
A High Order Finite Volume Scheme

for the 2D Shallow Water Equations

Including Topography

Dissertation

zur Erlangung des akademischen Grades einer
Doktorin der Naturwissenschaften (Dr. rer. nat.)

im Fachbereich Mathematik und Naturwissenschaften
der Universität Kassel

vorgelegt von
Bettina Charlotte Messerschmidt

aus Hanau

Gutachter: Prof. Dr. Andreas Meister, Universität Kassel
Prof. Dr. Armin Iske, Universität Hamburg

Tag der Disputation: 12. Juli 2012





Contents

Zusammenfassung 5

Introduction 9

Notation and Abbreviations 15

1 Theoretical Background 19

1.1 The 2D Shallow Water Equations . . . . . . . . . . . . . . . . 19
1.1.1 Derivation of the Equations . . . . . . . . . . . . . . . 20

1.1.1.1 Conservation of Mass . . . . . . . . . . . . . . 21
1.1.1.2 Conservation of Momentum . . . . . . . . . . 21
1.1.1.3 Further Assumptions and Boundary Conditions 22

1.2 Properties of the Equations . . . . . . . . . . . . . . . . . . . 27
1.2.1 Rotational Invariance . . . . . . . . . . . . . . . . . . . 28
1.2.2 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.3 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . 32
1.2.4 Generalized Riemann Invariants . . . . . . . . . . . . . 38
1.2.5 Rankine-Hugoniot Conditions . . . . . . . . . . . . . . 41

1.3 Finite Volume Schemes . . . . . . . . . . . . . . . . . . . . . . 47

2 Numerical Realization 51

2.1 Parameters of the Scheme . . . . . . . . . . . . . . . . . . . . 51
2.1.1 The Grid . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 WENO Reconstruction . . . . . . . . . . . . . . . . . . . . . . 55
2.2.1 Stencil Search . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.1.1 Directional Stencils . . . . . . . . . . . . . . . 59
2.2.1.2 Central Stencils . . . . . . . . . . . . . . . . . 61

2.2.2 Computation of Basic Polynomials . . . . . . . . . . . 61
2.2.3 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.2.4 Characteristic Variables . . . . . . . . . . . . . . . . . 70

2.3 Space Time Expansion . . . . . . . . . . . . . . . . . . . . . . 72

3



4 CONTENTS

2.3.1 Cauchy-Kovalewskaja Procedure . . . . . . . . . . . . . 73
2.4 Riemann Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4.1 The HLL Riemann Solver . . . . . . . . . . . . . . . . 80
2.4.2 The HLLC Riemann Solver . . . . . . . . . . . . . . . 82
2.4.3 Wave Speed Estimations . . . . . . . . . . . . . . . . . 85

2.5 Including the Topography . . . . . . . . . . . . . . . . . . . . 86
2.5.1 Well Balanced Reconstruction . . . . . . . . . . . . . . 87
2.5.2 Including Source Terms in the Space Time Expansion . 88
2.5.3 Riemann Solver including Topography . . . . . . . . . 90

2.5.3.1 Determination of wS . . . . . . . . . . . . . . 92
2.5.3.2 Determination of wl and wr . . . . . . . . . . 93

2.5.4 Dry Bed Problems . . . . . . . . . . . . . . . . . . . . 100

3 Computations 107

3.1 Validation of reconstruction order . . . . . . . . . . . . . . . . 108
3.2 Validation for the linear advection equation . . . . . . . . . . 108
3.3 Validation for the 2D Shallow Water Equations . . . . . . . . 110
3.4 Well Balanced-ness of the scheme . . . . . . . . . . . . . . . . 111
3.5 Correct Solution of Dry Bed Problems . . . . . . . . . . . . . 113
3.6 The Oscillating Lake . . . . . . . . . . . . . . . . . . . . . . . 116
3.7 Dam Break with Dry Zones and Obstacles . . . . . . . . . . . 121
3.8 Water Flowing Down a Winding Channel . . . . . . . . . . . . 128

4 Summary and Prospects 137

Bibliography 141



Zusammenfassung

In der vorliegenden Dissertation wird die Konstruktion eines Verfahrens zur
numerischen Lösung der zweidimensionalen Flachwassergleichung mit topo-
graphieinduzierten Quelltermen beschrieben, welches auch das Fluten trock-
ener Gebiete sowie das Trockenfallen nasser Gebiete beherrscht. Es ist von
beliebig hoher Ordnung in Raum und Zeit und erhält bestimmte Arten von
stationären Lösungen, sogenannte "lake-at-rest" Zustände. Dies ist möglich,
da in diesem Fall die numerischen Flüsse über die Zellgrenzen genau den Inte-
gralen der Quellterme entsprechen. Verfahren mit dieser Eigenschaft heiÿen
"well-balanced" .

Basis des Verfahrens ist der Finite-Volumen-Ansatz auf dem sekundären
Netz einer Delaunay-Triangulierung. Die Ordnung wird durch eine kom-
binierte Raum-Zeit Diskretisierung erzielt.

Hierbei wird zunächst, auf Basis der durch das Verfahren zur Verfü-
gung gestellten Zellmittelwerte zum aktuellen Zeitpunkt tn, für jede Zelle
σi ein Rekonstruktionspolynom für jede der drei zu betrachtenden Gröÿen
uk(x, t), k = 0, 1, 2, berechnet. Die Polynombasis hierfür besteht aus den
Monomen (x − bi)

α, wobei bi den Schwerpunkt der Zelle σi bezeichnet.
Die Ableitungen der Polynome im Punkt bi, welche später benötigt werden,
können so sehr einfach aus deren Koe�zienten berechnet werden. Durch
die Berechnung der Polynome mittels eines WENO-Ansatzes sollen auftre-
tende Oszillationen minimiert werden. Die Berechnung der für die Gewich-
tung benötigten Polynome wird mit der Methode der kleinsten Quadrate
durchgeführt, wobei durch eine Nebenbedingung die Erhaltung des Zellmit-
telwertes auf σi sichergestellt wird. Es wird in der Arbeit bewiesen, dass die
Koe�zienten der so berechneten Rekonstruktionspolynome die Ableitungen
der zu rekonstruierenden Funktion in bi mit einem zur Verfahrensordnung
passenden Genauigkeitsgrad approximieren. Die Gewichtung selbst erfolgt,
wie in [DuK07] vorgeschlagen, in charakteristischen Variablen und mit dem
dort genannten Oszillationsindikator.

In einem weiteren Schritt wird auf jeder Zelle eine Raum-Zeit Taylor-
entwicklung um den Punkt (bi, t

n) für jede Gröÿe uk berechnet, wobei die

5



6 ZUSAMMENFASSUNG

rein räumlichen Ableitungen durch die Ableitungen der Rekonstruktions-
polynome ersetzt werden. Alle Koe�zienten der Taylorpolynome die Zeitab-
leitungen enthalten, werden mittels der Cauchy-Kovalewskaja-Prozedur durch
sukzessives Ableiten der Di�erentialgleichung aus Termen mit Zeitableitun-
gen niedrigeren Grades berechnet. Ist ord nun die gewünschte Verfahrens-
ordnung, so wird in der Arbeit bewiesen, dass aufgrund der Approximations-
eigenschaften der Koe�zienten der Rekonstruktionspolynome für die Taylor-
polynome

Ui;k(x, t)− uk(x, t) = O(hord) für (x, t) ∈ σi × [tn, tn + ∆t]

gilt. Hierbei stellt h ein eindimensionales Maÿ für die Feinheit des Netzes
dar und ∆t den von h linear abhängigen Zeitschritt. Dieser Ansatz wurde in
[LaW60, HEO87] vorgestellt und in [GLM07, GLM08] für Discontinuous-
Galerkin-Verfahren weiter entwickelt. Der Vorteil dieses Vorgehens liegt
darin, dass die Quellterme über die Di�erentialgleichung direkt in die Dis-
kretisierung mit einbezogen werden können, obwohl sie später noch separat
integriert werden müssen.

Die Berechnung der numerischen Flüsse über die Zellränder �ndet an den
Gauÿpunkten (xk;l

ij , t
m) jeder Raum-Zeit�äche lkij×[tn, tn+∆t], k = 1, 2, statt.

lkij bezeichne hier die zwei Kanten zwischen den Zellen σi und σj. An diesen
Punkten werden die Taylorpolynome beider angrenzender Zellen ausgewertet
und die numerischen Flüsse mittels eines Riemannlösers bestimmt.

Nimmt man an dieser Stelle den HLLC Riemannlöser und betrachtet die
Erhaltungsgleichung ohne Quellterme, so liegt ein Finite-Volumen-Verfahren
beliebig hoher Ordnung, je nach Grad der Rekonstruktionspolynome, vor,
welches den zeitlichen Verlauf der Lösung bei gegeben Anfangs- und Rand-
werten berechnet.

Die Berücksichtigung von Quelltermen topographischen Ursprungs kann
nun durch kleinere Anpassungen und die Verwendung eines speziellen Rie-
mannlösers realisiert werden. Voraussetzung hierfür ist, dass die Topogra-
phie top(x) nicht zeitabhängig ist. Der Term ∂ttop = 0 kann als wei-
tere Gleichung in das System von Di�erentialgleichungen eingegliedert wer-
den. Die Gleichungen bleiben damit hyperbolisch, die Wellenstruktur verän-
dert sich allerdings in so weit, dass eine weitere Kontaktunstetigkeit mit
Geschwindigkeit S4 = 0 hinzukommt, während die restlichen Charakteris-
tiken unverändert bleiben. Betrachtet man demnach das Riemannproblem
an der Grenze zwischen zwei Zellen, so liegt die neue Kontaktunstetigkeit
genau auf der Zellgrenze.

Zunächst wird ein Rekonstruktionspolynom ui;3 zur Approximation von
top für jede Zelle σi sowie eine GröÿeK

k;l
ij = 9.81(ui;3−uj;3)(xk;l

ij ) proportional
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zur Gröÿe der durch die zellweise Rekonstruktion bedingten Unstetigkeit in
den Punkten xk;l

ij bestimmt. Da top(x) nicht zeitabhängig ist, muss dies nur
einmal, zu Beginn der Rechnung, erfolgen.

In jedem Zeitschritt wird nun nicht mehr die Gröÿe u0, welche die Wasser-
höhe bezeichnet, sondern u0 +top, also die Lage der Wasserober�äche, rekon-
struiert, und bei der Berechnung der Taylorentwicklung werden die Quell-
terme, wie bereits oben angedeutet, mit einbezogen. Des Weiteren können
diese in der rekonstruierten Form, als Produkt von Polynomen auf der Zelle,
sehr einfach integriert werden.

Die gröÿten Änderungen �nden im Bereich des Riemannlösers statt: Hier
wird der Löser aus [ChL99, Seg99] eingesetzt, welcher die durch die Inklusion
der Topographie entstehende Kontaktunstetigkeit zum Eigenwert λ4 = 0 mit
einbezieht. Es wird in der Arbeit bewiesen, dass das resultierende Verfahren,
in Kombination mit der geänderten Rekonstruktion und der geänderten Tay-
lorentwicklung, stationäre Zustände mit einer konstanten Höhe der Wasser-
ober�äche bei stillstehendem Wasser erhält.

Der Riemannlöser ist zudem in der Lage mit "trockenen" Zuständen,
sowohl wenn sie als Anfangswert im Riemannproblem gegeben sind, als auch
wenn sie erst in dessen Lösung entstehen, umzugehen. Um die Verarbeitung
dieser Zustände im Gesamtverfahren zu ermöglichen, wird in Regionen des
Rechengebietes, in denen die Wasserhöhe gering im Vergleich zur Zellgröÿe
ist, die Verfahrensordnung sukzessive zuerst auf zwei und, falls nötig, weiter
auf eins reduziert.

Obwohl die Techniken für die Rekonstruktion aus [DuK07] stammen, wer-
den sie dort direkt auf die Triangulierung angewendet, was das Verfahren
durch die Möglichkeit der Transformation auf ein Referenzdreieck und die
mögliche Wahl einer auf diesem Dreieck orthogonalen Basis deutlich verein-
facht. In [DuM07] wird der Quellterm in die Cauchy-Kovalewskaja-Prozedur
einbezogen, allerdings ist das resultierende Verfahren nicht well-balanced.

Das von Gallardo, Parés und Castro in [GPC07] vorgestellte Finite-Volu-
men-Verfahren ist well-balanced, von dritter Ordnung in nassen, glatten
Regionen und kann trockene Zustände verarbeiten. Die Autoren nutzen
eine Roe-Methode zusammen mit einer hyperbolischen Rekonstruktion. Das
Verfahren wird im zweidimensionalen Fall auf Gitter mit viereckigen, nicht
notwendigerweise uniformen, Zellen angewendet. In [CGL08] wird eine Go-
dunov-Methode vorgestellt, allerdings für Systeme mit linearer Flussfunktion
und in einer Dimension.

Xing und Shu präsentieren in [XiS11] und den dort genannten vorausge-
henden Arbeiten ein hochgenaues Finite-Volumen-Verfahren, welches well-
balanced ist, die Positivität der Lösung garantiert und eine WENO-Rekon-
struktion beinhaltet. Zur Zeitdiskretisierung verwenden die Autoren eine



8 ZUSAMMENFASSUNG

TVD-Runge-Kutta-Methode dritter Ordnung. Das Verfahren ist in zwei Di-
mensionen allerdings auf rechteckige Gitter beschränkt, die Positivität der
Lösung wird durch die Reduktion der CFL-Zahl auf 0.08 sichergestellt und
erfordert darüber hinaus die Bestimmung der Minima der Rekonstruktions-
polynome für die Wasserhöhe auf den Zellen.

Weitere Arbeiten, etwa [BoM10, NPP06], gehen entweder nur auf den
eindimensionalen Fall ein oder setzen für den zweidimensionalen Fall Netze
mit rechteckigen Zellen voraus.

Der Vorteil des hier präsentierten Verfahrens im Vergleich zu oben ge-
nannten liegt darin, dass die Struktur des Netzes nur in technischen Abläufen,
wie etwa der Bestimmung der Stencils für die Rekonstruktion, ausgenutzt
wird. Die Gestalt der Zellen hat aber keinen direkten Ein�uss auf die Berech-
nung der Flüsse oder der Rekonstruktionspolynome. Allerdings sind auf-
grund der Gestalt der Zellen, man kann unregelmäÿige Zehn- bis 14-ecke er-
warten, keine Aussagen über die Positivität der Wasserhöhe nach der Berech-
nung der Flüsse möglich. Während des Rekonstruktionsprozesses kann durch
die Reduktion der Ordnung allerdings sehr wohl Positivität erwartet werden.

In dieser Arbeit werden die Approximationseigenschaften der Koe�zien-
ten der räumlichen Rekonstruktionspolynome bezogen auf die räumlichen
Ableitungen der zu rekonstruierenden Funktionen bewiesen. Es wird weiter
gezeigt, dass diese Eigenschaften durch die Cauchy-Kovalewskaja Prozedur
auf die Koe�zienten der Raum-Zeit Taylorpolynome übertragen werden,
welche somit die oben bereits genannte Approximationsordnung besitzen.
Die Güte der räumlichen Rekonstruktion wird darüber hinaus numerisch
nachgewiesen, ebenso wie die Genauigkeitsordnung des Gesamtverfahrens
für die lineare Advektionsgleichung und die zweidimensionale Flachwasser-
gleichung.

Des Weiteren wird bewiesen, dass das Verfahren die "well-balanced"-
Eigenschaft für "lake-at-rest" Zustände besitzt, vorausgesetzt die Rekon-
struktion und die Berechnung der Taylorpolynome wurden in der oben be-
schriebenen Weise angepasst. Auch diese Eigenschaft wird numerisch belegt.

Zusammenfassend lässt sich sagen, dass das hier vorgestellte Verfahren,
bei beliebig hoher Genauigkeitsordnung in Gebieten mit genügend groÿer
Wasserhöhe, die gröÿtmögliche Allgemeinheit in Bezug auf die zu betrach-
tende Topographie erlaubt und dabei bestimmte stationäre Zustände erhält.



Introduction

This thesis is concerned with the numerical simulation of the two dimensional
shallow water equations. These equations constitute a hyperbolic balance law
of the form

∂tu + ∂x1f1(u) + ∂x2f2(u) = g(u).

The two dimensional shallow water equations are a model for the �ow be-
havior of water bodies. The model is valid for water bodies whose depth is
very small compared to their surface dimensions and it neglects the e�ects
of viscosity.

The vector u(x, t) herein contains the quantities whose evolution in time,
from a given initial state u(x, t0) = u0(x), is sought-after on the bounded
domain of integration Ω ⊂ R2. These quantities are, in the case of the
two dimensional shallow water equations, the Geo potential Φ, which is the
product of the water height and the gravity constant g, and Φvi, i = 1, 2.
The latter is called the momentum and is the product of Φ and the velocity
vi in the space direction xi, i = 1, 2. The momentum can be interpreted as
the product of the �ow rate and g.

The equations generally describe the gravity induced time evolution of
water �ows with a free surface for given initial conditions. This class contains
problems like the behavior of waves on shallow beaches or �ood waves in
rivers. These examples show that the treatment of bottom topography as
well as dry zones is an interesting feature in this context.

Being not able to include topography into the scheme means all geometry
that needs to be considered has to be contained in the grid. There, it is em-
bodied as areas that are, in the context of the scheme, bounded by in�nitely
high impermeable walls normal to the �at horizontal ground. This severely
restricts the range of structures that can be considered as it would not be
possible to represent any topographical structures like beach slopes or under
water trenches and humps.

The aim of this thesis is to present a numerical scheme whose solution
for given initial conditions is of, theoretically, arbitrary high order in smooth
and wet regions of the solution and that can cope with source terms due to
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10 INTRODUCTION

topography as well as with dry regions.
In recent years, several high-order methods for the shallow water equa-

tions have been proposed that can handle these problems, like [BoM10,
GPC07, CGL08, NPP06, XiS11]. However, most of them either only treat
the one-dimensional case or are of at most second order. Schemes for the
two-dimensional shallow water equations that are of at least third order are
from Gallardo et al.,[GPC07], and Xing and Shu, [XiS11]. The �rst is of
third order in wet, smooth regions and is restricted to grids with quadrilat-
eral cells. The latter can theoretically be extended to arbitrary high order,
but is restricted to grids with rectangular cells. The scheme presented in this
work is of theoretically arbitrary high order and the requirement of a grid
with triangular cells stems from the organization of the computation, but it
is not relevant for the scheme itself.

This thesis is divided into four main chapters. The �rst contains a
compilation of all the theoretical aspects regarding the numerical scheme
to be developed in the second chapter. The main source is the book of
Godlewski and Raviart, [GoR96], but also results from other works like
[MeS02, MRT05, Tor99, Tor01] are cited or applied.

The leading equations are derived with the limitations of the model they
describe being named. Afterwards, their properties relevant to the scheme
are discussed. The property of rotational invariance is introduced brie�y.
This property is very useful, as it allows to rotate the equation in a way
that the �ux only in one direction, instead of two, needs to be considered.
The analysis of the equations as well as the numerical scheme can thus be
simpli�ed considerably.

The most important property, hyperbolicity, comes next. Hyperbolicity
means basically that the system matrix

F(u, ω) = f ′1(u)ω1 + f ′2(u)ω2 with |ω| = 1

can be diagonalized. Hyperbolicity on the one hand is the source of problems
that arise in designing a numerical scheme, as for nonlinear systems of par-
tial di�erential equations having this property even smooth initial data may
develop discontinuities in �nite time. On the other hand, hyperbolicity pro-
vides an ansatz to handle this problem: The solution of Riemann problems,
which are special initial value problems, splits into a sequence of constant
states separated by waves traveling with a velocity depending on the initial
data. Thus, the leading idea of the numerical scheme is to consider the in-
tegral form of the two dimensional shallow water equations, which allows
discontinuous weak solutions, and solve local Riemann problems. In order to
do so, the wave structure of the solution of Riemann problems, that depends
on the eigenvalues and eigenvectors of F(u, ω), is analyzed in detail.
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The last section of this chapter is concerned with the introduction of the
basis of the numerical scheme, the �nite volume approach. This ansatz is
based on the integral form of the equation. It considers the time evolution
of the spatial integral mean values of the cells of a given computational grid.
The updates for the cell mean values from the time tn to tn+1 are computed
by integrating the inter cell �uxes given by f1(u) and f2(u). The problems
arising from the aim to construct a high order numerical scheme based on
this approach are discussed at the end of the �rst chapter and motivate the
development of the numerical scheme in the second.

The second chapter contains the derivation of the numerical scheme. It
starts with the presentation of the setting used further in this chapter, in-
cluding the introduction of program constants and the computational grid as
well as its properties. The grid is the division of the integration area Ω into
cells σi.

The next section treats a crucial part of the numerical scheme, the re-
construction. In this step of the scheme, higher order spatial polynomials
for each cell are computed from the cell mean values of u. The necessity to
do so evokes from the aim of creating a numerical scheme of a high order
of exactness, and thus the demand of a high order integration of the �uxes
over the cell boundaries, while having only mean values from each cell at
disposition. In the simplest possible reconstruction, these mean values can
be interpreted as constant polynomials. The di�culties in reconstructing
the exact solution by higher order polynomials using the cell mean values
come from the fact that near discontinuities these polynomials often oscil-
late, which was proven by Godunov in [God59]. Many authors have pub-
lished their analysis and their solution for this problem, see for example
[Abg94, DuK07, DKT07, Fri98, Fri99, HaC91, ShO88, Son97] and the works
mentioned therein.

The WENO reconstruction, that is used in this work was introduced in
[LOC94]. It copes with the problem of oscillation in computing a set of
polynomials for each cell σi that are each based on a di�erent set of cells,
or stencil, containing σi. These stencils are situated around σi and have the
trait that they provide from the mean values of u of the cells they contain
unique polynomials of a preset degree that have the same mean value, at least
on σi. The reconstruction polynomials are computed with a least squares
method. In this work, it is proven that the coe�cients of these polynomials
approximate the spatial derivatives of u in the cells' barycenters up to an
order that �ts with the order of the scheme. To the authors knowledge, this
result was not proven before in the case of using a least squares method. As
an implication, the reconstruction polynomials approximate u at the time
tn on the whole cell σi with the desired order. From these polynomials a
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weighted sum is built, with the weights depending on the reverse of a function
indicating the measure of oscillation of each polynomial. If a discontinuity
is situated in one stencil, the polynomial computed from this stencil will
oscillate. Thus, the oscillation indicator will be high and as a consequence
the polynomial will have only a small share in the weighted sum.

In the following section, the computing of a space time expansion ap-
proximating u on a space time cell σi × [tn, tn+1] is presented. To obtain
highly accurate approximations to the integral of the inter cell �uxes, the
time integration needs to be accurate as well. The cell mean values, and
as a consequence the reconstruction polynomials for u as well, are situated
at the time level tn, while for the integration using numerical quadrature
rules values at the integration nodes at later time levels are needed. The
ansatz proposed in [HEO87, HaO87] and further developed for example in
[GLM07, GLM08] makes use of the fact that the shallow water equations give
a description of the time derivatives of u in terms of the spatial derivatives of
fi(u), i = 1, 2. Thus, having approximations for the spatial derivatives of u
provided by the reconstruction polynomials up to a preset order, by deriving
the complete di�erential equation in space as well as in time approximations
to higher time derivatives as well as for higher mixed time space derivatives
of u can be computed successively. Using these derivatives, a space time
Taylor expansion of the preset degree around the barycenter of σi at the
time tn can be determined. This Taylor expansion can be evaluated at the
nodes of the quadrature rule. Using the results obtained in the last section
concerning the coe�cients of the reconstruction polynomial, it is proven in
this work that the coe�cients of the Taylor expansion approximate the time-
and time-space derivatives of u in the cells' barycenters at the time tn with
an adequate order as well. Again, to the authors knowledge, this is a new
result.

The next section is concerned with the solution of the problem that arises
form the fact that each integration node is adjacent to two cells and that, due
to the cell wise developed Taylor expansion, there exist two approximating
values for u in these points. This con�guration is called a Riemann problem,
and its analytical solution was discussed in the �rst chapter. In this section
now the numerical solution of Riemann problems is treated in order to obtain
an easily computed approximation for the exact solution. Two Riemann
solver are presented at this point, namely the HLL and its extension, the
HLLC. More exhausting information on the subject can be found for example
in [Tor99] and in the references mentioned therein.

The last section of the second chapter �nally is dedicated to the treat-
ment of source terms due to topography and to the problems occurring due
to wet/dry fronts in the scheme. The modi�cations being necessary in the re-
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construction and in the computation of the space time Taylor expansion for
the inclusion of topography are named. Further, another Riemann solver,
developed by [ChL99, Seg99, CLS04], is presented that can cope with to-
pography and dry states. It is proven that the resulting scheme, using this
Riemann solver, is well-balanced, that means it preserves certain kinds of
steady state solutions. The amendments to the scheme necessary to cope
with the problems caused by the inclusion of the treatment of dry states in
a higher order scheme using polynomial reconstruction are motivated.

