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Preview

The set of integers forms a commutative ring whose elements admit a unique
decomposition into primes.

In this folder three lecture notes are bound, concerning topics, developed by
dropping or replacing special properties of this most natural and most special
ring.

A. A first lecture note concerns d-semigroups (divisibility-semigroups). This
structure was created by the author as a common abstraction of d-lattices
(distributive lattices) and ℓ-groups (lattice ordered groups). defined as an al-
gebra (S, · ,∧) of type (2,2), satisfying:

(A1) (S, ·) is a semigroup .

(A2) (S,∧) is a semilattice .

(A3) ∀ x, a, b, y : x(a ∧ b)y = xay ∧ xby .
(A4) a ≤ b =⇒ ∃ x, y : ax = b = ya .

Most amazingly, large parts of ℓ-group theory may be transposed to d-semi-
groups by modified methods, partly by routine, but partly – as well – by
strenuous and even most strenuous efforts.

B. In a second contribution an abstract ideal theory is established, based on
the structure of algebraic lattices and dominated by the Mori condition:

To contain is to divide.

C. Finally, in part III specializations and generalizations of left-residuation-
groupoids are studied, that is groupoids satisfying

∀a, b ∃ a ∗ b : b
∣∣∣
l
ax⇐⇒ a ∗ b

∣∣∣
l
x .

Classic examples of this type are for instance boolean algebras, lattice-ordered
loops (including lattice ordered groups), and ideal structures of multiplicative
structures like rings, semigroups, lattices, etc.

EACH OF THESE LECTURE NOTES is written in a self-contained manner.
Presented are the author’s main contributions to divisibility until now, except
for his early Decomposition and Ideal Theory for Semigroups – on the one
hand, but enriched by passages unpublished so far, which in any case would
justify some articles in their own right – on the other hand.

Kassel, 12. 31. 2014 – B.B.
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Chapter 1

Introduction

1.1 Fundamental Notions

By a lattice group we mean an algebra V = (V, · ,∧,∨,−1 ) of type (2, 2, 2, 1)
forming a group under · and −1 and a lattice under ∧ and ∨ , such that in
addition x(a ∧ b)y = xay ∧ xby is satisfied. Lattice groups are briefly called
ℓ-groups.

The most elementary example is the ℓ-group (Z,+,≤) , whereas the most
classical candidate is the the module group Q(ϑ), studied for the first time by
Richard Dedekind . And similarly to the notion of a lattice, by Dedekind
exhibited as dual group, when establishing ideal theory, the notion of an ℓ-
group was anticipated by him far before ℓ-group theory became a theory in
its own right.

From the structural point of view the module group above is of a type similar
to that of Q = (Q, ·, |N ,−1 ) under a |N b :⇐⇒ ∃n ∈ N : a·n = b . Furthermore
– as a classical aspect we notice that any abelian ℓ-group may be considered
as the divisibility monoid of some suitable GCD-domain (Jaffard) even more
of some Bézout domain (Ohm) . Hence: commutative ℓ-group theory is
theory of domains whose finitely generated ideals are principal ideals.

As the starting point of a general – not necessarily commutative – ℓ-group
theory we have to mention the ground breaking and pioneering paper [12]
of G. Birkhoff, where already the group of isotone or equivalently order
preserving chain permutations is considered under composition and pointwise
minimum. And as the “big break through” we have to mention

5



6 CHAPTER 1. INTRODUCTION

The Theorem of Holland. Any lattice group is a lattice group of order
preserving permutations of some suitably chosen chain ,

which provided the “missing link” between ℓ-groups and chain theory.

MOREOVER: It was this theorem by which the author was fascinated and
motivated and which in a modified version was the central result of his
first contribution, [17], to the theory of divisibility semigroups, briefly d-
semigroups.

The crucial idea is simple: Dropping the cancellation law but requiring the
factor condition the class of algebras under consideration contains the dis-
tributive lattice, for short d-lattice, as well. And this leads to

A Theorem of Birkhoff. Any distributive lattice is a subdirect product of
2-element lattices, whence it is also a lattice of sets.

PRECISELY: By a d-semigroup we mean an algebra (S · ,∧) of type (2,2),
satisfying:

(S, ·) is a semigroup.(A1)

(S,∧) is a semilattice.(A2)

∀ x, a, b, y : x(a ∧ b)y = xay ∧ xby .(A3)

a ≤ b =⇒ ∃ x, y : ax = b = ya .(A4)

AND AGAIN: This defines a common abstraction of the ℓ-group an the d-
lattice.

d-semigroups seem to be rather weak, since dropping the left factor condi-
tion we are led to arbitrary wild structures – consider any lattice and define
ab := b. On the other hand the left/right factor condition yields a strong
interdependence between the underlying semigroup and the underlying semi-
lattice.

This will lead to the meta-theorem that large parts of ℓ-group theory, included
the theorem of Holland, are carried over, as is evaluated as most amazingly
in a review of Keimel. The reason

Factors are strong pseudo-inverses.

As a typical example of a d-semigroup we present the monoid of all finitely
generated ideals of an arithmetical (commutative) ring. That is a ring with
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a distributive ideal lattice, or – equivalently – a ring that satisfies the funda-
mental implication

⟨a1, . . . , an⟩ ⊇ ⟨b⟩ =⇒ ⟨a1, . . . , an⟩
∣∣∣∣ ⟨b⟩ .

These ideal semigroups provide most special examples as far as they may
be considered as ideal semigroups of Bézout-rings. Hence for instance their
filters f satisfy the rules of ring ideal theory, in particular the rules below:

a · x ⊆ b + a · y =⇒ x ⊆ b : a+ y .(SU)

(∀a ∈ a ∃1 ≤ i ≤ n : a ∈ pi)
=⇒ a ⊆ pj (∃j : 1 ≤ j ≤ n) .

(AP)

R/P = R satisfies x · y = x · z ̸= 0 =⇒ y = z .(PK)

BUT: The aim of this note is

A general theory of d-semigroups.

To this end we start from the system (A1) through (A4) above and show first
of all:

d-semigroups are ℓ-semigroups – as distributive as possible.

Symptomatical and fundamental, as well, for d-semigroups is:

A Decomposition Theorem: Any d-semigroup admits a subdirect de-
composition into semigroups of order isomorphisms mapping order ideals of
a chain onto order filters of this chain , considered under composition and
pointwise minimum , which subsumes both, Holland’s and Birkhoff’s the-
orem.

Structures of this type are called – here – ideal/filter semigroups, briefly r-
semigroups, (according to the German “Randisomorphismenhalbgruppe”) .
r-semigroups need not be d-semigroups, which is shown by the r-semigroup
of Q . Observe that in this example the order ideals A := {x | x < π} and
B := {y | y < 0} are isomorphic, whereas the corresponding filters Q−A and
Q−B are not.

However: It will be shown later on that any r-semigroup admits a d-
semigroup extension, whence d-semigroups and r-semigroups have the same
elementary arithmetic. This is the particular charm of r-semigroup theory.
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The interested reader will see that this lecture note provides a good deal
of algebraic d-semigroup theory, but only little r-semigroup theory. Here
remains much to be done, consult for instance the fundamental lecture note
[58] of Andrew M. Glass. In particular:

r-semigroups don’t provide factors in any case of a ≤ b , but – roughly speak-
ing – the set of all ax – nicely approximates b. This may be illustrated by a
classical example:

In the additive semigroup Q+[π], generated by Q≥0 and π, we are not in
the position to solve 1 + x = π , but in the sense of order topology we
are able to “reach” any interval of π . So it seems interesting, whether
(A1) & (A2) & (A4) together with this requirement provide an r-semigroup.

BUT: Sofar not to much has been done towards this special problem, and
not much more has been done from the general topological point of view,
although there are some papers concerning totally ordered topological semi-
groups, consult [39], in particular the results of Faucett, [53], [54].

In order to give an informative survey for the interested outsider, in the
subsequent synopsis we give a preview and outline about the central aspects,
according to the chapters of this note. This is much more than a preface
of usual type, but offers a concentrated study of the main topics in a most
direct manner.

1.2 Synopsis

Chapter 1 presents the basic notion of a d-semigroup.

By a d-semigroup we mean an algebra (S, · ,∧) of type (2,2), satisfying:

(S, ·) is a semigroup.(A1)

(S,∧) is a semilattice.(A2)

∀ x, a, b, y : x(a ∧ b)y = xay ∧ xby .(A3)

a ≤ b =⇒ ∃ x, y : ax = b = ya .(A4)

Obviously, the d-semigroup is a common abstraction of the lattice group,
which we get by requiring that (S, ·) be a group, and of the distributive
lattice, which we get by requiring that (S, ·) be semilattice.
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A d-semigroup S is called a d-monoid, if it contains an identity element 1 . A
d-monoid is called right normal, if in addition to (A1) through (A4) it even
satisfies:

∀ a, b ∃ a◦ ∧ b◦ = 1 : (a ∧ b)a◦ = a & (a ∧ b)b◦ = b .

In case that S is right and left normal, S is called briefly normal.

Normality plays a most important role w. r. t. commutative rings with iden-
tity. More precisely:

Theorem. In a commutative ring with identity the lattice of ideals is dis-
tributive iff the condition a : b + b : a = (1) is satisfied and this is the case
iff finitely generated ideals a satisfy a ⊇ b =⇒ a | b .

Chapter 2 presents the rules of arithmetic. In particular we get: Any
d-semigroup is ∨-closed and satisfies:

x(a ∧ b)y = xay ∧ xby ,(i)

x(a ∨ b)y = xay ∨ xby ,(ii)

x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b) ,(iii)

x ∨ (a ∧ b) = (x ∨ a) ∧ (x ∨ b) ,(iv)

where (iii) and (iv) are equivalent – as is well known.

d-semigroups need not contain an identity element 1, but according to con-
dition (A4) for any a there exists an element u with au = a and an element
v with va = a . This leads to some private unit ea, satisfying aea = a = eaa ,
briefly to a unit of a . However, such a unit need neither be idempotent nor
need it be uniquely determined. Moreover any pair of units e, f of a satisfies
e∨ a = f ∨ a =: a+, a formula, which follows in d-monoids immediately from
the existence of the identity.

In po-semigroups a particular and structure determining role is played by the
positive elements. These are the elements p satisfying pa ≥ a ≤ ap (∀a ∈
S). In a d-semigroup they form a structure determining sub-d-semigroup P,
called the positive cone, briefly the cone. Positive elements in d-semigroups
are characterized by a = e∨a for at least one and thereby for all units e of a .
Therefore condition (A4) is always satisfied even by positive elements x, y.
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Large parts of d-monoid theory are developable by studying the cone. With
respect to this aspect, not only the positive value a+ but also the absolute
value | a | is of great importance.

We define: Let e be a unit of a and suppose (e ∧ a)a∗ = e. Then | a | is
defined by | a | = (e ∧ a)a∗ . This is possible, since (e ∨ a)a∗ does not depend
on the special chosen a∗ – as will turn out in chapter 1.

| a | is built like the absolute value in R, recall | a | := −min(0, a) + max(0, a)
via | a | := a+ · a∗ (ea = a = ae & (e ∧ a)a∗ = e) . In particular we get:

| a+ | = a+ .(i)

| a · b | ≤ | a | · | b | · | a | .(ii)

| a ∧ b | ≤ | a | ∨ | b | ≥ | a ∨ b | .(iii)

Further essential influence on the structure of a d-semigroup S is taken by
the idempotent and cancellable elements. They form the idempotent kernel E
and the cancellative kernel C of S .

In addition all idempotent elements are positive and central.

Next we mention a decomposition formula, matching multiplication and meet:

Proposition. Choose arbitrary elements a, b, c, d and positive elements a′, b′′,
c′, d′′, such that

(a ∧ c)a′ = a & (a ∧ c)c′ = c and b′′(b ∧ d) = b & d′′(b ∧ d) = d

are satisfied. Then it follows:

ab ∧ cd = (a ∧ c)(a′ ∧ d′′)(b′′ ∧ c′)(c ∧ d) .

In excess of the facts mentioned so far Chapter 1 presents a series of formulas
w. r. t. residuation, which may be left aside here since they are of auxiliary
character.

Chapter 3 is immediately characterized. It is shown:

Let S be a d-semigroup without identity 1 , then S admits a canonical monoid
extension Σ, symbolized by S1, which might be called the identity hull, since
each element of this extension is of type a · (1 ∧ b)−1 or .... .

Furthermore any d-monoid S admits a canonical quotient extension Q such
that all cancellable elements of S remain cancellable in Q and such that
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moreover all cancellable elements of Q are invertible, whence Q might also
be called the quotient hull.

Chapter 4 provides the basic notions and results of an ideal theory for
d-semigroups.

Since any S is a semiring on the one hand and a generalized ℓ-group on the
other hand, lattice ideals and lattice filters on the one hand and semiring
ideals and convex sub-d-semigroups on the other hand take influence on the
the theory of d-semigroups in a most natural manner. All at all one might
say, that d-ideals a , these are subsets, satisfying sat ⊆ a and a + a ⊆ a ,
play a role, most similar to that of Dedekind ideals in ring theory, while p-
ideals, these are lattice ideals A , satisfying P ∩ A ̸= ∅ , will play a crucial
role in congruence theory, whereas c-ideals , these are convex substructures
containing 1 , are essentially responsible for the interplay of linearity and
orthogonality.

As a central result of chapter 4 we present:

Let S be a d-semigroup. Then the set of p-ideals of S, the set of filters of S,
and the set of d-ideals of S , respectively, form completely distributive lattice
semigroups under the complex operations developed from multiplication, meet,
and join. Moreover the lattices of filters and d-ideals, respectively, satisfy the
infinite law of distributivity:

A ∩
∑
Bi =

∑
(A ∩Bi) (i ∈ I) .

Apart from the ideals above, w. r. t. completion there are two further types
of central importance:

(1) the set of v-ideals a, defined by (c ∈ a ⇐⇒ s |xay ⇒ s | ct )

and dually

(2) the set of u-ideals A, defined by (c ∈ A ⇐⇒ xAy | s⇒ ct | s ) .

Chapter 5 presents a first structural investigation. In particular it turns
out:

1. Congruences are extended in a canonical manner
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from P to S by:

a ≡ b :⇐⇒ ∃x, y ∈ S & a◦ ≡ b◦ ∈ P :
a = xa◦y & b = xb◦y ,

from S to S1 by:

α ≡1 β :⇐⇒ ∀x, y ∈ S : x · α · y ≡ x · β · y ,

from S to Q by:

α ≡Q β :⇐⇒ ∃x, y ∈ C1+ x · α · y ≡1 x · β · y ,

and in each of these cases subdirect decompositions are respected.

2. Let I be a lattice ideal of S, closed under multiplication.

a ≡ b (I) :⇐⇒ ∃ e, f ∈ I : a ≤ be & b ≤ af

generates a left congruence on S .

3. Let m be a d-ideal of S . Then

a ≡ b (m) :⇐⇒ ∃ x ∈ F : a ∧ x = b ∧ x

generates a congruence on S .

4. Let P an irreducible ideal. Then

a ≡ b (P ) :⇐⇒ ∀ s : s · a ∈ P ⇔ s · b ∈ P

generates a totally ordered left congruence on S .

5. Let C be a c-ideal. Then

a ≡ b (C) :⇐⇒ ∃ e, f ∈ C : a ≤ be & b ≤ af

generates a left congruence on S , and in case of a · C = C · a the left
congruences above are transformed to (left/right) congruences.

6. Let u ∈ S be idempotent. Then

a σu b :⇐⇒ ∃ su : a ∧ su = b ∧ su
and a πu b :⇐⇒ au = bu

generate a pair of congruences such that the pair S/σu , S/πu generates a
subdirect decomposition of S.
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Two positive elements a, b of a d-semigroup are called archimedean equivalent,
symbolized by a ≈ b, if there a ≤ bn & b ≤ an for some suitable n ∈ N.

7. Let S be a d-semigroup. Then ≈ generates the finest idempotent con-
gruence η on S whence S/η is the coarsest idempotent homomorphic image
of S.

8. The finest cancellative congruence of a d-semigroup is given by

a κ b :⇐⇒ ∃ x ∈ S : xax = xbx .

9. Let S be a completely distributive lattice semigroup and let S/θ be sub-
directly irreducible. Then θ is generated by a regular filter, that is a filter,
maximal w. r. t. not containing – shortly avoiding – some fixed element a .

10. Let finally S be even a positive subdirectly irreducible completely distribu-
tive lattice semigroup. Then S has a maximum 0 and a uniquely determined
hyper-atom (co-atom) h which forms together with 0 a critical pair.

As a consequence of the preceding theorem it follows:

Any d-semigroup admits an embedding in a normal d-monoid.

In the particular case of a commutative d-semigroup we even get:

Any commutative subdirectly irreducible d-semigroup S is totally
ordered and 0-cancellative.

In general we obtain as a characteristic condition:

A subdirectly irreducible d-semigroup S is totally ordered iff it
satisfies: (O) xay ∧ ubv ≤ xby ∨ uav .

Chapter 6 introduces r-semigroups and presents an analysis of arbitrary
d-semigroups based on the notions of l- and c-ideals.

1. 2. 1 Definition. Let T := (T,≤) be a totally ordered set, briefly : a
chain . By an order ideal of T we mean any subset of T satisfying x ≤ y ∈
A =⇒ x ∈ A . Dually the order filter is defined.

Moreover we call ideal/filter isomorphism of T each order isomorphism ϕ :
A −→ B of some ideal A to some filter B .
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Let ϕ, ψ be ideal/filter order isomorphisms of T . Then the relation product
ϕ◦ψ and their pointwise minimum function ϕ∧ψ, as well, form an ideal/filter
order isomorphism of T , and it is easily verified that this structure satisfies
the axioms (A1), (A2), (A3) . Further it is easily seen, that ϕ ≤ ψ holds iff
the implication x ∈ dom (ϕ) ∩ dom (ψ) =⇒ ϕ (x) ≤ ψ (x) is valid.

1. 2. 2 Definition. Let T be a chain. Then by the ideal/filter semigroup,
briefly : the r-semigroup 1) R(T ), we mean the set of all ideal/filter isomor-
phisms of T , considered w. r. t. ◦ and ∧.

Main result of chapter 5 is a refined study of the interplay between d-
semigroups and r-semigroups culminating in the theorems:

Any d-semigroup admits a subdirect decomposition whose factors
admit an embedding in some r-semigroup.

Any r-semigroup admits an embedding in a d-semigroup,

BUT:

Not any r-semigroup is necessarily a d-semigroup.

A Hint: Consider the r-semigroup of Q . Here 0 and π generate isomor-
phic filters of strictly greater elements but the corresponding ideals are not
isomorphic.

The method of proof of the preceding results implicitly provides moreover:

Any commutative d-semigroup admits an embedding in the
quotient-d-semigroup of some direct product of bricks.

Chapter 7 A lattice is called conditionally complete, if there are no gaps,
meaning that any upper bounded subset is upper limited. A conditionally
complete lattice is called

∧
-distributive, if it satisfies:

s =
∧
ai (i ∈ I) =⇒ x ∨ s =

∧
(x ∨ ai) (i ∈ I) .(D∨)

1)r- here stands for the German Rand .
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Dually the
∨

-distributive lattice is defined by the corresponding axiom (D∧).
A conditionally complete lattice is called absolutely distributive if existing
limits satisfy: ∧

C

[∨
Aγ
aγ,α

]
=

∨
Φ

[∧
C
aγ,ϕ(γ)

]
(DV1)

∨
C

[∧
Aγ
aγ,α

]
=

∧
Φ

[∨
C
aγ,ϕ(γ)

]
,(DV2)

where γ runs through C and Φ runs through the set of all mappings ϕ of C
into the union of those Aγ, which satisfy ϕ(γ) ∈ Aγ .

Obviously any conditionally complete chain is absolutely distributive, and
thereby in particular also

∨
- and

∧
-distributive. On the other hand (D∧)

and (D∨) are independent.

A conditionally complete d-semigroup is called complete if its multiplication
distributes over

∧
. It is called continuous if its multiplication distributes over∧

and
∨

. A d-semigroup is called archimedean, if it satisfies:

an ≤ b (∀n ∈ N) =⇒ ab , ba ≤ b .(A)

As a first principal result this chapter presents:

It suffices to check the cone w. r. t. the various completeness-conditions.

As further principal results chapter 6 contains:

Any complete d-semigroup is archimedean.

Any continuous d-semigroup is commutative.

Chapter 8 presents – based on chapter 6:

Any archimedean d-semigroup is commutative !

Chapter 9 considers totally ordered d-semigroups. In a first section we
are concerned with strictly archimedean models, these are d-semigroups, sat-
isfying ∀a > 1, b ∃n ∈ N : an ≥ b . Strictly archimedean d-semigroups are
always totally ordered . Moreover it holds:

The Theorem of Hölder and Clifford. Any strictly archimedean d-
semigroup S admits an order preserving embedding
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(i) into the semigroup of all non negative reals w. r. t. the natural
order, henceforth denoted by P ,

OR (ii) into the semigroup of all reals of the interval [ 0, 1 ] w. r. t. the
usual order and ab := min(a+ b, 1) , henceforth denoted by P1 , also
E,

OR (iii) into the semigroup of all reals of the interval [ 0, 1 ] , extended
by the symbol ∞ and considered under ab := a+ b, if a+ b ≤ 1, and
ab := ∞, if a+ b > 1 , henceforth denoted by P1

◦ .

In a second section totally ordered positive complete d-semigroups ar in-
vestigated by means of interval semigroups, these are topological semigroups
defined on a set, endowed with a complete and dense total order and with a
semigroup operation such that the order minimum acts as semigroup identity
and the order maximum as zero.

Chapter 10 is again concerned with some particular archimedean property.
A d-semigroup is called hyper-archimedean, if it satisfies:

∀a, t ∈ S+ ∃n ∈ N : t · a · t ≤ a ∨ tn .

Obviously any hyper-archimedean d-semigroup is also archimedean.

Theorem. The following are pairwise equivalent:

(i) S is hyper-archimedean.

(ii) ∀a, t ∈ S ∃n ∈ N : t · a · t ≤ a ∨ tn.
(iii) Any homomorphic image of S is archimedean.

(iv) The semigroup of lattice ideals is archimedean.

Moreover Chapter 10 provides an abundance of theorems, among them also
some results on factorial d-semigroups, these are d-semigroups whose ele-
ments are products of semiprime elements (| p | = | a || b | =⇒ | p | = | a | V | p | =
| b |) . Factorial d-semigroups are exactly those d-semigroups, whose ideal
semigroup satisfies:

A ·
∩
Bi =

∩
ABi (i ∈ I) .

Chapter 11 considers complete extensions.

The central problem: Under which conditions does a d-semigroup admit a
complete extension, i. e. an extension, satisfying:

x · (
∧
ai) · y =

∧
(xaiy) (i ∈ I) ,
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see above, or dually: Under which conditions does a d-semigroup admit
some

∨
-complete extension, that is an extension, satisfying: x · (

∨
ai) · y =∨

(xaiy) (i ∈ I). In both cases the archimedean property is necessary. But
opposite to the classical situation, this property is not sufficient here.

A most important role is played by the pair v-ideal, u-ideal. The power
of these ideals is that for cancellative d-semigroups they provide cancellative
extensions. Observe: The v-ideal semigroup V provides a complete extension
whenever a ⊇ b =⇒ a | b , and the u-ideal semigroup T provides a

∨
-complete

extension whenever A ⊆ B =⇒ A|B .

Main results of Chapter 11 are:

1. Define [A] := {x | x |A} . S admits a complete extension by cuts if and
only if its v-ideals satisfy:

[ a ]n ⊆ [ b ] (∀ n ∈ N) =⇒ a ◦ b = b = b ◦ a ,(SS)

and in this case any complete cut extension is isomorphic with the v-ideal
semigroup.

2. S admits an
∨

-complete extension by cuts if and only its u-ideals satisfy:

S is archimedean and satisfies A = [ (A) ] ,(VS)

and in this case any
∨

-complete cut extension is isomorphic with the u-ideal
semigroup.

Chapter 12 provides some insight into cube semigroups.

According to our definition above P1
I is the |I|-dimensional cube, considered

under the derived function operations. We are interested in sub-d-semigroups
of P1

I , henceforth called cube semigroups.

1. A positive d-monoid S is a cube semigroup iff it satisfies:

If A is a filter, satisfying An ⊇ b (∀n ∈ N) ,(W)

then the v-ideal a generated by A satisfies: a · b = b = b · a .

2. A d-monoid admits a complete extension if its cone admits an embedding
into some cube EI .

3. A positive complete d-monoid S admits an infima preserving embedding
into a cube if for any pair a, b with b ̸≤ a there exists a ∨-irreducible element
p such that p ≤ b & p ̸≤ a.
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4. A positive d-monoid S admits a lattice point extension iff the lattice
semigroup of d-ideals of S is archimedean.

Chapter 13 and Chapter 14 are closely related to the theory of chains
and polars in ℓ-groups. Let us consider the most classical ℓ-group Q :=
(Q+, ·, |N) with a |Nb ⇐⇒ a · n = b (n ∈ N) . As is easily seen factorization
aspects in Q+ are reflected by comparability and orthogonality. For example,
we see that the classical prime factorization theorem reads Q+ is a direct sum
of components of type Z .

Essential notions which may carry over to the arbitrary d-monoid situation
are for instance direct factor, polar, minimal substructure etc.

It is the merit of ℓ-group pioneers like F. Šik, J. Jakub́ık, P. F. Conrad ,
S. J. Bernau and J. T. Lloyd to have studied these substructures in order
to clear the structure of arbitrary ℓ-groups.

Thus, from the conceptual point of view, they contributed to d-semigroup
theory, far before this structure was created by the author.

Since: Most surprisingly, large parts of the lecture note due to Bigard-

Keimel-Wolfenstein, [10] , remain valid in right normal d-semigroups,
from the substantial point of view as well as from the methodical point of
view.

This is the more important since any d-semigroup admits an embedding into
some normal d-monoid.

Chapter 15 is concerned with representable d-semigroups. Although there
is an abundance of characterizing properties for representable ℓ-groups, all of
them except for condition (vi) below fail in the d-semigroup case. Neverthe-
less we find some nice descriptions for the general case, see for instance:

For a d-semigroup the following are pairwise equivalent:

(i) S is representable.

(ii) xay ∧ ubv ≤ xby ∨ uav.

(iii) S+ is representable.

(iv) Σ+ is representable.

(v) ax ∧ yb ≤ ay ∨ xb.
(vi) eae ∧ faf = (e ∧ f)a(e ∧ f) .



1.2. SYNOPSIS 19

Considering special cases we are led to hyper-normal d-monoids which are
defined by

x, y ∈ S+ & ax ∧ ay = a =⇒ ∃ z⊥x : ay = az
x, y ∈ S+ & xa ∧ ya = a =⇒ ∃ z⊥x : ya = za .

Obviously this class contains the class of cancellative d-monoids and the class
of boolean algebras,as well. But moreover the ideal theory of commutative
arithmetical rings, that is rings whose ideal lattice is distributive, and thereby
in particular that of Bézout rings, that is commutative rings whose finitely
generated are principal, is reflected.

Chapter 16 A semigroup is called separative, if it satisfies:

(ab = aa & ba = bb) V (ab = bb & ba = aa) implies a = b .

Any d-semigroup contains a natural separative kernel which is a product E ·C
of the idempotent and the cancellative kernel. Its study provides a most gen-
eral approach to clearing the structure of inverse d-semigroups, culminating
in a theorem of McAlister .

Moreover, let S be a d-semigroup. Then we obtain:

1. S is separative if and only if it is a subdirect product of cancellative d-
semigroups with or without zero element 0 , so

2. S is separative, if and only if it admits an embedding into an inverse
d-semigroup.

3. If S is a subdirect product of an ℓ-group G and a d-lattice L, then this
subdirect product is even a direct product.

Chapter 17

A semigroup is called inverse, if there exists for any element a a uniquely
determined element a−1 satisfying

a · a−1 · a = a and a−1 · a · a−1 = a−1 .(1.26)

Hence the inverse semigroup is a common abstraction of group and semilat-
tice.

A d-semigroup S is called inverse, if (S, ·) is inverse. Consequently the inverse
d-semigroup is a common abstraction of ℓ-group and d-lattice
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How powerful the inverse property is, will be demonstrated aside from the
structure theorem below by showing that in the inverse case it suffices to
require (A3) only one sided.

Let S be an inverse d-monoid. Then any Gu := {x | xx−1 = u} is equal
to the set of all uc with u ∧ (1 ∨ c)(1 ∧ c)−1 = 1 and cc−1 = 1, whence
any inverse d-semigroup turns out to be a semilattice of ℓ-groups Gu with
u ≤ v =⇒ (Gu)v = Gv .

According to McAlister (and Clifford) any inverse d-semigroup is gener-
ated in a canonical manner. To this end one starts from a distributive lattice
D and a system Gα (α ∈ D) of ℓ-groups together with two directed systems
of homomorphisms

ϕα,α∨β : Gα −→ Gα∨β and ψα,α∧β : Gα −→ Gα∧β .

Finally in

Chapter 18 various types of d-semigroup generalizations are considered
and discussed, maybe initiating further investigations of lattice ordered semi-
groups – in future..



Chapter 2

Arithmetics

2.1 Fundamental arithmetic of d-semigroups

2. 1. 1 Definition. By a d-semigroup we mean an algebra (S, · ,∧) of type
(2,2), satisfying:

(S, ·) is a semigroup .(A1)

(S,∧) is a semilattice .(A2)

∀ x, a, b, y : x(a ∧ b)y = xay ∧ xby .(A3)

a ≤ b =⇒ ∃ x, y : ax = b = ya .(A4)

As usual S is called linearly ordered if (S,∧) is totally ordered (and conse-
quently satisfying in addition a ≤ b =⇒ xa ≤ xb & ay ≤ by) .

