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“Everything Should Be Made as Simple as Possible, But Not Simpler.”

Albert Einstein



Abstract

The identification of chemical mechanism that can exhibit oscillatory phenomena in

reaction networks are currently of intense interest. In particular, the parametric ques-

tion of the existence of Hopf bifurcations has gained increasing popularity due to its

relation to the oscillatory behavior around the fixed points. However, the detection of

oscillations in high-dimensional systems and systems with constraints by the available

symbolic methods has proven to be difficult. The development of new efficient methods

are therefore required to tackle the complexity caused by the high-dimensionality and

non-linearity of these systems.

In this thesis, we mainly present efficient algorithmic methods to detect Hopf bifurcation

fixed points in (bio)-chemical reaction networks with symbolic rate constants, thereby

yielding information about their oscillatory behavior of the networks. The methods use

the representations of the systems on convex coordinates that arise from stoichiometric

network analysis. One of the methods called HoCoQ reduces the problem of deter-

mining the existence of Hopf bifurcation fixed points to a first-order formula over the

ordered field of the reals that can then be solved using computational-logic packages.

The second method called HoCaT uses ideas from tropical geometry to formulate a more

efficient method that is incomplete in theory but worked very well for the attempted

high-dimensional models involving more than 20 chemical species.

The instability of reaction networks may lead to the oscillatory behaviour. Therefore,

we investigate some criterions for their stability using convex coordinates and quantifier

elimination techniques.

We also study Muldowney’s extension of the classical Bendixson-Dulac criterion for ex-

cluding periodic orbits to higher dimensions for polynomial vector fields and we discuss

the use of simple conservation constraints and the use of parametric constraints for

describing simple convex polytopes on which periodic orbits can be excluded by Mul-

downey’s criteria.

All developed algorithms have been integrated into a common software framework called

PoCaB (platform to explore bio-chemical reaction networks by algebraic methods) al-

lowing for automated computation workflows from the problem descriptions. PoCaB

also contains a database for the algebraic entities computed from the models of chemical

reaction networks.
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Samal, Dr. Björn Krüger, Dr. Tomas Lay Herrera, Jan Baumann, Dr. Arno Zinke, and

to all my colleagues in the institute of computer science II at the university of Bonn

and in the computational mathematics group at the university of Kassel for the nice

cooperation and good working atmosphere.

Finally, the financial support of the Deutsche Forschungsgemeinschaft (DFG) under the

auspices of the SPP 1489 program is also gratefully acknowledged.

v



Contents

Declaration of Authorship i

Abstract iv

Acknowledgements v

List of Figures ix

List of Tables x

Abbreviations xii

Symbols xiii

1 Introduction 1

2 Fundamentals 6

2.1 Chemical Reaction Networks . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Stoichiometric Network Analysis . . . . . . . . . . . . . . . . . . . 7

2.1.2 Modeling Chemical Systems by Pseudolinear Ordinary Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Quantifier Elimination and Formula Simplification . . . . . . . . . . . . . 9

2.3 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Generation of Algebraic Data 13

3.1 Computation of Basic Algebraic Data . . . . . . . . . . . . . . . . . . . . 13

3.2 Flux Cone and Extreme Currents . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Computation of Jacobian Matrix Using Convex Coordinates . . . . . . . . 16

3.4 Algebraic Data for Graph-Theoretic Representation of the Reaction Systems 17

3.5 Deficiency Value of the Reaction Network . . . . . . . . . . . . . . . . . . 18

3.6 PoCaB : A Software Infrastructure to Explore Algebraic Methods for
(Bio)-Chemical Reaction Networks . . . . . . . . . . . . . . . . . . . . . . 19

3.6.1 Representation of Reaction Networks . . . . . . . . . . . . . . . . . 19

3.6.2 Database of Algebraic Entities . . . . . . . . . . . . . . . . . . . . 20

3.6.2.1 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



Contents vii

3.6.2.2 Software Workflow and Components . . . . . . . . . . . . 20

3.6.2.3 Content of Database . . . . . . . . . . . . . . . . . . . . . 22

3.6.2.4 Statistical Summary . . . . . . . . . . . . . . . . . . . . . 22

4 Detection of Hopf Bifurcations Using Convex Coordinates 25

4.1 Hopf Bifurcations and Invariant Manifolds . . . . . . . . . . . . . . . . . . 25

4.1.1 Conditions for Existence of Hopf Bifurcations . . . . . . . . . . . . 25

4.1.2 Reduction to Invariant Manifolds . . . . . . . . . . . . . . . . . . . 27

4.1.3 Stability and Bifurcations for Semi-Explicit DAEs . . . . . . . . . 28

4.2 HoCoQ : An Algorithm for Computing Hopf Bifurcations using Convex
Coordinates and Quantifier Elimination . . . . . . . . . . . . . . . . . . . 31

4.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Polyhedral Computations . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 Computation of the Hopf Condition in Convex Coordinates . . . . 32

4.2.3.1 Computation of the Jacobian in Reaction Space . . . . . 33

4.2.3.2 Jacobian on the Reduced Manifold . . . . . . . . . . . . . 33

4.2.3.3 Semi-Algebraic Description of Hopf Bifurcations . . . . . 33

4.2.4 Integration of Computational Logic Tools . . . . . . . . . . . . . . 33

4.2.5 Pseudo-Code of the HoCoQ Algorithm . . . . . . . . . . . . . . . . 34

4.2.6 Computation of Examples using HoCoQ Method . . . . . . . . . . 35

4.2.6.1 Phosphofructokinase Reaction . . . . . . . . . . . . . . . 35

4.2.6.2 Enzymatic Transfer of Calcium Ions . . . . . . . . . . . 37

4.2.6.3 Model of Calcium Oscillations in the Cilia of Olfactory
Sensory Neurons . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 HoCaT : Algorithm for Computing Hopf Bifurcations using Convex Co-
ordinates and Tropical Geometry . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Sufficient Conditions for a Positive Solution of a Single Multivari-
ate Polynomial Equation . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Summarizing the HoCaT Algorithm . . . . . . . . . . . . . . . . . 46

4.3.3 Computation of Examples Using the HoCaT Method . . . . . . . 46

4.3.3.1 Phosphofructokinase Reaction . . . . . . . . . . . . . . . 46

4.3.3.2 Enzymatic Transfer of Calcium Ions . . . . . . . . . . . 47

4.3.3.3 Model of Calcium Oscillations in the Cilia of Olfactory
Sensory Neurons . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3.4 Electro-Oxidation of Methanol . . . . . . . . . . . . . . . 49

4.3.3.5 Methylene Blue Oscillator System . . . . . . . . . . . . . 50

4.3.3.6 Mitogen-Activated Protein Kinase (MAPK ) . . . . . . . 52

4.3.3.7 Models of Genetic Circuits . . . . . . . . . . . . . . . . . 54

4.3.3.8 Control of DNA Replication in Fission Yeast . . . . . . . 57

5 On Muldowney’s Criteria for Polynomial Vector Fields with Constraints
58

5.1 Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 The Bendixson-Dulac Criterion for 2-Dimensional Vector Fields . . 59

5.1.2 Muldowney’s Extensions of the Bendixson-Dulac Criterion to Higher
Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2.1 Extending Muldowney’s Criteria with Dulac Functions. . 61

5.1.2.2 Using Conservation Constraints. . . . . . . . . . . . . . . 61



Contents viii

5.1.2.3 Parametric Specification of a Convex Subset. . . . . . . . 62

5.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 The SIRS Epidemiological Model . . . . . . . . . . . . . . . . . . . 62

5.2.1.1 Using Ad-hoc Reductions to 2D-Models . . . . . . . . . . 63

5.2.1.2 Computations on the 3D-Model . . . . . . . . . . . . . . 64

5.2.2 A Model of Viral Dynamics . . . . . . . . . . . . . . . . . . . . . . 64

6 Computing Stability in Convex Coordinates 67

6.1 Computing Stability Using Hurwitz Criterion . . . . . . . . . . . . . . . . 67

6.2 Computing Stability Using Gantmacher-Stieltjes Criterion . . . . . . . . . 71

6.3 Computation of Mixing Stability . . . . . . . . . . . . . . . . . . . . . . . 73

7 Summary and Outlook 76

Bibliography 79



List of Figures

3.1 Extreme currents of flux cone . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Components of SBML file . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 HoCoQ method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 HoCaT method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Newton polytope and a separating hyperplane . . . . . . . . . . . . . . . . 43

4.4 A gene regulated by a polymer of its protein . . . . . . . . . . . . . . . . . 55

5.1 The 2D- and 3D-Tuckwell-Wan examples . . . . . . . . . . . . . . . . . . 64

ix



List of Tables

3.1 Summary of results in Biomodels and KEGG database . . . . . . . . . . . 24

4.1 Computation of Hopf bifurcations in the phosphofructokinase reaction
using HoCoQ algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Computation of Hopf bifurcations in the model ”enzymatic transfer of
calcium ions” using HoCoQ algorithm . . . . . . . . . . . . . . . . . . . . 38

4.3 Computation of Hopf bifurcations in model of calcium Oscillations using
HoCoQ algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Computation of Hopf bifurcations in the phosphofructokinase reaction
using HoCaT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Computation of Hopf bifurcations in the model ”enzymatic transfer of
calcium ions” using HoCaT algorithm . . . . . . . . . . . . . . . . . . . . 48

4.6 Computation of Hopf bifurcations in the model ”calcium oscillations in
the cilia of olfactory sensory neurons” using HoCaT algorithm . . . . . . 48

4.7 Computation of Hopf bifurcations in the model ”electro-oxidation of methanol”
using HoCaT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Results of the computation of Hopf bifurcations in 1-face and 2- faces
using HoCaT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Results for the 2D-Tuckwall-Wan example (cf. Fig. 5.1) on the full posi-
tive octant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Computation of stability in the phosphofructokinase reaction in convex
coordinates using Hurwitz condition . . . . . . . . . . . . . . . . . . . . . 69

6.2 Computation of stability in the model ”Enzymatic transfer of calcium
ions” in convex coordinates using Hurwitz condition . . . . . . . . . . . . 69

6.3 Computation of stability in the model ”calcium oscillations in the cilia of
olfactory sensory neurons” using convex coordinates and Hurwitz condition 70

6.4 Computation of stability in the model ”electro-oxidation of methanol”
using convex coordinates and Hurwitz condition . . . . . . . . . . . . . . . 70

6.5 Computation of stability in the phosphofructokinase reaction using con-
vex coordinates and Gantmacher-Stieltjes condition . . . . . . . . . . . . . 72

6.6 Computation of stability in the model ”enzymatic transfer of calcium
ions” using convex coordinates and Gantmacher-Stieltjes condition . . . . 72

6.7 Computation of stability in the model ”calcium oscillations in the cilia
of olfactory sensory neurons” using convex coordinates and Gantmacher-
Stieltjes condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.8 Computation of stability in the model ”electro-oxidation of methanol”
using convex coordinates and Gantmacher-Stieltjes condition . . . . . . . 73

6.9 Computation of mixing stability in the phosphofructokinase reaction . . . 74

x



List of Tables xi

6.10 Computation of mixing stability in the model ”enzymatic transfer of cal-
cium ions” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.11 Computation of mixing stability in the model ”calcium oscillations in the
cilia of olfactory sensory neurons” . . . . . . . . . . . . . . . . . . . . . . . 75

6.12 Computation of mixing stability in the model ”electro-oxidation of methanol” 75



Abbreviations

ATP Adenosine Tri-Phosphate

CAD Cylindrical Algebraic Decomposition

DAE Differential Algebraic Equation

KEGG Kyoto Encyclopedia of Genes and Genomes

KGML KEGG Markup Language

LP Linear Programming

MAPK Mitogen-Activated Protein Kinase

MBO Methylen Blue Oscillator

MILP Mixed-Integer Linear Programming

MIQCP Mixed-Integer Quadratically Constrained Programming

MIQP Mixed-Integer Quadratic Programming

ODE Ordinary Differential Equation

QCP Quadratically Constrained Programming

QP Quadratic Programming

SBML System Biology Markup Language

SIRS Systemic Inflammatory Response Syndrome

SMT Satisfiability Modulo Theories

SNA Stoichiometric Network Analysis

xii



Symbols

S Stoichiometric matrix

K Kinetic matrix

v(x, k) Flux vector

E Set of extreme currents

ji Convex parameter

xi Concentration of the ith-species

ki Rate constant of the ith-reaction

Ia, Ik Incidence matrices

Y Adjacency matrix

IkΨ(x) Vector of monomials

N (Bio)-Chemical network

Jac Jacobian matrix
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Chapter 1

Introduction

The dynamics of (bio)-chemical systems are usually described by power-law kinetics, i.e.

the reaction rates are proportional to some power of the species concentrations involved.

If it is assumed that these (bio)-chemical systems follow mass action kinetics then the

dynamics of these reactions can be represented by ordinary differential equations (ODEs)

for systems without additional constraints or by differential algebraic equations (DAEs)

for systems with constraints.

An important task of the chemist is the identification of chemical mechanism that can

exhibit exotic phenomena caused by instability of the steady state, such as switching

between multiple steady states, explosions, oscillations, or even more complicated phe-

nomena, which are known by mathematicians as motion on an attracting k-torus and

strange attractors (chaos) [12]. In particular, the oscillatory phenomena in chemistry

are currently of intense interest.

Stability analysis is by far the most effective technique because it uses linearized equa-

tions of motion; the direct identification of local and global oscillations requires a tedious

analysis of the complete nonlinear equations of motion, which is possible only for simple

systems. In principle, oscillations and various exotic dynamics may occur in systems

of differential equations even when no steady states are unstable. Although stability

analysis is by far the most effective method, it is not a direct test for the existence of

exotic dynamics; however the differential equations for chemical systems appear to be

special. So far, no remotely plausible model has been constructed of a chemical net-

work with oscillations and only stable steady states. Hence linear stability analysis may

be used with some confidence to determine which chemical models are capable of exotic

dynamics in cases that are far too complex for the direct identification of oscillations [12].

1
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The development of symbolic methods for studying local and global oscillations was a

topic of considerable research effort in the last decade. Especially, the parametric ques-

tion of the existence of Hopf bifurcations attracts more interests due to its relation to

oscillatory behavior around the fixed points. A Hopf bifurcation is a local bifurcation

in which the equilibrium point of a dynamical system loses stability when a pair of

complex conjugate eigenvalues of the linearization around the equilibrium point cross

the imaginary axis of the complex plan. Some low dimensional reaction systems without

additional constraints have been already investigated [4, 5, 30]. The parametric question

for a parameterized polynomial vector field whether fixed points undergo a Hopf bifur-

cation is not only known to be decidable but also lies within the realm of semi-algebraic

sets [23, 30, 52]. Hence, the questions whether there are Hopf bifurcation fixed points

inducing local oscillations can be reduced to decidable questions on semi-algebraic sets

for polynomial vector fields via the well-known Routh-Hurwitz criterion [39].

A fully algebraic method for the computation of Hopf bifurcation fixed points for systems

with polynomial vector fields has already been introduced by El Kahoui and Weber

[23] using the powerful technique of quantifier elimination on real closed fields [83].

This technique has already been successfully applied to the mass action kinetics of

low dimensions [80]. However deciding its occurrence in high dimensional differential

equations and in differential algebraic equations has proven to be difficult in practice.

Nevertheless, quite a few conclusions regarding the dynamics can be drawn from the

structure of the reaction network itself. In this context, there has been a surge in

the development of algebraic methods that are based on the structure of the network

and the associated stoichiometry of the chemical species. These methods are aimed

at understanding the qualitative behavior of the network. Using ideas from so called

stoichiometric network analysis (SNA) [12] it is possible to analyze the system dynamics

in flux space instead of the concentration space and to represent the space of the steady

states with a combination of subnetworks using methods from convex geometry. Methods

for detecting Hopf bifurcations using similar approaches have been used in several “hand

computations” in a semi-algorithmic way for parametric systems, the most elaborate of

which is described in [30].

In the study of differential equations the analysis of global oscillations is seen as an

important goal in addition to describing the dynamics around fixed points. However,

already for two-dimensional polynomial systems the global question whether there are

periodic solutions (and thus oscillations) is related to Hilbert’s 16th problem, which is

still unsolved [42]. For the two-dimensional case the Bendixson-Dulac criterion gives a

sufficient condition for the non-existence of periodic orbits. This criterion is parame-

terized by a Dulac function, and various techniques have been proposed to construct
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Dulac functions, which range from algebraic constructions for special systems to tech-

niques involving the solution of certain partial differential equations [8–11, 55]. For the

higher-dimensional case there are extensions of the criterion of Bendixson-Dulac that

also allow the use of Dulac functions [51]. However, little work seems to have been done

to construct Dulac functions in the higher dimensional cases, except for addressing it as

a problem [92, 93]. Most of these extensions involve first integrals of the various field

[24, 85, 88] and thus might leave the realm of computations on semi-algebraic sets, but

the criteria of Muldowney [51] (parameterised by a matrix norm) lead to quantifier elim-

ination problems over real closed fields (at least for the L1- and L∞-norm). Moreover,

the common case of algebraic constraints in the simple form of conservation constraints

have been used in ad hoc form by many authors, mainly to reduce 3D systems to 2D

systems in order to be able to use the classical Bendixson-Dulac criterion, but have not

been discussed in a more general setting.

As already mentioned above, chemical and biological systems with constraints can be

modeled by differential algebraic equations(DAEs). The analytical theory of these equa-

tions has not yet achieved the same level as the theory of normal systems; this concerns

in particular the analysis of singularities and bifurcations (although both [61] and [65]

contain a chapter on singularities). Hopf bifurcation of semi-explicit DAEs are stud-

ied by Venkatasubramanian et al. [89]. Rabier [60] discusses the case of quasi-linear

DAEs; Beardmore and Webster [1] analyse a certain kind of singular quasi-linear DAEs.

Different forms of bifurcations have been considered by von Sosen [90]. However, one

should note that most of these works treat fairly special situations; general non-linear

DAEs have not been considered so far. Compared to normal systems, already the usual

existence and uniqueness theory of DAEs is much more complicated due to the possible

existence of hidden integrability conditions. In fact, much of the above mentioned lit-

erature on the analytical theory of DAEs is concerned with this problem and its effects

on the numerical analysis.

The main goal of this work is the investigation and development of algorithmic methods

for detection of oscillations in biological and chemical systems with particular empha-

sis on questions concerning the occurrence of Hopf bifurcation fixed points. The new

developed approaches improve and combine the ideas and techniques listed above. An-

other major goal is the integration of all developed algorithms into a common software

framework. A first step of the analysis of chemical systems using algebraic methods is

the generation of algebraic data that describe their reaction laws. Therefore, in Chap-

ter 3 the approaches for generating algebraic data from (bio)-chemical networks will

be discussed, and a developed software infrastructure to explore algebraic methods for

(bio)-chemical reaction networks will be presented. We discuss also in this chapter the
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computation of extreme currents and thus the transformation of original coordinates to

the convex coordinates.