In the third chapter, numerical results are presented to con�rm the con-
siderations concerning the properties of the scheme developed in chapter two.

Finally, the fourth chapter contains a summary of the results achieved so
far and some prospects for the future work, as well as possible applications
of the scheme.





Notation and Abbreviations

In general the following notations are used. Vectors are printed in bold

letters. In most cases, the usual notation v = (v0, ..., vn−1)T is used. However,
for the exact speci�cation it is sometimes necessary to add multiple indices.
To refer to single components of a vector vij, the following notation is used:

vij =
(
vij;0, ..., v

i
j;n−1

)T
.

The enumeration of vectors in this work starts with the index i = 0. The
exception are vectors referring to the directions x1 and x2 of the coordinate
system, such as the vector of velocity v = (v1, v2) or all vectors denoting
points in space. Thus, for the vectors u and w of the conserved and primitive
variables of the 2D shallow water equations, the components with index
i = 1, 2 contain the directed quantities in direction xi. The space variable is
denoted x, the time variable t.

Sign De�nition Description

bi = (b1, b2) barycenter of σi

c = c(x, t) :=
√

Φ celerity

deg := ord− 1 degree of the poly-
nomials used in the
scheme

D := R+ × R2 co-domain of the 2D-
shallow water equa-
tions

fj(u), j = 1, 2 :=


uj

u1uj
u0

+ δ1j

(
1
2
u2

0

)
u2uj
u0

+ δ2j

(
1
2
u2

0

)
 �ux functions

g := 9.81m
s2

gravity constant

15
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g(u) :=


0

−gΦ∂x1top

−gΦ∂x2top

 source term

H = H(x, t) water height

λk(u),
k = 1, 2, 3(, 4)

k-th eigenvalue of the
x1-split 2D shallow
water equations

lki,j = (lki,j;1, l
k
i,j;2)T edges between σi and

σj, k = 1, 2

nki,j = (nki,j;1, n
k
i,j;2)T := 1

‖lki,j‖2

(−lki,j;2, lki,j;1)T outer normal vector to
lki,j

noc :=
(
deg+2

2

)
number of coe�cients
of polynomials p ∈
Πdeg(R2; R)

non i number of neighboring
cells of σi

nos i number of stencils Si,j
for σi

ord order of the numerical
scheme

Ω ⊂ R2 integration domain

pni,j = pni,j(x) vector of basic recon-
struction polynomials
for σi at time tn, based
on stencil Si,j

Φ = Φ(x, t) := gH Geo potential

rk(u),
k = 1, 2, 3(, 4)

right eigenvector to
λk(u)

ρik(u),
k = 1, 2, 3(, 4),
i = 1, 2(, 3)

i-th Riemann invari-
ant to the k-th eigen-
value
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Si,j := {σk|
k ∈ I ⊆ { 0, ...,#Σ− 1},
i ∈ I}

stencil for computa-
tion of pni,j, contains σi

σi ⊆ Ω control volume, polyg-
onally bounded

|σi|
∫
σi

1 dx area of σi

δσi :=
⋃

(k) δ
kσi boundary of σi, poly-

gon

Σ := {σi|i = 0, ...,#Σ− 1} secondary net resp
secondary grid;⋃
i σi = Ω

τi ⊆ Ω triangle

T := {τj|j = 0, ...,#T} triangulation;
⋃
j τj =

Ω

top = top(x) topography, bottom
elevation

u = u(x, t) = (Φ,Φv1,Φv2)T (x, t) vector of conservative
variables

uni := |σi|−1 ∫
σi

u(x, tn)dx vector of integral cell
mean values of u on σi
at time tn

uni = uni (x) := (uni;0, u
n
i;1, u

n
i;2)T (x) vector of weighted re-

construction polyno-
mials for u on cell σi
based on the cell mean
values at time tn

Un
i = Un

i (x, t) := (Un
i;0, U

n
i;1, U

n
i;2)T (x, t) vector of space time

polynomials for u on
cell σi at time tn

v = v(x, t) = (v1, v2)T (x, t) velocity
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w = w(x, t) = (H, v1, v2, top)
T (x, t) vector of primitive

variables, including
topography

ωni,j;k veight for the polyno-
mial pni,j;k



Chapter 1

Theoretical Background

In this chapter the theoretical background necessary for developing the nu-
merical scheme in chapter 2 is presented. It is divided into two parts. The
�rst part introduces the 2D shallow water equations, its derivation and its
properties. It emphasizes the property of hyperbolicity and introduces a spe-
cial initial value problem called Riemann problem, whose solution is closely
related to hyperbolicity.

The second part contains a brief derivation of an explicit �nite volume
scheme for the 2D shallow water equations as well as a short motivation for
the numerical approach carried out in chapter 2.

1.1 The 2D Shallow Water Equations

The inviscid shallow water equations are a model to describe the temporal
evolution of the water height and �ow rate, or velocity, of liquids due to
gravity under given initial conditions.

This model is considered valid for bodies of water whose surface dimen-
sions are very large compared to their depth, as can be seen from its deriva-
tion in section 1.1.1. This is the case for a �at puddle as well as for an ocean.
The model as it is derived in this work takes into account in�uences due to
topography, rain and evaporation, but neglects the e�ects from other envi-
ronmental conditions like wind or bottom friction. The numerical schemes
presented in chapter 2 will only consider the source terms due to topography
though.

19
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1.1.1 Derivation of the Equations

The general basis for modeling �uids are the equations for the conservation of
mass and momentum modi�ed by additional conditions. On the one hand,
these modi�cations consist of applying conditions for the adaption of the
general equations to the special facts describing the properties of the �uid
considered. On the other hand, due to the practicability of the model to be
developed, some simpli�cations will be applied. These modi�cations natu-
rally restrict the validity of the model to cases where it can be assumed that
the aforementioned conditions hold.

The basis for deriving the 2D shallow water equations are the equations
for conservation of mass and momentum in three space dimensions and time.
To adapt those general equations to the case of inviscid liquids, boundary
conditions and simplifying physical assumptions are taken into account. The
boundary conditions characterize the behavior of the described quantities at
the bottom and the surface. The simplifying physical assumptions are �rstly
that there exists no friction and that, secondly, no production or dissipation
of mass occurs. Furthermore, it is assumed that the body forces are restricted
to gravity and that the density of the �uid is constant with respect to space
and time. Finally, the assumption the model is named after, is that the
horizontal extension is so much larger than the vertical length scale that the
acceleration of particles in vertical direction can be neglected.

Especially the last aspect restricts the validity of the model to so called
shallow �ows, that is to bodies of water whose surface is measured on much
larger scales than its depth.

A very useful tool for deriving the equations from conservation of mass
and momentum is Reynolds transport theorem, which can be found in stan-
dard literature to the subject.

Theorem 1.1 (Reynolds' transport theorem). Let q(x, t) be a quantity per
unit volume and σ(t) a control volume with surface δσ(t) that moves along
with the �ow of velocity v(x, t). Then the equation

d

dt

∫
σ(t)

q(x, t) dx =

∫
σ(t)

(
∂

∂t
q(x, t) +∇ · (qv)(x, t)

)
dx

holds.

Theorem 1.1 thus gives an expression for the time rate of change of the
total amount of q(x, t) contained in the control volume. A proof of this
theorem can be found, for example, in [MRT05, ChM98].
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1.1.1.1 Conservation of Mass

To obtain the equation for mass conservation, let σ(t) be a control volume
with surface δσ(t), consisting of a set of particles that moves along with the
�ow of velocity v : R3×R+

0 → R3. n is the outer normal vector with |n| = 1
that is normal to δσ(t).

This implies in particular that the mass of σ(t) remains constant for all
t ∈ R+

0 , but that the size and shape may change.
Therefore, for the density ρ : R3 × R+

0 → R it follows that

0 =
d

dt

∫
σ(t)

ρ dx,

which can be modi�ed to

0 =

∫
σ(t)

(∂tρ+∇ · (ρv)) dx

by using theorem 1.1. As this equation is valid for arbitrary σ(t), the equation

∂tρ+∇ · (ρv) = 0 (1.1)

holds.

1.1.1.2 Conservation of Momentum

The equation for the conservation of the momentum (ρv)(x, t) : R3 ×R+
0 →

R3 needed here is obtained from Newtons 2nd Law: Mutationem motus pro-
portionalem esse vi motrici impressae, et �eri secundum lineam rectam qua
vis illa imprimitur. From this Law follows that for σ(t) the temporal change
of the momentum equals the sum of all forces that take e�ect on the mass of
the control volume. By applying the assumption of absence of friction, only
body forces and pressure p : R3 × R+

0 → R, acting on the boundary of σ(t),
need to be taken into account. Let K : R3 × R+

0 → R3 represent the force
per unit mass.

Newtons 2nd Law then reads

d

dt

∫
σ(t)

ρv dx = −
∫
δσ(t)

pn ds+

∫
σ(t)

ρK dx (1.2)

and transforms into

d

dt

∫
σ(t)

ρv dx =

∫
σ(t)

(ρK−∇p) dx
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by applying Gauss' integral theorem.
The application of Reynolds' transport theorem to the left hand side of

equation (1.2) leads to

d

dt

∫
σ(t)

ρv dx =
d

dt

∫
σ(t)


ρv1

ρv2

ρv3

 dx

=

∫
σ(t)

∂t


ρv1

ρv2

ρv3

+


∇ · (ρv1v)

∇ · (ρv2v)

∇ · (ρv3v)


 dx

=

∫
σ(t)

(
∂t(ρv) +

3∑
j=1

∂xj(ρvjv)

)
dx.

Equation (1.2) then reads∫
σ(t)

[
∂t(ρv) +

3∑
j=1

∂xj(ρvjv)− ρK +∇p

]
dx = 0.

Again, as this result is valid for all σ(t), the expressions

∂t(ρvi) +
3∑
j=1

∂xj(ρvjvi + δijp) = ρKi, i = 1, 2, 3 (1.3)

hold.

1.1.1.3 Further Assumptions and Boundary Conditions

The equations derived so far are very general. By introducing boundary
conditions they are adapted to the behavior of gravity induced free surface
�ows. Further assumptions lead to a more specialized model that is easier to
handle, at the cost of a restricted validity.

The �rst assumption is that the density is constant with ρ(x, t) = ρ 6= 0,
which yields

∂tρ = ∂x1ρ = ∂x2ρ = ∂x3ρ = 0. (1.4)

Plugging equation (1.4) into (1.1) gives

0 = ∂tρ︸︷︷︸
=0

+ v · ∇ρ︸ ︷︷ ︸
=0

+ρ∇ · v⇒ ∇ · v = 0. (1.5)
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This expresses the incompressibility of the considered �uid, since by theo-
rem 1.1,

d |σ(t)|
dt

=
d

dt

∫
σ(t)

1 dx =

∫
σ(t)

∂

∂t
1 +∇ · v dx =

∫
σ(t)

∇ · v dx = 0.

Secondly, the body forces are given by gravity g = 9.81m
s2

only, such that

K =


K1

K2

K3

 =


0

0

−g

 . (1.6)

The next assumption is that the horizontal extension of the body of water is
substantially larger than the vertical one. As a consequence of this shallow
water assumption, the acceleration of particles in vertical direction is assumed
to be zero. This yields

0 =
Dv3

Dt
= ∂tv3 + v · ∇v3 = ∂tv3 +

3∑
j=1

vj∂xjv3. (1.7)

Using equation (1.3) with i = 3, it follows from the application of equa-
tions (1.4) through (1.7) that

−ρg = ρK3

= ∂t (ρv3) +
3∑
j=1

∂xj (ρvjv3) + ∂x3p

= ρ

(
∂tv3 +

3∑
j=1

∂xj (vjv3)

)
+ ∂x3p

= ρ

∂tv3 + v · ∇v3︸ ︷︷ ︸
=0

+v3∇ · v︸ ︷︷ ︸
=0

+ ∂x3p

= ∂x3p (1.8)

holds.
The next step is to look at the special boundary conditions that follow

from modeling �owing water. There are two boundaries that have to be taken
into account, namely the bottom and the surface. The bottom's elevation is
represented by the topography

top : R2 → R, (x1, x2)T 7→ x3 = top(x1, x2),
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which is assumed to be invariant with respect to time. The free surface

s : R2 × R+
0 → R, (x1, x2, t)

T 7→ x3 = s(x1, x2, t),

however, may depend on time and space. For simplicity of notation

xtop := (x1, x2, top(x1, x2))T ∈ R3

and

xs(t) := (x1, x2, s(x1, x2, t))
T ∈ R3 (1.9)

denote points on the corresponding boundaries.
The bottom is assumed to be impermeable to water, which gives

v · n = 0 for (xtop, t)

with normal vector n(xtop, t) = (∂x1top, ∂x2top,−1)T ∈ R3, which implies
that

v3 = v1∂x1top+ v2∂x2top for (xtop, t) (1.10)

holds.
The surface moves due to the �eld of velocity and may rise or fall by rain

or evaporation described as production term q = q(xs(t), t) which yields

(q + v3)(xs(t), t) =
d

dt
s(x1, x2, t),

so that
v3 = ∂ts+ v1∂x1s+ v2∂x2s− q for (xs(t), t). (1.11)

Let patm be the atmospheric pressure at the surface. As the pressure
grows linearly to the water depth, equation (1.8) can then be written in the
following form:

p(x, t) = −ρg(x3 − s(x1, x2, t)) + patm,

which gives
∂xip = ρg∂xis i = 1, 2. (1.12)

Inserting the equations (1.12) into the corresponding momentum equa-
tions (1.3) and dividing by the constant ρ 6= 0 leads to

∂tvi +
3∑
j=1

vj∂xjvi = −g∂xis i = 1, 2. (1.13)
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Integrating equation (1.5) in vertical direction and inserting the equa-
tions (1.10) and (1.11) yields

0 =

∫ s(x1,x2,t)

top(x1,x2)

3∑
j=1

∂xjvj dx3

=
2∑
j=1

∫ s(x1,x2,t)

top(x1,x2)

∂xjvj dx3 + v3(xs(t), t)− v3(xtop, t)

=
2∑
j=1

∫ s(x1,x2,t)

top(x1,x2)

∂xjvj dx3

+
2∑
j=1

[
(vj(xs(t), t)∂xjs(x1, x2, t))− (vj(xtop, t)∂xj top(x1, x2))

]
+ ∂ts(xs(t), t)− q(xs(t), t)

= ∂ts(x1, x2, t) +
2∑
j=1

∂xj

∫ s(x1,x2,t)

top(x1,x2)

vj dx3 − q(xs(t), t). (1.14)

Let v1, v2 be speci�ed at time t = 0 via the initial conditions

vi(x, 0) = vi(x1, x2, x3, 0) for (x1, x2, x3)T ∈ R3,

such that vi is constant with respect to x3. This transforms equations (1.13)
into

−g∂xis = ∂tvi +
2∑
j=1

vj∂xjvi i = 1, 2. (1.15)

Thus, both sides of the equations (1.15) are independent from x3 and v3,
which implies

vi(x1, x2, x3, t) = vi(x1, x2, t) ∀t ∈ R+
0 i = 1, 2.

This implies for equation (1.14) in combination with ∂ttop = 0 and (1.9),
which provides q(xs(t), t) = q(x1, x2, t),

q = ∂t(s− top) +
2∑
j=1

∂xj((s− top)vj) for (x1, x2, t). (1.16)

De�ning the water height as H = max {s− top, 0} : R2 × R+
0 → R+

0 and
multiplying equation (1.16) with g,

∂tΦ +
2∑
j=1

∂xj(Φvj) = gq for (x, t) = (x1, x2, t), (1.17)
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is obtained where Φ = gH is called the Geo potential.
Finally, by using equations (1.15) and (1.17) for i = 1, 2,

g(qvi − Φ∂xitop) = vi

(
∂tΦ +

2∑
j=1

∂xj(Φvj)

)

+Φ

(
∂tvi +

2∑
j=1

vj∂xjvi + g∂xis

)
− gΦ∂xitop

= ∂t (Φvi) +
2∑
j=1

∂xj (Φvivj) + Φ∂xi(g(s− top))

= ∂t (Φvi) +
2∑
j=1

∂xj

[
(Φvivj) + δij

(
1

2
Φ2

)]
can be obtained. These equations describe the momentum balance and com-
plete the 2D shallow water equations.

Thus, the complete 2D shallow water equations read

∂tu +
2∑
j=1

∂xj fj(u) = g(u) (1.18)

with the vector of conservative variables

u =


Φ

Φv1

Φv2

 =


u0

u1

u2

 ∈ D := R+ × R2,

the two �ux functions

fj(u) =


Φvj

Φv1vj + δ1j

(
1
2
Φ2
)

Φv2vj + δ2j

(
1
2
Φ2
)
 =


uj

u1uj
u0

+ δ1j

(
1
2
u2

0

)
u2uj
u0

+ δ2j

(
1
2
u2

0

)
 ∈ R3, j = 1, 2,

and the vector of source terms

g(u) =


gq

g (qv1 − Φ∂x1top)

g (qv2 − Φ∂x2top)

 ∈ R3.
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Rain and evaporation will not be considered in this work, so it is assumed
that q = 0 which yields

g(u) =


0

−gΦ∂x1top

−gΦ∂x2top

 .

Integrating equation (1.18) over an arbitrary control volume σ with bound-
ary δσ and outer normal vector n with |n| = 1, and applying the transport
theorem and Gauss' integral theorem yields the integral form

d

dt

∫
σ

udx = −
∫
δσ

2∑
j=1

fj(u)njds+

∫
σ

g(u)dx. (1.19)

This form has the advantage of allowing discontinuous solutions for u. That
is important especially for hyperbolic partial di�erential equations, like the
2D shallow water equations, as their solutions may develop discontinuities in
�nite time, [Lax73], even for smooth initial conditions. The integral form of
the 2D shallow water equations forms the base for the �nite volume approach
used in this work.

Sometimes it is more convenient to consider the 2D shallow water equa-
tions formulated in primitive variables. To obtain this formulation, �rstly
the product rule is applied to all derivatives from (1.18). Secondly, the whole
system is divided by g. Afterwards the expression for ∂tH obtained from
the equation for mass conservation is plugged into the equations for the con-
servation of momentum. Finally, these expressions are divided by H. The
equations resulting from all this operations then read

∂tH + v1∂x1H +H∂x1v1 + v2∂x2H +H∂x2v2 = 0

∂tv1 + v1∂x1v1 + g∂x1H + v2∂x2v1 = −g∂x1top

∂tv2 + v1∂x1v2 + v2∂x2v2 + g∂x2H = −g∂x2top.

(1.20)

The formulation (1.20), that is valid only for H > 0, is used for deriving the
properties of the equations in the following section 1.2.

1.2 Properties of the Equations

The 2D shallow water equations have some properties that will be exploited
in developing the numerical scheme.



28 CHAPTER 1. THEORETICAL BACKGROUND

The most important property is hyperbolicity. Hyperbolicity in the con-
text of systems of partial di�erential equations is a property that is de-
�ned through the eigenvalues of the Jacobian matrices of the �ux functions
fj, j = 1, 2. For hyperbolic systems of partial di�erential equations, the
solution for special initial conditions, the so-called Riemann problems, splits
into separate waves and can thus be determined analytically. The mathe-
matical theory related to the solution of Riemann problems is discussed in
sections 1.2.3, 1.2.4, 1.2.5. Solving local Riemann problems will be the basis
of the numerical scheme.

Nevertheless, the �rst property to be discussed here is the rotational in-
variance of the 2D shallow water equations as all the following considerations
can be simpli�ed by its application.

1.2.1 Rotational Invariance

This property will be used later on to derive the numerical scheme. Its
consequence is that it is possible to rotate the coordinate system from the
(x1, x2) into the (xn, xt) direction, that is normal and tangential, in relation
to a given line segment. Therefore, the treatment of the full 2D-shallow
water equations can be restricted to the x1-split case in the computation
of the �uxes over the cell boundaries later in the �nite volume scheme. In
this case, only the �rst �ux function and the derivatives in xn-direction, or
x1-direction, respectively, need to be taken into account.

Theorem 1.2 (Rotational Invariance). For the �ux functions fj, j = 1, 2,
as in equation (1.19), the equation

2∑
j=1

fj(u)nj = T−1(n)f1(T(n)u)

with

T(n) =


1 0 0

0 n1 n2

0 −n2 n1


holds.

Proof. Let vn := v1n1 +v2n2 be the velocity in normal and vt := −v1n2 +v2n1
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the velocity in tangential direction. Moreover, let |n| = 1. Then

2∑
j=1

fj(u)nj =
2∑
j=1


Φvj

Φv1vj + δ1jΦ
2

Φv2vj + δ2jΦ
2

nj =


Φvn

Φv1vn + 1
2
Φ2n1

Φv2vn + 1
2
Φ2n2


follows directly. Since T(n)u = (Φ,Φvn,Φvt)

T , the equation

f1(T(n)u) =


Φvn

Φv2
n + Φ2

Φvnvt

 ,

holds, which yields

T−1(n)f1(T(n)u) =


1 0 0

0 n1 −n2

0 n2 n1

 f1(T(n)u)

=


Φvn

Φv2
nn1 + 1

2
Φ2n1 − Φvnvtn2

Φv2
nn2 + 1

2
Φ2n2 + Φvnvtn1



=


Φvn

Φvn(vnn1 − vtn2) + 1
2
Φ2n1

Φvn(vnn2 + vtn1) + 1
2
Φ2n2

 .

With

vnn1 − vtn2 = (v1n1 + v2n2)n1 − (v2n1 − v1n2)n2 = v1 (n2
1 + n2

2)︸ ︷︷ ︸
=1

= v1

and

vnn2 + vtn1 = (v1n1 + v2n2)n2 + (v2n1 − v1n2)n1 = v2 (n2
2 + n2

1)︸ ︷︷ ︸
=1

= v2,

the proof is complete.
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1.2.2 Hyperbolicity

Hyperbolicity is the property that represents the central point concerning
the aim of solving the 2D shallow water equations numerically. On the one
hand, it is known that hyperbolic systems of conservation laws can develop
discontinuities in the solution after �nite time even for smooth initial condi-
tions, and that thus solutions can only be understood in the weak sense, see
[Lax73]. On the other hand, hyperbolicity allows to determine the solution
of a special discontinuous initial value problem, the Riemann problem (1.27),
that is introduced on page 38, analytically. In the course of this chapter this
solution is developed, mostly following [Lax57, GoR96].

To de�ne the property of hyperbolicity, it is necessary to take a look at
the quasi linear form of (1.18) �rst. In this form, the partial derivatives of
the �ux functions are expanded via the chain rule into

∂fi(u(x, t))

∂xi
= f ′i(u)

∂u(x, t)

∂xi
.

For the shallow water equations, this leads to

∂tu +
2∑
j=1

f ′j(u)∂xju = g(u) (1.21)

with the Jacobian matrices

f ′1(u) =


0 1 0

−u2
1

u2
0

+ u0 2u1

u0
0

−u1u2

u2
0

u2

u0

u1

u0

 =


0 1 0

c2 − v2
1 2v1 0

−v1v2 v2 v1

 ,

f ′2(u) =


0 0 1

−u1u2

u2
0

u2

u0

u1

u0

−u2
2

u2
0

+ u0 0 2u2

u0

 =


0 0 1

−v1v2 v2 v1

c2 − v2
2 0 2v2

 .

Here and later on, c :=
√

Φ denotes the celerity. The celerity is the gravity
induced velocity of information propagation in water. An easily observable
example is the spreading of waves after having thrown a stone into a lake.
As the water height is always greater or equal to zero, c ∈ R+

0 .
The property of hyperbolicity for systems of conservation and balance

laws respectively is de�ned as follows:
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De�nition 1.3 (Hyperbolic System). A system (1.18) of p conservation laws
with Jacobian matrices f ′j(u) ∈ Rp×p , j = 1, ..., d, is called hyperbolic if the
matrix

F(u,ω) :=
d∑
j=1

ωjf
′
j(u)

has p real eigenvalues

λ1(u,ω) ≤ ... ≤ λp(u,ω)

and a corresponding set of linearly independent (right) eigenvectors rk(u,ω),
k = 1, ..., p, for any vector u ∈ D ⊂ Rp of conservative variables and any
direction ω ∈ Rd, |ω| = 1. The system is called strictly hyperbolic if the
eigenvalues are all distinct.

Due to hyperbolicity F(u,ω) can be diagonalized. This trait can, unfor-
tunately, not be used to uncouple systems of nonlinear hyperbolic equations.
This is because the eigenvectors depend on space and time as can be seen in
section 1.2.3. Thus, the multiplication with R = (rk(x, t))k=1,...,p can not be
interchanged with the partial derivations of u in space and time.

Theorem 1.4. The 2D shallow water equations are strictly hyperbolic for
Φ > 0.