Obviously, the d-semigroup is a common abstraction of the lattice group,
require that (S, ·) be a group, and of the distributive lattice, require that
(S, ·) be a semilattice.

2. 1. 2 Definition. Let (S, ·) be a monoid and S a d-semigroup. Then S is
called a d-monoid. A d-monoid is called right normal, if in addition to (A1)
through (A4) also

∀ a, b ∃ a◦ ∧ b◦ = 1 : (a ∧ b)a◦ = a & (a ∧ b)b◦ = b

is satisfied. In case that S is right and left normal S is called briefly normal.

Normality will play no role in this chapter, but later we will see, that any
d-semigroup admits an embedding into a normal d-monoid.

21
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2. 1. 3 Definition. Let S be a d-monoid with zero element 0. S is called
right hyper-normal, if it satisfies

au = a =⇒ ∃ v ∈ S : u ∧ v = 1 & av = 0 .

Let S be right and left hyper-normal. Then S will be called hyper-normal.

Later we will see, that any commutative d-semigroup admits a hyper-normal
d-monoid-extension.

Commutative hyper-normal d-monoids are first all the monoids of finitely
generated ideals of arithmetical rings, in particular principal ideal semigroups
of Bézout-rings. Classical hyper-normal d-monoids with 0 are on the one
hand the boolean lattice, considered under ∨ and ∧, and on the other hand
the lattice group (with 0), considered under · and ∧ .

Like normal also hyper-normal d-semigroups are not studied in this chapter,
but merely mentioned, because of the central role they will play later on.

Let henceforth S mean some d-semigroup. Then, as first elementary but
fundamental arithmetical rules we get:

a ≤ b & ea = a =⇒ eb = b .(2.5)

PROOF. a ≤ b & ea = a =⇒ au = b (∃u)
& ea = a =⇒ eb = eau = au = b . 2

Recall that d-semigroups are defined right/left dually. This means that all
left rules have a dual right version, and vice versa .

x(a ∧ b) = xa ∧ xb .(2.6)

a ≤ b =⇒ xa ≤ xb .(2.7)

PROOF. a ≤ b =⇒ a = a ∧ b =⇒ xa = xa ∧ xb . 2

Our first aim is a proof that (S,≤) is not only inf-closed but also sup-closed.
To this end we give

2. 1. 4 Definition. a ∈ S is called right positive if ∀x : xa ≥ x.

An element a ∈ S is called positive , if it is right and left positive that is if it
satisfies: ∀x : ax, xa ≥ x. Furthermore the set P of all positive elements is
called the cone of S .
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2. 1. 5 Lemma. Suppose ea = a & (e ∧ a)a ′ = a . Then ea ′ satisfies
xea ′ ≥ x (∀x) , that is ea ′ is right positive.

PROOF. Assume (e ∧ x)f = e ∧ x and (f ∧ a)a∗ = a. Then it follows
e(f ∧ a)a∗ = (e ∧ a)a∗ = (e ∧ a)a ′ = a and thereby xea ′ = xea∗ = xefa∗ =
xfa∗ ≥ xf = x . 2

2. 1. 6 Lemma. Suppose a ≤ b . Then there even exists a right positive
factor y with ay = b .

PROOF. Assume ax = b & ae = a & (e ∧ x)x ′ = x . Then b = ax =
a(e ∧ x)x ′ = aex ′ ∧ axx ′ = ax ′ ∧ bx ′ = ax ′ = a(ex ′) where ex ′ =: y is right
positive by 2.1.5 2

Now we are in the position to prove that (S,≤) is not only inf-closed but
also sup-closed.

2. 1. 7 Proposition. The semilattice (S,≤) is sup-closed, i. e. (S,≤) is a
lattice. More precisely R(a, b, a ′, b ′) =⇒ a·b ′ = a∨b , that is R(a, b, a ′, b ′) =⇒
a · b ′ = sup(a, b) .

PROOF. As seen above, it holds a · b ′ ≥ a, b . Suppose now that a, b ≤ c
and a · c ′ = c . By the preceding lemma we may assume that a ′, b ′, c ′ are
right positive. But then (a ∧ b)b ′ = (a ∧ b)(b ′ ∧ c ′) = b and thereby to
ab = ab ′ ∧ ac ′ , that is ab ′ ≤ ac ′ = c . 2

Clearly, by 2.8 in case R(a, b, a ′, b ′) and L(b ′′, d ′′, b, d) it holds:

a ′′b ′′(a ∧ b) = a ′′(a ∧ b)b ′ = (a ∧ b)a ′b ′ = sup(a, b) =: a ∨ b .(2.8)

Furthermore we get immediately

ax ∧ ay = a =⇒ axy = ayx ,(2.9)

leading to

(a ∧ b)a = a & (a ∧ b)b = b
=⇒

ab = ba .

(2.10)

Based on 2.8 it results next

xa ∨ xb = (xa ∧ xb)a ′b ′ = x(a ∧ b)a ′b ′ = x(a ∨ b) ,(2.11)
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leading by duality to

x(a ∨ b)y = xay ∨ xby .(2.12)

Now we are ready to prove:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) .(2.13)

PROOF. It suffices – as is well known – to show a∨ (b∧ c) ≥ (a∨ b)∧ (a∨ c).
To this end we start from R(a, b ∧ c, a ′, s ′) . Then it follows:

a ∨ (b ∧ c) = (a ∧ b ∧ c)s ′a ′

= (b ∧ c)a ′

= ba ′ ∧ ca ′ .

Moreover, by 2.8 it holds (b ∧ c)a ′ = a ∨ (b ∧ c) ≥ b ∧ c, which by (2.7)
provides ba ′ ≥ b on the one hand and ca ′ ≥ c on the other hand. Hence we
get altogether

ba ′ ≥ a ∨ b & ca ′ ≥ a ∨ c
;

a ∨ (b ∧ c) ≥ (a ∨ b) ∧ (a ∨ c) . 2

Therefore, d-semigroups are always ∧-, ∨- and lattice distributive. Lattice
ordered semigroups, satisfying these identities were called dld-semigroups by
Repnitzkii. We define alternately

2. 1. 8 Definition. Let S = (S, ·,∧,∨) be an algebra of type (2,2,2). Then
we call S a completely distributive lattice semigroup, briefly a cdl-semigroup,
if S satisfies (A3), (2.12), and (2.13) .

2. 1. 9 Proposition. Any d-semigroup is a cdl-semigroup.

2.2 The Cone

A d-semigroup need not have an identity element 1 . But – in any d-semigroup
each element has at least one private unit. .

2. 2. 1 Proposition. For any a ∈ S there exists at least one element ea
satisfying aea = a = eaa.
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PROOF. Suppose af = a and e(a ∧ f) = a ∧ f . It follows next ea = a and
ef = f , leading to:

ae ≤ ae ∨ a = (ae ∨ a)f = aef ∨ af = a ∨ a = a .

Hence – by duality – we may start from some pair u, v with

ua = a & au ≤ a

va ≤ a & av = a ,

which implies (u ∨ v)a = a = a(u ∨ v) .

This completes the proof. 2

We need some further lemmata.

2. 2. 2 Lemma. ab = cd =⇒ (a ∧ c)(b ∨ d) = ab = (a ∨ c)(b ∧ d).

PROOF. It holds

ab ≤ a(b ∨ d) ∧ c(b ∨ d) & ab ≥ (a ∧ c)b ∨ (a ∧ c)d . 2

2. 2. 3 Corollary. ua = a = au =⇒ a = (u ∧ a)(u ∨ a) = (u ∨ a)(u ∧ a).

2. 2. 4 Corollary. ae = ea = a = af = fa =⇒ e ∨ a = f ∨ a =: a+ .

PROOF. Suppose u(e ∧ f) = e ∧ f . Then it follows

a = (e ∧ a)(e ∨ a) = (ue ∧ a)(e ∨ a) = (u ∧ a)(e ∨ a)

and by analogy we get a = (u∧a)(f ∨a) . Hence the assertion follows by left
multiplication. 2

Recall: a ∈ S is said to be positive, if it satisfies ∀ x : ax ≥ x & xa ≥ x.

2. 2. 5 Lemma. a ∈ S is positive iff there exists at least one element e ,
satisfying a = ae = ea = e ∨ a =: a+. In particular ae = a = ea implies that
e ∨ a is positive.

PROOF. Let a be positive. Then it results

a = ae = ea =⇒ a = ea = e ∨ ea = e ∨ a .
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On the other hand suppose a = ae = ea = e ∨ a and choose some x ∈ S and
a unit u of a ∧ x . Then from 2.2.4 we get first e ∨ a = u ∨ a and thereby
furthermore

ax = (e ∨ a)x = (u ∨ a)x = ux ∨ ax = x ∨ ax ≥ x .

The rest follows by duality. 2

2. 2. 6 Definition. Let S be a d-semigroup. We call positive cone of S the
set S+ of all positive elements of S. Obviously S+ is closed under · and ∧.
Hence it makes sense to speak of the algebra S+ . Henceforth this algebra
will be called the (positive) cone of S .

Observe: We separate the cone of S and the cone of S . Whenever S is
uniquely determined we shall also speak of P instead of S+ .

2. 2. 7 Proposition. The cone of any d-semigroup S is a sub-d-semigroup
of S .

PROOF. On the grounds of duality it suffices to verify the implication
(A4 ’) a ≤ b =⇒ ∃ x ∈ P : ax = b which sharpens 2.1.6 .

To this end suppose as = b and (a ∧ s)e = (a ∧ s) . This implies a(e ∨ s) =
a ∨ as = b with e ∨ s ∈ P . 2

2.3 A Decomposition Formula

We now turn to some rules, valid in the cone, which will later on be of
importance, again and again. For the sake of convenience we tacitly suppose
that for elements a, b, c, d the relations R(a, c, a ′, c ′) and L(b ′ ′, d ′ ′, b, d) are
realized by positive elements a ′, b ′ ′, c ′, d ′ ′ . Then calculating in P we get

a ∧ b · c = a ∧ (a ∧ b) · c(2.14)

a ∧ b · c ≤ (a ∧ b)(a ∧ c) ,(2.15)

xay = xby ≤ xcy, xdy =⇒ xay = xby ≤ x(c ∧ d)y .(2.16)

and (2.15) leads to the central decomposition formula

ab ∧ cd = (a ∧ c)(a ′ ∧ d ′′)(b ′′ ∧ c ′)(b ∧ d)(2.17)

= (a ∧ c)(b ′′ ∧ c ′)(a ′ ∧ d ′′)(b ∧ d) .(2.18)
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PROOF. By assumption and (2.15) according to (2.9) and

(⋆) xay = xby ≤ xcy =⇒ x(a ∧ b)y ≤ xcy

we obtain ab ∧ cd = (a ∧ c)(a ′b ′′ ∧ c ′d ′′)(b ∧ d)
(2.15)

≤ (a ∧ c)(b ′′ ∧ c ′)(a ′ ∧ d ′′)(b ∧ d)
(2.9)
= (a ∧ c)(a ′ ∧ d ′′)(b ′′ ∧ c ′)(b ∧ d)
(⋆)

≤ (a ∧ c)(a ′b ′′ ∧ c ′d ′′)(b ∧ d)
= ab ∧ cd .

Thus we are through. 2

Observe next that positive elements d satisfy:

a ∧ c · d = (a ∧ c) · (a ′ ∧ d)
= a ∧ (a ∧ c) · d ,

(2.19)

a formula which is easily calculated from the right to the left.

2. 3. 1 Lemma. Let x, y, a belong to P and let x ≤ y and (a ∧ y)y ′ = y be
satisfied with y ′ ∈ P . Then there exists an element x∗ ≤ y ′ with (a∧x)x∗ = x.

PROOF. (x ∧ a)x ′ = x & x = x ∧ (y ∧ a)y ′

=⇒
x = x ∧ (x ∧ y ∧ a)y ′

= x ∧ (x ∧ a)y ′

= (x ∧ a)x ′ ∧ (x ∧ a)y ′ (∃x ′)
= (x ∧ a)(x ′ ∧ y ′) . 2

2. 3. 2 Lemma. Any d-semigroup satisfies:

ax ∧ by ≤ ay ∨ bx .

PROOF. (ax ∧ by) ∧ (ay ∨ bx)
= (ax ∧ by ∧ ay) ∨ (ax ∧ by ∧ bx)
= (ax ∧ (b ∧ a)y) ∨ ((a ∧ b)x ∧ by)
= ax ∧ (ax ∨ by) ∧ (a ∧ b)(x ∨ y) ∧ by
= ax ∧ (ax ∨ by) ∧ a(x ∨ y) ∧ b(x ∨ y) ∧ by
= ax ∧ by . 2
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2.4 Commutativity

We start with

2. 4. 1 Proposition. Let ab = ba. Then a, b satisfy the binomial formulas:

(a ∧ b)n = an ∧ bn .(2.20)

(a ∨ b)n = an ∨ bn .(2.21)

PROOF. There is nothing to show for n = 1 . Therefore suppose that
(2.20) is already proven for all m with 1 ≤ m ≤ n . This implies for k with
1 ≤ 2k ≤ n+ 1:

an+1 ∧ bn+1 ≤ (a ∨ b)k · (an+1−k ∧ bn+1−k)

= (a ∨ b)k · (a ∧ b)n+1−k (2k ≤ n+ 1)

= (ab)k · (a ∧ b)n+1−2k

= (ab)k · (an+1−2k ∧ bn+1−2k)

= an+1−kbk ∧ akbn+1−k .

The rest follows by duality. 2

2. 4. 2 Lemma. A d-semigroup is already commutative, if any pair of com-
parable positive elements commutes.

PROOF. Let a, b be positive and suppose that any pair of comparable posi-
tive elements commutes. Then in case of R(a, b, a ′, b ′) with positive elements
a ′, b ′ we get:

ab = (a ∧ b)a ′(a ∧ b)b ′
= (a ∧ b)2a ′b ′

= (a ∧ b)2b ′a ′

= ba .

Next we show that S is already commutative, if any pair of positive elements
commutes. To this end let e be a positive unit of a ∧ b and suppose that l, r
are positive, satisfying

l(e ∧ a) = e = (e ∧ a)r .

Then le = l(e ∧ a)r = er = re
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and thereby e ∨ b = (e ∨ b)l(e ∧ a)
= l(e ∨ b)(e ∧ a)
= le(e ∨ b)(e ∧ a)
= re(e ∨ b)(e ∧ a)
= r(e ∨ b)(e ∧ a) .

Hence, multiplying with (e ∧ a) from the left we get:

(e ∧ a)(e ∨ b) = (e ∨ b)(e ∧ a) .(2.22)

Consequently it suffices to show:

(e ∨ a)(e ∧ a)(e ∧ b) = (e ∨ a)(e ∧ b)(e ∧ a) ,(2.23)

since in this case we obtain:

ab 2.2.3= (e ∨ a)(e ∧ a)(e ∨ b)(e ∧ b)
(2.22)
= (e ∨ a)(e ∨ b)(e ∧ a)(e ∧ b)

(2.23)
= (e ∨ b)(e ∨ a)(e ∧ b)(e ∧ a)

(2.22)
= (e ∨ b)(e ∧ b)(e ∨ a)(e ∧ a)
= ba .

To this end suppose (e ∧ a)x = e and (e ∧ b)y = e with positive and thereby
commuting elements x, y , and suppose furthermore that f be a unit of a ∧
b∧ e∧ x∧ y and hence a common unit of a, b, e, x, y . In particular suppose
that w. r. t. 2.2.5 it holds x = f ∨ x and y = f ∨ y. Then it follows first:

(e ∨ a)(e ∧ a)(e ∧ b)xy = (e ∨ a)(e ∧ b)(e ∧ a)xy .(2.24)

But by (2.22) the elements x = f ∨ x and y = f ∨ y commute with the
elements f ∧ a and f ∧ b . So we obtain:

(e ∨ a)(e ∧ a)(e ∧ b)
= (e ∨ a)(e ∧ a)(e ∧ b)e2
= (e ∨ a)(e ∧ a)(e ∧ b)(e ∧ a)(e ∧ b)xy
= (e ∨ a)(e ∧ a)(e ∧ b)e(f ∧ a)e(f ∧ b)xy
= (e ∨ a)(e ∧ a)(e ∧ b)(f ∧ a)(f ∧ b)xy
= (e ∨ a)(e ∧ a)(e ∧ b)xy(f ∧ a)(f ∧ b)
= (e ∨ a)(e ∧ b)(e ∧ a)xy(f ∧ a)(f ∧ b) (2.24)
= (e ∨ a)(e ∧ b)(e ∧ a)(f ∧ a)(f ∧ b)xy
= (e ∨ a)(e ∧ b)(e ∧ a)e(f ∧ a)e(f ∧ b)xy
= (e ∨ a)(e ∧ b)(e ∧ a)e2

= (e ∨ a)(e ∧ b)(e ∧ a) .
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Thus the proof is complete. 2

2.5 Absolute Values

Based on 2.2.4 in this section a function is exhibited that turned out as most
fruitful in theory of ℓ-groups. First of all some remarks:

In the additive ℓ-group R of the reals we put max(a,−a) =: | a |. This
definition carries over, of course, to arbitrary ℓ-groups via | a | := a∨ a−1 and
one easily verifies that also in the general case of a commutative ℓ-group the
conditions of an absolute value function or a measure function are satisfied.
More difficult it is, however, to show, that | a | · | b | = | ab | is satisfied only if
the underlying ℓ-group is commutative.

Nevertheless, also in the general case strong rules remain valid, which con-
tribute essentially to clearing structure problems, since in many cases such
structure problems may be studied by restricting to the positive situation.

In many cases this is also possible by considering the cone, but one has to
take into account, that the cone is not closed w. r. t. taking inverses which
sometimes leads to new problems. So let ’s come back to | |. In any ℓ-group
according to (1 ∧ a)(a ∨ a−1) = (a ∨ a−1) ∧ (a2 ∨ 1) ≥ 1 ∧ a it results firstly
a∨a−1 ≥ 1 and according to a ·a−1 = 1 ·1 by 2.2.2 we get (1∧a)(1∨a−1) = 1,
that is (1 ∧ a)−1 = 1 ∨ a−1. This leads to

| a | = a ∨ a−1 = 1 ∨ a ∨ a−1 ∨ (1 ∨ a)(1 ∨ a−1) = (1 ∨ a)(1 ∧ a)−1

that is

| a | = (1 ∨ a)−1 · a · (1 ∧ a)−1 .(2.25)

But this formula can be modulated for arbitrary d-semigroups, as will now
be shown. To begin with we show first:

2. 5. 1 Lemma. Let

ea = ae = a = fa = af .(2.26)

e ′′(e ∧ a) = e = (e ∧ a)e ′ .(2.27)

f ′′(f ∧ a) = f = (f ∧ a)f ′ .(2.28)
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be satisfied with positive elements e ′, e ′′, f ′ f ′′ . Then it results:

e ′′(e ∨ a) = e ′(e ∨ a) = (e ∨ a)e ′ = (e ∨ a)e ′′ = (f ∨ a)f ′ = (e ∨ a)f ′ .

PROOF. By assumption we get:

(e ∨ a)e ′′ = (e ∨ a)e ′′e = (e ∨ a)e ′′(e ∧ a)e ′ = (e ∨ a)ee ′ = (e ∨ a)e ′

which leads to: (e ∨ a)e ′ = e ′′(e ∧ a)(e ∨ a)e ′

= e ′′(e ∨ a)(e ∧ a)e ′

= e ′′(e ∨ a)
= e ′(e ∨ a)
= e ′′(f ∨ a)(f ∧ a)f ′

= e ′′(e ∧ a)(e ∨ a)f ′

= (e ∨ a)f ′

= (f ∨ a)f ′ .

This completes the proof by symmetry. 2

In particular the previous proof implies:

e ′′ · a · e ′′ = e ′ · a · e ′′ = e ′ · a · e ′ = f ′ · a · f ′...(2.29)

2. 5. 2 Definition. Let S be a d-semigroup and e ∈ S a unit of a ∧ b with
(e ∧ a)a∗ = e = e:(e ∧ a) = e. Then we symbolize e ∨ a = f ∨ a, recall 2.2.4,
by a+, and call a∗, a: as local inverses of e ∧ a.

2. 5. 3 Definition. Let S be an arbitrary d-semigroup and let e ∈ S be a
unit of a and a∗ a local inverse w. r. t. e. We define the absolute value | a | of
a by the uniquely determined element a∗ · a · a∗ = (e ∨ a) · a∗ = a+a∗.

By definition absolute values are positive, and it is immediately clear that
any homomorphism h respects | |, that is satisfies

h(|a|) = |h(a)| .(2.30)

Furthermore we get:

2. 5. 4 Lemma. The special elements just defined satisfy:

(a ∧ b)+ = a+ ∧ b+ and (e ∧ (a ∧ b))(a∗ ∨ b∗) = e

(a ∨ b)+ = a+ ∨ b+ and (e ∧ (a ∨ b))(a∗ ∧ b∗) = e .
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PROOF. Recall lemma 2.2.2. 2

Now we are in the position to show:

2. 5. 5 Proposition. In any d-semigroup S the following are valid:

| a+ | = a+ .(2.31)

| a · b | ≤ | a | · | b | · | a | .(2.32)

| a ∧ b | ≤ | a | ∨ | b | ≥ | a ∨ b | .(2.33)

PROOF. We show first a ∈ P =⇒ | a | = a, which provides (2.31). To this
end we start from positive elements a, e with ae = a = ea , and thereby also
with ea = e ∨ a. Then there exists an element a∗ satisfying:

| a | = (e ∨ a)a∗ = aa∗ = (e ∨ a)(e ∧ a)a∗ = e ∨ a = a .

Let henceforth e be a common positive unit of a and b. Then we get immedi-
ately (ab)+ ≤ a+b+ and (e∧a)(e∧ b) ≤ e2∧ab, which means that by suitable
elements a∗, b∗, (ab)∗ it results:

(e2 ∧ ab)b∗a∗ ≥ (e ∧ a)(e ∧ b)b∗a∗ = (e ∧ a)ea∗ = e(e ∧ a)a∗ = e2 .

This leads to:

| ab | ≤ a+b+b∗a∗ ≤ a+a∗ · b+b∗ · a+a∗ = | a | · | b | · | a | .

Furthermore, according to 2.5.4, the element a∗ ∨ b∗ is of type (a ∧ b)∗ and
the element a∗ ∧ b∗ is of type (a ∨ b)∗ . So we get:

| a ∧ b | = (a+ ∧ b+)(a∗ ∨ b∗)
= (a+ ∧ b+)a∗ ∨ (a+ ∧ b+)b∗

≤ | a | ∨ | b | ,

and similarly | a ∨ b | = (a+ ∨ b+)(a∗ ∧ b∗)
= a+(a∗ ∧ b∗) ∨ b+(a∗ ∧ b∗)
≤ | a | ∨ | b | .

This completes the proof. 2

By the absolute value the prime notion admits a sophisticated investigation.

2. 5. 6 Definition. p ∈ S is called
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semiprime, if | p | = | a || b | =⇒ | p | = | a | V | p | = | b | ,

prime, if | p | ≤ | a || b | =⇒ | p | ≤ | a | V | p | ≤ | b | ,

and completely prime, if

| p |n ≤ | a || b | =⇒ | p |n ≤ | a | V | p | ≤ | b |
& | p |n ≤ | b | V | p | ≤ | a | .

2. 5. 7 Lemma. p ∈ S is semiprime iff p satisfies:

| a | < | p | & | b | < | p | =⇒ | a || b | < | p | .
PROOF. We may suppose that p = | p |, a = | a |, b = | b | or equivalently
that p, a, b are positive. But this implies ap = p = bp ; abp = p & ab ̸= p .
The rest is obvious. 2

2. 5. 8 Proposition. p ∈ S is semiprime iff p ∈ S is prime, and p ∈ S is
prime iff p ∈ S is completely prime.

PROOF. Again, let a, b, p be positive. We get immediately: p completely
prime =⇒ p prime =⇒ p semiprime.

It remains to show: p semiprime =⇒ p completely prime. To this end
suppose pn ≤ ab . It follows p = p ∧ ab ≤ (p ∧ a)(p ∧ b). But p ̸≤ a & p ̸≤ b
would imply (p ∧ a)(p ∧ b) < p, a contradiction! Consequently p must be
prime.

And this leads to complete primeness, since pn ≤ ab & p ̸≤ b implies:

pn ≤ (pn ∧ a) · (pn ∧ b) ≤ (pn ∧ a) · (p ∧ b)n = pn ∧ a ,
that is pn ≤ a, and since the rest follows by duality. 2

Obviously, exactly all elements of type a = 1 ∨ x with semiprime 1 ∨ x or
of type a = 1 ∧ x with semiprime (1 ∧ x)−1 are semiprime and hence even
completely prime.

Of special interest are those d-semigroups, in which any | a | has a prime
decomposition. They are called factorial – here – according to modern ring
theory. If (S, ·) is even a monoid, then S is obviously already factorial, if
each positive a is a product of primes and in addition each 1∧ a is a product
of elements p−1 with prime positive elements p , the classical example being
(Q, ·, |N) .
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2.6 The idempotent Kernel

We turn to the idempotents u = u2 of S .

2. 6. 1 Lemma. Any idempotent element e of S is positive and central.

PROOF. First of all we get ee = e∨e, whence e is positive, according to 2.2.5.
This means furthermore for all positive elements a firstly ea = e(e∨a) = e∨a
and thereby next ea = ae.

Choose now an arbitrary a and a positive unit u of e∧ a . Then according to
2.2.3 we get a = (u∧a)(u∨a) . Hence it suffices to prove e(u∧a) = (u∧a)e .
To this end we start from (u ∧ a)u ′ = u = u ′′(u ∧ a) with positive elements
u ′, u ′′ . Then we get

u ′e = eu ′ = euu ′ = eu ′′(u ∧ a)u ′ = eu ′ .

But this implies

(u ∧ a)e = (u ∧ a)eu ′′(u ∧ a) = (u ∧ a)u ′e(u ∧ a) = e(u ∧ a) .

Thus our proof is complete. 2

2. 6. 2 Definition. Let S be a d-semigroup. Then by the idempotent kernel
of S we mean the set E(S) of all idempotent elements. Since E(S) will turn
out to be closed under · and ∧ , it makes sense to speak of the algebra E(S) .

Provided S is uniquely determined, we shall speak of E instead of E(S) and
shall denote the corresponding algebra by E .

2. 6. 3 Proposition. The idempotent kernel of any d-semigroup S forms a
sub-d-semigroup of S.

PROOF. a, b ∈ E =⇒ (ab)2 = abab = aabb = ab

& (a ∧ b)2 = a2 ∧ ab ∧ ba ∧ b2 = a ∧ b
& (a ∧ b)b = ab ∧ bb = ab ∧ b = b . 2

2.7 The cancellative Kernel

a ∈ S is called left cancellable if it satisfies ax = ay =⇒ x = y . Dually right
cancellable elements are defined. Consequently a ∈ S ia called cancellable if
it is right and left cancellable.
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The set of cancellable elements may, of course, be empty, consider for instance
some suitable distributive lattice. But, if S is a monoid, at least the identity is
cancellable. On the other hand, if S contains at least one cancellable element
c it also contains an identity, since in this case it follows the implication

ec = c = ce =⇒ aec = ac & cea = ca =⇒ ae = a = ea .

2. 7. 1 Definition. Let S be a d-monoid. The elements a, b ∈ S are called
orthogonal, or synonymously disjoint, or coprime, denoted by a⊥ b, if they
satisfy | a | ∧ | b | = 1 .

2. 7. 2 Corollary. In any d-semigroup it holds

a⊥ b & a⊥ c =⇒ a⊥ bc & a⊥ (b ∧ c) & a⊥ (b ∨ c) .

Let x ′′x = 1 = xx ′ be satisfied in an arbitrary monoid. Then we obtain
x ′′ = x ′′xx ′ = x ′. This means that in a d-monoid any x ≤ 1 has a uniquely
determined inverse x−1 .

2. 7. 3 Definition. Let S be a d-semigroup. By the cancellative kernel of
S we mean the set C(S) of all cancellable elements. Since C(S) is obviously
closed under · and ∧ it makes sense to speak of the algebra C(S) .

Provided S is uniquely determined, we shall speak of C instead of C(S) and
denote the corresponding algebra by C .

2. 7. 4 Proposition. Let S be a d-semigroup.Then C is a sub-d-monoid of
S , unless C is not empty.

PROOF. Obviously it suffices to prove ab ∈ C =⇒ b ∈ C . So, suppose
ab ∈ C. Then b is left cancellable and because

ab ∈ C =⇒ (1 ∧ a)−1ab = (1 ∨ a)b = by ∈ C (∃ y ∈ S)

b is also right cancellable. 2

2. 7. 5 Proposition. In any d-monoid S any a ∈ S admits a uniquely
determined cone decomposition a = xy−1 with x, y ∈ S & x⊥ y.

PROOF. Let a = x · y−1 satisfy the above condition. Then it results (1 ∧
x · y−1) · y = 1, that is 1 ∧ x · y−1 = 1 ∧ a = y−1 and thereby y−1 = 1 ∧ a
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and x = 1∨ a – recall the cancellation rule and (1∨ a)(1∧ a) = a . Hence no
decomposition, different from (1 ∨ a)(1 ∧ a) , satisfies the condition. On the
other hand it holds:

(1 ∨ a) ∧ (1 ∧ a)−1 = a(1 ∧ a)−1 ∧ (1 ∧ a)−1

= (1 ∧ a)(1 ∧ a)−1 = 1
;

a = (1 ∨ a)((1 ∧ a)−1)−1 & (1 ∨ a)⊥ (1 ∧ a)−1 .