In Chapter 4, we present efficient algorithmic methods to detect Hopf bifurcations in

complex (bio)-chemical reaction networks with symbolic rate constant; In the first al-

gorithmic method we applied a combination of the known (and already demonstrated)

algorithmic reduction to quantifier elimination problems over the reals and the algo-

rithmic solutions of these problems with techniques arising from stoichiometric network

analysis, such as the use of convex coordinates. Technically this combination will yield

an existentially quantified problem that consists of determining Hopf-bifurcation fixed

point with empty unstable manifold involving the conjunction of the following condition:

an equality condition on the principal minor ∆n−1 = 0 of the Jacobian of the vector field

in conjunction with inequality conditions on ∆n−2 > 0 ∧ · · · ∧ ∆1 > 0 and positivity

conditions on the variables and parameters.

Another method for the parametric detection of Hopf bifurcations that also uses tech-

niques of stoichiometric networks analysis is presented as the second algorithm. This

algorithm is based on the basic observation that the condition for existence of Hopf

bifurcation fixed points when using convex coordinates is given by the single polynomial

equation ∆n−1 = 0 (together with positivity conditions on the convex coordinates) and

(drop resp. delaying a test for the existence of unstable empty manifolds on already de-

termined witness points for Hopf bifurcations). Therefore the main algorithmic problem

is to determine whether a single multivariate polynomial can have a zero for positive

coordinates. For this purpose we provide heuristics on the basis of the Newton polytope

that ensure the existence of positive and negative values of the polynomial for positive

coordinates. We evaluate our methods on a variety of examples, some of which have

a dimensions greater than 20. Considering the performance of our methods, we could

now analyse medium sized networks in their unreduced forms, a task for which the only

previously available was the analysis of quasi-steady state approximations.

In Chapter 5, we study Muldowney’s extension of the classical Bendixson-Dulac cri-

terion for excluding periodic orbits to higher dimensions for polynomial vector fields.

Using the formulation of Muldowney’s sufficient criteria for excluding periodic orbits

of the parameterized vector field on a convex set as a quantifier elimination problem

over the ordered field of the reals we provide case studies of some systems arising in

the life sciences. We discuss the use of simple conservation constraints and the use of

parametric constraints for describing simple convex polytopes on which periodic orbits

can be excluded by Muldowney’s criteria.

The instability of a (bio)-chemical system gives rise to the existence of an exotic dynamic.

Hence, computing stability can be used to determine chemical networks and subnetworks
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which are capable of oscillations. The computation of stability using stoichiometric

network analysis and quantifier elimination is discussed in Chapter 6. Two criterion are

thereby tested, namely Huwritz criterion and Gantmacher-Stieltjes criterion. We also

applied and tested mixing stability which invented by Clarke [12] for computing stability

of extreme subnetworks.



Chapter 2

Fundamentals

2.1 Chemical Reaction Networks

A chemical reaction occurs when two or more chemical species react to become new

chemical species. This process is usually presented by an equation where the reactants

are given on the left hand side of an arrow and the products on the right hand side,

the numbers next to the species called stoichiometric coefficients present the amount

to which a chemical species participates in a reaction and the parameter on the arrow

called rate constant stands for an experimental constant influencing the reaction velocity.

a chemical reaction is called irreversible, if it proceeds only in one direction, and is

called reversible, if it proceeds in either directions. In order to be compatible with

thermodynamics, in reversible reactions the difference between the kinetic exponents of

the reverse and forward reaction must be equal to the stoichiometric coefficient for each

species, this is referred to as mass action kinetics.

An example of a chemical reaction, as it usually appears in the literature, is the following:

A+B
k−→ 3A+ C

In this reaction, one unit of chemical species A and one of B react (at reaction rate k) to

form three units of A and one of C. The concentrations of these three species, denoted

by xa,xb and xc, will change in time as the reaction occurs. Under the assumption of

mass-action kinetics, species A and B react at a rate proportional to the product of

their concentrations, where the proportionality constant is the rate constant k. Noting

that the reaction yields a net change of two units in the amount of A [30, 57, 73], we

6
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obtain the following corresponding differential equations:

d

dt
xa = 2kxaxb

d

dt
xb = −kxaxb

d

dt
xc = kxaxb (2.1)

A chemical reaction network can be defined as a finite set of chemical reactions. It can

presented as a finite directed graph whose vertices are labeled by complexes and whose

edges are labeled by parameters(reaction rate constants). Specifically, the digraph is

denoted G = (V,E), with vertex set V = {1, 2, ...,m} and edge set E ⊆ {(i, j) ∈ V ×V :

i 6= j}. A network is reversible if the graphG is undirected, in which case each undirected

edge has two labels kij and kji [57, 73].

2.1.1 Stoichiometric Network Analysis

The usual way to understand the behavior of mass-action chemical systems is to observe

the time evolution of the species concentration. This can be mathematically represented

by coupled differential equations, where each equation represent a change in a correspon-

dent species concentration. Thus the analysis of the chemical systems in concentration

space turned out to be hard by increasing number of chemical species.

Clarke has introduced in 1980 a new method called stoichiometric network analysis

(SNA) to analyze the stability of mass-action chemical reaction systems[12]. The idea

of SNA is to observe the dynamics of the system in the reaction space instead of concen-

tration space. This leads to expand the steady state into a combination of subnetworks

that form a convex cone in the flux-space called flux cone. Provided that all reactions

are unidirectional or irreversible, the intersection of the null-space with the semiposi-

tive orthant of the flux space procedure results in a set of rays or edges starting at 0,

which fully describe the cone. The edges are represented by vectors and any admissible

steady state of the system is a positive combination of these vectors. From a biological

perspective, these edges characterize important pathways of the metabolic network. In

the case of a pointed cone, where 0 is a vertex, they connect inputs to outputs with a

minimal set of reaction [91].
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2.1.2 Modeling Chemical Systems by Pseudolinear Ordinary Differen-

tial Equations

The differential equations in chemical reaction networks usually are constrained reflect-

ing various physical conservation laws. The systems with linear constraints often found

in chemical reaction networks can easily be generalized to pseudolinear ordinary differ-

ential equations. The basic underlying property of the considered differential equations

is captured by the following definition.

Definition 2.1. We call an autonomous system of ordinary differential equations ẋ =

φ(x) for an unknown function x : R → R
n pseudolinear, if its right hand side can be

written in the form φ(x) = Nψ(x) with a constant matrix N ∈ Rn×m and some vector

valued function ψ : Rn → R
m.

Obviously, any polynomially nonlinear system can be written in such a form, if we take

for ψ(x) the vector of all terms appearing on the right hand side of the system. As one

can see from the following two lemmata, the pseudolinear structure is of interest only in

the case that the matrix N does not possess full row rank and hence the range of N is

not the full space Rn. In the sequel, we will always assume that the function ψ satisfies

m ≥ n, as this is usually the case in applications like reaction kinetics.

Lemma 2.2. For a pseudolinear system ẋ = Nψ(x) any affine subspace of the form

Ay = y + imN ⊆ R
n for an arbitrary constant vector y ∈ Rn defines an invariant

manifold.

Proof. Obviously, we have ẋ(t) ∈ imN for all times t and TxAy = imN for all points

x ∈ Ay by definition of an affine space. Thus, if x(0) ∈ Ay, then the whole trajectory

will stay in Ay.

Remark 2.3. For the application in reaction kinetics, the following minor strengthening of

Lemma 2.2 is of interest. Assume that the function ψ satisfies additionally ψ(x) ∈ Rm
≥0

for all x ∈ Rn
≥0 which is for example trivially the case when each component of ψ is

a polynomial with positive coefficients. If we solve our differential equation for non-

negative initial data x(0) = x0 ∈ Rn
≥0, then the solution always stays in the convex

polyhedral cone x0 +
{∑m

i=1 λini | ∀ i : λi ≥ 0
}

where the vectors ni are the columns

of the matrix N . Indeed, in this case the tangent vector ẋ(t) along the trajectory is

trivially always a non-negative linear combination of the columns of N .

Lemma 2.4. Let vT · x = Const for some vector v ∈ Rn be a linear conservation law

of a pseudolinear system ẋ = Nψ(x) such that imψ is not contained in a hyperplane.

Then v ∈ kerNT . Conversely, any vector v ∈ kerNT induces a linear conservation law.
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Proof. Let us first assume that v ∈ kerNT . Then

d

dt

(
vT · x

)
= vTNψ(x) =

(
NTv

)T
ψ(x) = 0 .

If vT · x = Const is a conservation law, then differentiation with respect to time yields(
NTv

)T
ψ(x) = 0. Because of our assumption on the function ψ, this implies that

NTv = 0.

By a classical result in linear algebra (the four “fundamental spaces” of a matrix), we

have the direct sum decomposition Rn = imN ⊕ kerNT which is even an orthogonal

decomposition with respect to the standard scalar product. Hence we may consider

Lemma 2.2 as a corollary to Lemma 2.4, as the above described invariant manifolds are

simply defined by all the linear conservation laws produced by Lemma 2.4.1

Remark 2.5. Gatermann and Huber [32] speak of a conservation law only in the case

that vi ≥ 0 for all components vi of the vector v. In mathematics, we are not aware of

such a restriction and cannot see any physical reasons to impose it.

2.2 Quantifier Elimination and Formula Simplification

Some of our developed methods make fundamental use of Formula simplification and

quantifier elimination. In this section, we introduce briefly some of their basic concepts.

A formula of first order logic is a formula that is build from atomic formulas using

logical connectives, quantifiers and parentheses. An atomic formula is a formula of the

form P (t1, t2, . . . , tl) where P is a l-ary predicate symbol and t1, t2, . . . , tn are terms.

If a formula does not contain any quantifier, then it is a quantifier free formula. The

simplification process for such formula is to find an equivalent formula that is simpler.

When formulas are extended by allowing quantification of variables, we may ask for a

particular kind of simplification: quantifier elimination. In the 1930’s, Tarski proved

that any formula containing quantifiers is equivalent to a formula without quantifiers by

giving an algorithm to construct a quantifier-free equivalent formula [7]. In this work

we use especially the quantifier elimination on real closed field, which is concerned with

boolean combination of polynomial equalities and inequalities, where variables are as-

sumed to range over the real numbers.

1 Note that in the special case most relevant for us, namely that each component of ψ is a different
monomial, the assumption made in Lemma 2.4 is always satisfied.
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There has been during the past decades considerable research on efficient implemen-

tation of real quantifier elimination and formula simplification. Some of well-known

computational logic tools for solving these problems are listed in the following:

Redlog2 [17, 78], which was originally motivated by the efficient implementation of

quantifier elimination based on virtual substitution methods [18, 95, 96]. Redlog also

includes cylindrical algebraic decomposition (CAD) and Hermitian quantifier elimination

[16, 35, 98] for the reals as well as quantifier elimination for various other domains [77]

including the integers [44, 45]. Redlog is included in the computer algebra system

REDUCE, which is an open source.3 In addition to regular quantifier elimination

methods for the reals, Redlog includes several variants of quantifier elimination [92]. In

particular, these variants include extended quantifier elimination [97], which additionally

yields sample solutions for existential quantifiers, and positive quantifier elimination

[79, 80], which includes powerful simplification techniques based on the knowledge that

all considered variables are restricted to positive values. In chemical systems, the region

of interest is the positive cone of the state variables and the parameters of interest

are known also to be positive. Therefore, positive quantifier elimination is of special

importance and will be used for our computations.

Qepcad [6] is a tool for quantifier elimination that implements partial cylindrical al-

gebraic decomposition. The development of Qepcad started with the early work of

Collins and his collaborators on CAD circa 1973 and continues to this today. Qepcad

is supplemented by another software package called slfq for simplifying quantifier-free

formulas using CAD. Both Qepcad4 and slfq5 are freely available [92].

The slfq system uses Qepcad as a black box for simplifying quantifier-free formulas.

Qepcad is able to simplify formulae, but its time and space requirements become pro-

hibitive when input formulae are large. slfq essentially breaks large input formulae

into small pieces, uses Qepcad to simplify the pieces, and starts a process of combining

simplified subformulae and applying Qepcad to simplify the combined subformulae.

Eventually this process produces a simplification of the entire initial formula [92].

The well-known commercial computer algebra system Mathematica also includes an

efficient CAD-based implementation for real quantifier elimination [92]. The initial de-

velopments of the algorithm began circa 2000 by Strzebonski [75, 76]. He developed

an CAD-based algorithm for solving systems of strict polynomial inequalities using a

simplified projection operator and constructing only rational sample points.

2http://www.redlog.eu/
3http://reduce-algebra.sourceforge.net/
4http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
5 http://www.cs.usna.edu/˜qepcad/SLFQ/Home.html

http://www.redlog.eu/
http://reduce-algebra.sourceforge.net/
http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
http://www.cs.usna.edu/~qepcad/SLFQ/Home.html
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Z3 is a new and efficient satisfiability modulo theories (SMT) solver that is freely avail-

able from Microsoft Research6. SMT generalizes boolean satisfiability (SAT) by adding

equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and other useful

first-order theories. An SMT solver is a tool for deciding the satisfiability (or dually the

validity) of formulas in these theories. SMT solvers enable applications such as extended

static checking, predicate abstraction, test case generation, and bounded model checking

over infinite domains, to mention a few [15]. Z3 uses novel algorithms for quantifier in-

stantiation and theory combination. It is implemented in C++ and integrates a modern

DPLL-based SAT solver, a core theory solver that handles equalities and uninterpreted

functions, satellite solvers (for arithmetic, arrays, etc.), and an E-matching abstract ma-

chine (for quantifiers). For quantifier instantiation Z3 uses a well known approach for

quantifier reasoning that works over an E-graph to instantiate quantified variables [15].

RSolver7 is a new tool for solving quantified inequality constraints. Problems like pro-

jecting the solution set of a set of inequality constraints to two dimensions, or the

parametric robust stability of linear differential equations can be directly formulated as

such constraints. Rsolver is developed by Stefan Ratschan and it is based on reducing

the average run-time of algorithms for computationally hard problems by replacing ex-

pensive exhaustive search as much as possible by methods for pruning elements from the

search space for which it is easy to show that they do not contain solutions. This idea

is extended to quantifier inequality constraints for which all (free and bound) variables

are bounded to a closed interval [63].

2.3 Linear Programming

Linear programming (LP) is an optimization process that maximize or minimize a linear

objective function, subject to linear equality and linear inequality.

We consider the matrix A1 ∈ Rl1,n , the matrix A2 ∈ Rl2,n, the vector b1 ∈ Rl1 , the

vector b2 ∈ Rl2 , and the vector c ∈ Rn. A linear program can be expressed in canonical

form as shown below:

maximize cTx

subject to

• A1x = b1,

• A2x ≤ b2.

6http://z3.codeplex.com/
7http://rsolver.sourceforge.net/

http://z3.codeplex.com/
http://rsolver.sourceforge.net/


Chapter2. Fundamentals 12

A vector x̂ ∈ Rn that satisfies each equation A1ix = b1i and each linear constraint

A2ix ≤ b2i is called feasible solution. If in addition cT x̂ ≥ cTx for all feasible solutions

x, x̂ is called then optimal solution. The set of all feasible solutions is called the feasible

region. A linear program is infeasible if its feasible region is empty, otherwise it is called

feasible. Linear programming problem can be solved using the simplex method, which

enumerates adjacent vertices of the feasible region such that at each new vertex the

objective function improves or unchanged. Another efficient polynomial time algorithm

is the interior point method [43]. The reader is referred to [68] for more details on theory

of linear programming.

There are several free and commercial tools for solving linear programs. In this work

we use the commercial software Gurobi Optimizer, which is free for academic use. It in-

cludes simplex and barrier solvers for linear programming (LP) and quadratic program-

ming(QP), parallel barrier solver for quadratically constrained programming (QCP), as

well as parallel mixed-integer linear programming (MILP), mixed-integer quadratic pro-

gramming (MIQP) and mixed-integer quadratically constrained programming (MIQCP)

solvers. The majority of (LP) problems can be solved in an efficient way using the

Gurobi ’s state-of-the-art dual simplex algorithm8.

8http://www.gurobi.com/

http://www.gurobi.com/


Chapter 3

Generation of Algebraic Data

Chemical reaction systems that follow mass action kinetics can be represented by or-

dinary differential equations or differential algebraic equations. Their analysis by esti-

mating the values of parameters in these equations is turned out to be difficult for high

dimensional systems. However the dynamical behavior of these systems can be analysed

using different algebraic methods, which are based on their structures. For applying

these methods, the initial task is the generation of algebraic data describing its reaction

laws.

3.1 Computation of Basic Algebraic Data

Applying algebraic methods to analyze reaction networks with mass action kinetics

requires mainly the generation of three basic algebraic entities describing the reaction

laws namely stoichiometric matrix S, kinetic matrix K, and flux vector v(x, k), where

xi’s denote the concentrations of chemical species and ki’s represent the reaction rate

constants. The stoichiometric matrix describes the occurrence of the species in each

reaction, where the rows and columns corresponds to species and reactions respectively.

Each entry of the matrix denotes the difference between the production and consumption

of molecules of the corresponding species in corresponding reaction. The reversible

reaction will be split into two irreversible reactions.

To elucidate its computation from a (bio)-chemical reaction network we consider the

Sel´kov model for glycolytic oscillations already discussed in [72]. This simple model

involves 5 reactions and 2 species. The first reaction is the autocatalytic production

of fructose-1,6-biphosphate consuming adenosine triphosphate (ATP). The other four

reactions are the constant inflow and linear outflow of these two species. It is described

by the following reaction laws:

13
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2A + B
k1−→ 3A (3.1)
k2−⇀↽−
k3

A (3.2)

k4−⇀↽−
k5

B (3.3)

The stoichiometric matrix of this model is the following 2x5 matrix, where the first row

represent the species A and the second row corresponds to B. The columns represent

respectively the reactions with rate constants k1, k2, k3, k4, and k5.

S =

(
1 1 −1 0 0

−1 0 0 1 −1

)

The flux vector v(x, k) (also called velocity vector) contains monomials describing the

velocity of the reactions. Every monomial is formed by vi(x, ki) = ki
∏m
j=1 x

αij , where

m denotes the number of species, and αij ’s denote the stoichiometric coefficients of the

reactants in the corresponding reaction i. For the network 3.1 the flux vector is given

by:

v(x, k) =



k1x
2
1x2

k2

k3x1

k4

k5x2



Another algebraic entity containing information about the velocity of a (bio)-chemical

network is the kinetic matrix. It describes this information by encoding the exponents of

the flux vector. As the case in stoichiometric matrix the species build the rows and the

reaction build the columns. The entries of this matrix present the information whether

species is a reactant (entry = stoichiometric coefficient of species) and whether effects

consequently the velocity of the reaction or not (entry = 0). The Kinetic matrix of the

network 3.1 for instance is:

K =

(
2 0 1 0 0

1 0 0 0 1

)
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3.2 Flux Cone and Extreme Currents

To analyze a (bio)-chemical system one is interested in the stationary reaction behavior,

which is observable in experiments, i.e one investigates the solution set of

Sv(x, k) = 0. (3.4)

where S represent the stoichiometric matrix and v(x, k) the flux vector. As long as

we split each reversible reaction into two irreversible reactions (forward and backward

directions) the flux through these reactions must be greater or equal to zero, i.e

v(x, k) ≥ 0 (3.5)

The set of all possible stationary solutions over a (bio)-chemical network N that fulfill

the equation (3.4) and the constraint (3.5) defines the convex polyhedral cone flux cone

[12, 43]. The minimal set of generating vectors E , which can geometrically be interpreted

as the edges of the flux cone are known in chemistry as extreme fluxes or extreme

currents. The Fig. 3.1 depicts the extreme currents of a flux cone1.

