. do not store any value. Each vertex state is initialized with 1
N

where N denotes the size of the graph. In each superstep the new pagerank for each

vertex is computed and distributed: First, a vertex collects all weights from its incoming

neighbors with the messages function. Second, it accesses the graph size with size

and updates its new pagerank with the shown formula using set. Third, the vertex

distributes its updated value to its outgoing neighbors. The calculation stops after a

given number of calculation steps. A nice property of having a lazy host language is

138

6.3. An EDSL for Vertex-Centric Graph Algorithms

pagerank : : GraphM Double None Double ()
pagerank = do

msgs <− messages
s <− s i z e
let value = 0.15 / (toEnum s) + 0 .85 ∗ (sum msgs)
s e t va lue

s <− s tep
if s < 30

then do

n <− ne ighbors
send (va lue / toEnum n) −− (∗)

else ha l t

Figure 6.9: The pagerank algorithm in the Palovca EDSL.

class PageRankVertex : public Vertex<double , void , double> {
public :

virtual void Compute (Message I t e ra to r ∗ msgs) {
if (super s t ep () >= 1) {

double sum = 0 ;
for (; ! msgs−>Done () ; msgs−>Next ())

sum += msgs−>Value () ;
∗MutableValue () = 0.15 / NumVertices () + 0 .85 ∗ sum ;

}

if (super s t ep () < 30) {
const i n t64 n = GetOutEdgeIterator () . s i z e () ;
SendMessageToAllNeighbors (GetValue () / n) ;

} else {
VoteToHalt () ;

}
}

Figure 6.10: The pagerank algorithm in C++ using the Pregel API [133].

shown at (*): we do not need to check that the number of neighbors (n) is non-zero. If

it is zero, no messages are sent and the division is never evaluated.

139

6. Describing and Executing Graph Algorithms

6.3.3 Example: Single source shortest path

Finding the shortest path between vertices in a graph is one of the most important

real-world applications of graph theory [36]. In the single-source shortest-path (SSSP)

problem we want to find the shortest path between a single source and every other vertex.

An example is shown in Figure 6.11.

1) ∞

0 ∞

∞

∞ ∞

2) 1

0 1

∞

∞ ∞

3) 1

0 1

2

2 ∞

4) 1

0 1

2

2 3

5) 1

0 1

2

2 3

active vertex

inactive vertex

message send
connected

Figure 6.11: Visualization of the single source shortest path algorithm. All edges have
the value 1. The computation stops after five steps since all vertices are inactive.

The vertex-centric formulation of this algorithm is shown in Figure 6.12 and works

as follows. Vertex value, edges and messages are of type Double. The value defines the

distance from the source and is initially set to 1e30 (denoting infinity). In an initialization

phase that precedes the execution of the run-function, all vertices except the source

vertex (here the vertex with identifier 0) are set inactive using modifyVertices. In each

superstep all active vertices receive messages from their incoming neighbors that denote

the minimal distances of these neighbors to the source vertex. The minimal value of

the distances is compared to the currently stored one: if it is smaller, the stored one is

updated and sent to each outgoing neighbor, which reactivates them. When all vertices

are inactive, the computation is finished.

6.3.4 Example: Semi-Clustering

Our third example is a semi-clustering algorithm [133]. It greedily divides an undirected

graph with weighted edges into a set of Cmax sub-graphs (clusters) with a maximum of

Vmax vertices in each. In contrast to traditional clustering problems, vertices can belong

to more than one cluster. Semi-clusters in this example are chosen such that their score

Sc =
Ic − fBBc

Vc(V c−1)
2

140

6.3. An EDSL for Vertex-Centric Graph Algorithms

s s sp : : GraphM Double Double Double ()
s s sp = do

i <− i d e n t i f i e r
let d i s t = if i == 0 then 0 else 1e30 −− 1e30 as i n f i n i t y

minVal <− (minimum . (d i s t :)) ‘ liftM ‘ messages
cur <− get
when (minVal < cur) $ do

s e t minVal
sendEdges (minVal+)

ha l t

main : : IO ()
main = do

−− I n i t i a l i z a t i o n phase
g <− <graph reading>
modi fyVert i ce s g $

i <− i d e n t i f i e r
when (i > 0) ha l t

run g s s sp

Figure 6.12: The SSSP algorithm in the Palovca EDSL.

0 1

2 3

45

2

3 1

2 4

c)

3.70

1.97

2.700 1

2 3

45

2

3 1

2 4

b)

3.70

2.700 1

2 3

45

2

3 1

2 4

a)

Figure 6.13: Examples of different semi-clusters for Vmax = 3 and fB = 0.1. The semi-
clusters are colored and their respective value is labeled. a) initial graph b) semi-clusters
for Cmax = 2 c) semi-clusters for Cmax = 3.

is maximized. Here, Ic denotes the sum of all internal edges, Bc the sum of boundary

edges, Vc the number of vertices in the cluster and fB a user-specified score factor.

Figure 6.13 shows examples of different semi-clusters.

The general idea of the algorithm is that each vertex contains a list of local best

semi-clusters which is distributed to all neighbors in each superstep. At the beginning of

each superstep, each vertex receives a list of the best semi-clusters of its neighbors and

adds itself to these if possible. It computes the best scoring Cmax local semi-clusters and

redistributes them to all its neighbors.

141

6. Describing and Executing Graph Algorithms

Each vertex’ local value (type Value) stores a list of semi-clusters with their respective

score whereby a semi-cluster is a list of the unique identifiers of the contained vertices:

1 type Value = [SemiCluster]

2 type SemiCluster = (Score , [Index])

3 type Score = Double

4 type C = GraphM Value Double Value

The type Index allows to refer to a particular vertex and the type C shortens type

annotations. In an initialization phase (not shown here) the local list of each vertex V

contains a single semi-cluster with V itself and a score of 1. This semi-cluster is sent

to all neighbors of V . In the beginning of each superstep each vertex V receives its

messages. Each message contains a list of semi-clusters. This list is partitioned into

those clusters which already have Vmax elements or have V already included (rest) and

the others (add):

5 c a l c : : Int −> Int −> Double −> C ()

6 c a l c cmax vmax fb = do

7 sc <− messages

8 i <− i d e n t i f i e r

9 let notInc luded =

10 \(, c) −> not (i ‘elem ‘ c) && (length c < vmax)

11 (add , r e s t) = partition notInc luded (concat sc)

The score of those semi-clusters which could still include V (add) is updated by adding V ;

we do not show the implementation of updateScore since it contains mostly numerical

computations:

12 edges <− ne ighbourL i s t

13 let add ’ = map (updateScore i edges) add

The function neighbourList :: GraphM v e m [(Index, e)] returns a list of each

neighbor with its corresponding edge value. After adding the updated semi-clusters to

the local state, it contains the Cmax best scoring semi-clusters:

14 known <− get

15 let containingMe = known ++ add ’

16 g l o b a l = take cmax

17 $ reverse

18 $ sortBy (compare ‘ on ‘ fst)

19 $ nub ’ (containingMe ++ r e s t ++ add)

142

6.3. An EDSL for Vertex-Centric Graph Algorithms

20 s e t containingMe

The function nub’ is similar to the library function Data.List.nub [91], i.e. it removes

duplicate elements from a list. nub’ compares the list of semi-clusters to determine if

two list elements are equal. Since rounding errors can occur, only the vertex indices and

not the scores are compared:

nub ’ : : [SemiCluster] −> [SemiCluster]

nub ’ = nubBy (\ a b −> snd a == snd b)

The computation is finished after a given number of supersteps and the semi-clusters of

the first vertex can be collected by accessing the aggregator value. When the computation

continues, this vertex’ local best semi-clusters are sent to all neighbors to be processed

in the next superstep:

21 s <− super s t ep

22 if (s < 10)

23 then send g l o b a l

24 else do

25 ha l t

26 when (i == 0) $

27 aggregate g l o b a l

Other approaches for termination are also possible, e.g. when the list of the best semi-

clusters stops changing. This can be checked by using the aggregator to compare the local

best semi-clusters of all vertices. We omit this approach to simplify the presentation.

6.3.5 Example: Bipartite Matching

In this section we consider bipartite graphs, i.e. undirected graphs with two distinct sets

L and R of vertices. Edges exist only between vertices of the sets. A matching is a

subset of all edges such that no two edges share a common endpoint (see Figure 6.14 on

page 144). In a maximal matching the subset of found edges is maximal, i.e. by adding

another edge an endpoint would be shared [41]. A bipartite matching algorithm deter-

mines such a matching. In this section we present the Palovca version of a randomized

maximal matching algorithm [7].

The algorithm is iterative and each iteration consists of phases 0,1,2 and 3 (see

Figure 6.15 on page 144). In the first phase all non-matched vertices in L send a request

to be matched to their connected vertices from set R and vote to halt. In the second

phase, each vertex in R which is not yet matched randomly chooses one of the received

143

6. Describing and Executing Graph Algorithms

L

0

3

2

1

R

4

6

7

5

a) L

0

3

2

1

R

4

6

7

5

b) L

0

3

2

R

6

7

5

4

1

c)

Figure 6.14: Examples of different bipartite matchings. a) initial graph b) a maximal
matching c) another maximal matching. If the red edge would be omitted, the matching
would be not maximal.

