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Abstract

In this work, we have mainly achieved the following:

1. we provide a review of the main methods used for the computation of the connection
and linearization coefficients between orthogonal polynomials of a continuous vari-
able, moreover using a new approach, the duplication problem of these polynomial
families is solved;

2. we review the main methods used for the computation of the connection and lin-
earization coefficients of orthogonal polynomials of a discrete variable, we solve the
duplication and linearization problem of all orthogonal polynomials of a discrete
variable;

3. we propose a method to generate the connection, linearization and duplication co-
efficients for q-orthogonal polynomials;

4. we propose a unified method to obtain these coefficients in a generic way for orthog-
onal polynomials on the quadratic and q-quadratic lattices.

Our algorithmic approach to compute linearization, connection and duplication coeffi-
cients is based on the one used by Koepf and Schmersau [1998] and on the NaViMa
algorithm (see e.g. [Ronveaux et al., 1995], [Godoy et al., 1997]). Our main technique
is to use explicit formulas for structural identities of classical orthogonal polynomial sys-
tems. We find our results by an application of computer algebra. The major algorithmic
tools for our development are Zeilberger’s algorithm ([Petkovšek et al., 1996], [Koepf,
1998]), q-Zeilberger’s algorithm ([Koornwinder, 1993], [Koepf, 1998], [Riese, 2003]), the
Petkovšek-van-Hoeij algorithm ([Petkovšek, 1992], [van Hoeij, 1999]), the q-Petkovšek-
van-Hoeij algorithm, Algorithm 2.2, p. 20 of Koepf [1998] and it q-analogue.
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OP: orthogonal polynomials
CCOP: classical continuous orthogonal polynomials
CDOP: classical discrete orthogonal polynomials
q-COP: q-classical orthogonal polynomials
N = {1, 2, 3, . . .}
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QQL: quadratic and q-quadratic lattices
I.C.L.D.: inversion, connection, linearization and duplication



Chapter 0

General Introduction

The addition formula for cosine given by

cosmθ cosnθ =
1

2
cos(m+ n)θ +

1

2
cos(m− n)θ

pertains to Chebyshev polynomials of the first kind Tn(x) = cosnθ, where x = cos θ,
0 < θ < π. It is called a linearization formula since it represents a product of two
polynomials as a linear combination of other polynomials of the same kind

Tn(x)Tm(x) =
1

2
Tm+n(x) +

1

2
Tm−n(x).

The linearization problem is the problem of finding the coefficients Lk(m,n) in the ex-
pansion of the product pn(x)qm(x) of two polynomial systems {pn(x)}n∈N0 and {qm(x)}m∈N0

in terms of a third sequence of polynomials {yk(x)}k∈N0

pn(x)qm(x) =
n+m∑
k=0

Lk(m,n)yk(x). (1)

These coefficients exist and are unique since deg pn = n, deg qm = m, deg yk = k and
the polynomials {yk(x), k = 0, 1, . . . , n+m} are linearly independent. Note that, in this
setting, the polynomials pn(x), qm(x) and yk(x) may belong to three different polyno-
mial families. When the polynomials pn, qm and yk are solutions of the same differential
equation, this is usually called the (standard) linearization [Askey, 1975] or Clebsch-
Gordan-type problem for hypergeometric polynomials (the name Clebsch-Gordan is at-
tached because the structure is similar to the Clebsch-Gordan series for spherical functions
[Edmonds, 1957]). On the other hand, if qm(x) := 1 in (1), we are faced with the so-called
connection problem,

pn(x) =
n∑
k=0

Ck(n)yk(x), (2)

which for pn(x) = xn is known as the inversion problem

xn =
n∑
k=0

Ik(n)yk(x), (3)
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for the family yk(x). If we substitute x by ax in the left hand side of (2) and yk by pk,
we get the duplication problem

pn(ax) =
n∑
k=0

Dk(n, a)pk(x). (4)

Linearization, connection and duplication problems are not only important from a fun-
damental point of view, but also because they are used in the computation of physical
and chemical properties of quantum-mechanical systems. As example, in the evaluation
of the logarithmic potentials of orthogonal polynomials Vn(t) = −

∫
[pn(x)]2 log |x− t|dx,

which appears in the calculation of the position and momentum information entropies
of quantum systems ([Dehesa et al., 1997a], [Sánchez-Ruiz, 1997]), the linearization for-

mula (pn(x))2 =
2n∑
j=0

Lj(m,n)pj(x) is used to reduce the above integral into the form

Vn(t) = −
2n∑
j=0

Lj(m,n)
∫
pj(x) log |x− t|dx which can be easily computed.

In many applications of orthogonal polynomials, it is often important to know whether
the linearization, connection or duplication coefficients are positive or non-negative (see
e.g. [Askey, 1968], [Askey, 1975], [Gasper, 1975], [Ismail, 2005, Chapter 9]). This property
has many important consequences. It gives rise to a convolution structure associated
with the polynomial set {pn(x)} ([Gasper, 1970], [Askey and Gasper, 1971b], [Askey and
Gasper, 1977], [Szwarc, 1992]). During the last decades, several sufficient conditions for
these sign properties to hold have been derived (see e.g. [Askey, 1965], [Askey and Gasper,
1971a], [Gasper, 1975], [Askey, 1975], [Trench, 1976], [Koornwinder, 1978], [Szwarc, 1996],
[Sánchez-Ruiz et al., 1999], [Szwarc, 2003], [Ismail, 2005]).

The literature on the standard linearization and connection problems is extremely
vast, and a variety of methods and approaches for computing the coefficients have been
developed for classical continuous, discrete, q-discrete orthogonal polynomials and also
for orthogonal polynomials on a nonuniform lattice.

Classical orthogonal polynomials of a continuous, a discrete and a q-discrete variable,
and on a nonuniform lattice x = x(s) are known to satisfy, respectively, the following
second-order holonomic differential, difference, q-difference and divided-difference equa-
tions (see e.g. [Nikiforov and Uvarov, 1988], [Foupouagnigni, 2008], [Koekoek et al., 2010]):

σ(x) d2

dx2
y(x) + τ(x) d

dx
y(x) + λn y(x) = 0,

σ(x) ∆∇y(x) + τ(x) ∆ y(x) + λn y(x) = 0,

σ(x)DqD 1
q
y(x) + τ(x)Dq y(x) + λn,q y(x) = 0,

σ(x(s))D2
xyn(x(s)) + τ(x(s))SxDxyn(x(s)) + λnyn(x(s)) = 0,

where ∆, ∇, and Dq are, respectively, the forward, the backward and the Hahn operators
defined by

∆f(x) = f(x+1)−f(x), ∇f(x) = f(x)−f(x−1), Dqf(x) =
f(qx)− f(x)

(q − 1)x
, q 6= 1, x 6= 0,

withDqf(0) = lim
x→0

Dqf(x) = f ′(0), provided that f ′(0) exists, Dx and Sx are the operators
defined by [Foupouagnigni, 2008]

Dxf(x(s)) =
f(x(s+ 1

2
))− f(x(s− 1

2
))

x(s+ 1
2
)− x(s− 1

2
)

, Sxf(x(s)) =
f(x(s+ 1

2
)) + f(x(s− 1

2
))

2
,
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σ(x) = ax2+bx+c, τ(x) = dx+e, are polynomials of maximum degree 2 and 1 respectively,
and λn, λn,q are constants.

For the classical continuous or discrete polynomials families, representations of lin-
earization, connection and duplication coefficients have been obtained, usually in terms
of generalized hypergeometric series or as a hypergeometric term (to be defined be-
low), exploiting for this purpose several of their characterizing properties: Rodrigues’
formula, generating functions, orthogonality weights, structure relations etc. (see for in-
stance [Szegö, 1939], [Gasper, 1974], [Askey, 1975], [Rahman, 1981a], [Niukkanen, 1985],
[Markett, 1994], [Area et al., 1998], [Koepf and Schmersau, 1998], [Lewanowicz, 2003a],
[Sánchez-Ruiz et al., 1999]).

Definition 0.1. The generalized hypergeometric series is defined by

pFq

a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣∣x
 :=

∞∑
m=0

Amx
m =

∞∑
m=0

(a1)m · · · (ap)m
(b1)m · · · (bq)m

xm

m!
, (5)

where (a)m denotes the Pochhammer symbol (or shifted factorial) defined by

(a)m =

1 if m = 0

a(a+ 1)(a+ 2) · · · (a+m− 1) = Γ(a+m)
Γ(a)

if m ∈ N.

We say that a term Am is a hypergeometric term with respect to m if Am+1

Am
∈ Q(m),

i.e. is a rational function in the variable m.

The summand αm = Amx
m of a generalized hypergeometric series is a hypergeometric

term since
αm+1

αm
=

(m+ a1) · · · (m+ ap)

(m+ b1) · · · (m+ bq)

x

m+ 1
.

If any numerator parameter ai is zero or a negative integer, the series terminates.
An application of the elementary ratio test to the power series on the right in (5)

shows at once that:

a) If p ≤ q, the series converges for all x ∈ C;

b) If p = q + 1, the series converges for |x| < 1 and diverges for |x| > 1;

c) If p > q + 1, the series diverges for x 6= 0.

If the series terminates, there is no question of convergence, and the conclusions (b) and
(c) do not apply. If p = q + 1, the series in (5) is absolutely convergent on the circle
|x| = 1 if

Re
( q∑
j=1

bj −
p∑
i=1

ai

)
> 0.

Ferrers [1877] and Adams [1878] found the linearization formula of the Legendre poly-
nomials Pn(x) = P

(0,0)
n (x)1

Pn(x)Pm(x) =

min(m,n)∑
k=0

m+ n− 2k + 1
2

m+ n− k + 1
2

AkAm−kAn−k
Am+n−k

Pm+n−2k(x), Am =

(
1
2

)
m

m!

1The general notation for specific orthogonal systems are given in Chapter 1
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by finding the coefficients for small values of m (Adams derived these coefficients for
m = 1, 2, 3, 4 in his paper, guessing what the result would be for arbitrary m and n, and
proving it by induction). Bailey [1933] gave the first proof of this formula by means of
Whipple’s transformation of a Saalschützian 4F3 to a well-poised 7F6 and Dougall [1953]
gave a second proof. But a more systematic method should be found. Hylleraas [1962]
computed a fourth order differential equation satisfied by the product C(α)

m (x)C
(α)
n (x) of

ultraspherical polynomials and used it to set up a recurrence relation for the linearization
coefficients. Then he solved this recurrence relation and obtained Dougall’s linearization
formula [Dougall, 1919]

C(α)
n (x)C(α)

m (x) =

min(m,n)∑
k=0

(n+m− 2k + α)(n+m− 2k)!(α)k
k!(n+m− k + α)(n− k)!(m− k)!

×(α)n−k(α)m−k(2α)n+m−k

(α)n+m−k(2α)n+m−2k

C
(α)
n+m−2k(x).

For Jacobi polynomials the situation was far from satisfaction.
Rainville [1960] combined the hypergeometric representation and inversion formulas

to get connection coefficients of continuous orthogonal polynomials. The technique he
used was based on generating functions of the polynomials involved.

Recently, it has been shown by Lewanowicz [2003a] that the connection problem be-
tween two families of orthogonal polynomials can sometimes be solved by taking advantage
of known theorems from the theory of generalized hypergeometric functions.

Koepf and Schmersau [1998] gave a general algorithmic method to solve connection
problems for classical orthogonal polynomials of a continuous and a discrete variable.
Their main technique was to use explicit formulas for structural identities of the given
polynomial systems. Sánchez-Ruiz et al. [1999], by an integral evaluation, obtained gen-
eral representations for the linearization coefficients, and the particular cases of the stan-
dard linearization and connection problems were singled out. Their method was based on
the Rodrigues’ formula and the orthogonality of the polynomial families. Alvarez-Nodarse
et al. [1997] used the same approach to solve linearization and connection problems for
discrete hypergeometric polynomials.

Another, rather general, approach allows the computation of the standard linearization
and connection coefficients recursively (see e.g. [Markett, 1994], [Ronveaux et al., 1995],
[Lewanowicz, 1996b], [Godoy et al., 1997]). For this purpose, an algorithm called NaViMa
has been developed by Ronveaux et al. [1995], Godoy et al. [1997].

In contrast, the general linearization, connection and duplication problem has not
yet been solved, to the best of our knowledge, for q-orthogonal polynomials and orthog-
onal polynomials on a quadratic and q-quadratic lattice, although some partial results
are known for the linearization of the following families: little q-Jacobi [Andrews and
Askey, 1977], Continuous q-Jacobi [Rahman, 1981b], q-Ultraspherical [Gasper and Rah-
man, 1990], q-Hermite [Markett, 1994]. Moreover for classical continuous othogonal poly-
nomials the duplication problem is not completely solved whereas for classical discrete
orthogonal polynomials, it is solved only for a = −1 and also the linearization problem is
not completely solved.

In this work:

1. we provide a review of the main methods used for the computation of the connec-
tion, linearization and duplication coefficients between orthogonal polynomials of a
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continuous variable, we solve the duplication problem of these polynomial families
using a new approach. We recover known duplication formulas and moreover, we
get new results for Jacobi and Gegenbauer polynomials (see Theorem 1.13).

2. we review the main methods used for the computation of the connection and lin-
earization coefficients of orthogonal polynomials of a discrete variable. The dupli-
cation problem of the polynomials belonging to this family is solved for any value
of a, therefore generalizing known results for a = −1 (see Theorem 2.13). Further-
more the linearization problem of all orthogonal polynomials of a discrete variable
is solved and we get a hypergeometric series representation of their linearization
coefficients (see Theorem 2.8); these results are new as far as we know.

3. we propose a method to generate the connection, linearization and duplication coef-
ficients for q-orthogonal polynomials. To the best of our knowledge these results are
new and we have already published some of them in [Foupouagnigni et al., 2012].

4. we propose a unified method to obtain the connection, linearization and duplication
coefficients in a generic way for the Askey-Wilson polynomials. In [Foupouagnigni
et al., 2013b], we have already published part of these results.

5. we use limiting and/or special cases to recover from the results obtained for the
Askey-Wilson polynomials, the representation of connection, linearization and du-
plication coefficients for all the classical orthogonal polynomials on a quadratic and
q-quadratic lattice. However, due to space limitation, we have provided these coef-
ficients only for the q-Racah, Wilson and Racah orthogonal polynomials which are
the most representative for the different types of quadratic and q-quadratic lattices.

Our algorithmic approach to compute linearization, connection and duplication coeffi-
cients is based on the one used by Koepf and Schmersau [1998] and on the NaViMa
algorithm [Ronveaux et al., 1995], [Godoy et al., 1997]. We find our results by an applica-
tion of the Maple and Mathematica computer algebra systems. Our main technique is to
use explicit formulas for structural identities of classical orthogonal polynomial systems.
The major algorithmic tools for our development are Zeilberger’s algorithm, q-Zeilberger’s
algorithm, the Petkovšek-van-Hoeij algorithm, the q-Petkovšek-van-Hoeij algorithm, Al-
gorithm 2.2, p. 20 of Koepf [1998] and it q-analogue.

Marko Petkovšek [Petkovšek, 1992] developed an algorithm to find all hypergeometric
term solutions of a holonomic recurrence equation, i.e., homogeneous linear recurrence
equation with polynomial coefficients. In some cases this algorithm is not very efficient.
However Mark van Hoeij [van Hoeij, 1999] gave a very efficient version of such an algo-
rithm. Cluzeau and van Hoeij [2006] described the complete algorithm to compute the
hypergeometric term solutions of linear recurrence relations with rational function coeffi-
cients. An efficient version of this algorithm was implemented in Maple by van Hoeij. In
the sequel, the Petkovšek-van-Hoeij algorithm refers to this efficient version of van Hoeij.

Zeilberger’s algorithm (see e.g. [Petkovšek et al., 1996], [Koepf, 1998]) deals with sums
of the form

Sn =
∞∑

m=−∞

A(n,m).

Zeilberger’s algorithm applies if A(n,m) is a hypergeometric term with respect to both n
and m. It generates a holonomic recurrence equation for Sn. If the recurrence equation
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is of first order, then Sn (with n assumed to be an integer) can be converted to a hyper-
geometric term. Zeilberger’s algorithm may not give a recurrence equation of first order,
even if the sum is a hypergeometric term. In such a case, the combination of Zeilberger’s
with the Petkovšek-van-Hoeij algorithm guarantees to find out whether the given sum can
be written as a hypergeometric term. If the recurrence equation doesn’t have a hyperge-
ometric term solution, it may be helpful to give a hypergeometric series representation of
the sum Sn. This is done by Algorithm 2.2, p. 20 of Koepf [1998]. This algorithm con-
verts hypergeometric sums into hypergeometric notation and is implemented in Maple in
the package hsum.mpl by the procedure sumtohyper. Throughout this work, sumtohyper
refers to this algorithm.

Concerning the other algorithms, we need the following definitions.

Definition 0.2. 1. The basic hypergeometric series rφs is defined by

rφs

a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣∣ q; z
 =

∞∑
k=0

(a1, . . . , ar; q)k
(b1, . . . , bs; q)k

(
(−1)kq(

k
2)
)1+s−r zk

(q; q)k
,

where the q-Pochhammer symbol (a1, a2, . . . , ak; q)n is defined by

(a1, . . . , ar; q)k := (a1; q)k · · · (ar; q)k, with (ai; q)k =


k−1∏
j=0

(1− aiqj) if k = 1, 2, 3, . . .

1 if k = 0.

If one of the numerator parameters ai equals q−n, where n is a nonnegative integer,
the series terminates. Otherwise the radius of convergence of the hypergeometric
series is given by 

∞ if r < s+ 1,

1 if r = s+ 1,

0 if r > s+ 1.

2. A term Ak is a q-hypergeometric term if Ak+1

Ak
∈ Q(qk), i.e., is a rational function

in the variable qk.

3. A linear homogeneous recurrence equation
n∑
k=0

αk(q; q
m)Cm+k = 0

is called q-holonomic if the coefficients αk(q; qm) are rational w.r.t. q and polynomial
functions w.r.t. the variable qm.

The q-Petkovšek-van-Hoeij algorithm finds the q-hypergeometric term solutions of
q-holonomic recurrence equations. A q-version of Petkovšek’s algorithm was given by
Abramov et al. [1998] and by Böing and Koepf [1999]. However, this algorithm is rather
inefficient in some cases and therefore not at all suitable for many of our recurrence
equations. Fortunately, Cluzeau and van Hoeij [2006] published a refined version which is
much more efficient (see also Horn [2008], [Horn et al., 2012]). Sprenger [2009] presented
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a Maple implementation of this refined version qHypergeomSolveRE in his package qFPS
(see also [Sprenger and Koepf, 2012]). It is worth noting that in the sequel, q-Petkovšek-
van-Hoeij algorithm refers to this implementation.

The q-version of Zeilberger’s algorithm (see e.g. [Koepf, 1998]) also deals with definite
sums of the form

Sn =
∞∑

m=−∞

A(n,m)

and applies if A(n,m) is a q-hypergeometric term with respect to both n and m. It
generates a q-holonomic recurrence equation for Sn. If the recurrence equation is of first
order, then Sn (with n assumed to be an integer) can be converted to a q-hypergeometric
term. If the recurrence if of order greater than one, q-Petkovšek-van-Hoeij algorithm
is used. If the recurrence equation doesn’t have a q-hypergeometric term solution, it
may be helpful to give a q-hypergeometric representation of the sum Sn. This is done
by the q-analogue of Algorithm 2.2, p. 20 of Koepf [1998]. This algorithm converts q-
hypergeometric sums into q-hypergeometric notation and is implemented in Maple in the
package qsum.mpl by the procedure sum2qhyper. Throughout this work, sum2qhyper
refers to this algorithm.
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Chapter 1

Connection, Linearization and
Duplication Coefficients of Classical
Orthogonal Polynomials of a
Continuous Variable

In this chapter, we recall known results on connection and linearization coefficients of
classical orthogonal polynomials on the real line. We are interested in reviewing here some
different general methods used to obtain these results. Furthermore we use a new approach
to compute duplication coefficients of classical continuous orthogonal polynomials. We
recover known results and get some new ones.

1.1 Introduction

Here, we recall some definitions and results which will be useful in the sequel.
Let P denotes the linear space of polynomials with coefficients in C, the set of complex
numbers.

Definition 1.1. 1. A polynomial sequence {yn(x)}n≥0 in P is called a polynomial fam-
ily (system or set) if yn(x) is of degree precisely n in x, n = 0, 1, 2, . . ..

2. A positive function ρ(x) defined on (A,B) (with −∞ ≤ A < B ≤ +∞) is a weight
function if ρ(x) is continuous on (A,B) and

∫ B
A
ρ(x)xndx ∈ R , for all n ∈ N0.

3. We say that a polynomial family {yn(x)}n≥0 of a continuous variable is orthogonal
with respect to the weight function ρ(x) defined on (A,B) if∫ B

A

yn(x)ym(x)ρ(x)dx = h2
nδmn, (1.1)

where h2
n is a nonnegative real and δmn =

0 if m 6= n

1 if m = n,
designates the Kronecker

symbol.
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4. An orthogonal polynomial family of a continuous variable {yn(x)}n≥0 is classical if
the weight ρ(x) is solution of the so-called Pearson equation

(σ(x)ρ(x))′ = τ(x)ρ(x), (1.2)

where σ(x) = ax2 + bx+ c > 0 on (A,B) and τ(x) = dx+ e are, respectively, poly-
nomials of at most second order and first order and satisfy the boundary conditions

lim
x→A, x>A

σ(x)ρ(x)xk = lim
x→B, x<B

σ(x)ρ(x)xk = 0, k ≥ 0. (1.3)

Let us mention that the classical orthogonal polynomials of a continuous variable
(yn(x)) satisfies a second-order differential equation of the form

σ(x)y′′n(x) + τ(x)y′n(x) + λnyn(x) = 0, (1.4)

with λn = −n
[
(n− 1)a+ d

]
. We shall refer to (1.4) as an equation of hypergeometric type,

and its solutions as polynomials of hypergeometric type (see e.g. [Nikiforov and Uvarov,
1988]).

In [Nikiforov and Uvarov, 1988] (for example), it is shown that:

Theorem 1.2. The polynomial solutions of (1.4) are defined up to a normalizing factor
by the so-called Rodrigues formula

yn(x) =
Bn

ρ(x)

dn

dxn

[
σ(x)nρ(x)

]
, n = 0, 1, . . . , (1.5)

with

B0 = k0, Bn = kn

n−1∏
j=0

(
d+ (n+ j − 1)a

)−1

, n = 1, 2, . . . ,

where kn is the leading coefficient of the polynomial yn(x) = knx
n + . . ..

The norm h2
n is given in terms of Bn by

h2
n = (−1)nn!knBnµn, with µ̂n =

∫ B

A

σ(x)nρ(x)dx, (1.6)

where (µ̂n)n≥0 defined above denotes the sequence of generalized moments of ρ(x).

Theorem 1.3. The kth derivatives y(k)
n (x) of the classical orthogonal polynomials yn(x),

orthogonal with weight ρ(x) on (A,B), are also classical polynomials, orthogonal with
weight ρk(x) = σ(x)kρ(x) on (A,B):∫ B

A

y(k)
n (x)y(k)

m (x)ρk(x)dx = h2
nkδm,n, (1.7)

with

h2
n0 = h2

n, h
2
nk = h2

n(−1)k
k−1∏
j=0

(n− j)
(
d+ (n+ j − 1)a

)
, k = 1, 2, . . . , n.
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These derivatives are solutions of the second-order differential equation

σ(x)y′′(x) + τk(x)y′(x) + λn,kyn,k(x) = 0, (1.8)

with
τk(x) = τ(x) + kσ′(x) and λn,k = −n

(
(n− 1)a+ d+ 2ak

)
.

In this case, the Pearson equation is given by

[σ(x)ρk(x)]′ = τk(x)ρk(x).

Since the derivatives of all orders of polynomials yn(x) of hypergeometric type are also
polynomials of hypergeometric type, the Rodrigues formula for y(k)

n (x) has the form (see
e.g. [Nikiforov and Uvarov, 1988])

y(k)
n (x) =

AnkBn

σ(x)kρ(x)

dn−k

dxn−k

[
σ(x)nρ(x)

]
, (1.9)

with

An0 = 1, Ank =
n!

(n−m)!

k−1∏
j=0

(
d+ (n+ j − 1)a

)
, 1 ≤ k ≤ n. (1.10)

For much additional material on general orthogonal polynomials the reader should consult:
[Szegö, 1939], [Jackson, 1941], [Nikiforov and Uvarov, 1988], [Ismail, 2005], [Koekoek et al.,
2010].

Note that by P (α,β)
n (x), C(α)

n (x), L(α)
n (x), Hn(x), B(α)

n (x), we denote, respectively,
the Jacobi, Gegenbauer/Ultraspherical, Laguerre, Hermite and Bessel polynomials. Their
hypergeometric representations are given in [Koekoek et al., 2010]

P (α,β)
n (x) =

(α + 1)n
n!

2F1

−n, n+ α + β + 1

α + 1

∣∣∣∣∣∣ 1− x
2

, α > −1, β > −1

= (−1)n
(β + 1)n

n!
2F1

−n, n+ α + β + 1

β + 1

∣∣∣∣∣∣ 1 + x

2

,
C(α)
n (x) =

(α)n2nxn

n!
2F1

−n/2,−n/2 + 1/2

−n− α + 1

∣∣∣∣∣∣ 1

x2

, α > −1

2
and α 6= 0,

L(α)
n (x) =

(α + 1)n
n!

1F1

 −n

α + 1

∣∣∣∣∣∣x
, α > −1,

Hn(x) = 2nxn2F0

−n/2,−n/2 + 1/2

−

∣∣∣∣∣∣− 1

x2

,
B(α)
n (x) = 2F0

−n, n+ α + 1

−

∣∣∣∣∣∣−x2
, n = 0, 1, . . . , N, α < −2N − 1.
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The data corresponding to each family are given in the following table [Koekoek et al.,
2010]:

system P
(α,β)
n (x) C

(α)
n (x) L

(α)
n (x) Hn(x) B

(α)
n (x)

σ(x) 1− x2 1− x2 x 1 x2

τ(x) β − α− (α + β + 2)x −(2α + 1)x α + 1− x −2x 2 + (α + 2)x

ρ(x) (1− x)α(1 + x)β (1− x2)α−
1
2 xαe−x e−x

2
xαe−

2
x

(A,B) (−1, 1) (−1, 1) (0,∞) (−∞,∞) (0,∞)

kn
(α+β+n+1)n

2nn!
(α)n2n

n!
(−1)n

n!
2n (n+α+1)n

2n

1.2 Connection and Linearization Coefficient Using Struc-
tural Relations

The main idea of the following methods is to determine recurrence equations for the
linearization coefficients Lk(m,n)

pn(x)qm(x) =
n+m∑
k=0

Lk(m,n)yk(x),

and the connection coefficients Cm(n)

pn(x) =
n∑

m=0

Cm(n)qm(x),

for the polynomial sequences pn, qn and yn. These recurrence equations follow mainly
from the structural formulas of the polynomials involved in the connection or linearization
relations. The most interesting recurrence equations are those based only in one parameter
which leave the other parameters fixed. The success of these methods will heavily depend
on whether or not these recurrence equations are of the lowest order, i.e., whether or not
no recurrence equations of lower orders for Lk(m,n) or Cm(n) are valid. In cases when the
order of the resulting recurrence equation is one, it defines a hypergeometric term which
can be given explicitly in terms of shifted factorials using the initial values Ln+m(m,n)
or Cn(n).

1.2.1 Structural Formulas for Classical Orthogonal Polynomials
of a Continuous Variable

Let (pn(x) = knx
n + . . .)n∈N0 be a family of classical continuous orthogonal polynomials

(in short CCOP). This family is solution of a differential equation of type (1.4). For
every pn(x), n ∈ N0, with p−1 ≡ 0, the following structural relations are valid (see e.g.
[Koepf and Schmersau, 1998]):

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x), (1.11)
σ(x)p′n(x) =αnpn+1(x) + βnpn(x) + γnpn−1(x), (1.12)

xp′n(x) =α?np
′
n+1(x) + β?np

′
n(x) + γ?np

′
n−1(x), (1.13)

pn(x) = ânp
′
n+1(x) + b̂np

′
n(x) + ĉnp

′
n−1(x), (1.14)
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σ(x)p′′n(x) = a′np
′
n+1(x) + b′np

′
n(x) + c′np

′
n−1(x). (1.15)

Koepf and Schmersau [1998], using computer algebra, obtained explicitly in terms of a,
b, c, d, e, kn−1, kn, and kn+1, the coefficients involved in the above structural identities.

Theorem 1.4. For orthogonal polynomial solutions of (1.4), the relations (1.11)–(1.15)
are valid. The coefficients an, bn, cn, αn, βn, γn, α?n, β?n, γ?n, a′n, b′n, c′n and ân, b̂n, ĉn,
are given by

an =
kn
kn+1

,

bn =−2bn(an+ d− a)− e(2a− d)

(d+ 2an)(d− 2a+ 2an)
,

cn =−(n(an+ d− 2a)(4ac− b2) + 4a2c− ab2 + ae2 − 4acd+ db2 − bed+ d2c)

× (an+ d− 2a)n

(d− 2a+ 2an)2(2an− 3a+ d)(2an− a+ d)
· kn
kn−1

,

αn = an
kn
kn+1

,

βn =−n(an+ d− a)(2ea− db)
(d+ 2an)(d− 2a+ 2an)

,

γn = ((n− 1)(an+ d− a)(4ca− b2) + ae2 + d2c− bed)

× (an+ d− a)(an+ d− 2a)n

(d− 2a+ 2an)2(2an− 3a+ d)(2an− a+ d)
· kn
kn−1

,

α?n =
n

n+ 1
· kn
kn+1

,

β?n =
−2bn(an+ d− a) + d(b− e)

(d+ 2an)(d− 2a+ 2an)
,

γ?n =−n((n− 1)(an+ d− a)(4ac− b2) + ae2 + d2c− bed)(an+ d− a)

(d− 2a+ 2an)2(2an− 3a+ d)(2an− a+ d)
· kn
kn−1

,

a′n =
an(n− 1)

n+ 1
· kn
kn+1

,

b′n =−(n− 1)(an+ d)(2ea− db)
(d+ 2an)(d− 2a+ 2an)

,

c′n =
n((n− 1)(an+ d− a)(4ca− b2) + ae2 + d2c− bed)(an+ d)(an+ d− a)

(d− 2a+ 2an)2(2an− 3a+ d)(2an− a+ d)
· kn
kn−1

,

ân =
1

n+ 1

kn
kn+1

,

b̂n =
2ea− db

(d+ 2an)(d− 2a+ 2an)
,

ĉn =
na((n− 1)(an+ d− a)(4ac− b2) + ae2 + d2c− bed)

(d− 2a+ 2an)2(2an− 3a+ d)(2an− a+ d)
· kn
kn−1

.

Equation (1.14) is rather a special connection problem: it expresses the connection
between the polynomial systems {pn(x)} and {p′m+1(x)}. In this case the connection
coefficients turn out to be rather simple: almost all of them (namely all with m < n− 2)
are zero.
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Using the above structure relations, different authors derived the linearization and con-
nection coefficients of classical continuous orthogonal polynomials using different methods.

1.2.2 First Method

Connection Formula

Here, we review the method presented by Koepf and Schmersau [1998]. We assume that
pn(x) is a polynomial system given by (1.4) with σ(x) = ax2 + bx+ c, and τ(x) = dx+ e,
and that qm(x) is a polynomial system given by (1.4) with σ(x) := σ̄(x) = āx2 + b̄x + c̄,
and τ(x) := τ̄(x) = d̄x+ ē. Note that we will denote all coefficients connected with qm(x)
by dashes. Hence we have

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x)

xqm(x) = āmqm+1(x) + b̄mqm(x) + c̄mqm−1(x),

with an, bn, cn, ām, b̄m, c̄m given explicitly.
In three steps, we will now derive three linearly independent recurrence equations for

Cm(n). First, substituting pn(x) =
n∑

m=0

Cm(n)qm(x) in the three-term recurrence equation

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x), we get (since Cn+s(n) = 0, s = 1, 2, . . .)

n∑
m=0

Cm(n)xqm(x) =
n+1∑
m=0

(
anCm(n+ 1)qm(x) + bnCm(n)qm(x) + cnCm(n− 1)qm(x)

)
.

Then we substitute xqm(x) in the above equation using the three-term recurrence equation
for qm(x). This yields

n∑
m=0

Cm(n)
(
āmqm+1(x) + b̄mqm(x) + c̄mqm−1(x)

)
=

n+1∑
m=0

(
anCm(n+ 1) + bnCm(n) + cnCm(n− 1)

)
qm(x).

By appropriate index shifts, we can equate the coefficient of qm(x) to get the “cross rule”

anCm(n+1)+bnCm(n)+cnCm(n−1) = ām−1Cm−1(n)+ b̄mCm(n)+ c̄m+1Cm+1(n). (1.16)

To deduce a second cross rule in terms of the same variables Cm(n+1), Cm(n), Cm(n−1),
Cm−1(n) and Cm+1(n), we examine the term xp′n(x). Using both three-term recurrence
equations for the derivatives

xp′n(x) =α?np
′
n+1(x) + β?np

′
n(x) + γ?np

′
n−1(x)

xq′m(x) = ᾱ?mq
′
m+1(x) + β̄?mq

′
m(x) + γ̄?mq

′
m−1(x),
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we get

xp′n(x) = α?np
′
n+1(x) + β?np

′
n(x) + γ?np

′
n−1(x)

m
n∑

m=0

Cm(n)xq′m(x) =
n+1∑
m=0

(
α?nCm(n+ 1) + β?nCm(n) + γ?nCm(n− 1)

)
q′m(x)

m
n∑

m=0

Cm(n)
(
ᾱ?mq

′
m+1(x) + β̄?mq

′
m(x) + γ̄?mq

′
m−1(x)

)
=

n+1∑
m=0

(
α?nCm(n+ 1) + β?nCm(n) + γ?nCm(n− 1)

)
q′m(x).

Again, by appropriate index shifts, we can equate the coefficient of q′m(x) to get the cross
rule

α?nCm(n+1)+β?nCm(n)+γ?nCm(n−1) = ᾱ?m−1Cm−1(n)+β̄?mCm(n)+γ̄?m+1Cm+1(n). (1.17)

In a similar way the cross rule

ânCm(n+1)+ b̂nCm(n)+ ĉnCm(n−1) = ¯̂am−1Cm−1(n)+
¯̂
bmCm(n)+ ¯̂cm+1Cm+1(n) (1.18)

can be obtained from (1.14). It turns out, however, that this relation is linearly dependent
from (1.16) and (1.17), and hence does not yield new information. To obtain reasonably
simple results, we now assume furthermore that σ̄(x) = σ(x).

Connection Formula with σ̄(x) = σ(x)

Using both derivatives rules

σ(x)p′n(x) =αnpn+1(x) + βnpn(x) + γnpn−1(x),

σ̄(x)q′m(x) = ᾱmqm+1(x) + β̄mqm(x) + γ̄mqm−1(x),

we get

σ(x)p′n(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x)

m
n∑

m=0

Cm(n)σ(x)q′m(x) =
n+1∑
m=0

(
αnCm(n+ 1) + βnCm(n) + γnCm(n− 1)

)
qm(x)

m
n∑

m=0

Cm(n)
(
ᾱmqm+1(x) + β̄mqm(x) + γ̄mqm−1(x)

)
=

n+1∑
m=0

(
αnCm(n+ 1) + βnCm(n) + γnCm(n− 1)

)
qm(x).

Again, by appropriate index shifts, this results in the cross rule

αnCm(n+1)+βnCm(n)+γnCm(n−1) = ᾱm−1Cm−1(n)+β̄mCm(n)+γ̄m−1Cm−1(n). (1.19)

To obtain a pure recurrence equation with respect to m, from the three cross rules (1.16),
(1.17), and (1.19) by linear algebra we eliminate the variables Cm(n+ 1) and Cm(n− 1),
and to obtain a pure recurrence equation with respect to n, we eliminate the variables
Cm−1(n) and Cm+1(n). This yields a second-order recurrence equation satisfied by the
connection coefficients Cm(n).

In different cases where σ̄(x) 6= σ(x), we need the power representation.
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Power Representation or Inversion Formula

In many applications, one wants to develop a given polynomial in terms of a given or-
thogonal polynomial system. In this case handy formulas for the power xn like

xn =
n∑

m=0

Im(n)qm(x)

are very welcome. We remark that this formula is the connection formula for the specific
case pn(x) = xn, and is called inversion formula.

For qm(x), we have the differential equation

σ̄(x)q′′m(x) + τ̄(x)q′m(x) + λ̄mqm(x) = 0

with σ̄(x) = āx2 + b̄x+ c̄, and the derivative rule

σ̄(x)q′m(x) = ᾱmqm+1(x) + β̄mqm(x) + γ̄mqm−1(x).

Our current pn(x) = xn satisfies

σ̄(x)p′n(x) = (āx2 + b̄x+ c̄)nxn−1

= ānxn+1 + b̄nxn + c̄nxn−1

= ānpn+1(x) + b̄npn(x) + c̄npn−1(x),

xpn(x) = pn+1(x), xp′n(x) =
n

n+ 1
p′n+1(x), pn(x) =

1

n+ 1
p′n+1(x).

Hence in our situation, we get the cross rule (1.16) with an = 1, bn = cn = 0

Im(n+ 1) = ām−1Im−1(n) + b̄mIm(n) + c̄m+1Im+1(n), (1.20)

the cross rule (1.17) with α?n = n
n+1

, β?n = γ?n = 0

n

n+ 1
Im(n+ 1) = ᾱ?m−1Im−1(n) + β̄?mIm(n) + γ̄?m+1Im+1(n), (1.21)

the cross rule (1.18) with ân = 1
n+1

, b̂n = ĉn = 0

1

n+ 1
Im(n+ 1) = ¯̂am−1Im−1(n) +

¯̂
bmIm(n) + ¯̂cm+1Im+1(n),

and the cross rule

ānIm(n+ 1) + b̄nIm(n) + c̄nIm(n− 1) = ᾱm−1Im−1(n) + β̄mIm(n) + γ̄m−1Im−1(n).

We substitute the cross rule (1.20) in (1.21), and then we obtain a pure recurrence equation
with respect to m.

Remark 1.5. In many instances the recurrence equations reduce to two terms. Then
their hypergeometric term solutions are identified. If the recurrence equation is of order
greater than 1, we use the Petkovšek-van-Hoeij algorithm to get its hypergeometric term
solutions.

Using the hypergeometric representation of the polynomial pn(x) and the inversion
formula of qm(x), we get the general connection formula.
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Connection Formula: General Case

In general, to find the coefficients Cm(n) in the relation

pn(x) =
n∑

m=0

Cm(n)qm(x),

we combine

pn(x) =
n∑
j=0

Aj(n)xj and xj =

j∑
m=0

Im(j)qm(x),

which yields the representation

pn(x) =
n∑
j=0

j∑
m=0

Aj(n)Im(j)qm(x),

and then, interchanging the order of summation gives

Cm(n) =
n−m∑
j=0

Aj+m(n)Im(j +m).

For orthogonal polynomials with even weight such as Hermite and Gegenbauer polyno-
mials, we have the relations

pn(x) =

bn
2
c∑

j=0

Aj(n)xn−2j and xj =

b j
2
c∑

m=0

Im(j)qj−2m(x),

from which we deduce

xn−2j =

bn
2
c−j∑

m=0

Im(n− 2j)qn−2j−2m(x).

Finally, we combine the above two expressions and substitute m by m− j to get

Cm(n) =
m∑
j=0

Aj(n)Im−j(n− 2j),

with

pn(x) =
n∑

m=0

Cm(n)qn−2m(x).

Since the summand F (j,m, n) := Aj(n)Im(j) of Cm(n) turns out to be a hypergeo-
metric term with respect to (j,m, n), i.e., the term ratios F (j + 1,m, n)/F (j,m, n),
F (j,m+1, n)/F (j,m, n), and F (j,m, n+1)/F (j,m, n) are rational functions, Zeilberger’s
(combined with the Petkovšek-van-Hoeij) algorithm applies. If a hypergeometric term so-
lution exists, the representation of Cm(n) follows then from the initial values Cn(n) =
kn/k̄n, Cn+s(n) = 0, s = 1, 2, . . ., where kn, k̄n are, respectively, the leading coefficients
of pn(x) and qn(x).
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Linearization Formula

The linearization formula

pn(x)qm(x) =
n+m∑
k=0

Lk(m,n)yk(x)

follows from the hypergeometric representation of the polynomials pn(x), qm(x) and the
inversion formula of the polynomials yk(x).

In fact, if

pn(x) =
n∑
i=0

Ai(n)xi and qm(x) =
m∑
j=0

Bj(m)xj,

then by the Cauchy product

pn(x)qm(x) =
n+m∑
l=0

Gl(m,n)xl,

with

Gl(m,n) =
l∑

i=0

Ai(n)Bl−i(m).

Combining the preceding result with the inversion formula

xl =
l∑

k=0

Ik(l)yk(x),

we get

Lk(m,n) =
n+m−k∑
l=0

Gl+k(m,n)Ik(l + k)

=
n+m−k∑
l=0

l+k∑
i=0

Ik(l + k)Ai(n)Bl+k−i(m).

We note that we can apply Zeilberger’s and the Petkovšek-van-Hoeij algorithm to reduce
(if possible) Gl(m,n) into a hypergeometric term and/or Lk(m,n) into a single sum or a
hypergeometric term.

