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Abstract

Many ultrafast structural phenomena in solids at high fluences are related to
the hardening or softening of particular lattice vibrations at lower fluences. In
this paper we relate femtosecond-laser-induced phonon frequency changes to
changes in the electronic density of states, which need to be evaluated only in the
electronic ground state, following phonon displacement patterns. We illustrate
this relationship for a particular lattice vibration of magnesium, for which
we—surprisingly—find that there is both softening and hardening as a function
of the femtosecond-laser fluence. Using our theory, we explain these behaviours
as arising from Van Hove singularities: We show that at low excitation densities
Van Hove singularities near the Fermi level dominate the change of the phonon
frequency while at higher excitations Van Hove singularities that are further away
in energy also become important. We expect that our theory can as well shed light
on the effects of laser excitation of other materials.
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1. Introduction

Femtosecond-laser pulses can transiently excite solids into a non-thermal state with electrons
that are hot and ions that remain close to room temperature [1]. After an excitation, the
electrons thermalize relatively slowly with the ions compared with the time needed for ultrafast
structural changes. In general, the excited electrons modify the interatomic potentials [2],
which may lead to a number of structural processes that would not take place under ordinary
thermodynamic conditions, such as, ultrafast melting [3—7], solid-to-solid phase transitions on
the subpicosecond time scale [8—13], the excitation of coherent phonons [14—17] and phonon
squeezing [18]. At early times after the laser pulse, all of these phenomena can be described by
the femtosecond-laser-induced changes to the phonon spectrum, which completely characterizes
the harmonic part of the laser-excited potential energy surface, on which the ions move. Ultrafast
melting, for example, has been related to the appearance of a lattice instability in the direction
of transverse acoustic phonons at the Brillouin zone boundary of, e.g. Si [19, 20] and InSb
[7, 21, 22]. In a similar way, the hardening of lattice vibrations in gold has been used to explain
its delayed thermal melting upon intense femtosecond-laser excitation [23]. Another example
is that the monoclinic-to-rutile laser-induced transition in VO, is proceeded by the excitation
of a large-amplitude coherent phonon at fluences below the solid-to-solid transition threshold
[24, 25]. Finally, the squeezing of phonons in opaque media has been demonstrated to
be the direct consequence of a sudden laser-induced change of the phonon frequencies
[26, 27].

In semiconductors and semimetals, the hot carriers typically induce bond softening
[14, 28, 29] due to the excitation of electrons from bonding to antibonding states. In metals,
phonons have been found to harden [29-32] upon femtosecond-laser excitation. In contrast, the
phonon frequencies in Al and TiO, have been reported to change only little or not at all [29, 33].
Moreover, in Mg we have predicted that upon laser excitation the transverse acoustic parallel
mode at the M point softens [31]. In this paper we report that the transverse optical parallel (TO)
phonon mode at the K point in the Brillouin zone even reveals both softening and hardening
as a function of the absorbed laser energy. We present a general theory that relates changes in
the phonon frequency as a function of the electronic temperature to changes in the ground state
electronic density of states (DOS) as a function of atomic displacements using the so-called
frozen-phonon approach. We show that this method explains the softening and hardening of
the above-mentioned mode and point out how it could, for example, be used to clarify phonon
softening in semiconductors and phonon hardening in noble metals.

2. Method

We computed laser-induced structural changes in Mg by instantaneously raising the electronic
temperature in the framework of electronic-temperature-dependent density functional theory
(DFT) [2] using the code WIEN2K [34], which is an all-electron implementation of the full-
potential linearized augmented plane-wave (LAPW) method and is one of the most accurate
DFT programmes available. No shape approximations for either the electronic charge density or
potential are made and core and valence electrons are all explicitly taken into account meaning
that the subtle effects of the core electrons are not simplified by, for example, pseudopotentials.

We determined phonon frequency changes as a function of the electronic temperature
using the frozen-phonon method, which considers the propagation of a phonon with a fixed
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Figure 1. Top view of the Mg supercell in the (00—1) direction used for the frozen-
phonon calculations of the TO; mode at the K point. The light and dark blue atoms are
in the z = 1/4 and 3/4 planes, respectively, in their equilibrium positions.