L

0

3

2

1

R

4

6

7

5

Phase 0
Request match

L

0

3

2

1

R

4

6

7

5

Phase 1
Send Acknowledgment

 and Deny messages

L

0

3

2

1

R

4

6

7

5

Phase 2
Send acceptance

message

L

0

3

2

1

R

4

6

7

5

Phase 3
Store match

Figure 6.15: Visualization of the four phases in the bipartite matching algorithm. The
active vertices of the graph are marked with a yellow box, the inactive vertices with a
white box. Note that this example shows the ideal case in which no second iteration is
needed.

requests. It sends an acknowledgment message to the vertex of the chosen request and

sends denial messages to the sources of all other requests. In the third phase each

unmatched vertex in L randomly chooses one of the received acknowledgment messages,

sends one acceptance message, and votes to halt. In the fourth phase each unmatched

vertex in R may receive an acceptance message. In this case, it stores its match and votes

to halt. These four phases are repeated until all vertices of both sets have been matched

or no further match is possible. In the following we show the Palovca implementation of

this algorithm.

144

6.3. An EDSL for Vertex-Centric Graph Algorithms

The local data of a vertex consists of the set it is in and a possible match:

1 data Value = Value {
2 inSet : : Set

3 , matchState : : Status

4 }
5

6 data Set = L | R

7 data Status =

8 Matched Index

9 | Unmatched

According to the description of the algorithm, four different types of messages are pos-

sible:

10 data Message =

11 RequestMatch Index −− send from L

12 | Accept Index −− send from L

13 | Ok Index −− send from R

14 | Deny −− send from R

To distinguish between the different phases, we compute the superstep modulo 4, i.e.

the computation is in one of the phases 0, 1, 2 or 3. With the computed phase a helper

function inPhase is called:

15 c a l c : : GraphM Value None Message ()

16 c a l c = do

17 phase <− (‘ mod ‘ 4) ‘ liftM ‘ super s t ep

18 inPhase phase

19 where inPhase : : Int −> GraphM Value None Message ()

Phase 0. Vertices in L send a message RequestMatch with their identifier to all con-

nected vertices (which are in R):

20 inPhase 0 = do

21 va l <− get

22 −− Only work on unmatched v e r t i c e s from L .

23 when (va l == Value L Unmatched) $ do

24 i <− i d e n t i f i e r

25 send (RequestMatch i)

26 ha l t

145

6. Describing and Executing Graph Algorithms

Note that pattern matching in Haskell allows a concise and understandable formulation

to chose only unmatched vertices in L.

Phase 1. Unmatched vertices in R randomly choose a vertex and send an acceptance

message.

27 inPhase 1 = do

28 va l <− get

29 when (va l == Value R Unmatched) $ do

30 msgs <− messages

31 ok <− random (0 , length msgs − 1)

32

33 me <− i d e n t i f i e r

34 forM (zip [0 . .] msgs) $ \(i ,m) −> do

35 let RequestMatch d = m

36 if i == ok

37 then sendTo d (Ok me)

38 else sendTo d Deny

39 ha l t

The function sendTo allows to selectively send a message to a particular vertex and

random returns a random number in the given interval.

Phase 2. Unmatched vertices in L receive messages sent by vertices inR in the previous

phase. In case of an acceptance message, an acknowledgment message is sent and the

local state is changed:

40 inPhase 2 = do

41 va l <− get

42 when (va l == Value L Unmatched) $ do

43 let accept m = case m of

44 Ok −> True

45 −> False

46 msgs <− filter accept ‘ liftM ‘ messages

47 unless (null msgs) $ do

48 ok <− random (0 , length msgs − 1)

49 let Ok a = msgs ! ! ok

50 me <− i d e n t i f i e r

146

6.4. Implementation

51 sendTo a (Accept me)

52 s e t (Value L (Matched a))

53 ha l t

Phase 3. Unmatched vertices in R wait on acceptance messages and set their local

state accordingly:

54 inPhase 3 = do

55 va l <− get

56 when (va l == Value R Unmatched) $ do

57 msgs <− messages

58 unless (null msgs) $ do

59 let [Accept a] = msgs

60 s e t (Value R (Matched a))

61 when (inSe t va l == R) ha l t

6.4 Implementation

In this section we describe the implementation of the EDSL and its parallelization by

means of Concurrent Haskell. The presentation is occasionally simplified for conciseness.

6.4.1 Implementing Palovca in Haskell

The two most important types of Palovca are Graph for graphs, and Vertex for single

vertices (see Figure 6.16 on page 148). As already stated in Section 6.3.1, all type

variables need to be instances of NFData. This avoids that the evaluation of expressions

is delayed due to lazy evaluation. Instead evaluation is forced inside concurrently running

threads.

In the following we explain the elements of the two types by going through the compu-

tation of a single superstep for a vertex-centric algorithm f. The computation is divided

into three phases: vertex computation (which includes message passing), aggregator

computation, and termination checking. Another phase, topology modification, handles

vertex and edge modifications, but it is not shown for being similar to the aggregator

phase.

Phase 1: Vertex Computation

All vertices are stored in a GArray (1) which resembles an IOArray [80, 81] but supports

additional parallel map- and fold-like operations; its internal details are explained in the

147

6. Describing and Executing Graph Algorithms

data (NFData v , NFData e , NFData m) => Graph v e m = Graph {
gVer t i c e s : : GArray (Vertex v e m) −− (1)

, gSuperstep : : Int −− (2)
, gAggregator : : IORef (Maybe ([v] −> v)) −− (3)
, gAggValue : : Maybe v −− (4)
, gAggChannel : : SChan v −− (5)

}

data (NFData v , NFData e , NFData m) => Vertex v e m = Vertex {
vIndex : : Index −− (6)

, vValue : : IORef v −− (7)
, vHalt : : IORef Bool

, vEdges : : IORef [Edge e] −− (8)
, vMessages : : (SChan m, SChan m) −− (9)

}

type Index = Int

type Edge a = (Index , a)
type SChan m = IORef [m]

Figure 6.16: The Graph and Vertex data types contain informations for representing
arbitrary graphs and BSP-based computation.

next section. The first phase, which is computationally most expensive, evaluates f

on all vertices of the graph: for inactive vertices nothing is done, for active vertices f is

executed in a monadic GraphM context. GraphM is a StateT-based wrapper encapsulating

the graph as well as the currently computed vertex inside the IO monad. This allows to

use channel-based concurrent communication and mutable variables:

type GraphM v e m = StateT (ComputeState v e m) IO

data ComputeState v e m = ComputeState {
cVertex : : Vertex v e m

, cGraph : : Graph v e m

}

Functions in the domain specific language therefore access and modify the current vertex

or the graph. For example, modifying the local vertex state (7) with the Palovca function

set is internally defined by

s e t : : v −> GraphM v e m ()

s e t v = modify (const v)

148

6.4. Implementation

modify : : (v −> v) −> GraphM v e m ()

modify f = do

v <− ver tex

l i f t I O $ modifyIORef (vValue v) f

−− I n t e r n a l f u n c t i o n s

ver tex : : GraphM v e m (Vertex v e m)

ver tex = a c c e s s cVertex

a c c e s s : : (ComputeState v e m −> a) −> GraphM v e m a

a cc e s s f = f ‘ liftM ‘ StateT . get

Note that the use of higher-order functions also improves conciseness of the Palovca-

internal code. In addition to computing f, message passing is also performed in the first

phase. Each vertex has a graph-wide unique identifier (6) which serves as its index in

the GArray. The directed edges to its neighbors are stored as (identifier, edge-value)

tuples (8). When a message is sent, all tuples are iterated over to contact neighbors.

The basis for sending messages to all neighbors is the sendTo function, which sends a

message to a particular vertex. It accesses a particular message channel (9) over the

GArray by

1 sendTo : : Index −> m −> GraphM v e m ()

2 sendTo dst msg = do

3 vs <− a c c e s s (gVe r t i c e s . cGraph)

4 v <− l i f t I O (vs ‘ GArray . at ‘ dst)

In the BSP model messages are buffered between successive supersteps (see Section 6.2).

We use a pair of channels for each vertex to implement this buffering (see Figure 6.17).

In even supersteps messages are read from the first channel and written to the second

one, in odd ones this is reversed:

GArray

...

Vertex

...

read in even
write in odd

write in even
read in odd

superstep

Figure 6.17: Visualization of BSP-based message passing with two buffers. The green
box resembles (9) in Figure 6.16, the blue boxes resemble an SChan.

149

6. Describing and Executing Graph Algorithms

5 s <− super s t ep

6 let choose = if s ‘mod ‘ 2 == 0 then fst else snd

7 chan = choose (vMessages v)

8 l i f t I O $ atomicModifyIORef chan (\msgs −> msg : msgs)

In a previous version we separated message channel pairs to prevent contention which

could occur when too many threads access the channel of one vertex. Each vertex had

an array of pairs of message channels, such that each thread wrote messages to its

own non-shared channel. Instead of improving performance it actually slowed down the

computation. We think one reason was the increased number of lookups to access the

correct channel for writing. Another reason was the additional overhead of combining

the input of all channels for later reading.

Note that although we use the term channel (SChan) to describe the message buffers,

we internally implement a message buffer as a list of elements wrapped in an IORef and

modified by atomicModifyIORef. For our particular use case, our measurements showed

that it was slightly faster than traditional channels.

Phase 2: Aggregator Collection and Distribution

In the first phase, where the vertex state was updated and messages were sent, vertices

were also able to submit values to the global aggregator by calling aggregate. The

aggregate function accesses the graph’s aggregator channel (5) and writes a value

to it. In the second phase a new global aggregation value is calculated by using the

combination function initially defined in (3): all values from the channel are read,

combined and stored in (4). The combined value is therefore available in the following

superstep. This phase is currently implemented sequentially: All aggregated values

are stored in a channel. For parallelization, the stored values would have to be read

from the channel and stored in a GArray. While an implementation of this approach

is straightforward, it induces a certain overhead. In preliminary tests the sequential

computation was sufficiently fast, i.e. the time for the computation of the aggregated

value is negligible compared to the other phases.