Figure 3.1: Extreme currents of flux cone

Each flux vector satisfying the steady state equations can be represented in the flux space

as linear combination of the extreme currents E with nonnegative coefficients ji called

convex parameters. In reaction networks, as the reversible reactions are split into two,

so for each split there appears a spurious cycle [91] in the set of extreme currents, which

is an extreme current denoting only the forward and backward reaction components of

the reversible reaction which can be removed as an additional step. The reversibility of

reactions in the network can be tackled by different ways. In extreme currents mentioned

above the reversible reactions are split but in elementary flux modes [69] they are not

split and in extreme pathways [67] some may be split. The different ways to split the

1From http://www.csb.ethz.ch/research/structural (edited figure)

http://www.csb.ethz.ch/research/structural
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reactions affects the construction of stoichiometric matrix and hence different methods

describe the cone in different vector spaces due to presence of reversible reactions [48, 91].

It also affects the construction of cone, for extreme currents computation the cone is

always pointed whereas in elementary flux modes and extreme pathways it may neither

be pointed nor remain in non-negative orthant [48]. This coordinate transformation of

network to cone can also be used for stability analysis [30].

The flux cone of the Sel´kov model (Network 3.1) is spanned by the three extreme

currents

E1 =
(

0 1 1 0 0
)
,

E2 =
(

0 0 0 1 1
)
,

E3 =
(

1 0 1 1 0
)
.

3.3 Computation of Jacobian Matrix Using Convex Coor-

dinates

The basic idea to transform the Jacobian coordinates from concentration space to reac-

tion space is described by Gatermann et al. in [30]. As the temporal behavior of chemical

species during a reaction sequence with mass action kinetics can also be given by the

Equation 3.6, where ϕ contains the pure monomials of v(x, k) without the parameters

ki

ẋ = Sv(x, k) = Sdiag(k)ϕ, (3.6)

and by defining some rescalings they proved that the new Jacobian matrix is the product

of the Jacobian of the flux vector in reaction space Z and the diagonal matrix of the

inverse of the concentrations.

Jac(x) = Ĵac(Z)diag(1/x1, ..., 1/xm), (3.7)

with Ĵac(Z) = Sdiag(Z)Kt.

If x is a steady state we transform into the convex coordinates ji with Z =
∑

i jiEi.
Finally this yields the Jacobian

Jac(x) = Ĵac(j)diag(1/x1, ..., 1/xm), (3.8)
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with Ĵac(j) = Sdiag(
∑

i jiEi)Kt.

Since the most information on stability is included in the first three matrix and the

sign pattern of Jac(x) is the same as the sign pattern of Ĵac(j) [72], it is convenient to

decompose the Jacobian matrix and to consider only the matrix Ĵac(j) which is depend

only on the convex parameters. The Jacobian in convex coordinates of the Sel´kov

model is:

Ĵac(j) =

(
j3 − j1 j3

−2j3 −j2 − j3

)
,

and

Jac(x) =

(
j3−j1
x1

j3
x2

−2j3
x1

−j2−j3
x2

)
.

3.4 Algebraic Data for Graph-Theoretic Representation of

the Reaction Systems

Based on the notion that reaction networks can be modelled using differential equations,

the rate of change of every metabolite ẋ in such a network can be represented as

ẋ = Y IaIkΨ(x), (3.9)

where IkΨ(x) denotes the vector of monomials describing the flux of the reactions and

Y Ia denotes the stoichiometric matrix. Let the network has l reactions and m species.

Here we follow the notation and terminology used in [29–31]. The above differential

equation can be represented by the use of two graphs, a weighted directed graph and a

bipartite undirected graph. In addition to this, both sides of a reaction (i.e. products

and reactants) are arranged in form of complexes (complex may consists of a single

species or combination of species). Let the network has n complexes. In the directed

graph, there exists directed edge between the two complexes describing a reaction. The

edge weight is the rate constant of the reaction. From this graph two incidence matrices

are defined Ia and Ik. The Ia is a n-by-l matrix and has the information whether the

complex is present as a reactant (entry −1) or product (entry 1) vertex of the graph. The

Ik is a l -by-n matrix that has non zero entries only for initial vertices where the entry

is the weight of the edge which is the rate constant of the reaction. Each complex can
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be mapped with a monomial where its exponent is its stoichiometry and Ψ(x) provides

this mapping information. The following matrices represent the Ia matrix and Ik of the

Sel´kov model (Network 3.1).

Ia =



−1 0 0 0 0

1 0 0 0 0

0 −1 1 −1 1

0 1 −1 0 0

0 0 0 1 −1



Ik =



k1 0 0 0 0

0 0 k2 0 0

0 0 0 k3 0

0 0 k4 0 0

0 0 0 0 k5



The bipartite graph contains the set of complexes and the set of chemical species as

vertices. If the complex contains a species then there exists an edge from that complex

to the chemical species with the edge weight equals to the stoichiometry of the chemical

species. The adjacency matrix of this graph is denoted by Y matrix (m-by-n) (in

Equation 3.9). The Y matrix of the Network 3.1 is:

Y =

(
2 3 0 1 0

1 0 0 0 1

)

Additionally, the number of linkage class which can be utilized for example for the

computation of deficiency, can be found from the weighted directed graph i.e. it is the

set of connected complexes. Further details concerning complexes and linkage classes

can be found in [25]. The benefit of this graph-theoretic approach leads to the solutions

having a graph theoretic meaning [31] and stability analysis [30].

3.5 Deficiency Value of the Reaction Network

Deficiency is a non negative integer for a reaction network which is an invariant of the

network. In this context, two well known theorems are available which are Deficiency
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Zero and Deficiency One theorems respectively [25]. The first step in this direction is

the computation of this deficiency value which is given by following formula:

δ = n− t− s (3.10)

where n is the number of complexes in the network, t is number of linkage classes, s is

the rank of network. In addition, to this the deficiency can also be computed using the

formula from the graph theoretic representation [29]:

δ = Rank(Ia)−Rank(Y Ia) (3.11)

This deficiency value enables to classify the reaction networks into the kind of dynamics

they can possibly exhibit.

3.6 PoCaB : A Software Infrastructure to Explore Alge-

braic Methods for (Bio)-Chemical Reaction Networks

In this section we describe a general framework called PoCaB to generate relevant alge-

braic entities out of the (bio)-chemical network description such as stoichiometric ma-

trices and their factorizations, kinetic matrices, extreme currents, polynomial systems,

deficiencies and differential equations. We also use PoCaB to extract and compute

algebraic entities form different biological models obtained from two publicly available

databases and provide the results as large derived database2 of examples that can be used

by people working in computer algebra to benchmark their algorithms. The framework

can serve as a manual for chemists and biologists to apply diverse algebraic methods

in a systematic manner and interpret the results. This will also help us to formulate

subsequent computational questions on the applicability, pros and cons of such methods

to analyse the large and diverse datasets.

3.6.1 Representation of Reaction Networks

To enable the computational analysis of a chemical networks the reactions should be

presented in a format that enables its accurate representation and allows the compu-

tational extraction of needed data. For our computations we use the XML based and

in biological research widely used format SBML (System Biology Markup Language) to

communicate biochemical reaction network consisting of metabolic pathways, signaling

2available at http://pocab.cg.cs.uni-bonn.de/

http://pocab.cg.cs.uni-bonn.de/
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Figure 3.2: Components of SBML file

pathways, gene regulation pathways, etc and is also software independent (Fig. 3.2).

Further details about the various specifications can be found in the SBML tutorial [40].

3.6.2 Database of Algebraic Entities

3.6.2.1 Data Source

Biomodels: We selected 270 biochemical reaction networks from Biomodels database in

SBML. These models can be browsed by name of the disease, biological process and

molecular complex.

KEGG: The KEGG database is another repository of biological pathways. The KEGG

pathways can be downloaded in KGML format. For our analysis we downloaded a

precompiled list of KEGG files in SBML format3. We selected 103 models with organism

code hsa (Homo sapiens). In addition, if downloaded in KGML format the files can be

converted to SBML using KEGG translator [99].

However, our framework is not restricted to these databases but can be used for all

sources that provide data in SBML form.

3.6.2.2 Software Workflow and Components

Pre-processing Step: From the datasource (as described in Sect. 3.6.2.1) the net-

works were downloaded. Although the models in these databases are annotated and

curated, still as a part of general framework we have a possibility to balance the re-

actions. It removes stoichiometric inconsistencies present in the model [34] and works

only when the annotation of model is correct and the chemical formula of species can

be found. This works on the principle of mixed integer linear programming (MILP)

[34]. This is done automatically using the Subliminal toolbox [82] which implements the

3downloaded from http://www.systems-biology.org/resources/model-repositories/
000275.html

http://www.systems-biology.org/resources/model-repositories/000275.html
http://www.systems-biology.org/resources/model-repositories/000275.html
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above steps. We present the results for this only for Biomodels database. However, this

step is optional and we report results with and without balancing.

Main Steps:

1. The files are parsed by a Java based program to generate the Y , Ia , stoichiometric

matrix (Y Ia) and kinetic order matrix along with the basic information about the

model concerning the number of species, reactions, complexes, rank of stoichio-

metric matrix and nullity of stoichiometric matrix respectively. While computing

the various matrices the reversible reactions are split into forward and backward

reaction, it increases the dimension of the stoichiometric matrix by one for every

reversible reaction. To parse the SBML program using Java, the JSBML library

is used [21]. The graph theoretic representation of the network (cf. Sect. 3.4) was

done using JGraphT Java Library4.

2. The deficiency of the networks were computed using the ERNEST library [74],

which is a Matlab based program. This program also splits the reversible reactions

into two separate reactions, so the deficiency value can be directly computed from

the SBML file. In addition to this the tool also tests whether the Deficiency zero or

one theorems are applicable and presents the results. We report only the deficiency

value and for additional conditions for deficiency theorems, the ERNEST can be

used e.g. weak reversibility, linkage classes. The deficiency can also be calculated

from Equation 3.11 and is found to be same as ERNEST for all our files.

3. The stoichiometric matrix acts as an input to the tools allowing the polyhedral

computations e.g. polco and polymake. the Java based tool polco5 implements

the double description algorithm [84] to compute the extreme currents. polymake6

is a computer algebra tool that was written in Perl and C++ and designed for the

algorithmic treatment of polytopes and polyhedra [33]. One of the advantages of

using this tool is the different choice of algorithms for convex hull computation.

Further theoretical exploration into different properties of polyhedrons can be

found in [101]. The output is a matrix (o-by-l) with o denoting the number of

extreme currents.

4. The reaction network, can be represented by inequalities and equations. One ben-

efit of this representation is that different constraints can be put on individual

reactions. In biology, the networks operate under different constraints[56], one

4http://www.jgrapht.org
5http://www.csb.ethz.ch/tools/polco
6http://www.polymake.org/doku.php

http://www.jgrapht.org
http://www.csb.ethz.ch/tools/polco
http://www.polymake.org/doku.php
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important constraint is the effect of gene regulation in which some genes are dif-

ferentially expressed [14]. The changes in gene expression levels affect the reaction

rates as the reactions are governed by enzymes which are gene products. One

of the ways to model this phenomenon is to use inequalities [87]. The following

formalism illustrates the above points:

Y IaIkΨ(x) = 0 (3.12)

IkΨ(x) ≥ 0 (3.13)

IkΨ(x) ≤ βi (i = 0, 1, . . . , l − 1) (3.14)

where l denotes the number of reactions. Equation 3.12) denotes the steady state,

while Equation (3.14) denotes the constraint on the flux of a reaction and hence

is optional. In the current analysis we have not accounted for any constraints, so

in a way the flux cone computed is somewhat maximal where all reactions occur

at their maximal rate. We systematically generated this type of file for all the

examples (also a part of our derived database) so that it can be communicated to

other computer algebra programs e.g. polymake. This file is also directly imported

into polymake.

3.6.2.3 Content of Database

1. The generated Y, Ia, IK , and IKΨ(x), stoichiometric matrices (Y Ia), kinetic order

matrix, extreme currents along with the polynomial system and the differential

equation files are stored as text files using delimiter (,) to separate the elements of

the matrices.

2. In the above files mainly the IK , IKΨ(x), polynomial system and differential equa-

tion files, the species name are mapped to certain variable. The rate constants also

mapped to corresponding reactions where they occur. This mapping information

is present as a Mapping file. This file also contains the information about the

reactions and the species involved in the network.

3.6.2.4 Statistical Summary

We described a database having algebraic entities derived from biological reaction net-

works. One important feature of this database is that it is extensible, for instance, the

examples can be annotated with stability information, steady states, oscillations, etc.

The matrices, flux cone and differential equations which were computed provide the ba-

sic framework for such kind of advanced analysis. From the results it can be seen that
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the number of extreme currents does not always correspond to the size of the network

as seen in Biomodels database. Also the size of network doesn’t relate to the deficiency

also pointed out in [25]. But there are also some models displaying high deficiency with

large dimensions and there is a need of improved algorithms or new approaches to ad-

dress such systems. It can be seen around 71.1% (unbalanced) and 77.1 % (balanced)

models in Biomodels correspond to deficiency one or zero. Similarly 88 % (unbalanced)

of KEGG models correspond to this criteria, this implies the existing deficiency theo-

rems are applicable to a large extent. The effect of balancing the reactions can also be

seen in Table 3.1, there may be changes in the number of species and reactions during

the balancing and this affects the number of extreme currents and deficiency compu-

tation. As our derived database contain diverse examples, it provides a corpus to test

and benchmark different algebraic methods and designate the methods working for a

particular class of examples. This will eventually lead to partitioning the database into

classes which may be suitable for some methods and unsuitable for others. A natural

partitioning occurs for examples with deficiency zero or one and there exists theorems to

apply on such examples. Additional type of partitioning can be based on the dimension

of various matrices, number of extreme currents and one such possibility is presented in

Table 3.1 which is based on the number of reactions upto 10 and 50. The identifier used

in the source database is same as that of our database (name of the file), which will

aid in linking biological information along with the networks, so the theoretical results

can be corroborated with real biological phenomena. As the steps described to create

such a database are relatively simple so, it will enable chemists/biologists to use it to

develop some hypotheses about their future experiments. Furthermore, to simplify this

there exists a tool called CellDesigner [26] with graphical interface to encode reaction

networks and export them to SBML format. From a biological perspective we intend to

understand biological function from a set of reactions but there is no consensus about

the boundary of system under consideration and it varies widely among the researchers.

So, for the same function there may exist several competing models and the goal should

be then to discriminate models by finding a model/set of models which are more close to

reality. This exercise of model discrimination can be also performed with our database

as the source database specifically the Biomodels contain related models for a biolog-

ical property and it will be desirable to see in future if the algebraic techniques can

distinguish them from others.
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Table 3.1: Summary of results in Biomodels and KEGG database

UnBalanced Balanced

Biomodels KEGG Biomodels

Number of Models 270 103 236

Maximum number of reactions* in a model 194 132 194

Maximum number of species in a model 120 139 120

Number of models with reactions upto 10 94 48 117

Number of models with reactions upto 50 237 97 213

Maximum number of EC* in a model 5130 282 5130

Dimension of SM* with maximum EC 17× 48 139× 132 19× 48

Models with deficiency = 0 159 (58.8%) 80 (77.6%) 154 (65.2%)

Models with deficiency = 1 33 (12.2%) 11 (10.6%) 28 (11.8%)

Highest Deficiency 63 24 63

SM with highest deficiency 36× 94 139× 132 39× 94

Maximum rank of SM 94 67 94

Maximum nullity of SM 100 65 100

Number of models with zero EC 24 (8.88%) 38 (36.8%) 50 (21.1%)

*The reactions here refer to columns of SM. SM = Stoichiometric matrix.

EC=Extreme Currents.



Chapter 4

Detection of Hopf Bifurcations

Using Convex Coordinates

In this chapter, we present efficient algorithmic methods to detect Hopf bifurcations in

(bio)-chemical reaction systems with linear constraints. Hence they yield information

on local oscillatory behavior of these systems. Our methods use the representation of

the systems on convex coordinates arising from stoichiometric network analysis. One of

our method reduces the problem of determining the existence of Hopf bifurcation fixed

points to a first-order formula over the ordered field of the reals that then can be decided

using packages from computational logic. The second method uses ideas from tropical

geometry to formulate more efficient approach that is incomplete in theory but worked

very well for the complex models that we have attempted.

4.1 Hopf Bifurcations and Invariant Manifolds

4.1.1 Conditions for Existence of Hopf Bifurcations

Consider a parameterized autonomous ordinary differential equation of the form ẋ =

f(u, x) with a scalar parameter u. By a classical result of Hopf, at the point (u0, x0),

this system exhibits a Hopf bifurcation, i. e. an equilibrium transforms into a limit cycle,

if f(u0, x0) = 0 and if the Jacobian Dxf(u0, x0) has a simple pair of purely imaginary

eigenvalues and no other eigenvalues with zero real parts [37, Thm. 3.4.2].1 The proof of

this result is based on the center manifold theorem. From a physical point of view, the

1We ignore here the non-degeneracy condition that this pair of eigenvalues crosses the imaginary axis
transversally, as it is always satisfied in realistic models.

25
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most interesting case is that the unstable manifold of the equilibrium (u0, x0) is empty.

However, for the mere existence of a Hopf bifurcation, this assumption is not necessary.

In [23], it is shown that for a parameterized vector field f(u, x) and the autonomous

ordinary differential system associated with it, there is a semi-algebraic description of the

set of parameter values for which a Hopf bifurcation (with an empty unstable manifold)

occurs. Specifically, this semi-algebraic description can be expressed by the following

first-order formula:

∃x(f1(u, x) = 0 ∧ f2(u, x) = 0 ∧ · · · ∧ fn(u, x) = 0

∧ an > 0 ∧ ∆n−1(u, x) = 0 ∧ ∆n−2(u, x) > 0 ∧ · · · ∧ ∆1(u, x) > 0) (4.1)

In this formula an is (−1)n times the Jacobian determinant of the matrix Df(u, x), and

∆i(u, x) is the ith Hurwitz determinant of the characteristic polynomial of the same

matrix Df(u, x).