Proof. The matrix F(u,ω) is given by

F(u,ω) =


0 ω1 ω2

(c2 − v2
1)ω1 − v1v2ω2 2v1ω1 + v2ω2 v1ω2

−v1v2ω1 + (c2 − v2
2)ω2 v2ω1 v1ω1 + 2v2ω2

 .

Its characteristic polynomial is

p(λ) = (λ−(v1ω1 +v2ω2−c |ω|))(λ−(v1ω1 +v2ω2))(λ−(v1ω1 +v2ω2 +c |ω|)).

Hence, the eigenvalues of F(u,ω) are

λ1(u,ω) = v1ω1 + v2ω2 − c |ω| ∈ R

λ2(u,ω) = v1ω1 + v2ω2 ∈ R

λ3(u,ω) = v1ω1 + v2ω2 + c |ω| ∈ R.

The eigenvalues are distinct for c =
√

Φ 6= 0 and, thus, the 2D shallow water
equations are strictly hyperbolic for Φ = gH > 0.
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Figure 1.1: The Riemann problem.

1.2.3 Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are important for analyzing and understanding
the nature of hyperbolic systems of conservation laws.

The aim of the following analysis is to develop a solution for a so-called
Riemann problem. Here, constant, but di�erent, initial data are given on each
side of a set {xn = 0}, as depicted in �gure 1.1, and their progress in time with
respect to the di�erential equation is studied. Solving Riemann problems is
one of the central aspects of the numerical scheme presented in chapter 2.
Thus, the theory of the solution of these problems is treated thoroughly.
[GoR96] states that it is at this su�cient to analyze the properties of the
equation in the direction of the vector n = (n1, n2)T , where x · n = xn, due
to the rotational invariance, see �gure 1.2.

The ansatz for this projection consists of a function h : R×R+ → D with

u(x, t) = h(x · n, t) = h(xn, t). (1.22)
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Figure 1.2: Coordinate system, rotated with respect to the normal vector n.

Di�erentiating this equation with respect to x1 and x2 leads to

∂

∂x1

u =
∂

∂xn
h
∂

∂x1

xn =
∂

∂xn
hn1

∂

∂x2

u =
∂

∂xn
h
∂

∂x2

xn =
∂

∂xn
hn2,

and thus

∂

∂x1

f1(u) +
∂

∂x2

f2(u) = f ′1(u)
∂

∂x1

u + f ′2(u)
∂

∂x2

u

= f ′1(h)
∂

∂xn
hn1 + f ′2(h)

∂

∂xn
hn2

=
∂

∂xn
f1(h)n1 +

∂

∂xn
f2(h)n2

=
∂

∂xn

2∑
j=1

fj(h)nj.

The 'projected equations' then read, with equation (1.22),

∂

∂t
u +

∂

∂xn

2∑
j=1

fj(u)nj = 0. (1.23)
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The multiplication by the matrix T(n) as de�ned in theorem 1.2 rotates
the vector u in a way that the direction of the momentum changes from
the (x1, x2)-direction into the (normal, tangential)-direction in relation to
{xn = 0}. Multiplying the equation by T(n) and using the fact that the
shallow water equations are rotationally invariant transforms the equations
(1.23) into

T(n)
∂u

∂t
+ T(n)

∂

∂xn

(
2∑
j=1

fj(u)nj

)

=T(n)
∂u

∂t
+ T(n)

∂

∂xn

(
T−1(n)f1(T(n)u)

)
=
∂(T(n)u)

∂t
+

∂

∂xn
f1(T(n)u),

as T(n) is a constant matrix. In the following, to keep the notation simple,
T(n)u and xn will be set again to u and x1. The equations obtained by the
previous considerations are the x1-split 2D shallow water equations

∂tu + ∂x1f1(u) = 0 (1.24)

or, in quasilinear form,
∂tu + f ′1(u)∂x1u = 0

with

f ′1(u) =


0 1 0

u0 − u2
1

u2
0

2u1

u0
0

−u1u2

u2
0

u2

u0

u1

u0

 =


0 1 0

c2 − v2
1 2v1 0

−v1v2 v2 v1

 .

The eigenvalues λk(u) of f ′1 and their associated right eigenvectors rk(u),
k = 1, 2, 3, are

λ1(u) =
u1

u0

−
√
u0 = v1 − c,

r1(u) = α1


1

u1

u0
−√u0

u2

u0

 = α1


1

v1 − c

v2

 ,

λ2(u) =
u1

u0

= v1, (1.25)
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r2(u) = α2


0

0

1

 ,

λ3(u) =
u1

u0

+
√
u0 = v1 + c,

r3(u) = α3


1

u1

u0
+
√
u0

u2

u0

 = α3


1

v1 + c

v2

 .

The pair of eigenvalue, or characteristic speed λ(u), and its corresponding
right eigenvector r(u) is called a characteristic �eld. The k-th eigenpair is
called the k-�eld. The nature of this �eld is determined by the scalar product
of the gradient of λk with rk:

De�nition 1.5 (Characteristic �eld). An k-�eld is called linearly degenerate
if

∇λk(u) · rk(u) = 0 ∀u ∈ D.

An k-�eld is called genuinely non-linear if

∇λk(u) · rk(u) 6= 0 ∀u ∈ D.

Supposing u were an integral curve of rk, that is

u′ = rk(u).

Then, from de�nition 1.5 it follows that if the k-�eld is linearly degenerate,
for all points uL,uR ∈ u, λk(uL) = λk(uR) holds, as the level curves of λk(u)
are parallel to the streamlines of the vector �eld rk. On the other hand, if the
k-�eld is genuinely non-linear, the streamlines of the vector �eld rk always
intersect the level curves of λk(u), and thus for uL,uR ∈ u being distinct
points, it always holds that λk(uL) 6= λk(uR).

Theorem 1.6. For the x1-split 2D shallow water equations, the 2-�eld is
linearly degenerate while the 1-�eld and the 3-�eld are genuinely non-linear.

Proof. The 2-�eld is associated with the eigenvalue λ2(u) = v1 = u1

u0
. Thus,

∇λ2(u) = (−u1

u2
0
, 1
u0
, 0)T and it follows directly that

∇λ2(u) · r2(u) = −u1

u2
0

· 0 +
1

u0

· 0 + 0 · u1

u0

= 0 ∀u ∈ D.
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The 1-�eld is associated with the eigenvalue λ1(u) = v1 − c = u1

u0
−√u0. Its

gradient is ∇λ1(u) = (−u1

u2
0
− 1

2
√
u0
, 1
u0
, 0)T and it follows that

∇λ1(u) · r1(u) = (−u1

u2
0

− 1

2
√
u0

) · 1 +
1

u0

· (u1

u0

−
√
u0) + 0 · u2

u0

= − 3

2
√
u0

= − 3

2c
6= 0 ∀u ∈ D.

For the 3-�eld,

∇λ3(u) · r3(u) =
3

2c
6= 0 ∀u ∈ D

is obtained analogously.

Generally, it cannot be stated that the k-�eld of partial di�erential equa-
tions is always either linearly degenerate or genuinely non-linear, as can be
seen on the equation

∂tu + ∂x1f(u) = ∂tu + ∂x1

(
u2

1 + u3
1

u2
2 − u3

2

)
= 0.

In this example, f ′(u) = diag(2u1 + 3u2
1, 2u2 − 3u2

2) holds, and thus

λ1(u) = 2u1 + 3u2
1 r1(u) =

(
1

0

)
λ2(u) = 2u2 − 3u2

2 r2(u) =

(
0

1

)
,

which shows that this is system of partial di�erential equations is hyperbolic
for all u ∈ R2. On the other hand, it holds that

∇λ1(u) · r1(u) = 2 + 6u1 and

∇λ2(u) · r2(u) = 2− 6u2,

and thus the nature of the k-�eld, k = 1, 2, depends on u.
It is feasible, as [GoR96] proves, to use the equations in primitive vari-

ables for the analysis of eigenvectors and eigenvalues. In this case, the given
notation allows to integrate the topography term top into the equation. This
is quite important for the later analysis of the wave related to the eigen-
value that stems from the topography. In terms of primitive variables, the
x1-split 2D shallow water equations with the additional term ∂ttop = 0 for
the bottom topography read

∂tH +H∂x1v1 + v1∂x1H =0
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∂tv1 + v1∂x1v1 + g∂x1(H + top) =0

∂tv2 + v1∂x1v2 =0

∂ttop =0,

or
∂tw + A(w)∂x1w = 0

with

w =


H

v1

v2

top

 and A(w) =


v1 H 0 0

g v1 0 g

0 0 v1 0

0 0 0 0

 .

The characteristic polynomial for A(w) is

pchar(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ− v1 −H 0 0

−g λ− v1 0 −g

0 0 λ− v1 0

0 0 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣
= (λ− v1)λ

[
(λ− v1)2 − gH

]
= (λ− v1)λ(λ− (v1 − c))(λ− (v1 + c)),

thus the eigenvalues of A(w) again are

λ1(w) = v1 − c, λ2(w) = v1, λ3(w) = v1 + c and λ4(w) = 0. (1.26)

The associated eigenvectors are

r1(w) = α1


H

−c

0

0

 , r2(w) = α2


0

0

1

0

 ,

r3(w) = α3


H

c

0

0

 and r4(w) = α4


−H

v1

0

H − v2
1

g

 .
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If v1 becomes zero, the system is no longer strictly hyperbolic, but even then
stays hyperbolic as long as w ∈ D× R.

Obviously, the 2-�eld is linearly degenerate as before. For the 1-�eld (and
analogously for the 3-�eld) the equation

∇λ1(w) · r1(w) = −
√

g

H
H + 1(−c) + 0 + 0 = −2c 6= 0 ∀w ∈ D× R

holds, so the 1-�eld and the 3-�eld are genuinely non-linear. The 4-�eld again
is linearly degenerate, which follows directly from λ4(w) = 0.

1.2.4 Generalized Riemann Invariants

The generalized Riemann invariants are a set of relations that remain con-
stant across the wave structure for rarefaction waves and contact disconti-
nuities. This trait, together with the Rankine-Hugoniot conditions discussed
in section 1.2.5, will be exploited in the design of Riemann solvers in the
sections 2.4.1, 2.4.2 and 2.5.3.

The Riemann invariants were �rst obtained by Riemann in [Rie60]. In
that work, the author pursues the question of the evolution of di�erences
in pressure at gases. Initial value problems of that type, that (more gener-
ally) consist of two constant states separated by a discontinuity, are called
Riemann problems nowadays.

De�nition 1.7 (Riemann problem). Let uL and uR be two states of D ⊂ Rp.
The initial value problem

∂u
∂t

+ ∂
∂x

f(u) = 0,

u(x, 0) =

{
uL, x ≤ 0

uR, x > 0

(1.27)

is called Riemann problem.

Considering piecewise smooth continuous functions u : (x, t) 7→ u(x, t)
that solve (1.27), [GoR96] shows that for self-similar solutions of (1.27) of
the form

u(x, t) = s
(x
t

)
either

s′
(x
t

)
= 0

holds or that there exists an index k ∈ {1, ..., p} such that

s′
(x
t

)
= α

(x
t

)
rk

(
s
(x
t

))
, λk

(
s
(x
t

))
=
x

t
. (1.28)
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By di�erentiating the second equation with respect to x
t
and inserting the

�rst equation, the expression

α
(x
t

)
∇λk (s) · rk

(
s
(x
t

))
= 1

is obtained. This equation can only be solved if the k-th �eld is genuinely
non-linear. In this case, it is also possible to normalize the equation with
α
(
x
t

)
= 1. Then, s is an integral curve of the vector �eld rk(s), as s′ = rk (s)

holds.
Thus, assuming uL and uR are on the same integral curve of rk and that

λk increases from uL to uR along this curve, the function

u(x1, t) =


uL,

x1

t
≤ λk(uL)

s
(
x1

t

)
, λk(uL) < x1

t
≤ λk(uR)

uR, λk(uR) < x1

t

(1.29)

with s
(
x1

t

)
being an integral curve of rk and

s(λk(uL)) = uL, s(λk(uR)) = uR

is a continuous self-similar weak solution of (1.27).

De�nition 1.8. Such a self-similar weak solution (1.29) of (1.27) is called a
k-centered simple wave or a k-rarefaction wave connecting the states uL and
uR.

Apart from the k-�eld being linearly degenerated or genuinely non-linear,
Riemann invariants are an important tool for determining the full solution
of a Riemann problem. They provide relations between states under certain
conditions.

De�nition 1.9. A smooth function ρk : D → R is called a k-Riemann in-
variant if it satis�es

∇ρk(u) · rk(u) = 0 ∀u ∈ D. (1.30)

Remark 1.10. If the k-�eld is linearly degenerated, λk is a Riemann invari-
ant.

Theorem 1.11. On a k-rarefaction wave, all k-Riemann invariants ρk are
constant. In particular,

ρk(uL) = ρk(uR)

holds.
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Proof. Let u be a k-rarefaction wave of the form (1.29) and let s
(
x
t

)
be the

integral curve of rk that connects the states uL and uR.
Obviously, for x

t
≤ λk(uL) and for x

t
≥ λk(uR), ρk(u(x

t
)) is constant. For

the derivative of ρk along s
(
x
t

)
the equation (1.28) yields

d

dx
t

ρk

(
s
(x
t

))
= ∇ρk (s) · s′

(x
t

)
= ∇ρk (s) · rk

(
s
(x
t

))
= 0.

This means that ρk is constant along the trajectories of the vector �eld rk.
As u is continuous and ρk smooth, ρk is thus constant on the k-rarefaction
wave and thus also for the states uL and uR.

[GoR96] proves that locally there exist (p − 1) k-Riemann invariants,
whose gradients are linearly independent if u ∈ D ⊂ Rp.

In the case of the x1-split 2D shallow water equations with added topogra-
phy, this means that for every eigenvalue λk, k = 1, ..., 4, there exist three k-
Riemann invariants ρik, i = 1, 2, 3. The 1-Riemann invariants ρi1, i = 1, 2, 3,
have to satisfy the equation

(∇ρi1) · r1 = H · ∂Hρi1 − c · ∂v1ρ
i
1 + 0 · ∂v2ρ

i
1 + 0 · ∂bρi1 = 0, i = 1, 2, 3,

which yields

ρ1
1 = v2,

ρ2
1 = v1 + 2c,

ρ3
1 = b. (1.31)

Analogously, it is obtained for k = 2 that

(∇ρi2) · r2 = 0 · ∂Hρi2 + 0 · ∂v1ρ
i
2 + 1 · ∂v2ρ

i
2 + 0 · ∂bρi2 = 0, i = 1, 2, 3,

and thus

ρ1
2 = H,

ρ2
2 = v1,

ρ3
2 = b, (1.32)

for k = 3 that

(∇ρi3) · r3 = H · ∂Hρi3 + c · ∂v1ρ
i
3 + 0 · ∂v2ρ

i
3 + 0 · ∂bρi3 = 0, i = 1, 2, 3,

which leads to

ρ1
3 = v2,

ρ2
3 = v1 − 2c,

ρ3
3 = b, (1.33)
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and for k = 4 that

(∇ρi4) ·r4 = −H ·∂Hρi4 +v1 ·∂v1ρ
i
4 +0 ·∂v2ρ

i
4 +

(
H − v2

1

g

)
·∂bρi4 = 0, i = 1, 2, 3,

which at last gives

ρ1
4 = Hv1,

ρ2
4 = v2,

ρ3
4 = gH +

v2
1

2
+ gb. (1.34)

1.2.5 Rankine-Hugoniot Conditions

Analogously to the Riemann invariants, the Rankine-Hugoniot conditions are
a set of equations that describe relations across the wave structure, though
across shock waves and contact discontinuities. More precisely, a piecewise
continuous function u is a weak solution of the partial di�erential equation
(1.24), if it satis�es the Rankine-Hugoniot conditions along its lines of discon-
tinuity [GoR96]. They were developed independently by Rankine in [Ran70]
and Hugoniot in [Hug87, Hug89]. By contrast to the Riemann invariants,
the Rankine-Hugoniot conditions must not be derived from the equations in
primitive variables, as that would yield wrong results for the shock speed
in the case of a discontinuous solution. This was demonstrated by Toro in
[Tor01].

The proposition of the Rankine-Hugoniot conditions is that for two con-
stant states uL and uR that are to the left and to the right of a line of
discontinuity, the relation

f1(uR)− f1(uL) = S(uL,uR) (uR − uL) (1.35)

holds. S(uL,uR) is the velocity of propagation of the discontinuity.
A discontinuous weak solution of (1.27) therefore has the form

u (x, t) =

{
uL, x/t < S(uL,uR),

uR, S(uL,uR) < x/t.
(1.36)

The set of all states u ∈ D that can be connected to a given state u0 ∈ D
via a discontinuity is called the Rankine-Hugoniot set, [GoR96].

De�nition 1.12 (Rankine-Hugoniot Set). The Rankine-Hugoniot set of a
state u0 ∈ D is the set of all states u ∈ D such that there exists S(u0,u) ∈ R
with

S(u0,u) (u− u0) = f (u)− f (u0) . (1.37)
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Theorem 1.13. Let u0 be in D ⊂ Rp. The Rankine-Hugoniot set of u0 is
locally made of p smooth curves Hk(u0), 1 ≤ k ≤ p. Moreover, for all k,
there exists a parametrization of Hk(u0) : ε→ Ψk(ε) de�ned for |ε| ≤ ε1, ε1

small enough, such that

Ψk(ε) = u0 + εrk(u0) +
ε2

2
∇rk(u0) · rk(u0) +O(ε3) (1.38)

and
S (u0,Ψk(ε)) = λk(u0) +

ε

2
∇λk(u0) · rk(u0) +O(ε2).

Proof. [GoR96]

Another important property that is proven in [GoR96] concerns the rela-
tions between states of a special kind of discontinuity, the contact disconti-
nuity.

Theorem 1.14. If the k-�eld is linearly degenerated and u ∈ Hk(u0), then

S (u0,u) = λk(u) = λk(u0) (1.39)

and ρk(u0) = ρk(u) holds for any k-Riemann invariant ρk.

Following this theorem, there will not arise any problems from the fact
that the function top for the bottom is not included in the set of conservative
variables. The only place in the model where the bottom is not continuous
will per de�nition be the jump of topography between two computational
cells. This is the case for the contact discontinuity with λ4 = 0 which is
linearly degenerated, so that the Riemann invariants hold in this case.

The following theorem from [Smo83] links the considerations made so far
with the aim to generate the solution of the Riemann problem (1.27).

Theorem 1.15. Let uL ∈ D ⊂ Rp and suppose that the system (1.24) is
hyperbolic and that each characteristic �eld is either genuinely nonlinear or
linearly degenerate in D. Then there is a neighborhood D̃ ⊂ D of uL such
that if uR ⊂ D̃, the Riemann problem (1.27) has a solution. This solution
consists of at most (p+1) constant states separated by shocks, centered simple
waves or contact discontinuities. There is precisely one physically relevant
solution of this kind in D.

So far, continuous and discontinuous weak solutions for waves connecting
states u to a given state u0 were discussed, but no condition to determine
which is the right one in the physical sense was given yet. This feature
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becomes important especially in the context of theorem 1.15, where the exis-
tence of a unique sequence of states ui, i = 1, ..., p− 1, is stated that connect
two initial states uL and uR.

For example, consider a conservation law with p = 2 that has the treat
that each characteristic �eld is either genuinely nonlinear or linearly de-
generate. Apart from the case uL and uR being identical, there exist four
possibilities for the connecting state u1:

uL
1−shock−−−−−→ u1

2−shock←−−−−−uR

uL
1−shock−−−−−→ u1

2−rarefaction←−−−−−−−−uR

uL
1−rarefaction−−−−−−−−→ u1

2−shock←−−−−−uR

uL
1−rarefaction−−−−−−−−→ u1

2−rarefaction←−−−−−−−−uR,

and in each of these cases u1 can be expected to be di�erent. Thus, a criterion
to sort out which is the correct sequence is needed.

In a physically relevant solution of the Riemann problem (1.27), the parti-
cles of the �uid cross a shock from its front to its back, [Lax57]. The entropy
of these particles has to increase in crossing a shock [CoF44]. The criterion
that allows to determine whether the k-waves, k = 1, ..., p, are shock waves
or not, and thus to �nd the physically relevant weak solution of (1.27), is the
Lax entropy condition.

Theorem 1.16 (Lax entropy condition, [Lax57]). A jump discontinuity in a
weak solution is called a shock if the total number of characteristics drawn in
this fashion is p− 1. The k-shock wave (1.36) satis�es the entropy condition
if the inequalities

λk−1(uL) < S < λk(uL) (1.40a)

λk(uR) < S < λk+1(uR) (1.40b)

hold with S being the shock speed given by (1.35).

As a direct conclusion, the following remark can be obtained.

Remark 1.17. For a k-shock with velocity S,

λk(uL) > S > λk(uR)

holds.
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For the shallow water equations, the application of the Rankine-Hugoniot
conditions (1.37) leads to the equations

u1 − u0;1 = Su0 − Su0;0

u2
1

u0

+
1

2
u2

0 −
u2

0;1

u0;0

− 1

2
u2

0;0 = Su1 − Su0;1

u1u2

u0

− u0;1u0;2

u0;0

= Su2 − Su0;2

or, when inserting the conservative variables, to

Φv1 − Φ0v0;1 = S (Φ− Φ0) (1.41a)

Φv2
1 +

1

2
Φ2 − Φ0v

2
0;1 −

1

2
Φ2

0 = S (Φv1 − Φ0v0;1) (1.41b)

Φv1v2 − Φ0v0;1v0;2 = S (Φv2 − Φ0v0;2) . (1.41c)

Sorting these equations by u/u0-terms leads to

Φ(v1 − S) = Φ0(v0;1 − S) (1.42a)

Φv1(v1 − S) +
1

2
Φ2 = Φ0v0;1(v0;1 − S) +

1

2
Φ2

0 (1.42b)

Φv2(v1 − S) = Φ0v0,2(v0;1 − S). (1.42c)

As the 2-�eld is linearly degenerated, theorem 1.14 and equation (1.25) imply
that

S2 = v0;1 = v1

for the 2-wave. Equation (1.42) then reduces to another 2-Riemann invariant,
Φ = Φ0, as Φ ∈ R+

0 .
For the 1- and 3-waves, it follows from theorem 1.16 that (v0;1 − S) 6= 0

and (v1 − S) 6= 0. Thus, from the equations (1.42a) and (1.42c) it follows
directly that

v2 = v0;2, (1.43)

and from equation (1.41a) by eliminating S using equation (1.41b) that

v1 − v0;1 = ±(Φ− Φ0)

√
Φ + Φ0

2ΦΦ0

. (1.44)

Depending on the algebraic sign, equation (1.44) results in two curvesHk(u0),
k ∈ {1, 3} of the Rankine-Hugoniot set of states connected to u0 via a shock.
From theorem 1.13 it is known that Hk(u0) is tangent to the eigenvector
rk(u0) at u0. Thus, it is possible to determine which curve belongs to a 1-
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and which to a 3-shock. By multiplying (1.44) with Φ and replacing Φ with
Φ0 + ε on the right hand side of the equation, the parametrization

Φv1 = Φ0v0;1 + ε

(
v0;1 ±

√
Φ0 + ε

(
1 +

Φ0 + ε

2Φ0

))

is obtained. Analogous manipulations of (1.43) lead to

u = u0 + ε


1

v0;1 ±
√

Φ0 +O(ε)

v0;2

 as ε→ 0.

Since r1(u0) = (1, v0;1 −
√

Φ0, v0;2)T , the equation

v1 = v0;1 − (Φ− Φ0)

√
Φ + Φ0

2ΦΦ0

(1.45)

holds for the states connected by a 1-shock. For the 3-shock

v1 = v0;1 + (Φ− Φ0)

√
Φ + Φ0

2ΦΦ0

. (1.46)

holds by similar considerations.
After having assigned the equations to the corresponding shocks, it is

necessary to analyze the restrictions concerning their physical admissibility
due to theorem 1.16.

For the 1-shock, the shock velocity

S1 = v0;1 −
√

Φ

Φ0

√
Φ + Φ0

2
= v1 −

√
Φ0

Φ

√
Φ + Φ0

2

can be derived by inserting (1.45) into (1.41a) and solving the resulting equa-
tion with respect to S = S1. Comparing S1 to (1.40a) and (1.40b), the
condition

S1 < λ2(u) = v1

is obviously ful�lled, while the remaining two conditions of theorem 1.16
imply

S1 < λ1(u0) ⇔
√

Φ

Φ0

√
Φ + Φ0

2
>
√

Φ0 ⇔ Φ > Φ0
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S1 > λ1(u) ⇔
√

Φ0

Φ

√
Φ + Φ0

2
<
√

Φ ⇔ Φ > Φ0.

Similar manipulations of (1.46) for the 3-wave lead again to the restriction
Φ > Φ0 for the connection of the states u0 and u by a physically admissible
3-shock.