Phase 3: Termination Detection

In the third phase all vertices are scanned: if an inactive vertex has new messages waiting

in its channel, its state is changed back to active, and it will participate again in phase

one of the following superstep. It is then checked if any active vertices exist. If not, the

overall computation is stopped. Otherwise, phase one is restarted.

150

6.4. Implementation

Since all operations on vertices are performed independently, the order of execution

is not important. In fact, the operations can be performed in parallel (using map in all

phases and an additional fold in phase three). Since vertices are stored in a GArray, par-

allel operations are implemented as GArray functions and are discussed in the following

section.

6.4.2 Dynamic Arrays and Parallel Vertex Evaluation

The GArray data structure, which is used to store the vertices of the graph implements

a dynamic (growable) array with additional support for parallel map- and fold-like op-

erations.

A growable array is needed for vertex addition (vertex removal is not supported yet).

Our implementation uses the traditional way to implement such arrays: if the array is

full, a new one with twice its original size is created and the old contents are copied.

Initially we implemented a chunk-based growable array. It basically works like a linked

list where the list nodes are arrays. If the last array of the list is full, a new empty

one is appended. Elements are accessed over their index by traversing through the list.

While this approach prevents copying of elements to the larger array, the time to access

elements with large indices increases due to the needed traversal. Since vertex additions

are less frequent than the access to elements over their indices, we chose the copy-based

approach.

The four phases mentioned in the last section need two parallel operations: executing

a function for every element, and evaluating a binary function for every successive pair of

elements. They resemble the well-known mapM -function and a fold-like foldM-function,

respectively. In the following we describe parallel implementations for both.

mapM Implementation

For parallelization of mapM , the used part of the array is divided into chunks of a definable

size (see Figure 6.18 on page 152). Forked threads work on these chunks in parallel. For

each element of the chunk the given function is called. By default the chunksize is chosen

such that each thread works on one chunk (see Section 2.1.2).

The mapM -implementation of GArray is similar to Prelude.mapM but restricted to

the IO-monad and needs an additional parameter that defines a chunksize:

mapM_ : : ChunkSize −> (a −> IO b) −> GArray a −> IO ()

type ChunkSize = Int

151

6. Describing and Executing Graph Algorithms

Note that for more irregular vertex-centric algorithms with large differences in the local

vertex computation time, load balancing can be achieved by manually choosing a smaller

chunk size. We intentionally did not implement a mapM-function that also returns the

results of the called function since it is not required in our context.

Used element

Unused element

Chunk

Figure 6.18: Visualization of the GArray.mapM function. The array has a length of 14
elements, of which 10 elements are used. The chunksize is 4 and the three chunks may
be processed in parallel.

foldM Implementation

To collect and combine information about vertices, for example to obtain a summary of

the current activation states, we need a parallelized fold-like function:

foldM : : ChunkSize −> (b −> a −> IO b) −> (b −> b −> b) −> b

−> GArray a −> IO b

foldM calls the fold function b -> a -> IO b for each chunk in parallel (using the above

scheme) and returns the combined result. The combination of the results of the chunks is

computed sequentially since the number of chunks is small and the combinator function

is fast to evaluate (see Figure 6.19).

Used element

Unused element

Computed in parallel

Computed sequentially

Final result

Intermediate result

Figure 6.19: Visualization of the GArray.foldM function.

6.5 Benchmarks

We executed experiments on a 2.3 GHz 16-core AMD Opteron 6134 with 32 GB RAM

running a Linux-kernel 2.6.38-8 with GHC 7.0.3. Similar to Pregel and to ease compar-

ison, we measured only the pure computation time, i.e. excluded graph reading. The

152

6.5. Benchmarks

speedup is calculated relative to the single thread version, and all stated calculation

times are the average of three runs.

The number of generated messages and thus allocated short-living chunks of memory

is quite high and puts a lot of stress on the parallel garbage collector. By increasing the

amount of memory that is allocated at once, we decrease the calls to the garbage collector

and, since the collectors runs over the allocated data in parallel, increase the overall

performance. For all benchmarks we chose -A1G -H16G for sequential and -A1500M

for parallel runs as additional GHC runtime parameters (found by experimentation).

The option -H sets the initial heap size (with G for gigabyte and M for megabyte as

potential suffixes) and -A sets the size of the allocation area if the garbage collector

needs to allocate more memory [77]. Although these parameters worked well for all our

benchmarks, it should be stated that parameter tuning for a particular algorithm and

graph type might result in even better speedups.

We chose four different benchmarks with varying number of active vertices and mes-

sage sizes. In the pagerank benchmark the computational time per vertex is nearly equal

and all vertices work until the calculation is finished. In the single-source shortest path

benchmark the number of active vertices depends on the graph structure and is more

irregular. In the semi-clustering benchmark computational times are also more irregu-

lar and the message size increases over the course of the computation. In the bipartite

matching benchmark the computation time per superstep is small. In addition, matched

vertices remove edges to unmatched vertices, hence the number of sent and received mes-

sages decreases over time. To keep the presentation of the matching algorithm simple,

edge removal was not shown in the example of Section 6.3.5.

We used randomly generated graphs with v vertices. The probability that two vertices

are connected, i.e. an edge is generated for them, was p. The values for v and p were as

follows: For the first two benchmarks we chose v = 105 and for the third v = 104. To see

the effect of additional computational load through more communication, we chose two

different probabilities for edge generation, p1 = 0.0001 and p2 = 0.0002 such that in the

second case of each benchmark the number of edges is doubled on average. Note that

the number of vertices is much smaller than in the Pregel benchmarks since Pregel runs

on a distributed system with hundreds of machines and therefore can handle much larger

data sets. Since Pregel is not publicly available we were not able to directly compare

running times with our testing machine.

153

6. Describing and Executing Graph Algorithms

6.5.1 Pagerank

Figure 6.20 on page 154 shows the benchmark results for the pagerank algorithm. Since

all vertices are active over the whole computation and by default each thread works on

a chunk of the same size, both speedup graphs correspond to a typical speedup curve.

Linear speedup is not reached as it is typical for parallel computations. For p1, the

small computation time of the pagerank algorithm in combination with few connections

between vertices lead to a stagnation of speedup if more than 12 threads are used. For p2,

the influence of more communication is visible. When the number of edges is doubled,

more communication and thus more computations per vertex have to be performed,

which results in better scaling.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

500

1000

1500

2000

2500

3000

3500

Threads

Sp
ee

du
p

T
im

e
(s

)
10.29

10.22

p=0.0001
p=0.0002
Linear

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

500

1000

1500

2000

2500

3000

3500

Speedup p=0.0001

Time p=0.0002

Time p=0.0001

Speedup p=0.0002

Linear

Threads

Sp
ee

du
p

T
im

e
(s

)
10.29

10.22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

500

1000

1500

2000

2500

3000

3500

Speedup p=0.0001

Time p=0.0002

Time p=0.0001

Speedup p=0.0002

Linear

Threads

Sp
ee

du
p

T
im

e
(s

)
10.29

10.22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

35

40

Threads

Sp
ee

du
p

T
im

e
(s

)

9.45

12.50

Speedup p=0.0001

Time p=0.0002

Time p=0.0001

Speedup p=0.0002

Linear

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

50

100

150

200

250

300

350

Threads

Sp
ee

du
p

T
im

e
(s

)

8.95

11.32

Speedup p=0.0001

Time p=0.0002

Time p=0.0001

Speedup p=0.0002

Linear

Figure 6.20: Pagerank speedup and computation times for a random graph with v =
105 and p1 = 0.0001 and p2 = 0.0002, respectively. In this figure as well as the following
ones, increasing graphs illustrate the speedup, decreasing graphs illustrate computation
time.

6.5.2 Single Source Shortest Path

Figure 6.21 shows the results for the SSSP algorithm. Due to the algorithm, all but

the first vertex are initially inactive and only become active over time. An efficient

parallelization is thus more difficult. Nevertheless, both speedup graphs resemble a

typical speedup curve. The jump of the speedup graph for p2 at eight cores might be

due to cache effects.

154

6.5. Benchmarks

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

��

��

��

�

�

��

�

��

�

��

�������

�
	
��
�

	

�
��
�

��
�

�����

�����

��������

��������

��	
��

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

��

��

��

�

�

��

�

��

�

��

��

������
�

�

���
���
�

�

���
���
�

�

��

������
�

�

���
��

�������

�
	
��
�

	

�
��
�

��
�

�����

�����

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

��

��

��

�

�

��

�

��

�

��

��

������
�

�

���
���
�

�

���
���
�

�

��

������
�

�

���
��

�������

�
	
��
�

	

�
��
�

��
�

�����

�����

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

�

��

��

��

�

�

��

�

��

�

��

�

�������

�
	
��
�

	

�
��
�

��
�

����

�����

��

������
�

�

���
���
�

�

���
���
�

�

��

������
�

�

���
��

Figure 6.21: SSSP speedup and computation times for a random graph with v = 105

and p1 = 0.0001 and p2 = 0.0002, respectively.

6.5.3 Semi-Clustering

In the semi-clustering algorithm, the local computation time is higher and more irregular

than in the previous two benchmarks. Figure 6.22 on page 156 shows the speedup graphs,

which scale to about 10 for 16 threads. Both speedup graphs are similar and all threads

are utilized, since the computational load is already high for p1.

6.5.4 Bipartite Matching

In contrast to the previous benchmarks, the bipartite matching algorithm does not per-

form intensive computations nor does it send many messages. Since edges are removed

once vertices are matched, fewer messages are sent over time. These properties lead to

less parallelism, which is mirrored in the speedup graphs for p1 and p2 (see Figure 6.23

on page 156). While both graphs show a speedup, it is not as steep as in the previous

benchmarks.