1.2.3 Second Method: The NaViMa Algorithm

In this section, we describe a recurrent algorithm (called NaViMa) to compute recursively
the connection and linearization coefficients of CCOP [Ronveaux et al., 1995], [Godoy
et al., 1997]. We note that the name NaViMa comes from their authors’ institutions
which are Namur (in Belgium), Vigo and Madrid (in Spain). This method also uses the
structural relations (1.11)-(1.15) of CCOP.



1.2 Connection and Linearization Coefficient Using Structural Relations 19

Connection Formula

The first step to obtain a recurrence relation for the connection coefficients consists in
applying the differential operator L2,n : P −→ P , defined by

L2,n[pn(x)] := σ(x)p′′n(x) + τ(x)p′n(x) + λnpn(x) = 0 (1.22)

to both sides of the connection identity pn(x) =
n∑

m=0

Cm(n)qm(x). This gives

n∑
m=0

Cm(n)
[
σ(x)q′′m(x) + τ(x)q′m(x) + λnqm(x)

]
= 0. (1.23)

Then, a recurrence relation for the connection coefficients Cm(n) of maximum order 4 or
2 results if we expand the expression

σ(x)q′′m(x) + τ(x)q′m(x) + λnqm(x). (1.24)

in the basis {q′′m(x)} (if σ(x) 6= σ̄(x)) or in the basis {q′m(x)} (if σ(x) = σ̄(x)), respectively.
Note that we will denote all coefficients connected with qm(x) using dashes.

Using the {q′′m(x)} basis

To consider {q′′m(x)} as expanding basis one proceeds as follows. First, Equation (1.14)
and its derivative allow to write

qm(x) =
m+2∑
j=m−2

am,jq
′′
j (x), (1.25)

with

am,m+2 = ¯̂am¯̂am+1, am,m+1 = ¯̂am(
¯̂
bm +

¯̂
bm+1), am,m = ¯̂am¯̂cm+1 +

¯̂
b2
m + ¯̂cm¯̂am−1,

am,m−1 = ¯̂cm(
¯̂
bm +

¯̂
bm−1), am,m−2 = ¯̂cm¯̂cm−1.

Second, from (1.13) and the derivative of (1.14) one has

τ(x)q′m(x) =
m+2∑
j=m−2

a
(1)
m,jq

′′
j (x), (1.26)

with

a
(1)
m,m+2 = dᾱ?m

¯̂am+1, a
(1)
m,m+1 = d

(
ᾱ?m

¯̂
bm+1 + β̄?m

¯̂am

)
+ e¯̂am, a

(1)
m,m−2 = dγ̄?m

¯̂cm−1

a
(1)
m,m−1 = d

(
β̄?m

¯̂cm + γ̄?m
¯̂
bm−1

)
+ e¯̂cm, a

(1)
m,m = d

(
ᾱ?m

¯̂cm+1 + β̄?m
¯̂
bm + γ̄?m

¯̂am−1

)
+ e

¯̂
bm.

And third, from the derivative of (1.13) and the derivative of (1.14) we get

σ(x)q′′m(x) =
m+2∑
j=m−2

a
(2)
m,jq

′′
j (x), (1.27)
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with

a(2)
m,m = a

(
(β̄?m −

¯̂
bm)2 + (γ̄?m − ¯̂cm)(ᾱ?m−1 − ¯̂am−1) + (ᾱ?m − ¯̂am)(γ̄?m+1 − ¯̂cm+1)

)
+b(β̄?m −

¯̂
bm) + c, a

(2)
m,m−1 = (¯̂cm − γ̄?m)

(
a(

¯̂
bm +

¯̂
bm−1 − β̄?m − β̄?m−1)− b

)
,

a
(2)
m,m+1 = (¯̂am − ᾱ?m)

(
a(

¯̂
bm +

¯̂
bm+1 − β̄?m − β̄?m+1)− b

)
,

a
(2)
m,m−2 = a(γ̄?m − ¯̂cm)(γ̄?m−1 − ¯̂cm−1), a

(2)
m,m+2 = a(ᾱ?m − ¯̂am)(ᾱ?m+1 − ¯̂am+1).

Now, inserting (1.25)-(1.27) in Equation (1.23) we obtain

n∑
m=0

Cm(n)
{ m+2∑
j=m−2

Ωm,j(n)q′′j (x)
}

= 0, Ωm,j(n) = a
(2)
m,j + a

(1)
m,j + λnam,j.

Finally, after an appropriate shift of indices, this latter expression provides a recurrence
relation of maximum order four which can be written as

4∑
s=0

Ωm+s,m+2(n)Cm+s(n) = 0, 0 ≤ m ≤ n− 1,

with the initial conditions given by Cn+s(n) = 0 (s = 1, 2, 3) and Cn(n) = kn/k̄n.

Using the {q′m(x)} Basis

If the differential equations satisfied by the polynomials pn(x) and qm(x) are such that
σ(x) = σ̄(x), then the maximal order of the recurrence relation for the connection coeffi-
cients decreases from 4 to 2 when {q′m(x)} is the expanding basis for expression (1.24). For
this reason, this basis should be used when dealing with the Jacobi-Jacobi, Gegenbauer-
Gegenbauer, Laguerre-Laguerre, and Bessel-Bessel connection problems.

The algorithm in this case is as follows. First, Equation (1.14) for qm(x) can be written
again as

qm(x) =
m+1∑
j=m−1

bm,jq
′
j(x), (1.28)

with bm,m+1 = ¯̂am, bm,m =
¯̂
bm, bm,m−1 = ¯̂cm. Second, from the three-term recurrence

relation (1.13) for the family q′m(x), we write

τ(x)q′m(x) =
m+1∑
j=m−1

b
(1)
m,jq

′
j(x), (1.29)

with b
(1)
m,m+1 = dᾱ?m, b

(1)
m,m = dβ̄?m + e, b(1)

m,m−1 = dγ̄?m. And third, since σ(x) = σ̄(x),
Equation (1.15) satisfied by qm(x) can be written again

σ(x)q′′m(x) =
m+1∑
j=m−1

b
(2)
m,jq

′
j(x), (1.30)

with b(2)
m,m+1 = ā′m, b

(2)
m,m = b̄′m, b

(2)
m,m−1 = c̄′m.
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Insertion of (1.28)-(1.30) into (1.23) gives

n∑
m=0

Cm(n)
{ m+1∑
j=m−1

Λm,j(n)q′j(x)
}

= 0, Λm,j(n) = b
(2)
m,j + b

(1)
m,j + λnbm,j.

Finally, after an appropriate shift of indices, this latter expression provides a recurrence
relation of maximum order two which can be written as

1∑
s=−1

Λm+s,m(n)Cm+s(n) = 0, 1 ≤ m ≤ n,

with initial conditions given by Cn+1(n) = 0 and Cn(n) = kn/k̄n.

Generalized linearization problem

Stanley [1980], Ronveaux [1988] (see also [Ronveaux, 1991], [Salvy and Zimmermann,
1994]) showed that if the polynomials pn(x) and qm(x) are solutions of second order
differential equations of type (1.4), then the product pn(x)qm(x) is solution of a fourth
order differential equation of the form

Lu(x) := r4(x)u(4)(x) + r3(x)u(3)(x) + r2(x)u′′(x) + r1(x)u′(x) + r0(x)u(x) = 0,

where ri(x) are polynomials of degree at most i, i = 0, 1, 2, 3, 4. Salvy and Zimmermann
[1994] developed an algorithm to compute the differential equation satisfied by the product
pn(x)qm(x) if the ones of pn(x) and qm(x) are known. Here, we restrict ourselves to the
special case when pn(x), qm(x) and yk(x) belong to the same polynomial family.

Using the differential equation of the product pn(x)qm(x), we proceed as follows to
get the recurrence relation of the linearization coefficients (see e.g. [Godoy et al., 1997]).
First of all, we apply the operator L to both sides of the linearization formula

pn(x)qm(x) =
n+m∑
k=0

Lk(m,n)yk(x),

and multiply the obtained equation by σ(x) to get

n+m∑
k=0

Lk(m,n)σ(x)
(
r4(x)y

(4)
k (x) + r3(x)y(3)(x) + r2(x)y′′(x) + r1(x)y′(x) + r0(x)y(x)

)
= 0.

Since yk(x) is solution of a differential equation of type (1.4), we can write σ(x)y
(4)
k (x),

σ(x)y
(3)
k (x), σ(x)y′′(x) as linear combinations of y′k(x) and yk(x) with polynomial coeffi-

cients, and therefore the previous equation can be written in the form

n+m∑
k=0

Lk(m,n)
(
f(x)y′k(x) + g(x)yk(x)

)
= 0,

where f(x) and g(x) are polynomials. We use the structure relations (1.13) and (1.14)
(for yk(x)) to expand f(x)y′k(x) + g(x)yk(x) in the basis y′k(x). By a shift of indices, we
get a recurrence equation w.r.t. the variable k satisfied by the coefficients Lk(m,n).
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Remark 1.6. Hylleraas [1962] computed the differential equation satisfied by the product
of Jacobi polynomials and used it to set up a recurrence relation for the linearization
coefficients of Gegenbauer polynomials. For Jacobi polynomials, the situation was far
from satisfactory.

Lewanowicz [1996b] obtained by a method which is alternative to NaViMa a second-
order recurrence relation for the linearization coefficients.

1.3 Integral Evaluation of the Connection and Lineariza-
tion Coefficients of CCOP

In this section, we review the work of Sánchez-Ruiz et al. [1999] who used integral evalua-
tions to obtain the connection and linearization coefficients of continuous hypergeometric-
type polynomials. We also notice that Ismail [2005, Chapter 9] used the same method to
evaluate the connection relation for Jacobi polynomials.

Let (yn)n≥0 be a polynomial family, orthogonal with respect to the weight ρ(x) defined
on (A,B). Let us denote by (pn(x))n≥0 and (qn(x))n≥0 two (possibly different) polynomial
sequences, not necessarily orthogonal or hypergeometric. Then we have:

Theorem 1.7 ([Sánchez-Ruiz et al., 1999]). The linearization coefficients Lk(m,n) of

pn(x)qm(x) =
n+m∑
k=0

Lk(m,n)yk(x) (1.31)

are given by

Lk(m,n) =
1

k!akµ̂k

j+∑
j=j−

(
k

j

)∫ B

A

djpn(x)

dxj
dk−jqm(x)

dxk−j

[
σ(x)kρ(x)

]
dx, (1.32)

where j− = max(0, k −m), j+ = min(k, n).

Proof . If we multiply (1.31) by yl(x)ρ(x) (for a fixed l) and integrate from A to B, we
get ∫ B

A

pn(x)qm(x)yl(x)ρ(x)dx =
n+m∑
k=0

Lk(m,n)

∫ B

A

yk(x)yl(x)ρ(x)dx.

It follows therefore from the orthogonality relation (1.1) of the family (yn(x))n≥0 that the
linearization coefficients Lk(m,n) are given by

Lk(m,n) =
1

h2
k

∫ B

A

pn(x)qm(x)yk(x)ρ(x)dx. (1.33)

Thus the integral evaluation of the product of three orthogonal polynomials of the same
kind is equivalent to the linearization problem. One way of obtaining linearization coef-
ficients would therefore be to look how the previous integral can be computed. Taking
advantage of Equations (1.5) and (1.6), we rewrite (1.33) as

Lk(m,n) =
(−1)k

k!akµ̂k

∫ B

A

pn(x)qm(x)
dk

dxk

[
σ(x)kρ(x)

]
dx. (1.34)
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We show by induction on j ∈ N that for every P ∈ P , there exists Q ∈ P such that

dj

dxj

[
σ(x)kρ(x)P (x)

]
= σ(x)k−jρ(x)Q(x), j ≤ k. (1.35)

Indeed, for j = 1, using Pearson’s equation (1.2), we have

d

dx

[
σ(x)kρ(x)P (x)

]
=σ(x)k−1ρ(x)

(
τ(x)P (x) + (k − 1)σ′(x)P (x) + σ(x)P ′(x)

)
=σ(x)k−1ρ(x)Q1,k(x)

with Q1,k(x) = τ(x)P (x) + (k − 1)σ′(x)P (x) + σ(x)P ′(x). We suppose that (1.35) is true
for j ≥ 2, and then it follows that

dj+1

dxj+1

[
σ(x)kρ(x)P (x)

]
=

d

dx

(
σ(x)k−jρ(x)Q(x)

)
=σ(x)k−j−1ρ(x)Q1,k−j(x).

Thus, integrating by parts and taking into account, respectively, (1.35) and the boundary
conditions (1.3), we rewrite (1.34) in the form

Lk(m,n) =
(−1)k

k!akµ̂k

(
pn(x)qm(x)

dk−1

dxk−1

[
σ(x)kρ(x)

]∣∣∣B
A

−
∫ B

A

d

dx

(
pn(x)qm(x)

) dk−1

dxk−1

[
σ(x)kρ(x)

]
dx
)

=
(−1)k

k!akµ̂k

(
pn(x)qm(x)σ(x)ρ(x)Q(x)

∣∣∣B
A

−
∫ B

A

d

dx

(
pn(x)qm(x)

) dk−1

dxk−1

[
σ(x)kρ(x)

]
dx
)

=
(−1)k+1

k!akµ̂k

∫ B

A

d

dx

(
pn(x)qm(x)

) dk−1

dxk−1

[
σ(x)kρ(x)

]
dx.

We repeat the integration by parts k − 1 times and use again (1.35) and (1.3) to obtain

Lk(m,n) =
1

k!akµ̂k

∫ B

A

dk

dxk

(
pn(x)qm(x)

)[
σ(x)kρ(x)

]
dx. (1.36)

If j > n,
dj

dxj
pn(x) = 0 and if j < k −m, k − j > m and then

dk−j

dxk−j
qm(x) = 0 such that

from Leibniz’s rule

dk

dxk
(pn(x)qm(x)) =

k∑
j=0

(
k

j

)
dj

dxj
pn(x)

dk−j

dxk−j
qm(x)

the result follows. �
In particular, taking pn(x) = xn and qm(x) = 1, we obtain the solution of the inversion

problem in terms of the moments of the weights ρk(x):
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Proposition 1.8 ([Sánchez-Ruiz et al., 1999]). The coefficients Ik(n) of the inversion
problem

xn =
n∑
k=0

Ik(n)yk(x)

are given by

Ik(n) =

(
n

k

)
1

akµ̂k

∫ B

A

xn−kρk(x)dx.

Proof . Since qm(x) = 1, d
k−jqm(x)
dxk−j

=

0 if j 6= k

1 if j = k.
Thus for Pn(x) = xn, we get

Ik(n) =
1

k!akµ̂k

∫ b

a

dkxn

dxk
σ(x)kρ(x)dx

=

(
n

k

)
1

akµ̂k

∫ b

a

xn−kσ(x)kρ(x)dx.

�
We note that Sánchez-Ruiz and Dehesa [1997], Ismail [2005] used the above proposition

to solve the inversion problem for CCOP.
Let us assume now that both pn(x) and qm(x) are also polynomials of hypergeometric

type. Equation (1.32) is practical for the computation of the generalized linearization
coefficients whenever the explicit expressions of the polynomials djpn(x)

dxj
and dk−jqm(x)

dxk−j
are

known, as is the case, e.g., for the classical hypergeometric families. For general families
of polynomials, when only the coefficients of the corresponding differential operators are
available, we can make one more step and find an equivalent expression for Lk(m,n) that
does not require the knowledge of the explicit expressions of the polynomials. We restrict
our attention to the particular case when the three families of hypergeometric polynomials
coincide

(
pn(x) = qn(x) = yn(x)

)
, for which we have the following

Theorem 1.9 ([Sánchez-Ruiz et al., 1999]). If pn(x) = qn(x) = yn(x), the linearization
coefficients Lk(m,n) in (1.31) are given by

Lk(m,n) =
(Bn)2

k!akµ̂k

j+∑
j=j−

Anj(−1)m+k+j

(
k

j

) i+∑
i=i−

(−1)iAm(n+k−i−2j)

(
n− j
i

)
×

∫ B

A

ρm(x)
dm−n+i+2j−k

dxm−n+i+2j−k

(
σ(x)2j−k+id

iσ(x)k−i

dxi

)
. (1.37)

Proof . Since pn(x) = qn(x) = yn(x), then

Lk(m,n) =
1

k!akµ̂k

j+∑
j=j−

(
k

j

)∫ B

A

y(j)
n (x)yk−jm (x)ρk(x)dx.

Using Equation (1.9) for y(j)
n (x), the above expression can be written as

Lk(m,n) =
Bn

k!akµ̂k

j+∑
j=j−

Anj

(
k

j

)∫ B

A

dn−jρn(x)

dxn−j
y(k−j)
m (x)σ(x)k−jdx.
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Observe that by (1.9) and (1.35), there exist two polynomials Q1(x) and Q2(x) such that
for 0 ≤ l ≤ n− j,

term :=
dl

dxl

(
y(k−j)
m (x)σ(x)k−j

) dn−j−l−1

dxn−j−l−1
(ρn(x))

= Am(k−j)Bm
dl

dxl

( 1

ρ(x)

dm−k+jρm(x)

dxm−k+j

)
σ(x)j+l+1ρ(x)Q2(x)

= Am(k−j)Bm
dl

dxl

(
σ(x)k−jQ1(x)

)
σ(x)j+l+1ρ(x)Q2(x)

=
N∑
i=0

aiσ(x)ρ(x)xi, ai ∈ R, N ∈ N.

Thus, integrating by parts n− j times and taking into account the boundary conditions
(1.3),

Lk(m,n) =
Bn

k!akµ̂k

j+∑
j=j−

Anj(−1)n−j
(
k

j

)∫ B

A

ρn(x)
dn−j

dxn−j
(y(k−j)
m (x)σ(x)k−j)dx.

Using the Leibniz rule,

Lk(m,n) =
Bn

k!akµ̂k

j+∑
j=j−

Anj(−1)n−j
(
k

j

) i+∑
i=i−

(
n− j
i

)∫ B

A

ρn(x)
diσ(x)k−j

dxi
y(n+k−2j−i)
m dx,

where i− = max{0, n−m+k−2j}, i+ = min{n−j, (k−j) deg[σ(x)]}. In fact, d
iσ(x)k−j

dxi
6= 0

if and only if i ≤ (k− j) deg[σ(x)] and y(n+k−2j−i)
m 6= 0 if and only if n+ k− 2j− i ≤ m⇔

i ≥ n −m + k − 2j. We substitute the expression of y(n+k−2j−i)
m given by the Rodrigues

formula (1.9), integrate by parts again, use Equation (1.35) and the boundary conditions
(1.3) to get the result. �
In spite of its apparent complexity, this formula has the advantage that no derivatives
of the weight functions are involved; it does not make use of the expressions of the
polynomials either. In fact, if we know σ(x) we can express the integrals appearing in
(1.37) as a linear combination of the moments of the weight function ρm(x), which makes
this equation suitable for symbolic manipulation.

Let us consider now the connection problem

pn(x) =
n∑
k=0

Ck(n)yk(x) (1.38)

where {pn(x)} is the sequence of polynomial of degree n, solution of the differential equa-
tion

σ̄(x)p′′n(x) + τ̄(x)p′n(x) + λ̄npn(x) = 0.

Taking qm(x) := 1 in (1.31), we readily see that Ck(n) = Lk(0, n), so that the connection
coefficients Ck(n) can be obtained as the particular case m = 0 of both (1.33) and (1.32).
Again, it turns out to be much more convenient to use (1.32), which leads to

Ck(n) =
1

k!akµ̂k

∫ B

A

p(k)
n (x)ρk(x)dx, (1.39)
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which does not require the use of the representation for yk(x). We note that the previous
formula was already proved by [Rainville, 1960, Theorem 56, p. 151].

By Equation (1.9), the previous formula for Ck(n) can be written as

Ck(n) =
ĀnkB̄n

k!akµ̂k

∫ B

A

ρk(x)

ρ̄k(x)

dn−kρ̄n(x)

dxn−k
dx

or, equivalently, integrating by parts n− k times (using (1.35), (1.3)),

Ck(n) =
(−1)n−kĀnkB̄n

k!akµ̂k

∫ B

A

ρ̄n(x)
dn−k

dxn−k

(ρk(x)

ρ̄k(x)

)
dx.

A common situation in connecting polynomials of the same family, but with different
parameters, is when σ̄(x) = σ(x). In this case, if we put ρ̄(x) = f(x)ρ(x), the previous
equation takes the form

Ck(n) =
(−1)n−kĀnkB̄n

k!akµ̂k

∫ B

A

f(x)ρn(x)
dn−k

dxn−k

( 1

f(x)

)
dx,

which may be useful if the derivatives of 1
f(x)

have simple representations.
It is a remarkable fact that, in the case when all the involved polynomials are of

hypergeometric type, Equation (1.32) enables us to express the linearization coefficients
in terms of two connection coefficients, namely those corresponding to the expansions of
the polynomials p(j)

n (x) and q(k−j)
m (x) in series of {y(r)

k (x)},

p(j)
n (x) =

n−j∑
r=0

C(j,k)
r,n (p)y(k)

r (x), q(k−j)
m (x) =

m+j−k∑
s=0

C(k−j,k)
s,m (q)y(k)

s .

Substituting these expressions into (1.32) and using the orthogonality relation (1.7), we
obtain

Lk(m,n) =
1

k!akµ̂k

j+∑
j=j−

(
k

j

) n−j∑
r=0

m+j−k∑
s=0

C(j,k)
r,n (p)C(k−j,k)

s,m (q)

∫ B

A

y(k)
r (x)y(k)

s ρk(x)dx

=
1

k!akµ̂k

j+∑
j=j−

(
k

j

) r+∑
r=0

C(j,k)
r,n (p)C(k−j,k)

r,m (q)h2
rk,

where r+ = min(n−j,m+j−k). In particular, for the standard linearization coefficients,
the previous formula does apply with p = q = y, and we can omit the arguments of the
connection coefficients to simplify the notation.

1.4 Other Methods

Besides the methods cited above, there exist some other methods regularly used in the
literature to compute connection and inversion coefficients of CCOP. In this section, we
recall two of them.
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1.4.1 Using the Fields and Wimp Expansion Formula

One approach to evaluate the connection coefficients is to think of pn(x) =
n∑

m=0

Cm(n)qm(x)

as a polynomial expansion problem. One of the most important general expansion for-
mulas for hypergeometric series is the Fields and Wimp [1961] expansion given by

p+rFq+s

a1, . . . , ap, c1, . . . , cr

b1, . . . , bq, d1, . . . , ds

∣∣∣∣∣∣ zw
 =

∞∑
n=0

(a1, . . . , ap)n(α)n(−z)n

(b1, . . . , bq)n(γ + n)nn!
(1.40)

×p+1Fq+1

 n+ α, n+ a1, . . . , n+ ap

2n+ γ + 1, n+ b1, . . . , n+ bq

∣∣∣∣∣∣ z

r+2Fs+1

−n, n+ γ, c1, . . . , cr

α, d1, . . . , ds

∣∣∣∣∣∣w
.

The letters p, q, r and s stand for nonnegative integers.
Proceeding as in [Njionou Sadjang, 2013], we choose p = q = 0, w = x and γ = 0. We
expand both sides of (1.40) in the basis (zn)n and then equate the coefficients of zn to
obtain

r∏
j=1

(cj)n

s∏
j=1

(dj)n

xn =
n∑
k=0

(−1)k
(
n

k

)
r+1Fs

−k, c1, . . . , cr

d1, . . . , ds

∣∣∣∣∣∣x
.

Using this relation, Njionou Sadjang [2013] derived inversion formulas of some CCOP.
Sánchez-Ruiz [2001], by making the substitutions r = s = 0, z = 1, w = 1 − x2 and by
a suitable identification of the remaining parameters, derived from (1.40) connection and
linearization formulas involving squares of Gegenbauer polynomials. Lewanowicz [2003a]
used the formula (1.40) to obtain hypergeometric term representations and recurrence
relations for the connection coefficients of CCOP.

1.4.2 Using Generating Functions

Andrews et al. [1999, p. 318] used a method based on generating functions to find the
linearization coefficients of the Hermite polynomials. Rainville [1960] also used generating
functions to get inversion and connection formulas of classical continuous orthogonal poly-
nomials. Chaggara and Koepf [2010] starting from the generating function of the Jacobi
polynomials and using symbolic computation, in particular Zeilberger’s and Petkovšek-
van-Hoeij algorithms, computed the linearization coefficients of Jacobi and Gegenbauer
polynomials.

1.5 Connection and Linearization Coefficients of CCOP
As an immediate consequence of the above methods, we get the following connection,
linearization and inversion coefficient of classical continuous orthogonal polynomials.

Theorem 1.10. The following representations for the powers in terms of the classical
continuous orthogonal polynomials are valid:

(1− x)n = 2nΓ(α + n+ 1)
n∑

m=0

(α + β + 2m+ 1)Γ(α + β +m+ 1)

Γ(α +m+ 1)Γ(α + β + n+m+ 2)
(−n)mP

(α,β)
m (x)
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(see e.g. [Koepf and Schmersau, 1998], [Ismail, 2005]),

(1 + x)n = 2nΓ(β + n+ 1)
n∑

m=0

(−1)m(−n)m
(α + β + 2m+ 1)Γ(α + β +m+ 1)

Γ(β +m+ 1)Γ(α + β + n+m+ 2)
P (α,β)
m (x)

(see e.g. [Askey, 1975], [Koepf and Schmersau, 1998], [Ismail, 2005]),

xn =
n!

(α)n2n

bn
2
c∑

m=0

(−n
2
− α

2
+ 1)m(−n− α)m

(−n
2
− α

2
)mm!

(−1)mCα
n−2m(x)

=
n!

2n

bn
2
c∑

m=0

n+ α− 2m

m!(α)n+1−m
C

(α)
n−2m(x)

(see e.g. [Rainville, 1960], [Koepf and Schmersau, 1998]),

xn = (1 + α)n

n∑
m=0

(−n)m
(1 + α)m

L(α)
m (x) = n!

n∑
m=0

(
n+ α

n−m

)
(−1)mL(α)

m (x)

(see e.g. [Sánchez-Ruiz and Dehesa, 1997], [Koepf and Schmersau, 1998], [Ismail, 2005]),

xn =

bn
2
c∑

m=0

(−n
2
)m(−n

2
+ 1

2
)m

m!2n−2m
Hn−2m(x) =

n!

2n

bn
2
c∑

m=0

1

m!(n− 2m)!
Hn−2m(x)

(see e.g. [Koepf and Schmersau, 1998], [Ismail, 2005]),

xn =
(−2)n

(α + 2)n

n∑
m=0

(−n)m(α + 1)m(α
2

+ 3
2
)m

(n+ 2 + α)m(α
2

+ 1
2
)mm!

B(α)
m (x)

= (−2)n
n∑

m=0

(2m+ α + 1)
(−n)mΓ(α +m+ 1)

m!Γ(n+m+ α + 2)
B(α)
m (x)

(see e.g. [Sánchez-Ruiz and Dehesa, 1997], [Koepf and Schmersau, 1998]).

Theorem 1.11. The following connection relations between classical orthogonal polyno-
mials are valid:

P (α,β)
n (x) =

n∑
m=0

(2m+ γ + β + 1)
Γ(n+ β + 1)Γ(n+m+ α + β + 1)

Γ(m+ β + 1)Γ(n+ α + β + 1)

× Γ(m+ γ + β + 1)(α− γ)n−m
Γ(n+m+ γ + β + 2)(n−m)!

P (γ,β)
m (x)

(see e.g. [Askey, 1975, p. 63], [Koepf and Schmersau, 1998]),

P (α,β)
n =

n∑
m=0

(−1)n−m(2m+ α + δ + 1)
Γ(n+ α + 1)Γ(n+m+ α + β + 1)

Γ(m+ α + 1)Γ(n+ α + β + 1)

× Γ(m+ α + δ + 1)(β − δ)n−m
Γ(n+m+ α + δ + 2)(n−m)!

P (α,δ)
m (x)
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(see e.g. [Askey, 1975, p. 63], [Koepf and Schmersau, 1998], [Ismail, 2005, p. 258]),

P (α,β)
n (x) =

n∑
m=0

(m+ α + 1)n−m(n+ α + β + 1)m
(n−m)!(m+ γ + δ + 1)m

×3F2

m− n, n+m+ α + β + 1,m+ γ + 1

m+ α + 1, 2m+ γ + δ + 2

∣∣∣∣∣∣ 1
P (γ,δ)

m (x)

(see e.g. [Gasper, 1974], [Lewanowicz, 2003a], [Ismail, 2005, p. 257], compare [Sánchez-Ruiz
et al., 1999]),

C(α)
n (x) =

Γ(β)

Γ(α)Γ(α− β)

bn
2
c∑

m=0

(n− 2m+ β)Γ(m+ α− β)Γ(n−m+ α)

m!Γ(n−m+ β + 1)
C

(β)
n−2m(x)

(see e.g. [Koepf and Schmersau, 1998], [Sánchez-Ruiz et al., 1999], [Ismail, 2005, p. 257]),

L(α)
n (x) =

n∑
m=0

(α− β)n−m
(n−m)!

L(β)
m (x)

(see e.g. [Koepf and Schmersau, 1998], [Sánchez-Ruiz et al., 1999]),

B(α)
n (x) =

n∑
m=0

(−1)m(2m+ β + 1)
(−n)m(n+ α + 1)mΓ(m+ β + 1)Γ(β − α + 1)

m!Γ(n+m+ β + 2)Γ(m− n+ β − α + 1)
B(β)
m (x)

(see e.g. [Godoy et al., 1997], [Koepf and Schmersau, 1998], [Sánchez-Ruiz et al., 1999]).

Theorem 1.12. The following linearization formulas between classical orthogonal poly-
nomials are valid:

P (λ,δ)
n (x)P (µ,γ)

m (x) =
n+m∑
k=0

(α + β + 1)n+m−k(α + 1)n+m(2(n+m− k) + α + β + 1)

(α + 1)n+m−k(α + β + 1)2(n+m)−k+1

×(−1)k(n+m)!(λ+ δ + 1)2n(µ+ γ + 1)2m

n!m!k!(λ+ δ + 1)n(µ+ γ + 1)m

×
∞∑

r,s=0

(−k,−α− β − 1− 2(n+m) + k)r+s(−n,−λ− n)r(−m,−µ−m)s
(−n−m,−α− n−m)r+s(−2n− λ− δ)r(−2m− µ− γ)sr!s!

P
(α,β)
n+m−k(x),

see [Chaggara and Koepf, 2010],

P (λ,δ)
n (x)P (µ,γ)

m (x) =
n+m∑
k=0

(µ+ λ+ δ + γ + 1)n+m−k(2(n+m− k) + µ+ λ+ δ + γ + 1)

(µ+ λ+ 1)n+m−k(µ+ λ+ δ + γ + 1)2(n+m)−k+1

×(µ+ λ+ 1)n+m(n+m)!(λ+ δ + 1)2n(µ+ γ + 1)2m(−2n− λ− δ)k
n!m!k!(λ+ δ + 1)n(µ+ γ + 1)m(−2m− µ− γ)k

×3F2

−k,−λ− µ− δ − γ − 1− 2(n+m) + k,−n

−2n− λ− δ,−n−m

∣∣∣∣∣∣ 1


×3F2

−k,−λ− µ− δ − γ − 1− 2(n+m) + k,−λ− n

−2n− λ− δ,−λ− µ− n−m

∣∣∣∣∣∣ 1
P (λ+µ,δ+γ)

n+m−k (x),
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compare [Park and Kim, 2006], see [Chaggara and Koepf, 2010],

C(α)
n (x)C(α)

m (x) =

min(m,n)∑
k=0

(n+m− 2k + α)(n+m− 2k)!(α)k
k!(n+m− k + α)(n− k)!(m− k)!

×(α)n−k(α)m−k(2α)n+m−k

(α)n+m−k(2α)n+m−2k

C
(α)
n+m−2k(x)

(see e.g. [Askey, 1975, p. 39], [Sánchez-Ruiz et al., 1999]),

Hn(x)Hm(x) =

min(n,m)∑
k=0

(
n

k

)(
m

k

)
2kk!Hn+m−2k(x)

(see e.g. [Watson, 1938], [Askey, 1975, p. 42], [Sánchez-Ruiz et al., 1999]),

L(α)
n (x)L(α)

m (x) =
n+m∑

k=|n−m|

(−2)n+m−kk!

(n+m− k)!(k − n)!(k −m)!

×3F2

 k−m−n
2

, k−m−n+1
2

, k + α + 1

k − n+ 1, k −m+ 1

∣∣∣∣∣∣ 1
L(α)

k (x)

(see e.g. [Watson, 1938]).

We note that in the above theorems, we gave only connection and linearization formu-
lae between CCOP of the same family. In general we can obtain all the other connection
and linearization coefficients using for example the first method of Section 1.2.2. In the
case they aren’t hypergeometric terms, we can use the sumtohyper algorithm if the coef-
ficient is a single sum. If the coefficient is a double sum, Zeilberger’s algorithm combined
with Petkovšek-van-Hoeij algorithm may be used to simplify this double sum to a single
sum or to a hypergeometric term (if possible).

1.6 Duplication Coefficients of CCOP

Given a polynomial system {pn}n≥0, we use a new approach to solve the so-called duplica-
tion problem associated to this system which consists in finding the coefficients Dm(n, a)
in the expansion

pn(ax) =
n∑

m=0

Dm(n, a)pm(x),

where a designates a nonzero complex number. In the following theorem, using the hyper-
geometric representations given in page 11 and the inversion formulas given in Theorem
1.10, we provide known duplication formulas and moreover, we get new results for Jacobi
and Gegenbauer polynomials.
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Theorem 1.13. The following duplication formulas of orthogonal polynomials of a con-
tinuous variable are valid:

P (α,β)
n (ax) =

n∑
m=0

n−m∑
j=0

(−a)m(1− a)j(−n)m+j(α + 1)n(n+ α + β + 1)m+j

2jn!j!(α + 1)m+j(α + β +m+ 1)m

×2F1

 α +m+ 1,−j

α + β + 2m+ 2

∣∣∣∣∣∣ 2a

a− 1

P (α,β)
m (x),

C(α)
n (ax) = Γ(n+ α)an

bn/2c∑
m=0

n+ α− 2m

m!Γ(α + n−m+ 1)
2F1

−m,m− n− α
−n− α + 1

∣∣∣∣∣∣ 1

a2

C(α)
n−2m(x),

L(α)
n (ax) =

n∑
m=0

(α + 1)na
m(1− a)n−m

(n−m)!(α + 1)m
L(α)
m (x)

(see e.g. [Rainville, 1960, p. 209], [Chaggara and Koepf, 2007], [Ismail, 2005], compare
[Lewanowicz, 2003a]),

Hn(ax) =

bn/2c∑
m=0

ann!(1− a−2)m

(n− 2m)!m!
Hn−2m(x)

(see e.g. [Rainville, 1960, p. 209], [Chaggara and Koepf, 2007], [Ismail, 2005], compare
[Godoy et al., 1997]),

B(α)
n (ax) =

n∑
m=0

(−a)m(−n)m(α + n+ 1)m
m!(α +m+ 1)m

2F1

m− n, α +m+ n+ 1

α + 2m+ 2

∣∣∣∣∣∣ a
B(α)

m (x)

(see e.g. [Lewanowicz, 2003a], [Doha and Ahmed, 2004]).

Remark 1.14. The duplication coefficients given above for the Laguerre and Hermite
polynomials were already given by Chaggara and Koepf [2007], Rainville [1960] and Ismail
[2005] using generating functions. Those of Jacobi are new, as far as we know.

Proof . In the proof, we consider three cases. In every case, the coefficients Aj(n) and
Im(n) are, respectively, those of the hypergeometric representations given in p. 11 and
the inversion formulas given in Theorem 1.10.

1. Jacobi family P (α,β)
n (x).

We first prove the following variant of the binomial theorem

(1− ax)j =

j∑
k=0

Bk(j, a)(1− x)k with Bk(j, a) = ak
(
j

k

)
(1− a)j−k.

Indeed, let f be a polynomial of degree j in the variable x. The Taylor formula for
f at x = 1 gives

f(x) =
n∑
k=0

Bk(j)(1− x)k, with Bk(j) =
(−1)k

k!
(Dkf)(1).
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Applying this Taylor formula to f(x) = (1− ax)j, we get

Dkf(x) =
j!

(j − k)!
(−a)k(1− ax)j−k;

therefore

Bk(j) =
(−1)k

k!
(Dkf)(1) =

(−1)k

k!

j!

(j − k)!
(−a)k(1− ax)j−k =

(
j

k

)
ak(1− a)j−k.

Combining

P (α,β)
n (ax) =

n∑
j=0

Aj(n)(1− ax)j, (1− ax)j =

j∑
k=0

Bk(j, a)(1− x)k

and

(1− x)k =
k∑

m=0

Im(k)P (α,β)
m (x)

and interchanging the order of summation yields the representation

P (α,β)
n (ax) =

n∑
m=0

Dm(n, a)P (α,β)
m (x)

with

Dm(n, a) =
n−m∑
j=0

j∑
k=0

Aj+m(n)Bm+k(j +m, a)Im(k +m).

We then use the sumtohyper algorithm to complete the proof.

2. Gegenbauer family C(α)
n (x) and Hermite family Hn(x).

In the Gegenbauer and Hermite cases, we combine

Pn(ax) =

bn
2
c∑

j=0

Aj(n, a)xn−2j and xj =

b j
2
c∑

m=0

Im(j)Pj−2m(x)

which yield

xn−2j =

bn
2
c−j∑

m=0

Im(n− 2j)Pn−2j−2m(x)

and substitute m by m− j to obtain

Pn(ax) =

bn
2
c∑

m=0

Dm(n, a)Pn−2m(x)

with

Dm(n, a) =
m∑
j=0

Aj(n, a)Im−j(n− 2j).

In the Hermite case, Zeilberger’s algorithm finds a recurrence equation of first order
with respect to m from which the result follows. But in the Gegenbauer case, we
get a recurrence equation of order 2 which according to the Petkovšek-van-Hoeij
algorithm doesn’t have a hypergeometric term solution.
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3. Laguerre family L(α)
n (x) and Bessel family B(α)

n (x)
In both cases, we combine

Pn(ax) =
n∑
j=0

Aj(n, a)xj and xj =

j∑
m=0

Im(j)Pm(x)

and interchange the order of sommation to get

Dm(n, a) =
n−m∑
j=0

Aj+m(n, a)Im(j +m).

For the Laguerre family, Zeilberger’s algorithm finds a recurrence equation of first
order with respect to m from which the result follows. But in the Bessel case, we get
a recurrence equation of order 2 which according to Petkovšek-van-Hoeij algorithm
doesn’t have a hypergeometric term solution.

�

Proposition 1.15. The duplication coefficients Dm(n, a) of the Jacobi polynomials P (α,β)
n (x)

are solutions of the fourth-order recurrence relation

−4a2(m+ 1 + β)2(m+ 1 + α)2(α+ β + 2m− 3)4(m− n+ 2)(m+ n+ α+ β + 3)Dm+2(n, a)

+2a(α− β)(m+ β + 1)(m+ α+ 1)(α+ β + 2m− 3)3(α+ β +m+ 2)(α+ β + 2m+ 5)×
((α+ β + 2m+ 4)(α+ β + 2m)− 4an(β + α+ n+ 1) + a(4m− α2 − 2αβ − β2 + 8))Dm+1(n, a)

+2a(α− β)(α+ β +m)3(α+ β + 2m+ 3)3(α+ β + 2m− 3)
(
a(α2 + β2 + 2αβ + 4α+ 4β − 4)

+4a(m+ n2 + nα+ nβ + n)− (α+ β + 2m+ 2)(α+ β + 2m− 2)
)
Dm−1(n, a)

−4a2(α+ β +m− 1)4(α+ β + 2m+ 2)4(m− n− 2)(m+ n+ α+ β − 1)Dm−2(n, a)

−(α+ β + 2m− 3)2(α+ β +m+ 1)2(α+ β + 2m+ 4)2

(
− (α+ β + 2m− 1)2(α+ β + 2m+ 2)2

+2a(α− β)2(α+ β + 2m− 1)(α+ β + 2m+ 3) + 8m4 + 16m3(α+ β + 1)

+(8n2 + 8nα+ 8nβ + 8n+ 32αβ + 12β2 − 4 + 28α+ 28β + 12α2)m2 + 4(α+ β + 1)×(
m(α2 + 3α+ 2nα+ 4αβ + β2 + 2n2 + 2nβ + 3β + 2n− 3)− n(α2 − 4αβ − α+ β2 − β)

)
+4n2(α+ β + 4αβ − α2 − β2)− (α+ β − 1)(α+ β + 3)(α2 − 6αβ − 2α− 2β + β2)

)
Dm(n, a),

with initial values Dn(n, a) = an, Dn+s(n, a) = 0, s = 1, 2, 3.

Proof . We apply the operator εa defined by εaf(x) = f(ax) which fulfills the relations

εa(f(x)g(x)) = εaf(x)εag(x); εa(αf(x)+βg(x)) = αεaf(x)+βεag(x); εaf
′(x) =

1

a
(εaf(x))′

to the differential equation

σ(x)p′′n(x) + τ(x)p′n(x) + λnpn(x) = 0.