The proof uses a formula of Orlando [54], which is also discussed in several monographs,

e.g. in [27] and [59]. However, a closer inspection of the two parts of the proof of [23,

Theorem 3.5] shows the following: for a fixed point (given in possibly parameterized

form) the condition that there is a pair of purely imaginary eigenvalues is given by the

condition ∆n−1(u, x) = 0 and the condition that each other eigenvalue has a negative

real part is given by ∆n−2(u, x) > 0 ∧ · · · ∧ ∆1(u, x) > 0. This statement (without

referring to parameters explicitly) is also contained in [100, Theorem 2], in which a

different proof technique is used.

Therefore, if we drop the condition for Hopf bifurcation points that they have empty

unstable manifolds, a semi-algebraic description of the set of parameter values for which

a Hopf bifurcation occurs for the system is given by the following formula:

∃x(f1(u, x) = 0 ∧ f2(u, x) = 0 ∧ · · · ∧ fn(u, x) = 0

∧ an > 0 ∧ ∆n−1(u, x) = 0) (4.2)

Notice that when the quantifier elimination procedure yields sample points for exis-

tentially quantified formulae—as is the case for the virtual-substitution based method

provided by Redlog—then the condition ∆n−2(u, x) > 0 ∧ · · · ∧ ∆1(u, x) > 0) can be

tested for the sample points later on, i.e. one can then test whether this Hopf bifurcation

fixed point has an empty unstable manifold.
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Example: Lorenz system The famous “Lorenz system” [37, 49, 62] is given by the

following system of ODEs:

d

dt
x(t) = α (y(t)− x(t)) (4.3)

d

dt
y(t) = r x(t)− y(t)− x(t) z(t) (4.4)

d

dt
z(t) = x(t) y(t)− β z(t) (4.5)

It is named after Edward Lorenz at MIT, who first investigated this system as a simple

model arising in connection with fluid convection.

After imposing positivity conditions on the parameters the following answer is obtained

using a combination of Redlog and formula simplification using slfq for the test of a

Hopf bifurcation fixed point:

(−α2 − αβ + αr − 3α− βr − r = 0 ∨ −αβ + αr − α− β2 − β = 0) ∧

−α2 − αβ + αr − 3α− βr − r ≤ 0 ∧

β > 0 ∧ α > 0 ∧ −αβ + αr − α− β2 − β ≥ 0 (4.6)

When testing for Hopf bifurcation fixed points with empty unstable manifolds, we obtain

the following formulae:

α2 + αβ − αr + 3α+ βr + r = 0∧

αr − α− β2 − β ≥ 0 ∧

2α− 1 ≥ 0 ∧ β > 0 (4.7)

These two formulae are not equivalent, and therefore, for the case of the Lorenz system

not all Hopf bifurcation fixed points have unstable empty manifolds.

4.1.2 Reduction to Invariant Manifolds

As already discussed in Sect. 2.1.2, chemical reaction systems with linear conservation

laws can easily be generalized to pseudolinear ordinary differential equations. However

the existence of these constraints makes the Jacobian matrices singular and thus leads to

incorrect computations of Hopf bifurcations. We present here a method to tackle these
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singularities by reduction to invariant manifolds. The following material represents a

slight generalization of results already well-known for systems in reaction kinetics (see,

e. g. [32] and references therein).

If a dynamical system admits invariant manifolds, we may consider a system of lower

dimension by reducing to such a manifold. However, in general it may not be possible to

explicitly derive the reduced system. Nevertheless, for many purposes, such as stability

or bifurcation analysis, one can easily reduce to smaller matrices. The following result

describes such a reduction process in the linear case. It represents an elementary exercise

in basic linear algebra. To avoid the inversion of matrices, we consider Rn here to be a

Euclidean space with respect to the standard scalar product.

Lemma 4.1. Let A be the matrix of a linear mapping Rn → R
n for the standard basis,

and let U ⊆ Rn be a k-dimensional A-invariant subspace. If the columns of the matrix

W ∈ Rn×k define an orthonormal basis of U , then the restriction of the mapping to the

subspace U with respect to the basis defined by W is given by the matrix W TAW ∈ Rk×k.

Proof. Considered as a linear map Rk → U ⊆ Rn, the matrix W defines a parametriza-

tion of U with inverse W T : U → R
k. Indeed, W TW = 1k, since the columns

of W are orthonormal. If v ∈ U , then v = Ww for some vector w ∈ R
k and

thus W Tv = (W TW )w = w implying that (WW T )v = Ww = v, i. e. the matrix

WW T ∈ Rn×n describes idU . By standard linear algebra, the matrix W TAW therefore

describes the restriction of A to U .

As a simple application, we note that in the case of a pseudolinear system ẋ = Nψ(x)

the stability properties of an equilibrium xe of the pseudolinear system ẋ = Nψ(x) are

determined by the eigenstructure of the reduced Jacobian

J = W TNJac
(
ψ(xe)

)
W ∈ Rk×k

where the columns of W form an orthonormal basis of imN . If parameters are present,

then for a bifurcation analysis the eigenstructure of this matrix and not of the full

Jacobian (which is an n-dimensional matrix), is relevant.

4.1.3 Stability and Bifurcations for Semi-Explicit DAEs

The considerations indicated in the previous section can be easily extended to more

general situations, as they appear in the theory of DAEs. For simplicity (and because
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it suffices for our purposes), we assume that we are dealing with an autonomous system

in the semi-explicit form

ẋ = f(x) , 0 = g(x) (4.8)

where f : Rn → R
n and g : Rn → R

n−k. Furthermore, we assume that the above

system of ordinary differential equations is involutive,2 i. e. that it already contains all

its integrability conditions. This assumption is equivalent to the existence of a matrix

valued function M(x) such that

Jac
(
g(x)

)
· f(x) = M(x) · g(x) . (4.9)

Therefore, one may say that the components of g are weak conservation laws, as their

time derivatives vanish modulo the constraint equations g(x) = 0.

Let xe be an equilibrium of (4.8), i. e. we have f(xe) = 0 and g(xe) = 0. We introduce

the real matrices

A = Jac
(
f(xe)

)
∈ Rn×n , B = Jac

(
g(xe)

)
∈ R(n−k)×n .

For simplicity, we assume in the following that the matrix B has full rank (or, in

other words, that our algebraic constraints are independent) and thus that kerB is

a k-dimensional subspace. The proof of the next result clearly demonstrates why the as-

sumption that the system (4.8) is involutive is important, as the relation (4.9) is crucial

for it.

Lemma 4.2. The subspace kerB is A-invariant.

Proof. Set M̄ = M(xe). Differentiating (4.9) and evaluating the result at x = xe

yields the relation BA = M̄B. Thus, if v ∈ kerB, then also Av ∈ kerB because

B(Av) = M̄(Bv) = 0.

In the case that (4.8) is a linear system, i. e. we may write f(x) = Ax and g(x) = Bx

by assuming that xe = 0 , we can easily revert the argument in the proof of Lemma 4.2

and thus conclude that now (4.8) is involutive, if and only if kerB is A-invariant.

Proposition 4.3. Let the columns of the matrix W ∈ Rn×k define an orthonormal basis

of kerB. The linear stability of the equilibrium xe is then decided by the eigenstructure

of the matrix W TAW .

Proof. Linearization around the equilibrium xe yields the associated variational system

ż = Az, Bz = 0. We complete W to an orthogonal matrix Ŵ by adding some further

2See [70] for an introduction to the theory of involutive systems.
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columns and perform the coordinate transformation z = Ŵy. This yields the system

ẏ = Ŵ TAŴy, BŴy = 0. Because the columns of W span kerB by construction, the

second equation implies that only the upper k components of y may be different from

zero. Furthermore, Lemma 4.2 implies that the matrix Ŵ TAŴy is in block triangular

form with the left upper k × k block given by W TAW . If we denote the upper part of

y by ỹ, we thereby obtain the equivalent reduced system ˙̃y = W TAW ỹ which implies

our claim.

Let v ∈ Rk be a (generalized) eigenvector of the reduced matrix W TAW , i. e. we have

(W TAW−λ1k)`v = 0 for some ` > 0 and λ ∈ R. BecauseW TW = 1k andWW T defines

the identity map on kerB (see the proof of Lemma 4.1), we obtain W T (A−λ1n)`Wv = 0

implying that Wv ∈ Rn is a (generalized) eigenvector of A for the same eigenvalue λ,

since the matrix W T defines an injective map. Therefore every eigenvalue of the reduced

matrix W TAW is also an eigenvalue of A.

It is also not difficult to interpret the remaining (generalized) eigenvectors of A. By

construction, they are transversal to the constraint manifold defined by g(x) = 0 and

they describe whether this manifold is attractive or repulsive for the flow of the uncon-

strained system ẋ = f(x). While this is for example, of considerable importance to the

numerical integration of (4.8), as it describes the drift off the constraint manifold arising

from rounding and discretization errors, it has no influence on the stability of the exact

flow of (4.8).

The irrelevance of the remaining (generalized) eigenvectors of A also becomes apparent

from the following argument. Recall that the differential part of (4.8) defines what

is often called an underlying differential equation for the DAE, i. e. an unconstrained

differential equation which possesses for initial data satisfying the constraints the same

solution as the DAE. Consider now the modified system obtained by adding to the right

hand side of the differential part an arbitrary linear combination of the algebraic part.

It is easy to see that the arising DAE (which simply has a different underlying equation)

ẋ = f(x) + L(x)g(x) , 0 = g(x) ,

where L(x) is a matrix valued function of appropriate dimensions, possesses exactly the

same solutions as (4.8); in particular xe is still an equilibrium. If we proceed as above

with the linear stability analysis of xe, the matrix B remains unchanged, whereas A is

transformed into the modified matrix Ã = A+ L̄B with L̄ = L(xe). Obviously, kerB is

also Ã-invariant, and furthermore W T ÃW = W TAW , if the columns of W form a basis

of kerB as in Proposition 4.3.
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Therefore, all (generalised) eigenvectors lying in kerB are equal for A and Ã, so the sta-

bility of xe is not affected by this transformation. However, the remaining (generalised)

eigenvectors may change arbitrarily. One can for example show that by a suitable choice

of the matrix L one may always achieve that the constraint manifold becomes attractive.

4.2 HoCoQ: An Algorithm for Computing Hopf Bifurca-

tions using Convex Coordinates and Quantifier Elimi-

nation

In this section, we present an algorithmic approach for computing the Hopf bifurcations

in chemical systems using convex coordinates instead of concentration coordinates. It is

based on two methods already presented in this thesis: stoichiometric network analysis

and manifold reduction for systems with conservation laws. It also makes fundamental

use of real quantifier elimination on a real closed field. Figure 4.1 elucidates the workflow

of the algorithm, which is explained in detail in the following subsections and in the

pseudo-code presented in Algo. 4.2.5.

Figure 4.1: HoCoQ method
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4.2.1 Pre-processing

To begin the analysis of a chemical network in convex coordinates we need two significant

pieces of information namely stoichiometric matrix S and the kinetic K. As already

mentioned in Sect. 3.6 we use the SBML-format for the presentation of the chemical

reaction networks and as a pre-processing step we use our software PoCaB to generate

the necessary algebraic data.

4.2.2 Polyhedral Computations

The advantage of stoichiometric network analysis is the ability to analyze subnetworks

separately instead of analyzing the whole complex network. The first step in the analysis

is the computation of extreme currents. We must therefore include algorithms that are

capable of dealing with polyhedral computations. There are several software packages for

such computations and in computational geometry in particular. We use in our current

implementation two efficient tools, namely polco and polymake (see Sect. 3.6.2.2).

Enumerating extreme currents E is the basis for simplifying the analysis of chemical net-

works by decomposing the network into minimal steady-state generating subnetworks.

The influence of a subnetwork on the full network dynamics (i.e., how much the given

subnetwork plays a part in creating a certain steady state) depends on the convex pa-

rameters ji [12, 20]. From a chemical perspective, Hopf bifurcations occur mostly in the

spaces formed by two or three adjacent extreme currents, i.e detecting Hopf bifurcations

in subsystems can be restricted to the subsystems that are formed by combining 2-faces

or 3-faces of the flux cone. As step 3 of our algorithms, we compute all subsystems gen-

erated by the 2- and 3-faces using polymake. Our algorithm can also handle d-faces

for d > 3 yielding a complete method in theory, but the restricted case of d = 2, 3 will

be of the greatest practical interest.

4.2.3 Computation of the Hopf Condition in Convex Coordinates

The central task of this approach is to formulate a condition for the existence of Hopf

bifurcations for each computed subsystem using convex coordinates and based on the

condition for the existence of Hopf bifurcations with empty unstable manifolds. We

first compute the Jacobian in reaction space using convex parameters, if the Jacobian is

singular, we reduce the subsystem to the invariant manifold, we compute then a semi-

algebraic formula expressing the condition for the occurrence of Hopf bifurcations, and

finally, we generate the first-order existentially quantified formula.
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4.2.3.1 Computation of the Jacobian in Reaction Space

As already demonstrated in Sect. 3.3, the transformation of the jacobian from concen-

tration space into reaction space yields the following equation:

Jac(x) = Ĵac(j)diag(1/x1, ..., 1/xm), (4.10)

with Ĵac(j) = Sdiag(
∑

i jiEi)Kt.

4.2.3.2 Jacobian on the Reduced Manifold

Conservation laws in a (bio)-chemical reaction system give rise to a singularity of the

Jacobian of the entire polynomial system that presents the whole (bio)-chemical sys-

tem and also of some Jacobian matrices of the computed subsystems. To compute the

Hopf condition the Jacobian matrices should be transformed into nonsingular matrices.

Therefore, we reduce them by computing the Jacobian Jaci on the reduced manifolds

using the method presented in sect. 2.1.2.

4.2.3.3 Semi-Algebraic Description of Hopf Bifurcations

We compute the Hopf condition based on the Hurwitz-Hopf criterion. Therefore, we

compute the Hurwitz matrix and the Hurwitz determinants ∆i. The Hopf condition

of a subsystem can be expressed in reaction space using the semi-algebraic description

shown in [23] by the following first-order formula:

∃x(an > 0 ∧ ∆n−1(j, x) = 0 ∧ ∆n−2(j, x) > 0 ∧ · · · ∧ ∆1(j, x) > 0) (4.11)

where n denotes the number of species in the reaction network.

Our method then involves the solution of these existentially quantified formulae, which

can be computed using general packages for quantifier elimination on real closed fields

yielding an answer of true or false, or packages to test for the satisfiability of the existen-

tially quantified formulae yielding an answer of satisfiable (sat) or unsatisfiable (unsat).

4.2.4 Integration of Computational Logic Tools

We integrated into our computations all the computational logic tools listed in Sect.

2.2, which are all capable of solving formula (4.11). However, in this thesis, we present
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only results obtained with the freely available tools Redlog and Z3, which provided

the best computation time. Redlog returns true and Z3 returns sat if the condition

for the occurrence of a Hopf bifurcation is satisfied. If the condition is not satisfied, they

return false and unsat, respectively. Because of the modular structure of our approach,

we will be able to integrate other packages—either elements of commercial systems or

novel developments—easily.

4.2.5 Pseudo-Code of the HoCoQ Algorithm

Alg. 1 summarizes the steps discussed above and outlines our method HoCoQ in an

algorithmic fashion.

Algorithm 1: HoCoQ Method for Computing Hopf Bifurcations in Reaction Space.

Input: A chemical reaction network N with dim(N ) = n.

Output: The algorithm returns a statement concerning the existence of a Hopf
bifurcation

1 begin
2 R:= false;

3 generate the stoichiometric matrix S and kinetic matrix K from the reaction
network

4 compute the minimal set E of the vectors generating the flux cone

5 for d = 1 . . . n do
6 compute all d-faces (subsystems) {Ni}i of the flux cone

7 for each subsystem Ni do
8 compute from K, S the transformed Jacobian Jaci of Ni in terms of convex

coordinates ji;
9 if Jaci is singular then

10 compute the reduced manifold of Jaci calling the result also Jaci

11 compute the characteristic polynomial χi of Jaci;

12 compute the Hurwitz determinants of χi;

13 compute the Hopf existence condition for Ni;
14 generate the first-order existentially quantified formula Fi expressing the Hopf

existence condition, the constraints on the concentrations and the constraints
on the cone coordinates;

15 reduce and simplify the generated formula Fi
16 R:= R ∨ Fi

17 return R
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4.2.6 Computation of Examples using HoCoQ Method

We have applied our algorithm HoCoQ on various chemical reaction networks that have

been discussed in various monographs and for which the existing algorithms for the

symbolic computations approach fails. We were able to detect the existence of Hopf

bifurcations in some of them, which are listed below. We thereby demonstrate the

results provided by Redlog and Z3.

4.2.6.1 Phosphofructokinase Reaction

As a first example, we consider the main example used in the hand computation pre-

sented in [30]—the phosphofructokinase reaction. There are 3 chemical species and 7

reactions. S1 denotes the product Fructose-1,6-biphosphate, S2 denotes the reactant

Fructose-6-phosphate, and the extension S3 stands for another intermediate that is in

equilibrium with Fructose-1,6-biphosphate. The network (4.12) represents the phospho-

fructokinase reaction.

2S1 + S2
k1−→ 3S1

S2
k5−⇀↽−
k4

0
k2−⇀↽−
k3

S1
k6−⇀↽−
k7

S3. (4.12)

This chemical reaction system yields the following stoichiometric matrix S1 and kinetic

matrix K1:

S1 =


1 1 −1 0 0 −1 1

−1 0 0 1 −1 0 0

0 0 0 0 0 1 −1



K1 =


2 0 1 0 0 1 0

1 0 0 0 1 0 0

0 0 0 0 0 0 1



The flux cone is spanned by the following four vectors (extreme currents):
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E1 =
(

0 1 1 0 0 0 0
)
,

E2 =
(

0 0 0 1 1 0 0
)
,

E3 =
(

0 0 0 0 0 1 1
)
,

E4 =
(

1 0 1 1 0 0 0
)
.

This problem has previously been investigated using its formulation in reaction coor-

dinates in [80]. Using currently available quantifier elimination packages, the problem

could not be solved in its parametric form. Only when using existential closure on the

parameters could it be shown by successful quantifier eliminations performed in Redlog

that there exist positive parameters for which there exists a Hopf bifurcation fixed point

in the positive orthant. When replicating the experiments we found that the situation

described in [80] still applies.

The results on the subsystems involving 1-faces, 2-faces, 3-faces, and 4-faces are sum-

marized in Table 4.1. A Hopf bifurcation can be found using the 1-face E4 and most of

the subsystems extending it in less than one second. While Z3 provides no results for

the 4-face E1E2E3E4 after 10000 seconds computation time, Redlog requires only a few

seconds of computation time to find a Hopf bifurcation fixed point.