This completes the proof. 2

As usual an element x ∈ S will be called invertible, if it has an inverse
x−1 satisfying x · x−1 = 1 = x−1 · x . Of course, any invertible element is also
cancellable. Vice versa, however, cancellable elements need not be invertible.
In spite of this any d-semigroup S admits a quotient extension in which any
cancellable element of S becomes invertible. This will be pointed out in a
later chapter.

2. 7. 6 Definition. Let a, c ∈ S be positive, let c be cancellable in S

and suppose R(a, c, a ′, c ′) and L(a ′′, c ′′, a, c). Then, because of c ∈ C the
elements a ′, a ′′, c ′, c ′′ are uniquely determined. We define:

c ∗ a := a ′ a ∗ c := c ′

&
a ′′ =: a : c c ′′ =: c : a .

2. 7. 7 Lemma. Let a ∧ b, that is in particular let a or b be cancellable.
Then the equations holds:

a ∗ b ∧ b ∗ a = 1 = a : b ∧ b : a .

PROOF. a∧b = (a∧b)(a∗b)∧(a∧b)(b∗a) = (a∧b)(a∗b∧b∗a)) ; a∗b∧b∗a = 1 .
2

2. 7. 8 Lemma. Let a, c ∈ S be cancellable. Then any positive x satisfies :

ax ≥ c⇐⇒ x ≥ a ∗ c and xa ≥ c⇐⇒ x ≥ c : a .

PROOF. It suffices to prove the ∗-formula. To this end suppose ax ≥ c.
Then – recall (2.19) and 2.7.7 – by cancellation of a ∧ c it results :

ax ≥ c ⇐⇒ (c ∗ a)x ≥ a ∗ c
⇐⇒ (a ∗ c) ∧ (c ∗ a)x = a ∗ c ∧ x = a ∗ c . 2
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2. 7. 9 Lemma. Let a, b, c ∈ S be positive and cancellable. Then the equa-
tions hold:

ab ∗ c = b ∗ (a ∗ c)(2.34)

c : ba = (c : a) : b .(2.35)

PROOF. Again it suffices to prove the ∗-formula which results from:

abx ≥ c⇐⇒ bx ≥ a ∗ c⇐⇒ x ≥ b ∗ (a ∗ c) . 2

2. 7. 10 Corollary. Let a, b ∈ S be cancellable. Then the equation holds:

a(a ∗ b) = b(b ∗ a) = a ∨ b
= (a : b)b = (b : a)a .

2. 7. 11 Lemma. Let a, b, c ∈ S be positive and let in addition a or bc be
cancellable. Then the equations hold:

a ∗ bc = (a ∗ b)((b ∗ a) ∗ c)(2.36)

cb : a = (c : (a : b))(b : a) .(2.37)

PROOF. Because a ∗ b⊥ b ∗ a ∧ c it results from (2.10)

(a ∧ bc)(a ∗ b)((b ∗ a) ∗ c)
= (a ∧ (a ∧ b)c)(a ∗ b)((b ∗ a) ∗ c)
= (a ∧ b)((b ∗ a) ∧ c)(a ∗ b)((b ∗ a) ∗ c)
= (a ∧ b)(a ∗ b)((b ∗ a) ∧ c)((b ∗ a) ∗ c)
= bc .

Thus we are through by duality. 2

2. 7. 12 Lemma. Let a, b, c ∈ S be positive and let b or c be cancellable.
Then the equations hold:

a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c .(2.38)

a ∗ (b ∨ c) = a ∗ b ∨ a ∗ c .(2.39)
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Let a, b, c ∈ S be positive and let in addition a, b be cancellable. Then the
equations hold:

(a ∨ b) ∗ c = a ∗ c ∧ b ∗ c .(2.40)

(a ∧ b) ∗ c = a ∗ b ∨ b ∗ c .(2.41)

PROOF. a ∗ (b ∧ c) ≤ a ∗ b ∧ a ∗ c
&

(a ∧ b ∧ c)(a ∗ b ∧ a ∗ c) ≤ (a ∧ b)(a ∗ b) ∧ (a ∧ c)(a ∗ c)
= b ∧ c
;

a ∗ (b ∧ c) ≥ a ∗ b ∧ a ∗ c .

AND (a ∨ b) ∗ c ≤ a ∗ c ∧ b ∗ c
&

(a ∨ b)(a ∗ c ∧ b ∗ c) ≤ a(a ∗ c) ∨ b(b ∗ c)
= a ∨ b ∨ c
;

(a ∨ b) ∗ c ≥ a ∗ c ∧ b ∗ c .
The rest follows by lemma 2.7.8. 2

As a final remark on cancellable elements we give:

2. 7. 13 Lemma. Let u be idempotent and b be positive and cancellable.
Then the elements u and u ∗ b are coprime.

PROOF. Under the conditions above u ∧ b is cancellable, and it holds fur-
thermore (u ∧ b)(u ∧ u ∗ b) = u ∧ b, which implies u ∧ u ∗ b = 1. 2

Finally we introduce:

2. 7. 14 Definition. Let S be a semigroup with 0. We call S 0-cancellative,
in case that ax = ay ̸= 0 =⇒ x = y .

Different from the preceding definition, S is called cancellative with 0 if in
addition a ̸= 0 ̸= b =⇒ ab ̸= 0 is satisfied – consider domains .
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2.8 The complementary Case

In the context of commutativity and measure we will rely on a class of special
d-semigroups, which were introduced by the author in [14] as complementary
semigroups.

2. 8. 1 Definition. By a complementary semigroup in this note we mean a
poitive d-monoid, in which the sets {x | ax ≥ b} and {x |xa ≥ b}, respectively,
have uniquely determined smallest elements a ∗ b and b : a, respectively.

If S is a complementary semigroup, we call a ∗ b the right complement of a
in b and b : a the left complement of a in b.

Thus complementary semigroups by definition are ∧-closed. This means a
specialization w. r. t. the structures, investigated by the author, but this
provides advantages which we wouldn’t miss in this lecture note.

2. 8. 2 Proposition. Let S be a complementary d-monoid. Then the fol-
lowing rules are valid – together with their right/left counterparts:

a ∗ b ≤ b .(2.42)

a ≤ b ⇔ b ∗ a = 1 .(2.43)

a ≤ b ⇒ a ∗ c ≥ b ∗ c & c ∗ a ≤ c ∗ b .(2.44)

a(a ∗ b) = a ∨ b .(2.45)

ab ∗ c = b ∗ (a ∗ c) .(2.46)

a ∗ (b : c) = (a ∗ b) : c .(2.47)

(a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c) .(2.48)

PROOF. (2.42) through (2.45) are evident or already verified. In order to
prove (2.46) and (2.47) we observe:

ax ≥ b⇐⇒ x ≥ a ∗ b and xa ≥ b⇐⇒ x ≥ b : a .

Then (2.46) results via:

abx ≥ c =⇒ bx ≥ a ∗ c =⇒ x ≥ b ∗ (a ∗ c)
=⇒ bx ≥ a ∗ c =⇒ abx ≥ c .

and (2.47) results via:

x ≥ a ∗ (b : c) ⇔ ax ≥ b : c⇔ axc ≥ b⇔ xc ≥ a ∗ b⇔ x ≥ (a ∗ b) : c .
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Finally we get (2.48) immediately by (2.45) and (2.46). 2

Henceforth, apart from the rules above, we will apply again and again the
evident formulas 1 ∗ a = a, (a ∧ b) ∗ a = b ∗ a and a ∗ (a ∨ b) = a ∗ b .

Among the complementary d-monoids above all a special structure will play
an important role. This structure was introduced by the author in [21] as
Quader-Algebra and studied in [23] under the denotation Brick.

2. 8. 3 Definition. A complementary d-monoid is called a brick, if it con-
tains a zero element 0 and satisfies:

a : (b ∗ a) = (b : a) ∗ b .(Q)

A brick is called a complete brick if it has no order gaps.
An intensive and extensive study of bricks is presented in [?]. Hence we
may restrict our attention to some lemmata, which will be needed within the
theory of d-semigroups.

a : (b ∗ a) = a ∧ b = (b : a) ∗ b .(2.50)

PROOF. a : (b ∗ a) = a : ((a ∧ b) ∗ a)
= ((a ∧ b) : a) ∗ (a ∧ b)
= a ∧ b ,

which implies the rest by symmetry. 2

2. 8. 4 Proposition. Bricks always satisfy all desirable laws of distributivity,
more precisely, given a brick, we have (2.38),. . . ,(2.41) of 2.7.12.

PROOF. It suffices to verify (2.38) and (2.40).

Ad (2.38). It holds a ∗ (b ∧ c) ≤ a ∗ b ∧ a ∗ c and

(a ∗ (b ∧ c)) ∗ (a ∗ b ∧ a ∗ c)
= ((a ∗ (b ∧ c)) ∗ (a ∗ b)) : ((a ∗ c) ∗ (a ∗ b))
= (((b ∧ c) ∗ a) ∗ ((b ∧ c) ∗ b)) : ((c ∗ a) ∗ (c ∗ b))
= ((b ∧ c) ∗ a) ∗ ((c ∗ b) : ((c ∗ a) ∗ (c ∗ b)))
≤ ((b ∧ c) ∗ a) ∗ (c ∗ a)

≤ (c ∗ a) ∗ (c ∗ a)

= 1

;

a ∗ (b ∧ c) ≥ a ∗ b ∧ a ∗ c
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This means a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c and consequently

(a ∨ b) ∗ c = a(a ∗ b) ∗ c
= (a ∗ b) ∗ (a ∗ c)
= (a ∗ c ∧ a ∗ b) ∗ (a ∗ c)
= (a ∗ (c ∧ b)) ∗ (a ∗ c)
= (a ∗ (c : (b ∗ c))) ∗ (a ∗ c)
= ((a ∗ c) : (b ∗ c)) ∗ (a ∗ c)
= a ∗ c ∧ b ∗ c .

Thus our proof is complete. 2

2. 8. 5 Corollary. Bricks are always normal d-semigroups .

PROOF. a ∗ b ∧ b ∗ a = ((a ∧ b) ∗ b) ∧ ((a ∧ b) ∗ a)
= (a ∧ b) ∗ (a ∧ b) = 1 .

recall 2.8.4. 2

We now turn to complete bricks. However, we will choose an approach as
general as possible, in order to save the chance of applying the results to ideal
semigroups.

2. 8. 6 Proposition. Let S be a positive complete lattice monoid, this
means an algebra (S, ·,≤, 1) with complete lattice (S,≤), satisfying moreover
1 ≤ x (∀x ∈ S) and x · (

∧
ai) · y =

∧
(x · ai · y), such that according to

a ⋆
∧
xi (a · xi ≥ b) & b÷ a :=

∧
xi (xi · a ≥ b)

the equation a÷ (b ∗ a) = (b÷ a) ∗ b is valid. Then S is a brick, satisfying:

x(
∧
ai)y =

∧
(xaiy) (D1

∨
) x(

∨
ai)y =

∨
(xaiy)(D1

∧
)

x ∨
∧
ai =

∧
(x ∨ ai) (D2

∨
) x ∧

∨
ai =

∨
(x ∧ ai)(D2

∧
)

x ⋆
∧
ai) =

∧
(x ⋆ ai) (D3

∨
) x ⋆ (

∨
ai) =

∨
(x ⋆ ai)(D3

∧
)

(
∧
ai) ⋆ x =

∨
(ai ⋆ x) (D4

∨
) (

∨
ai) ⋆ x =

∧
(ai ⋆ x)(D4

∧
)

and the corresponding left/right counterparts.

PROOF. (D1
∧

) is part of the definition.
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Furthermore (D3
∨

) and (D4
∧

) result by straightforward calculation via

x · y ≥
∨
ai ⇐⇒ y ≥ x ⋆ ai

& (
∧
ai) · y ≥ x ⇐⇒ ai · y ≥ x (i ∈ I) .

Next we get a÷ (b ⋆ a) = a ∧ b
= b÷ (a ⋆ b) .

For it results nearly immediately a∧b ≥ (a⋆b)∗a and it results by calculation

(a÷ b) ⋆ a ≥ a ∧ b .
Observe: a ∧ b ≥ c, that is a ⋆ c = 1 = b ⋆ c implies

c÷ ((a÷ b) ⋆ a) = (c÷ (a ⋆ c)) ÷ ((a÷ b) ⋆ a)
= ((a÷ c) ⋆ a) ÷ ((a÷ b) ⋆ a)
= (a÷ c) ⋆ (a÷ ((a÷ b) ⋆ a))
= (a÷ c) ⋆ ((a÷ b) ÷ (a ⋆ (a÷ b)))
= (a÷ c) ⋆ (a÷ b)
= ((a÷ c) ⋆ a) ÷ b

= (c÷ (a ⋆ c)) ÷ b
= c÷ b = 1 .

Hence it results a÷ (b ⋆ a) = a ∧ b = (a÷ b) ⋆ a. But in case of c ≥
∨
ai this

implies

x ≥ (
∨
ai) ⋆ c

=⇒ c÷ x ≤
∨
ai

=⇒ c÷ x ≤
∨

(c÷ (ai ⋆ c))
=⇒ c÷ x ≤ c÷

∧
(ai ⋆ c)

=⇒ x ≥
∧

(ai ⋆ c) ,

meaning (
∨
ai) ⋆ c =

∧
(ai ⋆ c)

and c÷ (
∨
ai) =

∧
(c÷ ai) .

So we get (D4
∨

) via

(
∨
ai) ⋆ c = (

∨
ai) ⋆ (c ∨

∨
ai)

≥
∧

(ai ⋆ c)
;

(
∨
ai) ⋆ c =

∧
(ai ⋆ c) .
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Next, if x ≥ a(a ⋆ b) we obtain:

a ∨ b = x÷ ((a ∨ b) ⋆ x)
= x÷ (a ⋆ x ∧ b ⋆ x)
= x÷ (((a ⋆ x) ÷ (b ⋆ x)) ⋆ (a ⋆ x))
= x÷ ((a ⋆ (x÷ (b ⋆ x))) ⋆ (a ⋆ x))
= x÷ ((a ⋆ b) ⋆ (a ⋆ x))
= x÷ (a(a ⋆ b) ⋆ x)
= a(a ⋆ b) ,
;

a ≤ b ⇐⇒ a
∣∣∣∣
ℓ
b & a

∣∣∣∣
r
b .

Hence the structure under consideration is a complete brick, and it was al-
ready shown that (D1

∧
) , (D3

∨
) , (D4

∧
) and (D4

∨
) are satisfied.

Furthermore we get (D3
∧

) via (D4
∨

)

c ⋆
∧
ai = c ⋆ (0 : ((

∧
ai) ⋆ 0))

= (c ⋆ 0) ÷
∨

(ai ⋆ 0)
=

∧
((c ⋆ 0) ÷ (ai ⋆ 0))

=
∧

(c ⋆ (0 ÷ (ai ⋆ 0)))
=

∧
(c ⋆ ai) .

We turn to (D2
∧

). Suppose that both, (x ∧
∧
ai)x

′ = x and (x ∧ ai)xi = x ,
are satisfied with positive elements x ′ ≥ xi . Then it results

x ∨
∧
ai = (

∧
ai)x

′

=
∧

(ai · x ′)
≥

∧
(ai · xi)

≥
∧

(x ∨ ai) .

Finally we get: x ∧
∨
ai = (x :

∨
ai) ⋆ x

= (
∧

(x÷ ai)) ⋆ x
=

∨
((x÷ ai) ⋆ x)

=
∨

(x ∧ ai) ,
meaning (D2

∨
), and x ·

∨
ai = (0 ÷ x

∨
ai) ⋆ 0

= ((0 ÷
∨
ai) ÷ x) ⋆ 0

= ((
∧

(0 ÷ ai)) ÷ x) ⋆ 0
=

∨
(((0 ÷ ai) ÷ x) ⋆ 0)

=
∨

((0 ÷ xai) ⋆ 0)
=

∨
xai ,
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meaning (D1
∨

) . Thus, by symmetry, the proof is complete. 2

2. 8. 7 Definition. A d-semigroup is called completely integrally closed if it
satisfies:

∀ t ̸= 1, a ∈ S+ ∃ n ∈ N : tn ∗ a ̸≥ t ̸≤ a : tn(G)

that is equivalently if

t ≤
∞∧
1

(tn ∗ a)
∨
t ≤

∞∧
1

(a : tn) (n ∈ N) =⇒ t = 1 .

As will turn out in a later chapter, the importance of this notion results from
the fact that a brick is completely integrally closed iff it admits a complete
(brick) extension. Here we give the first half of that proof:

2. 8. 8 Proposition. Any brick, admitting a complete extension, is com-
pletely integrally closed.

PROOF. We may restrict the proof to one side and conclude:

t ≤
∧

(tn ∗ a) = (
∨
tn) ∗ a

=⇒
(
∨
tn) · ((

∨
tn) ∗ a) = (

∨
tn) ·

∧
(tn ∗ a)

= (
∨
tn)t(t ∗

∧
(tn ∗ a))

= (
∨
tn) · (t ∗ ((

∨
tn) ∗ a))

=⇒
t ∗ ((

∨
tn) ∗ a) = (

∨
tn) ∗ a

=⇒
t = ((

∨
tn) ∗ a) : (t ∗ ((

∨
tn) ∗ a))

= ((
∨
tn) ∗ a) : ((

∨
tn) ∗ a)

= 1 ,

that is t ≤
∧

(tn ∗ a) =⇒ t = 1 . 2

An alternative proof could be given by starting from t∗
∧

(tn ∗a) =
∧

(tn ∗a) .
But that proof needs all of 2.8.6 whereas in the preceding proof merely (D4

∧
)

and (
∨
tn) · t = (

∨
tn) are applied.

Finally we show:
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2. 8. 9 Proposition. Let S be a complementary semigroup, in particular a
brick. Then C and E are closed under ∗ and : .

PROOF. The assertion is obvious for C.

Let now u and v be idempotent. Then u ∨ v is idempotent, too, whence
according to u ∗ v = u ∗ (u ∨ v) we may suppose w. l. o. g. u < v . Putting
u ∗ v =: x this provides next u ∗ (x ∗ x2) ≤ u ∗ (x ∗ ux2) = v ∗ v = 1, which
means u(x ∗ x2) = u. Suppose now y(x ∗ x2) = x. Then, since x ∗ x2 is a
unit of u it is also a unit of any uy, whence in case of y(x ∗ x2) = x it follows
uy = uy(x ∗ x2) = ux = v. So by x = u ∗ v we get x ≤ y whence we finally
obtain x2 = x(x ∗ x2) ≤ y(x ∗ x2) = x . 2



46 CHAPTER 2. ARITHMETICS



Chapter 3

Classical Extensions

A d-semigroup S need not have an identity and if so, the cancellable elements
of S need not be invertible. However, any d-semigroup admits a canonical
smallest identity extension Σ and this extension Σ admits a canonical quotient
extension Q , such that all cancellable elements of S become invertible in Q .

3.1 An Identity Extension

Throughout this section let S be a s-semigroup without identity. Clearly,
there may exist a monoid extension, and if so the definition α ≡ β :⇐⇒
x · α = x · β (∀x ∈ S) defines a congruence satisfying xα, αy ∈ S which will
turn out to be the finest identity extension with this property.

But does there exist always such an extension?

In fact, this is the case, as will now be shown.

To this end we start from the set of all endomorphisms F, G of the semilattice
(S,∧), considered under composition ◦ and pointwise meet defined by

x(F ∧ G) := xF ∧ xG .

This algebra is a monoid, satisfying (A1) through (A4), maybe except axiom
(A4). Moreover it contains a substructure, isomorphic with S with carrier
{Fa} ,via

Fa : x 7−→ xa .

Apart from these endomorphisms Fa the endomorphisms of type

Fa : x 7−→ x ∧ xa

47
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will turn out to be most important, since the substructure, generated by the
endomorphisms of type Fa and of type Fa satisfies in addition axiom (A4) .

3. 1. 1 Lemma. Any endomorphism Fa is even an automorphism.

PROOF. Fa is surjective : Suppose that e is a unit of a ∧ x and that e ′ is
positive, satisfying e ′(e ∧ a) = e . Then it follows;

x = xe = xe ′(e ∧ a) = xe′ e ∧ xe′ a = (xe′ ) ∧ (xe′ )a = (xe ′)Fa .

Next Fa is injective : Suppose xFa = x ∧ xa = y ∧ ya = y Fa . Then in case
of (x ∧ y)e = x ∧ y , (e ∧ a)e ′ = e it results

x = x(e ∧ a)e ′ = y(e ∧ a)e ′ = y .

This completes the proof. 2

3. 1. 2 Lemma. For any pair a, b ∈ S there exists a pair a ′, b ′ ∈ S with

Fa ◦ Fb = Fb ′ ◦ Fa and Fa ◦ Fb = Fb ◦ Fa ′

;

Fa ◦ F
−1
b = F

−1
b ′ ◦ Fa and F

−1
b ◦ Fa = Fa ′ ◦ F

−1
b .

PROOF. Suppose (x ∧ b)e = x ∧ b , e ′′(e ∧ a) = e with positive e ′′ and put
(b ∧ ab)e ′′ =: b ′. Then it follows (x ∧ b ′)e = x ∧ b ′, and it results:

x(Fa ◦ Fb) = (x ∧ xa)Fb

= x ∧ xa ∧ xb ∧ xab
= x(e ∧ a) ∧ x(b ∧ ab)e ′′(e ∧ a)
= x(e ∧ a) ∧ xb ′(e ∧ a)
= (x ∧ xb ′)(e ∧ a)
= (x ∧ xb ′) ∧ (x ∧ xb ′)a
= x(Fb ′ ◦ Fa) .

Thus the proof is complete by duality. 2

We now show that any Fa ◦ F
−1
b and any F

−1
b ◦ Fa is of type Fs .

3. 1. 3 Lemma. Let ae = a and e ′′(e∧ b) = e be satisfied with some positive
element e ′′ . Then it holds:

Fa ◦ F
−1
b = Fae ′′ .
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and it follows dually : Let ea = a and (e ∧ b)e ′ = e be satisfied with some
positive element e ′ . Then it holds:

F
−1
b ◦ Fa = Fe ′a .

PROOF. Under the above conditions we obtain:

xFa = xa = xae ′′(e ∧ b) = xae ′′ ∧ xae ′′b

in the first case, and in the second case we get:

xFa = xea = x(e ∧ b)e ′a = (x ∧ xb)e ′a = x(Fb ◦ Fe ′a) . 2

Now we are in the position to prove:

3. 1. 4 Proposition. The set Σ of all endomorphisms of (S,∧), repre-

sentable by some G ◦ F
−1
b , where G = I or G = Fa or G = Fa , is closed

under ◦ and the set ΣS of all Fa forms a subsemigroup, isomorphic with
(S, ·) .

PROOF. It holds Fa ◦ Fb = Fa∧ab , Fa ◦ Fb = Fb∧ab and Fa ◦ Fb = Fa∧b∧ab
whence Σ according to 3.1.2 and 3.1.3 is ◦-closed because F

−1
a ◦ F

−1
b = (Fb ◦

Fa)
−1 .

Furthermore we have ea = a ̸= b = eb =⇒ Fa ̸= Fb and Fa = Fa∧ab ◦ F
−1
b

and Fa ◦ Fb = Fab . 2

We now turn to ∧ :

3. 1. 5 Lemma. In the set Σ w. r. t. ∧ it holds :

∧ I Fb Fb

I I Fb Fb

Fa Fa∧b Fa∧b

Fa Fa∧b

PROOF. This follows by straightforward calculations. 2

3. 1. 6 Lemma. Any two endomorphisms G ◦ F
−1
a ,H ◦ F

−1
b where G,H have

the denominator 1 admit a representation with a common denominator.
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PROOF. It suffices to settle the case for pairs of type F
−1
a ,F

−1
b , and according

to 3.1.2 we may suppose that Fa ◦ Fb = Fb ◦ Fa ′ is satisfied. Consequently
we get:

F
−1
a = Fb ◦ F

−1
b ◦ F

−1
a = Fb ◦ (Fa ◦ Fb)

−1 = Fb ◦
(
Fa∧b∧ab

)−1
(3.1)

F
−1
b = Fa ′ ◦ F

−1
b ◦ F

−1
a = Fa ′ ◦ (Fa ◦ Fb)

−1 = Fa ′ ◦
(
Fa∧b∧ab

)−1
.(3.2)

This completes the proof. 2

Now we are in the position to show:

3. 1. 7 Proposition. The set Σ of endomorphisms G ◦ F
−1
b (recall 3.1.4) is

closed under ∧, and the set ΣS of all Fs forms a semilattice under ∧ , which
is isomorphic with (S,∧) .

PROOF. Let G and H have denominator 1. Then G ∧ H is contained in Σ ,
and it holds:

G ◦ F
−1
b ∧ H ◦ F

−1
b = (G ∧ H) ◦ F

−1
b .

Hence ΣS is closed under ∧ . Furthermore it holds:

xFa∧b = xa ∧ xb = xFa ∧ xFb = x(Fa ∧ Fb) .

Hence (ΣS,∧) and (S,∧) are isomorphic. 2

Finally we get nearly immediately:

3. 1. 8 Lemma.
∑

:= (Σ, ◦,∧) satisfies axiom (A4).

PROOF. It suffices to show that G ∧ H is a left and also a right divisor of
G, in case that G and H have denominator 1. But this is shown – nearly
immediately – by the tabular above, since in all cases but one the inverse
mapping of G ∧ H exists, and since Fa∧b is a right/left divisor of Fa (in S)
according to (A4). 2

Moreover we obtain;

3. 1. 9 Lemma. Σ satisfies

α = β ⇐⇒ α · x = β · x (∀x ∈ S) ⇐⇒ x · α = x · β (∀x ∈ S) .(3.3)
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PROOF. It remains to prove (3.3). Ti this end first of all observe (again)
α ∈ Σ & x ∈ S implies xα ∈ S . Recall x(1∧ a) = x∧xa and x(1∧ b)−1 ∈ S ,
since (1 ∧ b)−1 is an automorphism of S.

We have to consider the cases:

x · 1 = x · v (∀x ∈ S) (1)(3.4)

x · u = x · v (∀x ∈ S) (2)(3.5)

x · u = x · (1 ∧ b) (∀x ∈ S) (3)(3.6)

x · 1 = x · (1 ∧ b) (∀x ∈ S) (4)(3.7)

x · (1 ∧ a) = x · (1 ∧ b) (∀x ∈ S) (5)(3.8)

(1) cannot hold, since by v = v2 we would get xv = x = vx although S is
assumed not to contain an identity.

(2) implies u = v, let x be a unit of u ∧ v .

(3) leads to x · u(1∧ b)−1, but u(1∧ b)−1 belongs to S whence e := u(1∧ b)−1

would act as identity, although S is assumed not to contain an identity. So
also (3) cannot hold.

(4) implies x ∧ xb = x (∀x ∈ S) that is x ∈ S+ and hence 1 ≤ b and thereby
1 ∧ b = 1.

Finally, let’s start from (5), that is from x · (1 ∧ a) = x · (1 ∧ b) (∀x ∈ S) .

(1∧a) and (1∧ b), respectively, stand for I ∧Fa and I ∧Fb, respectively. And
(5) means I ∧ Fa = I ∧ Fb . 2

So, summarizing we get:

3. 1. 10 Theorem.
∑

= (Σ, ◦,∧) is an identity-extension of S = (S, ·,∧)
in which S is embedded by s 7−→ Fs .

Moreover, putting I =: 1 and 1 · a = a = a · 1 we get

α = β ⇐⇒ α · x = β · x (∀x ∈ S) ⇐⇒ x · α = x · β (∀x ∈ S) .(3.9)

Henceforth, we will denote
∑

also by S1 always having in mind that this S1

is assumed to be the extension by endomorphisms.
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3.2 A Quotient Extension

In this section we could start from the quotient hull exhibited by Murata.
But, in order to be as self-contained as possible and also to benefit from
the special situation we start from the set R of all pairs a.b with positive a
and some positive cancellative element b. Provided this set is empty there
is nothing to show. Otherwise S is a monoid whence in particular there are
the pairs of type a.1 and 1.b . Again, recall the residuation arithmetic.

3. 2. 1 Lemma. The set R of all pairs a.b with left cancellable component
b forms a monoid under the operation a.b ◦ c.d := a(b ∗ c).d(c ∗ b) .

PROOF. First of all observe a.b = a.1 ◦ 1.b. This leads next to

(a.b ◦ x.1) ◦ c.d = a(b ∗ x).(x ∗ b) ◦ c.d
= a(b ∗ x)((x ∗ b) ∗ c).d(c ∗ (x ∗ b))
= a(b ∗ xc).d(xc ∗ b)
= a.b ◦ xc.d
= a.b ◦ (x.1 ◦ c.d)

and (a.b ◦ 1.y) ◦ c.d = a.yb ◦ c.d
= a(yb ∗ c).d(c ∗ yb)
= a(b ∗ (y ∗ c)).d(c ∗ y)((y ∗ c) ∗ b)
= a.b ◦ (y ∗ c).d(c ∗ y)
= a.b ◦ (1.y ◦ c.d) .

From this results general associativity via:

(a.b ◦ x.y) ◦ c.d = (a.b ◦ (x.1 ◦ 1.y)) ◦ c.d
= ((a.b ◦ x.1) ◦ 1.y) ◦ c.d
= (a.b ◦ x.1) ◦ (1.y ◦ c.d)
= . . .

= a.b ◦ (x.y ◦ c.d) .