This yields (using the above properties of εa) the differential equation

σ(ax)
d2

dx2
pn(ax) + aτ(ax)

d

dx
pn(ax) + a2λnpn(ax) = 0



34 Connection, Linearization and Duplication Coefficients of CCOP

satisfied by pn(ax). We substitute pn(ax) =
n∑

m=0

Dm(n, a)pm(x) in the latter differential

equation. This gives

n∑
m=0

Dm(n, a)
(
σ(ax)p′′m(x) + aτ(ax)p′m(x) + a2λnpm(x)

)
= 0.

We proceed as in Section 1.2.3 using the {p′′m(x)} basis to get the result. �

1.7 Applications of Connection and Linearization For-
mulae of CCOP

Linearization, connection and duplication problems are not only important from a fun-
damental point of view, but also because they are used in the computation of physical
and chemical properties of quantum-mechanical systems. An example of an application
of the linearization formula is the evaluation of the logarithmic potentials of orthogonal

polynomials Vn(t) = −
∫

[pn(x)]2 log |x− t|dx, which appear in the calculation of the po-

sition and momentum information entropies of quantum systems [Dehesa et al., 1997a],
[Sánchez-Ruiz, 1997].

In many applications of orthogonal polynomials, it is often important to know whether
the linearization, connection or duplication coefficients are positive or non-negative (see
e.g. [Askey, 1968], [Askey, 1975], [Gasper, 1975], [Ismail, 2005]). This property has many
important consequences. It gives rise to a convolution structure associated with the
polynomial set {pn(x)} ([Gasper, 1970], [Askey and Gasper, 1971b], [Askey and Gasper,
1977], [Szwarc, 1992]). During the last decades, several sufficient conditions for these
sign properties to hold have been derived (see e.g. [Askey, 1965], [Askey and Gasper,
1971a], [Askey, 1975], [Gasper, 1975], [Trench, 1976], [Koornwinder, 1978], [Szwarc, 1996],
[Sánchez-Ruiz et al., 1999], [Szwarc, 2003], [Ismail, 2005]). In many cases these sign
properties become obvious if the coefficients can be written as a sum of terms which are
shown to have the same sign. Another application is given in the next section.

1.7.1 Parameter Derivatives

For some applications, it is important to know the rate of change in the direction of
the parameters of the orthogonal systems, given in terms of the system itself. Fröhlich

[1994] gives the following argument: for any family p(α)
n (x) =

n∑
k=0

ak(α)xk of orthogonal

polynomials there is a representation of the form

∂

∂α
p(α)
n (x) =

n∑
k=0

c
(α)
k p

(α)
k (x) (1.41)

for the α-derivative of p(α)
n (x), since by termwise differentiation the expression

∂

∂α
p(α)
n (x) =

n∑
k=0

∂

∂α
ak(α)xk
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is seen to be a polynomial of degree n with respect to x, and since any polynomial of
degree n has a representation of the form (1.41). We call the derivative with respect to the
parameter α a parameter derivative of p(α)

n (x). These parameter derivative representations
can be obtained from the connection formulas as shown by Koepf and Schmersau [1998].

Corollary 1.16. The following representations for the parameter derivatives of the clas-
sical continuous orthogonal polynomials are valid:

∂

∂α
P (α,β)
n (x) =

n−1∑
m=0

1

α + β +m+ n+ 1

×
(
P (α,β)
n (x) +

α + β + 1 + 2m

n−m
(β +m+ 1)n−m

(α + β +m+ 1)n−m
P (α,β)
m (x)

)
(see [Fröhlich, 1994, Theorem 3], [Koepf and Schmersau, 1998]),

∂

∂β
P (α,β)
n (x) =

n−1∑
m=0

1

α + β +m+ n+ 1

×
(
P (α,β)
n (x) + (−1)n−m

α + β + 1 + 2m

n−m
(α +m+ 1)n−m

(α + β +m+ 1)n−m
P (α,β)
m (x)

)
(see [Fröhlich, 1994, Theorem 3], [Koepf and Schmersau, 1998]),

∂

∂α
C(α)
n (x) =

n−1∑
m=0

( 2(m+ 1)

(2α +m)(2α + 1 + 2m)
+

2

2α +m+ n

)
C(α)
n (x)

+
n−1∑
m=0

2(1 + (−1)n−m)(α +m)

(2α +m+ n)(n−m)
C(α)
m (x)

(see [Koepf, 1997, Theorem 10], [Koepf and Schmersau, 1998]),

∂

∂α
L(α)
n (x) =

n−1∑
m=0

1

n−m
L(α)
m (x)

(see [Koepf, 1997, Theorem 10], [Koepf and Schmersau, 1998]),

∂

∂α
Bα
n (x) =

n−1∑
m=0

1

α + n+m+ 1

×
(
Bα
n (x) + (−1)n−m

2m+ α + 1

n−m
n!

(α +m+ 1)n−mm!
Bα
m(x)

)
(see [Koepf and Schmersau, 1998]).

Proof (See [Koepf and Schmersau, 1998]). Given the connection relation

pαn(x) =
n∑

m=0

Cm(n;α, β)pβm(x),
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we build the difference quotient

pαn(x)− pβn(x)

α− β
=

n∑
m=0

Cm(n;α, β)

α− β
pβm(x)− pβn(x)

α− β

=
Cn(n;α, β)− 1

α− β
pβn(x) +

n−1∑
m=0

Cm(n;α, β)

α− β
pβm(x)

so that with β → α

∂

∂α
pαn(x) = lim

β→α

Cn(n;α, β)− 1

α− β
pβn(x) +

n−1∑
m=0

lim
β→α

Cm(n;α, β)

α− β
pβm(x)

since the systems pαn(x) are continuous with respect to α. This gives the results. �

Remark 1.17. Lewanowicz [2002] also gave a general procedure to produce iteratively
explicit parameter derivative representations for almost all the classical orthogonal poly-
nomial families.

1.7.2 Logarithmic Potential of Hermite Polynomials and Infor-
mation Entropies of the Harmonic Oscillator Eigenstates
(see [Sánchez-Ruiz, 1997] and References Therein)

For the nth eigenstate of the one-dimensional harmonic oscillator Hamiltonian

H =
p2

2m
+

1

2
mω2x2,

the probability densities ρ for position and momentum γ are expressed in terms of the
Hermite polynomials Hn(x),

ρ(x) =
α

2nn!
√
π

(Hn(αx))2e−α
2x2 , γ(p) =

1

2nn!
√
πα

(Hn(x))2e−
p2

α2 ,

where α := (mω)2. The corresponding entropies of position and momentum can be written
as

Sρ = − lnα + Sn, Sγ = lnα + Sn,

where
Sn = ln(2nn!

√
π) + n+

1

2
+

1

2nn!
√
π
En(H)

is given in terms of En(H), the so-called entropy of the Hermite polynomials, whose
representation is

En(H) = −
∫ ∞
−∞

(Hn(x))2 ln(Hn(x))2e−x
2

dx.

Dehesa et al. [1997b] showed that En(H) can be written in the form

En(H) = −2nn!
√
π ln(22n) + 2

n∑
i=1

Vn(xn,i),
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where xn,i (i = 1, . . . , n) is the ith root of Hn(x), and Vn(t) is the logarithmic potential of
the Hermite polynomial Hn(x), defined as

Vn(t) = −
∫ ∞
−∞

(Hn(x))2 ln |x− t|e−x2dx. (1.42)

To calculate Vn(t), Sánchez-Ruiz [1997] make use of the linearization formula for the
Hermite polynomials

Hm(x)Hn(x) =

min(m,n)∑
j=0

m!n!2j

(m− j)!(n− j)!j!
Hm+n−2j(x)

which in the particular case m = n gives, writing j = n− k,

(Hn(x))2 = 2nn!
n∑
k=0

(
n

k

)
H2k(x)

2kk!
.

Substituting this equation in the expression (1.42) of the logarithmic potential Vn(t) he
gets

Vn(t) = 2nn!
n∑
k=0

(
n

k

)
W2k(t)

2kk!
, W2k(t) = −

∫ ∞
−∞

H2k(x) ln |x− t|e−x2dx.

After some calculations, he obtains a representation for Vn(t) which in turn yields a
representation for the entropies when the exact location of the zeros of Hn(x) are known.
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Chapter 2

Connection, Linearization and
Duplication Coefficients of Orthogonal
Polynomials of a Discrete Variable

The first purpose of this chapter is to review some general methods used to compute
linearization and connection coefficients of classical discrete orthogonal polynomials (in
short CDOP). On the other hand, by an algorithmic approach, we solve the duplication
problem for CDOP. Hypergeometric series representations of linearization coefficients of
CDOP are also given.

2.1 Introduction
Let us consider the second-order difference equation of hypergeometric type, i.e. the equa-
tion [Nikiforov and Uvarov, 1988],

σ(x)∆∇y(x) + τ(x)∆y(x) + λy(x) = 0, (2.1)

where ∆y(x) = y(x+ 1)− y(x) and ∇y(x) = y(x)− y(x− 1) denote the forward and
backward difference operators, respectively, σ(x) = ax2 + bx + c and τ(x) = dx + e are
polynomials of degree not greater than 2 and 1, respectively, and λ is a constant. This
equation can be written in the form

∆
[
σ(x)ρ(x)∇y(x)

]
+ λρ(x)y(x) = 0,

where the function ρ(x) satisfies the Pearson-type difference equation

∆
[
σ(x)ρ(x)

]
= τ(x)ρ(x).

The solutions of Equation (2.1) with

λ ≡ λn = −n
(

(n− 1)a+ d
)

are polynomials of degree n, usually called hypergeometric type “discrete” polynomials
y = yn(x). These polynomials are orthogonal with respect to the weight function ρ(x),
x = A, A+ 1, . . . , B − 1 [Nikiforov et al., 1991], i.e.,

B−1∑
x=A

yn(x)ym(x)ρ(x) = h2
nδn,m, (2.2)
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provided that ρ(x) > 0 for A ≤ x ≤ B − 1 and

σ(x)ρ(x)xk
∣∣∣
x=A,B

= 0, ∀k ≥ 0. (2.3)

The square of the norm of the polynomial yn(x) is given by (see e.g. [Nikiforov et al.,
1991])

h2
n = (−1)nknBn

B−n−1∑
x=A

ρn(x), (2.4)

where kn is the leading coefficient of the polynomial yn(x) = knx
n + . . ., and Bn is the

normalization constant of the Rodrigues-type formula

yn(x) =
Bn

ρ(x)
∇n
[
ρn(x)

]
, n = 0, 1, 2, . . . , (2.5)

with

ρn(x) = ρ(x+ n)
n∏

m=1

σ(x+m), n = 1, 2, . . . , ρ0(x) = ρ(x).

The use of Equation (2.5) together with the formula

∇n[f(x)] =
n∑
k=0

(−1)k
(
n

k

)
f(x− k) (2.6)

allows one to obtain an explicit expression for the polynomials [Nikiforov et al., 1991].
The constants kn and Bn are related by

kn = Bn

n−1∏
k=0

[
d+ (n+ k − 1)a

]
, k = 1, 2, . . . , k0 = B0.

The kth difference derivative of the polynomials yn(x) also fulfills a Rodrigues-type
formula [Nikiforov et al., 1991]

∆kyn(x) =
AnkBn

ρk(x)
∇n−k[ρn(x)], (2.7)

where

Anm =
n!

(n−m)!

m−1∏
k=0

[d+ (n+ k − 1)a] ≡ n!

(n−m)!

km
Bm

, An0 = 1.

The four referred families of discrete hypergeometric polynomials are the so-called
CDOP. We denote by Qn(x;α, β,N), Mn(x; γ, µ), Kn(x; p,N) and Cn(x;µ), the Hahn,
Meixner, Krawtchouk and Charlier polynomials, respectively. The hypergeometric repre-
sentations of the above polynomials are given by Koekoek et al. [2010]

Qn(x;α, β,N) = 3F2

−n,−x, n+ 1 + α + β

α + 1,−N

∣∣∣∣∣∣ 1
,

n, x = 0, 1, . . . , N, α > −1 and β > −1, or α < −N and β < −N,

Mn(x; γ, µ) = 2F1

−n,−x
γ

∣∣∣∣∣∣ 1− 1

µ

, γ > 0, 0 < µ < 1, x = 0, 1, . . . ,
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Kn(x; p,N) = 2F1

−n,−x
−N

∣∣∣∣∣∣ 1

p

, 0 < p < 1, n, x = 0, 1, . . . , N,

Cn(x;µ) = 2F0

−n,−x
−

∣∣∣∣∣∣− 1

µ

, µ > 0, x = 0, 1, . . . .

The data corresponding to each family are given in the following table [Koekoek et al.,
2010]:

system Qn(x;α, β,N) Mn(x; γ, µ) Kn(x; p,N) Cn(x;µ)

σ(x) x(N + α− x) x x x

τ(x) (β + 1)(N − 1)− (α + β + 2)x (µ− 1)x+ µγ Np−x
1−p µ− x

ρ(x) (α+1)x
x!

(β+1)N−x
(N−x)!

(γ)x
x!
µx

(
N
x

)
px(1− p)N−x e−µµx

x!

kn
(α+β+n+1)n
(−N)n(α+1)n

(1− 1
µ

)n

(γ)n
1

(−N)npn
(− 1

µ
)n

In the continuous case, the polynomials were represented in terms of the powers xn. The
corresponding choice in the discrete case is a representation in terms of the falling facto-
rials

xn = x(x− 1) · · · (x− n+ 1) = (−1)n(−x)n.

The falling factorials satisfy the equations

∆mxn =
n!

(n−m)!
xn−m, ∇mxn =

n!

(n−m)!
(x−m)n−m, m ≤ n. (2.8)

The expansion of any arbitrary discrete polynomial pn(x) as a series w.r.t. a general
set of discrete hypergeometric polynomials qn(x) is a matter of great interest. This is
particulary true for the problem of linearization of a product of any two discrete poly-
nomials. General and widely applicable strategies begin to appear about 20 years ago
[Lewanowicz, 1996a], [Alvarez-Nodarse et al., 1997], [Koepf and Schmersau, 1998].

To solve the connection problem, Ronveaux et al. [1996] proposed a method which
requires the knowledge of the three-term recurrence relation, the second-order difference
equation, satisfied by the polynomials of the orthogonal set of the expansion problem in
consideration, see [Lewanowicz and Ronveaux, 1996], [Zarzo et al., 1997], [Belmehdi et al.,
1997], [Area et al., 1998], for further description and application of this method.

Koepf and Schmersau [1998] proposed a computer-algebra-based method which, start-
ing from the second-order hypergeometric difference equation, produces by symbolic
means and in a recurrent way the expansion coefficients of the CDOP in terms of the
falling factorial polynomials as well as the expansion coefficients of the corresponding in-
verse problem. The combination of these two expansion problems allows these authors to
solve the connection problems within each specific CDOP set.

All the previous methods provide the expansion coefficients via recursion relation-
ships, which is very useful for the symbolic and/or numerical computation of their values.
Starting from the second-order hypergeometric difference equation satisfied by the set
of discrete orthogonal polynomials {yn(x)}, Alvarez-Nodarse et al. [1997] found the rep-
resentations of the expansion coefficients of any polynomial pn(x) and of the product
pn(x)qm(x) as a series w.r.t. the set yn(x).
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In this chapter, we review some of the above general methods used to find the con-
nection and linearization coefficients of CDOP. In addition as new results, we solve the
general duplication problem for CDOP and we propose a method to generate hypergeo-
metric series representations of the linearization coefficients of CDOP.

2.2 Evaluation of Connection and Linearization Coeffi-
cients

In this section, we review the method used by Alvarez-Nodarse et al. [1997] to find repre-
sentations for connection and linearization coefficients of discrete orthogonal polynomials.

We want to find the expansion coefficients Lk(m,n) of the relation

pn(x)qm(x) =
n+m∑
k=0

Lk(m,n)yk(x), (2.9)

where {yk(x)} is a discrete orthogonal set of hypergeometric polynomials which satisfy
the difference equation (2.1), and pn(x) and qm(x) are arbitrary polynomial families.

Theorem 2.1 ([Alvarez-Nodarse et al., 1997]). The coefficients Lk(m,n) in the expansion
(2.9) are given by

Lk(m,n) =
(−1)kBk

h2
k

B−1∑
x=A

ρk(x− k)∇k
[
pn(x)qm(x)

]
. (2.10)

Proof . Multiplying both sides of Eq. (2.9) by ρ(x)yl(x), and summing between A and
B − 1, the orthogonality relation (2.2) gives

Lk(m,n) =
1

h2
k

B−1∑
x=A

pn(x)qm(x)yk(x)ρ(x).

Using the Rodrigues formula (2.5) for yk(x) gives

Lk(m,n) =
Bk

h2
k

B−1∑
x=A

pn(x)qm(x)∇k[ρk(x)].

From the following summation by parts formula

B−1∑
x=A

f(x)∇g(x) = (f(x)g(x))
∣∣∣B−1

A−1
−

B−1∑
x=A

g(x− 1)∇f(x),

we get

Lk(m,n) =
Bk

h2
k

{
pn(x)qm(x)∇k−1[ρk(x)]

∣∣∣B−1

A−1
−

B−1∑
x=A

∇[pn(x)qm(x)]∇k−1[ρk(x− 1)]
}
.
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For any integer j with 0 ≤ j < k, we have from Equation (2.6)

∇j[ρk(x)] =

j∑
i=0

(−1)i
(
j

i

)
ρk(x− i)

=

j∑
i=0

(−1)i
(
j

i

)
ρ(x− i+ k)

k∏
l=1

σ(x− i+ l).

We remark from the definition of the weight function of CDOP that for k ≥ 1, ρ(x+k) =
ρ(x + 1) × f(x) where f(x) is a rational function with finite limits at A − 1 and B − 1.
It follows that for j < k, ∇j[ρk(x)] is proportional to σ(x+ 1)ρ(x+ 1). Thus taking into
account the boundary condition (2.3) we get

Lk(m,n) = −Bk

h2
k

B−1∑
x=A

∇[pn(x)qm(x)]∇k−1[ρk(x− 1)].

Repeating this process k − 1 times, we obtain the desired expression (2.10). �
In the special case pn(x) = xn and qm(x) = 1, we derive the following inversion

formula from (2.10) and (2.8).

Corollary 2.2 ([Alvarez-Nodarse et al., 1997]).

xn =
n∑
k=0

Ik(n)yk(x), with Ik(n) =
(−1)kk!Bk

(n− k)!h2
k

B−1∑
x=A

(x− k)n−kρk(x− k). (2.11)

In the special case when pn(x) is a hypergeometric polynomial satisfying the following
second-order difference equation

σ̄(x)∆∇pn(x) + τ̄(x)∆pn(x) + λ̄npn(x) = 0,

we get

Theorem 2.3 ([Alvarez-Nodarse et al., 1997]). The coefficients Lk(m,n) in the expansion
(2.9) are given by

Lk(m,n) =
(−1)kBkB̄n

h2
k

j+∑
j=j−

(
k

j

)
Ānj

B−1∑
x=A

n−j∑
l=0

(−1)l
(
n− j
l

)
×

ρk(x− k)

ρ̄j(x− j)
ρ̄n(x− j − l)

[
∇k−jqm(x− j)

]
, (2.12)

where j− = max(0, k − n) and j+ = min(k, n).

Proof . Applying Leibniz’s rule for the nth difference derivative of a product

∇n
[
f(x)g(x)

]
=

n∑
j=0

(
n

j

)[
∇jf(x)

][
∇n−jg(x− j)

]
to pn(x)qm(x), it follows from Equation (2.10) that

Lk(m,n) =
(−1)kBk

h2
k

B−1∑
x=A

ρk(x− k)

j+∑
j=j−

(
k

j

)[
∇jpn(x)

][
∇k−jqm(x− j)

]
.
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From the Rodrigues-type formula (2.7), we deduce

∇jpn(x) ≡ ∆jpn(x− j) =
ĀnjB̄n

ρ̄j(x− j)
∇n−j

[
ρ̄n(x− j)

]
,

where Ānj and B̄n are defined in terms of the coefficients of σ̄(x) and τ̄(x). It follows that

Lk(m,n) =
(−1)kBkB̄n

h2
k

j+∑
j=j−

(
k

j

)
Ānj

B−1∑
x=A

ρk(x− k)

ρ̄j(x− j)
∇n−j

[
ρ̄n(x− j)

][
∇k−jqm(x− j)

]
.

Using (2.6), we substitute the expression for ∇n−j
[
ρ̄n(x − j)

]
in the previous equation

and (2.12) follows. �
A very important particular case of the expansion (2.9) is the case m = 0, i.e. the

connection problem

pn(x) =
n∑
k=0

Ck(n)yk(x).

It can be deduced that the connection coefficients are given by

Ck(n) = Lk(0, n) =
(−1)kBkB̄nĀnk

h2
k

B−1∑
x=A

n−k∑
l=0

(−1)l
(
n− k
l

)
ρk(x− k)

ρ̄k(x− k)
ρ̄n(x− k− l). (2.13)

If σ̄(x) = σ(x), the above expansion coefficients reduce to

Ck(n) =
(−1)kBkB̄nĀnk

h2
k

B−1∑
x=A

n−k∑
l=0

(−1)l
(
n− k
l

)
ρ(x)

ρ̄(x)
ρ̄n(x− k − l). (2.14)

Using relations (2.13) and (2.14), Alvarez-Nodarse et al. [1997] provided formulas con-
necting the different monic families of CDOP.

2.3 Connection and Linearization Coefficients of CDOP
Using Structural Relations

For any classical discrete orthogonal polynomial system {pn(x)}n∈N0 with p−1 ≡ 0, the
following structure relations are valid (see e.g. [Nikiforov et al., 1991], [García et al., 1995],
[Koepf and Schmersau, 1998]):

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x), (2.15)
σ(x)∇pn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x) or (2.16)
(σ(x) + τ(x))∇pn(x) = Snpn+1(x) + Tnpn(x) +Rnpn−1(x), (2.17)
x∆pn(x) = α?n∆pn+1(x) + β?n∆pn(x) + γ?n∆pn−1(x), (2.18)
pn(x) = ân∆pn+1(x) + b̂n∆pn(x) + ĉn∆pn−1(x), (2.19)
σ(x)∆∇pn(x) = a′n∆pn+1(x) + b′n∆pn(x) + c′n∆pn−1(x). (2.20)

Koepf and Schmersau [1998] obtained explicitly the coefficients appearing in the previous
equations.
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Theorem 2.4 ([Koepf and Schmersau, 1998]). For the polynomial solutions of (2.1), the
relations (2.15)-(2.20) are valid. The coefficients an, bn, cn, αn, βn, γn, α?n, β?n, γ?n, ân,
b̂n, ĉn, a′n, b′n, c′n, Sn, Tn, Rn, are given in terms of the coefficients a, b, c, d, e of the
difference equation (2.1) by

an =
kn
kn+1

,

bn =−n(d+ 2b)(d+ an− a) + e(d− 2a)

(2an− 2a+ d)(d+ 2an)
,

cn =−
(

(and− db− ad+ a2n2 − 2a2n+ 4ac+ a2 + 2ea− b2)

×(n− 1)(d+ an− a)− dbe+ d2c+ ae2
)

(an+ d− 2a)n

(d− a+ 2an)(d+ 2an− 3a)(2an− 2a+ d)2
· kn
kn−1

,

αn = an
kn
kn+1

,

βn =−n(an+ d− a)(2and− ad− db+ 2ea− 2a2n+ 2a2n2)

(d+ 2an)(d− 2a+ 2an)
,

γn =
(

(n− 1)(an+ d− a)(and− db− ad+ a2n2 − 2a2n+ 4ac+ a2 + 2ea− b2)

−dbe+ d2c+ ae2
)
× (an+ d− a)(an+ d− 2a)n

(d− 2a+ 2an)2(2an− 3a+ d)(2an− a+ d)
· kn
kn−1

,

α?n =
n

n+ 1

kn
kn+1

,

β?n =−n(d+ 2a+ 2b)(d+ an− a) + d(e− a− b)
(2an− 2a+ d)(d+ 2an)

,

γ?n =−
(

(n− 1)(d+ an− a)(and− db− ad+ a2n2 − 2a2n+ 4ac+ a2 + 2ea− b2)

−dbe+ d2c+ ae2
)
× (d+ an− a)n

(2an− 2a+ d)2(2an− 3a+ d)(d− a+ 2an)
· kn
kn−1

,

a′n =
an(n− 1)

n+ 1
· kn
kn+1

,

b′n =−(n− 1)(an+ d)(2and− ad− db+ 2ea− 2a2n+ 2a2n2)

(2an− 2a+ d)(d+ 2an)

c′n =
(

(n− 1)(d+ an− a)(and− db− ad+ a2n2 − 2a2n+ 4ac+ a2 + 2ea− b2)

−dbe+ d2c+ ae2
)
× (d+ an− a)(an+ d)n

(2an− 2a+ d)2(2an− 3a+ d)(2an− a+ d)
· kn
kn−1

,

ân =
1

n+ 1
· kn
kn+1

,

b̂n =
−2an(d+ an− a)− db+ ad− d2 + 2ea

(2an− 2a+ d)(d+ 2an)
,

ĉn =
(

(n− 1)(d+ an− a)(and− db− ad+ a2n2 − 2a2n+ 4ac+ a2 + 2ea− b2)

−dbe+ d2c+ ae2
)
× an

(2an− 2a+ d)2(2an− 3a+ d)(2an− a+ d)
· kn
kn−1

,
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Sn =αn, Tn = βn − λn, Rn = γn.

2.3.1 First Method

We assume that pn(x) is a polynomial system given by (2.1) with σ(x) = ax2 + bx + c,
and τ(x) = dx + e, and that qm(x) is a polynomial system given by (2.1) with σ̄(x) =
āx2 + b̄x+ c̄, and τ̄(x) = d̄x+ ē.

If σ̄(x) = σ(x) or σ(x) + τ(x) = σ̄(x) + τ̄(x) we proceed similarly as in the Section
1.2.1 by replacing, respectively, the structural formulas

xp′n(x) =α?np
′
n+1(x) + β?np

′
n(x) + γ?np

′
n−1(x)

σ(x)p′n(x) =αnpn+1(x) + βnpn(x) + γnpn−1(x)

by

x∆pn(x) =α?n∆pn+1(x) + β?n∆pn(x) + γ?n∆pn−1(x),

σ(x)∇pn(x) =αnpn+1(x) + βnpn(x) + γnpn−1(x).

If σ̄(x) 6= σ(x) and σ(x) + τ(x) 6= σ̄(x) + τ̄(x), similarly as in Section 1.2.1, we solve the
falling factorial representation

xn =
n∑

m=0

Im(n)qm(x),

using the following structure relations for pn(x) = xn:

xpn(x) = pn+1(x)+npn(x), pn(x) =
1

n+ 1
∆pn+1(x), x∆pn(x) =

n

n+ 1
∆pn+1(x)+(n−1)∆pn(x).

From the identity xn = (−1)n(−x)n and the definition of the generalized hypergeo-
metric function, we have for all CDOP

pn(x) =
n∑
j=0

Aj(n)xj.

By the combination of the above formula with the inversion formula

xj =

j∑
m=0

Im(j)qm(x)

we get the connection formula as in Section 1.2.1.

2.3.2 Second Method: The NaViMa Algorithm

It is also possible to use the NaViMa algorithm to compute recursively the connection
coefficients between two families of CDOP [Ronveaux et al., 1996], [Area et al., 1998].

In the first step, we apply the difference operator L2,n : P −→ P , defined by

L2,n[pn(x)] := σ(x)∆∇pn(x) + τ(x)∆pn(x) + λnpn(x) = 0
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to both sides of the connection identity pn(x) =
n∑

m=0

Cm(n)qm(x). This gives

n∑
m=0

Cm(n)
(
σ(x)∆∇qm(x) + τ(x)∆qm(x) + λnqm(x)

)
= 0. (2.21)

To obtain a recurrence relation for the coefficients Cm(n) of maximum order 4 or 2, we
expand the expression

σ(x)∆∇qm(x) + τ(x)∆qm(x) + λnqm(x) (2.22)

in the basis ∆∇qm(x) if σ(x) 6= σ̄(x), or in the basis ∆qm(x) if σ(x) = σ̄(x), respectively.
Note that we denote all coefficients connected with qm(x) by dashes.

Using the {∆∇qm(x)} basis (σ(x) 6= σ̄(x))

We proceed as follows. In the first step, we apply ∇ to (2.19) and use the properties

∆∇ = ∇∆, ∆ = ∇+ ∆∇

to get
∆qm(x) = ¯̂am∆∇qm+1(x) + (

¯̂
bm + 1)∆∇qm(x) + ¯̂cm∆∇qm−1(x). (2.23)

Then, this expression together with (2.19) yields

qm(x) =
m+2∑
j=m−2

am,j∆∇qj(x), (2.24)

with

am,m+2 = ¯̂am¯̂am+1, am,m+1 = ¯̂am(
¯̂
bm +

¯̂
bm+1 + 1), am,m = ¯̂am¯̂cm+1 +

¯̂
b2
m +

¯̂
bm + ¯̂cm¯̂am−1,

am,m−1 = ¯̂cm(
¯̂
bm +

¯̂
bm−1 + 1), am,m−2 = ¯̂cm¯̂cm−1.

Second, from (2.18) we have

τ(x)∆qm(x) = ᾱ?md∆qm+1(x) + (e+ dβ̄?m)∆qm(x) + γ̄?md∆qm−1(x),

and using (2.23) this yields

τ(x)∆qm(x) =
m+2∑
j=m−2

a
(1)
m,j∆∇qj(x), (2.25)

with

a
(1)
m,m+2 = dᾱ?m

¯̂am+1, a
(1)
m,m+1 = d

(
ᾱ?m(

¯̂
bm+1 + 1) + β̄?m

¯̂am

)
+ e¯̂am,

a
(1)
m,m−2 = dγ̄?m

¯̂cm−1, a
(1)
m,m−1 = d

(
β̄?m

¯̂cm + γ̄?m(
¯̂
bm−1 + 1)

)
+ e¯̂cm,

a(1)
m,m = d

(
ᾱ?m

¯̂cm+1 + β̄?m(
¯̂
bm + 1) + γ̄?m

¯̂am−1

)
+ e(

¯̂
bm + 1).
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And third, we apply ∇ to both sides of (2.18) and use the properties

∇(p(x)q(x)) = ∇p(x) · q(x) + p(x− 1)∇q(x), ∆∇ = ∇∆

and (2.23) to get

x∆∇qm(x) = ᾱ?m∆∇qm+1(x) + (β̄?m + 1)∆∇qm(x) + γ̄?m∆∇qm−1(x)−∆qm(x)

= (ᾱ?m − ¯̂am)∆∇qm+1(x) + (β̄?m −
¯̂
bm)∆∇qm(x) + (γ̄?m − ¯̂cm)∆∇qm−1(x).

It follows that

σ(x)∆∇qm(x) =
m+2∑
j=m−2

a
(2)
m,j∆∇qj(x), (2.26)

with the coefficients a(2)
m,j given as in (1.27).

Now, we substitute (2.24)-(2.26) in Equation (2.21) and proceed as in Section 1.2.3.

Using the {∆qm(x)} basis (σ(x) = σ̄(x))

The procedure is the same as in Section 1.2.3 with Equations (1.28), (1.29) and (1.30)
replaced, respectively, by

qm(x) =
m+1∑
j=m−1

bm,j∆qj(x),

τ(x)∆qm(x) =
m+1∑
j=m−1

b
(1)
m,j∆qj(x),

and

σ(x)∆∇qm(x) = σ̄(x)∆∇qm(x) =
m+1∑
j=m−1

b
(2)
m,j∆qj(x).

with the same coefficients.

2.3.3 Linearization Problem for CDOP: the NaViMa Algorithm

Every CDOP family satisfies a difference equation of type (2.1) which can be easily rewrit-
ten as

A(x)y(x+ 1) +B(x)y(x) + C(x)y(x− 1) = 0, (2.27)

where A(x) = σ(x) + τ(x), B(x) = λn − 2σ(x)− τ(x) and C(x) = σ(x) are polynomials
of maximum degree 2. Salvy and Zimmermann [1994] (see also [Stanley, 1980]) developed
an algorithm to compute the difference equation of the product of two CDOP pn(x)qm(x).
This algorithm is implemented in Maple in the package gfun by the procedure rec∗rec.
If pn(x) and qm(x) are solutions of a difference equation of type (2.27), then using this
algorithm, we obtain a fourth order difference equation

r4(x)y(x+ 4) + r3(x)y(x+ 3) + r2(x)y(x+ 2) + r1(x)y(x+ 1) + r0(x)y(x) = 0, (2.28)

satisfies by the product y(x) = pn(x)pm(x). To solve recursively the linearization problem

pn(x)pm(x) =
n+m∑
k=0

Lk(m,n)pk(x),
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we substitute the above expression in (2.28), and then from (2.27), pk(x + 4), pk(x +
3), pk(x + 2) are given as linear combinations of pk(x + 1) and pk(x). This yields a
difference equation of the form

n+m∑
k=0

f(x)pk(x+ 1) + g(x)pk(x) = 0,

where f(x) and g(x) are polynomials. Substituting pk(x+ 1) by ∆pk(x) + pk(x) and then
using structural formulae (2.18) and (2.19), we obtain after an appropriate shift of indices
a recurrence relation in the variable k satisfied by the linearization coefficients Lk(m,n).

Remark 2.5. 1. Ronveaux et al. [1996], Lewanowicz [1996a] also proposed an algorith-
mic method of obtaining recurrence relations satisfied by the connection coefficients
between two families of the CDOP, and using the same approach,
Belmehdi et al. [1997] gave a recurrence relation for the linearization coefficients
of CDOP. Their method uses again structure formulas of CDOP.

2. Zarzo et al. [1997] used the NaViMa algorithm to solve the inversion problem of
monic CDOP.

3. Using theorems from the theory of generalized hypergeometric functions of Section
1.4, Chapter 1, Lewanowicz [2003a] obtained a representation of the connection
coefficients of some CDOP.

2.4 Connection and Linearization Coefficients of CDOP

Gasper [1974], Ronveaux et al. [1996], Koepf and Schmersau [1998] (compare
[Zarzo et al., 1997], [Alvarez-Nodarse et al., 1997]) proved that

Theorem 2.6. The following representations for the falling factorials in terms of the
classical discrete orthogonal polynomials are valid:

xn =
n∑

m=0

(1 + α)n(−N)n(−1)n

(α + β + 2)n

(α + β + 1 + 2m)

(α + β + 1)

(−n)m(α + β + 1)m
(n+ 2 + α + β)mm!

Qm(x;α, β,N),

xn =
n∑

m=0

(−1)n(γ)n( µ
µ−1

)n(−n)m

m!
Mm(x; γ, µ),

xn =
n∑

m=0

(−1)n(−N)np
n(−n)m

m!
Km(x; p,N),

xn =
n∑

m=0

µn(−n)m
m!

Cm(x;µ).

In [Gasper, 1974], [Koepf and Schmersau, 1998], [Lewanowicz, 2003a] (compare
[Lewanowicz, 1996a], [Area et al., 1998]), the connection coefficients within the same
family of CDOP were given.
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Theorem 2.7. The following connection relations between the classical discrete orthogo-
nal polynomials are valid:

Qn(x;α, β,N) =
n∑

m=0

(β − δ)n(−1)n

(2 + α + δ)n

(α + δ + 1 + 2m)

(α + δ + 1)

×(−n)m(1 + α + δ)m(n+ 1 + α + β)m(−1)m

(α + 2 + n+ δ)m(1− β + δ − n)mm!
Qm(x;α, δ,N),

Qn(x;α, β,N) =
n∑

m=0

(α− γ)n(β + 1)n
(α + 1)n(2 + β + γ)n

(β + γ + 1 + 2m)

(β + γ + 1)

× (−n)m(1 + β + γ)m(γ + 1)m(n+ 1 + α + β)m
(β + 1)m(β + γ + n+ 2)m(γ − α− n+ 1)mm!

Qm(x; γ, β,N),

Qn(x;α, β,N) =
n∑

m=0

n!(γ + 1)m(n+ α + β + 1)m
m!(n−m)!(α + 1)m(m+ γ + δ + 1)m

×3F2

m− n,m+ γ + 1, n+m+ α + β + 1

m+ α + 1, 2m+ γ + δ + 2

∣∣∣∣∣∣ 1
Qm(x; γ, δ,N),

if n = 0, 1, . . . ,M and x = 0, 1, . . . ,min(M,N), then

Qn(x;α, β,M) =

min(n,N)∑
m=0

n!(−N)m(γ + 1)m(n+ α + β + 1)m
m!(n−m)!(−M)m(α + 1)m(m+ γ + δ + 1)m

×4F3

m− n,m−N,m+ γ + 1, n+m+ α + β + 1

m−M,m+ α + 1, 2m+ γ + δ + 2

∣∣∣∣∣∣ 1
Qm(x; γ, δ,N),

Mn(x; γ, µ) =
n∑

m=0

(γ − δ)n(−n)m(δ)m
(δ − n+ 1− γ)m(γ)nm!

Mm(x; δ, µ),

Mn(x; γ, µ) =
n∑

m=0

( ν − µ
µ(ν − 1)

)n (−n)m
m!

(
− ν(µ− 1)

ν − µ

)m
Mm(x; γ, ν),

Mn(x; γ, µ) =
n∑

m=0

n!(δ)m
m!(n−m)!(γ)m

[ν(1− µ)

µ(1− ν)

]m
2F1

m− n,m+ δ

m+ γ

∣∣∣∣∣∣ ν(1− µ)

µ(1− ν)

Mm(x; δ, ν),

Kn(x; p,N) =
n∑

m=0

qm(p− q)n−m
(
n
m

)
pn

Km(x; q,N),

Kn(x; p,N) =
n∑

m=0

(−M)m(M −N)n−m
(
n
m

)
(−N)n

Km(x; p,M),

if n = 0, 1, . . . ,M and x = 0, 1, . . . ,min(M,N), then

Kn(x; q,M) =

min(n,N)∑
m=0

(−N)mp
m
(
n
m

)
(−M)mqm

2F1

m− n,m−N
m−M

∣∣∣∣∣∣ pq
Km(x; p,N),
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Cn(x;µ) =
n∑

m=0

(−1)n
νm

µn
(ν − µ)n−m

(−n)m
m!

Cm(x; ν).

Belmehdi et al. [1997] gave a procedure to get a recurrence relation for the linearization
coefficients of CDOP. Here, using a systematic approach, we provide hypergeometric series
representation of these coefficients. These results, as far as we know, are new.

Theorem 2.8. The following linearization formulae hold
1. for the Hahn polynomial family

Qn(x;α, β,N)Qm(x;α, β,N) =
n+m∑
r=0

Lr(m,n)Qr(x;α, β,N), m+ n ≤ N,

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−n)j(n+ α + β + 1)j(−m)l+r−j(m+ α + β + 1)l+r−j
(α + 1)j(−N)j(α + 1)l+r−j(−N)l+r−j(l + r − j)!j!r!

×(α + 1)l+r(−N)l+r(α + β + 1 + 2r)(−l − r)r(α + β + 1)r
(α + β + 2)l+r(α + β + 1)(α + β + 2 + l + r)r

×3F2

−j, l + r − j +m+ α + β + 1, l + r − j −m

l + r − j −N, l + r − j + α + 1

∣∣∣∣∣∣ 1
,

2. for the Meixner polynomial family

Mn(x; γ, µ)Mm(x; γ, µ) =
n+m∑
r=0

Lr(m,n)Mr(x; γ, µ),

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−n)j(−m)l+r−j(γ)l+r(−l − r)r
(γ)j(γ)l+r−j(l + r − j)!j!r!

×2F1

−j, l + r − j −m

l + r − j + γ

∣∣∣∣∣∣ µ− 1

µ

,
3. for the Krawtchouk polynomial family

Kn(x; p,N)Km(x; p,N) =
n+m∑
r=0

Lr(m,n)Kr(x; p,N),

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−n)j(−m)l+r−j(−N)l+r(−l − r)r
(−N)j(−N)l+r−j(l + r − j)!j!r!

×2F1

 l + r − j −m,−j

l + r − j −N

∣∣∣∣∣∣ 1

p

,
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4. for the Charlier polynomial family

Cn(x;µ)Cm(x;µ) =
n+m∑
r=0

Lr(m,n)Cr(x;µ),

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−n)j(−m)l+r−j(−l − r)r
(l + r − j)!j!r!

×2F0

 l + r − j −m,−j

−

∣∣∣∣∣∣− 1

µ

.
The proof of Theorem 2.8 uses the following lemma.

Lemma 2.9. If m < n,

xnxm =
m∑
k=0

m!n!

k!(m− k)!(n−m+ k)!
xn+k. (2.29)

Proof . From the definition of xn, xn = 0 ⇔ x = 0, 1, . . . , n − 1 and (n + s)n 6= 0, s =
0, 1, . . .. We suppose that

xnxm =
n+m∑
k=0

Hk(m,n)xk = H0(m,n) +
n+m∑
k=1

Hk(m,n)xk.

For x = 0, xk = 0, k = 1, 2, . . . and then the previous equation yields H0(m,n) = 0,
m ≥ 1. Therefore

xnxm = H1(m,n)x+
n+m∑
k=2

Hk(m,n)xk,

and for x = 1 and m ≥ 2, it follows that H1(m,n) = 0. Progressively, in a similar way,
we obtain

H0(m,n) = H1(m,n) = . . . = Hn−1(m,n) = 0.

Consequently,

xnxm =
n+m∑
k=n

Hk(m,n)xk =
m∑
k=0

Hn+k(m,n)xn+k.

Since xn+k = xn(x− n)k, it follows that

xm =
m∑
k=0

Hn+k(m,n)(x− n)k.