Table 4.1: Computation of Hopf bifurcations in the phosphofructokinase reaction
using HoCoQ algorithm

Subsystem
Redlog Z3

Result Time(s) Result Time(s)

E1 false < 1 unsat < 1

E2 false < 1 unsat < 1

E3 false < 1 unsat < 1

E4 true < 1 sat < 1

E1E2 false < 1 unsat < 1

E1E3 false < 1 unsat < 1

E1E4 true < 1 sat < 1

E2E3 false < 1 unsat < 1

E2E4 true < 1 sat < 1

E3E4 true < 1 sat < 1

E1E2E3 false < 1 unsat < 1

E1E2E4 true < 1 sat < 1

E1E3E4 true 1 sat < 1

E2E3E4 true 2.5 sat < 1

E1E2E3E4 true 6 no result > 10000
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4.2.6.2 Enzymatic Transfer of Calcium Ions

Our second example is a biochemical model that was investigated in [30]—the enzymatic

transfer of calcium ions, Ca++, across cellmembranes. It includes as shown in network

(4.13) six reactions and four species, where S1 stands for cytosolic Ca++, S2 stands for

Ca++ in the endoplasmic reticulum, S3 denotes the enzyme catalyzing the transport of

Ca++ into the endoplasmic reticulum, and S4 denotes the enzyme-substrate complex.

This system is autocatalytic insofar as the concentration of cytosolic Ca++ stimulates

the release of stored Ca++ from the endoplasmic reticulum [30].

0
k12−−⇀↽−−
k21

S1

S1 + S2
k43−−→ 2S1

S1 + S3
k56−−⇀↽−−
k65

S4
k76−−→ S2 + S3 (4.13)

The following stoichiometric matrix S2 and kinetic matrix K2 represent the kinetic de-

scription of the network (4.13).

S2 =


−1 1 1 1 −1 0

0 0 −1 0 0 1

0 0 0 1 −1 1

0 0 0 −1 1 −1



K2 =


1 0 1 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 1



E1 =
(

1 1 0 0 0 0
)
,

E2 =
(

0 0 1 0 1 1
)
,

E3 =
(

0 0 0 1 1 0
)
.

For this system the Jacobian matrix is singular—therefore, in the classical sense there

are no Hopf bifurcations. However, in the reduced system we find that there are Hopf

bifurcations—and we can compute them in concentration space as well as using convex

coordinates. The results and computation times are summarized in Table 4.2.
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Table 4.2: Computation of Hopf bifurcations in the model ”enzymatic transfer of
calcium ions” using HoCoQ algorithm

Subsystem
Redlog Z3

Result Time(s) Result Time(s)

E1 false < 1 unsat < 1

E2 false < 1 unsat < 1

E3 false < 1 unsat < 1

E1E2 true < 1 sat < 1

E1E3 false < 1 unsat < 1

E2E3 false < 1 unsat < 1

E1E2E3 true 11 no result > 10000

4.2.6.3 Model of Calcium Oscillations in the Cilia of Olfactory Sensory Neu-

rons

As the next example, we consider the model for calcium oscillations in the cilia of olfac-

tory sensory neurons discussed in [64]. The underlying mechanism of this model is based

on direct negative regulation of cyclic nucleotide-gated channels by calcium/calmodulin

and does not require any autocatalysis such as calcium-induced calcium release. Reidl

et al. presented a mathematical model for this example in [64] and gave predictions for

the parameter ranges in which oscillations should be observable. This model contains a

fractional exponent ε, as shown in the following differential equations.

d

dt
x = k1 − k5xz

d

dt
y = k2x− 4k3y

2 + 4k4z − k6y
ε

d

dt
z = k3y

2 − k4z

The model yields the following stoichiometric matrix S3 and kinetic matrix K3:

S3 =


1 0 0 0 −1 0

0 1 −4 4 0 −1

0 0 1 −1 0 0


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K3 =


0 1 0 0 1 0

0 0 2 0 0 ε

0 0 0 1 1 0


The representative vectors of the flux cone of this model are:

E1 =
(

0 1 0 0 0 1
)
,

E2 =
(

0 0 1 1 0 0
)
,

E3 =
(

1 0 0 0 1 0
)
.

In concentration space the solution of a quantifier elimination problem is valid only for

integer values of the parameter ε; this is because ε appears in the exponent, and the

techniques of quantifier elimination over the ordered field of the reals is restricted to

polynomials (or rational functions).

However, in the formulation in reaction coordinates the parameter ε appears as a variable

with values in the real closed field used in the computations.

Therefore for a given subsystem we cannot ask only whether a Hopf bifurcation fixed

point exists, but we can formulate the question with a free parameter ε.

The answer—a quantifier free formula involving ε—gives the condition for ε for which

a Hopf bifurcation occurs for the subsystem. When investigating subsystems resulting

from 2-faces we found no Hopf bifurcations, but for the parametric question on 3-faces we

obtained the following answer in less than 10sec of computation time using a combination

of Redlog and Qepcad:

ε+ 2 > 0 ∧ 4ε− 1 < 0

Thus for ε ∈ (−2, 0.25) we have shown that Hopf bifurcation fixed points exist (for

suitable reaction constants). Using numerical simulations of this model Reidl et al. [64]

could not find Hopf bifurcations for values of the parameter ε larger than approximately

0.05.

The Table 4.3 summarizes the results obtaining for 2- and 3- faces.
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Table 4.3: Computation of Hopf bifurcations in model of calcium Oscillations using
HoCoQ algorithm

Sub-

system

Redlog Z3

Result Time(s) Result Time(s)

E1 false < 1 unsat < 1

E2 false < 1 unsat < 1

E3 false < 1 unsat < 1

E1E2 false < 1 unsat < 1

E1E3 false < 1 unsat < 1

E2E3 false < 1 unsat < 1

E1E2E3 true < 1 sat < 1

4.3 HoCaT : Algorithm for Computing Hopf Bifurcations

using Convex Coordinates and Tropical Geometry

The algorithmic method HoCoQ discussed in Sect 4.2 enabled us to determine the

existence of Hopf bifurcations in various (bio)-chemical reaction networks even for those

with conservation laws. For some chemical networks with complex dynamics, however,

it remained difficult to process the final obtained quantified formulae with the currently

available quantifier elimination packages.

In this section we present an efficient algorithmic approach, called HoCaT, which is

sketched in Fig. 4.2. This algorithm uses the basic ideas of the previous algorithm

HoCoQ, namely stoichiometric network analysis and manifold reduction method for

systems with conservation laws. However, when the discussion provided in Sect. 4.1.1

for a criterion for the occurrence of Hopf bifurcations without requiring empty unstable

manifolds is carried over to convex coordinates, the new condition for the existence

of Hopf bifurcations is given by ∆n−1(j, x) = 0 only. Solving such single equations

enables us to refrain from utilizing quantifier elimination techniques. Instead, the main

algorithmic problem is to determine whether a single multivariate polynomial has a zero

for positive coordinates.

For this purpose, in Sect. 4.3.1, we provide heuristics on the basis of the Newton polytope

that ensure the existence of positive and negative values of the polynomial for positive

coordinates, in Sect. 4.3.2, we present a summary of the HoCaT Algorithm, and in Sect.

4.3.3 we apply our method to several (bio)-chemical reaction networks.
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Figure 4.2: HoCaT method

4.3.1 Sufficient Conditions for a Positive Solution of a Single Multi-

variate Polynomial Equation

The method discussed in this section is summarized in an algorithmic way in Alg. 2,

which uses Alg. 3 as a subalgorithm.

Given f ∈ Z[x1, . . . , xm], our goal is to heuristically certify the existence of at least one

zero (z1, . . . , zm) ∈ ]0,∞[m for which all coordinates are strictly positive. To start with,

we evaluate f(1, . . . , 1) = f1 ∈ R. If f1 = 0, then we are done. If f1 < 0, then by

the intermediate value theorem, it is sufficient to find p ∈ ]0,∞[m such that f(p) > 0.

Similarly, if f1 > 0 it is sufficient to find p ∈ ]0,∞[m such that (−f)(p) > 0. This

algorithmically reduces our original problem to finding, for given g ∈ Z[x1, . . . , xm], at

least one p ∈ ]0,∞[m such that g(p) = f2 > 0.



Chapter 4. Detection of Hopf Bifurcation Using Convex Coordinates 42

Algorithm 2: pzerop

Input: f ∈ Z[x1, . . . , xm]

Output: One of the following:

(A) 1, which means that f(1, . . . , 1) = 0.

(B) (π, ν), where ν = (p, f(p)) and π = (q, f(q)) for p, q ∈ ]0,∞[m, which means that
f(p) < 0 < f(q). Then there is a zero on ]0,∞[m by the intermediate value
theorem.

(C) +, which means that f has been identified as positive definite on ]0,∞[m. Then
there is no zero on ]0,∞[m.

(D) −, which means that f has been identified as negative definite on ]0,∞[m. Then
there is no zero on ]0,∞[m.

(E) ⊥, which means that this incomplete procedure failed.

1 begin
2 f1 := f(1, . . . , 1)
3 if f1 = 0 then
4 return 1

5 else if f1 < 0 then
6 π := pzerop1(f)
7 ν := ((1, . . . , 1), f1)
8 if π ∈ {⊥,−} then
9 return π

10 else
11 return (ν, π)

12 else
13 π := ((1, . . . , 1), f1)
14 ν ′ := pzerop1(−f)
15 if ν ′ = ⊥ then
16 return ⊥
17 else if ν ′ = − then
18 return +

19 else
20 (p, f(p)) := ν ′

21 ν := (p,−f(p))
22 return (ν, π)
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Algorithm 3: pzerop1

Input: f ∈ Z[x1, . . . , xm]

Output: One of the following:

(A) π = (q, f(q)), where q ∈ ]0,∞[m with 0 < f(q).

(B) −, which means that f has been identified as negative definite on ]0,∞[m. Then
there is no zero on ]0,∞[m.

(C) ⊥, which means that this incomplete procedure failed.

1 begin
2 F+ := { d ∈ frame(f) | sgn(d) = 1 }
3 if F+ = ∅ then
4 return −
5 foreach (d1, . . . , dm) ∈ F+ do
6 L := {d1n1 + · · ·+ dmnm − c = 0}
7 foreach (e1, . . . , em) ∈ frame(f) \ F+ do
8 L := L ∪ {e1n1 + · · ·+ emnm − c ≤ −1}
9 if L is feasible with solution (n1, . . . , nm, c) ∈ Qm+1 then

10 g := the principal denominator of n1, . . . , nm
11 (N1, . . . , Nm) := (gn1, . . . , gnm) ∈ Zm
12 f̄ := f [x1 ← ωN1 , . . . , xm ← ωNm ] ∈ Z(ω)
13 assert lc(f̄) > 0 when using non-exact arithmetic in the LP solver

14 k := min{ k ∈ N | f̄(2k) > 0 }
15 return ((2kN1, . . . , 2kNm), f̄(2k))

16 return ⊥

Figure 4.3: We consider g0 = −2x61 + x31x2 − 3x31 + 2x1x
2
2. The left hand shows the

variety g0 = 0. The right hand side shows the frame, the Newton polytope, and a
separating hyperplane for the positive monomial 2x1x

2
2 with its normal vector.

We will accompany the description of our method with the example g0 = −2x6
1 +x3

1x2−
3x3

1 + 2x1x
2
2 ∈ Z[x1, x2]. Fig. 4.3 shows an implicit plot of this polynomial. In addition

to its variety, g0 has three sign invariant regions, one bounded one and two unbounded

ones. One of the unbounded regions contains our initial test point (1, 1), for which we
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find that g0(1, 1) = −2 < 0. Therefore our goal is to find one point p ∈ ]0,∞[2 such that

g0(p) > 0.

In the spirit of tropical geometry—and we refer to [81] as a standard reference with

respect to its application for polynomial system solving—we take an abstract view of

g =
∑
d∈D

adx
d :=

∑
(d1,...,dm)∈D

ad1,...,dmx
d1
1 · · ·x

dm
m

as the set frame(g) = D ⊆ Nm of all exponent vectors of the contained monomials.

For each d ∈ frame(g), we are able to determine sgn(d) := sgn(ad) ∈ {−1, 1}. The set

of vertices of the convex hull of the frame is called the Newton polytope newton(g) ⊆
frame(g). In fact, the existence of at least one point d∗ ∈ newton(g) with sgn(d∗) = 1 is

sufficient for the existence of p ∈ ]0,∞[m with g(p) > 0.

In our example, we have frame(g0) = {(6, 0), (3, 1), (3, 0), (1, 2)} and newton(g0) =

{(6, 0), (3, 0), (1, 2)} ⊆ frame(g0). We are particularly interested in d∗ = (d∗1, d
∗
2) = (1, 2),

which is the only point that has a positive sign as it corresponds to the monomial 2x1x
2
2.

To understand this sufficient condition, we are now going to compute from d∗ and g a

suitable point p. We construct a hyperplane H : nTx = c containing d∗ such that all

other points of newton(g) are not contained in H and lie on the same side of H. We

choose the normal vector n ∈ Rm such that it points into the halfspace that does not

contain the Newton polytope. The vector c ∈ Rm is such that c
|n| is the offset of H from

the origin in the direction of n.

In our example H is the line x = 1 given by n = (−1, 0) and c = −1. Fig. 4.3 depicts

the situation.

Considering the standard scalar product 〈·|·〉, it turns out that generally 〈n|d∗〉 =

max{ 〈n|d〉 | d ∈ newton(g) }, and that this maximum is strict. For the monomials

of the original polynomial g =
∑

d∈D adx
d and a new variable ω this observation trans-

lates via the following identity:

ḡ = g[x← ωn] =
∑
d∈D

adω
〈n|d〉 ∈ Z(ω).

Therefore, plugging a number β ∈ R into ḡ corresponds to plugging the point βn ∈ Rm

into g and from our identity, we see that in ḡ the exponent 〈n|d∗〉 corresponding to

our chosen point d∗ ∈ newton(g) dominates all other exponents, so for large β, the

sign of ḡ(β) = g(βn) equals the positive sign of the coefficient ad∗ of the corresponding

monomial. To find a suitable β, we successively compute ḡ(2k) for increasing k ∈ N.
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In our example we obtain ḡ = 2ω−1 − 2ω−3 − 2ω−6, and we obtain ḡ(1) = −2, but

already ḡ(2) = 23
32 > 0. In terms of the original g this corresponds to plugging in the

point p = 2(−1,0) =
(

1
2 , 1
)
∈ ]0,∞[2.

It remains to be clarified how to construct the hyperplane H. Consider frame(g) =

{ (di1, . . . , dim) ∈ Nm | i ∈ {1, . . . , k} }. If sgn(d) = −1 for all d ∈ frame(g), then

we know that g is negative definite on ]0,∞[m. Otherwise, assume, without loss of

generality, that sgn(d11, . . . , d1m) = 1. We write down the following linear program:

(
d11 . . . d1m −1

)
·


n1

...

nm

c

 = 0,


d21 . . . d2m −1
...

. . .
...

...

dk1 . . . dkm −1

 ·


n1

...

nm

c

 ≤ −1.

This is feasible if and only if (d11, . . . , d1m) ∈ newton(g). In the negative case, we know

that (d11, . . . , d1m) ∈ frame(g) \ newton(g), and we iterate with another d ∈ frame(g)

with sgn(d) = 1. If we finally fail on all such d, then our incomplete algorithm has

failed. In the positive case, the solution provides a normal vector n = (n1, . . . , nm) and

the offset c for a suitable hyperplane H. Our linear program can be solved with any

standard LP solver. For our purposes here, we have used Gurobi; the dual simplex of

GLPSOL3 also performs quite similarly on the input considered here.

For our example g0 = −2x6
1 + x3

1x2 − 3x3
1 + 2x1x

2
2, we generate the linear program

n1 + 2n2 − c = 0

6n1 − c ≤ −1

3n1 + n2 − c ≤ −1

3n1 − c ≤ −1,

for which Gurobi computes the solution n = (n1, n2) = (−0.5, 0), c = −0.5. Notice that

the solutions obtained from the LP solvers are typically floats, which we lift to integer

vectors by suitable rounding and GCD computations.

Note that we do not explicitly construct the convex hull newton(g) of the frame(g)

although there are advanced algorithms and implementations like QuickHull4 available

for this purpose. Instead we favour a linear programming approach for several reasons.

Firstly, we do not require that comprehensive information, instead, it is sufficient to

find one vertex of the covex hull that has a positive sign. Secondly, for the application

dicussed here, it turns out that there typically exist only a few (approximately 10%) such

3www.gnu.org/software/glpk
4www.qhull.org

www.gnu.org/software/glpk
www.qhull.org
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candidate points. Finally, it is known that for high dimensions, the subset of frame(g)

establishing vertices of the convex hull gets comparatively large. Practical experiments

using QuickHull on our data support these theoretical considerations.

4.3.2 Summarizing the HoCaT Algorithm

The steps involving the pre-precessing procedure, polyhedral computation, and com-

putation of the reduced Jacobian that we previously used for the HoCoQ method and

discussed in Sect. 4.2 remain the same. After computing the characteristic polynomial of

the Jacobian matrix of each subsystem, we compute the (n− 1)th Hurwitz determinant

of the characteristic polynomial, and we apply Alg. 2 to check for positive solutions

of the respective polynomial equations ∆n−1(j, x) = 0. Alg. 4 outlines our efficient

approach in an algorithmic fashion.

4.3.3 Computation of Examples Using the HoCaT Method

In this section, we will demonstrate the efficiency of our novel approach HoCaT by

analyzing several chemical networks with different dimensions. We will first compute

Hopf bifurcations in the reaction networks already discussed in Sect. 4.2.6 using the

HoCaT method. We will also wish to discuss and detect the occurrence of Hopf bi-

furcations in higher dimensional networks. We will therefore apply our new method

to the 5-dimensional system of electro-oxidation of methanol presented in [66], to the

well-known 9-dimensional example MAPK discussed in [13] and in other papers and

to the 22-dimensional network modeling the control of DNA replication in fission yeast

[53]. We will also compute Hopf bifurcations in the family of original models that de-

scribe a gene regulated by a polymer of its own protein, which are well-studied using

the quasi-steady state approximation method in [4].

4.3.3.1 Phosphofructokinase Reaction

As the first example we consider the phosphofructokinase reaction discussed in 4.2.6.1.

As shown in Table 4.4, using the HoCaT algorithm, we were able to detect the occurrence

of Hopf bifurcations in less than 1 second for all computed faces. For comparison, in the

case of 4-faces the HoCoQ method requires 6 seconds.
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Algorithm 4: HoCaT Method for Computing Hopf Bifurcations in Reaction Space.

Input: A chemical reaction network N with dim(N ) = n.

Output: (Lt, Lf , Lu), which are defined as follows: Lt is a list of subsystems
containing a Hopf bifurcation, Lf is a list of subsystems in which the
occurrence of Hopf bifurcations is excluded, and Lu is a list of subsystems
for which the incomplete sub-procedure pzerop fails.