6.5.5 Summary

In this section we have presented different benchmarks with various properties regarding

the amount of computational work per vertex, or the size and number of sent mes-

sages. Although the actual speedup is obviously dependent on the algorithm, all but one

benchmark show a typical speedup curve with a speedup of about 10 with 16 threads.

155

6. Describing and Executing Graph Algorithms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

500

1000

1500

2000

2500

3000

3500

Threads

Sp
ee

du
p

T
im

e
(s

)

10.29

10.22

p=0.0001
p=0.0002
Linear

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

500

1000

1500

2000

2500

3000

3500

Speedup p=0.0001

Time p=0.0002

Time p=0.0001

Speedup p=0.0002

Linear

Threads

Sp
ee

du
p

T
im

e
(s

)

10.29

10.22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

500

1000

1500

2000

2500

3000

3500

Speedup p=0.0001

Time p=0.0002

Time p=0.0001

Speedup p=0.0002

Linear

Threads

Sp
ee

du
p

T
im

e
(s

)

10.29

10.22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

5

10

15

20

25

30

35

40

Threads

Sp
ee

du
p

T
im

e
(s

)

9.45

12.50

Speedup p=0.0001

Time p=0.0002

Time p=0.0001

Speedup p=0.0002

Linear

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

50

100

150

200

250

300

350

Threads

Sp
ee

du
p

T
im

e
(s

)

8.95

11.32

Speedup p=0.0001

Time p=0.0002

Time p=0.0001

Speedup p=0.0002

Linear

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

500

1000

1500

2000

2500

3000

3500

Speedup p=0.0001

Time p=0.0002

Time p=0.0001

Speedup p=0.0002

Linear

Threads

Sp
ee

du
p

T
im

e
(s

)

10.29

10.22

Figure 6.22: Semi-clustering speedup and computation times for random graphs with
v = 104, CMax = 20, VMax = 20. Probabilities are p1 = 0.0001 and p2 = 0.0002,
respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

18

Threads

Sp
ee

du
p

T
im

e
(s

)

6.88

7.22

Speedup p=0.0001

Time p=0.0002

Time p=0.0001

Speedup p=0.0002

Linear

Figure 6.23: Bipartite matching speedup and computation times for a random graph
with v = 105 and p1 = 0.0001 and p2 = 0.0002, respectively.

156

6.6. Related Work

6.6 Related Work

The foundation of Palovca’s computational model is the Bulk Synchronous Parallel model

of Valiant [200, 201]. While some BSP libraries exist for classical programming languages,

e.g. the Paderborn University BSP library by Bonorden et al. [17] or the Green BSP

library by Goudreau et al. [64], we are not aware of any Haskell-based implementations.

We can think of three Haskell techniques that could be used to implement BSP-like

computations, or a BSP library, respectively: Glasgow Distributed Haskell (GdH) [163],

the CHP library [19] and data parallel Haskell [111]. GdH implements parallel and con-

current computations on distributed-memory systems. It allows to work with the same

concurrent primitives that are traditionally used for parallel programming with Haskell

in a distributed environment. CHP implements combinators to allow communication of

concurrent processes. Its computational model, which is based on Hoare’s communicat-

ing sequential processes [96], is similar to BSP: Processes communicate over synchronous

channels, interact via barriers and do not share any local data. Despite its similarity with

BSP we did not choose CHP for the core of Palovca since computations in the IO-monad

are rather difficult to express but were necessary for efficiency. Since vertex-centric com-

putations are compellingly data-parallel, an efficient execution should be possible with

parallelized array operations as they are provided in Data Parallel Haskell. Unfortu-

nately it is yet unclear how to handle communication between vertices in a side-effect

free (pure) environment efficiently, although this might be an interesting topic for future

work.

Palovca was strongly influenced by Malewicz et al.’s paper on Pregel [133]: they im-

plemented a distributed platform in C++ for large-scale vertex-centric graph algorithms

with billions of vertices. Albeit difficult to compare due to their different architectural

basis, their implementation achieves similar speedups as ours: when utilizing 16 times as

many worker threads (absolute numbers were not stated in [133]) they reach speedups

of about 10 for the SSSP benchmark.

As we mentioned in Section 6.1, Haskell EDSLs are quite successful for a variety of

domains. To the best of our knowledge there are no other DSLs for any problems that

parallelize the execution nor libraries that allow to describe general (vertex-centric) graph

algorithms. The closest approach to Palovca is the containers package, which defines the

module Data.Graph. It allows to describe graphs and perform standard algorithms such

as depth-first search [119].

157

6. Describing and Executing Graph Algorithms

6.7 Summary and Conclusion

In this chapter we defined and implemented Palovca (PArallel Local Vertex Calculations

in hAskell) which consists of a Haskell-based embedded domain specific language (EDSL)

for vertex-centric graph algorithms and an execution platform for shared-memory multi-

core machines. The underlying computational model, which influenced the definition of

the language’s vocabulary, is an adaption of Valiant’s Bulk Synchronous Parallel model

of computation. The EDSL defines a vocabulary for vertex-centric graph algorithms and

is implemented on top of a custom monad and higher-order functions. The underly-

ing execution platform uses Concurrent Haskell for the parallel execution of the graph

algorithms. Hence, a user can focus on writing algorithms by means of the provided vo-

cabulary. All details of the parallelization as well as helper code for the EDSL are hidden

through the monadic interface. To examine the scalability of the execution platform as

well as show the conciseness and simplicity of the EDSL, we presented various examples

which differed in their development complexity as well as their performance characteris-

tics. We have shown implementations of a pagerank algorithm, a single source shortest

path computation, a semi-clustering algorithm, and a bipartite matching algorithm. In

our benchmarks we executed these algorithms in parallel and achieved speedups between

7.5 and 11 with 16 threads, depending on the particular algorithm and source graph.

Unlike other data-parallel applications we did not yet achieve nearly linear speedups,

since the irregularity of the vertex computations can be high. To summarize, we found

that the general approach of implementing a BSP-based computation wrapped in an

EDSL with Haskell as the host language and applying it to vertex-centric computations

is feasible, allows for great expressiveness, and enables good parallel performance.

As far as abstraction is concerned, our experiments have shown that parallelization

and embedded domain specific languages work very well together: Monads allow to

implement a domain specific language with a problem-specific vocabulary. The type

system enforces that no other operations can be executed. Higher-order functions allow

the user to write concise yet understandable code. Hence, the combination of Concurrent

Haskell for the underlying execution platform on the one hand, and a monadic approach

for the definition of a problem-specific language on the other works and supports the

convenient and efficient parallelization of a particular problem domain. This flexibility

is yet unmatched in traditional programming languages.

158

Chapter 7

Perspectives and Closing

Remarks

159

7. Perspectives and Closing Remarks

7.1 Future Work

In this section we briefly describe potential avenues for future work. First we show

research directions for each of the examined topics separately. Then we reflect on general

ideas for future research.

Thread-Safe Priority Queues based on Skiplists. First, despite their sole use as

priority queues in this thesis, skiplists are general dictionary structures. A comparison

of their concurrent performance for arbitrary insertions and deletions seems interesting.

Second, the Glasgow Haskell Compiler did not support native (and thus fast) atomic

compare-and-swap operations at the time of our experiments. This situation will change

with one of the next releases [136]. We think that native compare-and-swap opera-

tions will improve the performance of the CAS skiplist implementation to a large extent.

Additionally, an improved CAS operation allows to implement other lock-free data struc-

tures [43, 57] efficiently as building blocks for parallel algorithms. Third, implementing

thread-safe variants of pure data structures (e.g. finger trees [95]) with Concurrent

Haskell looks interesting and has not yet been well researched. It might be interesting

to find out whether purity can ease the implementation or improve the scalability of

thread-safe variants.

A Comparison of Lock-based and STM-based Taskpools. First, by implement-

ing more efficient alternatives for thread-local storage for STM, the private taskpools

with and without task stealing may deliver better parallel performance. Second, since

taskpools are so widely used and our performance results are equal to those for im-

perative languages [208], developing advanced taskpool variants in Haskell is a viable

alternative to implementations in imperative languages. In particular, taskpool-based

algorithms could be annotated with information about the computed problem. Then

these information is used to, for example guide the implementation in choosing an effi-

cient taskpools variant. Haskell’s type system and our monadic implementation would

allow for a concise implementation of this approach. Third, exploring the advantages

and disadvantages of the different taskpool variants by implementing additional real

world examples, e.g. from [170], might be worthwhile. Fourth, both DPH and the Par

monad allow for the implementation of particular kinds of taskpool algorithms. Hence a

further investigation of the respective advantages and disadvantages of these approaches

is interesting.

160

7.1. Future Work

Declarative Description and Parallelization of Stencil Computations. First,

as a preliminary stage, a stencil database for widely-used stencils can be created. For

each defined stencil, an optimized implementation for its computation would be used. If

the stencil is not known, the existing generalized implementation is chosen. Second, all

information about the stencil is known at compile-time. Hence, the absolute performance

of the computations can be improved by using Template Haskell [178] or other means

of compilation to generate stencil-specific code. Third, the advantages of the current

dynamic computation can be used for automatic tuning. The execution platform can

measure different performance characteristics and, for example, switch to another grid

implementation which is more efficient in the particular scenario. In fact, there is already

much research for stencil-based autotuning [30, 40, 46], although not for Haskell.