We apply ∆l, l = 0, 1, . . . ,m to both sides of the previous equation and use (2.8) to get

m!

(m− l)!
xm−l =

m∑
k=l

Hn+k(m,n)
k!

(k − l)!
(x− n)k−l

=Hn+l(m,n)l! +
m∑

k=l+1

Hn+k(m,n)
k!

(k − l)!
(x− n)k−l.
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For x = n, we obtain

Hn+l(m,n) =
m!n!

l!(m− l)!(n−m+ l)!
.

�

Remark 2.10. If we substitute k by m− k in (2.29), we get

xnxm =

min(m,n)∑
k=0

k!

(
n

k

)(
m

k

)
xn+m−k.

Having derived the linearization relation for xn, we now prove Theorem 2.8.
Proof (of Theorem 2.8). We have

pn(x) =
n∑
j=0

Aj(n)xj and pm(x) =
m∑
k=0

Ak(m)xk,

so that

pn(x)pm(x) =
n∑
j=0

m∑
k=0

Aj(n)Ak(m)xjxk

(2.29)
=

n∑
j=0

m∑
k=0

Aj(n)Ak(m)
( k∑
l=0

Hj+l(k, j)x
j+l
)

=
n+m∑
l=0

Bl(m,n)xl,

with

Bl(m,n) =

min(n,l)∑
j=max(0,l−m)

min(m,l)∑
k=l−j

Aj(n)Ak(m)Hl(k, j),

where Hl(k, j) = 0 if l < max(k, j) or k + j < l.
Since

xl =
l∑

r=0

Ir(l)pr(x),

we get

pn(x)pm(x) =
n+m∑
r=0

Lr(m,n)pr(x)

with

Lr(m,n) =
n+m−r∑
l=0

Bl+r(m,n)Ir(l + r)

=
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

min(m,l+r)∑
k=l+r−j

Aj(n)Ak(m)Hl+r(k, j)Ir(l + r)

=
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

min(m−l−r+j,j)∑
k=0

Aj(n)Al+r−j+k(m)Hl+r(l + r − j + k, j)Ir(l + r).
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To get our final results, we use the sumtohyper algorithm. �
Some simpler results were obtained by Askey and Gasper [1977], using generating

functions, and are given by

Theorem 2.11 ([Askey and Gasper, 1977]). For Meixner and Krawtchouk orthogonal
polynomials, the following results hold, respectively:

Mn(x; γ, µ)Mm(x; γ, µ) =
n+m∑
i=0

n!m!(1 + µ)n+m+i(−1)n+m+i

µn+m(γ)n(γ)m

×
∑
j≥0

(γ)jµ
j(1 + µ)−2j

(j − n)!(j −m)!(j − i)!(n+m+ i− 2j)!
Mi(x; γ, µ),

Kn(x; p,N)Km(x; p,N) =
n+m∑
i=0

N !

pn+m(1− p)i
(
N
n

)(
N
m

)
×
∑
j≥0

pj(1− p)j(2p− 1)i+m+n−2j

(j − i)!(j −m)!(j − n)!(i+m+ n− 2j)!(N − j)!
Ki(x; p,N).

To conclude this section, we deduce the linearization of the product of two falling
factorials in terms of CDOP.

Proposition 2.12. The following linearization formulae are valid:

xnxm =
n+m∑
j=0

m!n!(α + β + 2j + 1)(α + β + 1)j
(α + β + 1)(α + β + k + 2)jj!

×

n+m∑
k=max(m,n,j)

(α + 1)k(−N)k(−1)k(−k)j
(k − n)!(k −m)!(n+m− k)!(α + β + 2)k

Qj(x;α, β,N),

xnxm =
n+m∑
j=0

n+m∑
k=max(m,n,j)

m!n!(−1)k(γ)k(−k)jµ
k

(k − n)!(k −m)!(n+m− k)!j!(µ− 1)k
Mj(x; γ, µ),

xnxm =
n+m∑
j=0

n+m∑
k=max(m,n,j)

m!n!(−1)k(−N)kp
k(−k)j

(k − n)!(k −m)!(n+m− k)!j!
Kj(x; p,N),

xnxm =
n+m∑
j=0

n+m∑
k=max(m,n,j)

m!n!µk(−k)j
(k − n)!(k −m)!(n+m− k)!j!

Cj(x;µ).

Proof . In fact, the combination of

xnxm =
n+m∑

k=max(m,n)

Hk(m,n)xk and xk =
k∑
j=0

Ij(k)pj(x)

yields the linearization formula

xnxm =
n+m∑
j=0

Lj(m,n)pj(x), with Lj(m,n) =
n+m∑

k=max(m,n,j)

Hk(m,n)Ij(k).

�
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2.5 Duplication Problem for CDOP

Using generating functions, Chaggara and Koepf [2007] solved the duplication problem

pn(ax) =
n∑

m=0

Dm(n, a)pm(x)

for the Charlier, Meixner and Krawtchouk polynomials for the specific case a = −1.
Recurrence relations satisfied by the duplication coefficients were also given. Area et al.
[2003] presented an algorithmic approach to obtain these recurrence relations. Their
approach was based on the NaViMa algorithm. In this section the general duplication
problem for CDOP is solved.

Theorem 2.13. For the classical discrete orthogonal polynomials, the following duplica-
tion relations are valid.

Qn(ax;α, β,N) =
n∑

m=0

(α + β + 1 + 2m)(α + β + 1)m
(α + β + 1)m!

×
n−m∑
j=0

(α + 1,−N)n−j(−n+ j)m
(α + β + 2)n−j(α + β + n− j + 2)m(n− j)!

×
j∑

k=0

(−n, n+ α + β + 1)k+n−j

(α + 1,−N)k+n−j(k + n− j)!
×

n−j∑
l=0

(−1)l
(
n− j
l

)
(−al)k+n−jQm(x;α, β,N),

Mn(ax; γ, µ) =
n∑

m=0

n−m∑
j=0

(γ)n−j(−n+ j)m
m!(n− j)!

×
j∑

k=0

(−n)n+k−j

(n+ k − j)!(γ)n+k−j

(µ− 1

µ

)k
×

n−j∑
l=0

(−1)l
(
n− j
l

)
(−al)n+k−jMm(x; γ, µ),

Kn(ax; p,N) =
n∑

m=0

n−m∑
j=0

(−N)n−j(−n+ j)m
m!(n− j)!

×
j∑

k=0

(−n)n+k−j

pk(−N)n+k−j(n+ k − j)!

n−j∑
l=0

(−1)l
(
n− j
l

)
(−al)n+k−jKm(x; p,N),

Cn(ax;µ) =
n∑

m=0

n−m∑
j=0

(−n+ j)m
m!(n− j)!

×
j∑

k=0

(−n)n+k−j

(n+ k − j)!(−µ)k

n−j∑
l=0

(−1)l
(
n− j
l

)
(−al)n+k−jCm(x;µ).

The proof of this theorem uses the following result.



56 Connection, Linearization and Duplication Coefficients of CDOP

Lemma 2.14. If f is a polynomial w.r.t. x of degree n, then

f(x) =
n∑
k=0

fkx
k, (2.30)

where

fk =
1

k!

k∑
l=0

(−1)k−l
(
k

l

)
f(l).

Proof . If we apply the operator ∆j to Equation (2.30), we get for any positive integer j

∆jf(x) =
n∑
k=0

fk∆
jxk.

Since ∆jxk = k!
(k−j)!x

k−j, it follows that

∆jf(x) =
n∑

k=0,k 6=j

fk
k!

(k − j)!
xk−j + fjj!.

For x = 0, this yields

fj =
∆jf(0)

j!
.

The result follows from the relation

∆kf(x) =
k∑
l=0

(−1)k−l
(
k

l

)
f(x+ l).

�
Replacing f(x) by (ax)n in (2.30), we are led to

Corollary 2.15. The following duplication formula holds:

(ax)n =
n∑
k=0

(−1)n+k

k!

k∑
l=0

(−1)l
(
k

l

)
(−al)nxk.

Proof (of Theorem 2.13). Combining pn(ax) =
n∑
k=0

Ak(n)(ax)k, (ax)k =
k∑
i=0

Ei(k, a)xi

with Ei(k, a) =
i∑
l=0

Fl(i, k, a), xi =
i∑

m=0

Im(i)pm(x), interchanging the order of summation

and substituting i by n−m−j yields the duplication relation pn(ax) =
n∑

m=0

Dm(n, a)pm(x)

with

Dm(n, a) =
n−m∑
j=0

j∑
k=0

n−j∑
l=0

Ak+n−j(n)Fl(n− j, k + n− j, a)Im(n− j).

�
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2.6 Application of Connection Formulae of CDOP: Pa-
rameter Derivatives

The following results obtained by Koepf and Schmersau [1998] are deduced from Theorem
2.7, following the method used in the proof of Corollary 1.16.

Corollary 2.16. The following representations for the parameter derivatives of the clas-
sical discrete orthogonal polynomials are valid:

∂

∂α
Qn(x;α, β,N) =

n−1∑
m=0

(( 1

α + β +m+ n+ 1
− 1

α +m+ 1

)
Qn(x;α, β,N)

+
(α + β + 1 + 2m)(β + 1 +m)n−mn!

(n−m)(α + β + n+m+ 1)(α + 1 +m)n−m(α + β + 1 +m)n−mm!
Qm(x;α, β,N)

)
,

∂

∂β
Qn(x;α, β,N) =

n−1∑
m=0

1

α + β +m+ n+ 1
·
(
Qn(x;α, β,N)

+
(−1)n−m(α + β + 1 + 2m)n!

(n−m)(α + β + 1 +m)n−mm!
Qm(x;α, β,N)

)
,

∂

∂µ
Mn(x; γ, µ) =

n

µ(µ− 1)
(Mn(x; γ, µ)−Mn−1(x; γ, µ)),

∂

∂γ
Mn(x; γ, µ) =

n−1∑
m=0

(
− 1

γ +m
Mn(x; γ, µ) +

n!

m!(n−m)(m+ γ)n−m
Mm(x; γ, µ)

)
,

∂

∂p
Kn(x; p,N) =

n

p

(
Kn−1(x; p,N)−Kn(x; p,N)

)
,

∂

∂N
Kn(x; p,N) =

n−1∑
m=0

( 1

m−N
Kn(x; p,N)− n!

m!(n−m)(m−N)n−m
Km(x; p,N)

)
,

∂

∂µ
Cn(x;µ) =

n

µ

(
Cn−1(x;µ)− Cn(x;µ)

)
.

We note that ∂
∂µ
Mn(x; γ, µ), ∂

∂γ
Mn(x; γ, µ), ∂

∂p
Kn(x; p,N) are different from the results

of Koepf [1998] because the polynomial families are different by a normalizing constant.
We also note that in [Koepf, 1998], the parameter derivative ∂

∂α
Qn(x;α, β,N) has a mis-

print.
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Chapter 3

Connection, Linearization and
Duplication Coefficients of
q-Orthogonal Polynomials of the
q-Hahn Class

Area et al. [1999], Foupouagnigni et al. [2012] solved the inversion problem of q-classical
orthogonal polynomials. An algorithmic approach was given by Lewanowicz [2003b] to
construct recurrence relations for the coefficients of the series expansion of a solution of
a linear q-difference equation in q-classical orthogonal polnomials (of the q-Hahn class).
Area et al. [2001] proposed a method to solve the connection and linearization prob-
lem of q-classical orthogonal polynomials from which they deduced the connection coeffi-
cients between the little q-Jacobi and shifted Jacobi polynomials. In this chapter, using
this method and another algorithmic approach we solve the connection and lineariza-
tion problems of all the q-classical orthogonal polynomial families of the q-Hahn class.
Furthermore, using two algorithmic approaches, the duplication problem for q-classical
orthogonal polynomials is also solved.

3.1 Introduction
A family

y(x) = pn(x) = knx
n + k′nx

n−1 + k′′nx
n−2 + . . . (n ∈ N0, kn 6= 0) (3.1)

of polynomials of degree exactly n is a family of q-classical orthogonal polynomials (in
short q-COP) of the q-Hahn class if it is solution of a q-differential equation of the type
(see e.g. [Koepf and Schmersau, 2001], [Medem et al., 2001])

σ(x)DqD 1
q
pn(x) + τ(x)Dqpn(x) + λn,qpn(x) = 0, (3.2)

which is equivalent to

σ̃(x)D 1
q
Dqpn(x) + τ(x)D 1

q
pn(x) + λn,qpn(x) = 0,

where σ(x) = ax2 + bx+ c, σ̃(x) = σ(x) + (q− 1)xτ(x) are polynomials of at most second
order and τ(x) = dx + e is a polynomial of first order and the q-differential operator Dq
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is defined by

Dqf(x) =
f(qx)− f(x)

(q − 1)x
, x 6= 0, q 6= 1

and Dqf(0) := f ′(0) by continuity, provided f ′(0) exists. In the sequel, we shall always
assume that 0 < q < 1.

As we can read in the preface of Koekoek et al. [2010], Hahn [1949] found orthogonal
polynomial solutions of second order q-difference equations. This class of orthogonal
polynomials is known as the q-Hahn class. Many other families of orthogonal polynomials
such as the discrete classical orthogonal polynomials have been very well known for a long
time, but a classification of all these families did not exist. A first attempt to combine
both the continuous and discrete classical orthogonal polynomials was made by Askey and
Wilson [1985] by introducing the so-called Askey scheme of hypergeometric orthogonal
polynomials. All known q-analogues of the families of orthogonal polynomials belonging to
the Askey scheme were arranged into a q-analogue of this Askey-scheme. The polynomial
systems which are solution of (3.2) form the q-Hahn tableau. The following systems are
members of the q-Hahn tableau [Koekoek et al., 2010]:

1. the big q-Jacobi polynomials

Pn(x;α, β, γ; q) = 3φ2

q−n, αβqn+1, x

αq, γq

∣∣∣∣∣∣ q; q
,

which for α = β = 1 are the big q-Legendre polynomials

Pn(x; γ; q) = 3φ2

q−n, qn+1, x

q, γq

∣∣∣∣∣∣ q; q
,

2. the q-Hahn polynomials

Qn(x̄;α, β,N |q) = 3φ2

q−n, αβqn+1, x̄

αq, q−N

∣∣∣∣∣∣ q; q
, with x̄ = q−x and n = 0, 1, . . . , N,

3. the big q-Laguerre polynomials

Pn(x;α, β; q) = 3φ2

q−n, x, 0
αq, βq

∣∣∣∣∣∣ q; q
,

4. the little q-Jacobi polynomials

pn(x;α, β|q) = 2φ1

q−n, αβqn+1

αq

∣∣∣∣∣∣ q; qx
,

which for α = β = 1 are the little q-Legendre polynomials

pn(x|q) = 2φ1

q−n, qn+1

q

∣∣∣∣∣∣ q; qx
,
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5. the q-Meixner polynomials

Mn(x̄; β, γ; q) = 2φ1

q−n, x̄
βq

∣∣∣∣∣∣ q;−q
n+1

γ

, with x̄ = q−x,

6. the quantum q-Krawtchouk polynomials

Kqtm
n (x̄; p,N ; q) = 2φ1

q−n, x̄
q−N

∣∣∣∣∣∣ q; pqn+1

, with x̄ = q−x and n = 0, 1, . . . , N,

7. the q-Krawtchouk polynomials

Kn(x̄; p,N ; q) = 3φ2

q−n, x̄,−pqn
q−N , 0

∣∣∣∣∣∣ q; q
 with x̄ = q−x and n = 0, 1, . . . , N,

8. the affine q-Krawtchouk polynomials

KAff
n (x̄; p,N ; q) = 3φ2

q−n, x̄, 0
pq, q−N

∣∣∣∣∣∣ q; q
 with x̄ = q−x and n = 0, 1, . . . , N,

9. the little q-Laguerre / Wall polynomials

pn(x;α|q) = 2φ1

q−n, 0
αq

∣∣∣∣∣∣ q; qx
,

10. the q-Laguerre polynomials

L(α)
n (x; q) =

(qα+1; q)n
(q; q)n

1φ1

 q−n

qα+1

∣∣∣∣∣∣ q;−qn+α+1x

,
11. the alternative q-Charlier or q-Bessel polynomials

yn(x;α; q) = 2φ1

q−n,−αqn
0

∣∣∣∣∣∣ q; qx
,

12. the q-Charlier polynomials

Cn(x̄;α; q) = 2φ1

q−n, x̄
0

∣∣∣∣∣∣ q;−q
n+1

α

,
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13. the Al-Salam-Carlitz I polynomials

U (α)
n (x; q) = (−α)nq(

n
2)2φ1

q−n, x−1

0

∣∣∣∣∣∣ q; qxα
,

14. the Al-Salam-Carlitz II polynomials

V (α)
n (x; q) = (−α)nq−(n2)2φ0

q−n, x
−

∣∣∣∣∣∣ q; q
n

α

,
15. the Stieltjes-Wigert polynomials

Sn(x; q) =
1

(q; q)n
1φ1

q−n
0

∣∣∣∣∣∣ q;−qn+1x

,
16. the discrete q-Hermite I polynomials

hn(x; q) = q(
n
2)2φ1

q−n, x−1

0

∣∣∣∣∣∣ q;−qx
,

the discrete q-Hermite I polynomials are the Al-Salam-Carlitz I polynomials with
α = −1 i.e. hn(x; q) = U

(−1)
n (x; q),

17. the discrete q-Hermite II polynomials

h̃n(x; q) = i−nq−(n2)2φ0

q−n, ix
−

∣∣∣∣∣∣ q;−qn
,

the discrete q-Hermite II polynomials are related to the Al-Salam-Carlitz II poly-
nomials with α = −1 by h̃n(x; q) = i−nV

(−1)
n (ix; q).

The representation of the polynomials pn(x) belonging to the q-Hahn tableau as basic
hypergeometric series (see Definition 0.2) suggests four natural bases {Vm} to obtain
expansions of the form

pn(x) =
n∑

m=0

Am(n)Vm(x).

These expansion bases are the q-shifted factorials (i.e. Vm(x) = (x; q)m), the powers of
x (i.e. Vm(x) = xm), Vm(x) = (ix; q)m and Vm(x) = (x − 1)(x − q) · · · (x − qm−1) =
(x−1; q)mx

m. These four bases can be generalized to the basis [Sprenger, 2009]

(b� a)nq =

(b− a)(b− aq) · · · (b− aqn−1), n ∈ N,

1, n = 0,
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where a, b ∈ C. Indeed, we have

(x; q)n = (1� x)nq , x
n = (x� 0)nq , (ix; q)n = (1� ix)nq and (x−1; q)nx

n = (x� 1)nq .

It is easy to see that (3.2) is equivalent to

B(x)pn(qx)− (B(x) +D(x))pn(x) +D(x)pn

(x
q

)
= −(q − 1)2x2λn,qpn(x) (3.3)

with B(x) = σ(x) + (q − 1)xτ(x) and D(x) = qσ(x). From the above equivalent form
of Equation (3.2) given in [Koekoek and Swarttouw, 1998], [Koekoek et al., 2010], we get
σ(x) = D(x)

q
and τ(x) = qB(x)−D(x)

q(q−1)x
. The coefficients a, b, c, d, e of the polynomials σ(x)

and τ(x), the leading coefficients of the q-COP and their bases are given in Table 3.1
appearing on the next page.

To compute the connection, linearization, inversion and duplication coefficients of
q-COP, we proceed algorithmically using the structure formulae satisfied by these poly-
nomials.

3.2 Structural Formulas for q-Orthogonal Polynomials
of the q-Hahn Class

Using computer algebra, the following method gives the coefficients an, bn and cn of the
desired structure relation in terms of a, b, c, d, e, n, q, qn, kn−1, kn, and kn+1 and using
the following algorithm (see [Koepf and Schmersau, 2002]).

1. Substitute
pn(x) = knx

n + k′nx
n−1 + k′′nx

n−2 + . . .

in the q-differential equation (3.2).

2. Equate the coefficients of xn to determine λn,q.

3. Equate the coefficients of xn−1 and xn−2. This gives k′n and k′′n, respectively, in terms
of kn.

4. Substitute pn(x) in the proposed structure relation, and equate again the three
highest coefficients. This computes the three unknowns an, bn and cn successively.

1. First step: We substitute pn(x) in the q-differential equation (3.2), use the relations

Dqx
n = [n]qx

n−1, D 1
q
xn =

[n]q
qn−1

xn−1

and by equating the coefficients of xn, one gets

λn,q = −[n] 1
q
[n− 1]qa− [n]qd, (3.4)

where the abbreviation

[n]q =
1− qn

1− q
= 1 + q + q2 + . . .+ qn−1
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C
oeffi

cients
of
q-C

O
P

q-orthogonal polynomials family a b c d e kn basis

h̃n(x; q) discrete q-Hermite II 0 0 q − 1 1 0 1 (ix; q)n

V
(α)
n (x; q) Al-Salam-Carlitz II 0 0 (q − 1)α 1 −α− 1 1 (x; q)n

Cn(x;α; q) q-Charlier 0 (q − 1)α 0 q −α− q (−1)n q
n2

αn (x; q)n

L
(α)
n (x; q) q-Laguerre 0 q − 1 0 qqα qqα − 1 (−1)n q

n(n+α)

(q;q)n
xn

Sn(x; q) Stieltjes-Wigert 0 q − 1 0 q -1 (−1)n qn
2

(q;q)n
xn

Mn(x;β, γ; q) q-Meixner 0 (q − 1)γ q(1− q)βγ q βγq − q − γ (−1)n qn
2

γn(βq;q)n
(x; q)n

Kqtm
n (x; p,N ; q)Quantum-q-Krawtchouk 0 (q − 1)qN 1− q −pqqN 1− (1− pq)qN pnqn

2

(q−N ;q)n
(x; q)n

Kn(x; p,N ; q) q-Krawtchouk (1− q)qN q − 1 0 (1 + pq)qN −(1 + pqqN ) (−pqn;q)n
(q−N ;q)n

(x; q)n

pn(x;α|q) little q-Laguerre 1− q q − 1 0 1 αq − 1 (−1)n q
−(n2)

(αq;q)n
xn

yn(x;α|q) alternative q-Charlier 1− q q − 1 0 1 + αq -1 (−1)nq−(n2)(−αqn; q)n xn

pn(x;α, β|q) little q-Jacobi 1− q q − 1 0 1− αβq2 αq − 1 (−1)n q
−(n2)(αβqqn;q)n

(αq;q)n
xn

hn(x; q) discrete q-Hermite I 1− q 0 q − 1 1 0 1 (x� 1)nq

U
(α)
n (x; q) Al-Salam-Carlitz I 1− q (q − 1)(1 + α) (1− q)α 1 −α− 1 1 (x� 1)nq

Pn(x;α, β; q) big q-Laguerre 1− q q(q − 1)(α+ β) q2(1− q)αβ 1 q(αβq − α− β) 1
(αq;q)n(βq;q)n

(x; q)n

Kaff
n (x; p,N ; q) affine q-Krawtchouk (1− q)qN (q − 1)(1 + pqqN ) (1− q)pq qN −(1 + pq(qN − 1)) 1

(pq;q)n(q−N ;q)n
(x; q)n

Qn(x;α, β;N |q) q-Hahn (1− q)qN (q − 1)(1 + αqqN ) q(1− q)α (1− αβq2)qN αq(1 + qN (βq − 1))− 1 (αβqqn;q)n
(αq;q)n(q−N ;q)n

(x; q)n

Pn(x;α, β, γ; q) big q-Jacobi 1− q q(q − 1)(α+ γ) q2(1− q)αγ 1− αβq2 q(αq(β + γ)− α− γ) (αβqqn;q)n
(αq;q)n(γq;q)n

(x; q)n

Table
3.1:

D
ata

ofclassical
q-orthogonalpolynom

ials
fam

ilies



3.2 Structural Formulas for q-Orthogonal Polynomials of the q-Hahn Class 65

denotes the so-called q-brackets. Note that lim
q→1

[n]q = n.

2. Second step: Equating the coefficients of xn−1 and xn−2 gives k′n, and k′′n, respectively,
as rational multiples w.r.t. N = qn of kn:

k′n =
(N − 1) (−Ne+ bN +Neq − bq) q

(q − 1) (−aq2 +N2dq + aN2 −N2d)
kn (3.5)

k′′n = knq
2
(

(N − 1) (N − q)
(
b2N2 − 2N2e2q + 2 bN2qe− caN2 + cN2d

+cqaN2 +N2e2q2 +N2e2 + cq2N2d− 2 cqN2d (3.6)

−2 bN2e−Nb2q − b2Nq2 +Nbqe−Neq3b− cq3a+ b2q3 + caq2
))/

(
(q + 1) (q − 1)2 (−aq3 +N2dq + aN2 −N2d

) (
−aq2 +N2dq + aN2 −N2d

) )
.

Here and throughout this chapter1, we will use the notations N = qn and M = qm.
Now we determine the coefficients of the structure relations. Koepf and Schmersau

[2001], Koepf and Schmersau [2002], Medem et al. [2001], Area et al. [2006], Koekoek
et al. [2010] showed that any solution of (3.2) satisfies a recurrence equation

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x) (n ∈ N0, P−1 ≡ 0)

or equivalently
xpn(x) = anpn+1 + bnpn(x) + cnpn−1(x) (3.7)

with
an =

1

An
bn = −Bn

An
, cn =

Cn
An

.

Theorem 3.1 (See e.g. [Koepf and Schmersau, 2001], [Koepf and Schmersau, 2002],
[Medem et al., 2001], [Area et al., 2006], [Koekoek et al., 2010], [Foupouagnigni et al.,
2012]). For any q-classical orthogonal polynomial family, the relation (3.7) is valid. The
coefficients an, bn and cn are given by

an =
kn
kn+1

,

bn =−N
(
−Neq3a− bNaq2 +N2eq2d− bq2Nd+ eaq2 + baq2 + bq2N2d+N2eqa− 2N2edq

+Neqa− 2 bNqa− eqa+ bqaN2 + bqa−N2ea− bN2d+ bNd− bNa+N2ed+ baN2
)/

( (
−aq2 +N2dq + aN2 −N2d

) (
−a+N2dq + aN2 −N2d

) )
,

cn =− kn
kn−1

(
Nq (N − 1)

(
Ndq +Na−Nd− aq2

) (
−N3ebdq + cq4a2 − 2 cN2daq3 + 2 bN2eaq3

+2 caN4dq − b2Naq3 + b2N3dq − 2N2e2aq3 − b2N3q2d+N2e2q4a− 2 caN4d− 2 cN4d2q

+cq2N4d2 − b2q2N2d−N3b2qa+ 2 b2N2q2a+N2e2q2a− 2 cq2a2N2 + b2q3N2d+ cN4d2

+ca2N4 + 2 cq2aN2d−N3eq3bd−N3eq2ba+ 2N3eq2bd+ bN3eaq − 2 bN2q2ea−Neq4ab

+Nebaq3
))/( (

−aq2 +N2dq + aN2 −N2d
)2 (−aq3 +N2dq + aN2 −N2d

)
×
(
−aq +N2dq + aN2 −N2d

) )
.

1The use of N = qn should not be confused with the parameter N of the q-Hahn polynomials
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Proof . Substitute pn(x) in the proposed equation (3.7) and equate the three highest
coefficients. This yields an, bn, and cn in terms of a, b, c, d, e, q, qn, kn−1, kn, kn+1,
k′n−1, k′n, k′n+1, k′′n−1, k′′n, k′′n+1 by linear algebra.

Substituting the values of k′n−1, k′n, k′n+1, k′′n−1, k′′n, and k′′n+1 given by (3.5) and (3.6)
yields the above formulas. �

Theorem 3.2 (See [Koepf and Schmersau, 2001], [Medem et al., 2001], [Foupouagnigni
et al., 2012]). Orthogonal polynomials of the q-Hahn class satisfy the structure formula

σ(x)D 1
q
pn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x), (3.8)

where the coefficients αn, βn and γn are given by the explicit formulas

αn = a[n]1/q
kn
kn+1

,

βn =
(
q(N − 1)(aN + dNq − aq −Nd)(eNaq2 − bdN2q +Nqbq

−bqa+ bdN2 − baN2 + bNa− eNa)
)/

(
(−dN2q + dN2 + aq2 − aN2)(q − 1)(dN2q − a+ aN2 − dN2)

)
,

γn =
(
Nq(N − 1)(aN + dNq − dN − aq)(aq2 − dNq + dN − aN)(2b2N2aq2

+q4ca2 + b2q3dN2 − b2q2dN2 + e2N2aq2 + cq2N4 + cN4a2 − 2cq3adN2

+eNbaq3 − 2eN2baq2 − eq4Nba− eq2N3ba+ 2eq2N3bd+ 2bq3N2ea− eq3N3bd

+eN3baq + 2cqaN4d+ e2q4N2a− 2e2q3N2a+ qb2N3d− q3b2Na− qb2N3a

−b2q2N3d− 2cqd2N4 − 2q2N2ca2 − 2dN4ca+ cq2d2N4 + 2q2dcaN2 − eN3bdq)
)/

(
(−aq + dN2q + aN2 − dN2)(−dN2q + dN2 + aq3 − aN2)

×(−dN2q + dN2 + aq2 − aN2)2(q − 1)
) kn
kn−1

.

Proposition 3.3 (See e.g. [Hahn, 1949], [Medem et al., 2001], [Foupouagnigni et al.,
2012]). If a function y(x) is solution of (3.2), then Y (x) = Dqy(x) satisfies

σ1(x)DqD 1
q
Y (x) + τ1(x)DqY (x) + λn,q,1Y (x) = 0 (3.9)

with σ1(x) = σ(x), τ1(x) = Dqσ(x) + qτ(qx) and λn,q,1 = q(Dqτ(x) + λn,q).

Proof . We recall the following identities

D 1
q
Dq = qDqD 1

q
, (3.10)

Dq(f(x)g(x)) = f(qx)Dqg(x) + g(x)Dqf(x). (3.11)

Applying identity (3.11) with g(x) = σ(x) and f(x) = DqD 1
q
y(x), we obtain

Dq

(
σ(x)DqD 1

q
y(x)

)
= σ(x)Dq

(
DqD 1

q
y(x)

)
+Dqσ(x)

(
DqD 1

q
y
)

(qx).

Using (
DqD 1

q
y
)

(qx) =
1

q
DqDqy(x),
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we obtain

Dq

(
σ(x)DqD 1

q
y(x)

)
= σ(x)Dq

(
DqD 1

q
y(x)

)
+

1

q
Dqσ(x)Dq (Dqy(x)) .

Now, using identity (3.10) for the first term of the right hand side of the previous relation,
we get

Dq

(
σ(x)DqD 1

q
y(x)

)
=

1

q
σ(x)DqD 1

q
(Dqy(x)) +

1

q
Dqσ(x)Dq (Dqy(x)) .

Identity (3.11) with g(x) = Dqy(x) and f(x) = τ(x) yields

Dq(τ(x)Dqy(x)) = τ(qx)Dq (Dqy(x)) +Dqτ(x)Dqy(x).

Finally,

(3.2)⇒Dq

(
σ(x)DqD 1

q
y(x) + τ(x)Dqy(x) + λn,qy(x)

)
= 0

⇒ 1

q
σ(x)DqD 1

q
(Dqy(x)) +

1

q
Dqσ(x)Dq (Dqy(x))

+τ(qx)Dq (Dqy(x)) +Dqτ(x)Dqy(x) + λn,qDqy(x) = 0

⇒σ(x)DqD 1
q

(Dqy(x)) + (Dqσ(x) + qτ(qx))Dq (Dqy(x))

+q (Dqτ(x) + λn,q)Dqy(x) = 0,

which proves the assertion. �
A computation shows that

σ1(x) = a′x2 + b′x+ c′, τ1(x) = d′x+ c′, λn,q,1 = q(λn,q + d) (3.12)

where
a′ = a, b′ = b, c′ = c d′ = a(q + 1) + dq2, e′ = b+ eq. (3.13)

From this, we deduce that the equation

xDqpn(x) = α?nDqpn+1(x) + β?nDqpn(x) + γ?nDqpn−1(x) (3.14)

which is the recurrence equation for the family Dqpn(x), is valid, and from (3.13) it follows
that

α?n = an(a, b, c, a(q + 1) + dq2, b+ eq), β?n = bn(a, b, c, a(q + 1) + dq2, b+ eq),

and
γ?n = cn(a, b, c, a(q + 1) + dq2, b+ eq)

where an(a, b, c, d, e), bn(a, b, c, d, e) and cn(a, b, c, d, e), are given in Theorem 3.1.

Theorem 3.4 (See e.g. [Area et al., 1999], [Koepf and Schmersau, 2001], [Medem et al.,
2001]). Assume pn(x) is a solution family of (3.2). Then a structure formula of the type

pn(x) = ânDqpn+1(x) + b̂nDqpn(x) + ĉnDqpn−1(x) (3.15)

is valid for pn(x).
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In order to obtain those coefficients ân, b̂n and ĉn, we use the same algorithm described
for the determination of an, bn and cn where (3.7) is substituted now by (3.15). This gives
the following

Theorem 3.5 (See e.g. [Medem et al., 2001], [Area et al., 2006], [Foupouagnigni et al.,
2012]). Assume pn(x) is a solution family of (3.2), then the coefficients ân, b̂n, and ĉn of
(3.15) are given by:

ân =
1

[n+ 1]q

kn
kn+1

,

b̂n =
(
N(q − 1)(−bdNq2 + eaq2 + edN2q2 + eN2qa+ bdN2q − 2 edN2q

−bNqa+ bqa− eaq − eaN2 − bdN2 + baN2 + bNd+ edN2 − bNa)
)/

( (
−a+ dN2q − dN2 + aN2

) (
−aq2 + dN2q − dN2 + aN2

) )
,

ĉn =
kn
kn−1

(
(q − 1) (2 dN2q2ac+ ebNq3a− ebNq4a+ 2 dN4qac+ ebN3qa− ebN3q2a

+2 bedN3q2 − bedN3q3 − bedN3q − 2 ebN2q2a− 2 dN2q3ac+ 2 ebN2q3a

+cq4a2 +N4a2c+N4cd2 − b2dN2q2 + b2dN2q3 + d2N4q2c− 2 d2N4qc

−b2N3qa− 2N4acd− b2dN3q2 + b2dN3q − 2 a2N2q2c− 2 e2N2q3a+ 2 b2N2q2a

+e2q4N2a+ e2N2q2a− b2Nq3a) (a+ dq − d)N2q (N − 1)
)/

( (
aN2 + dN2q − dN2 − aq3

) (
−aq2 + dN2q − dN2 + aN2

)2 (
aN2 + dN2q − dN2 − aq

) )
.

Note that, applying the operator Dq to the equation (3.7), we obtain the following

Dq(xpn(x)) = anDqpn+1(x) + bnDqpn(x) + cnDqpn−1(x). (3.16)

Using (3.11) for the left hand side of (3.16), we get

qxDqpn(x) = anDqpn+1(x) + bnDqpn(x) + cnDqpn−1(x)− pn(x).

Now, we use the structure relation (3.15) to get the following

Proposition 3.6 (See e.g. [Medem et al., 2001], [Foupouagnigni et al., 2012]). The co-
efficients α?n, β?n and γ?n of the relation (3.14) are linked to the coefficients an, bn and cn
of the three-term recurrence relation (3.7) and the coefficients ân, b̂n, and ĉn of (3.15) by
the following formulas:

α?n =
an − ân

q
, β?n =

bn − b̂n
q

, γ?n =
cn − ĉn
q

,

and are given explicitly by:

α?n =
1−N
1− qN

kn
kn+1

,

β?n =−N
(
− eNq2a+ 2 bdN2q − 2 edN2q − 2 bNqa− eaN2 + eNa+ 2 baN2 − 2 bNa

+edN2 − eaq + 2 bqa+ eaq2 − 2 bdN2 − bdNq2 + edN2q2 + eN2qa+ bNd
)/

(
−a+ dN2q − dN2 + aN2

) (
−aq2 + dN2q − dN2 + aN2

)
,
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γ?n =− kn
kn−1

(
2 dN2q2ac+ ebNq3a− ebNq4a+ 2 dN4qac+ ebN3qa− ebN3q2a+ 2 bedN3q2

−bedN3q3 − 2 dN2q3ac+ 2 ebN2q3a+ cq4a2 +N4a2c+N4cd2 − b2dN2q2 + b2dN2q3

−bedN3q + d2N4q2c− 2 d2N4qc− b2N3qa− 2N4acd− b2dN3q2 + b2dN3q − 2 a2N2q2c

−2 e2N2q3a+ 2 b2N2q2a+ e2q4N2a+ e2N2q2a− b2Nq3a− 2 ebN2q2a
)

×Nq (N − 1) (−dN − aq + aN + dNq)
/

(
aN2 + dN2q − dN2 − aq3

) (
−aq2 + dN2q − dN2 + aN2

)2 (
aN2 + dN2q − dN2 − aq

)
.

Proposition 3.7 (See [Foupouagnigni et al., 2012]). Assume a family pn(x) is a solution
of (3.2). Then a structure formula of the type

(σ(x) + (q − 1)xτ(x))Dqpn(x) = Snpn+1(x) + Tnpn(x) +Rnpn−1(x), (3.17)

is valid for pn(x) where

Sn = αn + (1− q)anλn, Tn = βn + (1− q)bnλn, Rn = γn + (1− q)cnλn,

and are given explicitly by

Sn =
(a+ dq − d) (qn − 1)

q − 1

kn
kn+1

,

Tn =
(
− (eq2N2d− q2Nbd+ eaq2 − 2 eN2qd− aqNb+N2qbd+ eaN2q − eqa

+bqa− bdN2 − bNa− eN2a+ eN2d+ bdN + baN2) (N − 1) (aN + qNd− dN − aq)
)/

(
(q − 1)

(
−a+N2qd+ aN2 − dN2

) (
−aq2 +N2qd+ aN2 − dN2

) )
,

Rn =
(

(−2 caN4d− 2N4qd2c− 2 e2aN2q3 + 2 aq2N2b2 + e2aq2N2 +N2q3b2d− 2 a2q2N2c

−aN3qb2 +N3qb2d+ q2N4d2c−N3q2b2d+ e2aN2q4 − q2N2b2d− aNq3b2 + ca2N4

+cd2N4 + cq4a2 + eaNq3b− eN3qbd+ 2 eN3q2bd+ 2 aN4qdc− 2 eaq2N2b

−2 aN2q3dc+ 2 eaN2q3b+ 2 aq2N2dc− eN3q3bd− eaN3q2b+ eaN3qb− eaNq4b)

(N − 1)
(
aN − aq2 − dN + qNd

)
(aN + qNd− dN − aq) q

)/
(

(q − 1)
(
−aq +N2qd+ aN2 − dN2

) (
−aq3 +N2qd+ aN2 − dN2

)
(
−aq2 +N2qd+ aN2 − dN2

)2 )× kn
kn−1

.

Proof . The q-differential operator obeys the identity

DqD1/qf(x) =
Dqf(x)−D1/qf(x)

(q − 1)x
,

so that the q-differential equation (3.2) can be rewritten in the form

(σ(x) + (q − 1)xτ(x))DqPn(x)(x)− σ(x)D1/qPn(x) + (q − 1)λnxPn(x) = 0.

Next, we use the three-term recurrence relation (3.7) to get rid of the xpn(x) term and
the structure formula (3.8) to get rid of the σ(x)D1/qpn(x) term. The structure formula
(3.17) is obtained by simplification. �

We will also need the following structural formula.
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Proposition 3.8. If a family pn(x) is a solution of (3.2), then a structure formula of the
type [Koepf and Schmersau, 2001]

σ(x)DqD 1
q
pn(x) = a′nDqpn+1(x) + b′nDqpn(x) + c′nDqpn−1(x), (3.18)

holds for pn(x) where

a′n = −dα?n − λnân, b′n = −dβ?n − e− b̂nλn, c′n = −γ?n − ĉnλn,

and are given explicitly by

a′n =
a(N − 1)(N − q)kn

N(1− q)(1− qN)k1+n
,

b′n =
(

(N − q)(Ndq +Na−Nd− a(baN2 + bqN2d− bN2d− bNa− q2Nae+Nea

−bNqa+ bqa)
)/(

(−a+N2dq + aN2 −N2d)(−aq2 +N2dq + aN2 −N2d)(q − 1)
)
,

c′n =
kn
kn−1

(
Nq(N − 1)(Ndq +Na−Nd− a)(Na− aq +Ndq −Nd)

(
−N3ebdq + cq4a2

+2 bN2eaq3 + 2 caN4dq − b2Naq3 + b2N3dq − 2N2e2aq3 − b2N3q2d+N2e2q4a− 2 caN4d

−2 cN4d2q + cq2N4d2 − b2q2N2d−N3b2qa+ 2 b2N2q2a+N2e2q2a− 2 cq2a2N2 + b2q3N2d

+cN4d2 + ca2N4 + 2 cq2aN2d−N3eq3bd−N3eq2ba+ 2N3eq2bd+ bN3eaq − 2 bN2q2ea

−Neq4ab+Nebaq3 − 2 cN2daq3
))/(

(−aq2 +N2dq + aN2 −N2d)2

(−aq +N2dq + aN2 −N2d)(−aq3 +N2dq + aN2 −N2d)(q − 1)
)
.

Proof . From (3.2), we have

σ(x)DqD 1
q
pn(x) = −(dx+ e)Dqpn(x)− λnpn(x) = −dxDqpn(x)− eDqpn(x)− λnpn(x).

Using structure relations (3.14) and (3.15), the previous equation gives (3.18) with

a′n = −dα?n − λnân, b′n = −dβ?n − e− b̂nλn, c′n = −γ?n − ĉnλn.