So R forms a semigroup, and by

1.1 ◦ a.b = a.b = a.b ◦ 1.1

this semigroup is even a monoid. 2

3. 2. 2 Lemma. In R the definition

a.b ≡ c.d :⇐⇒ a : b = c : d & b : a = d : c



3.2. A QUOTIENT EXTENSION 53

generates a congruence relation w. r. t. ◦.

PROOF. Obviously ≡ is an equivalence relation. Furthermore, cancellable
elements x satisfy:

ax : bx = (ax : x) : b = a : b

and thereby ax.bx ≡ a.b. Suppose now x, y ∈ C ∩ P . Then we get in
particular:

ax.bx ◦ c.d ≡ ax(bx ∗ c).d(c ∗ bx)
≡ ax(x ∗ (b ∗ c)).d(c ∗ b)((b ∗ c) ∗ x)
≡ a(b ∗ c)((b ∗ c) ∗ x).d(c ∗ b)((b ∗ c) ∗ x)
≡ a(b ∗ c).d(c ∗ b)
≡ a.b ◦ c.d
≡ a(b ∗ c).d(c ∗ b)
≡ a(b ∗ c)((c ∗ b) ∗ y).d(c ∗ b)((c ∗ b) ∗ y)
≡ a(b ∗ c)((c ∗ b) ∗ y).dy(y ∗ (c ∗ b))
≡ a(b ∗ cy).dy(cy ∗ b)
≡ a.b ◦ cy.dy .

Hence it results:

a.b ≡ a ′.b ′ & c.d ≡ c ′ .d ′

=⇒ a.b ◦ c.d ≡ (a : b).(b : a) ◦ (c : d).(d : c)
≡ (a ′ : b ′).(b ′ : a ′) ◦ (c ′ : d ′).(d ′ : c ′)
≡ a ′.b ′ ◦ c ′.d ′ .

This completes the proof. 2

We denote (R, ◦)/≡ by Q and the elements of Q by lower case Greek letters.
Obviously the special classes a.1/ ≡ form a subsemigroup of Q, which is
isomorphic with P , because

a.1 ◦ b.1 ≡ ab.1 and a.1 ≡ b.1 ⇐⇒ a = a : 1 = b : 1 = b .

Furthermore the set of all classes 1.b/≡ forms a subsemigroup, which is anti-
isomorphic with C ∩P , because

1.b ◦ 1.d = 1.db and 1.b ≡ 1.d⇐⇒ b = b : 1 = d : 1 = d .
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Finally b ∈ C ∩ P satisfies:

1.b ◦ b.1 ≡ 1.1 ≡ b.b ≡ b.1 ◦ 1.b and 1.1 ◦ a.b ≡ a.b ≡ a.b ◦ 1.1 .

Hence, abbreviating a := a.1 and b−1 := 1.b we are led to a.b = ab−1 and
ab−1 ◦ cd−1 = ab−1.cd−1 without any complications.

Before presenting a further embedding theorem, recall that any α has a repre-
sentation by some pair of coprime components a, b and that any two elements
α, β ∈ Q may be assumed to have the same denominator. Observe that in
case of d ∈ C ∩P the element ab−1 may also be written in the extended form
a(b ∗ d)(b ∨ d)−1 .

This in mind we turn to

3. 2. 3 Proposition. Any d-semigroup S admits a quotient hull, that is a
uniquely determined Q , satisfying:

(i) Any cancellable element of S remains cancellable in Q and any
cancellable element of Q is invertible.

(ii) Any α ∈ Q has an orthogonal decomposition that is equals some
a · b−1 with a ∈ P & b ∈ C ∩ P .

PROOF. We start from the extension Q constructed above and show in a
first step that the definition α ≤ β ⇐⇒ αx = β (x ∈ P ) leads to a partial
order ≤ of Q , respected by multiplication. To this end observe first that
ab−1 · x with positive x equals some y · ab−1 with positive y and vice versa,
since

xb = bx ′ & ax′ = ya =⇒ ab−1 · x = ax′b−1 = y · ab−1 .(3.10)

ya = ax′′ & bx′′ = zb =⇒ y · ab−1 = ax′′b−1 = ab−1 · z .(3.11)

This implies

ab−1 ≤ cd−1 =⇒ uv−1 · ab−1 · xy−1 ≤ uv−1 · cd−1 · xy−1 .(3.12)

Furthermore it is immediately seen that ≤ is reflexive and transitive, and it
is easily shown that ≤ is also antisymmetric , since in case of α = ab−1 and
xα = β & yβ = α =⇒ yxα = α we get yxa = a and thereby xa = a , which
means xα = α = β.
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We now show that Q forms a semilattice w. r. t. ≤ . To this end we recall
that for orthogonal components uv−1 ≤ ab−1 is valid iff ub ≤ va is valid, from
which follows that u ≤ a & b ≤ v is valid. But this implies – according to
a⊥b & c⊥d =⇒ (a ∧ c)⊥(b ∨ d) – that (a ∧ c)(b ∨ d)−1 =: ab−1 ∧ cd−1 is
infimum of the elements ab−1 and cd−1 .

It remains to show that Q satisfies also axiom (A3). To this end we may
start from two elements α, β with common denominator, say α = ab−1 and
β = cb−1. Then it follows:

γ ≤ αx−1 & γ ≤ βx−1 ⇐⇒ γx ≤ a & γx ≤ b
⇐⇒ γx ≤ a ∧ b
⇐⇒ γ ≤ (a ∧ b)x−1 ,

whence by yb = by ′ with y ∈ P it results further

γ ≤ αy & γ ≤ βy ⇐⇒ γ ≤ ab−1y & γ ≤ cb−1y
⇐⇒ γ ≤ ay ′b−1 & γ ≤ cy ′b−1

⇐⇒ γ ≤ (ay ′ ∧ cy ′)b−1

⇐⇒ γ ≤ (a ∧ c)y ′b−1

⇐⇒ γ ≤ (a ∧ c)b−1y
⇐⇒ γ ≤ (ab−1 ∧ cb−1)y .

Thus axiom (A3) is proven from the right, and it follows the left side version
by duality.

Finally, according to 2.7.4 and by the calculating rules for ·,∧ and ◦,∧, re-
spectively, it follows nearly immediately that (S, ·,∧) is embedded in (Q, ◦,∧)
and that Q is uniquely determined by (i) and (ii) – up to isomorphism. 2

We finish this section by reminding the reader at two classical quotient ex-
tensions, namely that of (N,+,min) by (Z,+,min) and that of (N+, ·,GCD)
by (Q+, ·,GCDN) , respectively. Here GCDN(a, b) means the infimum of
a, b ∈ Q+ with respect to a |N b :⇐⇒ ∃n ∈ N : a · n = b .
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Chapter 4

Ideals

In order to enable an analysis of special d-semigroups in later chapters, in
this chapter special substructures and basic relations are introduced. A fun-
damental role is played by ideals arising in lattice theory or carried over from
ring or ℓ-group theory, respectively.

4.1 p-ideals, m-ideals, d-ideals

4. 1. 1 Definition. I ⊆ S is called a lattice ideal, or briefly an l-ideal, if it
satisfies:

a ∨ b ∈ I ⇐⇒ a ∈ I & b ∈ I.

If moreover I satisfies:

a ∧ b ∈ I ⇐⇒ a ∈ I V b ∈ I,

I is called an irreducible or synonymously a prime ideal. .

As a first characterization of prime ideals we get:

4. 1. 2 Lemma. The following are pairwise equivalent:

(i) P is a prime ideal.

(ii) Whenever two ideals A,B satisfy A∩B = P , then it follows A = P
or B = P .

PROOF. If (i) is valid and A∩B = P is valid according to (ii), then in case
of A ̸= P and a ∈ A \ P by assumption any b ∈ B satisfies a ∧ b ∈ P , and
thereby b ∈ P .

57
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If however (ii) is valid and a ∧ b ∈ P, b /∈ P , then the set of all x satisfying
b ∧ x ∈ P forms an ideal A and the set of all y with z ∈ A =⇒ y ∧ z ∈ P
forms an ideal B ̸= P . But, by construction it holds A∩B = P . This implies
a ∈ P . 2

4. 1. 3 Lemma. For each pair of different elements x, y ∈ S there exists a
prime ideal Mx,y, which contains exactly one of these two elements.

PROOF. Suppose w. l. o. g. that it holds y ̸≤ x . Then we get y /∈ (x]. Hence,
by Zorn’s lemma, in the set of all ideals containing x but not containing y

there exists a maximal ideal M . Assume now a ∧ b ∈ M and form A and B
according to the proof of 4.1.2. Then it follows A ∩ B = M . So in case of
A ̸= M and B ̸= M it would follow x ∈ A & x ∈ B, meaning x = x∧x ∈M ,
a contradiction. Hence one of the two ideals A,B must be equal to M . 2

As an immediate consequence we get:

4. 1. 4 Proposition. Any ideal is an intersection of prime ideals.

PROOF. Let A be an ideal and D be the intersection of all prime ideals,
containing A . Then, provided c ∈ D\A , we could extend A to some maximal
c not containing ideal M . But – along the proof lines of 4.1.2 this M must
be prime, a contradiction! 2

Dually w. r. t. the notion of a lattice ideal the notion of a lattice filter or
briefly a filter is defined. Consequently in a given lattice L filters are the
ideals of the dual lattice of L. Hence all notions concerning lattice ideals can
be carried over to lattice filters in a natural manner. In particular the results
above on lattice ideals carry over to lattice filters.

Besides prime filters and prime ideals there are two further types of ideals,
which will contribute essentially to clearing structure problems in d-semi-
group theory.

4. 1. 5 Definition. Let S be an arbitrary d-semigroup. By a p-ideal of
S we mean a lattice ideal, for short l-ideal, containing at least one positive
element.

A p-ideal is called an m-ideal if it is closed under multiplication.

Furthermore, by a p-filter of S we mean a filter, each element of which is
positive.
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Finally we call d-ideal any subset a of S, which is closed under ∧ and which
moreover satisfies S · a · S ⊆ a .

Observe and keep in mind: S itself is always an ideal/filter whatever.

Obviously the notion of a d-ideal is “copied” from ring theory and it is easily
verified that any d-ideal is a lattice filter, too. To this end recall that a given
d-ideal a contains any px with p ∈ P & x ∈ a. Consequently d-ideals could
also have been defined as filters, satisfying S · F · S ⊆ F .

Summarizing: Ideals and filters are defined strictly according to lattice the-
ory, p-ideals, m-ideals and p-filters depend on the particular situation in
d-semigroups and d-ideals are taken from Dedekind .

Given two ideals (filters) A,B we will denote by A + B the corresponding
ideal (filter), generated by A∪B . Consequently

∑
Bi (i ∈ I) will denote the

ideal (filter) generated by the family Bi (i ∈ I) .

4. 1. 6 Proposition. Let S be a d-semigroup. Then the set of p-ideals and
the set of d-ideals, as well, form a cdl-semigroup under the corresponding
complex operations of S .

Moreover, both, the lattice of filters and the lattice of d-ideals satisfy the
infinite distributivity law:

A ∩
∑
Bi =

∑
(A ∩Bi) (i ∈ I) .(DIF)

PROOF. Let A,B be two p-ideals. We show first, that the complex product
A · B := {ab | a ∈ A, b ∈ B} forms a p-ideal. To this end we may start from
two positive elements p ∈ A and q ∈ B.

A · B is an order ideal of (S,≤) . Observe: x ≤ ab =⇒ x ≤ (a ∨ p)(b ∨ q),
whence a and b may be assumed to be positive. And in case of (a∧ x)x ′ = x
this leads to

x = xx ′ ∧ xb ∧ ax ′ ∧ ab = (x ∧ a)(x ′ ∧ b) .
But A · B is not only an order ideal but even a lattice ideal. Observe: If p
and q are positive, then also pq is positive and if a1 , a2 ∈ A and b1 , b2 ∈ B
then we get a1 · b1 ∨ a2 · b2 ≤ (a1 ∨ a2) · (b1 ∨ b2) ∈ A ·B.

Furthermore the complex supreme A ∨ B := {a ∨ b | a ∈ A, b ∈ B} is an
ideal, more precisely the ideal, generated by the join A ∪ B , and similarly
the complex infimum A ∧B := {a ∧ b | a ∈ A, b ∈ B} is an ideal.
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Finally the semigroup of p-ideals is completely distributive, since it follows

immediately A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C)
& A · (B ∨ C) = A ·B ∨ A · C

and by calculation A · (B ∧ C) = A ·B ∧ A · C .

For, consider a1 , a2 ∈ A and b ∈ B , c ∈ C . Then we get:

a1b ∧ a2c ≤ (a1 ∨ a2)(b ∧ c) ∈ A · (B ∧ C) .

So, p-ideals satisfy the laws above.

But these laws are also satisfied by filters and hence by d-ideals, since it is
easily seen that together with each pair of d-ideals a, b also their complex
product forms an order filter, and that the rest follows by analogy to the first
part of the proof.

Finally filters and d-ideals satisfy:

A ∩
∑

Bi =
∑

(A ∩Bi) (i ∈ I).

It suffices to verify
∑

(A ∩ Bi) ⊇ A ∩
∑

Bi (i ∈ I) , whence we are through
by

x ∈ A ∩
∑

Bi

=⇒ x ∈ A & x ∈
∑

Bi (i ∈ I)
=⇒ x ∈ A & x ≥ bi1 ∧ . . . ∧ bin (∃bi1 ∈ Bi1, . . . , bin ∈ Bin)
=⇒ x ∈ (A ∩Bi1) + . . .+ (A ∩Bin)
=⇒ x ∈

∑
(A ∩Bi) (i ∈ I) . 2

Obviously p-ideals and m-ideals, as well, w. r. t. to d-monoids, and d-ideals,
w. r. t. d-semigroups with 0, satisfy the intersection theorem, that is the
condition that the intersection of all some not empty set A containing “x”-
ideals is again such an x-ideal, in general denoted by Ax and in particular by
ax, if A is a singleton {a} . Thus any not empty A ⊆ S generates a p-ideal
Ap and a d-ideal Ad , namely the intersection of all x-ideals, containing A .

On the other hand, these hulls admit an “inner description”.

In order to construct Ap, first we form all finite joins a1 ∨ . . . ∨ an ∈ P and
next we adjoin all elements x lying below some finite join.

In order to construct Ad , starting from an arbitrary non empty set A , we
form first all meets of elements of A and next all multiples of such elements.
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Hence, p-filters (recall they are d-ideals of P), p-ideals, and d-ideals are of
finite character. This means that x is contained in

∑
Bi of some family

Bi (i ∈ I) iff x belongs to the sum of some finite subfamily of Bi (i ∈ I).

Furthermore, w. r. t. the complex operations it holds – as is easily checked
by applying the distributivity laws from above:

4. 1. 7 Lemma. The operators d and p satisfy

Ap ·Bp = (AB)p and Ad ·Bd = (AB)d ,

Ap ∩Bp = (A ∧B)p and Ad ∩Bd = (A ∨B)d ,

Ap ∨Bp = (A ∨B)p and Ad +Bd = (A ∪B)d .

Hence, summarizing we get:

4. 1. 8 Proposition. In a d-monoid S with 0 p-ideals, filters and d-ideals
of S, as well, form respectively algebraic lattice semigroups, in which multi-
plication and meet distribute over sums.

PROOF. The difficult part was proven above, the rest my be left to the
reader. 2

As we shall see, structure properties of the ideal semigroup of some d-semi-
group S are responsible for the archimedean degree of S . This results es-
sentially from the fact that irreducible ideals play a crucial role w. r. t. gen-
erating congruences, which will turn out above all in the chapters on hyper-
archimedean and representable d-semigroups .

The subsequent notions will turn out be most fruitful:

4. 1. 9 Definition. Let I be an arbitrary ideal of S. I is called archimedean
if it satisfies:

∀n ∈ N : tn ∈ I =⇒ t · I , I · t ⊆ I .

Let F be a filter of S. F is called primary, if it satisfies:

ab ∈ F & a, b /∈ F =⇒ ∃n ∈ N : an, bn ∈ F .

Obviously an irreducible ideal is archimedean iff the corresponding irreducible
filter is primary.
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4. 1. 10 Definition. Let some ideal (or filter) A be maximal w. r. t. not
containing some given element a . Then A is called regular.

Let the lattice ideal I be the set theoretical complement of the regular filter
F . Then I is called co-regular.

Thus co-regular ideals are always irreducible and minimal w. r. t. contain-
ing a given element a . The importance of regular elements in the theory of
algebraic lattices V on the one hand results from the fact that any regular
element is

∧
-irreducible, and on the other hand it results from the fact that

any a ∈ V is the intersection of regular elements. This will be shown con-
cretely for c-ideals, and this will turn out as a fruitful tool in later chapters
on linearity and orthogonality .

4. 1. 11 Definition. Let t be positive. By C(t) we mean the set of all a ∈ S,
satisfying in S1 the equation (1 ∨ a)(1 ∧ a)−1 ≤ tn (∃n ∈ N) .

Finally we remark w. r. t. representability:

4. 1. 12 Definition. Let A be an ideal, then by ker(A), the kernel of A , we
mean the set of all k ∈ A satisfying the implication s · t ∈ A =⇒ s · k · t ∈ A .

Let A be a filter, then by rad (A), the radical of A, we mean the set of all
r ∈ A satisfying rn ∈ S\A (∃n ∈ N).

Obviously the kernel of an ideal forms always again an ideal and the radical
of an filter forms always a filter.

4.2 c-Ideals

Sofar, lattice- and ring-theoretical notions have dominated, but a pendant of
the convex subgroup of an ℓ-group has not yet been presented. Let S be –
even – an ℓ-group. Then a subgroup C of S is convex in S iff C satisfies:

| x | ≤ | a | & a ∈ C =⇒ x ∈ C .(K)

Let C be a convex subgroup of G . Then we get first | a | ∈ C ⇐⇒ a ∈ C .
Let C be a convex subgroup, and assume | a | ∈ C that is a∨ a−1 ∈ C . Then
it results | a |−1 = a−1 ∧ a ∈ C and thereby C ∋ a ∧ a−1 ≤ a ≤ a ∨ a−1 ∈ C
implying a ∈ C . Conversely a ∈ C =⇒ a ∈ C & a−1 ∈ C =⇒ | a | ∈ C .
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Hence it results: | x | ≤ | a | & a ∈ C =⇒ 1 ≤ | x | ≤ | a | ∈ C .

Let now (K) be satisfied by C . Then in case of C ∋ a ≤ b ≤ c ∈ C it follows
c−1 ≤ b−1 ≤ a−1 and hence, by definition, | b | ≤ | a | ∨ | c | ≤ | a | · | c | ∈ C .

The preceding characterization of convex subgroups gives rise to the following

4. 2. 1 Definition. Let S be a d-semigroup. By a c-ideal of S we mean a
subset C of S, closed under multiplication and satisfying in addition:

| x | ≤ | a | & a ∈ C =⇒ x ∈ C .(K)

By observing ||x || = | x | , we get a ∈ C ⇐⇒ | a | ∈ C , for if | a | ∈ C we
have | a | ≤ || a || & | a | ∈ C ; a ∈ C , and since in case of a ∈ C we get
|| a || ≤ | a | & a ∈ C =⇒ | a | ∈ C .

Next from definition 4.2.1 it follows that any c-ideal A is convex. To realize
this, we suppose A ∋ a ≤ b ≤ c ∈ A and e(a∧ b∧ c) = a∧ b∧ c = (a∧ b∧ c)e .
There are positive elements x, y, a ′, b ′, c ′ satisfying the equations (e∧a) ·x =
e ∧ b & (e ∧ b) · y = c and (e ∧ a) · a ′ = (e ∧ b) · b ′ = (e ∧ c) · c ′ = e .
But this leads to (e ∧ a)xyc ′ = e & (e ∧ b)yc ′ = e, whence we may start
from a triple a∗ ≥ b∗ ≥ c∗ in the role of a ′, b ′, c ′. Consequently we get
| b | ≤ | c | · | a | = | | c | · |a| | . This implies b ∈ A by condition (K) since
a, c ∈ A; | a |, | c | ∈ A; | c | · | a | ∈ A .

Furthermore any c-ideal A of S is also a sublattice, because a, b ∈ A =⇒
| a ∧ b |, | a ∨ b | ≤ | a | ∨ | b | ≤ | a | · | b | = || a | · | b || with | a | · | b | ∈ A .

Finally, if S is a monoid then, by definition, 1 belongs to any c-ideal, and
if the inverse a−1 of a exists , a−1 belongs to the c-ideal A if and only if a
belongs to A, recall the introduction where we started from | a | := a ∨ a−1 ,

implying of course | a | = | a−1 |.
Finally we emphasize: Let S be a d-monoid. Then by (K) 1 is contained
in any c-ideal of S . Hence, together with any family of c-ideals also the
intersection of this family is again a c-ideal. Consequently any subset A of
S generates a uniquely determined c-ideal Ac , in particular any element a
generates a uniquely determined ac := {a}c. Moreover, ∅ c = {1} .

Next, since S itself is a c-ideal, we get

4. 2. 2 Proposition. Let S be a d-monoid. Then the set of all c-ideals of
S forms a complete lattice with respect to ⊆.
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Furthermore, because a ∈ C ⇐⇒ | a | ∈ C, we get by definition

4. 2. 3 Lemma. Let S be a d-semigroup. Then two c-ideals A and B are
equal iff their cones A+ and B+ are equal.

This leads next to

4. 2. 4 Proposition. Let S be a d-semigroup and let M be a non empty
subset of S . Then M c is equal to

C(M) :=
{
x | | x | ≤

∏
|mi | (mi ∈M) (1 ≤ i ≤ n)

}
whence the lattice of all c-ideals is algebraic, with respect to

∑
.

PROOF. Obviously all elements of the given type belong to M c . Further-
more, according to 2.5.5, M c is closed with respect to ∧,∨ and · . Finally
the implication (K) holds (nearly) by definition. 2

In particular, according to the preceding proposition the “sum” A ∨ B of
two c-ideals is equal to the set of all elements x w. r. t. satisfying | x | ≤
n∏
1

(a+i · b+i ) (ai ∈ A, bi ∈ B) , since by construction A and B are contained in

this set whereas this set forms a sub-d-semigroup of any sup-c-ideal of A and
B.

The preceding characterization provides

4. 2. 5 Proposition. in any d-semigroup the set C(S) forms a distributive
lattice under ∩ and ∨ .

PROOF. x ∈ A∩ (B∨C) =⇒ |x| ∈ A & |x | ≤
n∏
1

(b+i · c+i ) (∃bi ∈ B, ci ∈ C).

The rest follows by extending and applying (2.19) to finitely many factors.
2

Summarizing, so far it has been shown that the family C(S) of all c-ideals
of a given d-monoid forms a distributive algebraic lattice with respect to

∑
and

∩
.

Let now S be a d-monoid. A c-ideal P is called prime if a ∧ b ∈ P =⇒ a ∈
P V b ∈ P . Obviously S itself is a prime c-ideal and together with a chain
{Pi} (i ∈ I) of prime c-ideals their intersection D is again a prime c-ideal,
since

a ∧ b ∈ D & a /∈ D =⇒ ∃Pj : a /∈ Pj =⇒ b ∈ D .
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Hence, since by Zorn there exist maximal chains of prime c-ideals, given
some c-Ideal M , there exists at least one minimal prime c-ideal P ⊇M .

Moreover, nearly by definition, with each chain of c-ideals its union is also a
c-ideal. Consequently, since {1} is a c-ideal, by Zorn there exist maximal
chains of c-ideals not containing a ̸= 1 and thereby c-ideals M maximal w. r. t.
property of not containing a . Such maximal ideals are called values of a .
These values – say W – are necessarily prime. This is verified as follows:

Recall the proof of (4.1.2)), and let W be a value of a , and assume x∧y ∈ W
but x, y /∈ W . Then in case of R(x, y, x◦, y◦) it follows x◦, y◦ /∈ W . But it
holds x◦ ∧ y◦ = 1 ∈ W . Now consider the set U := {u | x◦ ∧ |u | ∈ W} .
This set forms a c-ideal as is easily seen, and since y◦ belongs to U but not
to W we get a ∈ W ⊂ U . Now define V = {v | |u | ∧ | v | (∀u ∈ U)} . Then
by analogy we get a ∈ W ⊂ V . But this would lead to a ∧ a = a ∈ W , a
contradiction. Hence any value is a prime c-ideal.

In later chapters we want to clear the structure of right normal d-semigroups.
To this end we introduce irreducible and prime c-ideals in analogy with ir-
reducible and prime lattice ideals. Observe that, given a c-ideal C, for any
a /∈ C also the set of all x with | a | ∧ | x | ∈ C forms a c-ideal.

Moreover, not only for elements but also for (quotient) subsets of type ⟨a⟩ ∗
⟨b⟩ + ⟨b⟩ ∗ ⟨a⟩ with ⟨a⟩ ∗ ⟨b⟩ := {x | ax ≥ b} there exist maximal c-ideals K
w. r. t. K ∩ ⟨a⟩ ∗ ⟨b⟩ + ⟨b⟩ ∗ ⟨a⟩ = ∅, which are in addition prime.

4. 2. 6 Definition. Let S be a d- monoid. A filter U is called an ultrafilter,
if it is maximal w. r. t. not containing 1 .

A c-ideal is called minimal prime, if it is minimal in the set of all prime
c-ideals.

4. 2. 7 Proposition. The set theoretical complement of a prime ideal is a
prime filter and vice versa.

In S+ the set theoretical complement of an ultrafilter is a minimal prime
c-ideal and vice versa.

PROOF. The first assertion is nearly obvious.

So, let S be positive and U an ultrafilter. Then, by definition, S\U satisfies
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the implication x ≤ y /∈ U =⇒ x /∈ U . But moreover it holds, too,

a, b /∈ U =⇒ a ∧ x = 1 = b ∧ y (∃x, y ∈ U)
=⇒ ab ∧ (ay ∧ xb ∧ xy) = 1
=⇒ ab /∈ U .

Hence, the complement of an ultrafilter is a prime c-ideal. Provided now, this
c-ideal would properly contain a further prime c-ideal, then this complement
had to be a prime filter, properly containing U , a contradiction!

Finally, let M be a minimal prime c-ideal. Then the complement F of M is
a filter, embedded by Zorn in an ultrafilter U , and S\U is a prime sub-c-
ideal of M , and thereby equal to M . This means F = U , whence F is an
ultrafilter. 2

4. 2. 8 Corollary. In d-monoids the ultrafilters correspond in a unique man-
ner with the minimal prime c-ideals. Precisely:

U is an ultrafilter in S+ iff S\U is a minimal prime c-ideal inS .

That any d-monoid contains minimal prime c-ideals, follows nearly immedi-
ately from the next proposition, by Zorn.

4. 2. 9 Proposition. Let S be d-monoid and Ci (i ∈ I) a chain of prime
c-ideals of S . Then intersection and union of these Ci form again prime
c-ideals.

Within the class of prime c-ideals there is a class of special prime c-ideals of
most interest, namely the class of

∩
-prime c-ideals.

4. 2. 10 Definition. Let S be a d-monoid. We call R ∈ C (S)
∩

-prime, if
R fails to be an intersection of of proper sup-c-ideals.

4. 2. 11 Proposition. Let S be a d-monoid. Then R ∈ C (S) is
∩

-prime
iff there exists some c /∈ R, belonging to all c-ideals Ai (i ∈ I) , properly
containing R .

PROOF. Let R be
∩

-prime. We form the intersection D of all Ai ∈ C (S) ,
properly containing R and choose c ∈ D\R.

Let now c be some element of the required type w. r. t. R . Then c belongs
to all c-ideals of S, which properly contain R , and hence also to their inter-
section. 2
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Finally we consider regular c-ideals, built by analogy to the regular lattice
ideal – recall 10.0.10. This notion will be of great importance in later chap-
ters. Like the notion of a prime ideal, from the abstract point of view it
is a notion of algebraic lattice theory, observe that these notions are defined
merely by lattice operations.1

Immediately we get by 4.2.11:

4. 2. 12 Corollary. Regular c-ideals are exactly the
∩

-irreducible c-ideals .

As a final result of this section we give:

4. 2. 13 Proposition. Any c-ideal is equal to some intersection of regular
c-ideals.

PROOF. Recall the proof of 4.2.7. 2

Hereafter we intermit our investigation. The study of c-ideals will be taken
up again in context with linearity and orthogonality. The concept of this
ideal type is crucial, above all in the ℓ-group case.

4.3 v-Ideals and u-Ideals

In a later section we will be concerned with the question, under which con-
ditions a d-semigroup admits a

∧
-complete or a

∨
-complete extension, re-

spectively. In this context a special class of d-ideals and a special class of
p-ideals will turn out as most relevant tools. This has to do with the fact,
that different from the classical case the archimedean property is not strong
enough to guarantee an embedding into a complete sup-structure. This is
shown by the following example:

Let E be the unit interval and ω an element, not belonging to E. We put
x+ω := ω (∀x ∈ E), a◦b := a+b, in case of a+b ̸> 1 , and a◦b := ω otherwise.
Then w. r. t. a ∧ b := min(a, b) (E, ω, ◦,∧) is a positive totally ordered d-
semigroup without any

∧
-complete extension, since in any extension of this

type for X := E− {0} it must result:∧
X ◦

∧
X =

∧
(X ·X) =

∧
X ; 1 = 1 ◦

∧
X =

∧
(1 ◦X) = ω .

1Since we gave no lattice theoretical introduction here, we will work ad hoc, according to the concrete
situations.



68 CHAPTER 4. IDEALS

As will turn out w. r. t. complete extensions we may restrict our attention to
d-monoids with 0. So, for the sake of convenience, let us suppose henceforth
this special situation.