1 begin
2 Lt = ∅
3 Lf = ∅
4 Lu = ∅
5 generate the stoichiometric matrix S and the kinetic matrix K of N
6 compute the minimal set E of the vectors generating the flux cone
7 for d = 1 . . . n do
8 compute all d-faces (subsystems) {Ni}i of the flux cone

9 for each subsystem Ni do
10 compute from K, S the transformed Jacobian Jaci of Ni in terms of convex

coordinates ji
11 if Jaci is singular then
12 compute the reduced manifold of Jaci calling the result also Jaci

13 compute the characteristic polynomial χi of Jaci
14 compute the (n− 1)th Hurwitz determinant ∆n−1 of χi
15 compute Fi := pzerop(∆n−1(j, x)) using Algorithm 2
16 if Fi = 1 or Fi is of the form (π, ν) then
17 Lt := Lt ∪ {Ni}
18 else if Fi = + or Fi = − then
19 Lf := Lf ∪ {Ni}
20 else if Fi = ⊥ then
21 Lu := Lu ∪ {Ni}

22 return (Lt, Lf , Lu)

4.3.3.2 Enzymatic Transfer of Calcium Ions

The computation of Hopf bifurcations in the model of the enzymatic transfer of calcium

ions discussed in Sect. 4.2.6.2 using the HoCaT method yields the results presented in

Table 4.5.

While the HoCoQ method requires 11 seconds of computation time for the 3-faces, the

HoCaT method needs less than 1 second.
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Table 4.4: Computation of Hopf bifurcations in the phosphofructokinase reaction
using HoCaT algorithm

Subsystem Result Time

E1 unsat < 1

E2 unsat < 1

E3 unsat < 1

E4 sat < 1

E1E2 unsat < 1

E1E3 unsat < 1

E1E4 sat < 1

E2E3 unsat < 1

E2E4 sat < 1

E3E4 sat < 1

E1E2E3 unsat < 1

E1E2E4 sat < 1

E1E3E4 sat < 1

E2E3E4 sat < 1

E1E2E3E4 sat < 1

Table 4.5: Computation of Hopf bifurcations in the model ”enzymatic transfer of
calcium ions” using HoCaT algorithm

Subsystem Result Time(s)

E1 unsat < 1

E2 unsat < 1

E3 unsat < 1

E1E2 sat < 1

E1E3 unsat < 1

E2E3 unsat < 1

E1E2E3 sat < 1

4.3.3.3 Model of Calcium Oscillations in the Cilia of Olfactory Sensory Neu-

rons

Table 4.6 shows the results of computing Hopf bifurcations in the model calcium oscil-

lations in the cilia of olfactory sensory neurons discussed in Sect. 4.2.6.3.

Table 4.6: Computation of Hopf bifurcations in the model ”calcium oscillations in
the cilia of olfactory sensory neurons” using HoCaT algorithm

Subsystem Result Time

E1 unsat < 1

E2 unsat < 1

E3 unsat < 1

E1E2 unsat < 1

E1E3 unsat < 1

E2E3 unsat < 1

E1E2E3 sat < 1
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4.3.3.4 Electro-Oxidation of Methanol

Sauerbrei et al. [66] developed a model for a mechanism for the kinetic instabilities

observed in the galvanostatic electro-oxidation of methanol. To keep the model simple,

they neglected the side reactions and assumed that the whole process runs through HCO

and CO. They then proposed the reaction network (4.14), which involves five essential

species (nonessential species are enclosed in square brackets).

[MeOHb] + 3∗ k1,Φ−−−→ HCO +
[
3H+

]
+ 3e−

HCO
k2−→ CO + 2∗+

[
H+
]

+ (e−)

[H2O] + ∗ k3,Φ−−−→ O +
[
2H+

]
+ (2e−)

CO + O
k4−→ 2∗+ [CO2][

2H+
]

+ (2e−) + O
k5,−Φ−−−−→ ∗+ [H2O]. (4.14)

Electrochemical reactions depend exponentially on the double layer potential Φ, so there

is no power law kinetics initially. The system can, however, be transformed into power

laws forms by using x3 = ek6Φ as a variable. By performing certain substitutions as

shown in [66] the model yields the following differential equations and matrices. Note

that this model has a negative exponent.

ẋ1 = −3k1x
2
1x3 + 2k2x4 − k3x1x3 + 2k4x2x5 + k5x2x

−1
3

ẋ2 = k3x1x3 − k4x2x5 − k5x2x
−1
3

ẋ3 = k6k7x3 − k1k6x
2
1x

2
3

ẋ4 = k1x
2
1x3 − k2x4

ẋ5 = k2x4 − k4k2x5 (4.15)

S4 =



−3 2 −1 2 1 0 0

0 0 1 −1 −1 0 0

0 0 0 0 0 −1 1

1 −1 0 0 0 0 0

0 1 0 −1 0 0 0


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K4 =



2 0 1 0 0 2 0

0 0 0 1 1 0 0

1 0 1 0 −1 2 1

0 1 0 0 0 0 0

0 0 0 1 0 0 0


The stoichiometric matrix S4 yields the following extreme currents:

E1 =
(

0 0 1 0 1 0 0
)
,

E2 =
(

1 1 1 1 0 0 0
)
,

E3 =
(

0 0 0 0 0 1 1
)
.

We applied the HoCaT algorithm to all possible faces and we were able to find the

occurrence of Hopf bifurcations in the 2-faces E2E3 and the 3-faces E1E2E3 as shown in

Table 4.8.

Table 4.7: Computation of Hopf bifurcations in the model ”electro-oxidation of
methanol” using HoCaT algorithm

Subsystem Result Time(s)

E1 unsat < 1

E2 unsat < 1

E3 unsat < 1

E1E2 unsat < 1

E1E3 unsat < 1

E2E3 sat < 1

E1E2E3 sat < 1

4.3.3.5 Methylene Blue Oscillator System

As the next example we apply the HoCaT method on the well-known complex au-

tocatalytic methylen blue oscillator (MBO) system. We attempted to compute Hopf

bifurcations in all subsystems of this model that involve 2-faces and 3-faces using our

original HoCoQ approach, but the generated quantified formulae could not be solved by

quantifier elimination, even with main memory of up to 500 GB and computation times

of up to one week. The MBO model is described by the reaction network (4.16):
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MB+ + HS− −→ MB + HS

H2O + MB + HS− −→ MBH + HS + OH−

HS + OH− + MB+ −→ MB + S + H2O

H2O + 2MB −→ MB+ + MBH + OH−

HS− + O2 −→ HS + O−2

HS + O2 + OH− −→ O−2 + S + H2O

2H2O + HS− + O−2 −→ H2O2 + HS + 2OH−

O−2 + HS + H2O −→ H2O2 + S + H2O

H2O2 + 2HS− −→ 2HS + 2OH−

MB + O2 −→ MB+ + O−2

HS− + MB + H2O2 −→ MB+ + HS + 2OH−

OH− + 2HS −→ HS− + S + H2O

MB + HS −→ MBH + S

H2O + MBH + O−2 −→ MB + H2O2 + OH−

−→ O2 (4.16)

The MBO reaction system contains 15 reactions and 11 species O2, O−2 , HS, MB+, MB,

MBH, HS−, OH−, S, and H2O2. It may be reduced to a six dimensional system by

considering only the essential species MB, MB+, HS, MBH, O2, and O−2 .

The pre-processing step of our algorithm yields the following two matrices describing

the reaction laws: stoichiometric matrix S and kinetic matrix K.

S5 =



1 −1 1 −2 0 0 0 0 0 −1 −1 0 −1 1 0

−1 0 −1 1 0 0 0 0 0 1 1 0 0 0 0

1 1 −1 0 1 −1 1 −1 2 0 1 −2 −1 0 0

0 1 0 1 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 −1 −1 0 0 0 −1 0 0 0 0 1

0 0 0 0 1 1 −1 −1 0 1 0 0 0 −1 0



K5 =



0 1 0 2 0 0 0 0 0 1 1 0 1 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 1 0 0 0 2 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 1 0


.
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The flux cone of this model is spanned by 28 extreme currents. There are 187 subsystems

of 2-faces and 549 subsystems of 3-faces. Using our new approach HoCaT we were able

to detect Hopf bifurcations in the 1-face subsystem generated by the extreme current

E = (0 0 1 0 0 0 0 0 1 1 0 0 1 1 1)

and in 105 cases of 2-faces. The following table summarize the results.

Table 4.8: Results of the computation of Hopf bifurcations in 1-face and 2- faces using
HoCaT

Subsystems Number of cases Satisfied Unsatisfied Unknown

1-face 28 1 27 0

2-faces 187 105 66 15

All computations on a single instance required at most 350 milliseconds of CPU time.

Recall that a positive answer for at least one of the cases guarantees the existence of a

Hopf bifurcation for the original system in spite of the fact that there are cases without

a definite answer.

4.3.3.6 Mitogen-Activated Protein Kinase (MAPK )

We next consider a well-studied model in cell biology that describes the activity of

mitogen-activated protein kinase (MAPK ). This model is known to exhibit bistability,

namely it has up to two stable equilibria, if the parameter vector is located in an ap-

propriate region of parameter space [19, 50]. Conradi et al. also studied this model in

[13] and mentioned that finding these regions, for example by using numerical tools like

bifurcation analysis, is a non-trivial task as it amounts to searching the entire parameter

space. They show that for a model of a single layer of a MAPK cascade it is possible to

derive analytical descriptions of these regions through the use of mass action kinetics.

As an example, we compute Hopf bifurcations in the extensively studied 9-dimensional

network (4.17) that belongs to a family of network structures that has been postulated as

a model for a single layer of a MAPK cascade. We use here the same notations as in [13].

We use A as a placeholder for either MAPKK or a MAPK, E1 for mono-phosphorylated

MAPKKK or double-phosphorylated MAPKK, and E2 for MAPKK ‘ase or MAPK ‘ase.
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A + E1
k1−⇀↽−
k2

AE1
k3−→ Ap + E1

k4−⇀↽−
k5

ApE1
k6−→ App + E1,

App + E2
k7−⇀↽−
k8

AppE2
k9−→ Ap + E2

k10−−⇀↽−−
k11

ApE2
k12−−→ A + E2. (4.17)

The MAPK network (4.17) involves twelve reactions and nine species, A, E1, AE1, Ap,

ApE1, App, E2, AppE2, and ApE2. The appropriate stoichiometric matrix S6 and kinetic

matrix K6 are as follows:

S6 =



−1 1 0 0 0 0 0 0 0 0 0 1

−1 1 1 −1 1 1 0 0 0 0 0 0

1 −1 −1 0 0 0 0 0 0 0 0 0

0 0 1 −1 1 0 0 0 1 −1 1 0

0 0 0 1 −1 −1 0 0 0 0 0 0

0 0 0 0 0 1 −1 1 0 0 0 0

0 0 0 0 0 0 −1 1 1 −1 1 1

0 0 0 0 0 0 1 −1 −1 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 −1



K6 =



1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1



.

The flux cone of the MAPK network is spanned by the following six vectors of extreme

currents:
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E1 =
(

1 1 0 0 0 0 0 0 0 0 0 0
)
,

E2 =
(

0 0 0 1 1 0 0 0 0 0 0 0
)
,

E3 =
(

0 0 0 0 0 0 1 1 0 0 0 0
)
,

E4 =
(

0 0 0 0 0 0 0 0 0 1 1 0
)
,

E5 =
(

0 0 0 0 0 0 0 0 0 1 0 1
)
,

E6 =
(

0 0 0 1 0 1 1 0 1 0 0 0
)
.

Although it is difficult to compute Hopf bifurcations in the MAPK networks, we were

able to detect the occurrence of a Hopf bifurcation using our algorithm in the subsystem

generated by the 3-face of E1, E5, and E6 in 34 seconds of computation time. For all the

subsystems generated by 1-faces or by 2-faces we could exclude them.

4.3.3.7 Models of Genetic Circuits

Boulier et al. [4] studied the use of a rigorous quasi-steady state approximation method

to determine the existence of Hopf bifurcations in a family of models describing a gene

regulated by a polymer of its own protein. This family of models is dependent on an

integer parameter n that expresses the number of polymerizations and on featuring a

negative feedback loop. The model sketched in Fig. 4.4 5 describes a single gene regulated

by a polymer that is obtained by combining a protein n times. The variables G and

H represent the state of the gene. The mRNA concentration and the concentration of

the protein translated from the mRNA are represented by M and P, respectively. The

n types of polymers of P are denoted by G = P1,P2, . . . ,Pn. Greek letters represent

parameters [4].

The models of genetic ciruits yields the following reaction laws.

G + Pn
α−⇀↽−
θ

H, G
ρf−→ G + M, H

ρb−→ H + M,

M
β−→ M + P, M

δM−−→ ∅, P
δP−→ ∅, Pi + P

k+i−−⇀↽−−
k−i

Pi+1 (1 ≤ i ≤ n− 1). (4.18)

Applying a rigorous quasi-steady state approximation and several rescalings of the vari-

ables and parameters yields the following family of ordinary differential equations [4]:

5Figure from [4]
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Figure 4.4: A gene regulated by a polymer of its protein

d

dt
G(t) = θ(γ0 −G(t)−G(t)P (t)n),

d

dt
P (t) = nα(γ0 −G(t)−G(t)P (t)n) + δ(M(t)− P (t)),

d

dt
M(t) = λ1G(t) + γ0µ−M(t), (4.19)

where n is a natural number.

Sturm et al. [79, 80] also analyzed the existence of Hopf bifurcations in the 3-dimensional

steady-state approximation of the models shown in (4.19). They computed its occurrence

in concentration space up to n = 10 and they found the absence of Hopf bifurcations in

the family of models for n ≤ 8 and its existence for n ≥ 9.

We investigated the existence of Hopf bifurcations in the original family of models for

n = 2, . . . , 10, wherein we also considered the fast reactions. Each model thus involved

then 3 + n species and yields corresponding to the stoichiometric matrix and kinetic

matrix. The number of the vectors that span the flux cone is dependent on the parameter

n, which expresses the number of polymerizations and effect that for increasing n. We

applied our HoCaT method to all 9 models and in contrast to the results of the quasi-

steady state method, we were able to detect the existence of Hopf bifurcations for n ≥ 3

and its absence for n = 2.

To elucidate the cause of the occurrence of Hopf bifurcations for n ≥ 3 in the origi-

nal state of the systems, we carefully analyzed the results of the system with n = 3
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polymerizations. The system yields the following stoichiometric and kinetic matrices:

S7 =



−1 1 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 −1 0 0 0 0 0

0 0 0 0 1 0 −1 −2 2 −1 1

0 0 0 0 0 0 0 1 −1 −1 1

−1 1 0 0 0 0 0 0 0 1 −1



K7 =



1 0 1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 2 0 1 0

0 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 1


.

The following six extreme currents represent the flux cone:

E1 =
(

0 0 0 0 1 0 1 0 0 0 0
)
,

E2 =
(

0 0 0 0 0 0 0 0 0 1 1
)
,

E3 =
(

1 1 0 0 0 0 0 0 0 0 0
)
,

E4 =
(

0 0 1 0 0 1 0 0 0 0 0
)
,

E5 =
(

0 0 0 1 0 1 0 0 0 0 0
)
,

E6 =
(

0 0 0 0 0 0 0 1 1 0 0
)
.

We observed the absence of Hopf bifurcations in the 1-faces and 2-faces and its presence

in one 3-face E1E2E5 generated by the vectors E1,E2, and E5, where E5 represents a

reversible fast reaction. We also detected its existence in the trivial cases of 4-faces

that contain the subsystem E1E2E5 and the subsystem E1E3E5E6, where E6 also represent

a reversible fast reaction. We conclude that eliminating fast reactions in the system

for quasi-steady state approximation causes the disappearance of Hopf bifurcations for

n ≥ 3.
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4.3.3.8 Control of DNA Replication in Fission Yeast

As another high-dimensional example, we consider the 22 dimensional model that de-

scribes the control of DNA replication in fission yeast. It is described in [53] and

stored as a curated model in the BioModels database (see Sect. 3.6.2.1) with the ID

BIOMOD0007. The stoichiometric matrix, the kinetic matrix, the set of extreme cur-

rents, and other algebraic data for this example can be obtained from the database

provided by our platform PoCaB. The flux cone of this model is spanned by 22 extreme

currents and yields 231 2-faces and 1540 3-faces.

Using the HoCaT method we were able to detect the existence of Hopf bifurcations in

69 cases of the 3-faces and its absence in the 2-faces. The computation of this example

also demonstrates the efficiency of our method, as it enables even the analysis of a

22-dimensional system.



Chapter 5

On Muldowney’s Criteria for

Polynomial Vector Fields with

Constraints

In this chapter, we investigate the absence of global oscillations in polynomial systems by

studying Muldowney’s extension of the classical Bendixson-Dulac criterion for excluding

periodic orbits to higher dimensions for polynomial vector fields. Using the formulation

of Muldowney’s sufficient criteria for excluding periodic orbits of the parameterized

vector field on a convex set as a quantifier elimination problem over the ordered field

of the reals we provide case studies of some systems arising in the life sciences. We

discuss the use of simple conservation constraints and the use of parametric constraints

for describing simple convex polytopes on which periodic orbits can be excluded by

Muldowney’s criteria.

5.1 Introduction and Preliminaries

In the study of ordinary differential equations the analysis of periodic trajectories is

seen as an important goal in addition to describing the dynamics around fixed points.

However, already for two-dimensional polynomial systems this question is related to

Hilbert’s 16th problem, which is still unsolved [42].

For the two-dimensional case the Bendixson-Dulac criterion gives a sufficient condition

for the non-existence of periodic orbits. This criterion is parameterized by a Dulac func-

tion, and various techniques have been proposed to construct Dulac functions, which

58
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range form algebraic constructions for special systems to techniques involving the solu-

tion of certain partial differential equations [8–11, 55].

For the higher-dimensional case there are extensions of the criterion of Bendixson-Dulac

that also allow the use of Dulac functions [51]. However, little work seems to have been

done to construct Dulac functions in the higher dimensional cases—except for addressing

it as a problem [92, 93].

Moreover, the common case of algebraic constraints in the simple form of conservation

constraints have been used in ad hoc form by many authors—mainly to reduce 3D

systems to 2D systems to be able to use the classical Bendixson-Dulac criterion—but

have not been discussed in a more general setting.

In case studies of some systems arising in the life sciences we discuss the use of simple

conservation constraints in a first line of investigation.

On the example of classical SIRS epidemiological model we show that even in this rather

simple case different algorithmic strategies to use conservation constraints might lead to

non-conclusive results for some, whereas others lead to conclusive results. Thus the fact

that Muldowney’s criteria are not coordinate independent pose an algorithmic problem.

We also discuss the use of parametric constraints for describing simple convex polytopes

on which periodic orbits can be excluded by Muldowney’s criteria. We will show that for

a 3-dimensional model of viral dynamics [86], for which Muldwowney’s criteria cannot

exclude the existence of periodic orbits on the entire positive real octant, there is a

cuboid on which periodic orbits can be excluded.