The result follows from the representations of the coefficients given in Theorem 3.5 and
Proposition 3.6. �

3.3 Inversion Problem of q-COP
Every q-classical orthogonal polynomial family (pn(x))n∈N0 is represented as series in one
of the four bases Vm(x) = (x; q)m, Vm(x) = xm, Vm(x) = (ix; q)m and Vm(x) = (x −
1)(x− q) · · · (x− qm−1) = (x−1; q)mx

m, i.e.

pn(x) =
n∑

m=0

Am(n)Vm(x).

In this section, we solve the inverse problem, i.e., the problem of determining the coeffi-
cients Im(n) of the expansion

Vn(x) =
n∑

m=0

Im(n)pm(x). (3.19)
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3.3.1 The case Vn(x) = xn

Since Dqx
n = [n]q

x
xn, the polynomial Vn(x) = xn is solution of the q-differential equation

xDqx
n − [n]qx

n = 0.

Using this q-differential equation, we prove that

Theorem 3.9. The coefficients Im(n) of the inversion problem

xn =
n∑

m=0

Im(n)pm(x)

are solution of the recurrence equation

(α?m−1 − [n]qâm−1)Im−1(n) + (β?m − [n]q b̂m)Im(n) + (γ?m+1 − [n]q ĉm+1)Im+1(n) = 0,

with initial values In(n) = 1
kn

and In+1(n) = 0, where the coefficients are given in Theorem
3.5 and Proposition 3.6.

Proof . Substituting xn =
n∑

m=0

Im(n)pm(x) in the q-differential equation xDqx
n−[n]qx

n = 0

gives
n∑

m=0

Im(n)xDqpm(x)−
n∑

m=0

[n]qIm(n)pm(x) = 0.

Then we use the structure formulas (3.14) and (3.15) to substitute xDqpm(x) and pm(x).
The result follows after a shift of indices. �

We note that here and in some theorems below, we didn’t write out the recurrence
relations containing a, b, c, d and e because they are too large.

3.3.2 The cases Vn(x) = (x; q)n and Vn(x) = (ix; q)n

Theorem 3.10. The coefficients Im(n) of the inversion problem

(x; q)n =
n∑

m=0

Im(n)pn(x)

are solution of the recurrence equation

(α∗m−1 − [n]qâm−1)Im−1(n) + (β∗m − [n]q b̂m − 1)Im(n) + (γ∗m+1 − [n]q ĉm+1)Im+1(n) = 0

with initial values In(n) = (−1)nq(
n
2)

kn
and In+1(n) = 0; and the coefficients Im(n) of the

inversion problem

(ix; q)n =
n∑

m=0

Im(n)pn(x)

are solution of the recurrence equation

i(α∗m−1 − [n]qâm−1)Im−1(n) + (iβ∗m − i[n]q b̂m − 1)Im(n) + i(γ∗m+1 − [n]q ĉm+1)Im+1(n) = 0

with initial values In(n) = (−i)nq(
n
2)

kn
and In+1(n) = 0, where the coefficients are given in

Theorem 3.5 and Proposition 3.6.
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Proof . We substitute (x; q)n =
n∑

m=0

Im(n)pn(x) and (ix; q)n =
n∑

m=0

Im(n)pn(x), respec-

tively, in the q-differential equations (x− 1)Dq(x; q)n − [n]q(x; q)n = 0 (since Dq(x; q)n =
[n]q
x−1

(x; q)n) and (ix− 1)Dq(ix; q)n− i[n]q(x; q)n = 0 (since Dq(ix; q)n = i[n]q
ix−1

(ix; q)n). This
gives, respectively,

n∑
m=0

Im(n)(xDqpm(x)−Dqpm(x))−
n∑

m=0

[n]qIm(n)pm(x) = 0,

and
n∑

m=0

Im(n)(ixDqpm(x)−Dqpm(x))−
n∑

m=0

i[n]qIm(n)pm(x) = 0.

Then we use the structure formulas (3.14) and (3.15) to substitute xDqpm(x) and pm(x).
After an index shift, we obtain the results. The initial values follow from the expansions

(x; q)n = (−1)nq(
n
2)xn + . . . , (ix; q)n = (−i)nq(

n
2)xn + . . . (3.20)

by equating the coefficients of xn on both sides of the inversion formula. �

3.3.3 The case Vn(x) = (x� 1)nq

Theorem 3.11. The coefficients Im(n) of the inversion problem

(x� 1)nq =
n∑

m=0

Im(n)pn(x)

are solution of the recurrence equation

(α∗m−1 − [n]qâm−1)Im−1(n) + (β∗m − [n]q b̂m − qn−1)Im(n) + (γ∗m+1 − [n]q ĉm+1)Im+1(n) = 0,

with initial values In(n) = 1
kn

and In+1(n) = 0, with the coefficients given in Theorem 3.5
and Proposition 3.6.

Proof . We substitute (x � 1)nq =
n∑

m=0

Im(n)pn(x) in the q-differential equation (x −

qn−1)Dq(x� 1)nq − [n]q(x� 1)nq = 0 (since Dq(x� 1)nq = [n]q
x−qn−1 (x� 1)nq ). This yields

n∑
m=0

Im(n)(xDqpm(x)− qn−1Dqpm(x))−
n∑

m=0

[n]qIm(n)pm(x) = 0.

Then we use the structure formulas (3.14) and (3.15) to substitute xDqpm(x) and pm(x).
After an index shift, we obtain the result. The initial value derives from (x�1)nq = xn+. . .
by equating the coefficients of xn in the inversion formula. �

The above computations show that in the generic case, the inversion coefficients are
solutions of a q-holonomic recurrence equation of order 2.

In order to find solutions which are q-hypergeometric terms—hence satisfying a first-
order q-holonomic recurrence—in some specific situations, we can use a q-version of the
Petkovšek-van-Hoeij algorithm, referred in the sequel as the q-Petkovšek-van-Hoeij algo-
rithm. All our results are derived using this algorithm.



3.4 Connection Problem of q-COP 73

In particular, we solve the recurrence equations of Theorems 3.9–3.11 for all particular
systems and therefore obtain up to a multiplicative constant Kn the q-hypergeometric
term representations of the inversion coefficients of q-COP. The constant Kn follows from
the initial value In(n). This method yields

Corollary 3.12 (Compare [Area et al., 1999], [Foupouagnigni et al., 2012]). The inversion
coefficients of the polynomial systems of the q-Hahn class are given in Table 3.2 of the

next page, where
[ n
m

]
q
denotes the q-binomial coefficient, defined by

[ n
m

]
q

:=
(q; q)n

(q; q)m(q; q)n−m
, m = 0, 1, 2, . . . , n, n ∈ N0.

Remark 3.13. 1. The inversion coefficients of Table 3.2 can be obtained from [Area
et al., 1999, Table 3], [Foupouagnigni et al., 2012, Table 2] by multiplying their
inversion coefficients by 1

km
since their works dealt with monic polynomial families.

2. The inversion coefficients given in Table 3.2 are already known, except for the q-
Krawtchouk, Affine q-Krawtchouk, quantum q-Krawtchouk and Al-Salam-Carlitz I
polynomials, which are new, as far as we know.

3.4 Connection Problem of q-COP
Here, we assume that (pn(x) = knx

n + . . .)n≥0 denotes a family of q-COP of degree exactly
n and (qm(x) = k̄mx

m + . . .)m≥0 denotes a family of q-COP of degree exactly m. We
want to determine the connection coefficients Cm(n), (n ∈ N,m = 0, . . . , n), between the
systems pn(x) and qm(x),

pn(x) =
n∑

m=0

Cm(n)qm(x). (3.21)

We assume that Cm(n) = 0 outside the above n×m region. We will denote all coefficients
connected with qm(x) by dashes. If σ(x) 6= σ̄(x), we use in general the inversion formula
to solve the connection problem and if σ(x) = σ̄(x) structural formulae of Section 3.2 are
used.

3.4.1 Connection Coefficients for σ(x) = σ̄(x)

Whereas in [Foupouagnigni et al., 2012] we proceeded as in [Koepf and Schmersau, 1998] to
solve the connection problem of q-COP, here we show the same results using the NaViMa
algorithm.

We substitute (3.21) in (3.2) to get
n∑

m=0

Cm(n)
(
σ(x)DqD 1

q
qm(x) + τ(x)Dqqm(x) + λnqm(x) = 0

)
. (3.22)

First, Equation (3.15) for qm(x) can be rewritten as

qm(x) =
m+1∑
j=m−1

am,jDqqm(x) (3.23)
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Family Basis Im(n)

big q-Jacobi {(x; q)n}n (−1)m
[ n
m

]
q
q
m(m−1)

2
(αq,γq;q)n(1−αβq2m+1)

(αβqm+1;q)n(1−αβqn+m+1)

q-Hahn {(x; q)n}n (−1)m
[ n
m

]
q
q
m(m−1)

2
(αq,q−N ;q)n(1−αβq2m+1)

(αβqm+1;q)n(1−αβqn+m+1)

big q-Laguerre {(x; q)n}n (−1)mq
m(m−1)

2

[ n
m

]
q
(αq, βq; q)n

q-Meixner {(x; q)n}n (−1)n−m
[ n
m

]
q
q

1
2

(m+1)(m−2n)γn(βq; q)n

q-Charlier {(x; q)n}n (−1)n−mαn
[ n
m

]
q
q

1
2

(m+1)(m−2n)

Al-Salam-Carlitz II {(x; q)n}n (−1)nαn−m
[ n
m

]
q
qm(m−n)+

n(n−1)
2

discrete q-Hermite II {(ix; q)n}n (−i)m
[ n
m

]
q
qm(m−n)+

n(n−1)
2

affine q-Krawtchouk {(x; q)n} (−1)mq
m(m−1)

2

[ n
m

]
q
(q−N ; q)n(pq; q)n

q-Krawtchouk {(x; q)n} (−1)mq
m(m−1)

2

[ n
m

]
q

(q−N ;q)n
(−pqm;q)m(−pq2m+1;q)n−m

quantum q-Krawtchouk {(x; q)n} (−1)mq
1
2

(m+1)(m−2n)p−n
[ n
m

]
q
(q−N ; q)n

little q-Jacobi {xn}n (−1)m
[ n
m

]
q
q
m(m−1)

2
(αq;q)n(1−αβq2m+1)

(αβqm+1;q)n(1−αβqn+m+1)

alternative q-Charlier {xn}n (−1)m
[ n
m

]
q

q
m(m−1)

2 (1+αq2m)
(−αqm+1;q)n(1+αqm)

little q-Laguerre Wall {xn}n (−1)mq
m(m−1)

2

[ n
m

]
q
(αq; q)n

q-Laguerre {xn}n (−1)m
[ n
m

]
q

q
1
2 (m−n)(m+n+1)

qn(m+α)(1−q)n−m (qα+m+1; q)n−m(q; q)m

Stieltjes-Wigert {xn}n (−1)m
[ n
m

]
q
q

1
2

(m−n)(m+n+1)−mn(q; q)m

discrete q-Hermite I {(x� 1)nq } (−1)n−m
[ n
m

]
q

Al-Salam-Carlitz I {(x� 1)nq } αn−m
[ n
m

]
q

Table 3.2: Inversion coefficients for q-COP
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with am,m+1 = ¯̂am, am,m =
¯̂
bm and am,m−1 = ¯̂cm.

Second, the three-term recurrence equation (3.14) for the family Dqqm(x) yields

τ(x)Dqqm(x) =
m+1∑
j=m−1

a
(1)
m,jDqqm(x) (3.24)

with a(1)
m,m+1 = dᾱ?m, a

(1)
m,m = dβ̄?m + e, a

(1)
m,m−1 = dγ̄?m.

Third, since σ(x) = σ̄(x), from (3.18) we have

σ(x)DqD 1
q
qm(x) = σ̄(x)DqD 1

q
qm(x) =

m+1∑
j=m−1

a
(2)
m,jDqqm(x) (3.25)

with a(2)
m,m+1 = ā′m, a

(2)
m,m = b̄′m and a(2)

m,m−1 = c̄′m.
Insertion of (3.23)-(3.25) into (3.22) gives

n∑
m=0

Cm(n)
{ m+1∑
j=m−1

Λm,j(n)Dqqj(x)
}

= 0, Λm,j(n) = a
(2)
m,j + a

(1)
m,j + λnam,j.

Finally, after an appropriate shift of indices, this latter expression provides a recurrence
relation of maximum order two which can be written as

1∑
s=−1

Λm+s,m(n)Cm+s(n) = 0, 1 ≤ m ≤ n.

Theorem 3.14. Let pn(x) be a polynomial system given by the q-differential equation
(3.2) with σ(x) = ax2 + bx+ c, and τ(x) = dx+e and qm(x) be a polynomial system given
by (3.2) with σ̄(x) = σ(x), and τ(x) = d̄x + ē. Then the relation (3.21) is valid, Cm(n)
satisfying the second order recurrence equation with respect to m

(ā′m−1 + dᾱ?m−1 + λn¯̂am−1)Cm−1(n) + (b̄′m + dβ̄?m + e+ λn
¯̂
bm)Cm(n)

+(c̄′m+1 + dγ̄?m+1 + λn¯̂cm+1)Cm+1(n) = 0,

with initial conditions given by Cn+1(n) = 0 and Cn(n) = kn/k̄n, where the coefficients
are given in Theorem 3.5, Propositions 3.6 and 3.8.

To solve this recurrence equation, we use the q-Petkovšek-van-Hoeij algorithm. With
the aid of this algorithm, we obtain the following connection formulae.

Corollary 3.15. The following connection relations between the orthogonal polynomial
systems of the q-Hahn class are valid:
1. big q-Jacobi

Pn(x;α, β, γ; q) =

n∑
m=0

[ n
m

]
q

(αβqn+1)n−m(αβqn+1; q)m(β1q
m+1

βqn ; q)n−m

(αβ1q2(m+1); q)n−m(αβ1qm+1; q)m
Pm(x;α, β1, γ; q);

2. q-Hahn

Qn(x̄;α, β,N |q) =
n∑

m=0

[ n
m

]
q

(αβq(n+1))n−m(αβqn+1; q)m(β1q
m+1

βqn
; q)n−m

(αβ1q2(m+1); q)n−m(αβ1qm+1; q)m
Qm(x̄;α, β1, N |q);
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3. little q-Jacobi

pn(x;α, β|q) =

n∑
m=0

[ n
m

]
q
(−αq

n−m+1
2 )n−m

(α1q, αβq
n+1; q)m(βqm+1, α1qm+1

αqn ; q)n−m

(α1βq2(m+1); q)n−m(α1βqm+1; q)m(αq; q)n
pm(x;α1, β|q);

pn(x;α, β|q) =
n∑

m=0

[ n
m

]
q
(αβqn+1)n−m

(αβqn+1; q)m(β1q
m+1

βqn
; q)n−m

(αβ1q2(m+1); q)n−m(αβ1qm+1; q)m
pm(x;α, β1|q);

4. alternative q-Charlier

yn(x;α; q) =
n∑

m=0

(−αqn)n−m
[ n
m

]
q

(−αqn; q)m(α1qm+1

αqn
; q)n−m

(−α1q2m+1; q)n−m(−α1qm; q)m
ym(x;α1; q);

5. little q-Laguerre

pn(x;α|q) =
n∑

m=0

(−αq
n−m+1

2 )n−m
[ n
m

]
q

(α1q; q)m(α1qm+1

αqn
; q)n−m

(αq; q)n
pm(x;α1|q),

6. q-Krawtchouk

Kn(x̄; p,N ; q) =
n∑

m=0

[ n
m

]
q

(−pqn)n−m(−pqn; q)m(p1q
m+1

pqn
; q)n−m

(−p1qm; q)m(−p1q2m+1; q)n−m
Km(x̄; p1, N ; q),

7. quantum q-Krawtchouk

Kqtm
n (x̄; p,N ; q) =

n∑
m=0

(−1)n−m
( p
p1

)n
q

1
2

(m−n)(m−n+1)
[ n
m

]
q

(p1q
m+1

pqn
; q
)
n−m

Kqtm
m (x̄; p1, N ; q),

8. q-Laguerre

L(α)
n (x; q) =

n∑
m=0

(−1)n−m

(
qm+β+1

qn+α
; q
)
n−m

q
1
2
m(m+1)+ 1

2
n(n−1)

(q; q)n−mqn(m+β−α)
L(β)
m (x; q).

3.4.2 Connection Coefficients Using Inversion Formulas

This method is generally used when σ(x) 6= σ̄(x). If

pn(x) =
n∑
j=0

Aj(n)Vj(x) and Vj(x) =

j∑
m=0

Im(j)qm(x)

where Vj(x) = xj, Vj(x) = (x; q)j, Vj(x) = (ix; q)j or Vj(x) = (x� 1)jq then

pn(x) =
n∑
j=0

Aj(n)
( j∑
m=0

Im(j)qm(x)
)
,

and by rearranging the order of summation gives

pn(x) =
n∑

m=0

Cm(n)qm(x), with Cm(n) =
n∑

j=m

Aj(n)Im(j) =
n−m∑
j=0

Aj+m(n)Im(j +m).

q-Zeilberger’s algorithm combined with the q-Petkovšek-van-Hoeij algorithm yields in the
following cases the q-hypergeometric term representation of Cm(n).
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Theorem 3.16. The following connection formulae of classical q-orthogonal polynomials
are valid:
1. big q-Jacobi

Pn(x;α, β, γ; q) =
n∑

m=0

(α1q)
n−m

[ n
m

]
q
(1− α1βq

2m+1)

×

(
α1q, αβq

n+1; q
)
m

(βq; q)n

(
α
α1

; q
)
n−m

(βq; q)m(α1βqm+1; q)n+1(αq; q)n
Pm(x;α1, β, γ; q),

2. q-Hahn

Qn(x̄;α, β,N ; q) =
n∑

m=0

(α1q)
n−m

[ n
m

]
q
(1− α1βq

2m+1)

×

(
α1q, αβq

n+1; q
)
m

(βq; q)n

(
α
α1

; q
)
n−m

(βq; q)m(α1βqm+1; q)n+1(αq; q)n
Qm(x̄;α1, β,N ; q),

3. affine q-Krawtchouk

Kaff
n (x̄; p,N ; q) =

n∑
m=0

(p1q)
n−m

[ n
m

]
q

(p1q; q)m

(
p
p1

; q
)
n−m

(pq; q)n
KAff
m (x̄; p1, N ; q),

Kaff
n (x̄; p,N ; q) =

n∑
m=0

(
− q

m+n−1
2

)m−n[ n
m

]
q

(q−M , q)n(qM−N ; q)n−m
(q−N , q)n(qM+1−n, q)n−m

KAff
m (x̄; p,M ; q),

4. big q-Laguerre

Pn(x;α, β; q) =
n∑

m=0

(α1q)
n−m

[ n
m

]
q

(α1q; q)m( α
α1

; q)n−m

(αq; q)n
Pm(x;α1, β; q),

Pn(x;α, β; q) =
n∑

m=0

(β1q)
n−m

[ n
m

]
q

(β1q; q)m( β
β1

; q)n−m

(βq; q)n
Pm(x;α, β1; q),

5. Al-Salam-Carlitz I

U (α)
n (x; q) =

n∑
m=0

αn−m1

[ n
m

]
q
(
α

α1

; q)n−mU
(α1)
m (x; q),

6. q-Meixner

Mn(x; β, γ; q) =
n∑

m=0

(γ1

γ

)m[ n
m

]
q

(γ1

γ
; q
)
n−m

Mm(x; β, γ1; q),

7. q-Charlier

Cn(x;α; q) =
n∑

m=0

(α1

α

)m[ n
m

]
q

(α1

α
; q
)
n−m

Cm(x;α1; q),
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8. Al-Salam-Carlitz II

V (α)
n (x; q) =

n∑
m=0

(−α)n−mq
1
2

(m−n)(m+n−1)
[ n
m

]
q

(α1

α
; q
)
n−m

V (α1)
m (x; q).

In those cases in which the connection coefficients are no q-hypergeometric terms, we
use the sum2qhyper algorithm. This yields

Theorem 3.17. For classical q-orthogonal polynomials, the following connection formulae
hold:
1. big q-Jacobi

Pn(x;α, β, γ; q) =
n∑

m=0

(−1)mq
1
2
m(m+1) (αβqn+1; q)m(γ1q; q)m(q−n; q)m

(αβqm+1; q)m(γq; q)m(q; q)m

×3φ2

qm−n, γ1q
m+1, αβqm+n+1

γqm+1, αβq2m+2

∣∣∣∣∣∣ q; q
Pm(x;α, β, γ1; q),

Pn(x;α, β, γ; q) =
n∑

m=0

(−1)mq
1
2
m(m+1) (αβqn+1; q)m(α1q; q)m(γ1q; q)m(q−n; q)m

(α1β1qm+1; q)m(αq; q)m(γq; q)m(q; q)m

×4φ3

qm−n, α1q
m+1, γ1q

m+1, αβqm+n+1

αqm+1, γqm+1, α1β1q
2m+2

∣∣∣∣∣∣ q; q
Pm(x;α1, β1, γ1; q),

2. q-Hahn

Qn(x;α, β,N |q) =
n∑

m=0

(−1)mq
1
2
m(m+1) (αβqn+1; q)m(q−M ; q)m(q−n; q)m

(αβqm+1; q)m(q−N ; q)m(q; q)m

×3φ2

qm−n, q−M+m, αβqm+n+1

q−N+m, αβq2m+2

∣∣∣∣∣∣ q; q
Qm(x;α, β,M |q),

Qn(x;α, β,N |q) =
n∑

m=0

(−1)mq
1
2
m(m+1) (αβqn+1; q)m(α1q; q)m(q−M ; q)m(q−n; q)m

(α1β1qm+1; q)m(αq; q)m(q−N ; q)m(q; q)m

×4φ3

qm−n, α1q
m+1, q−M+m, αβqm+n+1

αqm+1, q−N+m, α1β1q
2m+2

∣∣∣∣∣∣ q; q
Qm(x;α1, β1,M |q),

3. affine q-Krawtchouk

Kaff
n (x̄; p,N ; q) =

n∑
m=0

(−1)mq
1
2
m(m+2N+1−2M) (p1q; q)m(q−n; q)m(q1−m; q)N(q; q)M

(pq; q)m(q; q)m(q; q)N(q1−m; q)M

×3φ2

qm−M , qm−n, p1q
m+1

qm−N , pqm+1

∣∣∣∣∣∣ q; q
KAff

m (x̄; p1,M ; q),
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4. big q-Laguerre

Pn(x;α, β; q) =
n∑

m=0

(−1)mq
1
2
m(m+1) (α1q; q)m(β1q; q)m(q−n; q)m

(αq; q)m(βq; q)m(q; q)m

×3φ2

qm−n, α1q
m+1, β1q

m+1

αqm+1, βqm+1

∣∣∣∣∣∣ q; q
Pm(x;α1, β1; q),

5. little q-Jacobi

pn(x;α, β|q) =
n∑

m=0

(−1)mq
1
2
m(m+1) (α1q; q)m(αβqn+1; q)m(q−n; q)m

(αq; q)m(q; q)m(α1β1qm+1; q)m

×3φ2

qm−n, α1q
m+1, αβqm+n+1

αqm+1, α1β1q
2m+2

∣∣∣∣∣∣ q; q
pm(x;α1, β1|q),

6. q-Krawtchouk

Kn(x̄; p,N ; q) =
n∑

m=0

(−1)mq
1
2
m(m+2N−2M+1) (−pqn; q)m(q; q)M(q1−m; q)N(q−n; q)m

(q; q)m(q1−m; q)M(q; q)N(−pqm; q)m

×3φ2

qm−M , qm−n,−pqn+m

qm−N ,−pq2m+1

∣∣∣∣∣∣ q; q
Km(x̄; p,M ; q),

Kn(x̄; p,N ; q) =
n∑

m=0

(−1)mq
1
2
m(m+2N−2M+1) (−pqn; q)m(q; q)M(q1−m; q)N(q−n; q)m

(q; q)m(q1−m; q)M(q; q)N(−p1qm; q)m

×3φ2

qm−M , qm−n,−pqn+m

qm−N ,−p1q
2m+1

∣∣∣∣∣∣ q; q
Km(x̄; p1,M ; q),

7. quantum q-Krawtchouk

Kqtm
n (x̄; p,N ; q) =

n∑
m=0

(−1)mq−
1
2
m(m+2M−2N−2n−1) (q; q)M(q1−m; q)N

(q; q)m(q; q)N(q1−m; q)M

×2φ1

qm−M , qm−n
qm−N

∣∣∣∣∣∣ q; q
n

qm

Kqtm
n (x̄; p,M ; q),

Kqtm
n (x̄; p,N ; q) =

n∑
m=0

(−1)m(
p

p1

)mq−
1
2
m(m+2M−2N−2n−1) (q; q)M(q1−m; q)N

(q; q)m(q; q)N(q1−m; q)M

×2φ1

qm−M , qm−n
qm−N

∣∣∣∣∣∣ q; pq
n

p1qm

Kqtm
n (x̄; p1,M ; q),
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8. q-Meixner

Mn(x̄; β, γ; q) =
n∑

m=0

(−1)mq
1
2
m(2n−m+1) (β1q; q)m(q−n; q)m

(βq; q)m(q; q)m

×2φ1

qm−n, β1q
m+1

βqm+1

∣∣∣∣∣∣ q; q
n

qm

Mm(x̄; β1, γ; q),

Mn(x̄; β, γ; q) =
n∑

m=0

(−1)m(
γ1

γ
)mq

1
2
m(2n−m+1) (β1q; q)m(q−n; q)m

(βq; q)m(q; q)m

×2φ1

qm−n, β1q
m+1

βqm+1

∣∣∣∣∣∣ q; γ1q
n

γqm

Mm(x̄; β1, γ1; q).

If pn(x) and qm(x) are not represented in the same basis, we need the following con-
nection formulas between the four aforementioned bases of q-COP.

Lemma 3.18. The following connection formulas between the bases Vj(x) = xj, Vj(x) =
(x; q)j, Vj(x) = (ix; q)j and Vj(x) = (x� 1)jq are valid:

xn =
n∑

m=0

[ n
m

]
q

(−1)mq
m(m+1)

2

qmn
(x; q)m

see e.g. [Area et al., 2001],

xn =
n∑

m=0

[ n
m

]
q
(x� 1)mq

see [Kac, 2002, p. 12],

(x; q)n =
n∑

m=0

(−1)mq
m(m−1)

2

[ n
m

]
q
xm

see e.g. [Area et al., 2001],

(x; q)n =
n∑

m=0

(−1)mq(
m
2 )
[ n
m

]
q
(qm; q)n−m(x� 1)mq ,

(x; q)n =
n∑

m=0

[ n
m

]
q
(−i)m(−i; q)n−m(ix; q)m,

(ix; q)n =
n∑

m=0

[ n
m

]
q
(i)m(i; q)n−m(x; q)m,

(ix; q)n =
n∑

m=0

[ n
m

]
q
(−i)mq(

m
2 )(iqm; q)n−m(x� 1)mq ,
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(x� 1)nq =
n∑

m=0

[ n
m

]
q
(−1)n−mq(

n−m
2 )xm

see [Kac, 2002, p. 14],

(x� 1)nq =
n∑

m=0

(−1)mq
1
2
m(m+1−2n)

[ n
m

]
q
(qm; q)n−m(x; q)m,

(x� 1)nq =
n∑

m=0

[ n
m

]
q
(−i)n−2mq

1
2
m(m+1−2n)(iqm; q)n−m(ix; q)m.

Proof . The proof uses the following properties which are valid for j = 1, 2, . . . , n:

Dj
qx

n = [n]q[n− 1]q · · · [n− j + 1]qx
n−j, (3.26)

Dj
q(x; q)n = (−1)jq(

j
2)[n]q[n− 1]q · · · [n− j + 1]q(xq

j; q)n−j, (3.27)

Dj
q(ix; q)n = (−i)jq(

j
2)[n]q[n− 1]q · · · [n− j + 1]q(ixq

j; q)n−j, (3.28)
Dj
q(x� 1)nq = [n]q[n− 1]q · · · [n− j + 1]q(x� 1)n−jq . (3.29)

We suppose that Vj(x) and θj(x) are any of the polynomials xj, (x; q)j, (ix; q)j, (x� 1)jq
and that

Vn(x) =
n∑

m=0

Cm(n)θm(x).

We apply the operatorDj
q (j = 1, . . . , n) to both sides of the above equation, use properties

(3.26)–(3.29) and substitute x by 0, q−j, −iq−j or 1 ( since for k 6= 0, xk = 0 ⇔ x = 0,
(xqj; q)k = 0 ⇔ x = q−j, (ixqj; q)k = 0 ⇔ x = −iq−j, (x � 1)kq = 0 ⇔ x = 1) to get the
result. �

Now we suppose that pn(x) and qm(x) are represented in two different bases Vj(x) and
θj(x), i.e.

pn(x) =
n∑
j=0

Aj(n)Vj(x), qm(x) =
m∑
k=0

dk(m)θk(x),

Vj(x) =

j∑
k=0

Bk(j)θk(x), and θk(x) =
k∑

m=0

Im(k)qm(x).

From these expansions, we obtain the connection coefficient representation as a double
sum

pn(x) =
n∑

m=0

Cm(n)qm(x) with Cm(n) =
n−m∑
j=0

j∑
k=0

Aj+m(n)Bk+m(j +m)Im(k +m).

For example the connection formula between the big q-Jacobi polynomials Pn(x;α, β, γ; q)
represented in the basis ((x; q)n)n and the little q-Jacobi polynomials pn(x;α, β|q) repre-
sented in the basis (xn)n is given by

Pn(x;α, β, γ; q) =
n∑

m=0

Cm(n)pm(x;α, β|q)
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with

Cm(n) =
n−m∑
j=0

qm
2+j(q−n, αβqn+1; q)m+j

(q, αq, γq; q)m+j(q; q)m(q; q)k

j∑
k=0

[m+ j

m+ k

]
q
qmk(q, αq; q)m+k(1− αβq2m+1)

(−1)kq−(k2)(αβqm+1; q)m+k(1− αβq2m+k+1)
.

3.4.3 Parameter Derivatives

By a limiting process, the parameter derivatives of q-COP can be obtained from the
results of Corollary 3.15 and Theorem 3.16.

Corollary 3.19. The following representations for the parameter derivatives of the clas-
sical q-orthogonal polynomials are valid:
1. big q-Jacobi

∂

∂α
Pn(x;α, β, γ; q) =

n−1∑
m=0

(( qm+1

1− αqm+1
− βqm+n+1

1− αβqm+n+1

)
Pn(x;α, β, γ; q)

−

(αq)n−m(q; q)n−m−1

[ n
m

]
q
(1− αβq2m+1)(αq, αβqn+1; q)m(βq; q)n

α(βq; q)m(αβqm+1; q)n+1(αq; q)n
Pm(x;α, β, γ; q)

)
,

∂

∂β
Pn(x;α, β, γ; q) =

n−1∑
m=0

(
−αqn+m+1

1− αβqn+m+1
Pn(x;α, β, γ; q)

+
[ n
m

]
q

(αβqn+1)n−m(αβqn+1; q)m(qm−n+1; q)n−m−1

β(αβq2(m+1); q)n−m(αβqm+1; q)m
Pm(x;α, β, γ; q)

)
,

2. q-Hahn

∂

∂α
Qn(x;α, β,N ; q) =

n−1∑
m=0

(( qm+1

1− αqm+1
− βqm+n+1

1− αβqm+n+1

)
Qn(x;α, β,N ; q)

−

(αq)n−m(q; q)n−m−1

[ n
m

]
q
(1− αβq2m+1)(αq, αβqn+1; q)m(βq; q)n

α(βq; q)m(αβqm+1; q)n+1(αq; q)n
Qm(x;α, β,N ; q)

)
,

∂

∂β
Qn(x;α, β,N ; q) =

n−1∑
m=0

(
−αqn+m+1

1− αβqn+m+1
Qn(x;α, β,N ; q)

+
[ n
m

]
q

(αβqn+1)n−m(αβqn+1; q)m(qm−n+1; q)n−m−1

β(αβq2(m+1); q)n−m(αβqm+1; q)m
Qm(x;α, β,N ; q)

)
,

3. little q-Jacobi

∂

∂α
pn(x;α, β|q) =

n−1∑
m=0

(( qm+1

1− αqm+1
− βqn+m+1

1− αβqn+m+1

)
pn(x;α, β|q) +

[ n
m

]
q
(−αq

n−m+1
2 )n−m

×(αq, αβqn+1; q)m(βqm+1; q)n−m(qm−n+1; q)n−m−1

α(αβq2(m+1); q)n−m(αβqm+1; q)m(αq; q)n
pm(x;α, β|q)

)
,
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∂

∂β
pn(x;α, β|q) =

n−1∑
m=0

(
−αqn+m+1

1− αβqn+m+1
pn(x;α, β|q)

+
[ n
m

]
q
(αβqn+1)n−m

(αβqn+1; q)m(qm−n+1; q)n−m−1

β(αβq2(m+1); q)n−m(αβqm+1; q)m
pm(x;α, β|q)

)
,

4. alternative q-Charlier

∂

∂α
yn(x;α|q) =

n−1∑
m=0

(
qn+m

1 + αqn+m
yn(x;α|q)

+(−αqn)n−m
[ n
m

]
q

(−αqn; q)m(qm−n+1; q)n−m−1

α(−αq2m+1; q)n−m(−αqm; q)m
ym(x;α|q)

)
,

5. little q-Laguerre

∂

∂α
pn(x;α|q) =

n−1∑
m=0

(
qm+1

1− αqm+1
pn(x;α|q)

+(−αq
n−m+1

2 )n−m
[ n
m

]
q

(αq; q)m(qm−n+1; q)n−m−1

α(αq; q)n
pm(x;α|q)

)
,

6. q-Krawtchouk

∂

∂p
Kn(x̄; p,N ; q) =

n−1∑
m=0

( qm+n

1 + pqm+n
Kn(x̄; p,N ; q)

+
[ n
m

]
q

(−pqn)n−m(−pqn; q)m(qm−n+1; q)n−m−1

p(−pqm; q)m(−pq2m+1; q)n−m
Km(x̄; p,N ; q)

)
,

7. quantum q-Krawtchouk

∂

∂p
Kqtm
n (x̄; p,N ; q) =

n

p
Kqtm
n (x̄; p,N ; q)

+

n−1∑
m=0

(−q
m−n+1

2 )m−n
[ n
m

]
q

(qm−n+1; q)n−m−1

p
Kqtm
m (x̄; p,N ; q),

8. q-Laguerre

∂

∂α
L(α)
n (x; q) = n ln qL(α)

n (x; q)−
n−1∑
m=0

ln q

(1− qn−m)
L(α)
m (x; q),

9. affine q-Krawtchouk

∂

∂p
Kaff
n (x̄; p,N ; q) =

n−1∑
m=0

( qm+1

1− pqm+1
Kaff
n (x̄; p,N ; q)

−
[ n
m

]
q

(pq)n−m(q; q)n−m−1(pq; q)m
p(pq; q)n

KAff
m (x̄; p,N ; q)

)
,
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∂

∂N
Kaff
n (x̄; p,N ; q) =

n−1∑
m=0

(−qm−N ln q

1− qm−N
KAff
n (x̄; p,N ; q)

+(−q
m+n−1

2 )m−n ln q
[ n
m

]
q

(q; q)n−m−1

(qN+1−n; q)n−m
Kaff
m (x̄; p,N ; q)

)
,

10. big q-Laguerre

∂

∂α
Pn(x;α, β; q) =

n−1∑
m=0

( qm+1

1− αqm+1
Pn(x;α, β; q)

−
[ n
m

]
q

(αq)n−m(αq; q)m(q; q)n−m−1

α(αq; q)n
Pm(x;α, β; q)

)
,

∂

∂β
Pn(x;α, β; q) =

n−1∑
m=0

( qm+1

1− βqm+1
Pn(x;α, β; q)

−
[ n
m

]
q

(βq)n−m(βq; q)m(q; q)n−m−1

β(βq; q)n
Pm(x;α, β; q)

)
,

11. Al-Salam-Carlitz I

∂

∂α
U (α)
n (x; q) =−

n−1∑
m=0

αn−m−1(q; q)n−m−1

[ n
m

]
q
U (α)
m (x; q),

12. q-Meixner

∂

∂γ
Mn(x;β, γ; q) =−n

γ
Mn(x;β, γ; q) +

1

γ

n−1∑
m=0

(q; q)n−m−1

[ n
m

]
q
Mm(x;β, γ; q),

13. q-Charlier

∂

∂α
Cn(x;α; q) =−n

α
Cn(x;α; q) +

1

α

n−1∑
m=0

(q; q)n−m−1

[ n
m

]
q
Cm(x;α; q),

14. Al-Salam-CArlitz II

∂

∂α
V (α)
n (x; q) =

1

α

n−1∑
m=0

(−α)n−mq
(m−n)(m+n−1)

2 (q; q)n−m−1

[ n
m

]
q
V (α)
n (x; q).

Proof . If

pαn(x) =
n∑

m=0

Cm(n, α, β)pβm(x),

then
∂

∂α
pαn(x) = lim

β→α

Cn(n, α, β)− 1

α− β
pβn(x) +

n−1∑
m=0

lim
β→α

Cm(n, α, β)

α− β
P β
m(x).
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We know that
d

dx

n∏
j=1

fj(x) =
n∑

m=1

f ′m(x)

fm(x)

n∏
j=1

fj(x),

from which we get for a parameter γ

∂

∂α
(αγqn+1; q)n =

n−1∑
m=0

−γqn+m+1

1− αγqn+m+1
(αγqn+1; q)n.

Using l’Hospital’s rule, we obtain

lim
β→α

(αγqn+1; q)n − (βγqn+1; q)n
(βγqn+1; q)n(α− β)

=
n−1∑
m=0

−γqn+m+1

1− αγqn+m+1
.

We also have

lim
β→α

(βq
m+1

αqn
; q)n−m

α− β
=

1

α
(qm−n+1; q)n−m−1

and

lim
β→α

(α
β
; q)n−m

α− β
= − 1

α
(q; q)n−m−1.

From all the preceding, the result follows. �

Remark 3.20. Lewanowicz [2003b] gave an algorithmic approach to construct recurrence

relations for the coefficients Ck of the expansion of the form ∂
∂α
Pn(x;α; q) =

n−1∑
k=0

CkPk(x;α; q),

where Pn(x;α; q) is a q-COP. He solved this recurrence relation for the big q-Jacobi poly-
nomials Pk(x;α, β, γ; q) and gave explicitly the coefficients Ck.

3.5 Linearization Problem of q-COP

The linearization problem of the q-COP family (pn(x))n depends on the basis {xn},
{(x; q)n}, {(ix; q)n} or {(x� 1)nq } in which pn(x) is represented.

3.5.1 Representation Basis {xn}
Theorem 3.21. The following linearization relations between the orthogonal polynomial
systems of the q-Hahn class represented in the basis {xn} are valid:
1. little q-Jacobi

pn(x;α, β|q)pm(x;α1, β1|q) =
n+m∑
l=0

n+m−l∑
k=0

(−1)lqk+
l(l+1)

2 (q, α2q; q)k+l(1− α2β2q
2l+1)

(q; q)l(q; q)k(α2β2ql+1; q)k+l(1− α2β2qk+2l+1)

×
k+l∑
r=0

(q−n, αβqn+1; q)r(q
−m, α1β1q

m+1; q)k+l−r

(q, αq; q)r(q, α1q; q)k+l−r
pl(x;α2, β2|q),
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2. alternative q-Charlier

yn(x;α|q)ym(x;α1|q) =
n+m∑
l=0

n+m−l∑
k=0

(−1)lqk+
l(l+1)

2 (q; q)k+l(1 + α2q
2l)

(q; q)k(q; q)l(−α2ql+1; q)k+l(1 + α2ql)

×
k+l∑
r=0

(q−n,−αqn; q)r(q
−m,−α1q

m; q)k+l−r

(q; q)r(q; q)k+l−r
yl(x;α2|q),

3. little q-Laguerre/Wall

pn(x;α|q)pm(x;α1|q) =
n+m∑
l=0

n+m−l∑
k=0

(−1)lqk+
l(l+1)

2 (q; q)k+l(α2q; q)k+l

(q; q)k(q; q)l

×
k+l∑
r=0

(q−n; q)r(q
−m; q)k+l−r

(q, αq; q)r(q, α1q; q)k+l−r
pl(x;α2|q),

4. q-Laguerre

L(α)
n (x; q)L(β)

m (x; q) =
n+m∑
l=0

n+m−l∑
k=0

(−1)lq(m+β−γ)(k+l)(qα+1; q)n(qβ+1; q)m(q; q)k+l(q
γ+l+1; q)k

q
1
2
l(l+2k−1)(q; q)n(q; q)m(q; q)k

×
k+l∑
r=0

qr(n+α+r)(q−n; q)r(q
−m; q)k+l−r

qr(m+k+l+β)(q, qα+1; q)r(q, qβ+1; q)k+l−r
L

(γ)
l (x; q),

5. Stieltjes-Wigert

Sn(x; q)Sm(x; q) =
n+m∑
l=0

n+m−l∑
k=0

k+l∑
r=0

(−1)lqm(k+l)+r(n+r)(q; q)k+l(q
−n; q)r(q

−m; q)k+l−r

q
1
2
l(l+2k−1)+r(m+k+l)(q; q)n(q; q)m(q; q)k(q; q)r(q; q)k+l−r

Sl(x; q).