4. 3. 1 Definition. Let S be a positive d-monoid. a is called a v-ideal
(Vielfachenideal ), if a contains all elements c of S , satisfying

s ≤ xay =⇒ s ≤ xcy .

The notion of a v-ideal for cancellative monoids goes back to Arnold [4]
and van der Waerden [96], the general notion was given by Clifford
[41]. But, for the sake of fairness, in the very classical situation of Q it had
been anticipated already by Richard Dedekind who introduced what is
called a cut of (Q,≤,+) . Consider the right components!

Obviously S itself is always a v-ideal, and in addition it is easily seen, that
together with any family of v-ideals also the intersection of this family is
a v-ideal, provided there exists a zero element. Hence any subset A of S
generates a v-ideal Av which will also be denoted by a. So, choosing the
symbol a includes tacitly a = Av . In order to emphasize that a is a principal
v-ideal, that is generated by some singleton {a} , we write – also – a or a.

Obviously Av consists of all c ∈ S with s ≤ uAv =⇒ s ≤ ucv, whence Av and
Bv are equal iff s ≤ uAv ⇐⇒ s ≤ uBv . This means in particular SaS ⊆ a

and a = SaS.

Let Av, Bv be two v-ideals of S . Then Av and Bv give rise to various oper-
ations, one of them the set theoretic meet. Furthermore:

4. 3. 2 Definition. Let a := Av , b := Bv be two v-ideals of S . By a ◦ b

we mean the v-ideal (AB)v, where AB is the complex product, by a ∗ b we
mean the set of all x with ax ⊆ b, and by b : a we dually mean the set of all
x with xa ⊆ b. Finally we put a + b := (A ∪B)v.

a ◦ b =: ab , a ∗ b and b : a are usually called ideal product, and right and left
quotient ideal, respectively, and a + b =: a ∨ b = (A,B)v is called the ideal
sum of a and b .

That these operations are stable is seen as follows:

ab is obviously a v-ideal, and furthermore ab is uniquely determined, since
from Av = Cv and Bv = Dv it results :

s ≤ uABv =⇒ s ≤ uCBv =⇒ s ≤ uCDv .
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Next a ∗ b and b : a are unique by definition, and they turn out to be v-ideals,
because

s ≤ u(a ∗ b)v ⇒ s ≤ ucv
=⇒

s ≤ ubv ⇒ s ≤ ua(a ∗ b)v ⇒ s ≤ uacv

=⇒
ac ⊆ b

and the dual implication.

Obviously v-ideals satisfy axioms (A1) through (A3) and the equations (2.42),
(2.43), (2.44), (2.46), and (2.47), given in 2.8.2.

The proof is left to the reader, but we summarize:

4. 3. 3 Proposition. Let S be a positive d-monoid with 0 and V its v-ideal
semigroup. Then it holds

(V,∩, ◦,+) is a semigroup.(A1)

(V,∩,+) is a lattice.(V)

x ◦ (a + b) ◦ y = x ◦ a ◦ y + x ◦ b ◦ y .(A3)

(a ◦ b) ∗ c = b ∗ (a ∗ c) .(Q1)

a ∗ (b : c) = (a ∗ b) : c .(Q2)

V seems to be close to the brick. But in general the implication a ⊇ b =⇒
ax = b = ya fails to be satisfied. The question, when this is the case, will be
settled in a later section. In particular we will be interested in the question
when the v-ideal semigroup of a brick is again a brick.

Besides v-ideals so called u-ideals will play a central role. They are defined
nearly dually w. r. t. v-ideals.

4. 3. 4 Definition. Let S be a positive d-monoid. A ⊆ S is called a u-ideal
(Teilerideal), if A contains all elements c of S , satisfying:

xAy ≤ s =⇒ xcy ≤ s .

As mentioned above, v-ideals are special d-ideals and u-ideals are special
p-ideals.
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Nearly dually w. r. t. v-ideals u-ideals satisfy:

S is a u-ideal and the intersection of a family of u-ideals is again a u-ideal.
Hence any subset A of S generates a uniquely determined u-ideal Au. This
provides – on the one hand – for any pair of u-ideals a uniquely determined
Au ∨ Bu := (A ∪ B)u and on the other hand it provides the possibility of a
u-ideal multiplication. Observe: Au = Cu & Bu = Du =⇒ (AB)u = (CD)u .
So we may define Au ◦Bu := (AB)u .

Furthermore, assuming X := Xu in case of A ⊆ B the set of all x with
A ·x ⊆ B forms a u-ideal, which we will call the right quotient ideal A ↗ B of
A w. r. t. B (and, of course, the left quotient ideal A ↖ B is defined dually).

Obviously the quotient operations extend to arbitrary pairs A, B of u-ideals
by forming A ↗ B := A ↗ A∨ B.

One advantage of v- and u-ideals is the fact that they provide cancellative
stable extensions (if S is cancellative).

Furthermore the semigroup of principal ideals {a}v =: a and {a}u =: a , re-
spectively, – recall {a}v = {x | a ≤ x} and {a}u = {x | x ≤ a} – is isomorphic
with (S, · , ∧ , ∨) w. r. t. · , ∧ , ∨ and it is easily checked that a is a can-
cellable v-ideal and a a cancellable u-ideal, respectively, if a is cancellative in
S. This means – according to the preceding development – that the v-ideal
semigroup is a

∧
-complete extension if a ⊇ b =⇒ a | b is satisfied, while

the u-ideal semigroup is a
∨

-complete extension of S if A ⊆ B =⇒ A|B is
satisfied. Here | means right/left divisibility.

But, in any case, each of these extensions provides a complete sup-lattice-
monoid, which is

∧
-distributive in the v-case and

∨
-distributive in the u-

case.



Chapter 5

Congruences

In this chapter we exhibit (left) congruences,which will prove most relevant
for the further theory. We start with some canonical extension theorems
and then turn to representation theorems. Finally we consider subdirectly
irreducible d-semigroups.

5.1 Extensions

5. 1. 1 Lemma. Homomorphic images S of d-semigroups are again d-
semigroups.

PROOF. Obviously S satisfies (A1) through (A3). But axiom (A4) holds
as well, according to : a ≤ b =⇒ a = a ∧ b =⇒ b = (a ∧ b)x (∃x) . The rest
follows by duality. 2

Next we give some extension principles.

5. 1. 2 Proposition. Let S be a d-semigroup. If ≡p is a congruence on P,
then ≡p extends uniquely from P to S via :

a ≡ b :⇐⇒ ∃ x, y ∈ S , a◦, b◦ ∈ P : a◦ ≡p b◦
& a = x · a◦ · y & b = x · b◦ · y ,

(i)

or equivalently :

a ≡ b :⇐⇒ ∃ x, y ∈ S , a◦ b◦ , e ∈ P : (x ∧ a◦ ∧ b◦ ∧ y) =
= e · (x ∧ a◦ ∧ b◦ ∧ y) = (x ∧ a◦ ∧ b◦ ∧ y) · e
& a = (e ∧ x) · a◦ · (e ∧ y)
& b = (e ∧ x) · b◦ · (e ∧ y) .

(ii)

71



72 CHAPTER 5. CONGRUENCES

PROOF. First we show (i) ⇐⇒ (ii).

(ii) =⇒ (i) holds by definition.

(i) =⇒ (ii) : Let e ∈ P be a unit of x ∧ a◦ ∧ b◦ ∧ y . Then by 2.2.3 we get:

x · a◦ · y = (e ∧ x)(e ∨ x) · a◦ · (e ∨ y)(e ∧ y)

x · b◦ · y = (e ∧ x)(e ∨ x) · b◦ · (e ∨ y)(e ∧ y)

where (e ∨ x) · a◦ · (e ∨ y) ≡p (e ∨ x) · b◦ · (e ∨ y) .

Hereafter we may continue as follows:

First of all ≡ is reflexive and symmetric by definition.

Next ≡ is transitive. Suppose:

a = (e ∧ x) · a ′ · (e ∧ y) & b = (e ∧ x) · b ′ · (e ∧ y)

c = (f ∧ u) · c ′′ · (f ∧ v) & b = (f ∧ u) · b ′′ · (f ∧ v) .

We may assume e = f and in addition that e (= f) is a unit of the meet
a ′ ∧ b ′ ∧ b ′′ ∧ c ′′ . This implies that suitable elements p, q, r, s ∈ P satisfy:

a = (e ∧ x ∧ u)p · a ′ · q(e ∧ y ∧ v)
b = (e ∧ x ∧ u)p · b ′ · q(e ∧ y ∧ v)
b = (e ∧ x ∧ u)r · b ′′ · s(e ∧ y ∧ v)
c = (e ∧ x ∧ u)r · c ′′ · s(e ∧ y ∧ v)

;

pa ′q ≡p pb ′q = r · b ′′ · s ≡p rc ′′s ,

meaning a ≡ c . Hence ≡ is also transitive.

Furthermore, by (i) ⇐⇒ (ii), ≡ respects multiplication, because

a = xa◦y as = xa◦(ys) sa = (sx)a◦y
=⇒ &

b = xb◦y bs = xb◦(ys) sb = (sx)b◦y .

It remains to verify
a ≡ b =⇒ s ∧ a ≡ s ∧ b

To this end let a ≡ b be defined in the sense of (ii) with a unit e of s, that is
es = s = se .
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Then there exist positive elements e ′ , e ′′ with (e∧ x)e ′ = e = e ′′(e∧ y). We
put s̄ := e ′ · s · e ′′, and s ′ := e ∨ s̄. Then it results:

s = (e ∧ x)s̄(e ∧ y)
= (e ∧ x)(e ∧ s̄)(e ∨ s̄)(e ∧ y)
= (e2 ∧ es̄ ∧ xe ∧ xs̄)(e ∨ s̄)(e ∧ y)
= (e · e ∧ es̄ · e ∧ x · e ∧ xs̄ · e)(e ∨ s̄)(e ∧ y)
= ((e ∧ es̄ ∧ x ∧ xs̄) · e · (e ∨ s̄)(e ∧ y)
= (e ∧ z)s ′(e ∧ y)

(5.3)

with z = es̄ ∧ x ∧ xs̄ – recall e(e ∨ s̄) = e ∨ s̄.
In case of (e∧ z)r = e∧x with r ∈ P for r · a◦ ≡p r · b◦ this implies further:

a = (e ∧ z)(r · a◦)(e ∧ y)
& b = (e ∧ z)(r · b◦)(e ∧ y) ,

and consequently by applying (5.3) we get

s ∧ a = (e ∧ z)(s ′ ∧ r · a◦)(e ∧ y)
s ∧ b = (e ∧ z)(s ′ ∧ r · b◦)(e ∧ y) .

But s ′ ∧ r · b◦ is positive, since the components are positive, recall e is a unit
of s and thereby of s̄ and s′ , too. Moreover e is unit of z , y and the inner
components, as well.

Consequently, altogether, ≡ respects ∧ , too. 2

5. 1. 3 Lemma. Let S be a d-semigroup. If ≡ is a congruence on S, then
≡ extends uniquely from S to S1 via:

α ≡1 β :⇐⇒ x · α · y ≡ x · β · y (∀ x, y ∈ S) .

PROOF. Observe α ∈ S1 =⇒ xα, αx ∈ S and axiom (A3). 2

5. 1. 4 Corollary. Let S be a d-semigroup. If the congruence σ , ρ generate a
subdirect decomposition of S , then their extensions σ1 , ρ1 provide a subdirect
decomposition of S1.

5. 1. 5 Lemma. Let S be a d-semigroup. If ≡1 is a congruence on S1, then
≡1 extends uniquely from S1 to Q via :

α ≡
Q
β :⇐⇒ x · α · y ≡1 x · β · y (∃x, y ∈ C1+) .



74 CHAPTER 5. CONGRUENCES

PROOF. Recall first that α , β ∈ S1 implies x · α , β · y ∈ S1 and thereby
x · α · y , x · β · y ∈ S1 . We now turn to the proof:

Obviously it suffices to show that the relation, defined above, is a congruence
relation.

By definition ≡
Q

is reflexive and symmetric. Furthermore ≡Q is transitive,
since in case of positive and cancellable elements x, y, u, v we get:

xαy ≡1 xβy & uβv ≡1 uγv

=⇒
(x ∨ u)α(y ∨ v) ≡1 (x ∨ u)β(y ∨ v) .

Hence ≡
Q

is an equivalence relation. But moreover, ≡
Q

is even a congruence
relation:

We start from some γ = uv−1 , where in particular v is positive and can-
cellable. Then it results:

xαy ≡1 xβy =⇒ x(αuv−1)vy ≡1 x(β · uv−1)vy

and xαy ≡1 xβy =⇒ x(α ∧ uv−1)vy ≡1 x(β ∧ uv−1)vy .

2

5. 1. 6 Corollary. Let S be a d-semigroup and let σ1 , ρ1 provide a subdirect
decomposition of S1 . Then σ

Q
, ρ

Q
provide a subdirect decomposition of Q.

Before continuing by the study of (most) concrete congruences we give one
result on left congruences. Here by a left congruence we mean an equivalence,
satisfying moreover:

a θ b =⇒ sa θ sb
and a θ b =⇒ s ∧ a θ s ∧ b .

Any left congruence on S is, of course, a congruence on (S,∧), but moreover
we get:

5. 1. 7 Lemma. Let S be a d-semigroup. If ≡ is a left congruence on
(S, ·,∧) and thereby a congruence on the semilattice (S,∧), then ≡ is even a
congruence on the lattice (S,∧,∨) .

PROOF. First of all, choosing some suitable element b ′′ , we get:

b ≡ a ∨ b =⇒ a ∧ b ≡ a =⇒ b ′′(a ∧ b) ≡ b ′′a =⇒ b ≡ a ∨ b
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and thereby a ≤ b ⇐⇒ a ≡ a ∧ b ⇐⇒ b ≡ a ∨ b . Hence it holds a, b ≤ a ∨ b.
So it suffices to verify: a ≤ c & b ≤ c =⇒ a ∨ b ≤ c . But by

a ≡ b & a = a ′′(a ∧ b) =⇒ a ∨ b = a ′′b ≡ a ′′(a ∧ b) = a

we get:

c ≡ a ∨ c ≡ b ∨ c =⇒ a ∨ (b ∨ c) = (a ∨ b) ∨ (a ∨ c) ≡ a ∨ c ≡ c ,

that is a ∨ b ≤ c. 2

5.2 Concrete Congruences

In ℓ-groups congruences correspond uniquely to convex normal divisors. A
similar correspondence does, of course, not hold in general, consider d-lattices.
In spite of this there are particular congruences, providing fruitful insights,
and, of course, these congruences are congruences as well in case of ℓ-groups,
although not defined by normal divisors. In particular there are three ideal
oriented congruences which will contribute essentially to clearing the d-semi-
group structure. First of all three results, which are easily checked.

5. 2. 1 Proposition. Let S be a d-semigroup and let I be an m-Ideal of S .
Then

a ≡ b (I) :⇐⇒ ∃ e, f ∈ I : a ≤ be & b ≤ af

defines a left congruence on S, which in case of s · I = I · s is even a
congruence.

5. 2. 2 Proposition. Let S be a d-semigroup and let C be a c-ideal of S .
Then

a ≡ b (C) :⇐⇒ ∃ e, f ∈ C : a ≤ be & b ≤ af

defines a left congruence on S, which in case of s · C = C · s is even a
congruence .1

5. 2. 3 Corollary. a ≡ b according to 5.1.3 or 5.2.2 is equivalent to ae =
bf (e, f ∈ I, C) ,

1Recall a ≤ be ⇒ ax = be (x ∈ S+) ⇒ af = be (f = x∧ e ∈ C). Similarly we would succeed below 5.2.1.
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SINCE a ≤ be & b ≤ af =⇒ ax = be ≤ afe =⇒ ax = a(x ∧ fe) .

5. 2. 4 Proposition. Let S be a d-semigroup and let i be a d-ideal of S.
Then

a ≡ b (i) :⇐⇒ ∃x ∈ i : a ∧ x = b ∧ x

defines a congruence on S.

Apart from the particular substructures, presented sofar, there are interesting
congruences, generated by subsets.

5. 2. 5 Lemma. Let S be a d-semigroup and let U be an arbitrary filter of
S. Then

a ≡U b :⇐⇒ a · U = b · U

defines a left congruence on S, which in case of s · U = U · s (∀s ∈ S) is
even a congruence.

5. 2. 6 Proposition. Let S be a d-semigroup and let θ be a left congruence
on S. Then

a ≡θ b :⇐⇒ a · x = b · x (∀ x ∈ S/θ)

defines a congruence relation on S .

Suppose u = u2. Then the set of all x ≤ u forms a p-ideal and the set
S · u forms a d-ideal. Hence – according to 5.2.4 and 5.2.5 – any idempotent
element provides two canonical congruences, denoted by σu and πu. But,
there holds much more.

5. 2. 7 Proposition. Let S be a d-semigroup and let u ∈ S be idempotent.
Then (σu , πu) with

a σu b :⇐⇒ ∃ su : a ∧ su = b ∧ su
a πu b :⇐⇒ au = bu

define a congruence pair generating a subdirect decomposition (S/σu)⊗(S/πu)
of S.
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PROOF. The congruence character of σu and πu follows from the results
developed so far and from the fact that idempotents are central. Furthermore
we get:

a ∧ su = b ∧ su su ∧ a = su ∧ b
& =⇒ &

au = bu su ∨ a = su ∨ b .

Observe: by su ≤ su ∨ x it holds su ∨ a = u(su ∨ a) = u(su ∨ b) = su ∨ b.
This leads to the assertion since the lattice (S,∧,∨) is distributive. 2

Furthermore, as an immediate consequence of (2.19) we get

5. 2. 8 Lemma. Let S be a positive d-semigroup. Then a ≡x b :⇐⇒ x∧a =
x ∧ b is a congruence relation.

Provided, S is even complementary, things change, of course, but also in this
case it holds:

5. 2. 9 Lemma. Let S be a complementary d-semigroup. Then a 7−→ u · a
provides a homomorphism also w. r. t. residuation.

PROOF. (au) · (xu) ≥ bu =⇒ a · xu ≥ b and au · (a ∗ b)u ≥ bu. 2

5.3 Finest Congruences

In this section we are concerned with finest congruence relations, this topic
will be taken up again under 17.2.7. In particular we will characterize the
finest cancellative congruence and the finest idempotent congruence. This will
enable us to characterize the subdirect products of cancellative and idempo-
tent d-semigroups.

In this context positive elements play a central role. Hence, recall again that
positive means a = a+ .

5. 3. 1 Proposition. Let S be a d-semigroup. Then the finest cancellative
congruence on S is characterized by:

a κ b :⇐⇒ ∃ x ∈ S : xax = xbx .
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PROOF. First of all we see that the relation κ is equivalent to ∃x, y : xay =
xby and also with ∃x+ : x+ax+ = x+bx+, multiply one time to x ∨ y, and
another time to x+ .

This provides immediately that κ is cancellative, and we see furthermore that
there are no finer cancellative congruences than κ , if κ , at all , is a congruence
relation.

We see that κ is reflexive and symmetric by definition and also without any
problem we verify transitivity of κ by multiplying.

So, it remains to verify that κ respects the operations · and ∧ . But the latter
requirement follows immediately. So we may restrict ourselves to multiplica-
tion.

To this end we suppose a κ b and consider as and bs . Supposing that e
is a common positive unit of s and x, we start from x+ax+ = x+bx+ and
decompose s into (e ∨ s)(e ∧ s) . Let now (e ∧ s)e∗ = e be satisfied. Then
there exists some positive u satisfying x+u = e∗x+ . And this implies:

x+asx+u = x+as+(e ∧ s)x+u
= x+as+(e ∧ s)e∗x+
= x+as+ex+

= x+ax+t (∃ t)
= x+bx+t

= x+bsx+u . 2

In addition the preceding proof provides:

5. 3. 2 Corollary. Let S be a positive d-semigroup. Then we get the finest
congruence under which x becomes cancellable is κ, defined by the equivalence
a κx b :⇐⇒ xax = xbx , and the finest congruence under which all elements
of a given · - and ∨ - closed subset X ⊆ S are cancellable is κ, defined by the
equivalence a κX b :⇐⇒ xax = xbx (∃x ∈ X) .

This remark will be of interest whenever we will try to restore cancellation
property as well as possible. We now turn to archimedean congruences.

5. 3. 3 Definition. Let S be a d-semigroup. Two elements a, b are called
archimedean equivalent, symbolized by a ≈ b, if there exists a suitable expo-
nent n ∈ N satisfying a ≤ bn & b ≤ an .
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5. 3. 4 Lemma. Let S be a positive d-semigroup. Then ≈ is the finest
idempotent congruence on S.

PROOF. Straightforward(ly). 2

5. 3. 5 Lemma. Let S be a d-semigroup and let ≡ be a congruence gener-
ating an idempotent P/≡ . Then also S := S/≡ is idempotent.

PROOF. Assuming ea = a = ae we get a = (e ∧ a)(e ∨ a) and ax = e ∨ a
(x ∈ P ) . Then it results x̄2 = x̄ , and thereby (e ∨ a)x̄ = e ∨ a, leading to
āx̄ = ā = ē ∨ ā , whence ā is positive, satisfying ā · ā = ā. 2

5. 3. 6 Proposition. Let S be a d-semigroup. Then the congruence ≡,
generated on S by ≈ , is the finest idempotent congruence on S, whence
S/≡ is the largest idempotent homomorphic image of S .

PROOF. According to 5.3.4 and 5.3.5 the image S/≡ is idempotent. Con-
sider now another idempotent image S/η and let e be a positive unit of a∧ b.
Then with e′′(e ∧ a) = e = (e ∧ b)e′ it follows:

a η b =⇒ (e ∧ a)(e ∧ a)(e ∨ a)(e ∧ b) η (e ∧ a)(e ∨ b)(e ∧ b)(e ∧ b)
=⇒ (e ∧ a)(e ∧ a)(e ∨ a)(e ∧ b) ≡ (e ∧ a)(e ∨ b)(e ∧ b)(e ∧ b)
=⇒ e′′(e ∧ a)(e ∧ a)(e ∨ a)(e ∧ b)e′ ≡ e′′(e ∧ a)(e ∨ b)(e ∧ b)(e ∧ b)e′
=⇒ a ≡ b .

2

5. 3. 7 Proposition. Let S be a d-semigroup. Then S is a subdirect product
of some cancellative and some idempotent d-semigroup iff it satisfies κ∩η = ι .

We want to simplify 5.3.7. To this end we give:

5. 3. 8 Lemma. Let S be a d-monoid. Then κ ∩ η = ι holds in S if and
only if κ ∩ η = ι holds in P .

PROOF. Put a∗ := (1∧a)−1 & b∗ := (1∧b)−1, then any congruence ≡ fulfills
a ≡ b⇐⇒ a+ ≡ b+ & a∗ ≡ b∗. 2

5. 3. 9 Lemma. Let S be a d-semigroup. Then κ ∩ η = ι is satisfied in S

if and only if κ ∩ η = ι is satisfied in S1 .
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PROOF. Let α, β ∈ Σ+ satisfy α ≈ β and suppose γαδ = γβδ. Then
together with e also eγ =: s and δe =: t belong to S and any u ∈ S+ satisfies
su = vs (∃v ∈ S). This leads to s · uα · t = s · uβ · t and to uα ≈ uβ, and
thereby to uα = uβ (∀u ∈ S+). This completes the proof, recall lemma 3.1.
10. 2

Next we show:

5. 3. 10 Proposition. Let S be a d-semigroup. Then S is a subdirect
product of some cancellative and some idempotent d-semigroup iff:

(a+ ∧ b+)n ≥ a+ ∨ b+ & s(a+ ∧ b+)t = s(a+ ∨ b+)t
⇒

a+ = b+ .

PROOF. (a+ ∧ b+)n ≥ a+ ∨ b+ =⇒ (a+)n ≥ b+ & (b+)n ≥ a+

=⇒ a+ η b+

&
s(a+ ∧ b+)t = s(a+ ∨ b+)t =⇒ sa+t = sb+t ,

=⇒ a+ κ b+ . 2

5.4 Subdirectly irreducible d-semigroups

In later chapters on representable and hyper-archimedean d-semigroups sub-
directly irreducible d-semigroups will play a central role. There is only little
known about subdirectly irreducible d-semigroups in general but in the finite
case things are more convenient.

First of all we recall the proposition 5.2.7 and get:

5. 4. 1 Proposition. Any subdirectly irreducible d-semigroup S has at most
two idempotents.

PROOF. Let a, b be a critical pair.

CASE 1. There exists some u = u2 satisfying ua ̸= ub. Then u =: 1 is the
identity element of S.

Suppose now v2 = v. Then v generates a subdirect decomposition of S, but
since S is subdirectly irreducible, one of the two factors must collapse, and
this must be S/ϕu, since this factor doesn’t separate a and b.
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So we get sv = v (∀s ∈ S), that is v = 0 . 2

Observe that the preceding proposition has various applications, in par-

ticular for inverse and for locally finite (any {an
∣∣∣∣ (n ∈ Z)} is finite), d-

semigroups, as will be elaborated later on.

For the sake of generality we continue by studying arbitrary cdl-semigroup.

5. 4. 2 Definition. Let S be a cdl-semigroup and let θ be a left congruence.
Then by a critical pair w. r. t. θ we mean any a, b which is separated by θ

but collapses w. r. t. any proper subcongruence of θ .

Of course, in lattice ordered structures a, b is a critical pair iff a ∧ b , a ∨ b is
a critical pair. Hence we may always start from a < b .

5. 4. 3 Proposition. Let S be a cdl-semigroup (cdl-semigroup) and let
S/θ be subdirectly irreducible. Then θ is generated by an irreducible filter
and thereby dually by an irreducible ideal.

PROOF. Let a < b be a critical pair. We choose some regular filter F of
S := S/θ, containing b, but avoiding a , with inverse image F in S. Then F
is irreducible in S, since F is regular in S. Furthermore

x ≡ y ⇐⇒ s · x · t ∈ F

⇐⇒ s · y · t ∈ F

defines a congruence relation on S, which is the diagonal since S is subdi-
rectly irreducible. On the other hand it holds

s · x · t ∈ F ⇐⇒ s · y · t ∈ F
⇐⇒

s · x · t ∈ F ⇐⇒ s · y · t ∈ F
;

x θ y ⇐⇒ x ≡ y (F ) . 2

We now turn to the positive case:

5. 4. 4 Proposition. Let S be a positive subdirectly irreducible cdl-semi-
group. Then S contains a maximum 0 and a uniquely determined hyper-atom
(co-atom) h , which together with 0 forms a critical pair.
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PROOF. Let h < b be a critical pair. Then it holds:

x < b & x ̸≤ h =⇒ x ∧ h < x = x ∧ b ,

whence h and b are separated according to 5.2.8. So, b must have the zero
property and it must hold x < b =⇒ x ≤ h . 2

Applying 5.4.4 in the d-semigroup case we get:

5. 4. 5 Proposition. Let S be a positive subdirectly irreducible d-semigroup.
Then S is a normal d-monoid, and the set R of right units of the hyperatom
h and the set L of left units of h , as well, form prime c-ideals.

PROOF. Because hx = h V hx = 0 it is easily seen that R, and dually L ,
form prime c-ideals.

Furthermore, since any right unit e of h generates an h , 0 separating congru-
ence, namely x ≡ y ⇐⇒ xe = ye, and since any right cancellative c satisfies
hc ̸= 0c , which leads to hc = h, we see that any right unit e of h is right
cancellable and that conversely any right cancellable element is a right unit
of h .

So, any unit e of h is cancellable,whence S is even a monoid.

Consequently the proof is complete if S is linearly ordered, since any lin-
early ordered d-monoid is normal. Otherwise let the elements u and v be
incomparable and suppose

u, v ≤ a , (u ∧ v)u ′ = u, (u ∧ v)v ′ = v,

u∗(u ′ ∧ v ′) = u ′ , v∗(u ′ ∧ v ′) = v ′ .

Then it results : (u∗ ∧ v∗)(u ′ ∧ v ′) = u ′ ∧ v ′

with (u ∧ v)u∗ = (u ∧ v)u∗(u ′ ∧ v ′) = u and (u ∧ v)v∗ = v, by duality .
Consequently u∗ ∧ v∗ ∈ L∩R. This means u∗ ∧ v∗ = 1 . So, again by duality,
S is normal also in the second case. 2

Now we are in the position to prove:

5. 4. 6 Proposition. Any d-semigroup S admits an embedding in a normal
d-monoid.
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PROOF. We extend S to S1 and decompose S1+ subdirectly into sub-
directly irreducible components. These components are normal, hence also
their direct product ∆ is normal.

However, it might be that cancellable elements of S are no longer cancellable
in ∆ .

We overcome this situation by changing to a homomorphic image ∆ := ∆/≡C

with a ≡C b :⇐⇒ ∃c ∈ C ⊆ S : c · α · c = c · β · c . As ∆ is positive ≡C is a
congruence, which is easily seen, making all elements of S cancellable in ∆
and separating any a ̸= b of S , as is easily seen. Consequently the quotient
hull of ∆ verifies our assertion, by

(c−1a ∧ c−1b)x = c−1b⇐⇒ (a ∧ b)x = b .

Thus the proof is complete. 2

5. 4. 7 Definition. Given a positive subdirectly d-semigroup S with
hyperatom h, henceforth we will write R(h) := R and L(h) := L , and
E(h) := R(h) ∩ L(H) .

Below 5.4.3 it was shown that subdirectly irreducible images of cdl-semi-
groups are generated by regular filters. In the positive case we even obtain:

5. 4. 8 Proposition. Let S be a positive cdl-semigroup. Then the subdirectly
irreducible homomorphic images of S correspond uniquely with the regular
filters of S and thereby a fortiori also with the co-regular ideals.