Describing and Executing Graph Algorithms. First, we have not yet used the ad-

vantages of having a restricted problem domain or the knowledge of the particular graph

structure. This information can be used to optimize computations, e.g. by modifying

parameters of the execution platform at runtime depending on the irregularity of the

vertex computations. Second, further experiments with larger graphs could explore scal-

ability and the efficient usage of the garbage collector with high amounts of short-living

data. Third, it would be interesting to use the EDSL to generate source code in a low-

level language and link it to an already existing BSP library, as for example done in [6].

Fourth, the vertex-centric computations are compellingly data parallel. Implementing

an execution platform that uses GPUs might significantly improve the performance. An

intermediate step might be the implementation of an execution platform which uses Data

Parallel Haskell to generate GPU code [25].

General Future Work. The current rise of experimental shared-memory many-core

architectures [106] poses the question of the scalability of our implementations. In par-

ticular, on this architectures memory access time is often non-uniform and depends on

the position of a memory cell relative to a core [104]. The behavior of Haskell’s parallel

runtime system on this type of architecture is largely unexplored, since GHC’s parallel

runtime does not optimize for data locality [78]. While it is difficult to access exper-

imental platforms in general, Intel provides access to some of them [108]. Since there

is experimental Haskell support, it would be interesting to analyze the scalability and

possible modifications of our programs on these platforms.

As we have demonstrated, certain parallel design patterns work well combined with

the abstraction techniques of Haskell. Our approach could be adapted to other parallel

design patterns to form a common library. For the purpose of a concise and idiomatic

161

7. Perspectives and Closing Remarks

formulation of parallel algorithms, this library could use, for example, monads, higher-

order functions, or typeclasses, as in our approach. In particular, this would allow for an

easier adoption of concepts which were developed for traditional programming languages

while still enabling the benefits of Haskell.

Besides Concurrent Haskell there are also other parallelization approaches in Haskell.

In the functional programming community, semi-explicit parallelization is favored due to

its rather declarative nature, and Data Parallel Haskell is favored due to the automatic

parallelization of its computations. As of yet, the advantages and disadvantages of each

approach have not yet been compared for different scenarios side-by-side. In particular, it

might be worthwhile to have a catalog which enlists various scenarios and their respective

performance characteristics, best practices, and pitfalls for each parallelization approach.

7.2 Closing Remarks

Our goal was to research how well abstraction at different degrees supports program-

ming with Concurrent Haskell. We were interested in answering the question whether

commonly used idioms of the functional paradigm as well as high-level constructs of the

Haskell language allow to ease parallel programming with Concurrent Haskell. How can

traditional imperative data structures, design patterns and programming approaches be

adapted to a modern functional programming language? To answer these questions,

we examined two areas of interest: 1) comparison of synchronization approaches and

2) exploration of abstraction techniques to hide details of parallelization.

For a comparison of synchronization approaches, we first examined the advantages

and disadvantages of low-level as well as high-level synchronization techniques. We

implemented a thread-safe priority queue on top of the skiplist data structure. For

synchronization, locks, software transactional memory (STM) as well as compare-and-

swap (CAS) operations were compared. Our experiments showed that the high-level

approach of STM scaled worse compared to the other approaches, although STM made

the implementation easier to develop. Second, to compare locks with STM in a scenario

where transactions are short-lived, we implemented the taskpool design pattern for dif-

ferent taskpool variants (global taskpools, and private taskpools with and without task

stealing). Additionally, we provided an abstraction layer that allowed for a convenient

and idiomatic formulation of taskpool algorithms. Our experiments showed that both

synchronization approaches scaled comparably well.

Summarizing our analysis of synchronization approaches, a high-level approach to

synchronization such as STM has advantages as well as disadvantages. While imple-

menting synchronization is much easier and less error-prone than with locks or compare-

162

7.2. Closing Remarks

and-swap operations, special care has to be taken to ensure that transactions are short.

Locks may in fact be easier to use if there is already a well-known lock-based solution

which can be adapted. In general, we propose to use STM in the following way: By

providing an abstraction layer, details of the underlying synchronization approach can

conveniently be hidden from the user. If the necessity arises, the abstraction layer also

allows for an easy replacement by more complex but also more efficient synchroniza-

tion approaches such as locks. The sophisticated abstraction techniques of Haskell, e.g.

monads, typeclasses, and higher-order functions amongst others, are especially useful for

implementing such layers.

For our exploration if Haskell’s abstraction techniques allow to hide complex details

of the parallelization, we first examined stencil-based algorithms. We developed a li-

brary that allows for a declarative description of stencil-based algorithms as well as their

parallel execution. Besides stating the problem, no further information is necessary. In

particular, all aspects of the parallel computation are hidden. With this library we have

shown that an idiomatic description of stencil-based algorithms is possible. In particular,

the problem notation should feel natural to most Haskell developers. Subsequently, we

developed an embedded domain specific language (EDSL) for vertex-centric graph algo-

rithms as well as an execution platform that allows for their automatic parallel execution.

By means of the EDSL a type-safe, concise and convenient formulation of vertex-centric

graph algorithms is possible. By means of the execution platform, all aspects of the par-

allelization are hidden from the user. We provided several examples which demonstrated

that the EDSL allows for a concise yet understandable formulation of graph algorithms.

Our benchmarks showed that the execution platform scales well.

Summarizing our analysis of Haskell’s abstraction techniques, in cases where solutions

to problems of a particular domain are parallelized, either a declarative formulation or a

domain specific language can hide aspects of Concurrent Haskell and thus hide complex

details of parallel programming. The sophisticated language constructs of Haskell allow

for a convenient and concise formulation of these approaches.

In Chapter 1 we wrote that ”[...] the parallelization of a program is difficult, even for

experts.”. With our thesis we have demonstrated that a modern functional language like

Haskell offers several sophisticated techniques to implement abstraction. These tech-

niques can be used to ease parallel programming even for rather traditional parallel

programming models such as Concurrent Haskell. While the flexibility of Haskell is

yet unmatched in traditional programming languages, we believe that the introduced

approaches would be worthwhile to adapt by these languages, such that parallel pro-

gramming becomes easier, even for non-experts.

163

7. Perspectives and Closing Remarks

164

Chapter 7

List of publications

Michael Lesniak. Palovca: Describing and Executing Graph Algorithms in Haskell.

In Fourteenth International Symposium on Practical Aspects of Declarative Languages

(PADL 2012), number 7149 in Lecture Notes in Computer Science (LNCS), pages 153 –

167. Springer Verlag, Berlin, 2012.

Michael Lesniak. Thread-safe Priority Queues in Haskell Based on Skiplists. In Twelth

International Symposium on Trends in Functional Programming (TFP 2011). To appear

in Lecture Notes in Computer Science (LNCS).

Michael Lesniak. A Comparison of Lock-based and Lock-free Taskpool Implementations

in Haskell. In Proceedings of the International Conference on Computational Science

(ICCS 2011), Procedia Computer Science Volume 4, pages 2317 – 2326, 2011.

Michael Lesniak. PASTHA – Parallelizing Stencils in Haskell. In Proceedings of the

POPL 2010 Workshop on Declarative Aspects of Multicore Programming (DAMP 2010),

pages 5 – 14, ACM, 2010.

165

166

Chapter 7

Bibliography

The existence and content of online resources, i.e. reference entries with an accompanying
URL, have last been checked on 06. March 2012.

[1] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, 1996

[2] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, 1986

[3] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen,
Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress Lan-
guage Specification. Technical report, Sun Microsystems, Inc., 2007

[4] Nélio Muniz Mendes Alves and Sérgio de Mello Schneider. Implementation of an
Embedded Hardware Description Language Using Haskell. Journal of Universal
Computer Science, 9(8):795–812, 2003

[5] Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. AFIPS ’67, pages 483–485, 1967

[6] Christopher Kumar Anand and Wolfram Kahl. A Domain-Specific Language for
the Generation of Optimized SIMD-Parallel Assembly Code. SQRL Report 43,
Software Quality Research Laboratory, McMaster University, May 2007

[7] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker.
High Speed Switch Scheduling for Local Area Networks. ACM Transactions on
Computer Systems, 11:98–110, 1993

[8] Joe Armstrong. A history of Erlang. In Proceedings of the third ACM SIGPLAN
conference on History of programming languages, pages 6–1–6–26, New York, NY,
USA, 2007

[9] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Prag-
matic Bookshelf, 2007

[10] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical report, EECS Department,
University of California, Berkeley, 2006

167

[11] Lennart Augustsson. More Points For Lazy Evaluation.
http://augustss.blogspot.com/2011/05/more-points-for-lazy-

evaluation-in.html

[12] F. Barrett, P. C. Roth, and S. W. Poole. Finite Difference Stencils Implemented
Using Chapel. Technical Report TM-2007/119, ORNL Technical Report, 2007

[13] Daniel Bauer and Kristijan Dragicevic. A survey of concurrent priority queue
algorithms. In International Symposium on Parallel and Distributed Processing,
pages 1–6, 2008

[14] Andy Ben-Dyke. The History of Parallel Functional Programming.
ftp://ftp.cs.bham.ac.uk/pub/dist/func-prog/drafts/history/History.

tex.gz

[15] Jost Berthold, Mischa Dieterle, Rita Loogen, and Steffen Priebe. Hierarchical
master-worker skeletons. In Proceedings of the 10th international conference on
Practical aspects of declarative languages, PADL’08, pages 248–264, Berlin, Hei-
delberg, 2008. Springer-Verlag

[16] Guy Blelloch. Is Parallel Programming Hard?
http://software.intel.com/en-us/articles/is-parallel-programming-

hard-1

[17] Olaf Bonorden, Ben H.H. Juurlink, Ingo von Otte, and Ingo Rieping. The Pader-
born University BSP library. Parallel Computing, 29(2):187–207, 2 2003