In all other cases, that is if Φ ≤ Φ0, the states u0 and u are connected by
a rarefaction wave. Then the Riemann invariants (1.31) and (1.33), respec-
tively, determine the according relation.

Thus, for the set of (primitive) states w that can be connected by a 1-wave
to a given initial state wL the relations

v1 =

{
vL;1 − 2(c− cL) if H ≤ HL

vL;1 − (H −HL)
√

g(H+HL)
2HHL

if H > HL

v2 = vL;2 (1.47)

hold. This set will be referred to as RL.
Analogously, for the states w of the set RR that can be connected by a

3-wave to a given initial state wR

v1 =

{
vR;1 + 2(c− cR) if H ≤ HR

vR;1 + (H −HR)
√

g(H+HR)
2HHR

if H > HR

v2 = vR;2 (1.48)

hold.
Regarding theorem 1.15, it is now possible to determine the sequence of

states u1 and u2 solving the Riemann problem with initial values uL and uR
in the following way:

For the primitive representation w1 and w2 of this sequence, with equa-
tion (1.32) it holds that

w1;0 = w2;0 := w0 and w1;1 = w2;1 := w1,

while with (1.43), (1.31) and (1.33)

wL;2 = w1;2 and w2;2 = wR;2

holds. Thus, computing w0 and w1 by intersecting RL with RR completes
the solution.

The considerations made above, though valid for all Riemann problems
with positive water height throughout the whole solution, do not include the
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in�uence of the 4-wave that is induced by topography. In contrast to the
1-, 2- and 3-wave, that have varying velocities but a �xed order, the 4-wave
always has the velocity S4 = λ4 = 0 but its position in the system of waves
varies. The 4-wave and its inclusion into the solution of the Riemann problem
will be discussed later in section 2.5.3. The treatment of Riemann problems
containing states with a water height of zero, so-called dry-bed states, in
either the initial values or the solution is covered in section 2.5.4.

1.3 Finite Volume Schemes

The aim of this work is to present a high order �nite volume scheme for the
numerical solution of the 2D shallow water equations with topography.

The principle of �nite volume schemes is based directly on the integral
form (1.19) of the 2D shallow water equations. This is an important advan-
tage especially for hyperbolic systems of partial di�erential equations, as it
is known for these equations that even smooth initial conditions may lead to
discontinuous solutions in �nite time. In that case, the integral form of the
equations still holds.

The idea of �nite volume schemes is to divide the domain of integration
Ω ⊂ R2 into a �nite number of smaller cells or control volumes σi and com-
pute the evolution of the integral cell mean values ui of the set of variables
during the integration period. The solution then consists of cell mean values.
Thus, the spatial resolution of the solution depends on the grade of re�ne-
ment of this division. Obviously, the most basic form of gaining a piecewise
continuous approximation of u from ui is interpreting the solution of a �nite
volume scheme as a piecewise constant function on the domain of integration.

Let σi be an arbitrary control volume that is polygonally bounded by

δσi =

Ni∑
k=1

δ(k)σi.

Ni is the number of edges of the polygon and δ(k)σi denotes such an edge
with outer normal vector n(k).

For the equation in integral form

d

dt

∫
σi

u dx +

∫
δσi

2∑
j=1

fj(u)nj ds =

∫
σi

g(u) dx,

the property 1.2 of rotational invariance implies

d

dt

∫
σi

u dx +

∫
δσi

T(n)−1f1(T(n)u) ds =

∫
σi

g(u) dx.
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Writing the contour integral edgewise, integrating the whole equation in time
from tn to tn+1 and multiplying by the inverse of the area of σi, |σi|−1, yields

|σi|−1

∫ tn+1

tn

d

dt

∫
σi

u dx dt

+ |σi|−1

∫ tn+1

tn

Ni∑
k=1

T(n(k))−1

∫
δ(k)σi

f1(T(n(k))u) ds dt

= |σi|−1

∫ tn+1

tn

∫
σi

g(u) dx dt.

De�ne

uni := |σi|−1

∫
σi

u(x, tn) dx

as the integral cell mean value of u at time level tn. The equation then
transforms into

un+1
i − uni = − |σi|−1

∫ tn+1

tn

Ni∑
k=1

T(n(k))−1

∫
δ(k)σi

f1(T(n(k))u) ds dt

+ |σi|−1

∫ tn+1

tn

∫
σi

g(u) dx dt.

Finally, let Nx and Nt be the number of nodes in space and time of the
Gauss quadrature rules, αj the weights and x̃k,l on δ(k)σi, l = 1, ..., Nx,
and tn,m ∈ [tn, tn+1] , m = 1, ..., Nt, the associated nodes in space and time
respectively. Approximating the integrals by these rules results in

un+1
i ≈ uni − |σi|

−1 update (1.49)

with

update =

Nk∑
k=1

T(n(k))−1

{∣∣δ(k)σi
∣∣ Nx∑
l=1

αl

[
∆t

Nt∑
m=1

αmf1(T(n(k))u(x̃k,l, tn,m))

]}

+

∫ tn+1

tn

∫
σi

g(u) dx dt.

(1.50)

The i-th component of update consists of the quantity of ui that `�owed`
across the cell boundaries, that is the numerical �ux, and the amount that
was produced by source terms. update represents the net amount of change
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of the quantities considered in u in the cell σi between time tn and tn+1.
Dividing update by |σi| the cell mean value of change is obtained. Thus, the
result un+1

i of equation (1.49) is the cell mean value of the quantities u at
time tn+1.

The aim of this work is to present a high order �nite volume scheme
for the 2D shallow water equations. The expectation is of course to obtain
a more accurate numerical solution. It makes sense in this context to dis-
tinguish between accuracy in the sense of resolution and accuracy in the
sense of computing more exact updates. As this work is about �nite volume
schemes, whose solution consists generally of cell mean values, accuracy is to
be understood in the latter sense.

Having a close look at equation (1.50), there arise some questions from
that formulation, especially when accounting for the aim to develop a scheme
of higher order than one:

• Aiming for the computation of more accurate updates calls for the use
of higher order quadrature rules.

• A higher order quadrature rule only makes sense when the function to
be integrated is not just constant, in space as well as in time.

• There exist cell mean values for all variables for tn, but for an appropri-
ate scheme the values u(x̃k,l, tn,m) are needed, which not only a�ord a
spatial approximation of u but also a prediction of its time dependent
course as the integration points belong to later time levels than tn.

• Assuming higher order approximations for the quantities contained in
u are available for each cell, for each integration point at the cell bound-
ary there could be two di�erent values u(x̃k,l, tn,m), as there are two
adjacent cells.

These problems are treated in the numerical realization presented in chap-
ter 2. Approximating the variables in each cell by a polynomial of an order
appropriate to the desired order of the scheme allows to obtain approxima-
tions for higher derivatives of the functions in u at a given time level. The
process of computing such a polynomial is called reconstruction and is treated
in section 2.2.

Using these approximations for the higher derivatives and the partial dif-
ferential equation itself, a Taylor expansion in space and time approximating
the functions in u can be computed, as discussed in section 2.3. This allows
a prediction of the evolution of the function u for each space-time integration
point and each cell.
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The Riemann problem, that stems from the fact that there are two predic-
tions for each integration point, can be solved numerically using the methods
presented in section 2.4. The methods presented there require a continuous
topography and a water height greater than zero throughout the whole solu-
tion.

The treatment of Riemann problems that include discontinuities in to-
pography or whose solution or initial conditions contain dry states is �nally
discussed in section 2.5.



Chapter 2

Numerical Realization

In this chapter, the numerical methods are developed which are used to cope
with the problems that arise from the formulation (1.49), (1.50) and the
intention to create a high order scheme.

However, at �rst a brief introduction of the computational setting, con-
cerning the de�nition of some computational constants and a description of
the computational grid including its properties and denotations, are given.

2.1 Parameters of the Scheme

To avoid the use of large amounts of indices, the usual multi index notation
in two (and three) dimensions

α = (α1, ..., αn), αi ≥ 0 for i = 1, ..., n,

xα =
n∏
i=1

xαii ,

aα = aα1,...,αn ,

|α| =
n∑
i=1

αi,

α! =
n∏
i=1

αi!,

will be used.
Depending on the desired order of the scheme, the size of many parame-

ters varies. These parameters remain constant during one run of the program,
though. For a required order ord of the solution, the degree of the polynomi-
als that is necessary to obtain this order will be deg = ord−1. A polynomial

51
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in two dimensions

p(x) =

deg∑
|α|=0

aαxα,

as it is used for the spatial reconstruction, then has

noc =

deg∑
k=0

(k + 1) =
(deg + 1)(deg + 2)

2

coe�cients. As usual for polynomials these are arranged according to the
degree of their dedicated monomial in a graded lexicographic order where

position(aα) > position(aβ)

⇔ α > β

⇔ (|α| > |β|) ∨ ((|α| = |β|) ∧ (α2 > β2)) . (2.1)

The polynomial is stored as an array containing the coe�cients of the poly-
nomial. The position of the coe�cient aα in this array due to the monomial
order is given by the function

pos : N2 → N

α 7→ |α| (|α|+ 1)

2
+ α2.

Thinking of the tuples α ∈ N2 as indices that indicate the row and column of
its position in the N×N-grid, the function pos is similar to Cantor's diagonal
argument and thus bijective. For simplicity of notation the inverse function
pos−1 : N→ N2, that returns the multi-index α from the number pos(α), is
sometimes used in this work, but not in the program.

Order and access are de�ned analogously for three dimensional polyno-
mials in two spatial and one time dimension as they are needed in the Taylor
expansion for the prediction of the time dependent course of u. The number
of coe�cients of those polynomials is

ntc =

deg∑
l=0

l∑
k=0

(k + 1)

=

deg∑
l=0

(l + 1)(l + 2)

2

=
(deg + 1)(deg + 2)(deg + 3)

6
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and the access to the coe�cient aα, |α| ≤ deg , of the monomial xα1
1 x

α2
2 t

α3 is
made via

tpos : N3 → N

α 7→ |α| (|α|+ 1)(|α|+ 2)

6
+

(α2 + α3)(α2 + α3 + 1)

2
+ α3.

To obtain a spatial polynomial of degree deg in the reconstruction, the set
of the cells, or the stencil, whose information is taken into account has to
have a size of at least noc. The scheme becomes more stable, however, if the
polynomial is not computed exactly from a stencil of the minimal possible
size but with a least square method from a larger stencil. [DuK07] suggests
that the standard size of the stencils is set to

stencil_size =

⌈
3noc

2

⌉
.

In order to obtain a reconstruction polynomial whose oscillation is the
least possible for a cell σi, not only one but several stencils Si,j provide a
possible reconstruction polynomial. The number of stencils for the cell σi is
denoted by nos i.

2.1.1 The Grid

The basis for all considerations in this and the following chapters is the
computational domain Ω, which is polygonally bounded and carries two sub-
structures: Firstly, a triangulation T = {τj} of Delaunay-Type, and secondly,
based on this triangulation, a set of polygonally bounded cells Σ = {σi} that
correspond to the vertexes of the triangles. T is a conforming triangulation
as it satis�es the conditions stated in the following de�nition, [IsS96].

De�nition 2.1. A triangulation T on Ω is a decomposition of Ω into a �nite
number of triangles τj, j = 1, ...,#T satisfying

a) Ω =
⋃#T
j=1 τj.

b) Each τj ∈ T is closed and τj\δτj 6= ∅.

c) (τj\δτj) ∩ (τk\δτk) = ∅ ∀j 6= k.

d) Each τj ∈ T is bounded Lipschitz continuous.

A triangulation T is called conforming, if it ful�lls the additional condition
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Figure 2.1: Primary and secondary grid.

e) Each edge of τj is either part of δΩ or an edge of exactly one other
triangle τk ∈ T , k 6= j.

T is also called the primary net or primary grid.

Due to structural and computational reasons it is preferable that the
angles of the triangles τi are as near to 60◦ as possible. For each plane
triangle it is obvious that, if one angle becomes larger, the sum of the other
two will become smaller, as the sum of the angles in a plane triangle is always
180◦. Thus, the larger the minimum of all 3#T angles of a triangulation, the
more regular the triangles τi ∈ T will become.

A Delaunay triangulation is a triangulation such that for each τi ∈ T the
circumcircle of τi contains no vertex of another triangle τj ∈ T , [Del34]. For
a given set P of points in the plane, [BCK98] proved the following theorem.

Theorem 2.2. Let P be a set of points in the plane. Any Delaunay triangu-
lation of P maximizes the minimal angle over all triangulations of P.

This feature comes in handy for the search of stencils in the computation
of reconstruction polynomials as carried out in section 2.2.

The secondary grid Σ is derived from the primary net T by connecting
the barycenter with all midpoints of the edges for each triangle as it is shown
in �gure 2.1. From this procedure, a set of polygonally bounded cells σi is
obtained that make the secondary grid. Both grids are related by the fact
that each point xi that is a vertex of one or several triangles corresponds to
one cell.

The edges that connect the cells σi and σj are denoted lki,j, k = 1, 2 with
normal vectors nki,j ∈ R2, k = 1, 2 as can be seen in �gure 2.2. De�nition
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Figure 2.2: Denotation of the grid.

2.1.e) ensures, that for all edges of the primary net the median is uniquely
determined for both adjacent triangles and thus the cell boundaries of the
secondary grid are closed polygons.

The number of neighboring cells of a cell σi is denoted with non i.
A measure for the �neness of the primary grid is the grid spacing h, that

corresponds with the length of the edges of the triangulation. For the cells
σi of the secondary grid it holds that

√
|σi| = O(h).

2.2 WENO Reconstruction

The aim of a polynomial reconstruction is to provide a piecewise polyno-
mial approximation to the exact solution at a given time from the numerical
solution which consists, in the case of �nite volume schemes, of cell mean
values.

The idea of simply taking the mean values of a number of cells equal to the
number of coe�cients of a polynomial of the desired degree and solving the
resulting linear system of equations seems quite obvious at �rst. Problems
arise from the question which cells to choose and the fact that, as Godunov
showed in [God59], a reconstruction of high order produces spurious oscil-
lations around discontinuities. This again leads to an unstable numerical
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scheme. The aim of the ENO/WENO scheme is to avoid or at least mini-
mize these oscillations by computing a polynomial as smooth as possible from
the given data, in which both schemes make slightly di�erent approaches.

The ENO scheme was introduced for triangulations and general types of
grids in [HaC91] and was further treated, for example, in [Abg94, HEO87,
Son97]. The acronym ENO is short for essentially non-oscillatory. The idea
of the ENO scheme is to choose the polynomial from a given set which is the
smoothest with respect to a given oscillation indicator. This scheme su�ers
from the fact that the solution does not depend continuously on the data, as
Friedrich showed in [Fri99] on the following simple example:

Consider three cells σ0, σ1, σ2 of a one dimensional equidistant grid with
grid spacing h. For the quantity u(x), it holds that u0 = 0, u1 = c > 0
and u2 = ε. Sought-for is a linear reconstruction polynomial for u(x) on
σ1. Obviously the slope of the reconstruction polynomial p0(x) computed
from σ0 and σ1 is c

h
, while the slope of the reconstruction polynomial p2(x)

computed from σ1 and σ2 is − c−ε
h
. For ε > 0, the oscillation indicator, that

takes into account only the slope, will choose p2(x), for ε < 0 it will choose
p0(x). Moreover, if ε = 0 the choice of one polynomial over the other will be
at random.

The WENO or weighted ENO scheme, which can be considered as a gen-
eralization of the ENO scheme, avoids such problems by not simply choosing
the smoothest polynomial but by returning a convex combination of all poly-
nomials in which the portion of a basis polynomial depends proportional on
its smoothness. The scheme was developed for the one dimensional case by
Liu, Osher and Chan in [LOC94] and extended by Friedrich in [Fri98, Fri99]
for the two dimensional case on unstructured grids.

In this work a WENO type reconstruction is used. The whole procedure
described in the subsections 2.2.1 through 2.2.3 is called reconstruction. Its
input is given by the net of cells Σ on Ω and their appropriate mean values
and it results in one spatial reconstruction polynomial per cell σi and per
quantity uk(x, t), k = 0, 1, 2,. This polynomial preserves the cell mean value
of uk.

De�nition 2.3. Let Πdeg(σi; R) be the space of the polynomials p : σi → R,
x 7→ p(x) with degree(p) ≤ deg and u a map u : R2 × R+ → R, (x, t) 7→
u(x, t) ∈ Cdeg(σi; R).

The polynomial pni ∈ Πdeg is called a reconstruction polynomial of degree
deg for u on σi at time tn, if

1

|σi|

∫
σi

pni (x)dx =
1

|σi|

∫
σi

u(x, tn)dx = uni (2.2)
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and
pni (x)− u(x, tn) = O(hdeg+1) ∀x ∈ σi

hold.

In this work, reconstruction polynomials pni have the form

pni (x) =

deg∑
i=0

∑
|α|=i

aα (x− bi)
α , (2.3)

as they are used to compute ∂αp
n
i (x)|x=bi , |α| ≤ deg , in the scheme as

approximation to ∂αu
n
k(x)|x=bi . Those derivatives can be evaluated very

easily as α!aα in this form.

2.2.1 Stencil Search

The �rst step in �nding a vector of appropriate smooth reconstruction poly-
nomials uni for a cell σi is to determine a set of time independent stencils
Si,j ⊂ Σ that consist of cells σk and contain σi. On these stencils, the ba-
sic reconstruction polynomials pni,j for each time step tn are computed. The
reconstruction polynomials uni;k , k = 1, ..., 4, are then the weighted sums

uni;k =

nosi∑
j=1

ωni,j;kp
n
i,j;k

with weights ωni,j;k satisfying
∑nosi

j=1 ω
n
i,j;k = 1 and ωni,j;k ≥ 0.

There are many ways to select a number of cells from Σ to compute a
reconstruction polynomial for a cell σi. It is thus necessary to de�ne some
requirements for the stencil, which restrict the number of possible stencils.
These conditions should ensure that the selection of stencils has advantages
for the numerical scheme.

The basic idea is to �nd a polynomial that has the same integral mean
value on all cells of the stencil as the component ul of u that is to be recon-
structed. From the equations (2.2) and (2.3), it follows that for the recon-
struction polynomial the following system of equations holds

1

|σk|

∫
σk

pni,j(x)dx =
1

|σk|

deg∑
|α|=0

aα

∫
σk

(x− bi)
α dx

= unk;l ∀σk ∈ Si,j.

This can be written as Ma = u, where a contains the coe�cients of the
polynomial, u the mean values of ul of the cells in Si,j and M the integral
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mean values of the monomials (x− bi)
α for the cells in Si,j. Later in this

section, the introduction of a scaling factor 1√
σi

α for M is discussed.
First of all, a stencil should allow to compute a unique reconstruction

polynomial of degree deg without the need to solve an under-determined
linear system of equations.

De�nition 2.4. Let Ii,j ⊂ {0, ...,#Σ− 1} be a set of indices with i ∈
Ii,j, #Ii,j ≤ stencil_size. A stencil Si,j = {σk|k ∈ I} ⊂ Σ is called ad-
missible, if the matrix

M = (mk,l) k∈Ii,j
l=0,...,noc−1

=

(
1

|σk|

∫
σk

(
x− bi√
|σi|

)α

dx

)
k∈Ii,j

α=pos−1(l)

(2.4)

has rank noc.

A condition for the numerical veri�cation of the admissibility of a stencil
is given in equation (2.14) on page 65.

Under the assumption that an admissible stencil Si,j contains σi and is
connected, there are two extreme types: Stencils that are distributed as
evenly as possible around their center σi and stencils that emanate from σi
in one direction. The centered stencil has a lower diameter and the recon-
structed polynomial will be based on a very compact set of cells. This is
advantageous pursuing the aim of computing a reconstruction polynomial as
smooth as possible, as Abgrall states in [Abg94].

Theorem 2.5. Let S be an admissible stencil for degree deg, let K(S) ⊂ R2

be the convex hull of the union of the elements of S and let ν and ρ be the
diameter of K(S) and the supremum of the diameters of the circles contained
in K(S), respectively. Let u ∈ Cdeg(K(S); R) be a function whose derivative
Ddeg+1u is bounded on K(S) with

Mdeg+1 = sup
{∥∥Ddeg+1u(x)

∥∥ |x ∈ K(S)
}
< +∞.

If p is the polynomial of degree deg that has the same integral mean value as
u for each element σi ∈ S, then for any integer m, 0 ≤ m ≤ deg,

sup {‖Dmu(x)−DmPu(x)‖ |x ∈ K(S)} ≤ CMdeg+1
νdeg+1

ρm

for some constant C = C(m, deg , S).

This theorem expresses that if the function to be reconstructed is smooth
in a neighborhood of σi, a stencil that is constructed as compact as possible
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(ν
ρ
is rather small) will tend to return a better approximation polynomial

than any other (more stretched) stencil.
If, on the other hand, σi is situated near a line of discontinuity, the re-

sulting polynomial from a stencil that covers this discontinuity will oscillate.
Abgrall even states in [Abg94] that the leading coe�cients of this polynomial
will tend to in�nity as the mesh size tends to zero. In that case, if a dis-
continuity wave passes through the central stencil, directional stencils might
then provide a search direction in which the function to be reconstructed is
smooth, though they have a larger ratio ν

ρ
and take into account information

from more distant cells.
The implementation presented in this work contains both types of sten-

cils. Each cell σi has directional stencils emanating in all directions that are
proposed by the primary grid (approximately six) plus one central stencil.

2.2.1.1 Directional Stencils

The stencil search of the presented implementation makes use of the fact that
all information about the structure of the grid is stored in the list of triangles.
The algorithm runs through the list of triangles and computes three stencils
for each triangle, one assigned to each vertex of the triangle and thus to the
related cell of the secondary grid.

More precisely, for each triangle a system of neighborhoods is determined.
The direct neighbors of the triangle itself are the �rst generation neighbor-
hood, the neighbors of the n-th generation that are not already included in
the system form the (n+ 1)-st generation.

The stencils, on the other hand, are de�ned via the vertexes of the tri-
angle, as there is a one-to-one correspondence between the cells of the dual
grid and the vertexes of the triangulation:

De�nition 2.6. Let τ ∈ T be a triangle of the primary net with vertexes
x0,x1,x2. A cell σj ∈ Σ belongs to the stencil assigned to the vertex xi, i =
0, 1, 2 (and thus to the cell σi), if either j ∈ {0, 1, 2}, or if there exist α1, α2 ≥
0 such that the barycenter bj of σj can be written in the form

bj = xi + α1(xrem((i−1),3) − xi) + α2(xrem((i+1),3) − xi), (2.5)

with rem(j, 3) being the remainder of the whole-number division of j by 3.

Equation (2.5) expresses the requirement that the barycenter bj of σj is
situated in the plane wedge de�ned by the angle

∠(xrem((i−1),3), xi, xrem((i+1),3)).
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Figure 2.3: Directional stencil with six elements.

This can be easily veri�ed by solving a linear 2× 2 system of equations.

For each new generation of neighbors it is checked whether the cells not
yet accounted for ful�ll de�nition 2.6. Afterwards it is checked whether the
stencils contain enough, that is stencil_size, elements. If this is true, the
three stencils are assigned to the corresponding cells and the computation
starts for the next triangle. Otherwise the next generation of neighbors is
computed and checked.

The algorithm stops per default as soon as the 4stencil_size-th generation
of neighbors is computed. Then, also stencils with an element number smaller
than stencil_size, but at least noc, will be accepted.

This step wise approach abets the cells that are situated closer to σi being
checked and maybe assigned to the stencil before farther cells are taken into
account and thus that the stencil in the given frame staying as compact as
possible.

As a consequence of the fact that the triangulation is of Delaunay-type,
the stencils are generally broad enough to provide a regular matrix M. In
the case that M is nearly singular, and thus the stencil is not admissible,
the relevant stencil is removed. As mentioned before, a feasible criterion to
determine the admissibility of a stencil numerically is given in (2.14).
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2.2.1.2 Central Stencils

When all directional stencils are computed and assigned to their relating
cell, the last step of the stencil search is to compute a central stencil for
each cell σi. In order to do this, the distance ‖bi − bk‖2 between bi and the
barycenters bk of all cells σk ∈

⋃nosi−1
j=1 Si,j in the union of the directional

stencils Si,j belonging to σi and bi is computed. The central stencil Si,nosi

consists of the stencil_size cells σk with the smallest distance.

2.2.2 Computation of Basic Polynomials

To keep the notation simple and to avoid large amounts of indices, the no-
tation σi =: σ0 and

S := S0,j :=
{
σ0, σ1, ..., σ#S0,j−1

}
will always be used in this section. Furthermore, the index n denoting the
time step will be neglected. The vector

ũ := (u0, u1, ..., u#S−1)T

contains the cell mean values of the function to be reconstructed. The index
that speci�es which component of ui is considered, is neglected for simplicity
of notation, as the computation of the reconstruction polynomial is indepen-
dent of the quantity for which it is carried out.