Proof . We suppose

pn(x) =
n∑
i=0

Ai(n)xi, qm(x) =
m∑
j=0

Bj(m)xj, and xk =
k∑
l=0

Il(k)yl(x)

where pn(x), qm(x), yl(x) are three families of classical q-orthogonal polynomials.
We then obtain the Cauchy product

pn(x)qm(x) =
n+m∑
k=0

Ck(m,n)xk, where Ck(m,n) =
k∑
r=0

Ar(n)Bk−r(m).

Using the inversion formula, this can be rewritten as

pn(x)qm(x) =
n+m∑
l=0

Ll(m,n)yl(x)

with

Ll(m,n) =
n+m−l∑
k=0

Ck+l(m,n)Il(k + l) =
n+m−l∑
k=0

k+l∑
r=0

Ar(n)Bk+l−r(m)Il(k + l).

We consider here the standard linearization problem of Clebsch-Gordan-type where pn(x),
qm(x), yl(x) belong to the same q-orthogonal family. �
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3.5.2 Representation Basis {(x; q)n} or {(ix; q)n}
In these cases, we need the following linearization coefficients of the basis {(x; q)n} or
{(ix; q)n}.

Proposition 3.22. The basis {(x; q)n} fulfils the linearization relation

(x; q)n(x; q)m =
n+m∑

k=max(m,n)

(q; q)n(q; q)m(−1)n+m−kq(
n+m−k

2 )−nm

(q; q)k−n(q; q)k−m(q; q)n+m−k
(x; q)k. (3.30)

Proof . Without loss of generality, we suppose n ≥ m.
(x; q)n = 0⇔ x = q−j, j = 0, 1, . . . , n− 1. For x = 1, the equation

(x; q)n(x; q)m =
n+m∑
k=0

Hk(m,n)(x; q)k (3.31)

yields H0(m,n) = 0, m ≥ 1 so that

(x; q)n(x; q)m =
n+m∑
k=1

Hk(m,n)(x; q)k.

Next for x = q−1, the above equation gives H1(m,n)(q−1, q)1 = 0, m ≥ 2. Since
(q−n; q)n 6= 0 therefore H1(m,n) = 0.
Progressively, it follows in a similar way that

H0(m,n) = H1(m,n) = . . . = Hn−1(m,n) = 0.

Consequently

(x; q)n(x; q)m =
n+m∑
k=n

Hk(m,n)(x; q)k =
m∑
k=0

Hn+k(m,n)(x; q)n+k.

Since (x; q)n+k = (x; q)n(xqn; q)k it follows that

(x; q)m =
m∑
k=0

Hn+k(m,n)(xqn; q)k. (3.32)

For x = q−n, (3.32) gives Hn(m,n) = (q−n; q)m, m ≥ 1. From the property

Dq(xq
n; q)k = −[k]qq

n(xqn+1; q)k−1

it follows that for any j = 1, 2, . . . ,m

Dj
q(xq

n; q)k = (−1)j[k]q[k − 1]q · · · [k − j + 1]qq
nj+(j2)(xqn+j; q)k−j.

We apply Dj
q to both sides of (3.32) to get

[m]q[m− 1]q · · · [m− j + 1]q(xq
j ; q)m−j =

m∑
k=0

[k]q[k − 1]q · · · [k − j + 1]qq
nj(xqn+j ; q)k−j

=

m∑
k=0,k 6=j

[k]q[k − 1]q · · · [k − j + 1]qq
nj(xqn+j ; q)k−j

+qnj [j]q!Hn+j(m,n)
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where

[j]q! =

{
[j]q[j − 1]q · · · [1]q, j ∈ N
1, j = 0.

For x = q−n−j the latter equation gives

Hn+j(m,n) =
[m]q[m− 1]q · · · [m− j + 1]qq

(j2)(q−n; q)m−j

qnj+(j2)[j]q!
=

[m]q!(q
−n; q)m−j

[j]q![m− j]q!qnj
, j = 0, 1, . . .m.

Using the relations
[n]q!

[m]q![n−m]q!
=

(q; q)n
(q; q)m(q; q)n−m

and
(q−n; q)k =

(q; q)n
(q; q)n−k

(−1)kq(
k
2)−nk, (3.33)

the representation of Hn+j(m,n) can be rewritten as

Hn+j =
(q; q)n(q; q)m(−1)m−jq(

m−j
2 )−nm

(q; q)j(q; q)m−j(q; q)n−m+j

.

For j = k − n, the result follows. �
Using the basic hypergeometric series representation of pn(x), the inversion problem

and the linearization formula (3.30), we prove

Theorem 3.23. The following linearization formulae of the q-COP represented in the
basis {(x; q)n} are valid:
1. discrete q-Hermite II

h̃n(x; q)h̃m(x; q) =
n+m∑
r=0

Lr(m,n)h̃r(x; q)

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−i)m+n+rqnj+m(l+r)(q; q)l+r(q
−n; q)j(q

−m; q)l+r−j

q(
n
2)+(m2 )+mj+rl(q; q)j(q; q)r(q; q)l(q; q)l+r−j

×2φ0

q−j, ql+r−j−m
−

∣∣∣∣∣∣ q;−qm+j−l−r

,
2. Al-Salam-Carlitz II

V (α)
n (x; q)V (α)

m (x; q) =
n+m∑
r=0

Lr(m,n)V (α)
r (x; q)

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)m+nαm+n−rqnj+m(l+r)(q; q)l+r(q
−n; q)j(q

−m; q)l+r−j

q(
n
2)+(m2 )+mj+rl(q; q)j(q; q)l+r−j(q; q)r(q; q)l

×2φ0

q−j , ql+r−j−m
−

∣∣∣∣∣∣ q; q
m+j−l−r

α

,
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3. q-Charlier

Cn(x;α; q)Cm(x;α; q) =
n+m∑
r=0

Lr(m,n)Cr(x;α; q)

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)rqm(l+r)+j(n+j)(q−n; q)j(q
−m; q)l+r−j(q; q)l+r

q(
r
2)+j(m+l+r)+rl(q; q)l+r−j(q; q)j(q; q)r(q; q)l

×2φ1

q−j, ql+r−m−j
0

∣∣∣∣∣∣ q;−q
m+1

α

,
4. q-Meixner

Mn(x; β, γ; q)Mm(x; β, γ; q) =
n+m∑
r=0

Lr(m,n)Mr(x; β, γ; q)

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)rqj(n+j)+m(l+r)(q−n; q)j(q
−m; q)l+r−j(q; q)l+r

q(
r
2)+j(m+l+r)+rl(q; q)j(q; q)r(q; q)l(q; q)l+r−j

× (βq; q)l+r
(βq; q)j(βq; q)l+r−j

2φ1

q−j, ql+r−m−j
βql+r−j+1

∣∣∣∣∣∣ q;−q
m+1

γ

,
5. quantum q-Krawtchouk

Kqtm
n (x̄; p,N ; q)Kqtm

m (x̄; p,N ; q) =
n+m∑
r=0

Lr(m,n)Kqtm
r (x̄; p,N ; q), m+ n ≤ N

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)rqj(n+j)+m(l+r)(q−n; q)j(q
−m; q)l+r−j(q; q)l+r

q(
r
2)+j(m+l+r)+rl(q; q)j(q; q)r(q; q)l(q; q)l+r−j

× (q−N ; q)l+r
(q−N ; q)j(q−N ; q)l+r−j

2φ1

q−j , ql+r−m−j
ql+r−N−j

∣∣∣∣∣∣ q; pqm+1

,
6. q-Krawtchouk

Kn(x̄; p,N ; q)Km(x̄; p,N ; q) =
n+m∑
r=0

Lr(m,n)Kr(x̄; p,N ; q), m+ n ≤ N

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)rq
r(r+1)

2
+j2+l(q; q)l+r(−pqm; q)l+r−j(q

−m; q)l+r−j(q
−n; q)j

qj(r+l)(q; q)j(q; q)r(q; q)l(q; q)l+r−j(−pq2r+1; q)l(−pqr; q)r

× (q−N ; q)l+r(−pqn; q)j
(q−N ; q)j(q−N ; q)l+r−j

3φ2

q−j, ql+r−m−j,−pqm+l+r−j

ql+r−N−j, 0

∣∣∣∣∣∣ q; q
,
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7. big q-Laguerre

Pn(x;α, β; q)Pm(x;α, β; q) =
n+m∑
r=0

Lr(m,n)Pr(x;α, β; q)

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)rq
r(r+1)

2
+j2+l(q; q)l+r(q

−m; q)l+r−j(q
−n; q)j

qj(r+l)(q; q)j(q; q)r(q; q)l(q; q)l+r−j(αq; q)j(βq; q)j

× (αq; q)l+r(βq; q)l+r
(αq; q)l+r−j(βq; q)l+r−j

3φ2

 q−j, ql+r−m−j, 0

αql+r−j+1, βql+r−j+1

∣∣∣∣∣∣ q; q
,

8. affine q-Krawtchouk

Kaff
n (x̄; p,N ; q)Kaff

m (x̄; p,N ; q) =
n+m∑
r=0

Lr(m,n)Kaff
r (x̄; p,N ; q), m+ n ≤ N

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)rq
r(r+1)

2
+j2+l(q; q)l+r(pq; q)l+r(q

−m; q)l+r−j(q
−n; q)j

qj(l+r)(q; q)j(q; q)r(q; q)l(q; q)l+r−j(pq; q)j(pq; q)l+r−j

× (q−N ; q)l+r
(q−N ; q)l+r−j(q−N ; q)j

3φ2

 q−j, ql+r−m−j, 0

ql+r−N−j, pql+r−j+1

∣∣∣∣∣∣ q; q
,

9. q-Hahn

Qn(x;α, β,N |q)Qm(x;α, β,N |q) =
n+m∑
r=0

Lr(m,n)Qr(x;α, β,N |q), m+ n ≤ N

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)rq
r(r+1)

2
+j2+l(q; q)l+r(q

−m; q)l+r−j(q
−n; q)j(αq; q)l+r

qj(r+l)(q; q)j(q; q)l+r−j(q; q)r(q; q)l(αq; q)j(q−N ; q)j

× (q−N ; q)l+r(αβq
m+1; q)l+r−j(αβq

n+1; q)j
(αq; q)l+r−j(q−N ; q)l+r−j(αβqr+1; q)r(αβq2r+2; q)l

3φ2

q−j, ql+r−m−j, αβqm+l+r−j+1

αql+r−j+1, ql+r−N−j

∣∣∣∣∣∣ q; q
,

10. big q-Jacobi

Pn(x;α, β, γ; q)Pm(x;α, β, γ; q) =
n+m∑
r=0

Lr(m,n)Pr(x;α, β, γ; q)

with

Lr(m,n) =
n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)rq
r(r+1)

2
+j2+l(q; q)l+r(q

−m; q)l+r−j(q
−n; q)j(αq; q)l+r

qj(r+l)(q; q)j(q; q)l+r−j(q; q)r(q; q)l(αq; q)j(γq; q)j

× (γq; q)l+r(αβq
m+1; q)l+r−j(αβq

n+1; q)j
(αq; q)l+r−j(γq; q)l+r−j(αβqr+1; q)r(αβq2r+2; q)l

3φ2

q−j, ql+r−m−j, αβqm+l+r−j+1

αql+r−j+1, γql+r−j+1

∣∣∣∣∣∣ q; q
.
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Proof . The proof follows the same procedure as the one of Theorem 2.8 with xn replaced
by (x; q)n and the final results are deduced using the sum2qhyper algorithm. �

Theorem 3.24. For the classical q-orthogonal polynomials represented in the basis {(x; q)n},
the following linearization formulae are valid:
1. big q-Jacobi

(x; q)n(x, q)m =
n+m∑
j=0

(−1)n+m+jq−nm+
j(j−1)

2 (q; q)n(q; q)m(1− αβq2j+1)

(q; q)j
×

n+m∑
k=max(m,n,j)

(−1)kq(
n+m−k

2 )(q; q)k(αq; q)k(γq; q)kPj(x;α, β, γ; q)

(q; q)k−n(q; q)k−m(q; q)k−j(q; q)n+m−k(αβqj+1; q)k(1− αβqk+j+1)
,

2. q-Hahn

(x; q)n(x, q)m =
n+m∑
j=0

(−1)n+m+jq−nm+
j(j−1)

2 (q; q)n(q; q)m(1− αβq2j+1)

(q; q)j
×

n+m∑
k=max(m,n,j)

(−1)kq(
n+m−k

2 )(q; q)k(αq; q)k(q
−N ; q)kQj(x;α, β,N |q)

(q; q)k−n(q; q)k−m(q; q)k−j(q; q)n+m−k(αβqj+1; q)k(1− αβqk+j+1)
,

3. affine q-Krawtchouk

(x; q)n(x, q)m =
n+m∑
j=0

n+m∑
k=max(m,n,j)

q(
n+m−k

2 )+ j2

2 (q; q)n(q; q)m(q; q)k(pq; q)k(q
−N ; q)kK

aff
j (x; p,N ; q)

(−1)n+m+k+jqnm+ j
2 (q; q)k−n(q; q)k−m(q; q)k−j(q; q)j(q; q)n+m−k

,

4. big q-Laguerre

(x; q)n(x, q)m =
n+m∑
j=0

n+m∑
k=max(m,n,j)

q(
n+m−k

2 )+ j2

2 (q; q)n(q; q)m(q; q)k(αq; q)k(βq; q)kPj(x;α, β; q)

(−1)n+m+k+jqnm+ j
2 (q; q)k−n(q; q)k−m(q; q)k−j(q; q)j(q; q)n+m−k

,

5. q-Krawtchouk

(x; q)n(x, q)m =
n+m∑
j=0

(−1)n+m+jq
1
2
j(j−1)−nm(q; q)n(q; q)m

(q; q)j(−pqj; q)j
×

n+m∑
k=max(m,n,j)

(−1)kq(
n+m−k

2 )(q; q)k(q
−N ; q)kKj(x; p,N ; q)

(q; q)k−n(q; q)k−m(q; q)k−j(q; q)n+m−k(−pq2j+1; q)k−j
,

6. quantum q-Krawtchouk

(x; q)n(x, q)m =

n+m∑
j=0

n+m∑
k=max(m,n,j)

q(
n+m−k

2 )+ 1
2

(j+1)(j−2k)(q; q)n(q; q)m(q; q)k(q
−N ; q)kK

qtm
j (x; p,N ; q)

(−1)n+m+k+jqnm(q; q)k−n(q; q)k−m(q; q)k−j(q; q)j(q; q)n+m−kpk
,

7. q-Meixner

(x; q)n(x, q)m =

n+m∑
j=0

n+m∑
k=max(m,n,j)

q(
n+m−k

2 )+ 1
2

(j+1)(j−2k)(q; q)n(q; q)m(q; q)k(βq; q)kγ
kMj(x;β, γ; q)

(−1)n+m+jqnm(q; q)k−n(q; q)k−m(q; q)k−j(q; q)j(q; q)n+m−k
,
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8. q-Charlier

(x; q)n(x, q)m =

n+m∑
j=0

n+m∑
k=max(m,n,j)

q(
n+m−k

2 )+ 1
2

(j+1)(j−2k)(q; q)n(q; q)m(q; q)kα
kCj(x;α; q)

(−1)n+m+jqnm(q; q)k−n(q; q)k−m(q; q)k−j(q; q)j(q; q)n+m−k
,

9. Al-Salam-Carlitz II

(x; q)n(x, q)m =

n+m∑
j=0

n+m∑
k=max(m,n,j)

q(
n+m−k

2 )+ 1
2
k(k−1)+j(j−k)(q; q)n(q; q)m(q; q)kα

k−jV
(α)
j (x; q)

(−1)n+mqnm(q; q)k−n(q; q)k−m(q; q)k−j(q; q)j(q; q)n+m−k
,

10. discrete q-Hermite II

(x; q)n(x, q)m =
n+m∑
j=0

n+m∑
k=max(m,n,j)

q(
n+m−k

2 )+ 1
2
k(k−1)+j(j−k)(q; q)n(q; q)m(q; q)k(−i)j h̃j(x; q)

(−1)n+m−kqnm(q; q)k−n(q; q)k−m(q; q)k−j(q; q)j(q; q)n+m−k
.

Proof . The combination of

(x; q)n(x; q)m =
n+m∑

k=max(m,n)

Hk(m,n)(x; q)k and (x; q)k =
k∑
j=0

Ij(k)pj(x)

yields the linearization formula

(x; q)n(x; q)m =
n+m∑
j=0

Lj(m,n)pj(x), with Lj(m,n) =
n+m∑

k=max(m,n,j)

Hk(m,n)Ij(k).

�

3.5.3 Representation Basis {(x� 1)nq}
To solve the linearization problem of q-COP represented in the basis {(x � 1)nq }, the
following linearization formula for this basis is necessary.

Proposition 3.25. For the basis {(x� a)nq }, the linearization formula

(x� a)nq (x� a)mq =
n+m∑

k=max(m,n)

(q; q)m(q; q)n(−a)n+m−kq(
n+m−k

2 )

(q; q)k−n(q; q)k−m(q; q)n+m−k
(x� a)kq (3.34)

holds.

Proof . Without loss of generality, we suppose n ≥ m. For every positive integer n

(x� a)nq =
n−1∏
j=0

(x− aqj) = 0⇔ x = aqj, j = 0, 1, . . . , n− 1. (3.35)

For x = a and m ≥ 1, the linearization formula

(x� a)nq (x� a)mq =
n+m∑
k=0

Hk(m,n)(x� a)kq
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gives thanks to (3.35) H0(m,n) = 0, so that

(x� a)nq (x� a)mq =
n+m∑
k=1

Hk(m,n)(x� a)kq .

For x = aq and m ≥ 2 the above equation yields (using (3.35)) H1(m,n)(aq � a)1
q = 0.

Since by definition (aqn � a)nq 6= 0, it follows that H1(m,n) = 0. In a similar way, we can
show that

H0(m,n) = H1(m,n) = · · · = Hn−1(m,n) = 0.

Therefore

(x� a)nq (x� a)mq =
n+m∑
k=n

Hk(m,n)(x� a)kq =
m∑
k=0

Hn+k(m,n)(x� a)n+k
q .

Since
(x� a)n+k

q = (x� a)nq (x� aqn)kq

the latter equation becomes

(x� a)mq =
m∑
k=0

Hn+k(m,n)(x� aqn)kq . (3.36)

For x = aqn and using (3.35), (3.36) gives Hn(m,n) = (aqn � a)mq .
We have

Dq(x� a)mq = [m]q(x� a)m−1
q

from which for any integer j = 1, 2, . . . ,m,

Dj
q(x� a)mq = [m]q[m− 1]q · · · [m− j + 1]q(x� a)m−jq .

Applying Dj
q to both sides of (3.36), we get

[m]q[m− 1]q · · · [m− j + 1]q(x� a)m−jq =
m∑
k=0

Hn+k(m,n)[k]q[k − 1]q · · · [k − j + 1]q(x� aq
n)k−jq

=
m∑

k=0,k 6=j
Hn+k(m,n)

[k]q!

[k − j]q!
(x� aqn)k−jq +Hn+j(m,n)[j]q!.

For x = aqn, the previous equation yields thanks to (3.35)

Hn+j(m,n) =
[m]q[m− 1]q · · · [m− j + 1]q(aq

n � a)m−jq

[j]q!

=
(q; q)m(aqn � a)m−jq

(q; q)j(q; q)m−j
.

We show that

(aqn � a)m−jq = (aqn)m−j(q−n; q)m−j
(3.33)
=

(−a)m−jq(
m−j

2 )(q; q)n
(q; q)n−m+j

,

therefore

Hn+j(m,n) =
(q; q)m(−a)m−jq(

m−j
2 )(q; q)n

(q; q)j(q; q)m−j(q; q)n−m+j

.

Substituting j by k − n, the result follows. �
Proceeding as in the proof of Theorem 3.23, we get
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Theorem 3.26. For the q-COP represented in the basis (x� 1)nq , the following lineariza-
tion formulae are valid:
1. Al-Salam-Carlitz I

U (α)
n (x; q)U (α)

m (x; q) =
n+m∑
r=0

n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)n+mαm+n−rq(
n
2)+(m2 )+l+r(q−n; q)j

(q; q)j(q; q)r(q; q)l

×(q−m; q)l+r−j(q; q)l+r
(q; q)l+r−j

2φ1

q−j, q−m−j+l+r
0

∣∣∣∣∣∣ q; q
j+1

α

U (α)
r (x; q),

2. discrete q-Hermite I polynomials

hn(x; q)hm(x; q) =
n+m∑
r=0

n+m−r∑
l=0

min(n,l+r)∑
j=max(0,l+r−m)

(−1)rq(
n
2)+(m2 )+l+r(q−n; q)j

(q; q)j(q; q)r(q; q)l

×(q−m; q)l+r−j(q; q)l+r
(q; q)l+r−j

2φ1

q−j, q−m−j+l+r
0

∣∣∣∣∣∣ q;−qj+1

hr(x; q).

Theorem 3.27. For the classical q-orthogonal polynomials represented in the basis
{(x� 1)nq }, the following linearization formulae are valid:
1. Al-Salam-Carlitz I

(x� 1)nq (x� 1)mq =
n+m∑
j=0

n+m∑
k=max(m,n,j)

(−1)n+m−kαk−jq(
n+m−k

2 )(q, q)n(q, q)m(q, q)k
(q, q)k−n(q, q)k−m(q, q)k−j(q, q)n+m−k(q, q)j

U
(α)
j (x; q),

2. discrete q-Hermite I

(x� 1)nq (x� 1)mq =
n+m∑
j=0

n+m∑
k=max(m,n,j)

(−1)n+m−jq(
n+m−k

2 )(q, q)n(q, q)m(q, q)k
(q, q)k−n(q, q)k−m(q, q)k−j(q, q)n+m−k(q, q)j

hj(x; q).

Proof . The combination of

(x� 1)nq (x� 1)mq =
n+m∑

k=max(m,n)

Hk(m,n)(x� 1)kq and (x� 1)kq =
k∑
j=0

Ij(k)pj(x)

yields the linearization formula

(x� 1)nq (x� 1)mq =
n+m∑
j=0

Lj(m,n)pj(x), with Lj(m,n) =
n+m∑

k=max(m,n,j)

Hk(m,n)Ij(k).

�

3.6 Duplication Problem of q-COP
For q-COP, we propose two different methods to solve the duplication problem

pn(ax) =
n∑

m=0

Dm(n, a)pm(x). (3.37)
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3.6.1 First Method

First we determine a q-differential equation satisfied by pn(ax). For this purpose, we need
the operator εa acting on a function f defined by

εaf(x) := f(ax).

Sprenger [2009] showed that the operator εa has the following properties for any constant
b, c:

εa(bf(x) + cg(x)) = bεaf(x) + cεag(x), (3.38)
εa(f(x) · g(x)) = εaf(x) · εag(x), (3.39)

εaDq =
1

a
Dqεa. (3.40)

Using the operator εa, we prove

Proposition 3.28. If a q-COP family pn(x) is a solution of the q-differential equation
(3.2), then pn(ax) = εapn(x) is a solution of the q-differential equation

σ(ax)DqD 1
q
pn(ax) + aτ(ax)Dqpn(ax) + a2λn,qpn(ax) = 0. (3.41)

Proof . We apply the operator εa to Equation (3.2) and use the properties (3.38)–(3.40)
to get the result. �

Using this q-differential equation, we show

Theorem 3.29. Let pn(x) be a q-COP solution of Equation (3.2) with deg(σ) ≤ 1. The
duplication coefficients Dm(n,A) of the duplication problem (3.37) fulfill the recurrence
relations

(a′m−1 + A2(dα?m−1 + λn,qâm−1))Dm−1(n,A) + (b′m + A(Adβ?m + e+ Aλn,q b̂m))Dm(n,A)

+(c′m+1 + A2(dγ?m+1 + λn,q ĉm+1))Dm+1(n,A) = 0

if σ is a constant and

(a′m−1 + A(dα?m−1 + λnâm−1))Dm−1(n,A) + (b′m + Adβ?m + e+ Aλnb̂m)Dm(n,A)

+(c′m+1 + A(dγ?m+1 + λnĉm+1))Dm+1(n,A) = 0

if σ is linear, with initial conditions given by Dn+1(n,A) = 0 and Dn(n,A) = An, where
the coefficients are given in Theorem 3.5 and Propositions 3.6 and 3.8.

Proof . We substitute (3.37) with a = A in (3.41) to get

n∑
m=0

Dm(n,A)
(
σ(Ax)DqD 1

q
pm(x) + Aτ(Ax)Dqpm(x) + A2λnpm(x)

)
= 0 (3.42)

and proceed as in Subsection 3.4.1.
First, for pm(x) Equation (3.15) can be rewritten as

pm(x) =
m+1∑
j=m−1

am,jDqpm(x) (3.43)
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with am,m+1 = âm, am,m = b̂m and am,m−1 = ĉm.
Second, the three-term recurrence equation for the family Dqpm(x) yields

τ(Ax)Dqpm(x) =
m+1∑
j=m−1

a
(1)
m,jDqpm(x) (3.44)

with a(1)
m,m+1 = Adα?m, a

(1)
m,m = Adβ?m + e, a

(1)
m,m−1 = Adγ?m.

At this stage, only two cases arise for which we can use the structure relation (3.18).

1. Case σ is a constant

In this case, since σ(Ax) = σ(x), from (3.18) we have

σ(Ax)DqD 1
q
pm(x) = σ(x)DqD 1

q
pm(x) =

m+1∑
j=m−1

a
(2)
m,jDqqm(x) (3.45)

with a(2)
m,m+1 = a′m, a

(2)
m,m = b′m and a(2)

m,m−1 = c′m.

2. Case σ is linear

In this case, since σ(Ax) = Aσ(x), from (3.18) we have

σ(Ax)DqD 1
q
pm(x) = Aσ(x)DqD 1

q
pm(x) =

m+1∑
j=m−1

a
(2)
m,jDqqm(x) (3.46)

with a(2)
m,m+1 = Aa′m, a

(2)
m,m = Ab′m and a(2)

m,m−1 = Ac′m.

Substitution of (3.43), (3.44) and (3.45) or (3.46) into (3.42) gives

n∑
m=0

Dm(n,A)
{ m+1∑
j=m−1

Λm,j(n)Dqqj(x)
}

= 0, Λm,j(n) = a
(2)
m,j + Aa

(1)
m,j + A2λnam,j.

Finally, after an appropriate shift of indices, the results follow. �
The q-Petkovšek-van-Hoeij algorithm yields for some of these recurrence equations the

following results.

Corollary 3.30. The duplication formulae of the q-Charlier, q-Laguerre, Stieltjes-Wigert
and discrete q-Hermite II polynomials are given, respectively, by

Cn(ax;α; q) =
n∑

m=0

an
(
− q

m−n+1
2

)m−n[ n
m

]
q

(qm+1

aqn
; q
)
n−m

(
− qm+1

α
; q
)
n−m

Cm(x;α; q),

L(α)
n (ax; q) =

n∑
m=0

an
(
− q

m−n+1
2

)m−n (qm+α+1; q)n−m

(
qm+1

aqn
; q
)
n−m

(q; q)n−m
L(α)
m (x; q),

Sn(ax; q) =
n∑

m=0

an

(q; q)n−m

(
− q

m−n+1
2

)m−n(qm+1

aqn
; q
)
n−m

Sm(x; q),
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h̃2n(ax; q) =
n∑
k=0

(−1)n−ka2nq(k−n)(2k+2n+1)(q; q)2n(q−2n; q2)k

(
q2

a2q2n
; q2
)
n

(q; q)2k(q−2n; q2)n

(
q2

a2q2n
; q2
)
k

h̃2k(x; q),

h̃2n+1(ax; q) =
n∑
k=0

(−1)n−ka2n+1q(k−n)(2k+2n+3)(q2; q)2n(q−2n; q2)k

(
q2

a2q2n
; q2
)
n

(q2; q)2k(q−2n; q2)n

(
q2

a2q2n
; q2
)
k

h̃2k+1(x; q).

For the Al-Salam-Carlitz II polynomials for which σ(x) = (q − 1)α, we proved that
the duplication coefficient Dm(n, a) satisfies the recurrence equation

(qm − qn)a2q2m+3Dm(n, a) + aqm+2(α + 1)(qm+1 − 1)(−qm+1 + aqn)Dm+1(n, a)

−α (q2+m − 1)(qm+1 − 1)(−qm+2 + a2qn)Dm+2(n, a) = 0, (3.47)

with the initial values Dn(n, a) = an, Dn+s(n, a) = 0, s = 1, 2, which according to the
q-Petkovšek-van-Hoeij algorithm doesn’t have a q-hypergeometric term solution.

3.6.2 Second Method

Due to the four bases in which the q-COP are represented, we consider here three cases.

Duplication Coefficients of q-Orthogonal Polynomials Expanded in the Basis
{xn}

We suppose that the q-COP pn(x) are expanded in the basis xn, i.e.

pn(x) =
n∑
j=0

Aj(n)xj,

so that

pn(ax) =
n∑
j=0

Aj(n)ajxj.

We combine the latter expression with the inversion formula

xj =

j∑
m=0

Im(j)pm(x)

to get

pn(ax) =
n∑

m=0

Dm(n, a)pm(x) with Dm(n, a) =
n−m∑
j=0

aj+mAj+m(n)Im(j +m).

By interchanging the order of summation, this relation becomes

pn(ax) =
n∑
k=0

Dk(n, a)pn−k(x) with Dk(n, a) =
k∑
j=0

aj+n−kAj+n−k(n)Bn−k(j + n− k).

It follows that
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Theorem 3.31. The duplication formulae of the little q-Jacobi, alternative q-Charlier
and little q-Laguerre polynomials represented in the basis {xn} are given, respectively, by:

pn(ax;α, β|q) =
n∑

m=0

(−a)mq
m(m+1)

2 (αβqn+1; q)m(q−n; q)m
(αβqm+1; q)m(q; q)m

2φ1

qm−n, αβqm+n+1

αβq2m+2

∣∣∣∣∣∣ q; aq
pm(x;α, β|q),

yn(ax;α; q) =

n∑
m=0

(−a)mq
m(m+1)

2 (q−n; q)m(−αqn; q)m
(q; q)m(−αqm; q)m

2φ1

qm−n,−αqm+n

−αq2m+1

∣∣∣∣∣∣ q; aq
ym(x;α; q),

pn(ax;α|q) =
n∑

m=0

anqn−m
(q−n; q)n−m(a−1; q)n−m

(q; q)n−m
pm(x;α|q).

Duplication Coefficients of q-Orthogonal Polynomials Expanded in the Bases
{(x; q)n} or {(ix; q)n}

To solve the duplication problem in these cases, we need the following result given in
[Gasper and Rahman, 1990, p. 20] as exercice.

Lemma 3.32. The duplication formula of the basis {(x; q)n} is given by

(ax; q)n =
n∑

m=0

[ n
m

]
q
am(a; q)n−m(x; q)m. (3.48)

Proof . Since
Dq(ax; q)n = −a[n]q(aqx; q)n−1,

it follows by iteration that

Dk
q (ax; q)n = (−a)kq(

k
2) (qn−k+1; q)k

(1− q)k
(aqkx; q)n−k.

In order to obtain (3.48) we apply the operator Dk
q to both sides of the relation

(ax; q)n =
n∑

m=0

Dm(n, a)(x; q)m. This yields

ak(qn−k+1; q)k(aq
kx; q)n−k =

n∑
m=k

Dm(n, a)(qm−k+1; q)k(q
kx; q)m−k.

For x = q−k, since (1; q)k = 0, k 6= 0, the latter equation gives the result. �
Using the representation of pn(x) in the basis (x; q)n, Equation (3.48) and the inversion

formulae of these polynomial systems, we prove

Theorem 3.33. For the classical q-orthogonal polynomials represented in the basis {(x; q)n},
the following duplication formulae are valid:
1. Al-Salam-Carlitz II

V (α)
n (ax; q) =

n∑
m=0

n−m∑
j=0

(−1)n−jamαn−m−jqnj+nm−jm(q−n; q)m+j(a; q)j

q(
n
2)+(j2)(q; q)j(q; q)m

1φ1

 q−j

q1−j

a

∣∣∣∣∣∣ q;αq
V (α)

m (x; q),
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2. q-Meixner

Mn(ax;β, γ; q) =

n∑
m=0

n−m∑
j=0

(−1)m+jamqmn+nj+j(a; q)j(q
−n; q)m(qm−n; q)j

q(
m
2 )γj(βqm+1; q)j(q; q)j(q; q)m

×2φ1

q−j , βqm+1

q
aqj

∣∣∣∣∣∣ q;− γ

qm

Mm(x;β, γ; q),

3. quantum q-Krawtchouk

Kqtm
n (ax; p,N ; q) =

n∑
m=0

n−m∑
j=0

(−a)mpjqmn+nj+j(q−n; q)j+m(a; q)j(q
−N ; q)m

q(
m
2 )(q−N ; q)j+m(q; q)j(q; q)m

×2φ1

q−j , qm−N
q1−j

a

∣∣∣∣∣∣ q; 1

pqm

Kqtm
m (x; p,N ; q),

4. q-Krawtchouk

Kn(ax; p,N ; q) =

n∑
m=0

n−m∑
j=0

(−a)mqj+
m(m+1)

2 (q−n; q)m+j(−pqn; q)m+j(a; q)j(q
−N ; q)m

(q−N ; q)m+j(q; q)j(q; q)m(−pqm; q)m

×3φ2

 q−j , qm−N , 0

q1−j

a ,−pq2m+1

∣∣∣∣∣∣ q; q
Km(x; p,N ; q),

5. big q-Laguerre

Pn(ax;α, β; q) =
n∑

m=0

n−m∑
j=0

(−a)mqj+
m(m+1)

2 (a; q)j(q
−n; q)m(qm−n; q)j

(αqm+1; q)j(βqm+1; q)j(q; q)j(q; q)m

×3φ2

q−j , αqm+1, βqm+1

q
aqj
, 0

∣∣∣∣∣∣ q; q
Pm(x;α, β; q),

6. affine q-Krawtchouk

Kaff
n (ax; p,N ; q) =

n∑
m=0

n−m∑
j=0

(−a)mqj(N+1)+
m(m+1)

2 ( q
qm+j ; q)N (a; q)j(q

−n; q)m(qm−n; q)j

(pqm+1; q)j(q; q)j(q; q)m(qm; q)j(q1−m; q)N

×3φ2

q−j , qm−N , pqm+1

q
aqj
, 0

∣∣∣∣∣∣ q; q
Kaff

m (x; p,N ; q),

7. q-Hahn

Qn(ax;α, β,N |q) =

n∑
m=0

n−m∑
j=0

(−a)mqj+
m(m+1)

2 (qm−n; q)j(q
−n; q)m(a; q)j(αβq

n+1; q)m+j

(q; q)j(q; q)m(qm−N ; q)j(αqm+1; q)j(αβqm+1; q)m

×3φ2

q−j , qm−N , αqm+1

q
aqj
, αβq2m+2

∣∣∣∣∣∣ q; q
Qm(x;α, β,N |q),
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8. big q-Jacobi

Pn(ax;α, β, γ; q) =

n∑
m=0

n−m∑
j=0

(−a)mqj+
m(m+1)

2 (qm−n; q)j(q
−n; q)m(a; q)j(αβq

n+1; q)m+j

(q; q)j(q; q)m(αqm+1; q)j(γqm+1; q)j(αβqm+1; q)m

×3φ2

q−j , αqm+1, γqm+1

q
aqj
, αβq2m+2

∣∣∣∣∣∣ q; q
Pm(x;α, β, γ; q).

Proof . Combining

pn(ax) =
n∑
j=0

Aj(n)(ax; q)j, (ax; q)j =

j∑
k=0

Bk(j)(x; q)k and (x; q)k =
k∑

m=0

Im(k)pm(x)

and interchanging the order of summation gives

pn(ax) =
n∑

m=0

Dm(n, a)pm(x)

with

Dm(n, a) =
n−m∑
j=0

j∑
k=0

Aj+m(n)Bm+k(j +m)Im(k +m).

�
Riese [2003] developed an algorithm which finds recurrences for q-hypergeometric mul-

tiple sums and implemented it in Mathematica in his package qMultisum. Using this
algorithm, we recover recurrence relation (3.47) satisfied by the duplication coefficients of
the Al-Salam-Carlitz II polynomials. Moreover we get

Proposition 3.34. The following recurrence relations are satisfied by the duplication
coefficients of:
1. q-Meixner polynomials

−γa2q6 (qn − qm)
(
1− q1+mβ

) (
1− q2+mβ

)
Dm(n, a)− aq3

(
1− q1+m

) (
1− q2+mβ

) (
q2m+4

−aqm+n+3 + aγqm+1(1 + q) + γqm+3 − aγqn(1 + q + q2)− βγq2m+4 + aβγqm+n+3
)
Dm+1(n, a)

+q
(
1− q1+m

) (
1− q2+m

) (
(aq5+2m − a2q3+m+n + aγqm+3 − aβγq2m+5 + a2βγqm+n+3)(1 + q)

−q8+3mβ + a2q6+2m+nβ + a2q2+mγ − a2γqn(1 + q + q2)
)
Dm+2(n, a)

−a
(
−1 + q1+m

) (
−1 + q2+m

) (
−1 + q3+m

) (
−q3+m + aqn

) (
q3+m + γ

)
D3+m(n, a) = 0,

2. quantum q-Krawtchouk polynomials

a2q6 (qm − qn)
(
q1+m − qN

) (
qN − qm

)
Dm(n, a) + aq3

(
q1+m − 1

) (
q1+m − qN

) (
apq3+m+n+N

+aq2+m+n − q3+2m + q3+m+N − pq4+2m+N − aqn+N (1 + q + q2) + aq1+m+N (1 + q)
)
Dm+1(n, a)

+q1+N
(
−1 + q1+m

) (
−1 + q2+m

) (
− pq7+3m + a2pq5+2m+n − a2q2+m+N + a2qn+N (1 + q + q2)

+(aq4+2m − a2q2+m+n − aq3+m+N + apq5+2m+N − a2pq3+m+n+N )(1 + q)
)
Dm+2(n, a)

−aq2N
(
−1 + q1+m

) (
−1 + q2+m

) (
−1 + q3+m

) (
−1 + pq3+m

) (
−q3+m + aqn

)
Dm+3(n, a) = 0,

with the initial conditions Dn(n, a) = an, Dn+s(n, a) = 0, s = 1, 2, 3.
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Duplication Coefficients of q-Orthogonal Polynomials Represented in the Basis
{(x� 1)nq }

Theorem 3.35. For the classical q-orthogonal polynomial represented in the basis (x�1)nq ,
the following duplication formulae hold:
1. Al-Salam-Carlitz I

U (α)
n (ax; q) =

n∑
m=0

n−m∑
j=0

(−1)nam+jαn−m−jq(
n
2)+m+j(q−n; q)m+j(

1
a ; q)j

(q; q)j(q; q)m
2φ1

q−j , 0
aq1−j

∣∣∣∣∣∣ q; aαq
U (α)

m (x; q),

2. q-Hermite I

h2n(ax; q) =

n∑
k=0

a2kq2(k−n)(q; q)2n(q−2n; q2)k(a
2q−2(n−1); q2)n

(q; q)2k(q−2n; q2)n(a2q−2(n−1); q2)k
h2k(x; q),

h2n+1(ax; q) =
n∑
k=0

a2k+1q2(k−n)(q2; q)2n(q−2n; q2)k(a
2q−2(n−1); q2)n

(q2; q)2k(q−2n; q2)n(a2q−2(n−1); q2)k
h2k+1(x; q).

For the Al-Salam-Carlitz I polynomials U (α)
n (x; q) the duplication coefficients are solutions

of the recurrence equation

a2q2(qn − qm)Dm(n, a) + aq(α + 1)(1− qm+1)(qn − aqm+1)Dm+1(n, a)

+α(1− qm+1)(1− qm+2)(qn − a2qm+2)Dm+2(n, a) = 0, (3.49)

with the initial conditions Dn(n, a) = an, Dn+s(n, a) = 0, s = 1, 2.

The proof of this theorem needs the following

Lemma 3.36. The duplication formula

(ax� 1)nq =
n∑

m=0

an
(1

a
; q
)
n−m

[ n
m

]
q
(x� 1)mq

for the basis {(x� 1)nq } is valid.

Proof . We have
Dq(ax� 1)nq = a[n]q(ax� 1)n−1

q

so that
Dk
q (ax� 1)nq = ak[n]q[n− 1]q · · · [n− k + 1]q(ax� 1)n−kq , k ≤ n.

We apply the operator Dk
q to both sides of the relation

(ax� 1)nq =
n∑

m=0

Dm(n, a)(x� 1)mq

and use the previous relation to get

ak[n]q[n− 1]q · · · [n− k + 1]q(ax� 1)n−kq =

n∑
m=0

Dm(n, a)[m]q[m− 1]q · · · [m− k + 1]q(x� 1)m−kq

=
n∑

m=0,m6=k
Dm(n, a)

[m]q!

[m− k]q!
(x� 1)m−kq +Dk(n, a)[k]q!.
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For x = 1, since (1� 1)kq = 0, k 6= 0, it follows that

Dk(n, a) = ak(a� 1)n−kq

[n
k

]
q
.