Figure 2. Top view of the Mg supercell in the (00—1) direction used for the frozen-
phonon calculations of the TO| mode at the K point. The light and dark red atoms are
in the z =1/4 and 3/4 planes, respectively. The arrows indicate the directions of the
atomic displacements.

wave vector q, which involves atomic displacements {u;(q)} leading to a new crystal structure
consistent with the ‘frozen’ vibrational mode. In our calculations the atoms were displaced
over sufficiently small distances u from their equilibrium positions. The phonon wave vectors
must be commensurate with the solid, i.e. the displaced atoms must still form a supercell.
Accordingly, for the TO; phonon mode at the point K in the Brillouin zone, which we studied
in the present work, we tripled the primitive unit cell. The supercell, which we used for our
self-consistent frozen-phonon calculation is shown in figure 1, where the positions of atoms
are at the 6g positions of space group P6;/mcm (no. 193), whose allowed displacements are
indicated by arrows in figure 2.

We further chose the value Ryt = 2.42 Bohr for the muffin-tin radii. The product of Ry
times the maximum value of the reciprocal lattice vector K,,,x of the LAPW basis set, which
defines the dimensionless quantity R K. [34], was set equal to RK,,x = 7. For the electrons,
we used a 14 x 14 x 13 k grid, excluding the I" point [34].
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2.1. Self-consistent approach

In DFT, a laser-excited material can be studied through the interatomic potential energy, which
is determined by the Mermin free electronic energy [2]

1 /
Ftot({Ri}) - Fband + Exc[p(r)] - / vxc(r)p(r) dr — 5 / %dr drl + ‘/H({Rl})’ (1)

where E,. and v, are the exchange and correlation energy and potential, respectively, and
Vi({R;}) is the ion—ion repulsive interaction. p(r) is the electronic charge density:

p(X) =" nlem, @} ()P (D). )

m

Here, ¢,,(r) are the Kohn—Sham orbitals [35], with m = {k, n}, where K is the electronic wave
vector and 7 is the band index. In (1) the first term is the free band energy, which contains the
band energy and the electronic temperature 7

Foand = Eband(t) - Tel(t)Sel(t)- (3)

Se1 1s the electronic entropy, which is given by

Sa=—kp Y _[1(gn. 1) 10g(n (e, 1)) + (1 = n(ey, 1)) log(1 — n(ey. 1)] “4)

m

and Ey,,q(?) is the band energy, which can be obtained as

Eband(t) = Zn(gm’ t)gmv (5)

m

where n(e,,t) are the occupation numbers of the electronic Kohn—Sham levels ¢,. The
occupancies n(g,, t) may depend on time.

It can be seen that the electronic free energy depends strongly on the occupation numbers,
which appear only in the first term, and, to a lesser extent, also on the self-consistent electronic
charge density. This means that if the electronic occupations undergo strong changes, then the
potential energy will change significantly [36].

In order to quantify these changes and to determine the influence of the laser excitation on
the phonon frequencies, we performed frozen-phonon self-consistent calculations and computed
the total energies of laser-excited Mg with and without atomic displacements as a function of
the electronic temperature. The phonon frequency in the harmonic approximation is in this case
given by

Fl(u, Ty) — F3f(u =0, Ty)
vsch(Tel) — tot € tot € .

(6)

27 2mu?

Here u = ||u;(q)| is the atomic displacement, F;ff(u, T,) and thftf(u =0, T,) are the total

free energies with and without atomic displacements obtained self-consistently for a given
temperature using (1), and m is the total weight of all displaced atoms in the supercell.
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2.2. Non-self-consistent approximation

Following our ansatz from [14] we also performed non-self-consistent calculations, which
provide a more intuitive picture of the behaviour of the phonon frequencies as a function of
the electronic temperature. In this approximation total energies are calculated from

Fal™ N (Ty) = Foy (T = 0) + A Fyo ! (To), (7

tot tot

where F(T, = 0) is the total self-consistent energy of the ground state and A Fon” t(Ty) is

tot
the difference of the band energies (5) at electronic temperature 7, and in the ground state.
This approximation, which does not take into account self-consistent laser-induced changes to
the electronic charge density p(r), is based on the interpretation of the Kohn—Sham energies
as single-electron excitation energies and has been shown to work well for Bi [37]. In a
computationally convenient way such temperature-dependent non-self-consistent calculations
provide a prediction of the behaviour of phonon frequencies, based on ground-state calculations

only, via

Jnon- scf(u’ Tel) _ Jrnon- scf(u — 0’ Tel)

tot tot
Tel) ~

®)

Vhon- scf( 2 2mu2
So, using the non-self-consistent approximation we can calculate properties at high
electronic temperatures, far from the electronic ground state, relying on 7, =0K self-
consistent calculations only. As we will show in the next section, (8) allows for a robust
qualitative explanation of the non-trivial electronic-temperature-dependent structural response
of magnesium to a femtosecond-laser pulse.