The basic idea to reconstruct the function u on σ0 from its integral mean
values on a set of cells S is to �nd a polynomial p, such that

1

|σl|

∫
σl

u(x) dx = ul =
1

|σl|

∫
σl

p(x) dx ∀σl ∈ S

holds. The use of a least squares method is to be preferred to using an exact
method as mentioned above. To obtain a conservative scheme, it is then
necessary to add a linear constraint to ensure that the cell mean value of σ0

is preserved. According to the use of a least squares method, the number of
cells in S was chosen larger than needed for an exact method. This reduces
the probability to obtain a singular system matrix. Due to [DuK07], an
appropriate number of cells for a reconstruction in two dimensions is

⌈
3noc

2

⌉
.

As the derivatives of the reconstruction polynomial at the barycenter b0 of
the cell σ0 are needed later in the scheme, it is convenient to compute the
coe�cients of the polynomial expanded at b0 directly.

a = (a0,0, a1,0, a0,1, ...a1,deg−1, a0,deg)T = (apos(α))0≤|α|≤deg
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being the vector of coe�cients of a polynomial p(x),

fl(a) =

 ∑
|α|≤deg

aα |σl|−1

∫
σl

(x− b0)αdx− ul

2

∀σl ∈ S

denotes the quadratic error of the integral mean value of p compared to u on
a cell σl depending on a. The total error for the stencil S is

F (a) =
∑
σl∈S

fl(a).

Finding a ∈ Rnoc such that F (a) becomes minimal is equivalent to solving
the problem

a = argmin
ã∈Rnoc

∥∥∥M̃ã− ũ
∥∥∥

2
, (2.6)

where M̃ is the matrix whose rows contain the integral mean values of the
monomials (x− b0)α up to |α| ≤ deg for all σl ∈ S.

As the entries of M̃ consist of the integral mean values of the expanded
monomials (x− b0)α over the cells, the condition number of M̃ depends on
the re�nement of the grid, and gets worse for �ner grids. This again strongly
in�uences the quality of the solution of the linear system of equations and
thus also the quality of the reconstruction polynomials. There are di�erent
approaches to deal with this. In [Abg94], Abgrall proposes the use of a special
polynomial basis to cancel out this e�ect.

The method used in this scheme was introduced by Friedrich in [Fri98]
and consists of the multiplication with a scaling factor

s :=
1√
|σ0|

.

In the following theorem Friedrich states that the computation of the recon-
struction polynomial in the representation

p(x) =:
∑
|α|≤deg

s|α|ãα(x− b0)α (2.7)

cancels out all scaling e�ects of the mesh width on the system matrix, at
least for grids not too distorted.

Theorem 2.7. Let M be the matrix of the scaled least squares problem, which
is

M = (mk,l) k=0,...,#S−1
l=0,...,noc−1

with mk,l =
1

|σk|

∫
σk

s|α|(x− b0)αdx, α := pos−1(l).

Then M is invariant to grid scaling.
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Due to equation (2.7), the coe�cients of p can easily be computed by

aα = s|α|ãα. (2.8)

The application of this scaling method and the linear constraint

1

|σ0|

∫
σ0

p(x) dx =
∑
|α|≤deg

ãα
1

|σ0|

∫
σ0

s|α|(x− b0)α dx = u0 (2.9)

lead to the computation described in the following. As sub matrices and sub
vectors are considered, the notation

mij :=
1

|σi|

∫
σi

s|α|(x− b0)|α|dx, j := pos(α)

M p,q
r,s

:= (mij) i=p,...,q
j=r,...,s

M := M 0,#S−1
0,noc−1

ãp,q := (ãp, ..., ãq)
T

ũr,s := (ur, ..., us)
T

is introduced.
Following the method in [LaH87, Bjö96], the constraint (2.9) can be used

to transform the basic minimizing problem (2.6) into a new minimizing prob-
lem of a reduced dimension. The following steps need to be carried out:

a) Solving the constraint (2.9) for ã0:

ã0 =
1

m00

(
u0 −

noc−1∑
j=1

ãjm0j

)
:=

1

m00

(
u0 −M 0,0

1,noc−1
ã1,noc−1

)
.

As
mi0 =

1

|σi|

∫
σi

s|0|(x− b0)|0|dx = 1 for i = 0, ...,#S − 1,

holds, it follows that

ã0 = u0 −M 0,0
1,noc−1

ã1,noc−1. (2.10)

b) Inserting equation (2.10) into (2.6):

‖Mã− ũ‖2

(2.9)
=

∥∥∥M 1,#S−1
0,noc

ã0,noc−1 − ũ1,#S−1

∥∥∥
2

=
∥∥∥M 1,#S−1

0,0
ã0 + M 1,#S−1

1,noc−1
ã1,noc−1 − ũ1,#S−1

∥∥∥
2
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(2.10)
=

∥∥∥M 1,#S−1
0,0

(
u0 −M 0,0

1,noc−1
ã1,noc−1

)
+M 1,#S−1

1,noc−1
ã1,noc−1 − ũ1,#S−1

∥∥∥
2

=
∥∥∥(M 1,#S−1

1,noc−1
−M 1,#S−1

0,0
M 0,0

1,noc−1

)
ã1,noc−1

−
(
ũ1,#S−1 −M 1,#S−1

0,0
u0

)∥∥∥
2

=:
∥∥∥M̂ã1,noc−1 − û

∥∥∥
2

c) Minimizing
∥∥∥M̂ã1,noc−1 − û

∥∥∥
2
with

M̂ := M 1,#S−1
1,noc−1

−M 1,#S−1
0,0

M 0,0
1,noc−1

(2.11)

û := ũ1,#S−1 −M 1,#S−1
0,0

u0. (2.12)

The latter equation is an unconstrained least squares problem and can
thus be solved with one of the usual algorithms.

Remark 2.8. If the matrix M ∈ R#S×noc has full rank, the matrix M̂ ∈
R#S−1×noc−1 as de�ned in (2.11) has rank(M̂) = noc − 1.

In this work, the resulting least squares problem

a = argmin
ã∈Rnoc−1

∥∥∥M̂ã1,noc−1 − û
∥∥∥

2
(2.13)

is solved in the following straight forward way: Let G ∈ R#S−1×#S−1 be a
orthogonal matrix with

GM̂ =

 R

0

 ,

where R ∈ Rnoc−1×noc−1 is a regular upper triangular matrix. As the eu-
clidean length of a vector, and thus the norm ‖·‖2, is constant under multi-
plication with orthogonal matrices, the least squares problem (2.13) can be
transformed into∥∥∥M̂ã1,noc−1 − û

∥∥∥
2

=

∥∥∥∥(R

0

)
ã1,noc−1 −Gû

∥∥∥∥
2

.

Obviously, the linear system of equations Rã1,noc−1 = (Gû)1,noc−1 can be
solved exactly as R is regular, while the occurring error of equation (2.13) is
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∥∥∥
2
and thus depends only on the initial quantities. Moreover

it is possible at this point to check whether S is admissible: the condition
number of R can be computed easily. Numerical tests up to a fourth order
scheme have shown that a feasible criterion is

cond(R) = max
i=0,...,noc−2

(ri,i)

(
min

j=0,...,noc−2
(rj,j)

)−1

≤ 10. (2.14)

The restriction of a vector of length #S−1 to the �rst noc−1 components
(#S ≥ noc) can be realized by the multiplication with a matrix P that
consists of the (noc−1)× (noc−1)-identity matrix with #S−noc appended
columns of zero entries to the right. Furthermore, the transformation from
the vector ũ ∈ R#S, consisting of the cell mean values of the k-th conservative
variable of the cells in stencil S, to the vector û ∈ R#S−1 can be carried
out by multiplication with the matrix Q ∈ R#S−1×#S, which consists of the
(#S−1)×(#S−1)-identity matrix with one appended column of −1 entries
to the left. For the numerical scheme, the relations

Rã1,noc−1 = PGM̂ã1,noc−1

= (Gû)1,noc−1

= PGû

= PGQũ

⇒ ã1,noc−1 = R−1PGQũ

=: D̃ũ

result in a matrix D̃ ∈ Rnoc−1×#S that depends only on the stencil S and not
on the data in ũ.

In the next step, ã0 can be computed by (2.10) such that the constraint
(2.9) is ful�lled and the coe�cients ã can be re-scaled due to equation (2.8).
These operations can again be carried out using a matrix multiplication: Let
e1 ∈ R#S be the �rst unit vector and

D :=

 eT1

D̃

 ∈ Rnoc×#S,

then it follows that

Dũ =

 u0

ã1,noc−1

 .
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Due to equations (2.10) and (2.8) the computation of the coe�cient ã0 = a0

and the rescaling can be realized by multiplication with the matrix

S :=



1 −m0,1 −m0,2 · · · −m0,noc−1

0 s|pos−1(1)| 0 · · · 0
...

. . . . . . . . .
...

...
. . . s|pos−1(noc−2)| 0

0 · · · · · · 0 s|pos−1(noc−1)|


∈ Rnoc×noc.

Finally, the matrix SD, which only depends on the grid, is stored. The
determination of the polynomial's coe�cients can be carried out by

SDũ = S

 u0

ã1,noc−1

 = a.

This least squares scheme presented for the computation of a polynomial
p(x) of degree deg for the function u(x, tn) on the cell σ0 with the constraint∫
σ0
p(x)dx = u0 indeed provides a reconstruction polynomial in the sense of

de�nition 2.3, as can be seen in the following theorem, which is, to the authors
knowledge, a new result for the coe�cients of reconstruction polynomials
obtained by a least squares method.

Theorem 2.9. Let S be an admissible stencil for degree deg and u(·, tn) ∈
Cdeg(S). Then,

aα =
1

α!
∂αu(x, tn)|x=b0 +O(hdeg+1−|α|) (2.15)

holds for the coe�cients aα of the reconstruction polynomial p obtained by
the algorithm above.

Proof. As u(·, tn) ∈ Cdeg(S) for the deg-th degree spatial Taylor polynomial
of u at the time tn, it holds that

u(x, tn) =

deg∑
i=0

∑
|α|=i

(x− b0)α

α!
∂αu(x, tn)|x=b0 +O(hdeg+1)

⇒ ul =

deg∑
i=0

∑
|α|=i

s|α|

|σl|

∫
σl

(x− b0)αdx
1

α!s|α|
∂αu(x, tn)|x=b0

+O(hdeg+1) ∀l = 0, ...,#S − 1
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⇒ ul − u0 =

deg∑
i=1

∑
|α|=i

(
s|α|

|σl|

∫
σl

(x− b0)αdx− s|α|

|σ0|

∫
σ0

(x− b0)αdx

)
1

α!s|α|
∂αu(x, tn)|x=b0 +O(hdeg+1)

∀l = 1, ...,#S − 1

⇒ M̂c = û +O(hdeg+1)

with M̂ and û as in equations (2.11) and (2.12) and c = (c1, ...cnoc−1) with

cj =
1

α!s|α|
∂αu(x, tn)|x=b0 , j = pos(α).

Hence
∥∥∥M̂c− û

∥∥∥
2

= O(hdeg+1) follows. On the other hand by the choice of

ã1,noc−1 as solution of the minimizing problem (2.6)∥∥∥M̂ã1,noc−1 − û
∥∥∥

2
≤
∥∥∥−M̂c + û

∥∥∥
2

= O(hdeg+1)

follows and thus

O(hdeg+1) =
∥∥∥M̂ã1,noc−1 − û

∥∥∥
2

+
∥∥∥−M̂c + û

∥∥∥
2

≥
∥∥∥M̂(ã1,noc−1 − c)

∥∥∥
2

= ‖R(ã1,noc−1 − c)‖2 .

The matrix R is regular, and because of theorem 2.7 R is also independent
of h. Thus, ‖R−1‖2 = O(1) holds. With equation (2.16) it follows that

O(hdeg+1) =
∥∥R−1

∥∥
2
‖R(ã1,noc−1 − c)‖2

≥
∥∥R−1R(ã1,noc−1 − c)

∥∥
2

= ‖ã1,noc−1 − c‖2 .

Therefore, for each component of the vectors above

ãj − cj = O(hdeg+1) (2.16)

holds. Using equation (2.8) for |α| ≥ 1 and
√
|σ0| = O(h) it follows that

aα = s|α|ãj

(2.16)
= s|α|

(
1

α!s|α|
∂αu(x, tn)|x=b0 +O(hdeg+1)

)
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=

(
1√
|σ0|

)|α| 1

α!

(
1√
|σ0|

)|α|∂αu(x, tn)|x=b0 +O(hdeg+1)


=

1

α!
∂αu(x, tn)|x=b0 +O(hdeg+1−|α|).

Finally, for the coe�cient a(0,0) the equation

a(0,0) = u0 −
deg∑
i=1

∑
|α|=i

aα
1

|σ0|

∫
σ0

(x− b0)α dx

(2.16)
=

deg∑
i=1

∑
|α|=i

(
1

α!
∂αu(x, tn)|x=b0 − aα

)
1

|σ0|

∫
σ0

(x− b0)α dx

+u(b0, t
n) +O(hdeg+1)

=

deg∑
i=1

∑
|α|=i

O(hdeg+1−|α|)
1

|σ0|

∫
σ0

(x− b0︸ ︷︷ ︸
=O(h)

)αdx

+u(b0, t
n) +O(hdeg+1)

= u(b0, t
n) +O(hdeg+1)

can be obtained, which completes the proof.

Using theorem 2.9, it is now possible to proof the approximation of the
reconstruction polynomial.

Lemma 2.10. The equation

pn0 (x)− u(x, tn) = O(hdeg+1) ∀x ∈ σ0

holds for the polynomial pn0 (x) of degree deg obtained by the scheme above
for the function u(x, tn) on the cell σ0.

Proof. This follows easily from

pn0 (x)− u(x, tn) =

deg∑
i=0

∑
|α|=i

(aα −
1

α!
∂αu|x=b0)(x− b0)α +O(hdeg+1)

=

deg∑
i=0

∑
|α|=i

O(hdeg+1−|α|)(x− b0︸ ︷︷ ︸
=O(h)

)α +O(hdeg+1)

= O(hdeg+1).
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Thus, following de�nition 2.3, the polynomial p(x) is indeed a reconstruc-
tion polynomial of the desired degree.

2.2.3 Weighting

The last and eponymous step is the weighting of the polynomials in order
to obtain a reconstruction polynomial that is as `smooth` as possible. There
are two ways to do so: Either by analyzing the mean values of the cells in
the corresponding stencil, or by analyzing the coe�cients of the computed
reconstruction polynomial. The authors of [LOC94] for example proposed a
method for the one dimensional case based on the computation of a table
of di�erences of mean values. In [JiS96], a weighting function based on the
squares of the derivatives of the reconstruction polynomials was presented.
However, the direct use of the reconstruction polynomial to obtain a measure
of the smoothness of the reconstruction is the method that is widely followed
nowadays.

In order to compute a reconstruction polynomial as the weighted sum of
some basic polynomials for a cell σi, a weight ωni,j;k for each polynomial pni,j;k
is determined via

ωni,j;k =
s(i, j)

(
ε+OI(pni,j;k)

)−r∑nosi
l=1 s(i, l)

(
ε+OI(pni,l;k)

)−r . (2.17)

The crucial step in equation (2.17) is the computation of the positive oscil-
lation indicator OI(pni,j;k), that gives a measure of the oscillations of a given
polynomial pni,j;k. To avoid division by zero, a very small number ε > 0 is
added to the oscillation indicator. The exponent r is a positive integer that
controls the sensitivity of the weights to oscillations. For large values of r,
the weight of the smoothest polynomial tends to 1, the weights of the other
polynomials to 0 and the whole scheme thus to an ENO scheme. The function
s(i, j) is positive and stencil dependent and determines the general in�uence
of the stencil Si,j, based on its shape. In general, s(i, j) shall emphasize
stencils with small diameter due to theorem 2.5.

Di�erent authors recommend di�erent sets of these constants and func-
tions respectively. For example, Friedrich recommends the set

r = 8

ε = 10−16

OI(p) =

∑
|α|=1

∫
σi

(Dαp(x))2 dx

 1
2
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s(i, j) =

{
12 Si,j is central stencil
1 otherwise

in [Fri99], while the authors in [KäI04] used

r = 4

ε = 10−5

OI(p) =
∑

1≤|α|≤deg

∫
σi

|σi||α|−1 (Dαp(x))2 dx

s(i, j) = 1.

The authors in [DuK07] recommend

r = 4

ε = 10−5

OI(p) =
∑

1≤|α|≤deg

∫
σi

(Dαp(x))2 dx

s(i, j) =

{
103 Si,j is central stencil
1 otherwise

. (2.18)

Numerical tests with di�erent sets of these constants and functions have
shown that the scheme is most stable when using the third set. In this set
the polynomial returned by the central stencil, that can be expected to have
the smallest diameter, gets an accentuation in the weighting, which is in
accordance to theorem 2.5.

2.2.4 Characteristic Variables

In this work, the reconstruction is carried out in characteristic variables, as
is recommended in [DKT07]. Numerical test have shown that this indeed
has a large in�uence on the stability of the numerical solution that totally
justi�es the extra computational costs.

Characteristic variables are the variables obtained when diagonalizing the
x1-split 2D shallow water equations. This set of variables can be computed
only for a �xed time and in relation to a given direction. The time in this
case is tn, while the directions are given normal to the piecewise polygonal
boundary of σi.

To be more precise, the matrices of the coe�cients of the reconstruction
polynomials in conservative variables Aj ∈ Rnoc×3 are computed and stored
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for each stencil Si,j. Then the conservative reconstruction polynomial

0p
n
i;k :=

∑
j

ωni,j;kp
n
i,j;k (2.19)

is computed. The 0 to the left indicates that weights for this polynomial
were computed in the conservative, and not in a characteristic, formulation.

Afterwards, the coe�cients of the reconstruction polynomials in charac-
teristic variables for the x1-split equations (1.24) with respect to each edge
lai,m, a = 1, 2, of the boundary between σi and its neighboring cells σm are
computed from Aj. Referring to the edge lai,m, these reconstruction polyno-
mials in characteristic variables are denoted m,ap̃

n
i,j;k. The transformation is

carried out by the multiplication with matrices Rnai,m ∈ R3×3, where nai,m is
the normal vector to lai,m, a = 1, 2. These transformation matrices have the
form

Rnai,m = − 1

2
√
û0


− û1

û0
−
√
û0 1 0

2
√
û0

û2

û0
0 −2

√
û0

û1

û0
−
√
û0 −1 0


with û = 1

2
T(nai,m) (ui + um) being the arithmetic mean value of the rotated

vectors of conservative variables of both adjacent cells.
The matrices Rnai,m is the inverse of the matrix of the right eigenvectors

ri(û) of the Jacobian matrix f ′1(û) of the x1-split 2D shallow water equations
(1.24), rotated with respect to the edge lai,m.

This method is more e�ective than the canonic approach, which is the
computation of the characteristic reconstruction polynomials out of the set
of cell mean values in characteristic variables. But both methods lead to the
same polynomial, as can be seen easily in the following:

Let U ∈ R#Si,j×3 be the matrix that contains the vectors of the cell mean
values in conservative variables of all cells σh ∈ Si,j, Aj ∈ Rnoc×3 the matrix
that consists of the vectors of the coe�cients of the three reconstruction
polynomials pni,j;k, k = 0, 1, 2 and SD ∈ Rnoc×#Si,j the reconstruction matrix,
such that SDU = Aj. Then,

Rnai,mT(nai,j)A
T
j = Rnai,mT(nai,j)

(
SDU

)T
= Rnai,mT(nai,j)U

T
(SD)T

= SD
(
Rnai,mT(nki,j)U

T
)T

.

For each set of characteristic coe�cients, a weighted polynomial

m,ap
n
i;k :=

∑
j

m,aω
n
i,j;kp

n
i,j;k (2.20)
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is determined using the weighting recommended in [DuK07] as mentioned
above.

In this sum, the polynomials in conservative variables are added with the
weights being computed due to the polynomials in characteristic variables.
This was done in order to save the rotation back as a source of rounding
errors.

From the set of 2non i + 1 polynomials

0p
n
i;k ∪

{
m,ap

n
i;k|m = 1, ..., non i, a = 1, 2

}
obtained in the process, the polynomial uni;k with

OI(uni;k) = min(OI(0p
n
i;k),min

m,a
(OI(m,ap

n
i;k)))

is chosen as reconstruction polynomial for the cell σi at time tn.

2.3 Space Time Expansion

The Space Time Expansion scheme, or shorter STE scheme, is a general-
ization of the Lax-Wendro� scheme presented in [LaW60]. It is a predictor-
corrector scheme. The predictor consists of one polynomial Un

i;k(x, t) in space
and time per cell and function. These polynomials are utilized to predict the
values of the functions u at the integration points. In this prediction, the
in�uence of the neighboring cells on the evolution of the cell σi is neglected.
In the corrector step, the �uxes over the cell boundaries are computed via a
Riemann solver, as described in section 2.4. This idea was �rst presented in
[HEO87] and then adopted in [GLM07, GLM08].

The fact that one polynomial per function will be computed for the whole
cell and that the Riemann problems at the integration points are solved as
the last step in �ux computation, distinguishes this scheme from the ADER
approach. The abbreviation ADER stands for Arbitrary high order using
DERivatives and was invented by Titarev and Toro in [TiT02]. In their
scheme, one polynomial in time is computed for each spatial integration point
per function. The Riemann problems are solved in the process of expanding
the polynomial and the �uxes are computed by exactly integrating these
polynomials in time.

The computation of the polynomials Un
i (x, t) is based on a Taylor expan-

sion Tn
i of the 2D shallow water equations with center (bi, t

n),

T ni;k(x, t) =

deg∑
0=|α|

[(x, t)− (bi, t
n)]α

α!

∂|α|uk(x, t)

∂(x, t)α

∣∣∣∣
(bi,tn)

+O(hdeg+1). (2.21)
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The space-time polynomial Un
i (x, t) has the form

Un
i;k(x, t) =

deg∑
0=|α|

[(x, t)− (bi, t
n)]αAα;k, (2.22)

where Aα;k is an approximation to 1
α!
∂αuk|(bi,tn). In order to obtain this ap-

proximation, the function uk itself and its spatial derivatives are replaced by
uni;k(x) and its derivatives, while for the summands containing time deriva-
tives the Cauchy-Kovalewskaja Procedure will be applied.

2.3.1 Cauchy-Kovalewskaja Procedure

The Cauchy-Kovalewskaja Procedure, or short CKP, also known as Lax-
Wendro� Procedure, was presented in [LaW60]. It provides approximations
to derivatives from uk(x, t) with respect to time, as they are needed in (2.22).

To keep it as short and clear as possible, the notation

fα = f(α1,α2,α3) = ∂αf(x, t)

will be used.
If the functions u(x, t) are assumed to be smooth enough to change the

order of partial derivatives, the shallow water equations (1.20) themselves
are used to obtain the time derivatives: Knowing the spatial derivatives of
the solution u, the di�erential equation

u(0,0,1) = −f1(u)(1,0,0) − f2(u)(0,1,0) + g(u) (2.23)

provides a rule for their calculation.
Under the condition that the higher spatial derivatives of u are known,

higher time and time-space derivatives can be computed by di�erentiating
equation (2.23) successively. For example, using equation (2.23) and the
second order spatial derivatives u(2,0,0), u(1,1,0) and u(0,2,0), the second order
time and mixed derivatives

u(1,0,1) = −f1(u)(2,0,0) − f2(u)(1,1,0) + g(u)(1,0,0)

u(0,1,1) = −f1(u)(1,1,0) − f2(u)(0,2,0) + g(u)(0,1,0)

u(0,0,2) = −f1(u)(1,0,1) − f2(u)(0,1,1) + g(u)(0,0,1)

can be computed easily.
In this section, only the case of a �at topography, that is g(u) ≡ 0, will

be discussed. The case of a non-�at topography is covered separately in
section 2.5.
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Although the solution u is not known, naturally, the reconstruction poly-
nomials uni provide an approximation for u and its spatial derivatives u(α)

with |α| ≤ deg , following theorem 2.9.
In this context, the derivatives fi(u)α, i = 1, 2, require di�erentiating

products and quotients of functions, such as f1;2 = f2;1 = u1u2

u0
= (Φv1)v2. In

the case of di�erentiating a product of functions, the n-dimensional Leibniz
rule for two functions F (x, t), G(x, t)

(FG)α =
∂|α|

∂xα1
1 x

α2
2 t

α3
(FG)(x, t)

=

α1∑
i=0

α2∑
j=0

α3∑
k=0

(
α1

i

)(
α2

j

)(
α3

k

)
F(i,j,k)G(α1−i,α2−j,α3−k) (2.24)

for n = 3 can be applied.
In the case of di�erentiating a quotient, [Dys01] provides a rule for the

computation of the α-th partial derivative of a function F (x, t) = FG
G

(x, t)
if the partial derivatives of F (x, t) and G(x, t) up to degree |α| − 1 and the
α-th partial derivative of (FG)(x, t) are known. A slight modi�cation of this
rule, concerning the summation, for computational speedup is used in this
work:

Fα =

[
(FG)α −

α1∑
i=0

α2∑
j=0

α3−1∑
k=0

(
α1

i

)(
α2

j

)(
α3

k

)
F(i,j,k)G(α1−i,α2−j,α3−k)

−
α1∑
i=0

α2−1∑
j=0

(
α1

i

)(
α2

j

)
F(i,j,α3)G(α1−i,α2−j,0)

−
α1−1∑
i=0

(
α1

i

)
F(i,α2,α3)G(α1−i,0,0)

]
1

G(0,0,0)

.