The result follows from (a� 1)n−kq = an−k( 1
a
; q)n−k. �

Proof (of Theorem 3.35). Combining

pn(ax) =
n∑
j=0

Aj(n)(ax�1)jq, (ax�1)jq =

j∑
k=0

Bk(j)(x�1)kq and (x�1)kq =
k∑

m=0

Im(k)pm(x)

and interchanging the order of summation gives

pn(ax) =
n∑

m=0

Dm(n, a)pm(x)

with

Dm(n, a) =
n−m∑
j=0

j∑
k=0

Aj+m(n)Bm+k(j +m)Im(k +m).

Using once more Riese’s algorithm [Riese, 2003], we get the recurrence relations (3.49)
and

a2q2(qn − qm)Dm(n, a) + (1− qm+1)(1− qm+2)(a2qm+2 − qn)Dm+2(n, a) = 0

satisfied, respectively, by the Al-Salam-Carlitz I and the discrete q-Hermite I polynomials.
We solve the latter recurrence relation for m odd and even to get the duplication coef-
ficients of the discrete q-Hermite I polynomials. According to the q-Petkovšek-van-Hoeij
algorithm, the recurrence relation (3.49) doesn’t have a q-hypergeometric term solution.
�



Chapter 4

Connection, Linearization and
Duplication Coefficients of Orthogonal
Polynomials on Quadratic and
q-Quadratic Lattices

Area et al. [2001] used the formula

rφs

a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣∣ q; yx
 =

∞∑
j=0

[(−1)jq(
j
2)]2yj

(q; q)j
1φ1

0

0

∣∣∣∣∣∣ q; qjy
 r+1φs

q−j , a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣∣ q; qx
,

(4.1)
obtained from Verma’s q-extension [Verma, 1966] of the Fields and Wimp [Fields and
Wimp, 1961] expansion of

r+tφs+u

 a1, . . . , ar, c1, . . . , ct

b1, . . . , bs, d1, . . . , du

∣∣∣∣∣∣ q; yw


in powers of yw as given in [Gasper and Rahman, 1990, Eq. (3.7.9)], to derive the inver-
sion formula of the Askey-Wilson polynomials from which the Askey-Wilson connection
formula with the same first parameter follows. Using an integral evaluation, Ismail and
Rahman [2011] solved the Askey-Wilson connection problem in a more general setting
(with no need for the first parameters to be identical). Using the Fields and Wimp [1961]
expansion formula (1.40), Sánchez-Ruiz and Dehesa [2001] derived the connection formu-
lae of the Wilson and Racah polynomials. In this chapter, we use an algorithmic approach
to derive the inversion, the connection, the linearization and the duplication coefficients
of the classical orthogonal polynomials on quadratic and q-quadratic lattices. We recover
known connection formulae and moreover we get new connection and linearization rela-
tions. From these connection formulae, we get the parameter derivatives of the above
mentioned polynomial families. The duplication formulae, the parameter derivatives are
also completely new, as far as we know.
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4.1 Introduction
Classical orthogonal polynomials on a quadratic and q-quadratic lattice [Nikiforov and
Uvarov, 1988], [Magnus, 1995], [Koekoek et al., 2010] are known to satisfy a divided-
difference equation of the type [Nikiforov and Uvarov, 1988], [Suslov, 1989], [Atakishiyev
et al., 1995], [Foupouagnigni, 2008],{

φ(x(s))
∆

∇x1(s)

∇
∇x(s)

+
ψ(x(s))

2

[
∆

∆x(s)
+
∇
∇x(s)

]
+ λn

}
pn(x(s)) = 0, n ≥ 0, (4.2)

where φ(x(s)) = φ2x
2(s) + φ1x(s) + φ0 and ψ(x(s)) = ψ1x(s) + ψ0 are polynomials of

maximal degree two and one respectively, λn is a constant depending on the integer n
and the leading coefficients φ2 and ψ1 of φ and ψ respectively, and x(s) is a quadratic or
q-quadratic lattice defined by [Magnus, 1995]

x(s) =

{
c1q

s + c2q
−s + c3 if q 6= 1,

c4s
2 + c5s+ c6 if q = 1,

with
xµ(s) = x

(
s+

µ

2

)
, µ, c1, . . . , c6 ∈ C.

Foupouagnigni [2008] showed by means of the companion operators Dx and Sx, given by

Dxf(x(s)) =
f(x(s+ 1

2
))− f(x(s− 1

2
))

x(s+ 1
2
)− x(s− 1

2
)

, Sxf(x(s)) =
f(x(s+ 1

2
)) + f(x(s− 1

2
))

2
,

that Equation (4.2), which characterizes the classical orthogonal polynomials on a quadratic
or q-quadratic lattice [Foupouagnigni et al., 2011], can be rewritten as

φ(x(s))D2
xpn(x(s)) + ψ(x(s))SxDxpn(x(s)) + λnpn(x(s)) = 0. (4.3)

We note that the divided-difference operator Dx is equal to the Askey-Wilson operator
Dq (see e.g. [Askey and Wilson, 1985] )

Dxf(x(s)) = Dqf(x) :=
f̌(q1/2eiθ)− f̌(q−1/2eiθ)

ě(q1/2eiθ)− ě(q−1/2eiθ)
,

with x = x(s) = cos θ =
qs + q−s

2
, qs = eiθ, where for a function f defined on (−1, 1) we

have f̌(eiθ) := f(x), that is

f̌(z) = f((z + 1/z)/2), z = eiθ,

and ě(x) = x. Throughout this chapter, we assume that 0 < q < 1. It is not difficult to
see that if f is differentiable at x, then

lim
q→1

(Dqf)(x) = f ′(x).

The hypergeometric and the basic hypergeometric representations of classical orthogonal
polynomials on a quadratic or q-quadratic lattice are given below (see [Koekoek et al.,
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2010]):
1. Askey-Wilson

pn(x; a, b, c, d|q) =
(ab, ac, ad; q)n

an
4φ3

q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣∣∣ q; q
, x = cos θ,

2. q-Racah

Rn(µ(x);α, β, γ, δ|q) = 4φ3

q−n, αβqn+1, q−x, γδqx+1

αq, βδq, γq

∣∣∣∣∣∣ q; q
, n = 0, 1, . . . , N,

where
µ(x) := q−x + γδqx+1

and
αq = q−N or βδq = q−N or γq = q−N ,

with a nonnegative integer N ,
3. Continuous dual q-Hahn

pn(x; a, b, c|q) =
(ab, ac; q)n

an
3φ2

q−n, aeiθ, ae−iθ
ab, ac

∣∣∣∣∣∣ q; q
, x = cos θ,

4. Continuous q-Hahn

pn(x; a, b, c, d; q) =
(abe2iθ̂, ac, ad; q)n

(aeiθ̂)n
4φ3

q−n, abcdqn−1, aei(θ+2θ̂), ae−iθ

abe2iθ̂, ac, ad

∣∣∣∣∣∣ q; q
, x = cos(θ+ θ̂),

5. Dual q-Hahn

Rn(µ(x); γ, δ,N |q) = 3φ2

q−n, q−x, γδqx+1

γq, q−N

∣∣∣∣∣∣ q; q
, n = 0, 1, . . . , N,

where µ(x) := q−x + γδqx+1,
6. Al-Salam-Chihara

Qn(x; a, b|q) =
(ab; q)n
an

3φ2

q−n, aeiθ, ae−iθ
ab, 0

∣∣∣∣∣∣ q; q
, x = cos θ,

7. q-Meixner-Pollaczek

Pn(x; a|q) = a−ne−inθ̂
(a2; q)n
(q; q)n

3φ2

q−n, aei(θ+2θ̂), ae−iθ

a2, 0

∣∣∣∣∣∣ q; q
, x = cos(θ + θ̂),

8. Continuous q-Jacobi

P (α,β)
n (x|q) =

(qα+1; q)n
(q; q)n

4φ3

q−n, qn+α+β+1, q
α
2

+ 1
4 eiθ, q

α
2

+ 1
4 e−iθ

qα+1,−q α+β+1
2 ,−q α+β+2

2

∣∣∣∣∣∣ q; q
, x = cos θ,
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9. Continuous q-Ultraspherical / Rogers

Cn(x; β|q) =
(β2; q)n
(q; q)n

β−
n
2 4φ3

q−n, β2qn, β
1
2 eiθ, β

1
2 e−iθ

βq
1
2 ,−β,−βq 1

2

∣∣∣∣∣∣ q; q
, x = cos θ,

10. Dual q-Krawtchouk

Kn(λ(x); c,N |q) = 3φ2

q−n, q−x, cqx−N
q−N , 0

∣∣∣∣∣∣ q; q
, n = 0, 1, . . . , N,

where λ(x) := q−x + cqx−N ,
11. Continuous big q-Hermite

Hn(x; a|q) = a−n3φ2

q−n, aeiθ, ae−iθ
0, 0

∣∣∣∣∣∣ q; q
, x = cos θ,

12. Continuous q-Laguerre

P (α)
n (x|q) =

(qα+1; q)n
(q; q)n

3φ2

q−n, q α2 + 1
4 eiθ, q

α
2

+ 1
4 e−iθ

qα+1, 0

∣∣∣∣∣∣ q; q
, x = cos θ,

13. Wilson

Wn(x2; a, b, c, d) = (a+b)n(a+c)n(a+d)n4F3

−n, n+ a+ b+ c+ d− 1, a+ ix, a− ix

a+ b, a+ c, a+ d

∣∣∣∣∣∣ 1
,

14. Racah

Rn(λ(x);α, β, γ, δ) = 4F3

−n, n+ α + β + 1,−x, x+ γ + δ + 1

α + 1, β + δ + 1, γ + 1

∣∣∣∣∣∣ 1
, n = 0, 1, . . . , N,

where
λ(x) = x(x+ γ + δ + 1)

and
α + 1 = −N or β + δ + 1 = −N or γ + 1 = −N

with a nonnegative integer N ,
15. Continuous dual Hahn

Sn(x2; a, b, c) = (a+ b)n(a+ c)n3F2

−n, a+ ix, a− ix

a+ b, a+ c

∣∣∣∣∣∣ 1
,

16. Continuous Hahn

pn(x; a, b, c, d) = in
(a+ c)n(a+ d)n

n!
3F2

−n, n+ a+ b+ c+ d− 1, a+ ix

a+ c, a+ d

∣∣∣∣∣∣ 1
,
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17. Dual Hahn

Rn(λ(x); γ, δ,N) = 3F2

−n,−x, x+ γ + δ + 1

γ + 1,−N

∣∣∣∣∣∣ 1
, n = 0, 1, . . . , N,

where λ(x) = x(x+ γ + δ + 1),
18. Meixner-Pollaczek

P (λ)
n (x; θ) =

(2λ)n
n!

einθ2F1

−n, λ+ ix

2λ

∣∣∣∣∣∣ 1− e−2iθ

.
Let us set

Bn(a, x) = (aqs; q)n(aq−s; q)n =
n−1∏
k=0

(1− 2axqk + a2q2k), n ≥ 1, B0(a, x) ≡ 1, (4.4)

where x = x(s) = cos θ =
qs + q−s

2
, qs = eiθ;

ϑn(a, x) = (a+ ix)n(a− ix)n; (4.5)ξn(γ, δ, µ(x)) = (q−x; q)n(γδqx+1; q)n =
n−1∏
k=0

(1 + γδq2k+1 − µ(x)qk), n ≥ 1,

ξ0(γ, δ, µ(x)) ≡ 1,

(4.6)

with µ(x) = q−x + γδqx+1;χn(γ, δ, λ(x)) = (−x)n(x+ γ + δ + 1)n =
n−1∏
k=0

(
k(γ + δ + k + 1)− λ(x)

)
, n ≥ 1,

χ0(γ, δ, λ(x)) ≡ 1,

(4.7)

for λ(x) = x(x+ γ + δ + 1). The hypergeometric and the basic hypergeometric represen-
tations of classical orthogonal polynomials on a quadratic or q-quadratic lattice suggest
to use the natural bases {Bn(a, x)}, {(a+ ix)n}, {ξn(γ, δ, µ(x))} or {χn(γ, δ, λ(x))} which
are polynomials of degree n in the variables x, x, µ(x) or λ(x), respectively, and the bases
{ϑn(a, x)} which are polynomials of degree n in the variable x2. The operator Dx is appro-
priate for Bn(a, x), ξn(γ, δ, µ(x)) and χn(γ, δ, λ(x)) whereas the corresponding operator
for the basis {ϑn(a, x)} is the Wilson operator [Cooper, 2012], [Ismail and Stanton, 2012]
defined by

Df(x) =
f
(
x+ i

2

)
− f

(
x− i

2

)
2ix

. (4.8)

This operator satisfies Dx2 = 1.
The bases {ϑn(a, x)}, {ξn(γ, δ, µ(x))} and {χn(γ, δ, λ(x))} are related to the Askey-Wilson
basis {Bn(a, x)} in the following way.

Remark 4.1. 1. If we substitute a → qa, qs = eiθ → qix in Bn(a,x)
(1−q)2n and take the limit

when q → 1, we get ϑn(a, x).
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2. If we substitute a → (γδq)
1
2 and qs = eiθ → (γδq)

1
2 qx in Bn(a, x) we obtain

ξn(γ, δ, µ(x)).

3. If we substitute γ → qγ, δ → qδ in ξn(γ,δ,µ(x))
(1−q)2n and take the limit as q → 1, we get

χn(γ, δ, λ(x)).

4. If we set a = 1
2
(γ+δ+1) and ix→ x+ 1

2
(γ+δ+1) in ϑn(a, x) we get χn(γ, δ, λ(x)).

5. We also have
lim
t→∞

ϑn(a− it, x+ t)

(−2it)n
= (a+ ix)n.

In this chapter we find the inversion, connection, duplication and linearization formu-
lae for the Askey-Wilson polynomials. The results can be extended to other families of
classical orthogonal polynomials on a quadratic or q-quadratic lattice by means of spe-
cialization and/or by limiting processes following the Askey scheme and it q-analogue. To
illustrate this, we solve the inversion, connection, duplication and linearization problem
for the q-Racah, Wilson and Racah polynomials.

The Askey-Wilson orthogonal polynomial family pn(x; a, b, c, d|q) satisfies the divided-
difference equation of type (4.3) with [Foupouagnigni, 2008]

φ(x(s)) = 2(abcd+ 1)x2(s)− (a+ b+ c+ d+ abc+ abd+ acd+ bcd)x(s)

+ab+ ac+ ad+ bc+ bd+ cd− abcd− 1,

ψ(x(s)) =
4(abcd− 1)q

1
2x(s)

q − 1
+

2(a+ b+ c+ d− abc− abd− acd− bcd)q
1
2

q − 1
.

The Askey-Wilson basis {Bn(a, x)} has the following properties.

Proposition 4.2 ([Foupouagnigni et al., 2013a], [Foupouagnigni et al., 2013b]). The
q-quadratic lattice x(s) = qs+q−s

2
and the corresponding polynomial basis

Bn(a, x) = (aqs; q)n(aq−s; q)n, n ≥ 1, B0(a, x) ≡ 1,

fulfil the relations

DxBn(a, x) = η(a, n)Bn−1(a
√
q, x); (4.9)

SxBn(a, x) = β1(a, n)Bn−1(a
√
q, x) + β2(n)Bn(a

√
q, x);

B1(a, x)D2
xBn(a, x) = η(a, n)η(a

√
q, n− 1)Bn−1(a, x); (4.10)

B1(a, x)SxDxBn(a, x) = η(a, n) (β1(a
√
q, n− 1)Bn−1(a, x) + β2(n− 1)Bn(a, x)) ; (4.11)

xBn(a, x) =µ1(a, n)Bn(a, x) + µ2(a, n)Bn+1(a, x); (4.12)
B1(a, x)Bn(a, x) = ν1(a, n)Bn(a, x) + ν2(n)Bn+1(a, x); (4.13)
B1(a, x)Bn(aq, x) =Bn+1(a, x),

where

η(a, n) = 2a(1−qn)
q−1

, β1(a, n) = 1
2
(1− a2q2n−1)(1− q−n), β2(n) = 1

2
+ 1

2qn
,

µ1(a, n) = 1+a2q2n

2aqn
, µ2(a, n) = −1

2aqn
, ν1(a, n) = (1− q−n)(1− a2qn), ν2(n) = q−n.

Using these properties of the basis {Bn(a, x)}, we will derive the inversion formulae
of Askey-Wilson polynomials.
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4.2 Inversion Formula of Askey-Wilson Polynomials

To solve the inversion problem of the Askey-Wilson polynomials we need the coefficients
of the three-term recurrence relation of the Askey-Wilson polynomials pn(x; a, b, c, d|q),
and the coefficients of the three-term recurrence relation of the second divided-derivative
of the Askey-Wilson polynomials D2

xpn(x; a, b, c, d|q).

4.2.1 Three-Term Recurrence Equation of the Family (pn(x; a, b, c, d|q))n

Proposition 4.3 (See e.g. [Koekoek et al., 2010]). The Askey-Wilson polynomial family
satisfies a three-term recurrence equation of the form

xpn(x; a, b, c, d|q) = αnpn+1(x; a, b, c, d|q) + βnpn(x; a, b, c, d|q) + γnpn−1(x; a, b, c, d|q),
(4.14)

with

αn =− 1

2aqn
kn
kn+1

, (4.15)

βn =
1

2

qn

(−q2 + dcbaq2n) (−1 + dcbaq2n)

(
(q2 + abcdq2n+1 + abcdqn+1 − abcdqn)×

(a+ b+ c+ d)− (qn+1 + qn+2 − q − abcdq2n)(abc+ abd+ acd+ bcd)
)
, (4.16)

γn =− kn
2kn−1

(qndc− q) (dbqn − q) (qnbc− q) (dcbaqn − q2) qna (baqn − q) (caqn − q)
q (−q2 + dcbaq2n)2 (−q3 + dcbaq2n)

×(aqnd− q) (−1 + qn)

(−q + dcbaq2n)
,

where kn is the leading coefficient of the polynomial pn(x; a, b, c, d|q) represented in the
basis (Bn(a, x))n

pn(x; a, b, c, d|q) = knBn(a, x) + k′nBn−1(a, x) + k′′nBn−2(a, x) + . . . (4.17)

and is given explicitly by kn =
(abcdqn−1; q)n

(−a)nq(
n
2)

.

Proof . We will first need to compute, in terms of the leading coefficient kn, the coefficients
k′n and k′′n of the expansion (4.17) of pn(x; a, b, c, d|q) in the appropriate basis (Bn(a, x))n.
In order to compute these coefficients, first we substitute (4.17) in the divided-difference
equation (4.3). Next we multiply this equation by B1(a, x) and use Relations (4.10), (4.11)
and (4.13). To eliminate the terms xBk(a, x) and x2Bk(a, x), we use Relations (4.12) and

x2Bn(a, x) =µ2
1(a, n)Bn(a, x) + µ2(a, n)(µ1(a, n) + µ1(a, n+ 1))Bn+1(a, x)

+µ2(a, n)µ2(a, n+ 1)Bn+2(a, x). (4.18)

Equating the coefficients of Bn+1(a, x) gives (compare [Foupouagnigni, 2008, p. 158,
(104)])

λn = −4
(−1 + qn)

√
q (abcdqn − q)

(q − 1)2 qn
. (4.19)



110 Connection, Linearization and Duplication Coefficients of OP on QQL

Equating the coefficients of Bn(a, x), we deduce using (4.19) that

k′n = −(−1 + qn) (−q + aqnd) (aqnc− q) (aqnb− q)
q (q − 1) (−q2 + abcdq2n)

kn. (4.20)

By equating the coefficients of Bn−1(a, x) and using (4.19)-(4.20), one gets

k′′n =
(−1 + qn) (−q + aqnd) (aqnc− q) (aqnb− q) (−q + qn) (aqnd− q2)

(1 + q) (q − 1)2 (−q3 + abcdq2n) (−q2 + abcdq2n)

×(aqnc− q2) (aqnb− q2)

q4
kn. (4.21)

To get the coefficients αn, βn and γn of Equation (4.14), we substitute the expression
of pn given by (4.17) in the recurrence equation (4.14) and use Equations (4.12), (4.19)-
(4.21). By equating the coefficients of Bn+1(a, x), one gets αn. Equating the coefficients
of Bn(a, x) and using (4.15) yields βn. Similarly, equating the coefficients of Bn−1(a, x)
and using (4.15)-(4.16) gives γn. �

Remark 4.4. The recurrence equation (4.14) was also given in [Koekoek et al., 2010, p.
417] in the form

2xp̃n(x) = Anp̃n+1(x) + [a+ a−1 − (An + Cn)]p̃n(x) + Cnp̃n−1(x), (4.22)

where
p̃n(x) :=

anpn(x; a, b, c, d|q)
(ab, ac, ad : q)n

and

An =
(1− abqn)(1− acqn)(1− adqn)(1− abcdqn−1)

a(1− abcdq2n−1)(1− abcdq2n)

Cn =
a(1− qn)(1− bcqn−1)(1− bdqn−1)(1− cdqn−1)

(1− abcdq2n−2)(1− abcdq2n−1)
.

It can be proved by direct computation that Equation (4.22) is equivalent to Equation
(4.14) with

αn = An
a(ab, ac, ad; q)n

2(ab, ac, ad; q)n+1

, βn =
[a+ a−1 − (An + Cn)]

2
, γn = Cn

(ab, ac, ad; q)n
2a(ab, ac, ad; q)n−1

.

4.2.2 Three-Term Recurrence Equation of the Family (D2
xpn(x; a, b, c, d|q))n

Foupouagnigni et al. [2011] proved that if (pn)n is an orthogonal polynomial family satis-
fying (4.3), then the families (Dm

x pn)n are also orthogonal, for all m ∈ N. Consequently,
they also satisfy a three-term recurrence equation.

Proposition 4.5. The second-order divided-difference D2
xpn of the Askey-Wilson orthog-

onal polynomials defined by (4.17) satisfies the following recurrence equation

xD2
xpn(x; a, b, c, d|q) =α?nD2

xpn+1(x; a, b, c, d|q) + β?nD2
xpn(x; a, b, c, d|q)

+γ?nD2
xpn−1(x; a, b, c, d|q), (4.23)
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with

α?n =−1

2

−q + qn

aqn (−1 + qn+1)

kn
kn+1

, (4.24)

β?n =
1

2

qn

(−q2 + abcdq2n) (−1 + abcdq2n)

(
(a+ b+ c+ d)(q − abcdqn+1 − abcdqn+2 + abcdq2n)

+(abc+ abd+ acd+ bcd)(q2 − qn − qn+1 + abcdq2n+1)
)
, (4.25)

γ?n =− kn
2kn−1

(−q + qndc) (qnbd− q) (qnbc− q) (abcdqn − 1) qna (−1 + qn) (baqn − q)
(−q2 + abcdq2n)2 (−q3 + abcdq2n)

×(acqn − q) (−q + aqnd)

(−q + abcdq2n)
.

Proof . We substitute the expression of pn given by (4.17) in the recurrence equation (4.23),
and then multiply the equation obtained by B1(a, x). Next we use (4.10) and (4.12),
respectively, to eliminate B1(a, x)D2

xBn(a, x) and xBn(a, x). By equating the coefficients
of Bn(a, x), one gets α?n. Equating the coefficients of Bn−1(a, x) and using (4.24) yields β?n.
Similarly, equating the coefficients of Bn−2(a, x) and using (4.24) and (4.25), we obtain
γ?n. �

4.2.3 Inversion Formula of Askey-Wilson Polynomials

Since the family (pk(x; a, b, c, d|q))k=0,...,n is a basis of polynomials of degree less than or
equal to n, and since Bn(a, x) is a polynomial of degree n w.r.t. x, it follows that

Bn(a, x) =
n∑

m=0

Im(n)pm(x; a, b, c, d|q), (4.26)

which is called the inversion formula for the family (pn(x; a, b, c, d|q))n represented in the
basis (Bn(a, x))n. We prove that

Proposition 4.6 (See e.g. [Area et al., 2001], [Foupouagnigni et al., 2013b]). The inver-
sion formula of the Askey-Wilson orthogonal polynomial family is given by

Bn(a, x) =
n∑

m=0

[ n
m

]
q
q
m(m−1)

2
(−a)m(abqm, acqm, adqm; q)n−m
(abcdqm−1; q)m(abcdq2m; q)n−m

pm(x; a, b, c, d|q). (4.27)

The proof of this proposition uses the following

Lemma 4.7. The second Dx-derivative of the basis (Bn(a, x))n satisfies the recurrence
relation

xD2
xBn(a, x) = µ1(a, n− 1)D2

xBn(a, x) + µ2(a, n− 1)
η(a, n)η(a

√
q, n− 1)

η(a, n+ 1)η(a
√
q, n)

D2
xBn+1(a, x),

(4.28)
with the coefficients given in Proposition 4.2.

Proof (of the lemma). From (4.10) we obtain Bn(a, x) in terms of D2
xBn+1(a, x). If we

substitute this in the recurrence equation (4.12), the result follows. �
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Proof (of Proposition 4.6). We substitute Bn(a, x) given by (4.26) in the recurrence
equation (4.12) and replace xpm(x; a, b, c, d|q) by the expression given by (4.14). This
yields the equation

µ1(a, n)
n∑

m=0

Im(n)pm(x; a, b, c, d|q) + µ2(a, n)
n+1∑
m=0

Im(n+ 1)pm(x; a, b, c, d|q)

=
n∑

m=0

Im(n)
(
αmpm+1(x; a, b, c, d|q) + βmpm(x; a, b, c, d|q) + γmpm−1(x; a, b, c, d|q)

)
.

By an appropriate shift of indices, and equating the coefficients of pm(x; a, b, c, d|q), we
get

µ1(a, n)Im(n) + µ2(a, n)Im(n+ 1) = αm−1Im−1(n) + βmIm(n) + γm+1Im+1(n). (4.29)

Similarly, we substitute Bn(a, x) given by (4.26) in (4.28) and replace xD2
xpm(x; a, b, c, d|q)

by the expression given in (4.23). By an appropriate shift of indices, and equating the
coefficients of pm(x; a, b, c, d|q), we get

µ1(a, n− 1)Im(n) + µ2(a, n− 1)
η(a, n)η(a

√
q, n− 1)

η(a, n+ 1)η(a
√
q, n)

Im(n+ 1)

= α?m−1Im−1(n) + β?mIm(n) + γ?m+1Im+1(n). (4.30)

We substitute Im(n+ 1) obtained from (4.29) in (4.30) and get a second-order recurrence
equation w.r.t. the variable m:

q(qn − qm)(1− abcdq2m+2)(abcdq2m; q)4Im(n) + qm
(
1− qm+1

)
(abcdq2m+1; q)3

×
(
q + a2qn + a2b2c2d2q4m+3 + a4b2c2d2q4m+n+2 + q2m+n+2a2bcd(b+ c+ d)

+a2q2m+1(db+ dc+ bc)(1 + q) + (a2bcdq2m+n+1 − aqm+1 − a2bcdq3m+2)(d+ a+ b+ c)

−abcdq2m(q3 − q2 + aqn)− (aqm+n+1 + a2bdcq3m+n+2)(abc+ abd+ acd+ bcd)
)
Im+1(n)

+q2m+1a2(qm+1; q)2 (qmqdc− 1) (qmqdb− 1) (qmqbc− 1) (qmqad− 1) (qmqac− 1)

×
(
abqm+1 − 1

) (
abcdq2m − 1

) (
−1 + abcdqm+n+1

)
Im+2(n) = 0.

To solve this recurrence equation, we use the q-Petkovšek-van-Hoeij algorithm. With this
algorithm, we get up to a multiplicative constant the solution of this recurrence equation.
Equating the coefficients of Bn(a, x) in (4.26) gives the constant and (4.27) follows. �

Remark 4.8. The inversion formula (4.27) was already obtained in [Area et al., 2001],
but using (4.1).

4.3 Connection, Duplication, Linearization Formulae of
Askey-Wilson Polynomials

4.3.1 Connection Coefficients Between (pn(x; a, b, c, d|q))n
and (pm(x; a, β, γ, δ|q))m

From the basic hypergeometric representation and the inversion problem of the Askey-
Wilson polynomials, we determine the coefficients Cm(n) of the expansion

pn(x; a, b, c, d|q) =
n∑

m=0

Cm(n)pm(x; a, β, γ, δ|q). (4.31)
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These connection coefficients are given by

Proposition 4.9 (See [Askey and Wilson, 1985], [Area et al., 2001], Foupouagnigni et al.
[2013b]). The Askey-Wilson orthogonal polynomial family satisfies the following connec-
tion formula

pn(x; a, b, c, d|q) =
n∑

m=0

am−nqm(m−n)

(q; q)n−m

(q, ab, ac, ad; q)n(abcdqn−1; q)m
(q, ab, ac, ad; q)m(aβγδqm−1; q)m

×

5φ4

qm−n, aβqm, aγqm, aδqm, abcdqm+n−1

abqm, acqm, adqm, aβγδq2m

∣∣∣∣∣∣ q; q
pm(x; a, β, γ, δ|q). (4.32)

Proof . From the basic hypergeometric representation of the Askey-Wilson polynomials,
we have

pn(x; a, b, c, d|q) =
n∑
j=0

Aj(n)Bj(a, x);

with Aj(n) =
(ab, ac, ad; q)n(q−n, abcdqn−1, q)jq

j

an(q, ab, ac, ad; q)j
and Bj(a, x) = (aeiθ, ae−iθ; q)j. It fol-

lows from the inversion formula (4.27) that

Bj(a, x) =

j∑
m=0

Im(j)pm(x; a, β, γ, δ|q).

Combining the last two relations, one gets (4.31) with

Cm(n) =
n−m∑
j=0

Aj+m(n)Im(j +m).

To get the result we apply the sum2qhyper algorithm. �
q-Zeilberger’s algorithm combined with the q-Petkovšek-van-Hoeij algorithm yields the

specialized cases given in

Proposition 4.10. The following connection formulae for the Askey-Wilson polynomials
are valid:

pn(x; a, b, c, d|q) =
n∑

m=0

(−1)mbn1q
m(m−2n+1)

2

bm(q; q)n−m

(q, ac, ad, cd, b
b1

; q)n(abcdqn−1; q)m

(q, ac, ad, cd, ab1cdqm−1, ab1cdqn,
b1q
bqn

; q)m

×(ab1cd; q)2m

(ab1cd; q)n
pm(x; a, b1, c, d|q), (4.33)

pn(x; a, b, c, d|q) =
n∑

m=0

(−1)mcn1q
m(m−2n+1)

2

cm(q; q)n−m

(q, ab, ad, bd, c
c1

; q)n(abcdqn−1; q)m

(q, ab, ad, bd, abc1dqm−1, abc1dqn,
c1q
cqn

; q)m

×(abc1d; q)2m

(abc1d; q)n
pm(x; a, b, c1, d|q), (4.34)
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pn(x; a, b, c, d|q) =
n∑

m=0

(−1)mdn1q
m(m−2n+1)

2

dm(q; q)n−m

(q, ab, ac, bc, d
d1

; q)n(abcdqn−1; q)m

(q, ab, ac, bc, abcd1qm−1, abcd1qn,
d1q
dqn

; q)m

×(abcd1; q)2m

(abcd1; q)n
pm(x; a, b, c, d1|q). (4.35)

From these connection formulae, we proceed as in the proof of Corollary 3.19 to derive
the parameter derivatives of the Askey-Wilson polynomials.

Corollary 4.11. The following parameter derivatives of the Askey-Wilson polynomials
are valid:

∂

∂b
pn(x; a, b, c, d|q) = −

n−1∑
m=0

( acdqm+n−1

1− abcdqm+n−1
pn(x; a, b, c, d|q)

+
[ n
m

]
q

bn(ac, ad, cd; q)n(q; q)n−m−1(abcdqn−1; q)m(abcd; q)2m

bm+1(ac, ad, cd, abcdqm−1, abcdqn; q)m(abcd; q)n
pm(x; a, b, c, d|q)

)
,

∂

∂c
pn(x; a, b, c, d|q) = −

n−1∑
m=0

( abdqm+n−1

1− abcdqm+n−1
pn(x; a, b, c, d|q)

+
[ n
m

]
q

cn(ab, ad, bd; q)n(q; q)n−m−1(abcdqn−1; q)m(abcd; q)2m

cm+1(ab, ad, bd, abcdqm−1, abcdqn; q)m(abcd; q)n
pm(x; a, b, c, d|q)

)
,

∂

∂d
pn(x; a, b, c, d|q) = −

n−1∑
m=0

( abcqm+n−1

1− abcdqm+n−1
pn(x; a, b, c, d|q)

+
[ n
m

]
q

dn(ab, ac, bc; q)n(q; q)n−m−1(abcdqn−1; q)m(abcd; q)2m

dm+1(ab, ac, bc, abcdqm−1, abcdqn; q)m(abcd; q)n
pm(x; a, b, c, d|q)

)
.

4.3.2 Connection Coefficients Between (pn(x; a, b, c, d|q))n
and (pm(x;α, β, γ, δ|q))m

We remark that in the connection formula (4.32), the parameter a is kept identical on
both sides of the formula. We would now like to get a similar formula for different a. For
this purpose, we need the following connection formula of Bn(a, x).

We expand Bn(a, x) in terms of Bm(α, x)

Bn(a, x) =
n∑

m=0

Fm(n)Bm(α, x), (4.36)

and obtain

Theorem 4.12 (See e.g. [Ismail, 1995]). The connection between the basis (Bn(a, x))n
and (Bn(α, x))n is given by

Bn(a, x) =
n∑

m=0

[ n
m

]
q

( a
α

)m
(aαqm; q)n−m

( a
α

; q
)
n−m

Bm(α, x). (4.37)
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To get the coefficients Fm(n) of the expansion (4.36), we need the following interme-
diate result which gives a second-order divided-difference equation for Bn(a, x).

Proposition 4.13. The polynomial family (Bn(a, x))n satisfies the second order divided-
difference equation(

a2q2n−2 − 1
)

(q − 1)2B1(a, x)D2
xBn(a, x)− 4 a

√
qqn−1 (q − 1)B1(a, x)SxDxBn(a, x)

+4 a2√q
(
1 + qn−1

)
(1− qn)Bn (a, x) = 0. (4.38)

Proof . We substitute the expression of Bn−1(a, x) obtained from (4.10) in Equation (4.11)
and the result follows. �
Proof (of Theorem 4.12). We substitute Bn(a, x) by the sum in (4.36) in the divided-
difference equation (4.38) and multiply the obtained equation by B1(α, x) for the purpose
to use Equations (4.10), (4.11) and (4.13) (with a replaced by α). Next, we substitute
B1(a, x) by its representation in terms of x, that is B1(a, x) = 1 + a2 − 2ax, and use
Equation (4.12) with a = α. Finally we collect the coefficients of Bm(α, x), Bm−1(α, x),
Bm+1(α, x) and by an appropriate shift of indices, we rewrite all the summands in terms
of Bm(α, x). Since the family (Bm(α, x))m is linearly independent, it follows after simpli-
fication that Fm(n) satisfies the following second-order recurrence equation

−a
(
qm+1 − 1

) (
α qm+4 − α q2m+4 − α qm+2a2q2n + α q2m+2a2q2n + aqm+3

−aq2m+4α2 − aqm+2q2n + aq2m+3qnα2 − aq3qn − aqnα2q3m+3 − aq2qn

−aqnα2q3m+4 + α qnqm+3 + α qnq2m+3 + α qnqm+3a2 + α qnq2m+3a2
)
Fm+1(n)

+a2q
(
−qm+1 + qnq

) (
qnqm+1 + q2

)
Fm(n) +

(
qm+1 − 1

) (
−a+ α qm+1

)
×
(
α qm+1a− 1

) (
qm+1q − 1

) (
aqn − α qm+1q

) (
α qm+1aqn + q

)
Fm+2(n) = 0.

Using again the q-Petkovšek-van-Hoeij algorithm, we solve this recurrence equation and
the result follows using the formulas

(aq−n; q)n = (a−1q; q)n(−a)nq−n−(n2), a 6= 0,

(aqk; q)n−k =
(a; q)n
(a; q)k

, k = 0, 1, 2, . . . , n,

(q−n; q)k =
(q; q)n

(q; q)n−k
(−1)kq(

k
2)−nk, k = 0, 1, . . . , n, (4.39)

given, respectively, by Equations (1.8.12), (1.8.14), (1.8.18) of [Koekoek et al., 2010, p.
12–13]. �

We can now use the connection formula (4.37) between Bn(a, x) and Bn(α, x) to derive
the representation of the Askey-Wilson polynomials in the basis (Bn(α, x))n. From

pn(x; a, b, c, d|q) =
n∑
j=0

Aj(n)Bj(a, x) and Bj(a, x) =

j∑
m=0

Fm(j)Bm(α, x),

we get

pn(x; a, b, c, d|q) =
n∑

m=0

Gm(n)Bm(α, x),
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with

Gm(n) =
n−m∑
j=0

Aj+m(n)Fm(j +m).

Using the sum2qhyper algorithm, one gets the following representation.

Proposition 4.14. The element pn(x; a, b, c, d|q) of the Askey-Wilson orthogonal polyno-
mial family has the following representation in the basis (Bn(α, x))n

pn(x; a, b, c, d|q) =
n∑

m=0

(
− a
α

)m q
m(m−2n+1)

2

an(q; q)n−m

(q, ab, ac, ad; q)n(abcdqn−1; q)m
(q, ab, ac, ad; q)m

×

4φ3

qm−n, aαqm, abcdqm+n−1, a
α

abqm, acqm, adqm

∣∣∣∣∣∣ q; q
Bm(α, x).

Remark 4.15. For α = b, α = c, α = d the latter representation of pn(x; a, b, c, d|q) of
Proposition 4.14 is, respectively, reduced using q-Zeilberger’s algorithm to

pn(x; a, b, c, d|q) =
n∑

m=0

qm(ab, bc, bd; q)n(q−n, abcdqn−1; q)m
bn(q, ab, bc, bd; q)m

Bm(b, x) = pn(x; b, a, c, d|q),

pn(x; a, b, c, d|q) =
n∑

m=0

qm(ac, bc, cd; q)n(q−n, abcdqn−1; q)m
cn(q, ac, bc, cd; q)m

Bm(c, x) = pn(x; c, b, a, d|q),

pn(x; a, b, c, d|q) =
n∑

m=0

qm(ad, bd, cd; q)n(q−n, abcdqn−1; q)m
dn(q, ad, bd, cd; q)m

Bm(d, x) = pn(x; d, b, c, a|q).

These relations show what happens when we interchange the first parameter of pn(x; a, b, c, d|q)
with any of the other three and were given in Rahman [1981b] for the family

pn(x; a, b, c, d) =
anpn(x; a, b, c, d|q)

(ab, ac, ad; q)n
.

Since pn(x; a, b, c, d|q) is represented, respectively, in the bases Bn(b, x), Bn(c, x) and
Bn(d, x) as shown in the preceding remark, we can represent Bn(b, x), Bn(c, x) and
Bn(d, x) in the basis pn(x; a, b, c, d|q). This is given by

Proposition 4.16. For the Askey-Wilson polynomials, the following inversion formulae
hold:

Bn(b, x) =
n∑

m=0

[ n
m

]
q
q(

m
2 ) (−b)m(baqm, bcqm, bdqm; q)n−m

(abcdqm−1; q)m(abcdq2m; q)n−m
pm(x; a, b, c, d|q),

Bn(c, x) =
n∑

m=0

[ n
m

]
q
q(

m
2 ) (−c)m(caqm, cbqm, cdqm; q)n−m

(abcdqm−1; q)m(abcdq2m; q)n−m
pm(x; a, b, c, d|q),

Bn(d, x) =
n∑

m=0

[ n
m

]
q
q(

m
2 ) (−d)m(daqm, dbqm, dcqm; q)n−m

(abcdqm−1; q)m(abcdq2m; q)n−m
pm(x; a, b, c, d|q).

Proof . The proof follows from Proposition 4.6 and Remark 4.15. �
The combination of the basic q-hypergeometric representations of pn(x; a, b, c, d|q) of

Remark 4.15 and the inversion formulae of Proposition 4.16 gives using the q-Zeilberger
or sum2qhyper algorithm the following connection formulae.
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Proposition 4.17. The following connection formulae are valid for the Askey-Wilson
polynomials:

pn(x; a, b, c, d|q) =
n∑

m=0

(−1)man1q
m(m−2n+1)

2

am(q; q)n−m

(q, bc, bd, cd, a
a1

; q)n(abcdqn−1; q)m

(q, bc, bd, cd, a1bcdqn,
a1q
aqn

; q)m(a1bcd; q)n

× (a1bcd; q)2m

(a1bcdqm−1; q)m
pm(x; a1, b, c, d|q), (4.40)

pn(x; a, b, c, d|q) =
n∑

m=0

bm−nqm(m−n)

(q; q)n−m

(q, ba, bc, bd; q)n(abcdqn−1; q)m
(q, ba, bc, bd; q)m(αbγδqm−1; q)m

×

5φ4

qm−n, bαqm, bγqm, bδqm, abcdqm+n−1

baqm, bcqm, bdqm, αbγδq2m

∣∣∣∣∣∣ q; q
pm(x;α, b, γ, δ|q), (4.41)

pn(x; a, b, c, d|q) =
n∑

m=0

cm−nqm(m−n)

(q; q)n−m

(q, ca, cb, cd; q)n(abcdqn−1; q)m
(q, ca, cb, cd; q)m(αβcδqm−1; q)m

×

5φ4

qm−n, cαqm, cβqm, cδqm, abcdqm+n−1

caqm, cbqm, cdqm, αβcδq2m

∣∣∣∣∣∣ q; q
pm(x;α, β, c, δ|q), (4.42)

pn(x; a, b, c, d|q) =
n∑

m=0

dm−nqm(m−n)

(q; q)n−m

(q, da, db, dc; q)n(abcdqn−1; q)m
(q, da, db, dc; q)m(αβγdqm−1; q)m

×

5φ4

qm−n, dαqm, dβqm, dγqm, abcdqm+n−1

daqm, dbqm, dcqm, αβγdq2m

∣∣∣∣∣∣ q; q
pm(x;α, β, γ, d|q). (4.43)

A consequence of connection formula (4.40) is the parameter derivative

∂

∂a
pn(x; a, b, c, d|q) = −

n−1∑
m=0

( bcdqm+n−1

1− abcdqm+n−1
pn(x; a, b, c, d|q)

+
[ n
m

]
q

an(bc, bd, cd; q)n(q; q)n−m−1(abcdqn−1; q)m(abcd; q)2m

am+1(bc, bd, cd, abcdqm−1, abcdqn; q)m(abcd; q)n
pm(x; a, b, c, d|q)

)
.