PROOF. We have – still – to show that regular filters generate a subdirectly
irreducible image. So, let J be co-regular w. r. t. h and let b be not contained
in J . Then h is a uniquely determined hyperatom in S := S/J , since
otherwise S\J would not be maximal w. r. t. not containing h.

Now we consider some subdirectly irreducible homomorphic image S with
h ̸= 0. Here {0} is the image of {0} and both, {0} and {0} are regular
filters w. r. t. the corresponding hyperatoms. This means S ∼= S/J ∼= S.
Consequently S/J is subdirectly irreducible. 2

5. 4. 9 Proposition. Let S be a commutative subdirectly irreducible d-
semigroup. Then S is linearly ordered and 0-cancellative.
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PROOF. According to 6.1.2 the relation ≡ (P ) provides a linearly ordered
image.

Let now a < b be a critical pair. If a is cancellable, then outside C(S) only
one element is possible, and this element must be equal to 0 .

Otherwise all cancellable elements are smaller than or equal to a, and above
a there can lie only b = 0 .

Hence, it remains to verify that all c ≤ a are conditionally cancellable, mean-
ing ux = uy ≤ a =⇒ x = y . To this end recall that E(c) with c ≤ a is
an ideal satisfying E(c) ⊆ E(a), and that by assumption it holds, of course,
E(a) = {1} . Hence, in case of R(x, y, x ′, y ′) we get:

cx = cy ̸= 0 =⇒ a(x ∧ y)x ′ = a(x ∧ y) = a(x ∧ y)y ′

=⇒ x ′ = 1 = y ′ =⇒ x = y . 2

Applying the preceding proposition we get:

5. 4. 10 Proposition. Any commutative d-semigroup S is embedded in
some hypernormal d-monoid.

PROOF. We extend S to a d-monoid, adjoin a zero 0 and construct the cor-
responding quotient hull. Now we form the direct product of all subdirectly
irreducible images. 2

In case that S is not commutative, 5.4.9 does not hold. But – as shown
below 6.1.1 – any subdirectly irreducible d-semigroup satisfying

xay ∧ ubv ≤ xby ∨ uav .(O)

is linearly ordered.

The results presented here concern subdirectly irreducible cdl-semigroups in
general. In later chapters we will get further insights, for instance when
considering archimedean subdirectly irreducible d-semigroups (an ≤ b (∀n ∈
N) =⇒ ab, ba ≤ b) , and thereby in particular real d-semigroups, cf. 9.3.8.



Chapter 6

Representation

6.1 Starting from l-ideals

6. 1. 1 Proposition. Let S be a d-semigroup and let P be an irreducible
l-ideal. Then

a ≡ b (P ) :⇐⇒ sa ∈ P ⇐⇒ sb ∈ P

defines a left congruence on S, and by analogy

a ≡ b (P ) :⇐⇒ ∀ x, y : xay ∈ P ⇐⇒ xby ∈ P

defines even a congruence.

PROOF. Let P be a prime ideal. Then it is easily seen that the relation
defined above is an equivalence relation, respecting multiplication from the
left. So, it remains to verify that it also respects meet.

We write ≡ instead of ≡(P ) and start from a ≡ b. Then it follows:

a ≡ b & s(c ∧ a) ∈ P =⇒ sc ∈ P V sa ∈ P
=⇒ sc ∈ P V sb ∈ P
=⇒ s(c ∧ b) ∈ P

;

c ∧ a ≡ c ∧ b

Let now the second equivalence be satisfied, too. Then we succeed by analogy.
2

Sofar it is shown that irreducible ideals provide left congruences. But it has
not yet been exhibited their particular meaning.

85
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6. 1. 2 Proposition. Let S be a d-semigroup, let P be an irreducible l-ideal
of S and let ≡ be the left congruence of 6.1.1. Then ≡ is linear, meaning
that the corresponding homomorphic image of (S,∧,∨) is a chain.

PROOF. First we get a ≤ b iff sb ∈ P =⇒ sa ∈ P is satisfied. For, this
condition implies :

s(a ∧ b) ∈ P =⇒ sa ∧ sb ∈ P

=⇒ sa ∈ P V sb ∈ P
=⇒ sa ∈ P ,

and a ≡ a ∧ b implies:

sb ∈ P =⇒ s(a ∧ b) ∈ P =⇒ sa ∈ P .

Suppose now that (S,∧)/≡ is not linear. Then there exist elements a, b, u, v ∈
S satisfying:

ua ∈ P & ub ̸∈ P

va ̸∈ P & vb ∈ P .

But this leads to

va ∧ ub ̸∈ P & va ∧ ub ≤ vb ∨ ua ∈ P ,

a contradiction w. r. t. lemma 2.3.2. 2

As is easily seen the preceding proof carries over to the both side case when-
ever

xay ∧ ubv ≤ xby ∨ uav(O)

is satisfied. This means that a d-semigroup is representable, i. e. admits a
subdirect decomposition into linearly ordered factors, iff it satisfies condition
(O). This condition is symptomatical for representability in general, as will
turn out in context with studying ordered algebraic structures. Here we give
the fundamental result:

6. 1. 3 Proposition. Let S be a d-semigroup and let P be an irreducible
(lattice-)ideal. Then

ax ∈ P & a · x ≡ a · y =⇒ x ≡ y .(6.2)
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PROOF. Observe first that together with p also all elements equivalent to
p belong to P . Hence, according to ax ∈ P , also ay ∈ P is satisfied, which
leads to

sx ∈ P ⇐⇒ (s ∨ a)x ∈ P ⇐⇒ (s ∨ a)y ∈ P ⇐⇒ sy ∈ P . 2

We now turn to operators acting on chains. They will prove to be of central
importance.

6. 1. 4 Proposition. Any d-semigroup S admits a subdirect decomposition
whose factors admit an embedding into some r-semigroup.

PROOF. We start from 6.1.1 and 6.1.2 and consider the set R of all elements
with ax ≡ ay =⇒ x ≡ y . As shown above all elements of P have this property,
but also all elements ca with cancellable c. Observe cax ≡ cay =⇒ c−1cax ≡
c−1. Furthermore w ≤ r ∈ R =⇒ w ∈ R since xw = r & wy ≡ wz =⇒ ry =
xwy ≡ xwz = rz . Let now sw ≡ cp ∈ R. Then w ≤ s+w ≡ (1 ∧ s)−1cp ,
whence w ∈ R. In other words: W := S\R satisfies SW ⊆ W whence W is
an ≡-class.

On the set of all classes of ≡ we define mappings ϕx by s ϕx := xs. These func-
tions provide lattice endomorphisms of (S,∧,∨) satisfying moreover sW ∈ W ,
as just shown.

We consider {ϕx |x ∈ S}. Obviously we get:

ϕx ◦ ϕy = ϕyx and ϕx ∧ ϕy = ϕx∧y .(6.3)

Now we consider the chain T := {x, x /∈ W} . It follows first:

s ϕx ∈ T & r ≤ s =⇒ r ϕx ∈ T
&

t ϕx ≤ v =⇒ ∃ u : uϕx = v .

Observe: From r ≤ s it follows s = r ∨ s, which means xr ≤ xs, and from
xt ≤ u it follows u = xt ∨ u, from which results u = xv = v ϕx, for some
suitable v.

Thus any x ∈ S is mapped to an ideal/filter isomorphism ϕx of T , and these
ϕx : T −→ T satisfy the homomorphism conditions above.

So, it remains to verify that any pair a < b of S is separated by at least one
image:
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By 4.1.3 there exists some prime ideal Pa,b satisfying a ∈ Pa,b & b /∈ Pa,b .
Hence the left congruence, generated by Pa,b , separates a and b , and this
means in case of (a∧ b)e = a∧ b , that ϕa and ϕb produce different images of
e . 2

Of course, dually w. r. t. irreducible ideals there exist the corresponding con-
gruences w. r. t. irreducible filters. But, observe that the congruences modulo
P and modulo (S\P ) coincide.

6.2 Starting from c-ideals

In this section we will give an alternative proof of Theorem 6.1.4 by the rules
of c-ideals. c-ideals are the adequate structure tool in ℓ-group theory.

In the following let S always be an arbitrary d-semigroup. Let furthermore
a, b be different, positive and fixed. We shall consider left congruences w. r. t.
certain c-ideals, briefly c-congruences.

6. 2. 1 Lemma. Under the above assumptions the set K0 of all right units
of a ∧ b forms a c-ideal with a ̸≡ b (K0).

PROOF. First of all K0 is not empty, because of (A4), and moreover K0 is
multiplication closed, by evidence.

Suppose now | f | ≤ | e | & e ∈ K0 and let g be a positive unit of e∧f ∧a∧ b .
Then it holds a(g ∨ e) = a and we get ae = a ; a(g ∧ e) = a and thereby
ag = a = a(g ∧ e)g∗ = ag∗ , that is | e | = (g ∨ e)g∗ ∈ K0 .

Hence, also | f | belongs to K0 and thereby also f ∨g and any positive f : with
f : · (g ∧ f) = g belongs to K0 . This leads next to af : = a ; a = a(g ∧ f) .
Hence f = (g ∨ f)(g ∧ f) ∈ K0 . 2

6. 2. 2 Lemma. The set of c-ideals Ki with a ̸≡ b (Ki) contains a maximal
K , and this K is prime.

PROOF. Let Ki (i ∈ I) be an ascending chain of c-ideals of the considered
type. Then, also the union K of these Ki (i ∈ I) is a c-ideal, separating the
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elements a and b , since

a ≡ b (K)
;

a ≤ be (∃e ∈ Kj) & b ≤ af (∃f ∈ Kj)
;

a ≤ (a ∧ b)ef & b ≤ (a ∧ b)ef
;

a ∨ b ≤ (a ∧ b)ef
;

a ≡ b (Kj) (∃j ∈ I) .

Hence there exists a maximal c-ideal K of the considered type. And moreover
this K is prime, which is shown as follows:

Suppose K = E ∩ F with E ̸= K ̸= F . Then a ≡ b (E) and a ≡ b (F )
would imply a ≤ be (e ∈ E) and a ≤ bf (f ∈ F ) , that is a ≤ b(e ∧ f) with
e ∧ f ∈ E ∩ F = K , meaning – by duality – a ≡ a ∧ b ≡ b (K) . 2

We fix the maximal K of 6.2.2 and denote the corresponding left congruence
by ≡, and its classes x≡ by x . Furthermore we term the residue structure
S/≡ = S/K by S .

6. 2. 3 Lemma. Suppose x ≤ y and u ∈ P . Then it follows:

xu = x =⇒ yu = y .

PROOF. We give two proofs (a) and (b), avoiding sups in the first case and
left factors in the second case. Moreover suppose y ′′(x ∧ y) = y. Then we
succeed by

(a) x ≡ xu & x = x ∧ y =⇒ y = y ′′(x ∧ y) ≡ y ′′x ≡ y ′′xu
=⇒ ∃ f ∈ K : yu ≤ y ′′xu ≤ yf
=⇒ yu ≡ y .

(b) xu ≤ xe (∃ e ∈ K) =⇒ (x ∨ y)u ≤ (x ∨ y)e
=⇒ yu ≤ (x ∨ y)u ≡ x ∨ y ≡ y

=⇒ yu ≤ (x ∨ y)e ≤ yfe
(∃ e, f ∈ K)

=⇒ yu ≡ y . 2

In particular – according to 6.2.3 – we get,

x ≡ y & xu ≡ x =⇒ yu ≡ y .(6.4)
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6. 2. 4 Lemma. Suppose x ≤ y and u ∈ P . Then it follows:

yu = y =⇒ xu ≤ y .

PROOF. First of all, for a suitable e ∈ K, we get x ≤ ye, and therefore,
because yu ≡ y =⇒ yeu ≡ ye we get furthermore xu ≤ yeu ≡ ye ≡ y, that
is xu ≤ y . 2

6. 2. 5 Lemma. Suppose a ∧ b ≤ x < a ∨ b,. Then the set Kx of all elements
e with xe ≡ x is equal to the fixed c-ideal K.

PROOF. According to 4.2.3 it suffices to show, that K+
x and K+ are equal.

Furthermore by 6.2.3 we get K+ ⊆ K+
x .

Let now u, v belong to Kx. Then, according to 6.2.3 in a similar manner as
below 6.2.1 we get

xu ≡ x & xv ≡ x =⇒ xu ≡ xuv
=⇒ x ≡ x · uv .

Thus Kx is sup-c-ideal of K.

Let next u belong to Kx
+. Then it results xu ≡ x whence for each e1, ..., en ∈

K0 successively x ≡ xue1ue2...uenu ≡ x is obtained. This means – according
to 4.2.4 and again according to 6.2.4 – that a and b are not separated by
(K,u)c that is that (K,u)c = K and thereby u ∈ K+ , that is K+ ⊇ K+

x .
This completes the proof. 2

Furthermore we get:

6. 2. 6 Lemma. In S the classes a and b are comparable.

PROOF. (a ∧ b)(a ′ ∧ b ′) = a ∧ b =⇒ a ′ ∧ b ′ ∈ K
=⇒ a ′ ∈ K V b ′ ∈ K
=⇒ a ≤ b V b ≤ a , 2

Start now – w. l. o. g. – from a < b .

6. 2. 7 Lemma. In S each x ≤ b is comparable with each s.

PROOF. (i) First of all we consider the classes x ≤ a. Here we get:

(x ∧ s)(x ′ ∧ s ′) = x ∧ s =⇒ a(x ′ ∧ s ′) ≡ a
=⇒ x ′ ∧ s ′ ∈ Ka = K
=⇒ x ′ ∈ K V s ′ ∈ K

=⇒ x ≤ s V s ≤ x .
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(ii) Let now x ≤ b be satisfied. Then in case of x ∧ s < b, we may argue
in analogy with (i).

If, however, it holds x ∧ s = b , then x = b = x ∧ s, that is x ≤ s. 2

Next we define

T :=
{
u
∣∣∣∣ tu = t & u ∈ P =⇒ u ∈ K

}
.(T)

6. 2. 8 Lemma. T contains all x < b and all x with x ∈ C .

PROOF. In case of x < b & xu = x, we get:

xu = x =⇒ (a ∨ x)u = a ∨ x
=⇒ u ∈ Ka∨x = K .

And, in case of c ∈ C & cu = c , we find some suitable pair e ∈ K, v ∈ P
satisfying

cu ≤ ce & cuv = ce =⇒ uv = e =⇒ u ∈ K . 2

6. 2. 9 Proposition. The system T satisfies:

(1) e ∈ K =⇒ e ∈ T = {t | t ∈ T}
(2) t1 ≤ t2 ∈ T =⇒ t1 ∈ T

(3) t ∈ T & s ∈ S =⇒ t ≤ s V s ≤ t

(4) st ∈ T =⇒ t ∈ T

(5) c ∧ d ∈ T =⇒ c ∈ T V d ∈ T .

PROOF. Throughout the proof we assume that u, v, w are positive. Then it
follows:

Ad (1): e ∈ K & eu = e & eu ≤ ef (f ∈ K) implies u ≤ eu ≤ ef ∈ K ;

u ∈ K.

Ad (2): t1 ≤ t2 & t1u = t1 – according to 6.2.3 – implies t2u = t2, that is
u ∈ K.

Ad (3): t ∈ T & s ∈ S & R(s, t, s ′, t ′) & t ∈ T implies by (Ad (2)) s ∧ t ∈ T ,
from which results:

(s ∧ t)(s ′ ∧ t ′) = s ∧ t =⇒ s ′ ∈ K V t ′ ∈ K

=⇒ s ≤ t V t ≤ s .



92 CHAPTER 6. REPRESENTATION

Ad (4): st ∈ T & tu = t implies stu = st =⇒ u ∈ K.

Ad (5): c ∧ d ∈ T & cu = c & dv = d implies first

c(u ∧ v) = c

; (c ∧ d)(u ∧ v) = (c ∧ d)

d(u ∧ v) = d

and thereby u ∧ v ∈ K because c ∧ d ∈ T , that is u ∈ K V v ∈ K .

Suppose now w. l. o. g. c ̸∈ T . Then there exists an element u with cu = c,
but u /∈ K. By the implication above this leads to v ∈ K for all v with
dv = d . Therefore in this case it must hold d ∈ T . 2

Now we are in the position to prove:

6. 2. 10 Proposition. Let D be the intersection of all b and T containing
m-ideals with x ≡ g ∈ I =⇒ x ∈ I . Then each d (d ∈ D) is comparable
with each s (s ∈ S) , and it is S\D in any case closed w. r. t. multiples. If
moreover D/≡ has no maximum, then S\D is even a d-ideal.

PROOF. Suppose x ≤ g ∈ T . Then according to 6.2.9 (2) also x belongs
to T , meaning that each s satisfies x ≤ s or s ≤ x. Hence, if x and s are
incomparable, then neither x nor s can belong to T .

Let now x , s be incomparable and therefore x, s /∈ T . Then for all g ∈ T∪{b}
it holds g ≤ x and g ≤ s , as well, which implies x = g ∨ x and s = g ∨ s .
Therefore, due to K ⊆ T , we may start from positive elements x, s , in order
to prove x, s ̸∈ D , thus constructing a contradiction which leads to the fact,
that each d (d ∈ D) is comparable with each s (s ∈ S) .

So let’s start from x, s ∈ P and R(x, s, x ′, s ′) with positive elements x ′, s ′.
Then we get first g ≤ x ′ ∧ s ′, since together with x, s also the elements x ′, s ′

are incomparable This leads further to

g ≤ (x ′ ∧ s ′)e (e ∈ K)
;

(x ∧ s)g ≤ (x ∧ s)(x ′ ∧ s ′)e
= (x ∧ s)e ,
;

(x ∧ s)g ≤ x ∧ s .
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But, the set U of all u with (x ∧ s)u ≤ x ∧ s is an m-ideal, which contributes
to D , which is shown as follows: : Put x ∧ s =: z. Then it results:

zu ≤ z & zv ≤ z =⇒ z(u ∨ v) ≤ z
&

v ≤ u & zu = z =⇒ zv ≤ zu ≤ z ,

whence U is a lattice ideal. But U is moreover multiplication closed. Observe,
in case of

zu ≤ z & zv ≤ z
with zu ≤ ze & zv ≤ zf (e, f ∈ K) ,

it follows for some suitable positive element e ′

zuv ≤ zev = e ′zv ≤ e ′zf = zef
;

zuv ≤ z .

Hence U is also multiplication closed, whence U is even an m-ideal that
contributes to D , that is satisfies U ⊇ D .

Now, by verifying x ̸∈ U & s ̸∈ U we show, that x and s do not belong to D.
To this end consider – by example – (x ∧ s)x ≤ x ∧ s. Then, since x and s
are positive, it results x = x ∧ s and thereby x ≤ s , a contradiction!

So far we got that all classes d (d ∈ D) are comparable with all classes
s (s ∈ S) . It remains to verify, that

(a) S\D is closed w. r. t. multiples in any case, and
(b) that S\D forms even a d-ideal, if D has no maximum.

Ad (a). Consider:

(i) sg ∈ D & g ̸∈ D and (ii) gs ∈ D & g ̸∈ D .

Ad (i): Let e be a unit of s and suppose e ′′(e ∧ s) = e = (e ∧ s)e ′ with
positive elements e ′, e ′′ . Then, in case that e is chosen adequately small, it
results (e ∧ s)e ′ ∈ T , and thereby e ′ ∈ T ⊆ D . Hence ee ′ belongs to D
and consequently – choose some suitable positive element r – also e ′′e = re ′′

belongs to D. But, according to 6.2.9 (4) this provides the contradiction
g ≤ re ′′sg = rs+g ∈ D ; g ∈ D.
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Ad (ii): Let e be a unit of s and suppose (e∧ s)e ′ = e with some positive e ′.
Then, choosing like above, we get (e ∧ s)e ′ = e ∈ T and thereby, due to 6.2.
9 (2), g ≤ gs+ = gse ′ ∈ D , again a contradiction!

Ad (b). Recalling that D/≡ is linearly ordered, and that any d satisfies d ≤ x
for any x /∈ D we get:

c ∧ d ∈ D & c, d ̸∈ D =⇒ c ∧ d = max(x) (x ∈ D) . 2

Before continuing we recall the notion of an r-semigroup, and repeat 6.1.4
in a certain manner as part 1 of a main theorem on the interplay between
d-semigroups and r-semigroups.

6. 2. 11 Proposition. Any d-semigroup S has a subdirect decomposition
into semigroups of ideal/filter isomorphisms of the special chains T , con-
structed above. 1)

PROOF. We give a self contained proof. This provides additional insights,
based on some repetitions:

We choose the structure elements an denotations of proposition 6.2.10 and
consider 6.2.11 as continuation of 6.2.10 . So, let D and T be given in the
sense of 6.2.10.

We define ϕx via s ϕx := xs . These mappings are lattice endomorphisms of
(S,∧,∨) – satisfying moreover s ∈ O := S\D =⇒ s ϕx ⊆ O.

Next we consider {ϕx | x ∈ S}. Obviously it holds

ϕx ◦ ϕy = ϕyx and ϕx ∧ ϕy = ϕx∧y ,(6.6)

and moreover the chain chain T satisfies:

s ϕx ∈ T & r ≤ s =⇒ r ϕx ∈ T
&

t ϕx ≤ v =⇒ ∃ u : uϕx = v .

FOR: r ≤ s implies s = r ∨ s, that is xr ≤ xs, and xt ≤ v implies v = xt ∨ v,
that is v = xu = uϕx for some suitable u .

1)Of course, by 6.1.4 it has already developed such a subdirect decomposition along different lines, but
that method does not respect the cancellation property and the method of proof given here works already
in weaker than d-semigroup situations.
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Now we show, that the order endomorphisms ϕx induce even ideal/ filter
isomorphisms on the chains T . To this end we assume s ϕx = t ϕx . Then
there are elements s ′, t ′ ∈ P satisfying:

s ϕx = t ϕx ∈ T
=⇒

x(s ∧ t)s ′ = x(s ∧ t) = x(s ∧ t)t ′
=⇒

; s ′ ∈ K & t ′ ∈ K
; s = t .

Thus any x ∈ S is mapped on an induced ideal/filter isomorphism ϕx of T ,
and moreover, these ϕx : T −→ T satisfy equation (6.6) .

It remains to verify that any pair a ̸= b is separated in at least one component.
So, let’s start from

e(a ∧ b) = (a ∧ b) = (a ∧ b)e

with positive e . Then there exist positive elements u, v satisfying

(e ∧ a ∧ b) · u = e ∧ a & (e ∧ a ∧ b) · v = b ,

that is with:

(e ∧ a ∧ b) · u(e ∨ a) = a & b = (e ∧ a ∧ b) · v
;

P ∋ u(e ∨ a) ̸= v(e ∨ b) ∈ P .

So each u(e ∨ a) ̸= v(e ∨ b) is separated, whence all a ̸= b are separated:
Suppose w(e ∧ a ∧ b) = e , and multiply a and b from the left with w . 2

6. 2. 12 Corollary. Proposition 6.2.11 remains valid even in cdl-monoids
S satisfying the conditions:

a ≤ b =⇒ ∃x : ax = b(A4 ’)

ax = ay =⇒ (a ∨ b)x = (a ∨ b)y .(A4 ”)

PROOF. This is verified by checking step by step. 2

That an identity element 1 is relevant is shown by the right zero case. However
this condition may be slightly weakened along the lines of the proof given in
this section.
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6.3 r-Semigroups

The results of this chapter give rise to the question which way d- and r-
semigroups interact. Already in the introduction it was mentioned, that
r-semigroups always satisfy the axioms (A1) through (A3) and moreover
many rules of divisibility arithmetic, however not in any case also axiom
(A4) is valid. In order to verify this we consider Q . Here, for instance 0 and√

2 generate isomorphic order filters {x |x > 0} and {x | x >
√

2} but non
isomorphic corresponding order ideals {x | x ≤ 0} and {x | x ≤

√
2} . This

shows easily that axiom (A4) fails to be satisfied.

On the other hand, the r-semigroup of the real axis does satisfy axiom (A4).
Thus the r-semigroup of Q is embedded in the r-semigroup of R , which is a
d-semigroup.

This suggests the conjecture that any r-semigroup can be extended to a
d-semigroup of ideal/filter isomorphisms, by extending the chain under con-
sideration. And, in fact, we will succeed by an extension method due to
Harzheim, cf. [59].

To this end we start from a chain (T,≤) =: T and define

(1) A < B :⇐⇒ a < b (∀a ∈ A, b ∈ B) ,

(2) A(C) := {x | x ≤ c (∃c ∈ C)} ,

(3) E(C) := {x | x ≥ c (∃c ∈ C)} .

Next we call cut of T any pair A < B with A∪B = T , and we denote the set
of all cuts of T by S(T ). Let now A |B and C |D be two cuts of T . We put
A |B < C |D iff A ⊆ C is satisfied. Furthermore, if a ∈ T and C |D ∈ S(T ),
we put a < C |D iff a ∈ C is satisfied, and we put C |D < a iff a ∈ D
is satisfied. This provides an extension of the order of T to T ∪ S(T ) and
generates a chain S(T ).

In the following it will be helpful to think of A |B as of a tag between A and
B .

Finally , if ωM is the order type of the chain M = (M,<) we introduce the
notion ω∗

M for the order type of M = (M,>) .

6. 3. 1 Definition. Let T1 and T2 be chains, such that T1 ⊆ T2 and such
that a ≤ b in T1 implies a ≤ b in T2 . Then we put T1 � T2 .
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Let K be a chain and let Tκ (κ ∈ K) be a family of chains, such that κ1 ≤
κ2 =⇒ Tκ1

�Tκ2
. Then by

∑
κ∈K

Tκ (κ ∈ K) we mean
∪

κ∈K
Tκ considered w. r. t.

a ≤ b iff a ≤ b in one Tκ and thereby in all Tκ with a, b ∈ T κ .

Finally, recall that an ordered set C � T is said to be coinitial in T if for
every t ∈ T there exists an element c ∈ C with t < c, and that dually an
ordered set C � T is said to be cofinal in T if for every t ∈ T there exists an
element c ∈ C with c < t.

6. 3. 2 Definition. Let λ be an ordinal number. We put

S(1) := S(∅)

S(ν) :=


∑
κ<ν

S (κ) (κ < ν), if ν is a limes

S (S (ν − 1)) otherwise.

Then it results nearly immediately:

6. 3. 3 Lemma. Let T = (T,<) be a chain, and let λ be the initial ordinal
of the cardinality of the power set T ∗ of T . Then the chain T is embedded
in some S(α) (α < λ) . In particular, if we well order T by ≪ (what way
ever), then (T,≪) represents an ordinal β < λ.

Moreover the convex hull C(T ) =: C of T in S(λ) and any interval {x |A <
x < B} determined by some cut A |B of T as well as any ideal {x |x ∈
S(λ) & x < T} and any filter {x | x ∈ S(λ) & x > T} are similar to S(λ) .

PROOF. Let T be well ordered of type β < λ . We choose successively
f(tν) =: sν ∈ S(ν) (ν ≤ λ) in a similar constellation w. r. t. {sκ |κ < ν} as
the constellation of tν is w. r. t. {tκ |κ < ν} in T .

After this embedding of T in S(α), since λ as limes is indecomposable, there
remain λ many cut extensions towards S(λ) to be realized. This means, that
in fact any interval {x |A < x < B} determined by some cut A |B of T as well
as any ideal {x | x ∈ S(λ) & x < T} and any filter {x | x ∈ S(λ) & x > T}
of are similar to S(λ) . 2

The next result is crucial.
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6. 3. 4 Proposition. Let λ be a limes and let S be a convex subset of S(λ),
such that there exists an inductively well ordered subset Ce of ordinal number
β with 0 < β < λ which is coinitial in A(S), and such that there exists an
inductively well ordered subset Ce of ordinal number γ∗ with 0 < γ < λ, which
is cofinal in E(S). Then S is similar to S(λ) .

PROOF. Put α := max(β, γ) . Then, since λ is a limes any κ < λ satisfies
even κ+ α < λ .

Now we choose the first µ ′ with S ∩ S(µ ′) ̸= ∅ . By assumption, this µ ′ has
the predecessor µ = µ ′ − 1 , and by construction there is only one s ∈ S(µ ′)
belonging to S , since the existence of two different elements s1 ̸= s2 ∈ S
requires that (already) Sµ contains an element of S , recall S is convex in
S(λ) .

Next we will “extract ” successively subsets of cuts out of S such that finally
S is exhausted. First of all we put:

N (1) := S(µ+ 1) ∩ S .

By our above demonstration it holds

S(µ+ 1 + 0) ∩ S ⊆ N (1) ⊆ S(µ+ 1 + α + 0) ∩ S

with S(0) ∼ N (1) (by f0) .

Hence we may suppose that already each κ with 1 ≤ κ < ν < λ is associated
with some N (κ+ 1) in such a way that it holds

S(µ+ 1 + 0 + κ) ∩ S ⊆ N (κ+ 1) ⊆ S(µ+ 1 + α + κ) ∩ S

with S(κ) ∼ N (κ+ 1) (by fκ)

and κ1 ≤ κ2 =⇒ N (κ1) ⊆ N (κ2)
& fκ1

⊆ fκ2
.

We will show that this construction finally “arrives ” at λ . To this end we
consider w. r. t. ν the limes and the non limes case.

Case 1. Let ν be a limes. We put:

N (ν) :=
∪

N (κ) (κ < ν)

seeing immediately that this set satisfies the induction condition for ν .
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Case 2. Let now ν be no limes. Then ν−1 exists, hence N (ν−1) is defined,
and moreover any cut of N (ν − 1) induces uniquely a cut of S(ν − 1) . But
this means that N (ν) and S(ν) fulfill the induction condition for ν .