5.1.1 The Bendixson-Dulac Criterion for 2-Dimensional Vector Fields

Consider an autonomous planar vector field

dx

dt
= F (x, y),

dy

dt
= G(x, y), (x, y) ∈ R2.

Bendixson in 1901 [2] was the first to give a criterion yielding sufficient conditions for

excluding oscillations. Dulac in 1937 [22] was able to generalize the result of Bendixson

as follows:

Theorem 5.1 (Bendixson-Dulac criterion). Let B(x, y) be a scalar continuously differ-

entiable function defined on a simply connected region D ⊂ R2 with no holes in it. If
∂(BF )
∂x + ∂(BG)

∂y is not identically zero and does not change sign in D, then there are no

periodic orbits lying entirely in D.
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For a modern proof we refer to [36, Theorem 1.8.2].

A common class of Dulac functions uses B(x, y) = e(U(x,y)), see e.g. [11]. By the chain

rule the exponential function can be factored out yielding eU
(
∂U
∂xF + ∂U

∂yG+ ∂F
∂x + ∂G

∂y

)
.

Hence, if F,G, ∂U∂x , and ∂U
∂y are rational functions, the Bendixson-Dulac criterion remains

in the realm of the ordered field of the reals.

5.1.2 Muldowney’s Extensions of the Bendixson-Dulac Criterion to

Higher Dimensions

The algorithmic criteria discussed in the following can be seen as generalizations of the

Bendixson-Dulac criterion for 2-dimensional vector fields to arbitrary dimensions.

The following theorem was proved by Muldowney [51, Theorem 4.1]: Suppose that one

of the inequalities

µ

(
∂f [2]

∂x

)
< 0, µ

(
−∂f

[2]

∂x

)
< 0 (5.1)

holds for all x ∈ Rn. Then the autonomous system with vector field f : Rn −→ Rn has

no nonconstant periodic solutions. Here µ is some Lozinskĭı norm and f [2] is one of the

“compound matrices” of the Jacobian of the vector field f defined in [51]. As is also

shown in [51] the criterion given in [51, Theorem 4.1] also holds when x ∈ C, where

C ⊆ Rn is open and convex.

Remark. When n = 2, ∂f [2]/∂x = Trace ∂f/∂x = divf , so that [51, Theorem 4.1]

basically yield the results of Bendixson, i.e. the criterion of Muldowney can be seen as a

generalization of the criterion of Bendixson from the planar case to arbitrary dimensions.

According to [51, (2.2)], the following expressions may be used as µ
(
∂f [2]/∂x

)
in [51,

Theorem 4.1], if the underlying norms for µ are the 1-norm, ∞-norm, and 2-norm

respectively:

max

{
∂fr
∂xr

+
∂fs
∂xs

+
∑
q 6=r,s

∣∣∣∣∂fq∂xr

∣∣∣∣+

∣∣∣∣∂fq∂xs

∣∣∣∣ : r, s = 1, . . . , n, r 6= s

}
, (5.2)

max

{
∂fr
∂xr

+
∂fs
∂xs

+
∑
q 6=r,s

∣∣∣∣∂fr∂xq

∣∣∣∣+

∣∣∣∣∂fs∂xq

∣∣∣∣ : r, s = 1, . . . , n, r 6= s

}
. (5.3)

λ1 + λ2, (5.4)

where λ1, λ2 are the two largest eigenvalues of (∂f∗/∂x+ ∂f/∂x) /2.

Thus for a formula Γ over the reals defining an open convex subset C of Rn and an

autonomous polynomial vector field f : Rn → Rn a first-order formula ϕ over the ordered
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field of the reals defines a sufficient condition such that the vector field defined by f has

no non-constant periodic solution on C. As usual with real quantifier elimination we use

the language of ordered rings. In addition, we admit function symbols for the maximum

and for the absolute values, which are both definable.

Specifically, for the criterion involving the 1-norm we obtain

ϕ1 ≡ ∀x1∀x2 · · · ∀xn
(

Γ =⇒ (5.5)

max

{
∂fr
∂xr

+
∂fs
∂xs

+
∑
q 6=r,s

∣∣∣∣∂fq∂xr

∣∣∣∣+

∣∣∣∣∂fq∂xs

∣∣∣∣ : r, s = 1, . . . , n, r 6= s

}
< 0

)
,

and for the criterion involving the ∞-norm we obtain

ϕ∞ ≡ ∀x1∀x2 · · · ∀xn
(

Γ =⇒ (5.6)

max

{
∂fr
∂xr

+
∂fs
∂xs

+
∑
q 6=r,s

∣∣∣∣∂fr∂xq

∣∣∣∣+

∣∣∣∣∂fs∂xq

∣∣∣∣ : r, s = 1, . . . , n, r 6= s

}
< 0

)
.

In [92] the problem of efficient automatic resolution of maxima and absolute values is

addressed and computation examples are given. If all variables and parameters are

known to be positive, the technique of positive quantifier elimination can be used.

5.1.2.1 Extending Muldowney’s Criteria with Dulac Functions.

Although a simple generalization of the Dulac criterion to higher dimensions does not

seem to hold in the general setting [51], for positive functions 0 < r ∈ C1(Rn −→ R)

one can replace f by rf in [51, Theorem 4.1], cf. (5.1). The rather simple proof is given

in [51, Remark (d)].

If B = eU is used as a Dulac test function then by the chain rule the exponential function

can be factored out also for Muldowney’s criteria and the criterion remains in the realm

of the ordered field of the reals, if all partial derivatives of U are rational functions.

5.1.2.2 Using Conservation Constraints.

Any algebraic constraints on the vector field can be transferred into the first-order

formula over the ordered field of the reals expressing Muldowney’s criteria. Simple

conservation constraints stating that the sum of certain state variables is constant—

conditions that are commonly found in chemical reaction systems or in epidemiological
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models—will not induce a failure of the degree limited virtual substitution methods [96]

for quantifier elimination, if these were successful on the unconstrained system.

Nevertheless, an elimination of a variable by the others in a conservation constrained

will reduce the dimension of the system and thus change Muldowney’s criteria instead of

adding another equality to Muldowney’s criteria on the original system. We will report

on the results of some systematic tests on the simple SIRS system in Sect. 5.2.1.

5.1.2.3 Parametric Specification of a Convex Subset.

The first-order formula γ specifying the convex subset on which a proof for the non-

existence of periodic orbits is sought by Muldowney’s criteria can very well contain

parameters, too. The quantifier elimination procedure automatically yields conditions

on the parameters that are exact with respect to Muldowney’s criteria—potentially not

mentioning input parameters if no constraint on any of them is necessary.

In Sect. 5.2.2 we will use this technique using simple parametric cuboids in a case, for

which the Muldowney criteria do not give a conclusive answer on the entire positive real

octant, but the specification of a 3-dimensional parametric cuboid shows that only a

parametric restriction on one variable is necessary.

5.2 Case Studies

5.2.1 The SIRS Epidemiological Model

We consider the widely used SIRS epidemiological model, a parameterized formally

3-dimensional system of ordinary differential equations, cf. (5.7–5.9). The systems is

widely used and well studied [7, 38, 46, 58, 94]. So we will not provide new insights

into the structure of the system, but it is well suited as a test object for our algorithmic

methods.

To account for the lost of immunity, the classical susceptible (S), infected (I) and re-

covered (R) model is adjusted by allowing a fraction of the recovered individuals R to

move back into the susceptible pool S at a rate γ. This susceptible, infected, recovered
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and susceptible (SIRS) model is expressed as

d

dt
S (t) = µ (S (t) + I (t) +R (t))− µS (t)− β S (t) I (t) + γ R (t) (5.7)

d

dt
I (t) = β S (t) I (t)− (µ + ν ) I (t) (5.8)

d

dt
R (t) = ν I (t)− (µ + γ )R (t) (5.9)

where ν is the rate of loss of infectiousness and the total population size N remains

constant (i.e. S + I +R = N is constant). The parameter µ represents both, the birth

and mortality rates. Assuming that birth and mortality rates are equal is justified on

the grounds that the annual infection rate is considerably higher than the population

growth. The parameter β is the transmission rate of the infection.

5.2.1.1 Using Ad-hoc Reductions to 2D-Models

In the literature, reductions to 2D models using S+ I +R = N and replacing a suitable

variable are commonly used. However, the question, which variable to choose is never

addressed. In the following we give results for all possibilities showing that even for this

simple example the results strongly differ. In all cases we use the scaling N = 1.

Eliminating R by R = 1 − (I + S). In this case the criterion using the Dulac test

function 1 returned the non-conclusive true as answer for ¬ϕ. However, using the Dulac

function 1
I(t) the conclusive false as answer for ¬ϕ was found within some milliseconds

of computation time by Redlog.

Eliminating I by I = 1 − (S + R). Also in this case the criterion using the Dulac

test function 1 returned the non-conclusive true as answer for ¬ϕ. We also obtained the

the non-conclusive true as answer for ¬ϕ when using the following Dulac test functions:

1
R(t)S(t)

1
S(t)

1
R(t)

R(t)

S(t)

Moreover, the computations using Redlog did not come up with answers within 60 sec

of computation time for several other Dulac test functions.
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So using this elimination we did not come up with a conclusive answer by the Muldowney

criteria.

Eliminating S by S = 1− (I+R). In this case the criterion using the Dulac function

1 returned β − γ − 2µ− ν > 0 as answer for ¬ϕ. Using the Dulac function 1
I(t) returned

the conclusive false, as was the case for the Dulac function 1
I(t)R(t) ; for the Dulac function

1
R(t) the criterion returned β − µ − ν > 0. As the conclusive false was found for some

Dulac function, we thus have proved that the SIRS system does not have periodic orbits

on the positive real octant.

5.2.1.2 Computations on the 3D-Model

Unconstrained model. For the 3D-SIRS model not using any conservation constraint

the criterion using the Dulac test function 1 returned the non-conclusive true as answer

for ¬ϕ. For all other Dulac tests functions we used we either obtained the non-conclusive

true as answer for ¬ϕ, or Redlog could not come up with a result within 60 sec of

computation time.

5.2.2 A Model of Viral Dynamics

The following example is discussed in more depth in [92]. It consists of a simple math-

ematical model for the population dynamics of the human immunodefficiency type 1

virus (HIV-1) investigated in [86]. There a three-component model is described involv-

ing uninfected CD4 + T-cells, infected such cells and free viruses, whose densities at

time t are denoted by x(t), y(t), v(t), respectively.

d

dt
x (t) = s− µx (t)− kx (t) y (t)

d

dt
y (t) = kx (t) y (t)− α y (t)

d

dt
x (t) = s− µx (t)− β x (t) v (t)

d

dt
y (t) = β x (t) v (t)− α y (t)

d

dt
v (t) = cy (t)− γ v (t)

Figure 5.1: The 2D- and 3D-Tuckwell-Wan examples

In [86] a simplified two-component model employed by Bonhoeffer et al. [3] is inves-

tigated analytically. In [86] using the general Bendixson-Dulac criteria for 2D-vector

fields with an ad hoc Dulac function B(x, y) = 1/y it is shown that there are no periodic
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Table 5.1: Results for the 2D-Tuckwall-Wan example (cf. Fig. 5.1) on the full positive
octant

The computation times are the ones for the positive quantifier elimination in Redlog.

Tuckwell-Wan Used Dulac test function
2D model 1 1

x
1
y

1
xy

1
x+y x y xy

Comp. Time [sec] 0.07 0.07 0.02 0.02 0.07 0.09 0.07 0.07
Result (¬ϕ) pc pc false false pc pc pc pc

Here pc is the positivity condition on the parameters.

solutions for the system for positive parameter values and positive values of the state

variables, i.e. the biologically relevant ones.

Remark. By “ad hoc” Dulac function we mean that the authors provide this function

only and show that it is a Dulac function, but no other functions. No explanations or

hints are given to the reader how this function was obtained.

In Table 5.1 the results for various low-degree rational and polynomial Dulac test func-

tions are summarized. Notice that computation times for generating the formulas are

negligible for these examples. Note that for ¬ϕ the answer false gives the conclusive

proof on the non-existence of periodic orbits on the positive cone.

As can be seen from the computation times given in Table 5.1 the quantifier elimination

problems are not too hard. When performing tests with Qepcad we could also solve all

of these quantifier elimination problems in less than one second of computation time.

For the 3D-Tuckwell-Wan Model we tried several Dulac test functions but could not

exclude the existence of a periodic orbit on R+3
for any of them. When specifying the

parametric cube (0, ux)× (0, uy)× (0, uv) by adding the conditions x(t) < ux, y(t) < uy,

and v(t) < uv for new parameters ux > 0, uy > 0, and uv > 0—cf. Sect. 5.1.2.3—and

using the trivial Dulac function 1—we obtain the following first-order formula for ¬ϕ
using Muldowney’s criterion for the 1-norm (displayed in slightly hand edited form for

better readability):

∃v1∃v2∃v3 : 0 < v1 ∧ 0 < v2 ∧ 0 < v3 ∧ 0 < uv ∧ 0 < ux ∧ 0 < uy ∧
0 < c ∧ 0 < µ ∧ 0 < s ∧ 0 < α ∧ 0 < β ∧ 0 < γ ∧

v1 < uv ∧ v2 < ux ∧ v3 < uy ∧
0 ≤ max(−γ − α+ |βv2|,−µ− βv1 − α+ |c|,−γ − µ− βv1 + |βv2|+ |βv1|)

This quantifier elimination problem can also be solved “by hand” rather easily, and

accordingly in less than 0.1 sec of computation time we obtain by the positive quantifier



Chapter 5. On Muldowney’s Criteria for Polynomial Vector Fields 66

elimination procedure of Redlog the following quantifier-free equivalent for ϕ:

min

(
α+ γ

β
,
µ+ γ

β

)
≥ ux ∧ α+ µ ≥ c (5.10)

For better readability we have provided in (5.10) a slightly hand-edited version of the

result formula.

Notice that there is no dependency on uy and uv, i. e. we have given a proof that the

parametric 3D-Tuckwall-Wan does not have periodic orbits on

(0, ux)× (0,∞)× (0,∞)

provided ux (and α, µ, γ, β) fulfills the condition given in (5.10).



Chapter 6

Computing Stability in Convex

Coordinates

The stability analysis may be used with some confidence to determine which chemical

models are capable of exotic dynamics and thus the possibility of the existence of os-

cillations [12]. In Chapter 4, we described the HoCoQ algorithm which improves the

computation of Hopf bifurcations using stoichiometric network analysis and quantifier

elimination. These ideas will be reused in a new algorithmic approach to investigate

the stability of (bio)-chemical reaction networks. Our new algorithm for computing sta-

bility is similar to HoCoQ except the condition for the existence of Hopf bifurcations.

This will be replaced by the criteria which determine the stability of reaction systems.

Therefore, we integrated two conditions which prove if all roots of a real polynomial

are in the left half-plane of the complex plane, namely Hurwitz condition [41] and the

Gantmacher condition that is based on Stieltjes theorem [28], and also the condition

that checks if an extreme subnetwork is mixing stable. In this chapter, we introduce the

mentioned conditions and we present the results obtained from applying our approach

on some reaction networks already discussed in this thesis.

6.1 Computing Stability Using Hurwitz Criterion

A parameterized autonomous ordinary differential equation of the form ẋ = f(u, x) with

a scalar parameter u is asymptotically stable at the point (u0, x0), if f(u0, x0) = 0 and all

eigenvalues of the Jacobian Dxf(u0, x0) lie in the open left half of the complex plane. A

well-known mathematical test to check this condition was introduced by Hurwitz in 1869

67
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[41]. He proved that a necessary and sufficient condition for all roots of the polynomial

p(λ) = a0λ
n + a1λ

n−1 + · · ·+ an (6.1)

have negative real part is that the values of determinants ∆1,∆2,∆3, . . . ,∆n are positive,

where

∆i =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . . a2i−1

a0 a2 a4 . . . a2i−2

0 a1 a3 . . . a2i−3

. . . . . . . . . . . . . . .

. . . . . . . . . . . . ai

∣∣∣∣∣∣∣∣∣∣∣∣∣
(6.2)

are the Hurwitz determinants associated to the characteristic polynomial of the matrix

Dxf(u0, x0). In [23], it is shown that for a parameterized nonlinear system ẋ = f(u, x),

a natural question is to ask for which values of the parameter u the system is asymptoti-

cally stable near all its fixed points. This can be symbolically expressed by the first-order

formula

∀x(f(u, x) = 0 =⇒ ∆1(u, x) > 0, . . . ,∆n(u, x) > 0). (6.3)

As shown in Sect. 3.3 the Jacobian matrix of a subsystem formed by d-faces is given

by the following equation, where S, K and E denote the stoichiometric matrix, kinetic

matrix, and the set of extreme currents, respectively.

Jac(x) = Sdiag(
d∑
i

jiEi)Ktdiag(1/x1, ..., 1/xn).

For checking for asymptotically stability of a (bio)-chemical system near all its fixed

points using convex coordinates we have to decide the satisfiability of the following

formula:

∀j1 · · · jd∀x1 · · ·xn(j1 ≥ 0 ∧ · · · ∧ jd ≥ 0 ∧ x1 ≥ 0 ∧ · · · ∧ xn ≥ 0

=⇒ ∆1(j, x) > 0, . . . ,∆n(j, x) > 0).

For some (bio)-chemical networks already discussed in Chapter 4, namely phospho-

fructokinase reaction, model of enzymatic transfer of calcium ions, model for calcium

oscillations in the cilia of olfactory sensory neurons, and model of electro-oxidation of
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methanol, we computed the stability in convex coordinates using Hurwitz condition.

The following tables summarize the results provided by Redlog and Z3.

Table 6.1: Computation of stability in the phosphofructokinase reaction in convex
coordinates using Hurwitz condition

Subsystem Redlog Z3

Result Time(s) Result Time(s)

E1 true < 1 sat < 1

E2 true < 1 sat < 1

E3 true < 1 sat < 1

E4 false < 1 unsat < 1

E1E2 true < 1 unknown < 1

E1E3 true < 1 unknown 1.5

E1E4 false < 1 unknown 2

E2E3 true < 1 sat < 1

E2E4 false < 1 unsat < 1

E3E4 false < 1 unknown 7.5

E1E2E3 true < 1 unknown 11

E1E2E4 false < 1 unknown < 1

E1E3E4 false < 1 no result > 10000

E2E3E4 false < 1 no result > 10000

E1E2E3E4 false < 1 no result > 10000

By comparing the Redlog results of Hurwitz stability in Table 6.1 and the results of

computing Hopf bifurcations in Table 4.4, we conclude that each unstable subsystem of

the phosphofructokinase reaction undergoes a Hopf bifurcation.