2.3. Sommerfeld expansion

For low induced electronic temperatures the laser excitation can also be described by the
Sommerfeld expansion [38], which provides a systematic way of expanding the low temperature
expression for the free energy in powers of T;;. For the band energy we used the Sommerfeld
expansion up to second order:

2
o
Foana(Te1) & Foana(Teg = 0) — Z(kBTel)zg(EF), )

where kg is the Boltzmann constant and g(eg) is the electronic DOS at the Fermi level. The first
term of (10) is the band energy in the ground state, obtained from a self-consistent calculation,
and the second term completes the band energy at higher electronic temperature and includes
energetic and entropic contributions [39]. Using (10) we approximately obtained the change of
phonon frequencies as a function of electronic temperature:

Ag(e )
Vaommerterd (Te) & Vas(Teg = 0) — —(kB T 5 2 (10)

where vy is the phonon frequency at the ground state, Ag(ep) = g(u, ep) — g(u =0, €g), and
g(u, ep) and g(u = 0, eg) are the DOSs at the Fermi level in the ground state with and without
atomic displacements, respectively.
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Figure 3. The total energy of Mg with (red point) and without (blue point) displaced
atoms for the TO| mode at the K point. The solid line shows the parabola connecting
all data points.

3. Results

3.1. Self-consistent calculations

Our frozen-phonon calculation consisted of computing the total energy for the supercell shown
in figures 1 and 2 with and without displaced atoms as illustrated in figure 3 for the electronic
ground state. From the free total energies at different electronic temperatures we obtained
the phonon frequency at different excitation densities. Our results are shown in figure 4.
Surprisingly, at low temperatures (up to 9000 K), the TO (K') mode of Mg reveals softening and
at higher electronic temperatures hardening. We would like to stress that although this result
is significant, the self-consistent approach followed here does not offer a ready explanation.
In contrast, our analysis below, which is based on the Sommerfeld expansion in the non-self-
consistent approximation, explains this behaviour and shows how these opposite changes of the
phonon frequency can subsequently occur in a single mode.

3.2. Non-self-consistent calculations

As a first step to analyse this behaviour, we computed the phonon frequency non-self-
consistently as a function of the electronic temperature (8), which we also show in figure 4.
As can be seen from a comparison with the self-consistent results in figure 4, at low
temperatures the non-self-consistent approximation yields nearly identical results with self-
consistent temperature-dependent DFT and at higher temperatures still reproduces the general
trend, i.e. hardening or softening [37]. This shows that the laser-induced changes in the Mermin
free electronic energy Fiy (1) are dominated by the changes in the band energy Fy.,q (3) and
that the contributions due to self-consistent changes of the density p(r) (2) are comparatively
small. Our comparison in figure 4 demonstrates that the non-self-consistently computed phonon
frequencies can qualitatively explain the structural response of Mg to a femtosecond-laser pulse
as a function of the induced electronic temperature. This is an important result, because it
shows that we can interpret the laser-induced changes to the electronic subsystem in terms of a
rigid electronic band structure, where only the occupation numbers change. Consequently, the
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Figure 4. Phonon frequency variations as a function of electronic temperature for
the TO; mode at the K point in the Brillouin zone. Solid lines connect our results
obtained from self-consistent DFT calculations. The dashed lines were computed non-
self-consistently.

electronic band structure needs only to be computed self-consistently in the electronic ground
state. This non-self-consistent approximation is also central to the Sommerfeld expansion
discussed below.