Thus, on the one hand the induction condition is carried over and on the
other hand, since λ is a limes, that is µ ′ + λ ′ = λ =⇒ λ ′ = λ, we obtain
S ∼ S(λ).

This completes the proof. 2

In addition it has been proven that in convex hulls C(T ) with |T | < |S(λ) |
all order filters, isomorphic with some order ideal of C(T ) , and all order
ideals, isomorphic with some order filter of C(T ) , have complements of type
S(λ) , and it holds by analogy that any cut of C(T ) generates an interval of
type S(λ) . This leads to

6. 3. 5 Theorem. Any r-semigroup admits an embedding into a d-semigroup
of order/filter isomorphisms.

PROOF. Let T be given and let λ be an initial ordinal of T ∗. We embed T
into S(λ) – according to 6.3.3.

Then for each cut A |B of T the added elements produce a uniquely deter-
mined convex subset C of S(λ) with A < C < B & A ∪ B = T , similar
to S(λ), and it holds for any ideal/filter isomorphism ϕ of S(λ) the proper
inequality Aϕ < C ϕ < Bϕ .

Now we consider the convex hull K := C(T ) of T in S(λ).

Then there exists some well ordered set of some even fixed well order type
α < λ, coinitial in K and thereby also in any filter K − Aϕ with ideal A
of K, whence the ideals {x |x < ϕ(A)} are similar to S(λ) – and whence by
duality also the filters {x |x > A} are similar to S(λ) .

We now choose and fix some S of the class Si (i ∈ I) of all subsets, order
isomorphic to S(λ) , pick one isomorphism ϕi : Si −→ S for each Si, in order
to define afterwards for each Si , Sj an isomorphism Si −→ Sj via

ϕi,j : Si −→ Sj := ϕi ◦ ϕj −1 .

Then any ideal/filter isomorphism ϕT of T w. r. t. the definition of ϕi,j in a
canonical manner generates an ideal/filter isomorphism ϕK of the convex hull
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K of T , such that composition and pointwise minimum are carried over and
above all it turns out that the r-semigroup of K is a d-semigroup.

ASSUME NOW ϕ ≤ ψ, that is xϕ ≤ xψ for all x of dom (ϕ) .

Then – as is easily seen – there exists a right quotient w. r. t. ϕ and ψ – send
xϕ to xψ and extend this relation in case of Kϕ ̸= K, and thereby Kψ ̸= K,
by a similar mapping of K −K(ϕ) onto K −K(ψ), which is possible according
to 6.3.4. Thus, summarizing we get: ϕ ≤ ψ =⇒ ϕ |l ψ .
NEXT we construct the corresponding left quotients. To this end we consider
the relation ψ ◦ ϕ−1 in three steps.

1. Obviously dom (ψ◦ϕ−1) = dom (ψ) and moreover the elements of dom (ψ)
satisfy ((xψ)ϕ−1)ϕ = xψ , that is (ψ ◦ ϕ−1) ◦ ϕ = ψ .

So, if in addition rg (ψ ◦ϕ−1) is a filter, then ψ ◦ϕ−1 is an ideal/filter isomor-
phism, and we are through.

2. If however neither rg (ψ ◦ ϕ−1) is a filter nor dom (ψ ◦ ϕ−1) is (the whole)
K, then – according to 6.3.4 – we are in the position to complete the relation
ψ ◦ ϕ−1 to some ideal/filter isomorphism with the required properties.

3. Finally, if dom (ψ ◦ ϕ−1) = K, implying dom (ψ) = dom (ϕ) = K, then
rg (ψ ◦ ϕ−1) is a filter and thereby ψ ◦ ϕ−1 is an ideal/filter isomorphism,
satisfying (ψ ◦ ϕ−1) ◦ ϕ = ψ , for:

Suppose dom (ϕ) = dom (ψ) = K and y ≥ x ∈ rg (ψ ◦ ϕ−1) . Then it results
yϕ ≥ xϕ ∈ rg (ψ), and thereby yϕ ∈ rg (ψ) , that is y ∈ rg (ψ ◦ ϕ−1), whence
ψ ◦ϕ−1 is an ideal/filter isomorphism satisfying (ψ ◦ϕ−1)◦ϕ = ψ and thereby
ϕ ≤ ψ =⇒ ϕ |r ψ , that is all at all

ϕ ≤ ψ =⇒ ϕ
∣∣∣∣ ψ .(6.9) 2

Next we present a proposition, due to Holland [65], that will afterwards be
carried over to d-semigroups.

6. 3. 6 Proposition. Let T be a chain whose closed intervals are order
isomorphic. Then the ℓ-group A of all order automorphisms of T is divisible,
that is, then in A any xn .= a has a solution.

PROOF. We give a slightly modified verification here:

Let α be an order automorphism of T and let n be a natural number. We
are looking for some χ satisfying χn = ϕ. Obviously an ℓ-group is divisible
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iff its positive cone is divisible. Consequently, we may assume that all x ∈ T
satisfy x ≤ xϕ. Furthermore, by assumption T is dense. Now, in order to
construct such a χ we call equivalent any two elements x, y with the property
that {z | z = yϕn (n ∈ Z)} and {z | z = xϕn (n ∈ Z)} generate the same
convex hull. Obviously this is the case iff y belongs to the convex hull of
{z | z = xϕn (n ∈ Z)} and x belongs to the convex hull of {z | z = yϕn (n ∈
Z)}, and it is easily checked that an equivalence class is a singleton iff it is
generated by a fixpoint and thereby that an equivalence class, containing at
least one non fixpoint, satisfies z < zϕ for all z .

Let now [ x ] be some equivalence class and let x < xϕ . Then, since T is
dense, the interval [ x , xϕ ] can be decomposed into n intervals by choosing
some

x = x0 < x1 < x2 < ... < xn−1 < xn = xϕ ,

and by assumption the intervals (xk, xk+1] are isomorphic. Hence an order
automorphism χ can be constructed by generating a mapping in such a way
that in the classes with non empty support any (xk, xk+1] (k + 1 < n) is
mapped onto (xk+1, xk+2] whereas fixpoints remain fix. 2

Now we are in the position to prove

6. 3. 7 Proposition. Any r-semigroup admits an embedding into a divisible
d-semigroup.

PROOF. We start from the setting of 6.3.5 with N := S(λ). Then, any
positive ideal/filter isomorphism ϕK

+ admits an extension to an order auto-
morphism ϕN of the chain N .

So, putting xϕN
+ := xϕN in case of x ≤ xϕN

xϕN
+ := x in case of x ≥ xϕN ,

we get a positive order automorphism of N , inducing the ideal/filter isomor-
phism ϕK

+ of K .

Conversely it is easily checked that any positive order automorphism ϕ+

of N induces some positive ideal/filter isomorphism ϕK
+ of K , respecting

composition and pointwise minimum.

Hence the ℓ-semigroup R+(K) of all positive ideal/filter isomorphisms of K
is a positive divisible d-semigroup.
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Now we show that the r-semigroup of T is embedded in the quotient hull of
R+(K) .

To this end let ϕT be an arbitrary ideal/filter isomorphism of T and let ϕS
be some of its extensions to N . Then ϕK admits a splitting into

ϕK
+ ◦ ψK

− = ψK
− ◦ ϕK+

via

xϕK
+ = xϕK and xψK

− = x in case of x ≤ xϕS

xψK
− = xϕK and xϕK

+ = x in case of x ≥ xϕS .

Here, by definition, ψK
− is an order automorphism of K, inverse to some

positive order automorphism of K. But then ϕK = ϕK
+ ◦ψK

− belongs to the
quotient hull of R+(K), which is divisible. 2

Finally we remark: The preceding results entail

6. 3. 8 Corollary. Any positive d-monoid is embedded in a homomorphic
image of some ℓ-group cone.

PROOF. We consider the above presented situation of K in S(λ). Here any
positive order automorphism α of S(λ) in a uniquely manner generates an
ideal/filter isomorphism h(α) of K, and it is easily seen that h respects meet
and multiplication. 2

6.4 Further Consequences

The preceding section provides – as consequences – several most classical
corollaries

6. 4. 1 Corollary. Any commutative d-semigroup S is a subdirect product
of 0-cancellative linearly ordered components.

PROOF. Consider the c-ideal K of 6.2.2. Here by commutativity, this ideal
is invariant, that is, it satisfies K · x = x ·K .

We suppose first that D/K has a maximum and thereby necessarily an idem-
potent element u . Here we put 0 := {x | x ≥ u} and define a · 0 = 0 = 0 · a
and 0 ∧ a = a.
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Finally, in the remaining case 0 := {x | x ̸∈ D} produces a residue class
image. 2

6. 4. 2 Corollary. Any positive commutative d-semigroup S admits an em-
bedding in a brick.

PROOF.We may start from a d-monoid. Then we get a 0-cancellative homo-
morphic image S of S/K by putting 0 := {x | x ≥ b} in S/K .

Now we form the lexicographical product of S and (Z , + , min) and consider
the substructure of all elements above (1 | 0). Then it is easily checked that
this is a positive d-semigroup. Next we define O := {(x |u) | (x |u) ≥ (a | 1)}
thus getting a homomorphic image, containing the starting model as a sub-
structure. 2

6. 4. 3 Corollary. Let S be locally finite, that is let any element a ∈ S

have only finitely many powers. Then S is a subdirect product of strictly
archimedean, cf. definition 9.3.1, linearly ordered d-semigroups.

PROOF. Assume for instance a ∈ S and an = an · ak . Then it results
ank = (ank)2, whence on the one hand any element a has an idempotent unit
and on the other hand any c-ideal is invariant, as is easily seen. Consequently
– according to 5.4.1 – any subdirectly irreducible model S of this type is a
d-monoid with zero . Furthermore, since any 1 ∧ a has only finitely many
powers, it must hold in general 1 ∧ a = 1 ; 1 ≤ a , whence S is positive.

So, S is strictly archimedean. 2

But recall: The preceding proposition is, of course, also an immediate conse-
quence of 5.2.7.

6. 4. 4 Corollary. Any finite d-semigroup is a subdirect product of compo-
nents of type Sn = ({0, 1, ..., n}, a · b := min(a + b, n), a ∧ b := min(a, b)) .

PROOF. This is an immediate consequence of 6.4.3. 2

We now turn to historical theorems on ℓ-groups and lattices, which are first
formulated simultaneously and then discussed simultaneously.
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6. 4. 5 (A.H. Clifford). Any abelian ℓ-group is representable, that is has a
subdirect decomposition into linearly ordered groups.

6. 4. 6 (W.Ch. Holland). Any ℓ-group is embedded in an order automor-
phism group of some chain.

6. 4. 7 (Lorenzen & Šik). An ℓ-group is a subdirect product of linearly
ordered groups iff it satisfies:

(1 ∨ a−1b) ∧ x−1(1 ∨ b−1a)x = 1 .(LS)

6. 4. 8 (G.Birkhoff). Any d-lattice may be considered as a ring of sets.

6. 4. 9 (M.H, Stone). Any boolean lattice may be considered as a field of
sets.
Each of the preceding corollaries results from the representation theorem, if
one recalls that any 0, 1-series may be considered as a subset of its index set.
Only 6.4.7 needs some explanation:

Obviously (LS) is necessary, but (LS) is also sufficient, since by (LS) it follows:

a ∧ b = 1 =⇒ a ∧ x−1bx = 1 ,

whence the essential steps of the representation theorem carry over, if we work
with invariant c-ideals, that is convex normal divisors, instead of arbitrary
c-ideals.



Chapter 7

Complete d-semigroups

7.1 Completeness and Cone

We turn to d-semigroups, satisfying certain completeness conditions.

7. 1. 1 Definition. A lattice is called conditionally complete if it has no
gaps, that is if any upper bounded subset is upper limited, that is has a least
upper bound. A conditionally complete lattice is called ∨-distributive, here,
if it satisfies:

s =
∧
ai (i ∈ I) =⇒ x ∨ s =

∧
(x ∨ ai) (i ∈ I) .(D∨)

Dually the notion of a conditionally complete ∧-distributive lattice and the
axiom (D

∧
), respectively, are defined.

Furthermore a conditionally complete lattice is called infinitely distributive if
for existing limits the following two equations are satisfied:∧

C

[∨
Aγ
aγ,α

]
=

∨
Φ

[∧
C
aγ,ϕ(γ)

]
(DV1)

∨
C

[ ∧
Aγ
aγ,α

]
=

∧
Φ

[∨
C
aγ,ϕ(γ)

]
,(DV2)

where γ runs through the set C and Φ runs through the set of all mappings
ϕ of C into the union of all Aγ with ϕ(γ) ∈ Aγ .

Obviously any conditionally complete chain is infinitely distributive, and
thereby also ∨- and ∧-distributive.

Recall, opposite to the finite case (D∨) and (D∧) are independent. Consider
f.i. the system of all closed subsets of the Euclidean space and define as

∨
A

105
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the hull of A . Here the set C of all points (x|y) satisfying x2 + y2 = 1, w. r. t.
the sets Ck of type x2 + y2 ≤ 1 − k−2 (k ∈ N) – in the lattice of all closed
subsets of the plane – provides the inequality C∩

∨
Ck = C ̸= ∅ =

∨
(C∩Ck).

7. 1. 2 Definition. A d-semigroup S is called conditionally complete if its
lattice is conditionally complete.

A d-semigroup is called complete, if its lattice is conditionally complete and
if moreover it holds:

s =
∧
ai (i ∈ I) =⇒ xsy =

∧
xaiy (i ∈ I) .(DW)

Instead of complete we also will say
∧

-complete, and we dually define axiom
(DV) and the notion

∨
-complete.

Let S be conditionally complete and assume that moreover the equations
(DW) and (DV) are valid. Then S is called continuous, here. By analogy we
define inf-continuous and sup-continuous.

As a first result we get – compare 2.8.6 –

7. 1. 3 Proposition. Let B be a brick with complete lattice (B,≤). Then
B considered as d-semigroup is even continuous.

Furthermore we get:

7. 1. 4 Proposition. A d-semigroup S is (already) conditionally complete
if its cone is conditionally complete.

PROOF. We show that lower bounded families (ai) (i ∈ I) are inf-bounded.
To this end let s be a lower bound of (ai) (i ∈ I) and let e be a positive unit
of s. Then we get in S and S1, respectively:

(i)
(∧

(e ∨ ai)
)
e =

∧
(e ∨ ai) =: d

and (ii) ai
′ := e(1 ∧ ai)−1 ≤ e(1 ∧ s)−1 =: s ′ .

Observe: (i) results by into-multiplying e and (ii) results since e commutes
with 1∧s and e and 1∧ai and because all elements of type u(1∧v)−1 (u ∈ S)
belong to S . Furthermore we may assume that in (ii) all elements ai

′ are
positive, and thereby that also the element s ′ is positive.
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We put a ′ :=
∨
a′i . Then a ′ is a left divisor of e . Furthermore, if f is a

positive unit of e, it follows s ′(1 ∧ s)f = e(1 ∧ s)−1(1 ∧ s)f = ef = e, and it
holds e2 = e(1 ∧ s)(1 ∧ s)−1e = (e ∧ s)s ′ with s ′ ≥ a ′ , that is e2 = ta ′ .

Consequently we may suppose that e = a ′y with y ≥ 1 ∧ s and e2 = ta ′ .

We will show, that

g := dy = de2y = dta ′y

satisfies the conditions of inf(ai). To this end observe that

s = (1 ∨ s)(1 ∧ s) ≤ dy = g

is satisfied, and that furthermore any fixed aj (j ∈ I) satisfies

a ′y = e ≤ e2

= e(1 ∧ aj)−1 · (1 ∧ aj)e
≤ a ′ · (e ∧ aj)

Hence it results next: g = dta ′y
≤ dta ′(e ∧ ai)
= d(e ∧ ai)
≤ (e ∨ ai) · (e ∧ ai)
= ai (∀i ∈ I) .

Recall now, that d, a ′, and t are exclusively determined by the unit e and the
family (ai) (i ∈ I). This means that u ≤ ai (i ∈ I) implies u∨s ≤ ai (i ∈ I)
and e(u ∨ s) = u ∨ s = (u ∨ s)e. Hence, starting from u ∨ s instead from s

we get the same dy and thereby u ∨ s ≤ g . But this means u ≤ g , that is
g = inf(ai) (i ∈ I) . 2

By 7.1.4 the natural question arises how far the distributivity laws above are
carried over to “the whole ”. Here we obtain

7. 1. 5 Proposition. If S is conditionally complete, then each of the D-laws
above is carried over from the cone to the “whole ”.

PROOF. We prove by example, studying the case of completeness. First
it holds: If s =

∧
ai (i ∈ I) then it results s =

∧
(ai) in S1 , since together

with x also all αx belong to S. Moreover for all invertible elements α and
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all i ∈ I we get y ≤ αai ⇐⇒ α−1y ≤ ai, that is α
∧
ai =

∧
αai. But putting

α := (1 ∧ x ∧ s)−1 this implies:

x
∧
ai = α−1(αx

∧
ai)αα

−1 (i ∈ I)

= α−1(
∧
αxaiα)α−1

=
∧

(α−1αxaiαα
−1)

=
∧
xai (i ∈ I) ,

recall aiα ∈ S+ and αx ∈ S+ . So, we are finished w. r. t. (DW) by right/left
duality.

In the same manner we succeed in the remaining cases. 2

7.2 Continuous d-Semigroups

The main structure of this section will be that of a continuous d-semigroup.

7. 2. 1 Definition. By an inf-continuous d-semigroup we mean a condition-
ally complete d-semigroup, satisfying (D1∧),..., (D4∧), and accordingly by a
sup-continuous d-semigroup we mean a conditionally complete d-semigroup,
satisfying (D1∨),..., (D4∨).

A d-semigroup is called continuous if it is both, inf- and sup-continuous.

The main theorem of this section tells:

Continuous d-Semigroups are commutative.

7. 2. 2 Definition. A d-semigroup is called archimedean, if it satisfies:

an ≤ b (∀n ∈ N) =⇒ ab , ba ≤ b .(A)

7. 2. 3 Proposition. A d-semigroup is (already) archimedean, if the impli-
cation holds:

a+
n ≤ b+ (∀n ∈ N) =⇒ a+b+ = b+ = b+a+ .(A+)
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PROOF. Obviously (A) implies (A+) and if (A+) is satisfied in case of
ea = a = ae it results in a first step eb = b = be, that is by 2.2.4 even
an ≤ b =⇒ en · an ≤ en ∨ b = e ∨ b and thereby

an ≤ b (∀n ∈ N) =⇒ (e ∨ a)n ≤ e ∨ b (∀n ∈ N)
=⇒ (e ∨ a)(e ∨ b) = e ∨ b
=⇒ (e ∨ a)b = (e ∨ b)(e ∧ b) = b
=⇒ ab ≤ b (& ba ≤ b) . 2

7.2.3 entails next:

7. 2. 4 Proposition. If S is archimedean then also the identity extension
and the quotient extension of S are archimedean.

PROOF. As to the identity extension we have to refer (in advance) to 8.3.
2, but with respect to the quotient hull the equation: (a · b−1)n ≤ c =⇒ an ≤
c · bn =⇒ an ≤ c . 2

Next two crucial results:

7. 2. 5 Proposition. Complete – recall, that is
∧

-complete – d-semigroups
are archimedean.

PROOF. Let an ≤ b (∀n ∈ N) be satisfied, where a, b are positive, and
suppose ancn = b (n ∈ N) . Then in a first step we replace cn by c0∧. . .∧cn =:
dn and afterwards in a second step we replace this dn by a ∨ dn =: an. In
particular thus we get c0 = b and a0 = b, and it results furthermore that the
chosen elements satisfy an+1 ≤ an. Consequently we may start from

an = an+1 · xn+1

and thereby from a · b = a · an · an
= an+1 · an+1 · xn+1

= b · xn+1 .

Putting x :=
∧
xn (n ∈ N)

we get next a · b = b · x .

Now we choose elements vn satisfying

xn+1 = vn+1 · x ,
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in order to show b · x = b .

To this end we define b0 := a1 · v1 · x
= a1 · x1 = a0 · 1 = b

b1 := a1 · v1

and assume that a chain b0 ≥ b1 ≥ . . . ≥ bn

is constructed, satisfying bi = ai · zi ( 0 ≤ i ≤ n )

bi = bi+1 · x ( 0 ≤ i ≤ n− 1 ) .

Then we get: an = an+1 · xn+1

;

bn = an+1 · vn+1 · x · zn
= (an+1 · vn+1 · zn ′) · x .

Put now vn+1 · zn ′ =: zn+1 and define bn+1 := an+1 · zn+1 . Then it results

bn+1 ≤ bn

bn+1 = an+1 · zn+1

&
bn = bn+1 · x .

But by (
∧

n∈N
bn) · x =

∧
(bn · x)

=
∧
bn−1 =

∧
bn ≤ b

this leads to a · b = b · x = b .

Hence by duality it results:

a · b = b = b · a

which completes the general proof. 2

7. 2. 6 Proposition.
∨

-complete d-semigroups are archimedean.

PROOF. Let an ≤ b (∀n ∈ N) be satisfied. Then it holds
∨
an ≤ b and

a
∨
an =

∨
an, which means ab ≤ b , and by duality we get ba ≤ b. 2

The proof of 7.2.6 is trivial. This leads to the conjecture that even weaker
conditions than

∨
-completeness imply the archimedean property. In fact –

this is true.
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7. 2. 7 Proposition. Let S be a conditionally complete d-semigroup S with
maximal right and maximal left units for all a ∈ S. Then S is archimedean.

PROOF. Let u be a maximal and thereby the maximal right unit and let
v be the maximal left unit of b. Then u and v are positive and thereby
idempotent, that is in particular central elements. So they are equal.

Let now w. l. o. g. S be positive and suppose that an ≤ c (∀n ∈ N) is valid
and that u is the maximal unit of c. Then it holds also (au)n ≤ c (∀n ∈ N),
whence we may start from a = au .

Furthermore for each pair x ̸= y with xu = x & yu = y and thereby also with
(x ∧ y)u = x ∧ y it holds the conditional cancellation law sx = sy ≤ c =⇒
x = y. Recall that in case of R(x, y, x ′, y ′) it results sx = s(x∧y) = sy , that
is s(x∧ y)x ′ = s(x∧ y), whence by assumption x ′ and thereby y ′ as well are
right units of c below u, that is satisfying ux′ = u = uy′. Consequently we
obtain x = (x ∧ y)x ′ = (x ∧ y)ux ′ = (x ∧ y)uy′ = (x ∧ y)y′ = y.

Let now b be the LUB of (au)n and suppose (au)n ·xn = b (n ∈ N). Then by
conditional cancellation we get xn = (au) · xn+1 , which means x1 ≥

∨
(au)n,

that is x1 ≥ b and thereby b = (au)x1 ≥ (au)b ≥ ub ≥ b ≤ c , that is
au · c = c; ac = c .

The rest follows by right/left duality. 2

It is nearly immediately seen, that 7.2.6 results from 7.2.7.

As a special case w.r.t. the preceding proposition we present:

7. 2. 8 Lemma. Let S be totally ordered, dense and conditionally complete.
Then S is

∨
-complete. In particular in this case any a ∈ S has a maximal

left unit l and a maximal right unit r.

PROOF. We consider the positive case and suppose
∨

(abi) < a ·
∨
bi. Then

by density there exists some c strictly between
∨

(abi) and a ·
∨
bi, satisfying

c = au. But then u is an upper bound of {bi}, whence it results c =
∨
bi, a

contradiction.

The rest follows by duality. 2

The requirement of density is necessary. For adjoin the elements p ̸= p2

to the set N0 and define n ≤ p, p2, np = p = pn, np2 = pp = p2 = p2n.
Thus an archimedean, commutative and complete totally ordered d-monoid
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is generated in which there doesn’t exist a maximal (right) unit of p. And
moreover the example under consideration is not

∨
-complete.

By the way, linear conditionally complete d-semigroups need not be
∧

-com-
plete, as will be shown under 9.4.4. However, contrary, dense linear condi-
tionally complete d-semigroups are

∧
-complete – which is shown by analogy

to the proof of 7.2.8.

AND OBSERVE associativity is not required, neither here nor under 7.2.8
HOWEVER:

7. 2. 9 Proposition. Any conditionally complete linear d-semigroup S is
archimedean.

PROOF. Let 1 ≤ a ≤ S :=
∨

n∈N
an ≤ b. Then there exists some s ≤ S with

as = S.

In case of s = S we are through. Otherwise we conclude s < S ≤ b and
ak ≤ s < ak+1 ≤ S ≤ b (∃ k ∈ N) , leading to

aSa = a · as · a ≤ a · ak+1 · a ≤ S =⇒ a · S = S = S · a =⇒ ab = b = ba . 2

Completeness and the archimedean property have in common that in case of
an | b (∀n ∈ N) they guarantee a smallest u among all elements x satisfying
ba = bx, that is the existence of b ∗ ba =: u and dually of ab : b =: v. Starting
from this property we get:

7. 2. 10 Proposition. A conditionally complete d-semigroup satisfying
that an | b (∀n ∈ N) implies the existence of b ∗ ba =: u and ab : b =: v is
archimedean if in addition right units are left units and vice versa.

PROOF. Let an | b (∀n ∈ N) and u = b∗ba, that is in particular un∗un·u = u.
Then we get u · c =

∨
un =⇒

∨
un | c =⇒

∨
un = c =⇒ u · c = c =⇒ u · b =

b = b · u , that is ab = b = ba . 2

OBSERVE: In the commutative case the preceding proof offers a valuable
abbreviation of the proof under 7.2.5.

We now turn to the commutativity proof for complete d-semigroups. It will be
based on special congruences. In particular decompositions by idempotents
and decompositions of positive d-semigroups by some ad , will turn out to be
crucial.
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First of all we get nearly immediately:

7. 2. 11 Lemma. Let S be a conditionally complete d-semigroup, and let
u = u2. Then S · u is conditionally complete, too, even more, then inf(ai · u)
and sup(ai · u) in S and S · u coincide.

So, if moreover S is
∧

- or
∨

-complete then any homomorphism S −→ S ·u
maps LUBs to LUBs and GLBs to GLBs.

Hence in particular a continuous S has a continuous image S · u .

7. 2. 12 Proposition. Any continuous d-semigroup has a limit respecting
decomposition into continuous d-monoids.

PROOF. Suppose that a ̸= b and that u is the maximum of all units of
a ∧ b. Then u = u2 is the identity of S · u and S · u separates the elements
a = au, b = bu . 2

Now we consider special situations.

7. 2. 13 Proposition. Let S be a sup-continuous d-semigroup. Then any
pair x, y of incomparable elements produces at least one pair of x, y separating
homomorphic images S,S with

x ≤ y & y ≤ x and y ′ ̸= 1 & x ′ ̸= 1 .

PROOF. We shall show that idempotent elements u, v do exist such that
S · u,S · v separate x, y .

So, let x, y be incomparable with R(x, y, x ′ ≥ 1, y ′ ≥ 1) . Then the set U of
all positive ui (i ∈ I) satisfying (x ∧ y)(x ′ ∧ ui) = x ∧ y is not empty, since
y ′ belongs to U . We put

∨
ui (i ∈ I) =: u . Then it follows

(x ∧ y)(x ′ ∧ u) = (x ∧ y)
∨

(x ′ ∧ ui)
=

∨
((x ∧ y)(x ′ ∧ ui))

= x ∧ y ,
that is u ∈ U .

But, it holds x ′∧u2 ≤ (x ′∧u)2. Hence, u2 belongs to U as well. This entails
u2 = u ≥ ui (i ∈ I) .

Now we consider the set V of all positive vi (i ∈ I) satisfying the identity
(x∧y)(vi∧u) = x∧y. Then by analogy V contains an idempotent maximum
v, say, and it follows by construction

x ′ ≤ v & y ′ ≤ u ,
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that is xv = (x ∧ y)x ′v
= xv ∧ yv

; xv ≤ yv

and dually xu ≥ yu .

Suppose now xu = yu and xv = yv ,

and thereby (x ∧ y)(u ∧ v) = x ∧ y .

Then it results: x = x(u ∧ v) = xu ∧ xv
= yu ∧ yv = y(u ∧ v) = y ,

a contradiction! So – putting S · v =: S and S · u =: S – the first part is
proven.

But it holds x ′ ̸≤ u and y ′ ̸≤ v, since for instance x ′ ≤ u leads to x ′ ≤ u∧ v
and thereby to x = (x ∧ y)x ′ ≤ (x ∧ y)(u ∧ v) = x ∧ y , that is to x ≤ y ,
again a contradiction! Thus, by left/right duality we are through. 2

In the remainder of this section we will denote the homomorphic image of S
w. r. t. the principal ideal ad by Sa .

7. 2. 14 Lemma. Let S be a conditionally complete positive d-semigroup.
Then each Sa is conditionally complete, too. Let now ϕa be the corresponding
homomorphism. Then ϕa in any case maps GLBs onto GLBs, and if S

satisfies in addition (D∧), then it maps in addition LUBs onto LUBs.

Now we are in the position to prove:

7. 2. 15 Proposition. Any continuous d-semigroup is commutative.

PROOF. We show step by step:

(i) If there exists a non commutative continuous d-semigroup, then
there exists even a positive non commutative continuous d-monoid
with zero element 0, satisfying for at least one pair p, q

1 < p < q < pq < qp = 0

and having in addition 1 as maximal unit epq of pq .
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(ii) If there exists a non commutative continuous d-semigroup, then
there exists even a model satisfying the conditions of (i) and in
addition for at least one pair a, b :

1 < s := ab ∗ ba ≤ a < b < ab < ba = 0 and eab = 1

and for at least one element x and suitable natural numbers k, ℓ, m :

(1) xk ≤ s ≤ xk+1

(2) xℓ ≤ a ≤ xℓ+1

(3) xm ≤ b ≤ xm+1 .