(2.25)

In the following, a proposition concerning the approximation order of the
derivatives obtained by using this rule with approximations of the derivatives,
like they are guaranteed by theorem 2.9, is made.

Theorem 2.11. Assume, there exist approximations fγ and gγ for the γ-th
partial derivatives of F and G respectively with

Fγ |(bi,tn) = γ!fγ +O(hdeg+1−|γ|)

Gγ |(bi,tn) = γ!gγ +O(hdeg+1−|γ|) (2.26)



2.3. SPACE TIME EXPANSION 75

for γ = (γ1, γ2, γ3) with |γ| < |β| and γl ≤ βl, l = 1, 2, 3. In addition,
assume that the approximation (fg)β of the β-th partial derivative of FG
with

(FG)β|(bi,tn) = β!(fg)β +O(hdeg+1−|β|) (2.27)

exists.
Then,

Fβ|(bi,tn) − β!fβ = O
(
hdeg+1−|β|)

holds for β!fβ with |β| ≤ deg.

Proof. In the following, the writing of the point of the evaluation (bi, t
n) for

the functions F, G, FG will be neglected. Using equations (2.25), (2.26),
|γ| < |β| and(

β1

i

)(
β2

j

)(
β3

k

)
(β1 − i)!(β2 − j)!(β3 − k)!i!j!k! = β!,

for the di�erence Fβ − β!fβ the following holds:

Fβ − β!fβ =
(FG)β

G(0,0,0)

−

[
β1∑
i=0

β2∑
j=0

β3−1∑
k=0

(
β1

i

)(
β2

j

)(
β3

k

)
G(β1−i,β2−j,β3−k)F(i,j,k)

+

β1∑
i=0

β2−1∑
j=0

(
β1

i

)(
β2

j

)
G(β1−i,β2−j,0)F(i,j,β3)

+

β1−1∑
i=0

(
β1

i

)
G(β1−i,0,0)F(i,β2,β3)

]
1

G(0,0,0)

− β!(fg)β

g(0,0,0)

+ β!

[
β1∑
i=0

β2∑
j=0

β3−1∑
k=0

g(β1−i,β2−j,β3−k)f(i,j,k)

+

β1∑
i=0

β2−1∑
j=0

g(β1−i,β2−j,0)f(i,j,β3)

+

β1−1∑
i=0

g(β1−i,0,0)f(i,β2,β3)

]
1

g(0,0,0)

(2.26),(2.27)
=

1

g2
(0,0,0) +O (hdeg+1)

[
O
(
hdeg+1

)
−O

(
hdeg+1−|β|)
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−
β1∑
i=0

β2∑
j=0

β3−1∑
k=0

O
(
hdeg+1−(|β|−i−j−k)

)
+O

(
hdeg+1−(i+j+k)

)
−

β1∑
i=0

β2−1∑
j=0

O
(
hdeg+1−(|β|−i−j−β3)

)
+O

(
hdeg+1−(i+j+β3)

)
−

β1−1∑
i=0

O
(
hdeg+1−(|β|−i−β2−β3)

)
+O

(
hdeg+1−(i+β2+β3)

) ]
=O

(
hdeg+1−|β|)

Remark 2.12. If fγ and gγ exist with

Fγ |(bi,tn) − fγ = O
(
hdeg+1−|γ|)

Gγ |(bi,tn) − gγ = O
(
hdeg+1−|γ|)

for γi ≤ βi, i = 1, 2, 3, inserting these approximations into equation (2.24)
gives an approximation (fg)β to (FG)β|(bi,tn) with

(FG)β|(bi,tn) − (fg)β = O
(
hdeg+1−|β|) . (2.28)

Given the appropriate derivatives, the computation of Aα;0 as approxi-
mation to 1

α!
uα;0 as

Aα;0 = A(α1+1,α2,α3−1);1 + A(α1,α2+1,α3−1);2

does not pose any problem, but the equation for the computation of Aα;i, i =
1, 2 contains derivatives of the terms

u1u1

u0

= (Φv1)v1,
u1u2

u0

= (Φv1)v2,
u2u2

u0

= (Φv2)v2.

To cope with this problem, auxiliary functions

g1(x, t) =

deg−1∑
|α|=0

gα;1(x, t)α and g2(x, t) =

deg−1∑
|α|=0

gα;2(x, t)α (2.29)

are introduced to approximate

v1(x, t) =
u1

u0

(x, t) and v2(x, t) =
u2

u0

(x, t),
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respectively.
The computation of all coe�cients Aα;k of the Taylor polynomial Uu

i can
be executed as a loop with increasing degree α3 of the time derivative as
follows:
α3 = 0 : For the coe�cients A(α1,α2,0);k of the spatial monomials of Un

i

A(α1,α2,0);k = a(α1,α2);k

holds where a(α1,α2);k are the coe�cients of uni . Thus, with theorem 2.9, for
A(α1,α2,0);k it holds that

A(α1,α2,0);k =
1

α1!α2!
∂(α1,α2,0)uk|(bi,tn) +O

(
hdeg+1−(α1+α2)

)
.

Approximations g(α1,α2,0);k, k = 1, 2, for the spatial derivatives of the aux-
iliary variables 1

α1!α2!
v(α1,α2,0);k|(bi,tn) can be computed using equation (2.25).

For these approximations,

g(α1,α2,0);k =
1

α1!α2!
v(α1,α2,0);k|(bi,tn) +O

(
hdeg+1−(α1+α2)

)
is obtained by theorem 2.11. Finally, approximations to the spatial deriva-
tives of the products u0u0, u1v1, u1v2, u2v2 can be computed using equa-
tion (2.24). Again, with remark 2.12

(A0A0)(α1,α2,0) = (u0u0)(α1,α2,0)|(bi,tn) +O
(
hdeg+1−(α1+α2)

)
holds and analogous results are obtained for (A1g1)(α1,α2,0), (A1g2)(α1,α2,0) and
(A2g2)(α1,α2,0). Thus, the initialization for the CKP is complete.
α3 = α3 + 1 : The coe�cients Aα;k, k = 0, 1, 2, can be computed by the

already determined quantities as

Aα;0 = −A(α1+1,α2,α3−1);1 − A(α1,α2+1,α3−1);2

Aα;1 = −(A1g1)(α1+1,α2,α3−1) −
1

2
(A0A0)(α1+1,α2,α3−1)

− (A1g2)(α1,α2+1,α3−1)

Aα;2 = −(A2g1)(α1+1,α2,α3−1) − (A2g2)(α1,α2+1,α3−1)

− 1

2
(A0A0)(α1,α2+1,α3−1)

Obviously, as |α| = (α1 + 1) + α2 + (α3 − 1) = α1 + (α2 + 1) + (α3 − 1), for
Aα;k, k = 0, 1, 2, it holds that

Aα;k −
1

α!
∂αuk|(bi,tn) = O

(
hdeg+1−|α|) . (2.30)
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After having computed the coe�cients Aα;k, the auxiliary quantities gα;k,
k = 1, 2, and the products (A1g1)α, (A1g2)α, (A2g2)α, (A0A0)α can be com-
puted by �rst using equation (2.25) and then (2.24). For all these quantities
it holds again, with theorem 2.11 and remark 2.12, that the approximation
order is deg + 1− |α|.

The space-time Taylor polynomials Un
i (x, t) are determined by the coef-

�cients Aα;k, |α| ≤ deg as approximation for u(x, t) for the space-time cell
σi × [tn, tn+1].

In the preceding passage, with equation (2.30) a proposition similar to
the result obtained in theorem 2.9, this time concerning the coe�cients of
Un
i (x, t), was proven.
Another result, this time concerning the approximation order of the poly-

nomial Un
i (x, t) in space and time, can be shown thus.

Theorem 2.13. Let Un
i (x, t) =

∑deg
|α|=0 Aα(x− bi, t− tn)α with

Aα;k −
1

α!
∂αuk|(bi,tn) = O

(
hdeg+1−|α|) .

Then for (x, t) ∈ {σi} × [tn, tn+1] it holds that

uk(x, t)− Un
i;k(x, t) = O

(
hdeg+1

)
.

Proof. For the Taylor series

T ni;k(x, t) =

deg∑
|α|=0

1

α!
∂αuk|bi,tn(x− bi, t− tn)α

it holds that

T ni;k − uk = O
(
hdeg+1

)
for (x, t) ∈ σi ×

[
tn, tn+1

]
.

Thus,

Un
i;k(x, t)− uk(x, t) =Un

i;k(x, t)− T ni;k(x, t) +O
(
hdeg+1

)
=

deg∑
|α|=0

(
Aα;k −

1

α!
∂αuk|bi,tn

)
(x− bi, t− tn)α

+O
(
hdeg+1

)
=

deg∑
|α|=0

O
(
hdeg+1−|α|) (x− bi, t− tn︸ ︷︷ ︸

=O(h)

)α



2.4. RIEMANN SOLVER 79

+O
(
hdeg+1

)
=O

(
hdeg+1

)
for k = 0, 1, 2.

2.4 Riemann Solver

Riemann problems, as mentioned in de�nition 1.7, are special initial value
problems (1.27) that appear in the context of this work at all integration
points (x̃k,li,j , t

n,m) of the numerical scheme (1.49) and (1.50). Due to the
�nite volume ansatz, at those points exist, because of the two adjacent cells,
two di�erent approximations for u, according to the cell-wise reconstruction.

The general solution of this problem is computed via a numerical �ux
function, or Riemann solver, H(uL,uR,n) that depends on the data given in
the cells to the left and the right and the vector normal to the edge between
these cells.

Riemann solvers are functions that return either the exact value or an ap-
proximation of the analytic �ux f(uS), or the �uxes f(ul), f(ur), respectively,
for the given left and right state of a Riemann problem.

De�nition 2.14. The numerical �ux function H(uL,uR,n) is called consis-
tent to the partial di�erential equation, if

H(u,u,n) =
2∑
i=1

fi(u)ni.

Assuming H is smooth enough, [Son96] proves the following theorem
concerning the spatial order of the numerical scheme.

Theorem 2.15. If the order of accuracy of the quadrature rule is O(hq) in
(1.50) and if (Un

i − u)(x, t) = O(hr), r > 0, holds on σi ∈ Σ, then the �nite
volume approximation is of order O(hmin(q,r)) in space, provided u as well as
H are smooth enough functions.

As the 2D shallow water equations are hyperbolic, the solution of the
full Riemann problem consists normally of four, including topography �ve,
states that are separated by three, respectively four, waves that travel with
a certain constant wave speed [Smo83, LeV02]. There exist di�erent types
of Riemann solvers. The main distinctions are `complete versus incomplete`
and `exact versus approximative`. A complete Riemann solver takes into
account all waves of the problem while an incomplete solver might neglect
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Figure 2.4: Ansatz for the HLL Riemann solver.

some. An exact solver will give the exact solution to the problem while
an approximative one will just give an approximation. In both cases the
approximation can be computed faster than the exact solution.

2.4.1 The HLL Riemann Solver

Harten, Lax and van Leer presented in [HLL83] a novel approach for solving
the Riemann problem approximately. The HLL Riemann solver accounts
for two waves with velocity SL, SR that separate three constant states uL,
uS and uR and is independent from the di�erential equation. Thus, it is
complete for the 1D shallow water equations but incomplete for the x1-split
2D shallow water equations, as it neglects the contact discontinuity. It is
assumed that both waves are shocks and thus have no width.

The guiding idea of the HLL is that for a conservation law the content
of the quantities u in a �xed spatial area [xL, xR] with xL < 0 < xR changes
in time only due to �uxes f(u) over the boundary of the area. Thus, on the
one hand, the consistency condition∫ xR

xL

u(x, T ) dx =

∫ xR

xL

u(x, 0) dx

+

∫ T

0

f1(u(xL, t))dt−
∫ T

0

f1(u(xR, t)) dt

= xRuR − xLuL + T (FL − FR) (2.31)
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with FK := f1(u(xK , 0)) holds, as the states were assumed to be constant.
Obviously, this equation is valid only for xL ≤ TSL and TSR ≤ xR respec-
tively. This condition restricts the time step depending on the cell size and
the wave speed.

On the other hand, splitting the integral at time T , the equation∫ xR

xL

u(x, T ) dx =

∫ TSL

xL

u(x, T ) dx+

∫ TSR

TSL

u(x, T ) dx

+

∫ xR

TSR

u(x, T ) dx

=

∫ TSR

TSL

u(x, T ) dx+ (TSL − xL)uL + (xR − TSR)uR

(2.32)

holds. The combination of equations (2.31) and (2.32) yields∫ TSR

TSL

u(x, T ) dx = T (SRuR − SLuL + FL − FR). (2.33)

It is known from theorem 1.15 that u(x, T )|[TSL,TSR] is constant. Thus,∫ TSR

TSL

u(x, T ) dx =: (TSR − TSL) uS.

By dividing equation (2.33) by the length of the integration interval, the
integral mean value of the state between the waves can be computed, provided
the wave velocities SL and SR are exact:

uS =
SRuR − SLuL + FL − FR

SR − SL
. (2.34)

Summing up, Harten, Lax and van Leer proposed the following approxima-
tion for the solution of the Riemann problem:

u(x, t) =


uL if x

t
≤ SL,

uS if SL ≤ x
t
≤ SR,

uR if SR ≤ x
t
,

with uS as in equation (2.34).
The corresponding �ux along the t-axis in the supersonic cases 0 ≤ SL

and SR ≤ 0 respectively is computed in the natural way as f(uL) and f(uR),
but in the subsonic case another consideration was made.
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Restricting equation (2.33) to the control volumes [xL, 0] × [0, T ] and
[0, xR]× [0, T ] leads to∫ 0

TSL

u(x, T ) dx = −TSLuL + T (FL − F0L), (2.35a)∫ TSR

0

u(x, T ) dx = TSRuR + T (F0R − FR), (2.35b)

where F0K , K ∈ {L,R} , is the �ux along the t-axis. Solving these equations
for the new �uxes gives

F0L = FL − SLuL −
1

T

∫ 0

TSL

u(x, T ) dx,

F0R = FR − SRuR +
1

T

∫ TSR

0

u(x, T ) dx.

Comparing the sum of the equations (2.35) to (2.33), it follows that

F0L = F0R =: FHLL.

FHLL thus can be computed as

FHLL = FL + SL(uS − uL) = FR + SR(uS − uR),

which is in accordance with the Rankine-Hugoniot conditions (1.35).
The intercell �ux in the �nite volume method is then given by

FHLL =


FL if 0 ≤ SL,

SRFL−SLFR+SLSR(uR−uL)
SR−SL

if SL ≤ 0 ≤ SR,

FR if 0 ≥ SR.

(2.36)

The HLL Riemann solver is consistent. This can be easily seen from
equation (2.36), as with uL = uR := u follows FL = FR := F and thus
FHLL = F.

2.4.2 The HLLC Riemann Solver

The HLLC Riemann solver is based on similar considerations but additionally
takes into account the contact discontinuity that travels with speed S∗ with
SL ≤ S∗ ≤ SR. These three waves separate the four states uL, u∗L, u∗R and
uR. The HLLC was presented in [TSS94] for the two dimensional Euler equa-
tions and was applied to the 2D shallow water equations in [FrT93, FrT95].
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Figure 2.5: Ansatz for HLLC Riemann solver.

The considerations are mostly the same as for the HLL, but equation (2.32)
is split in the following way:

1

T (SR − SL)

∫ TSR

TSL

u(x, T ) dx =
1

T (SR − SL)

∫ TS∗

TSL

u(x, T ) dx,

+
1

T (SR − SL)

∫ TSR

TS∗

u(x, T ) dx (2.37)

where the integral averages for both states in the middle are de�ned as

u∗L :=
1

T (S∗ − SL)

∫ TS∗

TSL

u(x, T ) dx,

u∗R :=
1

T (SR − S∗)

∫ TSR

TS∗

u(x, T ) dx. (2.38)

Equations (2.33), (2.37) and (2.38) then yield the new consistency condition

(
S∗ − SL
SR − SL

)
u∗L +

(
SR − S∗
SR − SL

)
u∗R =

SRuR − SLuL + FL − FR

SR − SL
. (2.39)
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The approximate solution of the Riemann problem is then given by

u(x, t) =



uL if x
t
≤ SL,

u∗L if SL ≤ x
t
≤ S∗,

u∗R if S∗ ≤ x
t
≤ SR,

uR if SR ≤ x
t
.

Similar to the HLL, integrating over appropriate control volumes or applying
the Rankine-Hugoniot conditions, respectively, leads to

F∗L = FL + SL(u∗L − uL) (2.40)

F∗R = F∗L + S∗(u∗R − u∗L) (2.41)

F∗R = FR + SR(u∗R − uR). (2.42)

Inserting (2.40) and (2.42) into (2.41) again results in the consistency con-
dition (2.39). So there are three equations for the four unknowns u∗L, u∗R,
F∗L and F∗R. This problem can be solved by taking the Riemann invari-
ants (1.31)-(1.33) into account, that additionally in primitive formulation
imply

H∗L = H∗R =: H∗

v∗L;1 = v∗R;1 =: v∗;1 = S∗

vL;2 = v∗L;2

vR;2 = v∗R;2.

As the Rankine-Hugoniot conditions only have to be applied to the conser-
vative form, equation (2.40) gives

Φ∗Lv∗L;1 = ΦLvL;1 + SL (Φ∗L − ΦL)

⇒ Φ∗L(v∗L;1︸︷︷︸
S∗

−SL) = ΦL(vL;1 − SL)

⇒ Φ∗L = Φ∗ = ΦL

(
vL;1 − SL
S∗ − SL

)
.

Equation (2.42) provides similar results for u∗R. Thus, for u∗K , K ∈ {L,R},

u∗K = ΦK

(
vK;1 − SK
S∗ − SK

)
1

S∗

vK;2

 (2.43)
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holds. As Φ∗L equals Φ∗R, it is additionally possible to determine S∗ via

ΦL

(
vL;1 − SL
S∗ − SL

)
= ΦR

(
vR;1 − SR
S∗ − SR

)
⇒ S∗ =

ΦLSR(vL;1 − SL)− ΦRSL(vR;1 − SR)

ΦL(vL;1 − SL)− ΦR(vR;1 − SR)
. (2.44)

The HLLC �ux can �nally be written as

FHLLC =


FL if 0 ≤ SL,

F∗L = FL + SL(u∗L − uL) if SL ≤ 0 ≤ S∗,

F∗R = FR + SR(u∗R − uR) if S∗ ≤ 0 ≤ SR,

FR if SR ≤ 0.

(2.45)

The HLLC Riemann solver is consistent, as from uL = uR := u =
(Φ,Φv1,Φv2)T for K ∈ {L,R} it follows from equation (2.44) that S∗ = v1

and thus

u∗K = Φ

(
v1 − SK
v1 − SK

)
1

v1

v2

 = u.

Then, consistency follows from FL = FR := F, as by (2.45) FHLLC = F
holds.

2.4.3 Wave Speed Estimations

The remaining problem is to obtain approximations for SL and SR. Two easy
estimates proposed by Davis in [Dav88] consist of the eigenvalues related to
the waves

SL = vL;1 −
√

ΦL = λL;1,

SR = vR;1 +
√

ΦR = λR;3

and

SL = min(vL;1 −
√

ΦL, vR;1 −
√

ΦR),

SR = max(vL;1 +
√

ΦL, vR;1 +
√

ΦR).

Toro recommends

SL = vL;1 −
√

ΦLqL, SR = vR;1 −
√

ΦRqR
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in [Tor01] where qK , K ∈ {L, R} are de�ned as

qK =


√

(H∗+HK)H∗
2H2

K
if H∗ > HK ,

1 if H∗ ≤ HK .

Hereby, H∗ is an estimate for the exact solution for H in the region between
SL and SR, that can be obtained, for example, by assuming SL and SR were
both rarefactions and using the Riemann invariants

H∗ =
1

g

[
1

2
(
√

ΦL +
√

ΦR) +
1

4
(vL;1 − vR;1)

]2

. (2.46)

The estimation recommended by Toro is the one that is used in the imple-
mentation of the HLL and HLLC in the program.

2.5 Including the Topography

In this section, the inclusion of source terms due to the bottom topography
in the numerical scheme is treated.

Higher order schemes for the 2D shallow water equations that take into ac-
count topographical source terms are a subject of current research. Schemes
were developed for example by Gallordo et al. in [GPC07] or by Xing and Shu
in [XiS11]. These existing schemes are, to the authors knowledge, restricted
in the order and/or bound to quadrilateral meshes.

An important point when including source terms is the well balanced-ness
of the resulting scheme. Schemes that cannot balance the e�ect of the source
term and the �ux usually fail to capture steady states well and produce
spurious oscillation near the steady state, [XiS11].

De�nition 2.16. A numerical scheme for balance laws is called well balanced,
if for a given steady state solution, that is a solution u with ∂tu = 0, the
integral of the source terms and the numerical �uxes over the cell boundaries
sum up to zero for each cell σi.

Hence, a well balanced scheme conserves a given steady state solution.
Generally, following [NXS07], steady state solutions of the 1D shallow

water equations can be characterized by the relations

Φv1 = const , and
v2

1

2
+ Φ + gtop = const ,
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which represent, together with v2 = const , the Riemann invariants related to
the topography wave of the x1-split 2D shallow water equations. For steady
state solutions of the 2D shallow water equations according to [AuB05],

∇ · (Φv) = 0 and ∇

(
|v|2

2
+ Φ + gtop

)
+

 v2

−v1

∇ ·
 v2

−v1

 = 0

holds.
In this work the term well balanced is used in a weaker sense, namely in

the sense of preserving the so called still water steady states. These problems
are also referred to as lake at rest : The initial conditions describe the basin
of a lake, given by top, and the water in the lake at rest with

(Φ + gtop) = const and v = 0.

To include the in�uence of the topography, and to obtain a well balanced
scheme, only a specialized Riemann solver and a few changes in the previously
presented scheme are necessary.

At the start of a computation, a reconstruction polynomial

ui;3(x) =

deg∑
|α|=0

aα;3(x− bi)
α

for top for each cell is computed, following the WENO procedure as presented
in section 2.2. As top is constant with respect to time, this has to be done
only once.

Moreover, for every spatial integration point x̃k,li,j , l = 1, ..., Nx, on the
edge lki,j between the cells σi and σj, the value K

k,l
i,j related to the extent of

the discontinuity in the reconstruction of topography is computed as

Kk,l
i,j = −g

(
ui;3(x̃k,li,j )− uj;3(x̃k,li,j )

)
. (2.47)

2.5.1 Well Balanced Reconstruction

In order to obtain a reconstruction that �ts in the previously presented
scheme and results in a well balanced scheme, instead of reconstructing the
Geo potential Φ = gH, the water surface s := g(H+ top) is reconstructed for
each stencil as before. This is only an extension of the previously reconstruc-
tion scheme, with which it is identical for top(x) ≡ 0. From the obtained
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polynomials pi,j;s the basic reconstruction polynomials for Φ, pi,j;0, can be
computed as

pi,j;0(x) = pi,j;s(x)− gui;3(x).

It became obvious during the validation of the well balanced-ness of the
scheme that rounding errors need to be avoided as far as possible. The �rst
possible source of rounding errors in the reconstruction is the computation
of û as in equation (2.12). In the case of a still water steady state, û = 0
should hold for all quantities, which is often violated by small rounding errors
occurring during the computation of the cell mean values. A simple remedy
is to check whether |ûk| ≤ 10−14 and to set |ûk| = 0 if this is the case for
all components ûk of û. Another source is the weighting. In the process of
computing uni;0 it turned out to be important to compute the sums (2.19)
and (2.20) using pi,j;s instead of pi,j;0 and subtracting the coe�cients of gui;3
as a last step.

In the case of the lake at rest, the reconstruction returns the polynomials

uni;0(x) = const − gui;3(x), uni;1(x) = uni;2(x) ≡ 0, (2.48)

as, as mentioned above, for the reconstruction vector û as de�ned in equa-
tion (2.12) û = 0 for all quantities holds.