[18] Sergey Brin and Lary Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. In Seventh International World-Wide Web Conference, 1998

[19] Neil C. C. Brown. Communicating Haskell Processes: Composable Explicit Con-
currency using Monads. In Communicating Process Architectures, pages 67–83,
2008

[20] David R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1997

[21] Caml.Inria.fr. OCaml Homepage.
http://caml.inria.fr/ocaml/

[22] Colin Campbell, Ralph Johnson, Ade Miller, and Stephen Toub. Parallel Program-
ming with Microsoft .NET: Design Patterns for Decomposition and Coordination
on Multicore Architectures. Microsoft Press, 2010

[23] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele
Keller, and Simon Marlow. Data parallel haskell: a status report. In Proceedings
of the 2007 workshop on Declarative aspects of multicore programming, DAMP ’07,
pages 10–18, New York, NY, USA, 2007. ACM

168

[24] Manuel M.T. Chakravarty, Gabriele Keller, Roman Lechtchinsky, and Wolf Pfan-
nenstiel. Nepal – Nested Data-Parallelism in Haskell. In EURO-PAR, pages 524–
534. Springer-Verlag, 2001

[25] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and
Vinod Grover. Accelerating Haskell array codes with multicore GPUs. In Pro-
ceedings of the sixth workshop on Declarative aspects of multicore programming,
DAMP ’11, pages 3–14, New York, NY, USA, 2011. ACM

[26] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel Programmability and the
Chapel Language. International Journal of High Performance Computing Appli-
cations, 21:291–312, 2007

[27] Brad Chamberlain, Steve Deitz, Shannon Hoffswell, John Plevyak, Hans Zima,
and Roxana Diaconescu. Chapel Specification. Cray Inc, 411 First Ave S, Suite
600, 0.4 edition, February 2005

[28] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering Computation).
The MIT Press, 2007

[29] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. SIGPLAN Notes, 40:519–538,
October 2005

[30] Matthias Christen, Olaf Schenk, and Helmar Burkhart. PATUS: A Code Gener-
ation and Autotuning Framework for Parallel Iterative Stencil Computations on
Modern Microarchitectures. In IEEE International Parallel Distributed Processing
Symposium, pages 676–687, 2011

[31] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. In International Conference on Functional Program-
ming, 2000

[32] Clojure.org. Concurrent Programming in Clojure.
http://clojure.org/concurrent_programming

[33] Clojure.org. Homepage.
http://clojure.org/

[34] E. F. Codd. The relational model for database management: version 2. Addison-
Wesley Longman Publishing Co., Inc., 1990

[35] Common-Lisp.net. Bordeaux Threads – portable shared-state concurrency for
Common Lisp.
http://common-lisp.net/project/bordeaux-threads

169

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2001

[37] Cray.com. Chapel homepage.
http://chapel.cray.com/

[38] Pierluigi Crescenzi and Viggo Kann. Approximation on the Web: A Compendium
of NP Optimization Problems. In José D. P. Rolim, editor, RANDOM, volume
1269 of Lecture Notes in Computer Science, pages 111–118. Springer, 1997

[39] Luis Damas and Robin Milner. Principal type-schemes for functional programs.
In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’82, pages 207–212, New York, NY, USA, 1982.
ACM

[40] Kaushik Datta. Auto-tuning Stencil Codes for Cache-Based Multicore Platforms.
PhD thesis, EECS Department, University of California, Berkeley, 2009

[41] Reinhard Diestel. Graph Theory. Springer-Verlag, Heidelberg, 2005

[42] E. Dijkstra. The humble programmer, pages 111–125. Yourdon Press, Upper Saddle
River, NJ, USA, 1979

[43] Anthony Discolo, Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Satnam
Singh. Lock Free Data Structures Using STM in Haskell. In Masami Hagiya and
Philip Wadler, editors, FLOPS, volume 3945 of Lecture Notes in Computer Science,
pages 65–80. Springer, 2006

[44] Jack J. Dongarra, Steve W. Otto, Marc Snir, and David Walker. An Introduction
to the MPI Standard. Technical report, Knoxville, TN, USA, 1995

[45] Ulrich Drepper. What every programmer should know about memory.
www.akkadia.org/drepper/cpumemory.pdf

[46] Hikmet Dursun, Ken-Ichi Nomura, Liu Peng, Richard Seymour, Weiqiang Wang,
Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta. A multilevel paralleliza-
tion framework for high-order stencil computations. In Proceedings of the 15th
International Euro-Par Conference on Parallel Processing, pages 642–653, Berlin,
Heidelberg, 2009. Springer-Verlag

[47] Hesham El-Rewini and Ted G. Lewis. Distributed and parallel computing. Manning
Publications Co., 1998

[48] Conal Elliott. Programming graphics processors functionally. In Proceedings of the
2004 ACM SIGPLAN workshop on Haskell, pages 45–56, New York, NY, USA,
2004. ACM

170

[49] Conal Elliott. Tangible functional programming. In Proceedings of the 12th ACM
SIGPLAN international conference on Functional programming, pages 59–70, New
York, NY, USA, 2007. ACM

[50] Erlang.org. The History of Erlang.
http://www.erlang.org/course/history.html

[51] Erlang.org. Homepage.
http://www.erlang.org/

[52] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug patterns and how to
test them. In Proceedings of the 17th International Symposium on Parallel and Dis-
tributed Processing, pages 286.2–, Washington, DC, USA, 2003. IEEE Computer
Society

[53] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In
Proceedings of the twenty-third annual ACM symposium on Principles of distributed
computing, pages 50–59, New York, NY, USA, 2004. ACM

[54] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. A study of
the internal and external effects of concurrency bugs. In Proceedings of the 2010
IEEE/IFIP International Conference on Dependable Systems and Networks, pages
221–230. IEEE, 2010

[55] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering. Addison-Wesley Longman Publishing Co., Inc.,
1995

[56] Martin Fowler. Domain-Specific Languages. Addison-Wesley Professional, 2010

[57] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM Trans-
actions on Computer Systems, 25, 2007

[58] Free Software Foundation. The Gnuplot Homepage.
http://www.gnuplot.info/

[59] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-Oblivious Algorithms. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, pages 285–, Washington, DC, USA, 1999. IEEE

[60] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995

[61] Jens Gerlach, Peter Gottschling, and Uwe Der. A Generic C++ Framework for Par-
allel Mesh-Based Scientific Applications. In Proceedings of the 6th International
Workshop on High-Level Parallel Programming Models and Supportive Environ-
ments, pages 45–54, London, UK, 2001. Springer-Verlag

171

[62] Anwar Ghuloum. What makes parallel programming hard?
http://blogs.intel.com/research/2007/08/03/what_makes_parallel_

programmin

[63] Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes, and Tim
Peierls. Java Concurrency in Practice. Addison-Wesley Longman, 2006

[64] Mark W. Goudreau, Kevin Lang, Satish B. Rao, Torsten Suel, and Thanasis Tsan-
tilas. Portable and Efficient Parallel Computing Using the BSP Model. IEEE
Transactions on Computers, 48, 1999

[65] Paul Graham. On LISP: Advanced Techniques for Common LISP. Prentice Hall,
September 1993

[66] Ananth Grama, George Karypis, Vipin Kumar, and Anshul Gupta. Introduction
to Parallel Computing (2nd Edition). Addison Wesley, 2nd edition, 2003

[67] Clemens Grelck and Sven-Bodo Scholz. SAC: a functional array language for
efficient multi-threaded execution. International Journal of Parallel Programming,
34:383–427, August 2006

[68] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI - The Complete Reference: Volume
2, The MPI-2 Extensions. MIT Press, Cambridge, MA, USA, 1998

[69] John L. Gustafson. Reevaluating Amdahl’s law. Communications of ACM, 31:
532–533, May 1988

[70] Stuart Halloway. Programming Clojure. Pragmatic Programmers. Pragmatic Book-
shelf, 1 edition, 2009

[71] Kevin Hammond and Greg Michelson, editors. Research Directions in Parallel
Functional Programming. Springer-Verlag, London, UK, 2000

[72] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Compos-
able memory transactions. In Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 48–60, New York, NY,
USA, 2005. ACM

[73] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In
Proceedings of the 15th International Conference on Distributed Computing, DISC
’01, pages 300–314, London, UK, UK, 2001. Springer-Verlag

[74] Haskell.org. Documentation: Control.Concurrent.STM.
http://hackage.haskell.org/packages/archive/base/latest/doc/html/

Control-Concurrent-STM.html

172

[75] Haskell.org. Documentation: Control.Monad.
http://hackage.haskell.org/packages/archive/base/latest/doc/html/

Control-Monad.html

[76] Haskell.org. GHC - Frequently Asked Questions.
http://www.haskell.org/haskellwiki/GHC:FAQ

[77] Haskell.org. GHC Runtime Parameters for controlling the Garbage Collector.
http://www.haskell.org/ghc/docs/7.0.3/html/users_guide/runtime-

control.html

[78] Haskell.org. Brief information about NUMA architectures and GHC.
http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell

[79] Haskell.org. Hackage – The Haskell Package Repository.
http://hackage.haskell.org

[80] Haskell.org. An Introduction to Haskell Arrays.
http://en.wikibooks.org/wiki/Haskell/Hierarchical_libraries/Arrays

[81] Haskell.org. The arrays package on Hackage.
http://hackage.haskell.org/package/array-0.4.0.0

[82] Haskell.org. Documentation: Control.Concurrent.
http://hackage.haskell.org/packages/archive/base/latest/doc/html/