Table 6.2: Computation of stability in the model ”Enzymatic transfer of calcium
ions” in convex coordinates using Hurwitz condition

Subsystem Redlog Z3

Result Time(s) Result Time(s)

E1 true < 1 sat < 1

E2 false < 1 unknown 2

E3 true < 1 sat < 1

E1E2 false < 1 no result > 10000

E1E3 true < 1 sat < 1

E2E3 false < 1 unknown 13

E1E2E3 false 1.5 no result > 1000
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For the model ‘enzymatic transfer of calcium ions’ we conclude by considering the results

in Table 6.2 and in Table 4.5 that the absence of Hopf bifurcations occurs in two instable

subsystems E2 andE2E3.

Table 6.3: Computation of stability in the model ”calcium oscillations in the cilia of
olfactory sensory neurons” using convex coordinates and Hurwitz condition

Subsystem Redlog Z3

Result Time(s) Result Time(s)

E1 true* < 1 sat < 1

E2 true < 1 sat < 1

E3 true < 1 sat < 1

E1E2 true* < 1 unknown < 1

E1E3 true* < 1 unknown < 1

E2E3 true < 1 sat < 1

E1E2E3 no result > 10000 no result > 10000

The Redlog results demonstrate that the subsystems E1, E1E2, and E1E3 of the model

‘calcium oscillations in the cilia of olfactory sensory neurons’ are stable, only if the

exponent ε is positive (marked by true*). Hence all 1-face and 2-faces are stable and

affirm our results in Sect. 4.2.6.3 Table 4.6 that they do not undergo Hopf bifurcations.

The instability of subsystem E1E2E3 could not be computed even after 10000 seconds

computation time.

Table 6.4: Computation of stability in the model ”electro-oxidation of methanol”
using convex coordinates and Hurwitz condition

Subsystem Redlog Z3

Result Time(s) Result Time(s)

E1 true < 1 sat < 1

E2 false < 1 no result > 10000

E3 true < 1 sat < 1

E1E2 false < 1 no result > 10000

E1E3 false < 1 unsat < 1

E2E3 no result > 10000 no result > 10000

E1E2E3 no result > 10000 no result > 10000

We make the conclusion that the subsystems E2, E1E2, and E2E3 of the model ‘electro-

oxidation of methanol’ are unstable but they do not undergo Hopf bifurcations. Z3 and
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also Redlog are not able to compute the instability of the subsystems E2E3 and E1E2E3.

As shown in Table 4.8, we found Hopf bifurcations in these two subsystems.

We also conclude from the above results that the computation of stability in convex

coordinates using quantifier elimination is more efficient than computing stability in

concentration space, but it is still a hard task to compute stability in 3-faces and even in

2-faces of (bio)-chemical networks with complex dynamic. The results also demonstrate

the efficient of Redlog in comparison to Z3.

6.2 Computing Stability Using Gantmacher-Stieltjes Cri-

terion

We represent the real polynomial p(λ) (6.1) in the form

p(λ) = h(λ2) + λg(λ2). (6.4)

Gantmacher introduced in [28] a condition for stability that is based on Stieltjes the-

orem and represent the Hurwitz polynomials by continued fractions. He investigated

what conditions have to be imposed on h(u) and g(u) in order that p(λ) be a Hurwitz

polynomial, which means that all roots of p(λ) are in the left half-plane of the complex

plane.

The Stieltjes theorem says:

Theorem 6.1. If h(u), g(u) is a positive pair o polynomials and h(u) is of degree m, then

g(u)

h(u)
= c0 +

1

d0u+
1

c1 +
1

d1u+
1

c2 +
. . . +

1

dm−1u+
1

cm

(6.5)

From Stieltjes theorem and from the observation that a polynomial p(λ) = h(λ2)+λg(λ2)

is a Hurwitz polynomial if and only if h(u) and g(u) form a positive pair, Gantmacher

deduced a criterion for stability, which is formulated in the following theorem:

Theorem 6.2. A real polynomial of degree n p(λ) = h(λ2) + λg(λ2) is a Hurwitz poly-

nomial if and only if the formula 6.5 holds with nonnegative c0, and positive c1, · · · , cm,

d0, · · · , dm−1. Here c0 > 0 when n is odd and c0 = 0 when n is even.
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We replaced the Hurwitz criterion with Gantmacher-Stieltjes criterion in our approach

for computing stability in convex coordinates and we again computed the stability in

the networks discussed in previous section. Comparing the results provided by Redlog

of both methods, we conclude that both Hurwitz criterion and Gantmacher-Stieltjes

criterion yield the same results. However Redlog takes in various subsystems more

time for simplifying the quantified formula that expresses the stability using Gantmacher

criterion. The tables below contain in detail all results of treated networks.

Table 6.5: Computation of stability in the phosphofructokinase reaction using convex
coordinates and Gantmacher-Stieltjes condition

Subsystem Result Time

E1 true < 1

E2 true < 1

E3 true < 1

E4 false < 1

E1E2 true < 1

E1E3 true < 1

E1E4 false < 1

E2E3 true < 1

E2E4 false < 1

E3E4 false < 1

E1E2E3 true < 1

E1E2E4 false < 1

E1E3E4 false 1

E2E3E4 false 1

E1E2E3E4 false 4

Table 6.6: Computation of stability in the model ”enzymatic transfer of calcium ions”
using convex coordinates and Gantmacher-Stieltjes condition

Subsystem Result Time(s)

E1 true < 1

E2 false < 1

E3 true < 1

E1E2 false < 1

E1E3 true < 1

E2E3 false < 1

E1E2E3 false 10000
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Table 6.7: Computation of stability in the model ”calcium oscillations in the cilia of
olfactory sensory neurons” using convex coordinates and Gantmacher-Stieltjes condi-

tion

Subsystem Result Time

E1 true* < 1

E2 true < 1

E3 true < 1

E1E2 true* < 1

E1E3 true* < 1

E2E3 true < 1

E1E2E3 no result > 10000

Table 6.8: Computation of stability in the model ”electro-oxidation of methanol”
using convex coordinates and Gantmacher-Stieltjes condition

Subsystem Result Time(s)

E1 true < 1

E2 false < 1

E3 true < 1

E1E2 false 5

E1E3 false < 1

E2E3 no result > 10000

E1E2E3 no result > 10000

6.3 Computation of Mixing Stability

Clarke invented in 1980 [12] a new term for computing stability of extreme subnetworks

in convex coordinates. It is based on a special Lyapunov function and is called mixing

stability. A network is an extreme network if it contains only one extreme current.

We consider the Jacobian matrix of an extreme subnetwork Nl that contains the extreme

current El:
Jacl(x) = SdiagjiElKtdiag(1/x1, ..., 1/xn). (6.6)

The extreme subnetwork Nl is mixing stable if the symmetric matrix

Jacs =
Jacl(x) + Jacl

t(x)

2
(6.7)



Chapter 6. Computing Stability in Convex Coordinates 74

is positive definite, where Jacl
t(x) is the transpose of Jacl(x). The stability of a chemical

network can be proved if it can be decomposed into mixing stable extreme networks.

Clarke proved that if all extreme subnetworks are positive definite then all steady states

for all parameter values are stable. Thereby, the mixing stability allows a network Nl
to combine with any other mixing stable network and retain its stability. [12]

An extreme subnetwork may be stable and mixing stable, or stable and non-mixing

stable, or unstable. An unstable network must contain at least one non-mixing sta-

ble extreme subnetwork. An extreme subnetwork which is stable and mixing stable,

i.e which is stable and does not induce instability if it is linearly combined with other

stable extreme subnetworks is called positive circuit. An unstable or non-mixing sta-

ble extreme current is called stoichiometric generator [12, 71]. For the (bio)-chemical

networks discussed in the previous sections, we computed the mixing stability of all ex-

treme subnetworks in convex coordinates using quantifier elimination. The tables below

summarize the results provided by Redlog.

For the phosphofructokinase reaction and the model ‘Enzymatic transfer of calcium ions’

(cf. Tables 6.9 and 6.10) we obtained the same results for the stability and mixing sta-

bility of extreme subnetworks. The stable subnetworks are also mixing stable. In the

phosphofructokinase reaction there is only one non-mixing stable subnetwork E4 that

also undergoes a Hopf-bifurcation (cf. Table 4.4). In the model ‘Enzymatic transfer of

calcium ions’ the combination of the mixing stable subnetwork E1 and non-mixing stable

subnetwork E2 gives rise to the occurrence of Hopf bifurcations in the subsystem E1E2

(cf. Table 4.5).

Table 6.9: Computation of mixing stability in the phosphofructokinase reaction

Subsystem Result Time

E1 true < 1

E2 true < 1

E3 true < 1

E4 false < 1

Table 6.10: Computation of mixing stability in the model ”enzymatic transfer of
calcium ions”

Subsystem Result Time(s)

E1 true < 1

E2 false < 1

E3 true < 1
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As examples for models containing extreme subnetworks that are both stable and non-

mixing stable, we consider two models ‘Calcium Oscillations in the cilia of olfactory

sensory neurons’ and ‘electro-oxidation of methanol’. All extreme subnetworks of the

first model (cf. Table 6.11) and the extreme subnetworks E1 and E3 of the second

model (cf. Table 6.12) are stable, but non-mixing stable. The non-mixing stability

of all existing extreme subnetworks in both models leads by their combination to the

occurrence of the Hopf bifurcations in the whole network as shown in Table 4.6 and in

Table 4.8.

Table 6.11: Computation of mixing stability in the model ”calcium oscillations in the
cilia of olfactory sensory neurons”

Subsystem Result Time

E1 false < 1

E2 false < 1

E3 false < 1

Table 6.12: Computation of mixing stability in the model ”electro-oxidation of
methanol”

Subsystem Result Time(s)

E1 false < 1

E2 false < 1

E3 false < 1
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Summary and Outlook

This work is concerned with the investigation of new symbolic methods for detecting

the existence of oscillations in complex reaction networks. Hence, The development of

new algorithmic approaches for computation of Hopf bifurcation fixed points was the

main goal, due to the relation of the occurrence of Hopf bifurcation to the existence of

local oscillations. Since the available symbolic algorithmic methods for computing Hopf

bifurcations in concentration space turned out to be difficult to handle high-dimensional

models, we were motivated to develop new methods, which allow overcoming the difficul-

ties caused by high-dimensionality of the networks and also by the additional conserva-

tion laws. Stoichiometric network analysis provides a possibility to simplify the analysis

of networks by enabling the decomposition of the whole network and then separably

analysis of the individual subnetworks. Using our first method HoCoQ, which combines

the ideas of stoichiometric analysis, manifold reduction, and quantifier elimination; we

could compute Hopf bifurcations in an attempted example involving four species and

also in some models, for which the previous available methods fail. However, for some

chemical networks with complex dynamics it remained difficult to process the final ob-

tained quantified formulae with the currently available quantifier elimination packages.

Therefore we developed a second method for computing Hopf bifurcations called HoCaT,

which is based on tropical geometry and enables us to refrain from utilizing quantifier

elimination. In contrast to HoCoQ the HoCaT method uses a criterion for the oc-

currence of Hopf bifurcations without requiring empty unstable manifolds. This leads

to reduce the problem of existence of Hopf bifurcation fixed points to the algorithmic

problem whether a single multivariate polynomial has a zero for positive coordinates.

Using HoCaT method we could compute realistic and well-known (bio)-chemical models

e.g. mitogen-activated protein kinase (MAPK) and Methylene Blue Oscillator System

(MBO). It also works very well for the attempted example involving more than 20 chem-

ical species. We also investigate the existence of Hopf bifurcations in original family of
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models of genetic circuits, for which only the results of quasi-state approximation were

available. We conclude that eliminating fast reactions in reaction systems for quasi-

steady state approximation may cause the disappearance of Hopf bifurcations.

The pre-processing step of both methods required generation of algebraic data from

the (bio)-chemical reaction networks description. Therefore we developed a framework

called ( PoCaB) that, in addition to the integration of the developed algorithmic meth-

ods, enables to generate relevant algebraic entities such as stoichiometric matrices and

their factorizations, kinetic matrices, extreme currents, polynomial systems, deficiencies

and differential equations. We also use PoCaB to extract and compute algebraic entities

form different biological models obtained from two publicly available databases and we

provide the results for public use as large derived database.

The instability in (bio)-chemical systems gives rise to the occurrence of oscillations. So

the computation of stability was a further investigated topic in this thesis. We were able

to compute stability in models involving up to 4 chemical species using also the ideas

of stoichiometric network analysis, manifold reduction, and quantifier elimination. We

studied thereby two conditions for stability, namely Hurwitz criterion and Gantmacher-

Stieljes criterion. We concluded that both criteria yield same results, but the computa-

tion of stability using Hurwitz criterion are quite faster than using Gantmacher-Stieljes

criterion. A further term for computing stability namely mixing stability was also im-

plemented and tested on various (bio)-chemical networks.

In addition to the computation of Hopf bifurcations and stability, we also investigated

the existence of global oscillations. We studied Muldowney’s extension of the classical

Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for poly-

nomial vector fields and we discussed the use of simple conservation constraints and the

use of parametric constraints for describing simple convex polytopes on which periodic

orbits can be excluded by Muldowney’s criteria.

Besides enhancing and improving the methods presented in this thesis we will concern

ourselves with the following main points in our further investigations:

1. PoCaB provides recently a derived database involving various algebraic data for

public use. A main goal in further work is to extend it to an open software for

the symbolic analysis of (bio)-chemical reaction networks. We make the exist-

ing and newly developed methods accessible to researchers in several fields e.g.

computation chemistry and system biology.

2. The efficiency of our method HoCaT that can handle even the attempted 22-

dimensional model motivated us to apply it on other realistic models and to extend

the dimensions of systems that can be handled.
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3. In our basic experiment with quasi-steady state approximation we concluded that

the occurrence of Hopf bifurcations is also depend on the fast reactions. In further

investigations we will analyse the structure of the differential algebraic equations

arising in the QSSA. One obvious question concerns the validity of the approxi-

mation and another question concerns the effect of the non-linearity of the arising

algebraic equations.

4. Investigation of complex differential algebraic equations (DAEs). The simple case

of (DAEs) is already investigated in this thesis and a method for manifold reduction

for systems with linear constraints is presented.

5. Investigation of symbolic models for model reduction such a submodel extraction

and model transformation.

6. Annotating SBML models with information obtained by the developed methods.
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[99] Clemens Wrzodek, Andreas Dräger, and Andreas Zell. Keggtranslator: visualizing

and converting the kegg pathway database to various formats. Bioinformatics

(Oxford, England), 27(16):2314–2315, July 2011.

[100] Pei Yu. Closed-form conditions of bifurcation points for general differential equa-

tions. International Journal of Bifurcation and Chaos, 15(4):1467–1483, April

2005.

[101] Günter M. Ziegler. Lectures on Polytopes (Graduate Texts in Mathematics).

Springer, 2001.


	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	2 Fundamentals
	2.1 Chemical Reaction Networks
	2.1.1 Stoichiometric Network Analysis
	2.1.2 Modeling Chemical Systems by Pseudolinear Ordinary Differential Equations

	2.2 Quantifier Elimination and Formula Simplification 
	2.3 Linear Programming

	3 Generation of Algebraic Data 
	3.1 Computation of Basic Algebraic Data
	3.2 Flux Cone and Extreme Currents
	3.3 Computation of Jacobian Matrix Using Convex Coordinates
	3.4 Algebraic Data for Graph-Theoretic Representation of the Reaction Systems
	3.5 Deficiency Value of the Reaction Network
	3.6 PoCaB: A Software Infrastructure to Explore Algebraic Methods for (Bio)-Chemical Reaction Networks
	3.6.1 Representation of Reaction Networks
	3.6.2 Database of Algebraic Entities
	3.6.2.1 Data Source
	3.6.2.2 Software Workflow and Components
	3.6.2.3 Content of Database
	3.6.2.4 Statistical Summary



	4 Detection of Hopf Bifurcations Using Convex Coordinates 
	4.1 Hopf Bifurcations and Invariant Manifolds
	4.1.1 Conditions for Existence of Hopf Bifurcations
	4.1.2 Reduction to Invariant Manifolds
	4.1.3 Stability and Bifurcations for Semi-Explicit DAEs

	4.2 HoCoQ: An Algorithm for Computing Hopf Bifurcations using Convex Coordinates and Quantifier Elimination
	4.2.1 Pre-processing
	4.2.2 Polyhedral Computations
	4.2.3 Computation of the Hopf Condition in Convex Coordinates
	4.2.3.1 Computation of the Jacobian in Reaction Space
	4.2.3.2 Jacobian on the Reduced Manifold
	4.2.3.3 Semi-Algebraic Description of Hopf Bifurcations

	4.2.4 Integration of Computational Logic Tools
	4.2.5 Pseudo-Code of the HoCoQ Algorithm
	4.2.6 Computation of Examples using HoCoQ Method
	4.2.6.1 Phosphofructokinase Reaction 
	4.2.6.2 Enzymatic Transfer of Calcium Ions 
	4.2.6.3 Model of Calcium Oscillations in the Cilia of Olfactory Sensory Neurons


	4.3 HoCaT: Algorithm for Computing Hopf Bifurcations using Convex Coordinates and Tropical Geometry
	4.3.1 Sufficient Conditions for a Positive Solution of a Single Multivariate Polynomial Equation
	4.3.2 Summarizing the HoCaT Algorithm
	4.3.3 Computation of Examples Using the HoCaT Method
	4.3.3.1 Phosphofructokinase Reaction
	4.3.3.2 Enzymatic Transfer of Calcium Ions 
	4.3.3.3 Model of Calcium Oscillations in the Cilia of Olfactory Sensory Neurons
	4.3.3.4 Electro-Oxidation of Methanol
	4.3.3.5 Methylene Blue Oscillator System
	4.3.3.6 Mitogen-Activated Protein Kinase (MAPK)
	4.3.3.7 Models of Genetic Circuits
	4.3.3.8 Control of DNA Replication in Fission Yeast



	5 On Muldowney's Criteria for Polynomial Vector Fields with Constraints 
	5.1 Introduction and Preliminaries
	5.1.1 The Bendixson-Dulac Criterion for 2-Dimensional Vector Fields
	5.1.2 Muldowney's Extensions of the Bendixson-Dulac Criterion to Higher Dimensions
	5.1.2.1 Extending Muldowney's Criteria with Dulac Functions.
	5.1.2.2 Using Conservation Constraints.
	5.1.2.3 Parametric Specification of a Convex Subset.


	5.2 Case Studies
	5.2.1 The SIRS Epidemiological Model
	5.2.1.1 Using Ad-hoc Reductions to 2D-Models
	5.2.1.2 Computations on the 3D-Model

	5.2.2 A Model of Viral Dynamics


	6 Computing Stability in Convex Coordinates
	6.1 Computing Stability Using Hurwitz Criterion
	6.2 Computing Stability Using Gantmacher-Stieltjes Criterion
	6.3 Computation of Mixing Stability

	7 Summary and Outlook
	Bibliography