2.5.2 Including Source Terms in the Space Time Expan-

sion

The idea of including the source terms into the space time expansion was
carried out in [DuM07], but their resulting scheme was not well balanced. In
doing so, the equation for the time derivatives of u changes into

∂tu0 = −∂x1u1 − ∂x2u2

∂tu1 = −∂x1

(
u2

1

u0

+
1

2
u2

0

)
− ∂x2

(
u1u2

u0

)
− gΦ∂x1top

∂tu2 = −∂x1

(
u1u2

u0

)
− ∂x2

(
u2

2

u0

+
1

2
u2

0

)
− gΦ∂x2top.

The computation of the approximations of the higher mixed derivatives of the
source terms is carried out analogously to the other quantities by inserting
the reconstruction polynomial and the already known approximations. It is
easily included into the CKP. As ∂ttop = 0, the Leibniz rule (2.24) for the
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derivatives of the source terms implies

(Φtop(1,0,0))α =

α1∑
i=0

α2∑
j=0

(
α1

i

)(
α2

j

)
Φ(α1−i,α2−j,α3)top(i+1,j,0)

and

(Φtop(0,1,0))α =

α1∑
i=0

α2∑
j=0

(
α1

i

)(
α2

j

)
Φ(α1−i,α2−j,α3)top(i,j+1,0),

respectively. When inserting the coe�cients of the reconstruction polynomi-
als, the statements about approximation order continue to hold, as one can
see by considering the fact that for the computation of Aα;1 with α3 > 0 the
derivative (Φtop(1,0,0))(α1,α2,α3−1) is used, which is O(hdeg−|α|+1).

In the case of the lake at rest, for the Cauchy-Kovalewskaja procedure by
(2.48), (2.24) and (2.25)

Φt|(bi,tn) =
(
−(Φv1︸︷︷︸

=0

)x1 − (Φv2︸︷︷︸
=0

)x2

)
|(bi,tn)

= −A(1,0,0);1︸ ︷︷ ︸
=0

−A(0,1,0);2︸ ︷︷ ︸
=0

= 0

(Φv1)t|(bi,tn) =

(
−
(

(Φv1)2

Φ
+

1

2
Φ2

)
x1

−
(

Φv1Φv2

Φ

)
x2

− gΦtopx1

)
|(bi,tn)

=

(
−(Φv1)x1

Φv1

Φ
+ Φv1

(
(Φv1)x1 −

Φv1

Φ
Φx1

)
1

Φ

− Φx1Φ− (Φv2)x2

Φv1

Φ
+ Φv2

(
(Φv1)x2 −

Φv1

Φ
Φx2

)
1

Φ

− gΦtopx1

)
|(bi,tn)

= ga(1,0);3(const − ga(0,0);3)− g(const − ga(0,0);3)a(1,0);3

= 0

holds. Analogously, (Φv2)t|(bi,tn) = 0 can be obtained. The same results hold
for all higher mixed derivatives uα with α3 ≥ 1. Thus, for the vector of space
time reconstruction polynomials Un

i ,

Un
i;k(x, t) = uni;k(x), k = 0, 1, 2 (2.49)
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holds and the polynomials are constant with respect to time, which is com-
patible with the steady state solution. During the validation of the well
balanced-ness of the scheme it turned out to be necessary to compute the
derivatives of the terms (1

2
Φ2)x1 = ΦxiΦ and gtopxiΦ together as derivatives

of Φ(Φ + gtop)xi , i = 1, 2 to avoid rounding errors.

2.5.3 Riemann Solver including Topography

The Riemann solver presented by Chinnayya, LeRoux and Seguin in [Seg99,
ChL99, CLS04] additionally accounts for the topography and the wave that
arises hence. This work mainly refers to [Seg99, CLS04], as friction is not
taken into account here.

By including the topography wave (the 4-wave), whose velocity always
vanishes (see equation (1.26)), a new problem arises from the fact that the
exact order of the waves is not known any more. As before for the wave
speeds S1 ≤ S2 ≤ S3 holds, but this system is given relatively while the
speed Stop = 0 is given absolutely and independent from the others.

For each time space integration point (x̃k,li,j , t
n,m), l = 1, ..., Nx, m =

1, ..., Nt, the Riemann solver gets the reconstructed and rotated primitive
values of the adjacent cells σi, σj at the time tn,m as

wL =


HL

vL;n

vL;t

 := T(nki,j)cp(Un
i (x̃k,li,j , t

n,m)),

wR =


HR

vR;n

vR;t

 := T(nki,j)cp(Un
j (x̃k,li,j , t

n,m)). (2.50)

Here, cp : D → D, u 7→ w is the function that maps a set of conservative
variables to its related set of primitive variables by

cp(u) =


(
u0

g
, u1

u0
, u2

u0

)T
if u0 > 0

(0, 0, 0) else.

The wave related to topography is situated exactly at the cell boundary
and separates a state for the cell on the left and another one for the cell on
the right side. This is re�ected by the fact that two states wl and wr, one for
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each cell, are computed indeed. In contrast to the HLL and HLLC approach
where the resulting �ux is not evaluated directly as f1(u), the Godunov �uxes

T−1(nki,j)f1

(
cp−1(wl)

)
and T−1(nki,j)f1

(
cp−1(wr)

)
,

respectively, are computed for each side.
The ansatz for this Riemann solver is not made via integrals as for the

HLL and HLLC, but by the construction of a continuous topography between
two cells σL and σR by inserting a linear function aε(x) : [−ε, ε] 7→ R with
aε(−ε) = uL;3(−ε) and aε(ε) = uR;3(ε) at the discontinuity. The Riemann
problem is solved then for this continuous topography depending on ε and
the limit for ε → 0 is considered. In the implementation used in this work,
which is proposed in [Seg99] and represents a slight simpli�cation of the
original approach in [ChL99], this approach results in the same solution as
the consideration of Riemann invariants and Rankine-Hugoniot conditions,
the di�erence is present only in very special cases.

Considering the Riemann invariants and Rankine-Hugoniot conditions,
the Riemann solver can be motivated geometrically as intersection of point
sets in the (H, vn)-plane, the phase plane. Due to the fact that one of the
Riemann invariants (1.34) states that the �ow rate B := Hvn is constant
across the topography wave, the mass of water in the system nevertheless
remains constant.

On the premise that topL ≥ topR, which can always be obtained by
rotating the system of coordinates, a state wS is computed initially on the
intersection of the sets RL and RR as de�ned in the equations (1.47) and
(1.48). At �rst, the topography is ignored in that computation. From the
Riemann invariants ρi4, i = 1, 2, 3, that remain constant across the 4-wave as
stated in theorem 1.39,

ρ1
4 : Hlvl;n = Hrvr;n := B (2.51a)

ρ2
4 : vl;t = vr;t (2.51b)

ρ3
4 :

B2

2H2
r

+ gHr + gtopr =
B2

2H2
l

+ gHl + gtopl. (2.51c)

follows. The last equation can be rearranged to

ΨB(Hr)−ΨB(Hl) = −g(topr − topl) =: K (2.52)

with

ΨB(H) :=
B2

2H2
+ gH. (2.53)

The stateswl andwr that are to the left and right of the 4-wave are computed
then considering the Riemann invariants ρm4 , m = 1, 2, 3 and Kk,l

i,j .
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The Riemann invariants (1.31) through (1.34) state that the only point
where vt changes is across the 2-wave , where H, vn and top remain constant.
Thus, the determination of vt at the 4-wave will be included only at the very
end of the computation. sign(vl;n) = sign(vr;n) follows from Hlvl;n = Hrvr;n
and HK ≥ 0, K ∈ {l, r}. If sign(vl;n) ≥ 0, thus the tangential velocity vt is
vl;t = vr;t = vL;t, otherwise vl;t = vr;t = vR;t holds.

As only vn appears in the following, only v instead of vn will be written
to keep the notation clearer.

In [CLS04], an important proposition concerning existence and unique-
ness of the solutions wl, wr is made.

Theorem 2.17. Assume that topL ≥ topR. If wl is supersonic (respectively
subsonic), there exists one and only one state wr such that the Riemann
invariants (2.51) hold. Moreover, wr is supersonic (respectively subsonic).

If wl is sonic, then two solutions are admissible, one supersonic and the
other subsonic.

Being given initial states wL, wR, the solver thus returns the states wl,
wr that are to the left and to the right of the 4-wave with Stop = 0 and ful�ll
the following properties:

a. Hlvl = Hrvr =: Bl.

b. ΨBl(Hr)−ΨBl(Hl) = K.

Depending on the position of wS in the phase plane, the problem will
be tentatively sorted into one of three possible cases that depend on the
expected position of the solution wl, wr in the phase plane, see �gure 2.6:

a. the positive supersonic case : wl, wr ∈ T+ = {(H, v)|c ≤ v},

b. the subsonic case: wl, wr ∈ F = {(H, v)| − c < v < c},

c. the negative supersonic case: wl, wr ∈ T− = {(H, v)|v ≤ −c}.

By the in�uence of the topography, that possibly accelerates the �ow, the
case may change subsequently to one with a lower number.

2.5.3.1 Determination of wS

When analyzing the problem in the phase plane, it follows that the state wS

that connects the given states wL and wR is the intersection of RL and RR as
de�ned in (1.47),(1.48). HS is used in the following computation as upper,
or lower, boundary for the determination of Hl or Hr, in the cases where
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Figure 2.6: The phase plane.

Hl ≤ HS ≤ Hr holds. Therefore, in this implementation, unlike the usual
proceeding, wS is computed by a Newton iteration, as the usual estimations,
like (2.46), are too inaccurate for the computation in the case of very small
K.

2.5.3.2 Determination of wl and wr

To determine the states wl and wr, a lot of case di�erentiations have to be
made. The main di�erentiation takes place due to the situation of wS, which
gives a preliminary classi�cation that might be corrected later due to the
largeness of the topography jump that has its expression in K. The �rst two
cases provide a good understanding of the whole solver. The third case will
not be presented in this work, but can be found in [Seg99].

a Solution in positive supersonic regime.
wR has no in�uence on the solution at all.

a.1 wL ∈ T+.
All information comes from the left, so wl = wL

a.2 wL /∈ T+. The state wl is sonic on the 1-rarefaction wave.
wl is the intersection between RL and the graph of v = c.
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Compute wr supersonic on Bl with ΨBl(Hr)−ΨBl(Hl) = K.

b Solution expected to be in subsonic regime.

b.1 wL /∈ T+

Compute

wLmax = {RL} ∩ {v1 =
√
gH}

Bmax = HLmaxvLmax

wRmax = {v =
Bmax

H
} ∩ {RR}

Kmax = ΨBmax(HRmax)−ΨBmax(HLmax).

b.1.1 K > Kmax

By simply determining wl and wr following case a.2, a non-
physical solution may appear, as the state wr is connected to
wR via a new inter state wS∗ .
If K is not large enough, the velocity S∗ of the 1-shock con-
necting wr with wS∗ would be negative. It is easily con-
�rmed with the �rst Rankine-Hugoniot condition (1.41a) that
S∗ ≥ 0 ⇔ HS∗vS∗ ≥ Bmax, as Hr < HS∗ . Compute wN ∈
{v = Bmax

H
} such that wN can be connected via a 1-shock to

wRmax .
b.1.1.1 K ≥ Ψ(HN)−Ψ(HLmax)

The in�uence ofK is so strong that the solution is situated
in T+, thus case a.2 holds, see �gure 2.10.

b.1.1.2 K < Ψ(HN)−Ψ(HLmax)
A stationary shock wave appears between wl and wr.
Take wl = wLmax and wr = wRmax .

b.1.2 K ≤ Kmax

Determine wl ∈ RL and wr ∈ RR with Ψ(Hr)−Ψ(Hl) = K
and Hlvl = Hrvr, see �gures 2.7, 2.8, and 2.9.

b.2 wL ∈ T+

wLmax = {{RL} ∩ {v1 =
BL

H
}}\{L}

Bmax = BL

wRmax = {v1 =
Bmax

H
} ∩ {RR}

Kmax = Ψ(HRmax)−Ψ(HLmax).
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The further treatment of this case is analog to case b.1 with the
only di�erence that, if K ≥ Ψ(HN)−Ψ(HLmax), case a.1 holds.

The series of �gures 2.7 to 2.10 depicts the dependence of the solution
on K in the case b.1. The setting for the whole series is wL =

(
1
0

)
, and

wR =
(

2
0

)
.

The Riemann solver presented above is consistent, as wS = w follows
from wL = wR =: w and wl = wr = wS = w follows from K = 0.

Using the modi�cations that were discussed in section 2.5 so far, it is
�nally possible to prove that the scheme presented in this work, using a
combined space time series to provide the values for the �ux computation, is
well balanced indeed.

Theorem 2.18. The numerical scheme presented above using the modi�ed
reconstruction, the modi�ed Cauchy-Kovalewskaja procedure and the Rie-
mann solver for topography is well balanced in the sense that it preserves
still water steady states.

Proof. For the vectors wL, wR that were computed from the left and right
reconstructed vectors uL = Un

i (x̃k,li,j , t
n,m), uR = Un

j (x̃k,li,j , t
n,m) according to

(2.50) at each time space integration point (x̃k,li,j , t
n,m), l = 1, ..., Nx, m =

1, ..., Nt,

wL =


const

g
− uni;3
0

0

 , wR =


const

g
− unj;3
0

0


holds. These vectors depend only on the spatial integration point but re-
main constant with respect to the time integration points. This is a conse-
quence of the fact that as with the well balanced-ness of the reconstruction
and the modi�ed Cauchy-Kovalewskaja procedure the vector of space time
polynomials Un

i , i = 0, ...,#Σ − 1, is constant with respect to time. As
wk;1 = vk;1 = 0, k ∈ {L,R}, both states therefore have the same �ow rate,
namely B = 0. Computing Ψ0(HL)−Ψ0(HR), the equation

Ψ0(HL)−Ψ0(HR) = const − guni;3(x̃k,li,j )−
(
const − gunj;3(x̃k,li,j )

)
= −g

(
uni;3(x̃k,li,j )− unj;3(x̃k,li,j )

)
= Kk,l

i,j

holds. Thus, the initial states wL, wR are also the solution of the Riemann
problem provided by the Riemann solver.
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Figure 2.7: Solution of the Riemann Problem in the case of continuous to-
pography (K = 0) in the phase plane and the physical space.
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Figure 2.8: Solution of the Riemann Problem in the case of a small K in the
phase plane and the physical space.
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Figure 2.9: Solution of the Riemann Problem in the case of a medium-sized
K in the phase plane and the physical space.
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Figure 2.10: Solution of the Riemann Problem in the case of a large K in the
phase plane and the physical space, case b.1.1.
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For the net amount of the �uxes of the cell σi �nally∑
lki,j∈δσi

∫ tn+1

tn

∫
lki,j

T−1(nki,j)f1(cp−1(wL)) ds dt

=
∑

lki,j∈δσi

∫ tn+1

tn

∫
lki,j

T−1(nki,j)f1(T(nki,j)U
n
i ) ds dt

=
∑

lki,j∈δσi

∫ tn+1

tn

∫
lki,j

2∑
m=1

fm(Un
i ))ni,j;m ds dt

=
∑

lki,j∈δσi

∫ tn+1

tn

∫
lki,j

1

2


0

(const − gui;3)2 ni,j;1

(const − gui;3)2 ni,j;2

 ds dt

=

∫ tn+1

tn

∫
σi


0

−g (const − gui;3) ∂x1ui;3

−g (const − gui;3) ∂x2ui;3

 dx dt

=

∫ tn+1

tn

∫
σi

g(Un
i ) dx dt

holds. Obviously, the �uxes and the source terms are in balance when using
an adequate high order quadrature rule for the computation of the integrals.

2.5.4 Dry Bed Problems

An interesting feature for the application of the scheme to real world problems
is solving dry bed problems. This term covers two di�erent cases: the covering
with water of previously dry regions as well as the dry falling of previously
wet regions. The di�culties in the treatment of dry states arise from the
fact that the shallow water equations is only hyperbolic for wet regions, as
otherwise it formally holds for the �rst and third eigenvector that r1(u) =
(1, v1, v2) = r3(u). Moreover, the wave structure is di�erent at the wet/dry
front, see [Tor01]. Especially the state wS does not exist any more.

In the case of covering a dry region, a simple remedy seems to be to
introduce a small arti�cial water height H = ε > 0 to use in the computa-
tion instead of H = 0. This, however, leads to wrong results as in this case
the wet-dry front is a shock wave which does not match with the physical
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behavior. This can be easily veri�ed using the Rankine-Hugoniot condi-
tions (1.42): Assume u0 to be a state with Φ0 > 0 and u a dry state with
Φ = Φv1 = Φv2 = 0. Then from the �rst equation

Φ(v1 − S) = Φ0(v0;1 − S)

the conclusion S = v0;1 can be drawn. With the second equation

Φv1(v1 − S) +
1

2
Φ2 = Φ0v0;1(v0;1 − S) +

1

2
Φ2

0

it follows that Φ0 = 0, which contradicts the assumption.
In the case of dry falling, the positivity condition

RL(0) = vL;1 + 2cL > vR;1 − 2cR = RR(0),

that guarantees the existence of a state wS with positive water height HS > 0
at the intersection of RL and RR, is violated.

In �gure 2.11, the solution of the case RL(0) ≤ 0 ≤ RR(0) is depicted.
The waves in physical space show the formation of a dry zone at the cell
boundary. Figure 2.12 shows the case 0 ≤ RL(0) ≤ RR(0). The velocity vL;1

is not `high`, in the sense of negative, enough to counteract the gravitation
induced velocity 2

√
gHL such that a mass �ow over the cell boundary occurs.

The third case, RL(0) ≤ RR(0) ≤ 0, works analogously.
The Riemann solver presented in this section can cope with both types

of problems, the covering as well as the dry falling. Indeed, analyzing the
problem in the phase plane it becomes clear that the case of covering a dry
region is already contained within the case of a region falling dry: In the
presence of a dry zone the state at the cell boundary is in�uenced by at least
one of the initial states. Assuming that wR = 0, and thus RR ceases to
exist, the solution depicted in the �gures 2.11, 2.12 continues to hold true as
it depends only on the question whether RL(0) > 0 or not. Analogously, for
the solution of the case wL = 0 only on the question whether RR(0) < 0 is
relevant.

The computation of topographical in�uences works in these setting ex-
actly as in the wet bed case: If RL(0) > 0, the topography is included exactly
as in the positive supersonic case a, depending on whether wL ∈ T+ or not.
If RR(0) < 0, the topography solution is found exactly as in a negative
supersonic sub-case that is described in [Seg99].

Numerical problems occur in the presence of a dry zone in the Cauchy-
Kovalewskaja procedure: In order to compute the (necessary) α-th deriva-
tives of the auxiliary variables v1, v2, |α| repeated divisions by the coe�cient
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Figure 2.11: Solution of the Riemann Problem in the presence of a dry zone
at the cell boundary in the phase plane and the physical space.
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Figure 2.12: Solution of the Riemann Problem in the presence of a dry zone
with �ow over the cell boundary in the phase plane and the physical space,
no topography.
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A(0,0,0);0 of the constant monomial are necessary. For these coe�cients,

A(0,0,0);0 − u0(bi, t
n) = O(hdeg+1)

holds with theorem 2.9. Thus, in a nearly dry zone A(0,0,0);0 can be ex-
pected to be very small, and even small errors in its computation may lead
to signi�cantly wrong computed velocities [Tor01]. Moreover, reconstruction
polynomials of a higher degree may, due to natural oscillation, provide re-
gions with Un

i;0(x, t) ≤ 0 in a wet cell. This is, of course, nonphysical as the
water height is never negative. Worse, these polynomials are used in com-
puting the space time expansion of the other variables and in integrating the
source terms.

Development in the context of high order positivity preserving WENO
reconstruction is a subject of recent research, for example in [XiS11] and the
works mentioned therein. The limiter presented in that work can prevent ui;0
from becoming negative on σi. Though the idea could be transferred to the
three dimensional case and thus to Ui;0 on σi × [tn, tn+1], the limiter works
under the condition that the minimal value of the function or its feasible
approximation on σi, or σi × [tn, tn+1] respectively, is known. This poses
indeed a problem for higher degree polynomials in more than one variable.

There is no simple and fast method to detect the location of the minimal
value of uni;0 on σi for polynomials of a degree higher than one, and thus it
is not possible to directly ascertain the positivity of even the spatial recon-
struction polynomial in the presence of very shallow water. On the other
hand, for linear polynomials it is quite easy to check whether uni;0, and even
Un
i;0, are positive on σi and σi × [tn, tn+1], respectively. Thus, in the vicin-

ity of very shallow water, the order of the scheme is reduced in two steps.
The consideration that is pursued in this work is to take into account the
oscillation indicator OI(uni;0), which is designed to detect oscillation. A large
value of OI indicates that the values of uni;0|σi span a wide range. Thus it is
natural to use the oscillation indicator to decide whether a reduction of the
reconstruction order for σi is advisable. The constant coe�cient a(0,0);0 gives
the default value, and if

a(0,0);0 −
ri√
|σi|

√
OI(uni;0) < cred , (2.54)

with ri being the maximal distance of the vertexes of σi to bi, the order of
the numerical scheme is reduced to two in σi. The maximal distance ri is
constant and can thus be computed and stored once for each cell. Our tests
have shown that cred = 5 · 10−1 is a feasible choice. The choice of cred is such
that the reduction is handled quite liberally as the time development of the
approximation can not be considered yet in the computation.
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For linear polynomials, it is possible to estimate for each cell σi the max-
imal possible time step ∆ti, that guarantees values greater than a given
constant ccrit for Un

i;0(x, t), (x, t) ∈ σi× [0,∆ti]. Considering the value of the
polynomial in the direction of the steepest descent

d =
−∇uni (bi)

‖∇uni (bi)‖2

=
1√

a2
(1,0);0 + a2

(0,1);0

 −a(1,0);0

−a(0,1);0


at the maximal distance of the vertexes of σi to bi, it is very easy then to
check whether the linear spatial reconstruction polynomial is positive on σi
via

Φcrit(0) = Un
i;0(bi − rid, 0)

= uni;0(bi − rid)

= a(0,0);0 − ri
√
a2

(1,0);0 + a2
(0,1);0.

This condition is equivalent to (2.54) in the case of a linear reconstruction
polynomial.

If Φcrit(0) is smaller than ccrit , ∆ti is set to zero. Otherwise, ∆ti is
determined using

ccrit = Φcrit(∆ti) = Φcrit(0) + A(0,0,1);0∆ti

= Φcrit(0)− (a(1,0);1 + a(0,1);2)∆ti

⇔ ∆ti =
Φcrit(0)− ccrit
a(1,0);1 + a(0,1);2

.

Obviously, if a(1,0);1 + a(0,1);2 ≤ 0 there won't occur any restrictions to ∆ti as
Φcrit(∆t) is not decreasing with advancing time. To take this into account
and to avoid division by zero, the maximal time step is computed via

∆ti =
Φcrit(0)− ccrit

max(EPS , a(1,0);1 + a(0,1);2)
.

Comparing ∆ti with the general time step ∆t computed by the scheme based
on the velocities, if

∆ti ≤ ∆t,

the order of the scheme is reduced to one for the cell σi. Thus, negative water
heights can be avoided while computing the �uxes over the cell boundaries.

Our numerical experiments have shown that the choice ccrit = 2.5 · 10−1

is suitable for a stable scheme.
It is, however, not possible to guarantee that |σ|−1 update0 ≤ uni;0. If this

condition is violated, un+1
i is set to zero for all components so that the loss

of conservation of mass and momentum needs to be accepted.





Chapter 3

Computations

In this chapter, the scheme presented in the previous chapter is at �rst vali-
dated with respect to the desired numerical order. At the end of the chapter,
some applications to more complex problems that have no reference solution
are given. The validation happens in several stages: �rstly, in section 3.1 it
is shown that the theoretical order of reconstruction indeed is reached in the
scheme. Secondly, in section 3.2 the full STE-scheme is validated with the
linear advection equation. Next, the full scheme, using the HLLC Riemann-
solver, is tested with the 2D-shallow water equations in section 3.3. The
well balanced-ness is demonstrated in section 3.4. Next, the behavior of the
scheme in the treatment of dry bed problems is depicted in section 3.5. Fi-
nally, the combination of topography and the occurring and vanishing of dry
bed zones is treated in section 3.6 on the example of an oscillation lake.

Two applications of the scheme are shown at the end of this chapter.
Firstly, a dam break with dry zones was computed in a channel that contains
cone shaped obstacles given by topographical source terms. The results of
this computation are shown in section 3.7. Secondly, the �owing of water from
a reservoir through a channel winding down a hill is depicted in section 3.8.

The term `order` in this chapter is used in the sense of order of the whole
scheme. The solution of a model problem is computed on the domain Ω =
[−1.5, 1.5]× [−1.5, 1.5] on a sequence of secondary grids G1, G2, ... ,Gn that
result from the repeated application of red-re�nement to the triangulation of
a base grid G0.