Control-Concurrent.html

[83] Haskell.org. IRC Channel.
http://www.haskell.org/haskellwiki/IRC_channel

[84] Haskell.org. Haskell Mailing Lists.
http://www.haskell.org/haskellwiki/Mailing_Lists

[85] Haskell.org. Introduction to Monads.
http://www.haskell.org/haskellwiki/Monad

[86] Haskell.org. Documentation: Data.Sequence.
http://hackage.haskell.org/packages/archive/containers/latest/doc/

html/Data-Sequence.html

[87] Haskell.org. Documentation: Data.Set.
http://hackage.haskell.org/packages/archive/containers/latest/doc/

html/Data-Set.html

[88] Haskell.org. Documentation: Control.Monad.State.
http://hackage.haskell.org/packages/archive/mtl/latest/doc/html/

Control-Monad-State-Lazy.html

173

[89] Haskell.org. The Haskell Homepage.
http://www.haskell.org

[90] Haskell.org. Documentation: Data.IORef.
http://hackage.haskell.org/packages/archive/base/latest/doc/html/

Data-IORef.html

[91] Haskell.org. Documentation: Data.List.
http://hackage.haskell.org/packages/archive/base/latest/doc/html/

Data-List.html

[92] Haskell.org. The Glasgow Haskell Compiler.
http://www.haskell.org/ghc/

[93] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An
Introduction. Cambridge University Press, New York, NY, USA, 2 edition, 2008

[94] Roger Hindley. The Principal Type-Scheme of an Object in Combinatory Logic.
Transactions of the American Mathematical Society, 146:29–60, 1969

[95] Ralf Hinze and Ross Paterson. Finger trees: a simple general-purpose data struc-
ture. Journal of Functional Programming, 16:197–217, March 2006

[96] Charles Antony Richard Hoare. Communicating sequential processes. Communi-
cations of the ACM, 1978

[97] Paul Hudak. Conception, evolution, and application of functional programming
languages. ACM Computing Surveys, 21:359–411, September 1989

[98] Paul Hudak. Modular domain specific languages and tools. In Proceedings of the
5th International Conference on Software Reuse, ICSR ’98, pages 134–142. IEEE
Computer Society, 1998

[99] Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduction to Haskell 98.
http://www.haskell.org/tutorial/

[100] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history
of haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN
conference on History of programming languages, HOPL III, pages 12–1–12–55,
New York, NY, USA, 2007. ACM

[101] John Hughes. Why functional programming matters. Computer Journal, 32(2):
98–107, April 1989

[102] Galen C. Hunt, Maged M. Michael, Srinivasan Parthasarathy, and Michael L. Scott.
An efficient algorithm for concurrent priority queue heaps. Information Processing
Letters, 60:151–157, November 1996

174

[103] Graham Hutton. Programming in Haskell. Cambridge University Press, January
2007

[104] Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. McGraw-Hill Higher Education, 1st edition, 1992

[105] IBM. IBM 650 Model 4 announcement.
http://www-03.ibm.com/ibm/history/exhibits/650/650_pr4.html

[106] Intel.com. Platform 2015: Intel Processor and Platform Evolution for the Next
Decade.

[107] Intel.com. C++ Compiler Homepage.
http://software.intel.com/en-us/articles/intel-compilers/

[108] Intel.com. Intel Manycore Testing Lab.
http://software.intel.com/en-us/articles/intel-many-core-testing-

lab/

[109] Don Jones, Simon Marlow, and Satnam Singh. Parallel Performance Tuning for
Haskell. In Haskell ’09: Proceedings of the second ACM SIGPLAN symposium on
Haskell. ACM, 2009

[110] Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999

[111] Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T.
Chakravarty. Harnessing the Multicores: Nested Data Parallelism in Haskell. In
Ramesh Hariharan, Madhavan Mukund, and V. Vinay, editors, FSTTCS, volume 2
of LIPIcs, pages 383–414. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008

[112] Simon Peyton Jones. Tackling the Awkward Squad: monadic input/output, con-
currency, exceptions, and foreign-language calls in Haskell. In Tony Hoare, Manfred
Broy, and Ralf Steinbruggen, editors, Engineering theories of software construc-
tion, pages 47–96. IOS Press, 2001

[113] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. September 2002

[114] Simon Peyton Jones and Satnam Singh. A Tutorial on Parallel and Concurrent
Programming in Haskell. In Proceedings of the 6th international conference on Ad-
vanced functional programming, AFP’08, pages 267–305, Berlin, Heidelberg, 2009.
Springer-Verlag

[115] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts:
an adventure in financial engineering (functional pearl). In Proceedings of the fifth
ACM SIGPLAN international conference on Functional programming, ICFP ’00,
pages 280–292, New York, NY, USA, 2000. ACM

175

[116] Michael Kanellos. Intel scientists find wall for moore’s law.
http://news.cnet.com/2100-1008-5112061.html

[117] Henry Kasim, Verdi March, Rita Zhang, and Simon See. Survey on parallel pro-
gramming model. In Jian Cao, Minglu Li, Min-You Wu, and Jinjun Chen, editors,
Network and Parallel Computing, volume 5245 of Lecture Notes in Computer Sci-
ence, pages 266–275. Springer Berlin / Heidelberg, 2008

[118] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Pey-
ton Jones, and Ben Lippmeier. Regular, shape-polymorphic, parallel arrays in
Haskell. In Proceedings of the 15th ACM SIGPLAN international conference on
Functional programming, ICFP ’10, pages 261–272, New York, NY, USA, 2010.
ACM

[119] David J King and John Launchbury. Lazy Depth-First Search and Linear Graph
Algorithms in Haskell. Glasgow Workshop on Functional Programming, pages 145–
155, 1994

[120] Donald E. Knuth. The art of computer programming, volume 3. Addison-Wesley
Longman Publishing Co., Boston, MA, USA, 2nd edition, 1998

[121] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba.
Hygienic macro expansion. In Proceedings of the 1986 ACM conference on LISP
and functional programming, LFP ’86, pages 151–161, New York, NY, USA, 1986.
ACM

[122] Matthias Korch and Thomas Rauber. A comparison of task pools for dynamic
load balancing of irregular algorithms. Concurrency and Computation: Practice
and Experience, 16:1–47, January 2004

[123] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction
to parallel computing: design and analysis of algorithms. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA, 1994

[124] Claudia Leopold. Parallel and Distributed Computing: A Survey of Models,
Paradigms and Approaches. John Wiley & Sons, Inc., New York, NY, USA, 2001

[125] Michael Lesniak. Pastha: parallelizing stencil calculations in haskell. In Leaf
Petersen and Enrico Pontelli, editors, Proceedings of the POPL 2010 Workshop on
Declarative Aspects of Multicore Programming, pages 5–14. ACM, 2010

[126] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999

[127] Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No
Starch Press, 2011

176

[128] Ben Lippmeier and Gabriele Keller. Efficient parallel stencil convolution in haskell.
In Proceedings of the 4th ACM symposium on Haskell, Haskell ’11, pages 59–70,
New York, NY, USA, 2011. ACM

[129] Hans-Wolfgang Loidl, Fernando Rubio, Norman Scaife, Kevin Hammond, Susumu
Horiguchi, Ulrike Klusik, Rita Loogen, Greg Michaelson, Ricardo Pena, Steffen
Priebe, Álvaro J. Rebón Portillo, and Philip W. Trinder. Comparing Parallel
Functional Languages: Programming and Performance. Higher-Order and Sym-
bolic Computation, 16(3):203–251, 2003

[130] Rita Loogen, Yolanda Ortega-mallén, and Ricardo Peña maŕı. Parallel functional
programming in Eden. Journal of Functional Programming, 15:431–475, May 2005

[131] I. Lotan and N. Shavit. Skiplist-Based Concurrent Priority Queues. In Proc. of the
14th International Parallel and Distributed Processing Symposium (IPDPS), pages
263–268, 2000

[132] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes:
a comprehensive study on real world concurrency bug characteristics. SIGARCH
Computer Architecture News, 36:329–339, March 2008

[133] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 international conference on Management of
data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM

[134] Simon Marlow. Parallel and Concurrent Programming in Haskell.
{http://community.haskell.org/~simonmar/par-tutorial.pdf}

[135] Simon Marlow. Haskell 2010 Language Report

[136] Simon Marlow. Mailinglist discussion about new CAS primitives.
http://permalink.gmane.org/gmane.comp.lang.haskell.glasgow.user/

20585

[137] Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime support for mul-
ticore haskell. In Proceedings of the 14th ACM SIGPLAN international conference
on Functional programming, ICFP ’09, pages 65–78, New York, NY, USA, 2009.
ACM

[138] Simon Marlow, Patrick Maier, Hans-Wolfgang Loidl, Mustafa K. Aswad, and Phil
Trinder. Seq no more: better strategies for parallel Haskell. In Proceedings of the
third ACM Haskell symposium on Haskell, Haskell ’10, pages 91–102, New York,
NY, USA, 2010. ACM

[139] Simon Marlow, Ryan Newton, and Simon Peyton Jones. A monad for deterministic
parallelism. In Proceedings of the 4th ACM symposium on Haskell, Haskell ’11,
pages 71–82, New York, NY, USA, 2011. ACM

177

[140] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for parallel
programming. Addison-Wesley Professional, 2004

[141] John McCarthy. History of LISP. SIGPLAN Notices, 13:217–223, August 1978

[142] Paul McKenney. Is Parallel Programming Hard, And, If So, What Can You Do
About It? Kernel.org, Corvallis, OR, USA, 2011

[143] Microsoft.com. Homepage of Visual F#.
http://msdn.microsoft.com/de-de/library/dd233154.aspx

[144] Robin Milner. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17:348–375, 1978