3.3. Discussion

A physically appealing interpretation of the results of our non-self-consistent calculations,
which are shown by a dashed line in figure 4, can be obtained using the Sommerfeld expansion,
which approximates changes in the band energy using the electronic DOS evaluated at the
Fermi energy (9). In figure 5 we compare the electronic DOS of Mg with the atoms in their
equilibrium positions (solid blue line) with the electronic DOS of Mg, when the atoms are
displaced from their equilibrium positions (dotted red line). It can be seen that after displacing
the atoms, the Van Hove singularities [40] near the Fermi level, which are labelled B and C,
become weaker and also that a new Van Hove singularity marked by A appears. In order to
estimate the effect of the electronic temperature on the phonon frequency from the Sommerfeld
expansion, in (10) we used the difference of the electronic DOS Ag(e), which is shown in
figure 6 for different smearing levels. It is important to notice that Ag(e) is a highly irregular
function of energy, which has cusps due to the Van Hove singularities. Due to these singular
points one can not describe electronic excitations beyond the nearest Van Hove singularity using
the standard Sommerfeld expansion, because all orders in this expansion involve only Ag(e)
and its nth order energy derivatives evaluated at the Fermi level. Instead, we found it helpful
to smear the electronic DOS by convoluting it with Gaussians with different widths. The result
for the smearing levels of 1 and 2.5eV are shown in figures 6(b) and (c), respectively. The
higher values of smearing effectively describe the behaviour of phonons at higher electronic
temperatures: whereas at low electronic temperature the fine features in the DOS near the
Fermi level dominate the changes in vibrational frequencies, at higher electronic temperature
the average change arises from the broadening of the relevant energy interval. The peaks in
figure 6 appear from Van Hove singularities in both DOSs of Mg, i.e. those with and without

7
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Figure 5. (a) Electronic DOS of Mg. Panels (b) and (c) are enlarged parts of the DOS.
The solid blue line shows the DOS of Mg without atomic displacements and the dotted
red line is the DOS of Mg with atoms displaced in the direction of the TO; phonon mode
at the K point of the Brillouin zone. A, B and C label the Van Hove singularities that are
relevant for the phonon frequency changes after femtosecond-laser excitation (see text).

displaced atoms. The peaks of the relevant Van Hove singularities are marked by A, B and C in
figures 5 and 6 at the same energies. The Van Hove singularity peak labelled A appears in the
DOS only after displacing the atoms, B and C are from the existence of Van Hove singularities
at the M and K points in the Brillouin zone of Mg, respectively. In figure 6 we see that the
difference of the DOS evaluated at the Fermi energy has a positive value for low smearing
levels and that by increasing the smearing its value decreases. Even from some point it decreases
below zero and becomes negative, which originates from the combination of the contributions
from Van Hove singularities A and C. The electronic temperature dependent sign change of
Ag(er) explains why the TO phonon mode at the K point of Mg shows softening for low and
hardening for high excitation densities. This is elaborated in figure 7, where we show the phonon
frequencies resulting from the Sommerfeld expansion. By comparing with the results from self-
and non-self-consistent calculations (figure 4) we can see the same behaviour of the phonon
frequency as a function of electronic temperature. Depending on the smearing level we see
that the Sommerfeld expansion (10) qualitatively explains the phonon softening up to ~2300 K
(0.2eV) and ~12000K (1eV) as well as the phonon hardening around ~29 000K (2.5eV).
From the fact that the phonon softening at low electronic temperature and the hardening at
higher temperatures are well reproduced using different smearing levels for the DOS and from
our above analysis of the DOS changes (figure 6) we conclude that Van Hove singularities in
figure 5 are responsible for the non-trivial behaviour of the phonon frequency as a function of
laser fluence.
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Figure 7. Phonon frequency change as a function of electronic temperature for the
TO| mode at the K point. The solid lines are showing the results from the Sommerfeld
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4, Conclusion

In this paper we have computed the behaviour of the TO; mode at the K point of ultrafast laser-
excited Mg for different electronic temperatures corresponding to different laser fluences using
the full-potential LAPW method. We found both softening and hardening as a function of the
excitation density. In order to analyse our results we have computed the temperature dependence
of the phonon frequency via Sommerfeld expansions. We related the phonon frequency changes
upon laser excitation to changes in the Van Hove singularities upon displacing the atoms in
the direction of the TO; phonon mode at the K point. To the best of our knowledge, Mg is
the first material in which a single mode shows both significant laser-induced bond softening
and hardening. Because the lattice dynamics of solids is an electronically determined property
we further expect that our method can help to clarify why most semiconductors, e.g. Si show
femtosecond-laser-induced phonon softening while many metals, e.g. Au show hardening. We
wish to stress that the explanations for these crystals may be different from the origin of phonon
hardening and softening in Mg, i.e. they may or may not involve Van Hove singularities, but our
approach used here based on a detailed analysis of the differences in the electronic DOSs within
the frozen-phonon method is in principle also applicable to these and other materials.
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