Generally, for the grid spacing hn of grid Gn, hn ≈ 2hn+1 holds due
to the fact that the re�nement is carried out on the primary grid, while the
measure

√
|σi| = O(h) applies to the secondary grid. If the numerical scheme

has numerical order k, one expects that L2(hn) = O(hkn) holds for the error of
the numerical solution on grid Gn with grid spacing hn. Thus, the numerical

107



108 CHAPTER 3. COMPUTATIONS

order of the scheme can be computed as

order = log2

L2(hn−1)

L2(hn)
≈ log2

O(hkn−1)

O(hkn)
= log2

(
2k
O(hkn)

O(hkn)

)
≈ k.

3.1 Validation of reconstruction order

The test includes only the WENO-reconstruction. One aim is to check
whether polynomials of degree smaller than or equal to the reconstruction
polynomial's degree are recovered adequately on all grids. Moreover, it is
checked whether for polynomials of higher degree the theoretical reconstruc-
tion order is obtained. The degree of the reconstruction polynomial is order
- 1.

The reconstruction is tested on the polynomials

p(x) =
n∑
|α|=0

xα =
n∑
k=0

k∑
α1=0

xα1
1 x

k−α1
2 , n = 1, 2, 3, 4,

and is carried out with the set of variables (2.18) proposed in [DuK07] and
in characteristic variables. The results displayed in table 3.1 show that the
numerical order indeed matches the theoretical order.

3.2 Validation of the full scheme for the linear

advection equation

The next step is the validation of the scheme on a less complicated equation.
Convenient for this purpose is the two dimensional linear advection equation

∂tH + v · ∇xH = 0, (3.1)

where v = (v1, v2)T is a constant velocity �eld with respect to time.
The test is carried out on the former sequence of grids G1, ..., G5. The

velocity �eld v(x) and the function H(x, t) are chosen as analytical solution
of the di�erential equation (3.1):

v(x) =

 −2πx2

2πx1


H(x, t) = sin((x1 cos(2πt) + x2 sin(2πt))π)

sin((−x1 sin(2πt) + x2 cos(2πt))π).
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Order 2 3 4

n Grid L2-error quot L2-error quot L2-error quot

1

G0 3.72e− 16 3.59e− 16 3.76e− 16

G1 3.68e− 16 3.49e− 16 3.86e− 16

G2 3.94e− 16 3.93e− 16 4.02e− 16

G3 4.01e− 16 3.79e− 16 4.08e− 16

2

G0 2.70e− 02 7.28e− 16 8.61e− 16

G1 5.02e− 03 2.43 8.36e− 16 8.87e− 16

G2 1.02e− 03 2.30 8.77e− 16 9.09e− 16

G3 2.12e− 04 2.27 8.16e− 16 8.45e− 16

3

G0 4.97e− 02 1.50e− 02 1.61e− 15

G1 1.34e− 02 1.89 1.76e− 03 3.08 1.73e− 15

G2 2.90e− 03 2.21 2.42e− 04 2.88 1.73e− 15

G3 6.13e− 04 2.24 3.18e− 05 2.93 1.67e− 15

4

G0 1.49e− 01 2.97e− 02 2.30e− 02

G1 3.88e− 02 1.94 5.18e− 03 2.52 1.17e− 03 4.21

G2 8.36e− 03 2.21 7.48e− 04 2.79 3.42e− 05 5.10

G3 1.76e− 03 2.25 1.01e− 04 2.89 2.03e− 06 4.07

Table 3.1: Reconstruction order

The initial values for the cells σi are H
0

i ≈
∫
σi
H(x1, x2, t

0)dx, for which the
integration is again carried out by a spatial quadrature rule of order 9. During
the computation, on the boundaries of Ω the exact solution is prescribed.

For the velocity �eld given above, the higher mixed derivatives of H
provided by the Cauchy Kovalewskaja procedure take the form

H(a,b,c) = 2πx2H(a+1,b,c−1) + b2πH(a+1,b−1,c−1)

− 2πx1H(a,b+1,c−1) − a2πH(a−1,b+1,c−1), a, b, c ≥ 1,

where H(a,b,c) := ∂a+b+c

∂xa1∂x
b
2∂t

c .

The �uxes over the cell boundaries lkij with normal vector n := nkij are
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computed via the (natural) upwind approach: if the normal velocity vn :=
n1v1 +n2v2 > 0, then the value of σi is taken for the computation of the �ux,
otherwise the value of σj.

Order 2 3 4

Grid L2-error quot L2-error quot L2-error quot

G1 1.02e− 01 3.98e− 02 7.33e− 02

G2 3.05e− 02 1.74 6.74e− 03 2.56 1.10e− 02 2.74

G3 7.84e− 03 1.96 1.24e− 03 2.44 1.47e− 03 2.90

G4 1.58e− 03 2.31 1.25e− 04 3.31 2.28e− 06 9.33

G5 2.84e− 04 2.48 1.70e− 05 2.88 1.24e− 07 4.20

Table 3.2: Linear advection equation, time step size = 0.0004, 2500 time
steps.

The average numerical order of the fourth order scheme over the grids G1

to G5 is
ln( 7.33e−02

1.24e−07)
4 ln 2

= 4.79.

Thus, it can be stated that numerical order of the scheme matches the
theoretical.

3.3 Validation of the full scheme

for the 2D Shallow Water Equations with-

out topography

Finally, the full scheme as it is described in chapter 2 is validated. The
validation problem is similar to the test case used for the linear advection
equation, but due to the di�erent equation, in this case source terms will
appear. The Riemann solver used in this test is the HLLC, as the source
terms are not constant with respect to time as it is required for the use of
the Riemann solver presented in section 2.5.3. The validation problem, that
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is also a solution of the 2D shallow water equations, consists of the equations

Φ(x1, x2, t) = g(sin((x1 cos(2πt) + x2 sin(2πt))π)

sin((−x1 sin(2πt) + x2 cos(2πt))π) + 2)

v(x1, x2, t) =

 −2πx2

2πx1


top(x1, x2, t) =

−1

g

(
Φ− 2π2(x2

1 + x2
2)
)
,

where top(x1, x2, t) can be obtained by inserting Φ(x1, x2, t) and v(x1, x2, t)
into equation (1.18).

The initialization of the conserved quantities u0
i is done again with a

spatial quadrature rule of order 9. The Cauchy Kovalewskaja procedure uses
the exact derivatives of the source terms Φ(∂x1Φ − 4π2x1) and Φ(∂x2Φ −
4π2x2), respectively. The integration of the source terms in each time step is
carried out for the exact source term and with a quadrature rule of the order
according to the theoretical order of the scheme.

Order 2 3 4

Grid L2-error quot L2-error quot L2-error quot

G0 1.40e− 01 1.14e− 01 5.89e− 02

G1 3.80e− 02 1.88 2.00e− 02 2.51 1.32e− 02 2.16

G2 9.50e− 03 2.00 1.54e− 03 3.70 9.54e− 04 3.79

G3 2.27e− 03 2.07 1.78e− 04 3.11 5.90e− 05 4.02

Table 3.3: Shallow water equations, time step size = 0.00001, 2000 time
steps, reconstruction in characteristic variables

3.4 Well Balanced-ness of the scheme

The term well balanced is used in this context, as discussed in section 2.5, in
the sense of preserving still water steady states, or so-called lake at rest prob-
lems. The reconstruction is carried out as mentioned, and the topography
Riemann solver is applied generally.
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The validation problem consists of the initial equations

Φ(x1, x2, t
0) = g(0.7− top(x1, x2))

v(x1, x2, t
0) =

 0

0


top(x1, x2) = −0.3 tanh(5x1).

The initialization of the conserved quantities u0
i is done again with a spatial

quadrature rule of order 9. The Cauchy Kovalewskaja procedure uses in the
n-th time step the derivatives of the reconstruction polynomials of the source
terms gun0;i∂x1ui;3 and gun0;i∂x2ui;3, respectively. The integration of the source
terms in each time step is carried out using the integral cell mean values
|σi|−1 ∫

σi
(x−bi)

α, |α| ≤ 2 deg−1, computed in the initialization step of the
scheme and the coe�cients provided by the reconstruction polynomials.

In the case of demonstrating well balanced-ness, it is necessary to increase
the order of the quadrature rules used to compute the �uxes to 2 deg, as can
be seen in the proof of theorem 2.18. The measures considered herein are
the residuum

res :=

√∑#Σ−1
i=0

|σi|
|Ω|
∑2

j=0 (update(ui;j))
2

t1 − t0

of the �rst time step and the maximum of the updates of the conserved
variables in the �rst time step

maxup := max
σi∈Σ
j=0,1,2

update(ui;j).

The results, that are given in the table 3.4, are in the range of the compu-
tational epsilon EPS = 10−14 used in this scheme. The space time series for
Φ(x, t) is indeed constant with respect to time in the sense that for all coef-
�cients Aα;0 with α3 > 0 it holds that Aα;j = 0.0. In the other components,
as expected, Ui;j ≡ 0, j = 1, 2 holds.

The errors in the �ux computation are due to rounding and stem from
the rotation of the conservative values to the direction normal to the cell
boundary and the rotation of the computed �ux back to (x1, x2)-direction,
and the use of a quadrature rule. This conjecture is conform with the fact
that the maxima of all updates maxup are all in the same order of magnitude,
while the residuum res approximately doubles for each re�nement of the grid,
that leads to a halving of the time step.
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Order 2 3 4

Grid res maxup res maxup res maxup

G0 3.02e-13 1.01e-14 2.64e-13 3.34e-15 2.23e-13 5.06e-15

G1 4.87e-13 1.35e-14 5.39e-13 8.94e-15 5.81e-13 1.34e-14

G2 8.66e-13 1.52e-14 9.95e-13 9.04e-15 1.17e-12 1.13e-14

G3 1.52e-12 1.23e-14 2.32e-12 1.28e-14 2.02e-12 1.34e-14

Table 3.4: Shallow water equations, time step size net-dependent, one time
step.

3.5 Correct Solution of Dry Bed Problems

Toro states in [Tor01] that the di�culties in treating dry bed problems arise
on the one hand from the di�erent wave structure compared to the wet bed
case and on the other hand from the need to compute the particle velocity
v(x, t) from the conserved variables Φ(x, t), Φv(x, t). This easily leads to
a wrong computed velocity of the wet/dry front. Using the Riemann solver
presented in section 2.5 takes care of the �rst problem, restricting Φ(x, t) by
reducing the order of the scheme as described later in the same section solves
the latter.

The solution of a Riemann problem containing a left dry state is given in
[Tor01] by

H(x, t) =


0 x

t
≤ RR(0)

(−vR+2cR+x
t

)2

9g
RR(0) < x

t
≤ vR + cR

HR vR + cR <
x
t

,

v(x, t) =


0 x

t
≤ RR(0)

(vR−2cR+ 2x
t

)

3
RR(0) < x

t
≤ vR + cR

vR vR + cR <
x
t

, (3.2)
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Figure 3.1: Solution of the Riemann Problem with a right dry initial state,
completely �rst order.

while the solution in case of a right dry state is given by

H(x, t) =


HL

x
t
≤ vL − cL

(vL+2cL−xt )2

9g
vL − cL < x

t
≤ RL(0)

0 RL(0) < x
t

,

v(x, t) =


vL

x
t
≤ vL − cL

(vL+2cL+ 2x
t

)

3
vL − cL < x

t
≤ RL(0)

0 RL(0) < x
t

. (3.3)

In the �gures 3.1 to 3.3, the numerical and the exact solution for the
water height H and the �ow rate Hv1 of the Riemann problem (1.27) with
the initial values

uL =


0.1g

−0.3g

0

 , uR =


0

0

0


after 0.5s are depicted. The switches that show the reduction of the numerical
order are displayed by the dotted and the dash-dotted line. In the regions
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Figure 3.2: Solution of the Riemann Problem with a right dry initial state,
second order with reduction to �rst order if necessary.

of the plot where both lines are at the bottom, the order of the scheme is
not restricted. The regions where the dotted line is elevated were considered
critical due to OI(uni;0) and the �rst reduction of the order to two took place.
The regions where additionally the dash-dotted line is elevated are those
where the second switch became active and the order was reduced from two
to one. The regions where only the dash-dotted line is elevated were dry
at the beginning of the time step that is depicted, and the order of the
scheme was set to one even before the reconstruction was carried out to save
computing time. The �gures show a one dimensional cut of the result of
a two dimensional computation. A good agreement of the numerical and
the exact solution can be observed, also with respect to the progress of the
wet/dry front.

In the �gures 3.4 to 3.6, the numerical and the exact solution of the
Riemann problem (1.27) with the initial values

uL =


0.1g

−0.3g

0

 , uR =


0.1g

0.3g

0


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Figure 3.3: Solution of the Riemann Problem with a right dry initial state,
third order with reduction to second and �rst order if necessary.

after 1s are depicted. The exact solution develops a wet zone, as

RL(0) = vL;1 + 2cL ≈ −0.96 < 0.96 ≈ vR;1 − 2cR = RR(0).

The �gures show a one dimensional cut of the result of a two dimensional com-
putation. Though the reduction to �rst order is clearly apparent, generally
a good agreement of the numerical and the exact solution can be observed.

3.6 The Oscillating Lake

An interesting test case that covers the combination of topography and dry
bed states is a lake with a periodically oscillating surface that was suggested
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Figure 3.4: Solution of the Riemann Problem with evolution of a dry zone,
completely �rst order.

Figure 3.5: Solution of the Riemann Problem with evolution of a dry zone,
second order with reduction to �rst order if necessary.
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Figure 3.6: Solution of the Riemann Problem with evolution of a dry zone,
third order with reduction to second and �rst order if necessary.

in [GPC07]. The problem consists of the equations

Φ(x, t) = max(0, g(
dh0

a2
(2(x1 − 2.5) cos(

√
2gh0

a
t)

+ 2(x2 − 2.5) sin(

√
2gh0

a
t)− d)− top(x)))

v(x, t) =

 −d√2gh0 sin(
√

2gh0

a
t)

d
√

2gh0 cos(
√

2gh0

a
t)


top(x) =− h0

(
1− (x1 − 2.5)2 + (x2 − 2.5)2

a2

)
.

The test was carried out on the domain Ω = [0.0, 5.0] × [0.0, 5.0] on a grid
with 76,234 cells. The parameters were set to a = 1, d = 0.5, h0 = 0.2. The
oscillation period is T = 2π√

0.4g
≈ 3.17s.

The �gures 3.7 to 3.9 show the results of the computations of �rst up to
third order. A considerable improvement of the quality of the solution can
be observed in particular between the �gure 3.7 and 3.8 due to the increase
of the order of the scheme from one to two. Further increasing of the order
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Figure 3.7: Oscillating lake at t = 2T , completely �rst order.

has only small e�ect. The reason is probably that the region of the solution
where the order is reduced is large compared to the region that has the higher
prescribed order and that this region moves over almost the whole integration
area during the computation.
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Figure 3.8: Oscillating lake at t = 2T , second order with reduction to �rst
order if necessary.

Figure 3.9: Oscillating lake at t = 2T , third order with reduction to second
and �rst order if necessary.
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3.7 Dam Break with Dry Zones and Obstacles

This test again was proposed in [GPC07]. The computational domain is a
channel of 75 m length and 30 m width with three cone-shaped obstacles
that is surrounded by �xed walls. The computation is carried out on a grid
with 10,712 cells. The initial conditions are given by

Φ(x, 0) =

{
1.875g if x1 ≤ 16

0 else

v(x, 0) =

 0

0


top(x) = max(0, c1(x), c2(x), c3(x))

c1(x) =1− 0.1
√

(x1 − 30)2 + (x2 − 22.5)2

c2(x) =1− 0.1
√

(x1 − 30)2 + (x2 − 7.5)2

c2(x) =2.8− 0.28
√

(x1 − 47.5)2 + (x2 − 15)2

The �gures 3.10 to 3.15 show the numerical solution of the given dam
break problem at the time levels t = 10, 15, 20, 25, 30, 35. The surface of
the three dimensional plots depicts the computed surface of the water in
the channel which is the sum of the computed water height and the bottom
elevation. The coloring represents the water height in all plots. There is no
reference solution, but the results are consistent to the topography and in
accordance with those obtained in [GPC07]. The increase of the sharpness
of the resolution with increasing order of the computation can be observed
quite clearly in the region behind the two small cones. The wave interaction
that takes place here is smeared beyond recognition in the �gures 3.10 and
3.11, but can be clearly seen in the �gures 3.12 and 3.13. It gains in sharpness
further in the �gures 3.14 and 3.15.



122 CHAPTER 3. COMPUTATIONS

Figure 3.10: Dam break in a canal with cone-shaped obstacles at the times
t = 10, 15, 20, 25, 30, 35, �rst order.
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Figure 3.11: Top view of a dam break in a canal with cone-shaped obstacles
at the times t = 10, 15, 20, 25, 30, 35, �rst order.
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Figure 3.12: Dam break in a canal with cone-shaped obstacles at the times
t = 10, 15, 20, 25, 30, 35, second order with reduction of order if necessary.
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Figure 3.13: Top view of a dam break in a canal with cone-shaped obstacles
at the times t = 10, 15, 20, 25, 30, 35, second order with reduction of order if
necessary.
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Figure 3.14: Dam break in a canal with cone-shaped obstacles at the times
t = 10, 15, 20, 25, 30, 35, third order with reduction of order if necessary.
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Figure 3.15: Top view of a dam break in a canal with cone-shaped obstacles
at the times t = 10, 15, 20, 25, 30, 35, third order with reduction of order if
necessary.
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3.8 Water Flowing Down a Winding Channel

The setup of this test case represents the �owing of water from a reservoir
into a channel that is winding down a hillside. The computational domain
Ω = [0, 75] × [0, 30] is open at the right boundary and is surrounded by
impermeable walls elsewhere. The topography consists of a �at plane that

Figure 3.16: Function a(x1) that was used to create the topography of the
channel.

later holds the water and the channel. The channel is de�ned by the function
a(x1) that is depicted in �gure 3.16. For each set xp×[0, 30] and every position
xp ∈ [15, 75] of the x1-axis, it holds that that the apex of the cross section is
at

(xp, a(xp),−0.25(xp − 15)).

To the left and to the right, branches of parabolas that are continuous in
a(xp) and have the value 15−0.25(xp−15) at the lower and upper boundary
of Ω form the walls of the channel.

The computation was carried out on a grid with 10,712 cells. The initial
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conditions are

Φ(x, 0) =

{
14.5 if x1 < 15

0 else

v(x, 0) =

 0

0


a(x1) =


−2

3
x+ 25 if 15 ≤ x1 < 30

2
3
x− 15 if 30 ≤ x1 < 45√
731.25− (x− 60)2 + 37.5 if 45 ≤ x1 ≤ 75

chan(x) =

15
(
x2−a(x1)
a(x1)

)2

− 0.25(x1 − 15) if 0 ≤ x2 < a(x1)

15
(
x2−a(x1)
30−a(x1)

)2

− 0.25(x1 − 15) else

top(x) =

{
0 if x1 < 15

chan(x) else

The results of the computation that are depicted in the �gures 3.17 to 3.22
seem plausible and in accordance with the topography. Due to the parabolic
opening of the reservoir to the channel the resulting �ow rates Hv1, Hv2

lead to small shock waves in the reservoir. A close up view of the reservoir
showing the evolution of these waves in the beginning of the computation is
depicted in �gure 3.23. These small waves vanish through smearing in the
�rst order computation, as can be seen in �gure 3.17. The second and third
order computations conserve these waves, but in a �lm that shows a sequence
of the pictures, it can be seen that only the third order computation shows
the traveling of these waves down the channel.
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Figure 3.17: Water �owing down a winding channel at the times t =
1, 2, 3, 5, 10, 15, �rst order.
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Figure 3.18: Flow rates Hv1, Hv2 of water �owing down a winding channel
at the times t = 1, 3.5, 10, �rst order.
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Figure 3.19: Water �owing down a winding channel at the times t =
1, 2, 3, 5, 10, 15, second order with reduction to �rst order if necessary.
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Figure 3.20: Flow ratesHv1, Hv2 of water �owing down a winding channel at
the times t = 1, 3.5, 10, second order with reduction to �rst order if necessary.
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Figure 3.21: Water �owing down a winding channel at the times t =
1, 2, 3, 5, 10, 15, third order with reduction to second and �rst order if neces-
sary.



3.8. WATER FLOWING DOWN A WINDING CHANNEL 135

Figure 3.22: Flow rates Hv1, Hv2 of water �owing down a winding channel
at the times t = 1, 3.5, 10, third order with reduction to second and �rst
order if necessary.
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Figure 3.23: Close up view of the evolution of the shock waves in the reservoir
for the �rst, second and third order computation at the times t = 1, 2.



Chapter 4

Summary and Prospects

In this thesis, a numerical scheme for the two dimensional shallow water
equations was presented that is of arbitrary high order in su�ciently wet,
smooth regions of the solution. The scheme can cope with source terms in-
duced by topography, and with dry bed regions. Moreover, it is well balanced
for still water steady states.

Due to its properties, the scheme developed in this work can be used for
simulations in the context of, for example, ebb and �ow. It could be used to
investigate the in�uence of newly planned wind farms on the tidal currents in
the Wadden Sea. Another application are arti�cial modi�cations of riverbeds
in urban development and landscape building. Especially the prediction of
the behavior during seasonal �ash �oods is an interesting point.

The similarity of these �elds is that they are all characterized by a combi-
nation of the existence of water of a certain depth where waves and currents
can be computed with a high order of accuracy, of in�uences of the topog-
raphy that are important for the behavior of those currents and waves, and
of an area where wetting, dry falling or very shallow water may occur, de-
pending on the currents and waves. In contrast to other schemes, the use of
unstructured grids in this scheme allows to consider complicated geometries
to be prescribed in the grid, which otherwise might be di�cult to describe
in terms of topography.

In the course of developing the scheme, a least squares WENO method
was described that makes use of the minimizing problem and that provides
a set of reconstruction polynomials. It was possible to prove an important
approximation property for the coe�cients of the polynomials obtained by
this method that is the basis of many results further obtained in this work.
The approximation order of the spatial reconstruction polynomials follows
from this result. Moreover, using the result concerning the coe�cients of the
spatial polynomial and the Cauchy-Kovalewskaja procedure, for the coe�-
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cients of the space time Taylor polynomials a similar result be could proven.
Again the approximation order, this time of the space time Taylor polyno-
mial, follows.

The topography including Riemann solver of Chinnayya, Le Roux and
Seguin was introduced. Using the latter, under the condition of an adapted
reconstruction and Cauchy-Kovalewskaja procedure, the well balanced-ness
of the scheme was proven for arbitrary high numerical order.

For the treatment of wet/dry fronts and states containing very shallow
water, a method to preserve a positive water height throughout the �ux
computation was developed. This method consists of a cell-wise reduction
of the order of the scheme in two steps. Indicators when to reduce the order
depending on the water height, the size of the cell and the expected oscillation
of the polynomial on the cell were given.

Several numerical test were accomplished to verify these properties. The
quality of the spatial reconstruction was veri�ed numerically up to fourth
order.

The full scheme was validated for the two dimensional linear advection
equation using a simple (but exact) numerical upwind �ux, and for the two
dimensional shallow water equations using the exact source terms and the
HLLC Riemann solver. In both cases, the numerical matching the theoretical
order was demonstrated up to fourth order.

The well balanced-ness of the scheme using the topography Riemann
solver was documented for a still water steady state problem. Again, the
computation was carried out for a numerical order up to four.

It was numerically veri�ed that the treatment of wet/dry fronts copes
with the problem of preserving their correct speed in the case of wetting a
former dry area as well as in the case of the dry falling of a former wet area.

As a last validation problem, the test case of an oscillating lake for which
the analytical solution is available was computed. This problem contains the
treatment of topography as well as wetting and dry falling of areas. The
results of this computation for di�erent orders of accuracy were shown.

Finally, two applications of the scheme to more complex geometries were
given. Firstly, a dam break with a topography consisting of three cone shaped
obstacles was computed using the schemes of �rst to third order. The re-
sulting �gures show very nicely that the schemes of second and third order
conserve traveling waves much better than the �rst order scheme.

Secondly, the emptying of a water reservoir in a channel that represents
a riverbed winding down a hill was computed. Again, great improvements in
the conservation of waves, and thus in the exactness of the obtained results,
can be observed.

At present, the computation of the time step is not �t for the requirements
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of the scheme. The evolution of the velocity accounted for in the numerical
�ux due to the space time expansion is not taken into account yet but was
covered in the computations by a smaller CFL-number. Moreover, for the
topography Riemann solver exists an extension that allows the bottom fric-
tion to be taken into account by considering a roughness coe�cient for the
bottom for each cell. This extension is not implemented yet in the presented
scheme but it seems to be a very interesting feature.

To sum up, for the scheme developed in this work it can be stated that
the results obtained by several computations that are documented in chapter
3 are very promising. Especially the computation of the dam break with
obstacles and the emptying of a water reservoir show the scheme's capability
in order to simulate complex problems.
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