[145] Yaron Minsky. OCaml for the masses. Communications of ACM, 54(11):53–58,
November 2011

[146] M. Moir and N. Shavit. Concurrent Data Structures. In Handbook of Data Struc-
tures and Applications, D. Metha and S. Sahni Editors, pages 47–14 — 47–30,
2007. Chapman and Hall/CRC Press

[147] G. E. Moore. Progress in digital integrated electronics. In IEEE International
Electron Devices Meeting, volume 21, pages 11–13. IEEE, 1975

[148] Scott Oaks and Henry Wong. Java Threads. O’Reilly, Sebastopol, CA, 3. edition,
2004

[149] Chris Okasaki. Purely functional data structures. Cambridge University Press,
Cambridge U.K., 1998

[150] OpenMP Architecture Review Board. OpenMP Specifications 3.1.
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

[151] OpenMP.org. Homepage.
http://www.openmp.org

[152] Oracle.com. JavaDoc: java.lang.Thread.
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html

[153] Oracle.com. java.util.concurrent.ConcurrentSkipListMap.
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/

ConcurrentSkipListMap.html

[154] Andy Oram and Greg Wilson. Beautiful code. O’Reilly, first edition, 2007

[155] Dominic A. Orchard, Max Bolingbroke, and Alan Mycroft. Ypnos: declarative,
parallel structured grid programming. In Proceedings of the 5th ACM SIGPLAN
workshop on Declarative aspects of multicore programming, DAMP ’10, pages 15–
24, New York, NY, USA, 2010. ACM

178

[156] Bryan O’Sullivan and Johan Tibell. Scalable I/O Event Handling for GHC. In
Proceedings of the third ACM Haskell symposium on Haskell, Haskell ’10, pages
103–108, New York, NY, USA, 2010. ACM

[157] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell. O’Reilly
Media, Inc., 1st edition, 2008

[158] Marios Papaefthymiou and Joseph Rodrigue. Implementing parallel shortest-paths
algorithms. In Sandeep N. Bhatt, editor, Parallel Algorithms, volume 30 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, pages
59–68. American Mathematical Society, 1997

[159] Will Partain. The nofib Benchmark Suite of Haskell Programs. In Proceedings of
the 1992 Glasgow Workshop on Functional Programming, pages 195–202, London,
UK, 1993. Springer-Verlag

[160] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’96, pages 295–308, New York, NY, USA, 1996.
ACM

[161] Simon L. Peyton Jones. The Implementation of Functional Programming Lan-
guages (Prentice-Hall International Series in Computer Science). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1987

[162] Gregory F. Pfister. In search of clusters (2nd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1998

[163] Robert F. Pointon, Philip W. Trinder, and Hans-Wolfgang Loidl. The Design
and Implementation of Glasgow Distributed Haskell. In Selected Papers from the
12th International Workshop on Implementation of Functional Languages, IFL ’00,
pages 53–70, London, UK, 2001. Springer-Verlag

[164] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Communi-
cations of ACM, 33:668–676, June 1990

[165] William Pugh. Concurrent maintenance of skip lists. Technical report, College
Park, MD, USA, 1990

[166] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-
Hill Education Group, 2003

[167] Fethi A. Rabhi and Sergei Gorlatch, editors. Patterns and Skeletons for Parallel
and Distributed Computing. Springer, 2002

[168] Fethi A. Rabhi and Sergei Gorlatch, editors. Patterns and skeletons for parallel
and distributed computing. Springer-Verlag, London, UK, 2003

179

[169] Racket-Lang.org. Homepage of Racket (Scheme).
http://racket-lang.org/

[170] T. Rauber and G. Rünger. Parallel Programming for Multicore and Cluster Sys-
tems. Springer Verlag, 2010

[171] James Reinders. Intel threading building blocks. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, first edition, 2007

[172] Paul Roe. Parallel Programming using Functional Languages

[173] Ian Ross. The Invention of the Transistor. Proceedings of the IEEE, 86(1):7–28,
January 1998

[174] SAC-Home.org. Homepage.
http://www.sac-home.org/

[175] Vijay Saraswat. Report on the Programming Language X10. Language specifica-
tion, IBM, January 2010

[176] Wolfgang Schreiner. Parallel Functional Programming – An Annotated Bibliogra-
phy (2nd Edition). Technical report, 1993

[177] Peter Seibel. Practical Common Lisp. APress, 2004

[178] Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell. In
Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, Haskell ’02, pages
1–16, New York, NY, USA, 2002. ACM

[179] A.B. Shiflet and G.W. Shiflet. Introduction to computational science: modeling
and simulation for the sciences. Princeton University Press, 2006

[180] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. Journal of the ACM, 32:652–686, July 1985

[181] Chris Smith. Programming F# - a comprehensive guide for writing simple code to
solve complex problems. O’Reilly, 2009

[182] Joshua B. Smith. Practical OCaml. Apress, Berkely, CA, USA, 2006

[183] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI – The Complete Reference, Volume 1: The MPI Core. MIT Press, Cambridge,
MA, USA, 2nd. (revised) edition, 1998

[184] Matthew Sottile, Timothy G. Mattson, and Craig E. Rasmussen. Introduction
to Concurrency in Programming Languages. Chapman & Hall/CRC, 1st edition,
2009

180

[185] Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten, Robby
Findler, and Jacob Matthews. Revised [6] Report on the Algorithmic Language
Scheme. Cambridge University Press, New York, NY, USA, 1st edition, 2010

[186] Guy L. Steele. Common LISP: The Language. Digital Press, Bedford, MA, 2.
edition, 1990

[187] Volker Stolz and Frank Huch. Runtime verification of Concurrent Haskell pro-
grams. In In Proceedings of the Fourth Workshop on Runtime Verification, pages
201–216. Elsevier Science Publishers, 2004

[188] Sairam Subramanian. Parallel and Dynamic Shortest-Path Algorithms for Sparse
Graphs. Technical report, Providence, RI, USA, 1995

[189] Michael Suess. What Makes Parallel Programming Hard?
http://www.thinkingparallel.com/2007/08/06/what-makes-parallel-

programming-hard

[190] Aater Suleman. What makes parallel programming hard?
http://www.futurechips.org/tips-for-power-coders/parallel-

programming.html

[191] Martin Sulzmann, Edmund S.L. Lam, and Simon Marlow. Comparing the perfor-
mance of concurrent linked-list implementations in Haskell. In DAMP ’09: Proceed-
ings of the 4th workshop on Declarative aspects of multicore programming, pages
37–46, New York, NY, USA, 2008. ACM

[192] H̊akan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority queues
for multi-thread systems. Journal of Parallel and Distributed Computing, 65:609–
627, 2005

[193] Michael Süß and Claudia Leopold. Common Mistakes in OpenMP and How to
Avoid Them - A Collection of Best Practices. In Matthias S. Müller, Barbara M.
Chapman, Bronis R. de Supinski, Allen D. Malony, and Michael Voss, editors,
IWOMP, volume 4315 of Lecture Notes in Computer Science, pages 312–323.
Springer, 2006

[194] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2007

[195] Andrew S. Tanenbaum and James R. Goodman. Structured Computer Organiza-
tion. Prentice Hall PTR, Upper Saddle River, NJ, USA, 4th edition, 1998

[196] Donald E. Thomas and Philip R. Moorby. The Verilog hardware description lan-
guage (4th ed.). Kluwer Academic Publishers, Norwell, MA, USA, 1998

[197] P. W. Trinder, K. Hammond, W, S. L, and Peyton Jones. Algorithm + Strategy
= Parallelism. Journal of Functional Programming, 8:23–60, 1998

181

[198] D Turner. An overview of Miranda. SIGPLAN Notices, 21:158–166, December
1986

[199] Valgrind.org. Helgrind: a thread error detector.
http://valgrind.org/docs/manual/hg-manual.html

[200] Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications
of ACM, 33(8):103–111, 1990

[201] Leslie G Valiant. A bridging model for multi-core computing. Journal of Computer
and System Sciences, 77(1):154–166, 2008

[202] John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings
of the fourteenth annual ACM symposium on Principles of distributed computing,
PODC ’95, pages 214–222, New York, NY, USA, 1995. ACM

[203] Wikipedia. Instructions per Second.
http://en.wikipedia.org/wiki/Instructions_per_second

[204] Wikipedia. Lambda-Calculus.
http://en.wikipedia.org/wiki/Lambda_calculus

[205] Wikipedia. POSIX Threads.
{http://en.wikipedia.org/wiki/POSIX_Threads}

[206] Wikipedia.org. Compare-and-swap Instruction.
http://en.wikipedia.org/wiki/Compare-and-swap

[207] Gregory V. Wilson. Parallel Programming Using C++. MIT Press, Cambridge,
MA, USA, 1996

[208] Andreas Wirz, Michael Süß, and Claudia Leopold. A Comparison of Task Pool
Variants in OpenMP and a Proposal for a Solution to the Busy Waiting Problem.
International Workshop on OpenMP, 2006

[209] X10. Homepage.
http://x10-lang.org/

[210] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff. Limits to binary
logic switch scaling-a gedanken model. Proceedings of the IEEE, 9(11):1934–1939,
November 2003

182

Chapter 7

Statement

Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbstständig und ohne uner-

laubte Hilfe angefertigt habe und andere als die in der Dissertation angegebenen Hilfs-

mittel nicht benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten

oder unveröffentlichten Schriften entnommen sind, habe ich als solche kenntlich gemacht.

Kein Teil dieser Arbeit ist in einem anderen Promotions- oder Habilitationsverfahren

verwendet worden.

Kassel, 14. März, 2012 Michael Lesniak

183