We note that the above parameter derivative follows easily from Corollary 4.11 and Re-
mark 4.15.
From the representation of pn(x; a, b, c, d|q) of Proposition 4.14 and the inversion formula
(4.27), we have

pn(x; a, b, c, d|q) =
n∑
j=0

Gj(n)Bj(α, x) and Bj(α, x) =

j∑
m=0

Im(j)pm(x;α, β, γ, δ|q),

from which we get

pn(x; a, b, c, d|q) =
n∑

m=0

Cm(n)pm(x;α, β, γ, δ|q),
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with

Cm(n) =
n−m∑
j=0

Gj+m(n)Im(j +m).

Using once more the sum2qhyper algorithm, one gets the following

Theorem 4.18 (See e.g. [Ismail and Rahman, 2011], [Foupouagnigni et al., 2013b]). The
following connection formula is satisfied by the Askey-Wilson polynomial family

pn(x; a, b, c, d|q) =
n∑

m=0

Cm(n)pm(x;α, β, γ, δ|q), (4.44)

with

Cm(n) =
n−m∑
k=0

( a
α

)k (qm−n; q)kq
k

(q; q)k

(αβqm, αγqm, αδqm; q)k(abcdq
n−1; q)k+m

(ab, ac, ad; q)k+m(αβγδq2m; q)k

× (aqm)m−n(q; q)n(ab, ac, ad; q)n
(q; q)m(q; q)n−m(αβγδqm−1; q)m

4φ3

qk+m−n, aαqk+m, abcdqm+n+k−1, a
α

abqk+m, acqk+m, adqk+m

∣∣∣∣∣∣ q; q
.

4.3.3 Duplication Formula of Askey-Wilson Polynomials

In order to get the duplication coefficients Dm(n, α) of the relation

pn(αx; a, b, c, d|q) =
n∑

m=0

Dm(n, α)pm(x; a, b, c, d|q)

we need the duplication coefficients of the basis family (Bn(a, x))n given by the following

Proposition 4.19. For the Askey-Wilson polynomial basis (Bn(a, x))n, the duplication
formula

Bn(a, αx) =
n∑
k=0

Ek(n)Bk(a, x) (4.45)

holds with

Ek(n) = qk
k∑
j=0

q−j
2
a−2j

n−1∏
l=0

(1− αa2ql+j − αql−j + a2q2l)

(q, a2q1+2j; q)k−j(q, a−2q1−2j; q)j
.

The proof of this proposition uses the following

Theorem 4.20 (Expansion theorem, see e.g. [Ismail, 1995], [Ismail and Stanton, 2003]).
Let f be a polynomial of degree n, then

f(x) =
n∑
k=0

fkBk(a, x),

where

fk =
(q − 1)k

(2a)k(q; q)k
q−

k(k−1)
4 (Dkqf)(xk) (4.46)

with
xk :=

1

2
(aqk/2 + a−1q−k/2).
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Proof . Let m = 0, 1, . . . , k, we apply Dmq to both sides of f(x) =
n∑
k=0

fkBk(a, x) to get

Dmq f(x) =
n∑
k=0

fkDmq Bk(a, x) = fmDmq Bm(a, x) +
n∑

k=m+1

fkDmq Bk(a, x). (4.47)

By iteration of Equation (4.9), we have

Dmq Bk(a, x) =
(2a)m(qk−m+1; q)mq

m(m−1)
4

(q − 1)m
Bk−m(aq

m
2 , x). (4.48)

For all k 6= 0, Bk(aq
m
2 , x) = 0⇔ x = xm = 1

2
(aqm/2 + a−1q−m/2). We substitute x by xm

in (4.47) and use (4.48) to get the result. �
We also need the following q-derivative rule due to Cooper [2012] which is a general-

ization of Relation (4.48).

Theorem 4.21 ([Cooper, 2012]). The action of Dnq on a function f is given by

Dnq f(x) =
2nq

n(1−n)
4

(q1/2 − q−1/2)n

n∑
k=0

[n
k

]
q

qk(n−k)z2k−nf̌(q
(n−2k)

2 z)

(q1+n−2kz2; q)k(q2k−n+1z−2; q)n−k
, (4.49)

where x = cos θ = 1
2
(z + z−1) and f̌(z) = f

(
(z + 1/z)/2

)
with z = eiθ.

Proof (of Proposition 4.19). We have xk = 1
2
(aq

k
2 + a−1q

−k
2 ) = 1

2
(z + z−1) with z = aq

k
2 .

The combination of Equations (4.46) and (4.49) with x = xk and z = aq
k
2 yields

fk = qk(1−k)

k∑
j=0

qj(2k−j)a2(j−k)f̌(aqk−j)

(q, a2q1+2(k−j); q)j(q, a−2q1−2(k−j); q)k−j
.

If we substitute j by k − j, f(x) by Bn(a, αx), the result follows. �
We can now state and prove the duplication formula of the Askey-Wilson polynomials.

Theorem 4.22. The following duplication formula is valid for the Askey-Wilson polyno-
mials:

pn(αx; a, b, c, d|q) =
n∑

m=0

Dm(n, α)pm(x; a, b, c, d|q), (4.50)

with

Dm(n, α) =
(−1)mam−nq(

m
2 )+2n(ab, ac, ad; q)n

(abcdqm−1; q)m

n−m∑
s=0

[n− s
m

]
q

q−2s(abqm, acqm, adqm; q)n−m−s
(abcdq2m; q)n−m−s

×

n−s∑
i=0

a−2iq−i
2

(q, a2q2i+1; q)n−s−i(q,
q

a2q2i
; q)i
×

s∑
j=0

qj
(
q−n, abcdqn−1; q

)
n+j−s

n+j−s−1∏
l=0

(1− αa2ql+i − αql−i + a2q2l)

(q, ab, ac, ad; q)n+j−s
.
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Proof . From the basic hypergeometric representation of the Askey-Wilson polynomials

given on p. 105, since pn(x; a, b, c, d|q) =
n∑
j=0

Aj(n)Bj(a, x) with Bj(a, x) defined by (4.4),

we have

pn(αx; a, b, c, d|q) =
n∑
j=0

Aj(n)Bj(a, αx).

From (4.45) and from the inversion formula (4.27), we have

Bj(a, αx) =

j∑
k=0

Ek(j)Bk(a, x) and Bk(a, x) =
k∑

m=0

Im(k)pm(x; a, b, c, d|q),

respectively. The combination of the above representations yields

pn(αx; a, b, c, d|q) =
n∑

m=0

Dm(n, α)pm(x; a, b, c, d|q)

with

Dm(n, α) =
n−m∑
k=0

n−m−k∑
j=0

Im(k +m)Aj+k+m(n)Ek+m(j + k +m).

Since

Ek(n) =
k∑
i=0

Fi(k, n) with Fi(k, n) = qk
q−i

2
a−2i

n−1∏
l=0

(1− αa2ql+i − αql−i + a2q2l)

(q, a2q1+2i; q)k−i(q, a−2q1−2i; q)i
,

it follows that

Dm(n, α) =
n−m∑
k=0

n−m−k∑
j=0

Im(k +m)Aj+k+m(n)
k+m∑
i=0

Fi(k +m, j + k +m).

From the substitution n−m− k = s, we get

Dm(n, α) =
n−m∑
s=0

Im(n− s)
s∑
j=0

n−s∑
i=0

Aj+n−s(n)Fi(n− s, j + n− s)

=
n−m∑
s=0

Im(n− s)
n−s∑
i=0

s∑
j=0

Aj+n−s(n)Fi(n− s, j + n− s).

�

4.3.4 Linearization Formula of Askey-Wilson Polynomials

We want to determine the linearization coefficients Lk(m,n) of the formula

pn(x; a, b, c, d|q)pm(x; a, b, c, d|q) =
n+m∑
k=0

Lk(m,n)pk(x; a, b, c, d|q).

For this purpose we need to derive the linearization relation for the basis (Bn(a, x))n.
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Proposition 4.23 (See [Ismail and Stanton, 2003]). The basis (Bn(a, x))n of the Askey-
Wilson orthogonal polynomial family satisfies the following linearization formula

Bn(a, x)Bm(a1, x) =
m∑
k=0

Hn+k(m,n)Bn+k(a, x), m, n ∈ N, (4.51)

with

Hn+k(m,n) =
[m
k

]
q
q−nk

(a1

a

)k ( a1

aqn
; q

)
m−k

(
aa1q

n+k; q
)
m−k , k = 0, 1, . . . ,m.

Proof . We recall that

Bn(a, x) =
n−1∏
j=0

(1− 2aqjx+ a2q2j).

For
x = εj(a) ≡ 1 + a2q2j

2aqj
=

1

2
(aqj + a−1q−j),

we get
Bn(a, εj(a)) = 0, n ≥ 1, j = 0, 1, . . . , n− 1 (4.52)

and for j = n,
Bn(a, εn(a)) 6= 0. (4.53)

In the first step, we expand Bn(a, x)Bm(a1, x), n ≥ 1 in the basis (Bk(a, x))k

Bn(a, x)Bm(a1, x) =
n+m∑
k=0

Hk(m,n)Bk(a, x), (4.54)

and use Relation (4.52) to get H0(m,n) = Bn(a, ε0(a))Bm(a1, ε0(a)) = 0, n ≥ 1.
Considering (4.54) for x = ε1(a) and observing that H0(m,n) = 0, we get using again

(4.52) that

H1(m,n)B1(a, ε1(a)) = Bn(a, ε1(a))Bm(a1, ε1(a)) = 0, n ≥ 2.

Therefore, H1(m,n) = 0 thanks to (4.53). Progressively, we obtain in a similar way for a
fixed integer j using (4.52), (4.53) and (4.54) that

H0(m,n) = H1(m,n) = · · · = Hj(m,n) = 0, j ≤ n− 1.

In the second step, we rewrite Relation (4.54) accordingly with the previous result

Bn(a, x)Bm(a1, x) =
m∑
k=0

Hn+k(m,n)Bn+k(a, x). (4.55)

Using the relation
Bn+k(a, x) = Bn(a, x)Bk(aq

n, x),

derived from the definition

Bn(a, x) =
n−1∏
j=0

(1− aqsqj)(1− aq−sqj),
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we get from (4.55) that

Bm(a1, x) =
m∑
k=0

Hn+k(m,n)
Bn+k(a, x)

Bn(a, x)
=

m∑
k=0

Hn+k(m,n)Bk(aq
n, x). (4.56)

For x = ε0(aqn), Equation (4.56) gives Hn(m,n) = Bm(a1, ε0(aqn)).
Iterating Relation (4.9), we have for fixed l

Dl
xBn(a, x) =

l−1∏
j=0

η(aq
j
2 , n− j)Bn−l(aq

l
2 , x), 1 ≤ l ≤ n.

Applying the operator Dl
x to Relation (4.56), we get

l−1∏
j=0

η(a1q
j
2 ,m−j)Bm−l(a1q

l
2 , x) =

m∑
k=l

Hn+k(m,n)
l−1∏
j=0

η(aqn+ j
2 , k−j)Bk−l(aq

n+ l
2 , x), 1 ≤ l ≤ m.

For x = ε0(aqn+ l
2 ), the preceding relation gives, taking into account (4.52)

Hn+l(m,n) =

l−1∏
j=0

η(a1q
j
2 ,m− j)

l−1∏
j=0

η(aqn+ j
2 , l − j)

Bm−l(a1q
l
2 , ε0(aqn+ l

2 )), l = 1, 2, . . . ,m.

We replace η(a1q
n+ j

2 , l − j), η(a1q
j
2 ,m − j) and Bm−l(a1q

l
2 , ε0(aqn+ l

2 )) by their values

obtained from Proposition 4.2 and from the definition Bn(a, x) =
n−1∏
j=0

(1− 2aqjx+ a2q2j).

This yields

Hn+k(m,n) =
(a1

a

)k
q(m−n−k)k (q−m; q)k

(q−k; q)k

(
a1

aqn
; q

)
m−k

(
aa1q

n+k; q
)
m−k .

The result follows by using the transformation (4.39). �

Remark 4.24. 1. Substituting a1 = a in Relation (4.51) yields

Bn(a, x)Bm(a, x) =
m∑
k=0

[m
k

]
q
q−nk(q−n; q)m−k(a

2qn+k; q)m−kBn+k(a, x) (4.57)

=
n+m∑
k=n

[ m

k − n

]
q
q−n(k−n)(q−n; q)m+n−k(a

2qk; q)m+n−kBk(a, x).

For negative subscripts we define [Koekoek et al., 2010, Eq. (1.8.5)]

(a; q)−n =
1∏n

k=1(1− aq−k)
, a 6= q, q2, . . . , qn, n = 1, 2, 3, . . . ,

so that
1

(q; q)−n
= 0, n = 1, 2, 3, . . . .
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It follows from this remark that we can write again

Bn(a, x)Bm(a, x) =
n+m∑
k=0

[ m

k − n

]
q
q−n(k−n)(q−n; q)m+n−k(a

2qk; q)m+n−kBk(a, x).

(4.58)

2. If we take m = 1 in (4.57), we recover Relation (4.13). We also remark that for
n = 0, (4.51) is the connection formula (4.37) with a = a1 and α = a.

Having derived the linearization relation for Bn(a, x), we now state and prove:

Theorem 4.25. The Askey-Wilson orthogonal polynomial family satisfies the lineariza-
tion formula

pn(x; a, b, c, d|q)pm(x; a, b, c, d|q) =
n+m∑
r=0

Lr(m,n)pr(x; a, b, c, d|q), (4.59)

with

Lr(m,n) =
q

1
2
r(r+1)(ab, ac, ad; q)n(ab, ac, ad; q)m

(−1)ram+n−r(abcdqr−1; q)r

n+m−r∑
l=0

[ l + r

r

]
q

ql(abqr, acqr, adqr; q)l
(abcdq2r; q)l

×

min(n,l+r)∑
j=max(0,l+r−m)

qj(j−l−r)(q−n, abcdqn−1; q)j
(q; q)l+r−j(q, ab, ac, ad; q)j

min(j,m−l−r+j)∑
k=0

qk(q−m, abcdqm−1; q)k+l+r−j(q
−j , a2ql+r; q)k

(ab, ac, ad; q)k+l+r−j(q; q)k
.

Proof . We proceed as in the proof of Theorem 2.8 with xn replaced by Bn(a, x). �

Remark 4.26. By an integral evaluation, Rahman [1981b] solved the linearization prob-
lem of the polynomial family

pn(x; a, b, c, d) = 4φ3

q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣∣∣ q; q


and got the linearization coefficients as a triple sum, see [Rahman, 1981b, Eq. (1.27)].
From these coefficients, he solved the linearization problem

P (α,β)
n (x; q)P

(α,β)
n−s (x; q) =

2n−2s∑
j=0

bjP
(α,β)
s+j (x; q)

for the continuous q-Jacobi polynomials defined by

P (α,β)
n (x; q) =

(qα+1; q)n(−qβ+1; q)n
(q; q)n(−q; q)n

pn(x;
√
q, qα+ 1

2 ,−qβ+ 1
2 ,−√q)

and gave the linearization coefficients as a 10φ9 series.
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4.4 Inversion, Connection, Linearization and Duplica-
tion Formulae for the q-Racah, Wilson and Racah
Polynomials

The inversion, connection, duplication and linearization formulae for the Askey-Wilson
polynomials can be extended to other families of classical orthogonal polynomials on a
quadratic or q-quadratic lattice by means of specialization and/or by limiting processes
following the Askey scheme and it q-analogue. In this section we consider as example the
cases of the q-Racah, Wilson and Racah polynomials. The results are derived from Equa-
tions (4.27), (4.32)-(4.35), (4.40)–(4.44), (4.50) and (4.59). For the inversion formulae,
we can also use the limiting relations given in Remark 4.1. The parameter derivatives are
derived from the connection formulae.

4.4.1 Inversion, Connection, Duplication and Linearization Coef-
ficients for the q-Racah Orthogonal Polynomials

The q-Racah polynomials Rn(µ(x);α, β, γ, δ|q) are related to the Askey-Wilson polyno-
mials in the following way. If we substitute [Koekoek et al., 2010, p. 421]

a2 = γδq, b2 = α2γ−1δ−1q, c2 = β2γ−1δq, d2 = γδ−1q and e2iθ = γδq2x+1

in the definition of the Askey-Wilson polynomials, we find

Rn(µ(x);α, β, γ, δ|q) =
(γδq)

1
2
n

(αq, βδq, γq; q)n
pn(ν(x); (γδq)

1
2 , α(γδ)−

1
2 q

1
2 , βγ−

1
2 (δq)

1
2 , (γq)

1
2 δ−

1
2 |q),

where
ν(x) =

1

2
γ

1
2 δ

1
2 qx+ 1

2 +
1

2
γ−

1
2 δ−

1
2 q−x−

1
2 .

For the q-Racah polynomial family, the following relations are valid:
Inversion:

ξn(γ, δ, µ(x)) =
n∑

m=0

[ n
m

]
q

(−1)mq(
m
2 )(αq, βδq, γq; q)n

(αβqm+1; q)m(αβq2m+2; q)n−m
Rm(µ(x);α, β, γ, δ|q),

Connection:

Rn(µ(x);α, β, γ, δ|q) =
n∑

m=0

(α1q)
n(q−n, αβqn+1, α1q, α1βq; q)m(1− α1βq

2m+1)

αm(q, βq, α1q
αqn

, α1βqn+2; q)m(1− α1βq)

×
( α
α1
, βq; q)n

(αq, α1βq2; q)n
Rm(µ(x);α1, β, γ, δ|q),

Rn(µ(x);α, β, γ, δ|q) =
n∑

m=0

(β1δq)
n(βδ)−m(q−n, αβqn+1, β1δq, αβ1q; q)m(1− αβ1q

2m+1)

(q, αq
δ
, β1q
βqn

, αβ1qn+2; q)m(1− αβ1q)

×
(αq
δ
, β
β1

; q)n

(βδq, αβ1q2; q)n
Rm(µ(x), α, β1, γ, δ|q),
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Rn(µ(x);α, β, γ, δ|q) =
n∑

m=0

qm(m−n)(q; q)n(α1q, β1δq, αβq
n+1; q)m

(q; q)m(q; q)n−m(αq, βδq, α1β1qm+1; q)m

×4φ3

qm−n, α1q
m+1, αβqm+n+1, β1δq

m+1

αqm+1, βδqm+1, α1β1q
2m+2

∣∣∣∣∣∣ q, q
Rn(µ(x);α1, β1, γ, δ|q),

or more generally if γδ = γ1δ1, then

Rn(µ(x);α, β, γ, δ|q) =
n∑

m=0

qm(m−n)(q; q)n(α1q, γ1q, β1δ1q, αβq
n+1; q)m

(q; q)m(q; q)n−m(αq, γq, βδq, α1β1qm+1; q)m

×5φ4

qm−n, α1q
m+1, γ1q

m+1, αβqm+n+1, β1δ1q
m+1

αqm+1, γqm+1, βδqm+1, α1β1q
2m+2

∣∣∣∣∣∣ q, q
Rn(µ(x);α1, β1, γ1, δ1|q),

Parameter derivative:

∂

∂α
Rn(µ(x);α, β, γ, δ|q) =

n−1∑
m=0

(( qm+1

1− αqm+1
− βqm+n+1

1− αβqm+n+1

)
Rn(µ(x);α, β, γ, δ|q)

−(αq)n(q−n, αβqn+1, αq, αβq; q)m(1− αβq2m+1)(βq; q)n(q; q)n−1

αm+1(q, βq, q1−n, αβqn+2; q)m(1− αβq)(αq, αβq2; q)n
Rm(µ(x);α, β, γ, δ|q)

)
,

∂

∂β
Rn(µ(x);α, β, γ, δ|q) =

n−1∑
m=0

(( δqm+1

1− βδqm+1
− αqm+n+1

1− αβqm+n+1

)
Rn(µ(x);α, β, γ, δ|q)

−
(βδq)n(q−n, αβqn+1, βδq, αβq; q)m(1− αβq2m+1)(αq

δ
; q)n(q; q)n−1

β(βδ)m(q, αq
δ
, q1−n, αβqn+2; q)m(1− αβq)(βδq, αβq2; q)n

Rm(µ(x);α, β, γ, δ|q)
)
,

Duplication:

Rn(A · µ(x);α, β, γ, δ|q) =
n∑

m=0

Dm(n,A)Rm(µ(x);α, β, γ, δ|q)

with

Dm(n,A) =
(−1)mq(

m
2 )+2n(αq, βδq, γq; q)m
(αβqm+1; q)m

n−m∑
s=0

[n− s
m

]
q

(αqm+1, βδqm+1, γqm+1; q)n−m−s
q2s(αβq2m+2; q)n−m−s

×

n−s∑
i=0

(γδq)−iq−i
2

(q, γδq2i+2; q)n−s−i(q,
q−2i

γδ
; q)i
×

s∑
j=0

qj(q−n, αβqn+1; q)n+j−s

j+n−s−1∏
l=0

(1− Aγδql+i+1 − Aql−i + γδq2l+1)

(q, αq, βδq, γq; q)n+j−s
,

Linearization:

Rn(µ(x);α, β, γ, δ|q)Rm(µ(x);α, β, γ, δ|q) =
n+m∑
r=0

Lr(m,n)Rr(µ(x);α, β, γ, δ|q)
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with

Lr(m,n) =
(−1)rq

1
2
r(r+1)(αq, βδq, γq; q)r
(αβqr+1; q)r

n+m−r∑
l=0

[ l + r

r

]
q

ql(αqr+1, βδqr+1, γqr+1; q)l
(αβq2r+2; q)l

×

min(n,l+r)∑
j=max(0,l+r−m)

qj(j−l−r)(q−n, αβqn+1; q)j
(q, αq, βδq, γq; q)j(q; q)l+r−j

min(j,m−l−r+j)∑
k=0

qk(q−m, αβqm+1; q)k+l+r−j(q
−j , γδql+r+1; q)k

(αq, βδq, γq; q)k+l+r−j(q; q)k
.

4.4.2 Inversion, Connection, Duplication and Linearization Coef-
ficients for the Wilson Orthogonal Polynomials

To construct the Wilson polynomials from the Askey-Wilson polynomials, we set [Koekoek
et al., 2010, p. 421] a → qa, b → qb, c → qc, d → qd, and eiθ = qix and take the limit
q → 1:

Wn(x2; a, b, c, d) = lim
q→1

pn(1
2
(qix + q−ix); qa, qb, qc, qd|q)

(1− q)3n
.

From the above substitutions and the relations

lim
q→1

(qα; q)n
(1− q)n

= (α)n, lim
q→1

[ n
m

]
q

=

(
n

m

)
,

we get the following results:
Inversion:

ϑn(a, x) =
n∑

m=0

(
n

m

)
(−1)m(m+ a+ b,m+ a+ c,m+ a+ d)n−m

(a+ b+ c+ d+m− 1)m(a+ b+ c+ d+ 2m)n−m
Wm(x2; a, b, c, d),

Connection:

Wn(x2; a, b, c, d) =
n∑

m=0

(−1)m
(
n
m

)
(b+ c, b+ d, c+ d, a− a1)n(a1 + b+ c+ d)2m

(b+ c, b+ d, c+ d, a1 + b+ c+ d+ n, a1 + 1− n− a)m
×

(a+ b+ c+ d+ n− 1)m
(a1 + b+ c+ d)n(a1 + b+ c+ d+m− 1)m

Wm(x2; a1, b, c, d),

Wn(x2; a, b, c, d) =
n∑

m=0

(−1)m
(
n
m

)
(m+ a+ c,m+ a+ d,m+ c+ d)n−m(b− b1)n

(m+ a+ b1 + c+ d− 1, n+ a+ b1 + c+ d, b1 + 1− n− b)m
×

(n+ a+ b+ c+ d− 1)m(a+ b1 + c+ d)2m

(a+ b1 + c+ d)n
Wm(x2; a, b1, c, d),

Wn(x2; a, b, c, d) =
n∑

m=0

(−1)m
(
n
m

)
(m+ a+ b,m+ a+ d,m+ b+ d)n−m(c− c1)n

(m+ a+ b+ c1 + d− 1, n+ a+ b+ c1 + d, c1 + 1− n− c)m
×

(n+ a+ b+ c+ d− 1)m(a+ b+ c1 + d)2m

(a+ b+ c1 + d)n
Wm(x2; a, b, c1, d),
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Wn(x2; a, b, c, d) =
n∑

m=0

(−1)m
(
n
m

)
(m+ a+ b,m+ a+ c,m+ b+ c)n−m(d− d1)n

(m+ a+ b+ c+ d1 − 1, n+ a+ b+ c+ d1, d1 + 1− n− d)m
×

(n+ a+ b+ c+ d− 1)m(a+ b+ c+ d1)2m

(a+ b+ c+ d1)n
Wm(x2; a, b, c, d1)

compare [Sánchez-Ruiz and Dehesa, 2001, p. 583],

Wn(x2; a, b, c, d) =
n∑

m=0

(
n
m

)
(n+ a+ b+ c+ d− 1)m(a+ b, a+ c, a+ d)n

(m+ a+ β + γ + δ − 1)m(a+ b, a+ c, a+ d)m
×

5F4

m− n,m+ n+ a+ b+ c+ d− 1,m+ a+ β,m+ a+ γ,m+ a+ δ

2m+ a+ β + γ + δ,m+ a+ b,m+ a+ c,m+ a+ d

∣∣∣∣∣∣ 1
Wm(x2; a, β, γ, δ)

see [Sánchez-Ruiz and Dehesa, 2001],

Wn(x2; a, b, c, d) =
n∑

m=0

(
n
m

)
(n+ a+ b+ c+ d− 1)m(b+ a, b+ c, b+ d)n

(m+ α+ b+ γ + δ − 1)m(b+ a, b+ c, b+ d)m
×

5F4

m− n,m+ n+ a+ b+ c+ d− 1,m+ b+ α,m+ b+ γ,m+ b+ δ

2m+ α+ b+ γ + δ,m+ b+ a,m+ b+ c,m+ b+ d

∣∣∣∣∣∣ 1
Wm(x2;α, b, γ, δ),

Wn(x2; a, b, c, d) =
n∑

m=0

(
n
m

)
(n+ a+ b+ c+ d− 1)m(c+ a, c+ b, c+ d)n

(m+ α+ β + c+ δ − 1)m(c+ a, c+ b, c+ d)m
×

5F4

m− n,m+ n+ a+ b+ c+ d− 1,m+ c+ α,m+ c+ β,m+ c+ δ

2m+ α+ β + c+ δ,m+ c+ a,m+ c+ b,m+ c+ d

∣∣∣∣∣∣ 1
Wm(x2;α, beta, c, δ),

Wn(x2; a, b, c, d) =
n∑

m=0

(
n
m

)
(n+ a+ b+ c+ d− 1)m(d+ a, d+ b, d+ c)n

(m+ α+ β + γ + d− 1)m(d+ a, d+ b, d+ c)m
×

5F4

m− n,m+ n+ a+ b+ c+ d− 1,m+ d+ α,m+ d+ β,m+ d+ γ

2m+ α+ β + γ + d,m+ d+ a,m+ d+ b,m+ d+ c

∣∣∣∣∣∣ 1
Wm(x2;α, β, γ, d),

Wn(x2; a, b, c, d) =
n∑

m=0

(
n

m

)
(n+ a+ b+ c+ d− 1)m(m+ a+ b,m+ a+ c,m+ a+ d)n−m

(m+ α+ β + γ + δ − 1)m
×

n−m∑
k=0

(m− n)k(m+ α+ β,m+ α+ γ,m+ α+ δ)k(m+ n+ a+ b+ c+ d− 1)k
k!(m+ a+ b,m+ a+ c,m+ a+ d)k(2m+ α+ β + γ + δ)k

× (4.60)

4F3

k +m− n, k +m+ a+ α,m+ n+ k + a+ b+ c+ d− 1, a− α

m+ k + a+ b,m+ k + a+ c,m+ k + a+ d

∣∣∣∣∣∣ 1
 Wm(x2;α, β, γ, δ),

Parameter derivative:

∂

∂a
Wn(x2; a, b, c, d) =

n−1∑
m=0

( 1

n+m+ a+ b+ c+ d− 1
Wn(x2; a, b, c, d) +

(a+ b+ c+ d)2m

(a+ b+ c+ d)n
×

(−1)m
(
n
m

)
(n− 1)!(b+ c, b+ d, c+ d)n(n+ a+ b+ c+ d− 1)m

(b+ c, b+ d, c+ d,m+ a+ b+ c+ d− 1, n+ a+ b+ c+ d, 1− n)m
Wm(x2; a, b, c, d)

)
,
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∂

∂b
Wn(x2; a, b, c, d) =

n−1∑
m=0

( 1

n+m+ a+ b+ c+ d− 1
Wn(x2; a, b, c, d) +

(a+ b+ c+ d)2m

(a+ b+ c+ d)n
×

(−1)m
(
n
m

)
(n− 1)!(a+ c, a+ d, c+ d)n(n+ a+ b+ c+ d− 1)m

(a+ c, a+ d, c+ d,m+ a+ b+ c+ d− 1, n+ a+ b+ c+ d, 1− n)m
Wm(x2; a, b, c, d)

)
,

∂

∂c
Wn(x2; a, b, c, d) =

n−1∑
m=0

( 1

n+m+ a+ b+ c+ d− 1
Wn(x2; a, b, c, d) +

(a+ b+ c+ d)2m

(a+ b+ c+ d)n
×

(−1)m
(
n
m

)
(n− 1)!(a+ b, a+ d, b+ d)n(n+ a+ b+ c+ d− 1)m

(a+ b, a+ d, b+ d,m+ a+ b+ c+ d− 1, n+ a+ b+ c+ d, 1− n)m
Wm(x2; a, b, c, d)

)
,

∂

∂d
Wn(x2; a, b, c, d) =

n−1∑
m=0

( 1

n+m+ a+ b+ c+ d− 1
Wn(x2; a, b, c, d) +

(a+ b+ c+ d)2m

(a+ b+ c+ d)n
×

(−1)m
(
n
m

)
(n− 1)!(a+ b, a+ c, b+ c)n(n+ a+ b+ c+ d− 1)m

(a+ b, a+ c, b+ c,m+ a+ b+ c+ d− 1, n+ a+ b+ c+ d, 1− n)m
Wm(x2; a, b, c, d)

)
,

Linearization:

Wn(x2; a, b, c, d)Wm(x2; a, b, c, d) =
n+m∑
r=0

Lr(m,n)Wr(x
2; a, b, c, d)

with

Lr(m,n) =
(−1)r(a+ b, a+ c, a+ d)n(a+ b, a+ c, a+ d)m

(a+ b+ c+ d+ r − 1)r
×

n+m−r∑
l=0

(
l+r
r

)
(a+ b+ r, a+ c+ r, a+ d+ r)l

(a+ b+ c+ d+ 2r)l

min(n,l+r)∑
j=max(0,l+r−m)

(−n, a+ b+ c+ d+ n− 1)j
j!(l + r − j)!(a+ b, a+ c, a+ d)j

×

min(j,m−l−r+j)∑
k=0

(−m, a+ b+ c+ d+m− 1)k+l+r−j(−j, 2a+ l + r)k
(a+ b, a+ c, a+ d)k+l+r−j(k)!

.

To get the duplication formula for the Wilson polynomials, it is possible to proceed by
a limiting process. However, we use here the Wilson operator defined by Equation (4.8).
Furthermore we need the following duplication formula of the Wilson basis (ϑn(a, x))n.

Proposition 4.27. The following duplication formula is valid for the Wilson basis (ϑn(a, x))n:

ϑn(a, αx) =
n∑
k=0

k∑
l=0

(−k)l
k!l!

(2a+ 2l)(a− αa− αl)n(a+ αa+ αl)n
(2a+ l)k+1

ϑk(a, x). (4.61)

The proof of this proposition needs the following theorems which are the analogues of
Theorems 4.20 and 4.21.

Theorem 4.28 (See e.g. [Ismail and Stanton, 2012]). Let

yk = i
(
a+

k

2

)
,
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and assume that f(x) is a polynomial of degree n in x2. Then

f(x) =
n∑
k=0

fkϑk(a, x), with fk =
1

k!
(Dkf)(yk). (4.62)

Proof . Let j = 0, 1, . . . , k. We apply Dj to both sides of f(x) =
n∑
k=0

fkϑk(a, x) and use

the relation
Djϑk(a, x) =

k!

(k − j)!
ϑk−j

(
a+

j

2
, x

)
, 0 ≤ j ≤ k

to get

Djf(x) = fjj! +
n∑

k=j+1

fk
k!

(k − j)!
ϑk−j(a+

j

2
, x).

For x = i
(
a+ j

2

)
, since ϑk(a, ai) = 0, ∀k ≥ 1, we obtain

Djf

(
i

(
a+

j

2

))
= fjj!.

This proves the theorem. �

Theorem 4.29 (See [Cooper, 2012]). Let k be a nonnegative integer. Then

Dkf(x) =
k∑
l=0

(−k)l
l!

(2ix− k + 2l)

(2ix− k + l)k+1

f

(
x+

k − 2l

2
i

)
. (4.63)

Proof (of Proposition 4.27). We combine (4.62) and (4.63) with x = i(a+ k
2
) to get

fk =
k∑
l=0

(−k)l
l!k!

(−2a− 2k + 2l)

(−2a− 2k + l)k+1

f(i(a+ k − l)).

If we substitute l by k−l and f(x) by ϑn(a, αx), using (−1)k+1(−2a−k−l)k+1 = (2a+l)k+1,
the result follows. �

Combining the representation of the Wilson polynomial w.r.t. the basis (ϑn(a, x))n,
the duplication formula (4.61) and the inversion formula of the Wilson polynomials and
proceeding as in the proof of Theorem 4.22, we get

Theorem 4.30. The following duplication formula is valid for the Wilson polynomials:

Wn((αx)2; a, b, c, d) =
n∑

m=0

Dm(n, α)Wm(x2; a, b, c, d) with

Dm(n, α) =
(−1)m(a+ b, a+ c, a+ d)n
(a+ b+ c+ d+m− 1)m

n−m∑
s=0

(
n−s
m

)
(m+ a+ b,m+ a+ c,m+ a+ d)n−m−s

(n− s)!(2m+ a+ b+ c+ d)n−m−s

n−s∑
l=0

(−n+ s)l(2a+ 2l)

l!(2a+ l)n−s+1

s∑
j=0

(−n, n+ a+ b+ c+ d− 1)n+j−s(a− αa− αl, a+ αa+ αl)j+n−s
(j + n− s)!(a+ b, a+ c, a+ d)j+n−s

.
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4.4.3 Inversion, Connection and Linearization Coefficients for the
Racah Orthogonal Polynomials

If we set [Koekoek et al., 2010, p. 190]

a =
1

2
(γ + δ + 1), b =

1

2
(2α− γ − δ + 1), c =

1

2
(2β − γ + δ + 1), d =

1

2
(γ − δ + 1)

and replace

ix→ x+
1

2
(γ + δ + 1)

in
W̃n(x2; a, b, c, d) =

Wn(x2; a, b, c, d)

(a+ b)n(a+ c)n(a+ d)n
,

and take
α + 1 = −N or β + δ + 1 = −N or γ + 1 = −N

with a nonegative integer N , we obtain the Racah polynomials Rn(λ(x);α, β, γ, δ). There-
fore, for the Racah polynomials, the following relations are valid:
Inversion:

χn(γ, δ, λ(x)) =
n∑

m=0

(−1)m
(
n
m

)
(α + 1, γ + 1, β + δ + 1)n

(m+ α + β + 1)m(2m+ α + β + 2)n−m
Rm(λ(x);α, β, γ, δ)

see e.g. [Area et al., 2001, Eq. (3.7)],
Connection:

Rn(λ(x);α, β, γ, δ) =
n∑

m=0

(−n, α + β + n+ 1, α1 + 1, α1 + β + 1)m(α1 + β + 2m+ 1)

m!(β + 1, α1 + 1− n− α, α1 + β + n+ 2)m(1 + α1 + β)

× (β + 1, α− α1)n
(α + 1, α1 + β + 2)n

Rm(λ(x);α1, β, γ, δ),

Rn(λ(x);α, β, γ, δ) =
n∑

m=0

(−n, α + β + n+ 1, α + β1 + 1, β1 + δ + 1)m(α + β1 + 2m+ 1)

m!(α− δ + 1, β1 + 1− n− β, β1 + α + n+ 2)m(1 + α + β1)

× (α + 1− δ, β − β1)n
(β + δ + 1, α + β1 + 2)n

Rm(λ(x);α, β1, γ, δ).

When we perform the above substitutions in (4.60), the 4F3 term is reduced to 1 if
γ + δ = c+ d and therefore we get (see e.g. [Sánchez-Ruiz and Dehesa, 2001, Eq. (13)])

Rn(λ(x), α, β, γ, δ) =
n∑

m=0

(
n

m

)
(n+ α + β + 1)m(a+ 1, b+ d+ 1, c+ 1)m
(α + 1, β + δ + 1, γ + 1,m+ a+ b+ 1)m

×

5F4

m− n, n+m+ α + β + 1,m+ a+ 1,m+ b+ d+ 1,m+ c+ 1

m+ α + 1,m+ β + δ + 1, 2m+ a+ b+ 2,m+ γ + 1

∣∣∣∣∣∣ 1
Rm(λ(x), a, b, c, d)

under the condition γ + δ = c+ d.
Parameter derivatives:

∂

∂α
Rn(λ(x);α, β, γ, δ) =

n−1∑
m=0

(( 1

m+ n+ α+ β + 1
− 1

m+ α+ 1

)
Rn(λ(x);α, β, γ, δ)

+
(−n, α+ β + n+ 1, α+ 1, α+ β + 1)m(α+ β + 2m+ 1)(β + 1)n(n− 1)!

m!(β + 1, 1− n, α+ β + n+ 2)m(1 + α+ β)(α+ 1, α+ β + 2)n
Rm(λ(x);α, β, γ, δ)

)
,
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∂

∂α
Rn(λ(x);α, β, γ, δ) =

n−1∑
m=0

(( 1

m+ n+ α+ β + 1
− 1

m+ β + δ + 1

)
Rn(λ(x);α, β, γ, δ)

+
(−n, α+ β + n+ 1, α+ β + 1, β + δ + 1)m(α+ β + 2m+ 1)(α+ 1− δ)n(n− 1)!

m!(α− δ + 1, 1− n, β + α+ n+ 2)m(1 + α+ β)(β + δ + 1, α+ β + 2)n
Rm(λ(x);α, β, γ, δ)

)
,

Linearization:

Rn(λ(x);α, β, γ, δ)Rm(λ(x);α, β, γ, δ) =
n+m∑
r=0

Lr(m,n)Rr(λ(x);α, β, γ, δ)

with

Lr(m,n) =
n+m−r∑
l=0

(−1)r(α + 1, β + δ + 1, γ + 1)r
(α + β + r + 1)r

(
l+r
r

)
(α + r + 1, β + δ + r + 1, γ + r + 1)l

(α + β + 2r + 2)l

min(n,l+r)∑
j=max(0,l+r−m)

(−n, n+ α + β + 1)j
j!(l + r − j)!(α + 1, β + δ + 1, γ + 1)j

×

min(j,m+j−l−r)∑
k=0

(−m,m+ α + β + 1)k+l+r−j(−j, γ + δ + l + r + 1)k
(α + 1, β + δ + 1, γ + 1)k+l+r−jk!

.
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Chapter 5

Conclusion and Perspectives

We have provided in this thesis representations for the inversion, connection, linearization
and duplication coefficients of all classical orthogonal polynomials of a continuous, dis-
crete and q-discrete variable listed in [Koekoek et al., 2010]. We also solved the inversion,
connection, linearization and duplication problem for the Askey-Wilson polynomials and
showed how the results can be extended to other families of classical orthogonal polynomi-
als on quadratic or q-quadratic lattice. From the various connection formulae parameter
derivatives have been derived.

Using our algorithmic approach, we recovered known results and obtained many new
ones.

As perspectives, it would be interesting:

1. to find conditions on the parameters to simplify the coefficients appearing in double
and triple summation,

2. to compute by means of limit and/or specialization the inversion, connection, lin-
earization and duplication coefficients for other families of classical orthogonal poly-
nomials on a quadratic or q-quadratic lattice,

3. to extend our method to other classes of orthogonal polynomials that are obtained
by a modification of the three-term recurrence relations of the classical orthogonal
polynomials, for example [Foupouagnigni, 2006]: the associated orthogonal polyno-
mials, the co-recursive orthogonal polynomials,

4. to implement in Maple for example an algorithm which solves the inversion, connec-
tion, linearization or duplication problem for the classical orthogonal polynomials.
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