(iii) The pair s, x of (ii) satisfies s < x2 .

(iv) The pair s, x of (ii) may be assumed in addition to satisfy x2 ≤ s .

Thus according to (iii) and (iv) a contradiction is constructed.

A Remark: In what follows at many places we will consider endomor-
phisms of type a 7−→ a · e with idempotent e . So, the reader should recall,
that these endomorphisms provide continuous archimedean images and that
they are moreover – according to 5.2.9 – also ∗ , : - homomorphisms.

Furthermore we mention that in archimedean d-monoids the elements a, b,
ab, ba are even pairwise different, if only the elements ab and ba are different.

Clearly ab ̸= ba =⇒ a ̸= b , but a = ab is impossible, too, in case of ab ̸= ba ,
since the archimedean property would imply ab = bab = ba , whence by
duality we are through.

Now we start proving (i) through (iv).

Ad (i). First of all according to 2.4.2 and according to our remark above
there exists a positive model with at least one 1 < p < q and pq ̸= qp. This
provides – again by our remark above and by 7.2.13 – a starting model T
with

1 < p < q < pq < qp or 1 < p < q < qp < pq .

Suppose now qp < pq . Then we turn to the left/right dual model by x ◦ y :=
yx. Thus – in any case – we get a model T1, satisfying the first part of the
assertion.

Now we form (T1)pq . This way, by continuity and by 7.2.14 we are led from
T1 to a homomorphic model T , satisfying in addition pq = 0 .
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Furthermore by sup-continuity pq has a maximum unit in T, say e. in T This
entails pq · e ̸= qp · e . Hence T · e is a model according to (i) .

Ad (ii). Next we consider a d-monoid T , constructed along the lines of (i)
and replace x generously by x . Moreover we start from some y satisfying
1 < y ≤ s . Then, if yk ≤ s ≤ yk+1 (∃k ∈ N), y in the role of x satisfies
condition (1).

Otherwise, by the archimedean property and condition epq = 1 there must
exist some k with:

yk ≤ s and s ̸≤ yk+1 & yk+1 ̸≤ s ,

whence by 7.2.13 we are led to a homomorphic image with yk ≤ s ≤ yk+1 .
But the homomorphism under consideration is a ∗-homomorphism, too, sat-
isfying s ∗ yk+1 ̸= 1, recall 7.2.13. Hence the elements pq and qp remain
separated, because 1 ̸= s ∗ yk+1 ≤ yk ∗ yk+1 ≤ y ≤ s . Consequently we get
moreover:

1 < yk ≤ s = pq ∗ qp ≤ yk+1 & s ≤ p < q < pq < qp = 0 .

If in addition yk+1 ≥ p is satisfied, we are through w. r. t. p . Otherwise there
exists some ℓ , satisfying yℓ ≤ p and yℓ+1 ̸≤ p & p ̸≤ yℓ+1 . Consequently we
are in the position to continue the procedure until next p is “captured” and
finally also q and pq are “captured”.

Ad (iii). Let now S be the model, constructed below (ii).

We show, as announced, that in this model s < x2 must be satisfied, which
results as follows:

If a or b is a power of x, then for some suitable n it holds

xn ≤ ab ≤ xn+1 & xn ≤ ba ≤ xn+1 ,

that is s = ab ∗ ba ≤ x . Because x = x2 =⇒ xn = xn+1 =⇒ ab = ba this
entails x < x2 and thereby s < x2 .

Otherwise we obtain b = xm(xm ∗ b)

with x ≥ xm ∗ xm+1 ≥ xm ∗ b
and x2 = (xm ∗ b)((xm ∗ b) ∗ x2) .
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But putting y := (xm ∗ b) ∗ x2 ≤ x2 this implies:

aby = axm(xm ∗ b)((xm ∗ b) ∗ x2)
= axmx2

≥ xℓxmx2

= xm+1xℓ+1

≥ ba

and thereby: s = ab ∗ ba ≤ y ≤ x2 .

Suppose now s = x2 . Then by x ≤ a < b it follows first ab ≥ x2 which in
case of y = x2 leads to the contradiction:

(xm ∗ b)x2 = (xm ∗ b)y = x2

; (xm ∗ b)ab = ab
; xm ∗ b = 1
; xm ≥ b
; xm = b .

So, in any case it must hold s < x2 .

Ad (iv). Finally, let again S be the model of (ii) . We show that in this
model x2 ≤ s is possible. To this end it suffices, of course, to construct,
starting from S , a model, satisfying for some element z the ≤, <-relation
1 < z2 ≤ s := ab ∗ ba , since in this case we could choose exactly this element
z in the role of x . But in S we have ab ̸= ba. Hence a and b cannot together
be powers of x . Hence it must hold

1 < xℓ ∗ a < x or 1 < xm ∗ b < x .(7.7)

For 1 = xℓ ∗ a implies xℓ ≥ a, that is a = xℓ, and xℓ ∗ a = x would imply
a = xℓ+1 . This proves (7.7), by symmetry.

Thus in any case there exists some z with 1 < z < x ≤ s , say for instance
w. l. o. g. z = xℓ ∗ a . Provided, now, it holds z2 ≤ s , then we are through.

Otherwise we consider r := z ∧ z ∗ x. It holds r2 ≤ x and in case of r ̸= 1 ,
we are through again.

In the remaining case it holds r = 1, that is the elements z and z ∗ x are
coprime, whence also the elements z2 and z ∗ x are coprime. But this means,
recall 1 < z ∗ x ≤ s,

z2 ̸≤ s & s ̸≤ z2 .
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Now we decompose S in the sense of 7.2.13 w. r. t. the elements z2 , s.

Here we may assume z2 ≤ s and s ̸= 1 , by z2 ∗ s ̸= 1 . Therefore by our
remark it results 1 < s = ab ∗ ba ≤ a < b < ab < ba. So, we may stop if
z ̸= 1 .

Otherwise it holds z = xℓ ∗ a = 1 , that is a = xℓ , and a · b ̸= b · a . So, there
exists a model with

1 = xℓ ∗ a < x and 1 < xm ∗ b < x .

But this means, that repeating the procedure by starting from z = xm ∗ b
leads to a model of the desired type. 2



Chapter 8

Archimedean d-semigroups

8.1 Commutativity

In this chapter it is shown, that any archimedean d-semigroup is commuta-
tive. This will be done by leading back the general situation to the special
situation of the preceding chapter. Moreover, according to 2.4.2, we may
restrict our attention to positive d-semigroups and thereby to positive d-
monoids. So, let in this section S := (S, ·,∧) be always a d-monoid.

8. 1. 1 Definition. Let 0 be an arbitrary element of S . Then by E(0) we
mean the set of all right units of 0.

Obviously E(0) is always a c-ideal, however, not necessarily invariant, that
is of type E(0) · S0 = S0 · E(0) w. r. t. S0 := {x | x ≤ 0} .

In the positive case the d-ideal congruence a ≡ b (0) is equivalent to 0 ∧ a =
0 ∧ b . Hence a ◦ b := 0 ∧ ab defines a d-semigroup on S0 .

8. 1. 2 Proposition. Let 0 belong to S, suppose that any right unit of 0 and
also any left unit of 0 is even a unit of 0 1). Finally let E(0) be an ideal of
S0. Then S0 := S0/E(0) is a brick.

PROOF. We prove first, that S0 is complementary, that is we show that
there is always a smallest x satisfying (a ∧ b) ◦ x = b, denoted by a ∗ b, and
dually a smallest z satisfying z ◦ (a ∧ b) = b, denoted by b : a. To this end

1)This is, of course, the case, if S is archimedean.

119
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suppose (a ∧ b)x = b ≤ 0 and a ◦ y ≥ b. Then it results:

(a ∧ b)x ≤ 0 ∧ (a ∧ b)ye ( e ∈ E(0) )

=⇒ (a ∧ b)x = (a ∧ b)(ye ∧ x)x ′ ( (ye ∧ x)x ′ = x )

=⇒ b = bx ′

=⇒ 0 = 0x ′

=⇒ x ′ ∈ E(0)

=⇒ x ≤ y .

Hence under the above assumptions x is the right complement of a in b . So
by duality S is complementary.

Moreover we got a · u = a =⇒ u = 1, that is in general

a · x = a · y ̸= 0 =⇒ a(x ∧ y) = a(x ∧ y) · x ′ =⇒ x ′ = 1 =⇒ x ≤ y .

and thereby

a · x = a · y ̸= 0 =⇒ x = y .(8.1)

And this entails

a : (b ∗ a) = (b : a) ∗ b(8.2)

since by the 0-cancellation property it results

(a ∧ b) · (b ∗ a) = a =⇒ a : (b ∗ a) = a ∧ b ,(8.3)

and thereby in general (8.2) . 2

8. 1. 3 Lemma. Let S be archimedean, then E(0) is invariant in S0.

PROOF. Let 0 belong to S and assume 0e = 0. Then, according to the
archimedean property of S , for all x ≤ 0 we get both, ex ≤ 0 and xe ≤ 0.
But in case of xe = fx ≤ 0 this implies – for some suitable y ∈ S –

0 = yxe = yfx = yfxe = yf 2x = yfnx =⇒ f ∈ E(0) .

This completes the proof by duality. 2

8. 1. 4 Lemma. Let S be archimedean. Then any S0 is integrally closed.
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PROOF. Suppose a ≤ 0 and 1 ̸= t ∈ S0, in particular suppose that tn ≤
0 (∀n ∈ N) is not valid. Then there is a highest exponent m ∈ N, satisfying
tm ≤ 0 in S, meaning that in S0 there exists a highest n ∈ N, satisfying
tn ≤ ae (∃ e ∈ E(0)), say with tn · x = ae. So t ̸≤ x since otherwise in S we
would get t ≤ xf (f ∈ E(0)) and thereby tn+1 ≤ aef . Hence by tn ∗ a ≤ x
we get also t ̸≤ tn ∗ a . Thus the proof is complete by duality. 2

8. 1. 5 Lemma. An archimedean S is commutative iff any S0 (0 ∈ S) is
commutative.

PROOF. According to 2.4.2 we may start from some a ≤ b. If then in S ax
equals b and in Sba a ◦ x equals x ◦ a , then ax ≤ ba ≥ xa with 0 := ba leads
to:

a ◦ x = x ◦ a =⇒ ax ≡ xa (E(0))

=⇒ axe 5.2.3= xaf (e, f ∈ E(0))
=⇒ aaxe = axaf

=⇒ abe = ba = 0
=⇒ ab ≤ ba .

Now replace ab by ba and operate ”from the left. Then we obtain next
ba ≤ ab, which leads finally to ab = ba . 2

Sofar it seems likely that commutativity depends on commutativity of com-
pletely integrally closed bricks. Moreover, according to theorem 7.2.15 any
continuous d-semigroup is commutative. This means that we are through,
once we can show that any completely integrally closed brick admits an em-
bedding into some complete brick, since complete bricks are continuous, recall
2.8.6.

The proof under consideration will be given in two steps. In a first step we
shall verify that the v-ideal structure V of a completely integrally closed brick
satisfies

a ⊇ b =⇒ a ◦ x = b = y ◦ a (∃ : x , y)(M)

whence this ideal semigroup, say A, is complementary. Then, in a second
step we shall show, that A is even a brick. To this end we start with:

8. 1. 6 Proposition. Let B be an integrally closed brick, and let V be its
v-ideal structure. Then V satisfies condition

a ⊇ b =⇒ a
∣∣∣∣
ℓ
b & a

∣∣∣∣ r b .(M)
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PROOF. Let a contain b . We have to show a ◦ (a ∗ b) = b = (b : a) ◦ a .

Let first b be a principal ideal b . We may suppose that all elements a ∈ A
divide b, choose A = {a ∧ b | a ∈ A} .

We put a ∗ b =: c =: Cv. Then it holds a ◦ c ⊆ b. Suppose now, that there
exists some a ◦ c ̸= b, then there exists some t satisfying

t ≤ AC & t ̸≤ b ,

and thereby also b < t ∨ b =: d .

But this would entail

AC ≥ d ; a ∗ d ≤ c (∀ : a ∈ A, c ∈ C) ,

whence we would get:

1 ̸= b ∗ d ≤ a ∗ d ≤ c (∀a ∈ A) .

But from b ∗ a = 1 and a ∗ b ≤ a ∗ d ≤ c (∀a ∈ A) it results:

a ∗ b = (a ∗ d) : ((a ∗ b) ∗ (a ∗ d))
= (a ∗ d) : ((b ∗ a) ∗ (b ∗ d))
= (a ∗ d) : (b ∗ d)
≤ c : (b ∗ d) (∀ c ∈ C).

So, for any a ∈ A we would get a(c : (b ∗ d)) ≥ a(a ∗ b) ≥ b & c ∈ C and
thereby c : (b ∗ d) ∈ c, whence a(c : (b ∗ d)) ≥ d (∀a ∈ A) would be satisfied.

So we could continue the procedure up to b ∗ d ≤ c : (b ∗ d)n , a contradiction
w. r. t. the fact, that B was presumed to be completely integrally closed.
Hence it results b ∗ d = 1 and thereby d ≤ AC =⇒ d ≤ b , that is a ◦ c = b .

Let b now be arbitrary. Then x = Xv with X :=
∪

(a ∗ b) (b ∈ b) entails
a ◦ x = b, that is a |

ℓ
b . This completes the proof by ∗, : −duality. 2

8. 1. 7 Proposition. Let B be a completely integrally closed brick. Then V

satisfies:

a : (b ∗ a) = (b : a) ∗ b .(Q)
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PROOF. It holds a : (b ∗ a) ⊇ a , b and thereby (a : (b ∗ a)) ∗ a ⊆ b ∗ a .
Hence we obtain:

(a : (b ∗ a)) ∗ a = b ∗ a ,
(a + b) ∗ a = b ∗ a
a : (b ∗ a) ⊇ a + b .

Now we show x ⊇ y ⊇ z & x ∗ z = y ∗ z
=⇒

x = y .

First, by 8.1.6 the premise implies:

x ∗ o = (x ∗ z) ◦ (z ∗ o)
= (y ∗ z) ◦ (z ∗ o)
= (y ∗ o) =: w .

Suppose now x ⊃ y. Then there exists an s ∈ B with s ̸≤ X but s ≤ Y , and
thereby also an element t ∈ B with

1 ̸= t & t ≤ x ∗ s ⊇ x ∗ y ⊇ x ∗ o .

This relation then would yield for the v-ideal x ∗ o = w :

y ◦ (t ∗w) = x ◦ (x ∗ y) ◦ (t ∗w)
⊆ x ◦ t ◦ (t ∗w)
= x ◦w
= o .

Hence it would follow t ∗w ⊆ w and w ⊆ t ∗w ,

that is
t ∗w = w = tn ∗w (∀n ∈ N)

and thereby
1 ̸= t ≤ w = tn ∗w ⊇ tn ∗ o

;

1 ̸= t ≤ tn ∗ 0 (∀n ∈ N) ,

a contradiction. Thus we are led to

a + b = a : (b ∗ a) .
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This completes the proof by duality. 2

Summarizing we get:

8. 1. 8 Theorem. Any archimedean d-semigroup S is commutative.

PROOF. Apply 2.8.6, 7.2.15, 8.1.2 through 8.1.6 and 4.3.3. 2

8.2 Appendix

Below 8.1.6 it is shown that the v-ideals of any brick satisfy the condition
a ⊇ b =⇒ a | b . In fact this holds already on weaker assumptions.

8. 2. 1 Proposition. Let S be an archimedean complementary semigroup.
Then the v-ideals of S satisfy:

a ⊇ b =⇒ a |
ℓ
b & a |

r
b .(M)

PROOF. First of all we exhibit that in a complementary semigroup according
to s |At =⇒ s : t |A =⇒ (s : t)t |At the v-ideal , generated by A , is equal to
the set of all common multiples of all common divisors of A .

Next we show that in complementary semigroups any finitely generated v-
ideal satisfies condition (M).

To this end assume a = (ai)
v (1 ≤ i ≤ n) and b ∈ a. Then a ∗ b is equal to

(
∨

(ai ∗ b) (1 ≤ i ≤ n))v, and we get for c :=
∨

(ai ∗ b) (1 ≤ i ≤ n)

d |Ac =⇒ c | b ∨ d =: g |Ac =⇒ g : c |A .

This means g : c ≤ b, , say (g : c)y = b . and thereby Ay ≥ b, that is y ≥ c .
Hence we get further:

g = (g : c)c ≤ (g : c)y = b ,

that is b = g = b ∨ d; d | b .
Next we show that together with S also the d-monoid of finitely generated
v-ideals is archimedean.
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To this end we start like above from a and b . If here for all n ∈ N it holds
an ⊇ b , then it follows :

t ≤ ab =⇒ t ≤ aib (1 ≤ i ≤ n)

=⇒ t : b ≤ ai

=⇒ (t : b)n ≤ b (∀n ∈ N)

=⇒ t = (t : b)((t : b) ∗ t)
≤ (t : b)b = b .

Thus, in particular any archimedean complementary semigroup is commuta-
tive.

Now we are in the position to prove the principal assertion:

Here we start from ab ⊆ b and x := a ∗ b. Then in case of c ≤ AX it holds
d = b∨ c ≤ AX , whence it results b ∈ a∩ b ⊆ x for all a, x with a ∈ a, x ∈ x

b ∗ d ≤ x & b ∗ d ≤ a .

From this, however, we get for any a, x under consideration :

(b ∗ d)((b ∗ d) ∗ a)(b ∗ d)((b ∗ d) ∗ x)
≥ (b ∗ d)((b ∗ d) ∗ b)(b ∗ d)

=⇒ ((b ∗ d) ∗ a)(b ∗ d)((b ∗ d) ∗ x)
≥ ((b ∗ d) ∗ b)(b ∗ d)

=⇒ a((b ∗ d) ∗ x)
≥ b .

Consequently, together with any x also (b ∗ d)x belongs to x . This leads to
(b ∗ d)x = x and thereby in general to (b ∗ d)nx = x . But S is archimedean,
so it results b = (b ∗ d)b = b ∨ d, that is c ≤ b .

Thus we are through, since the assumption of b being some principal ideal b
is easily generalized, as seen above. 2

8. 2. 2 Corollary. Any archimedean complementary semigroup admits an
|-respecting embedding into some complete complementary semigroup, such
that any α of the extension is the GCD of some subset of S.

That not any d-semigroup satisfying the archimedean property or even the
archimedean property for v-ideals admits a complete extension, will turn out
in the later chapter on real d-semigroups.
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8.3 The Identity Extension

Let in this section S be always a d-semigroup without identity and S1 its
identity extension with carrier Σ. We denote the elements of S1 by lower
case Greek letters except for situations in which we wish to emphasize that
the elements under consideration belong to S . Since S is assumed not to
contain an identity, there can’t either exist some cancellative element. On
the other hand, embedding S into S1 means adjoining elements of type 1,
type 1 ∧ a, type (1 ∧ b)−1, or type (1 ∧ a)(1 ∧ b)−1 (with a, b ∈ S). Hence S
contains exactly the non cancellable elements, whereas Σ\S contains exactly
the cancellable elements of Σ, compare Chapter 3.

We start with:

8. 3. 1 Lemma. τ ≤ x ∈ S+ (∀ x ∈ S+) implies τ ≤ 1.

PROOF. Because x ≤ a ∈ S+ =⇒ 1 ∨ x ≤ a we may restrict our attention
to positive elements τ . We consider the cases:

(i) τ is of type (1 ∧ b)−1

(ii) τ is of type (1 ∧ a)(1 ∧ b)−1 .

Ad (i). Assume τ = (1 ∧ b)−1 and let e be a positive unit of b . Then by
assumption τ satisfies:

τ = (1 ∧ b)−1 ≤ e =⇒ 1 ≤ e ∧ b
=⇒ 1 ≤ b
=⇒ τ = 1 .

Ad (ii). If, however, it holds τ = (1∧ a)(1∧ b)−1, then there exists a positive
e ∈ S+ with e(a ∧ b) = a ∧ b = (a ∧ b)e and b = (e ∨ b)(e ∧ b). Furthermore
there exists a positive unit f with τ ≤ f , whence by τ ≥ 1 we get eτ = e and
thereby e ∧ a = e ∧ b . This entails:

1 ∨ b = e ∨ b
= e(e ∨ b)(1 ∧ a)(1 ∧ a)−1

= (e ∨ b)e(1 ∧ a)(1 ∧ a)−1

= (e ∨ b)(e ∧ a)(1 ∧ a)−1

= (e ∨ b)(e ∧ b)(1 ∧ a)−1

= b(1 ∧ a)−1 ,
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leading to: τ−1 = (1 ∧ b)(1 ∧ a)−1

= (1 ∧ a)−1 ∧ b(1 ∧ a)−1

= (1 ∧ a)−1 ∧ (1 ∨ b)
= ((1 ∧ a)−1 ∧ 1) ∨ ((1 ∧ a)−1 ∧ b)
= 1 ∨ ((1 ∧ a)−1 ∧ b)
≥ 1

;

τ = 1 .

This completes the proof 2

As a fundamental consequence we get:

8. 3. 2 Proposition. If S is archimedean, then S1 is archimedean, too.

PROOF. Suppose 1 ≤ τn ≤ a ∈ S (∀ n ∈ N) and let e be a positive unit of
a in S . Then it follows

1 ≤ τn ≤ a =⇒ 1 ≤ (τe)n ≤ aen = a

=⇒ τea = a
=⇒ τa = a .

If, however, it holds 1 ≤ τn ≤ α ∈ Σ\S (∀n ∈ N), then α is cancellable, and
according to the first part of the proof each x ∈ S+ satisfies:

1 ≤ τn ≤ αx =⇒ ταx = αx

=⇒ τx = x .

Thus we get τ = 1 meaning τα = α. 2

We now turn to the identity extension S1 in case that S is a complete
d-semigroup: By {B} we will mean the v-ideal, generated by B in S1 .
Observe, that the v-ideals, generated by B in S and S1 , respectively, may
be different. As a first result we get:

8. 3. 3 Lemma. The v-ideal, generated by S+ in S1+ , is equal to {1}v.

PROOF. We consider the cases τ ∈ S+ and τ ∈ τ ∈ S1+\S+

If τ = t ∈ S+ and σ|a · t (∀a ∈ S+), then from et = t (∃ e) it results
σ | et = 1 · t = 1 · τ .
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And if τ ∈ S1+\S+ with σ | a·τ (∀a ∈ S+) according to 8.3.1 we get στ−1 ≤ 1
and thereby σ | τ = 1 · τ .

Hence 1 is element of the v-ideal generated by S+ in S1 and consequently
{S+} = {1} . 2

Furthermore we get:

8. 3. 4 Proposition. Let S be a complete d-semigroup and let A and B be
two v-ideals of S1+ with A ⊇ B . Then it even holds A |B.

PROOF. We may restrict our attention to the case of B = {β} , and have
to discuss the cases β ∈ S and β ∈ Σ\S.

To begin with, we suppose β ∈ S+, that is β = b ∈ S , and assume that e is a
positive unit of b . Then A = {αi} with αi ≤ b implies αie ∈ S+ and e ≤ αie

for all i ∈ I, whence in S+ there exists inf{αie} , say a .

Next because a ≤ be = b it results a | b, say ax = b with x ∈ S+ . But this
leads to

{αi}{ex} = {b} .

OBSERVE: σ |αiex · τ with τ = t ∈ S+ implies

σ |αiex · t ⇐⇒ σf | αiex · t (af = a, i ∈ I)

⇐⇒ σf | (
∧

(αiex)) · t
⇐⇒ σ | (

∧
(αie)) · xt

⇐⇒ σ | axt

⇐⇒ σ | bt .

And τ ∈ Σ+\S+ in case of (σ ∧ τ)σ ′ = σ and (σ ∧ τ)τ ′ = τ implies:

σ |αiex · t ⇐⇒ σ ′ | αiex · τ ′ (af = a, i ∈ I)

⇐⇒ σ ′f | αiex

⇐⇒ σ ′f | (
∧

(αiex))

⇐⇒ σ ′ | (
∧

(αie))x · τ ′

⇐⇒ σ | ax · τ
⇐⇒ σ | b · τ .

Thus, in case of β ∈ S it is shown A | {β} .
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Suppose now β ∈ Σ+\S+ . Then for each x ∈ S+ there exists some Ax with
A ◦ Ax = {βx}. This leads to {AAx} = {βx} (x ∈ S+) , and hence – by
lemma 8.3.3 – to {AAx} = {β}{S+} = {β}{1} = {β} . 2

As a consequence of the preceding theorem we get that S+ admits a complete
extension with identity 1 . But it remained open, wether the existing infima
and suprema are carried over from S to the extension. Here we get first:

8. 3. 5 Lemma. Let a be inf(ai) (i ∈ I) in S+. Then {a} is infimum of the
principal ideals {ai} belonging to the v-ideal structure V+ of S1+.

Let a be sup(ai) (i ∈ I) in S+. Then {a} is supreme the of the principal
ideals {ai} in the principal ideal structure V+ of S1+.

PROOF. Assume A ⊆ S+, a =
∧

(ai) (ai ∈ A) in S+ and ae = a with
positive element e. If then X ⊇ {ai} (ai ∈ A) is satisfied, in case of X ∈ V+,
we get:

σ |Xτ =⇒ σe | aieτ =⇒ σe | aeτ =⇒ σ | aτ ; a ∈ X ; X | {a} .

Let now a = sup(ai) (ai ∈ A ⊆ S+) and {ai} ⊇ X be satisfied. Then, by
x ≥ ai ∈ S+ =⇒ x ∈ S+ it follows a ≤ x ∈ X and thereby {a} |X. 2

Finally we have to mention:

8. 3. 6 Proposition. Together with S also V+ is a continuous d-semigroup.

PROOF. We start from x ∈ S+ and xe = x (e ∈ S+) . Then it follows

A ◦
∩
Bi ⊇ x ◦ (A ◦

∩
Bi) ◦ e =

∩
x ◦ A ◦Bi ⊇ x ◦

∩
A ◦Bi (i ∈ I) .

Consequently, according to lemma 8.3.3, we get
∩

-continuity, and
∑

-contin-
uity is verified in a similar manner. 2

8. 3. 7 Lemma. If ρ is cancellable in S1, then {ρ} is cancellable in V+ ,
too.

PROOF. By assumption {ρ}A = {ρ}B implies:

σ |Aτ ⇐⇒ ρσ | ρAτ ⇐⇒ ρσ | ρBτ ⇐⇒ σ |Bτ ; A = B . 2

Now we are in the position to show:
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8. 3. 8 Proposition. Let S be a complete d-semigroup. Then S admits a
complete extension with identity.

Let S be inf - and sup - continuous then V is inf- and sup- continuous, as
well.

PROOF. This follows from the preceding results by 7.1.5. 2



Chapter 9

Linear d-monoids

In this chapter we are interested in archimedean linear d-semigroups, that is
totally ordered archimedean d-semigroups. Since the negative cone is com-
pletely determined by the positive cone, we may restrict ourselves to studying
positive archimedean d-semigroups. To this end we will start with an intro-
duction to complete chains.

Linear ordered semigroups play an important role in measure theory and its
applications, but our focus excludes applications and is that of d-smigroups
“living” in the real unit interval [ 0, 1 ]. The reader, interested in the large
field of linear ordered semigroups and their applications is referred to the con-
tribution [64] of Hofmann & Mislove. There he will find a most readable
introduction and survey, as well, including hints to the elements of Euclid,
[52], and the first paper on semigroups ever by Nils Henrik Abel, [1], and
Bourbaki’s contribution to the field in [37].

Moreover he will find a most valuable list of references, in particular concern-
ing topological aspects as one parameter semigroups.

9.1 Dense Chains

We rely on Karl Doerge, who relied on Felix Hausdorff, [60], [61].
Nowadays one has to study Egbert Harzheim, [59], a most readable and
valuable contribution to the theory of ordered sets.1)

1)But, of cause, each of them relies on Georg Cantor’s fundamental ideas and work.

131
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9. 1. 1 Definition. A partially ordered set (P,≤) =: P is called totally
ordered, or synonymously linearly ordered, or synonymously a chain iff for all
a, b, c ∈ P in P it holds:

(i) a ̸< a ,

(ii) a ≤ b & b ≤ c =⇒ a ≤ c ,

(iii) a ̸= b =⇒ a < b aut b < a .

Hence forth we will write A ≤ s if a ≤ s (∀a ∈ A).

9. 1. 2 Definition. Let C be a chain. We say that z it lies between a
and b iff a < z < b . Let moreover B ⊆ C. We say that B lies dense in C if
between any two different elements of C there lies at least one element of B.
In particular we call C dense (in itself), if C is dense in C.

For instance R and Q are dense in R .

9. 1. 3 Definition. Let C be a chain with B ⊆ C. Then m is called
maximum of A if m ∈ A and A ≤ m. Dually the notion minimum is defined.

The notions upper and lower bound are defined as usual, that is u is an upper
bound of A if A ≤ u and l is a lower bound of A if l ≤ A.

If S is the lowest upper bound, i.e. the minimum of all upper bounds, of A,
then s is called the supremum of A, denoted by sup(A), also by Ω(A) .

If L is the greatest lower bound, i.e. the maximum of all lower bounds, of A,
then L is called the infimum of A, denoted by inf(A) , also by ω(A)

9. 1. 4 Definition. Let C be as chain. We say that C is continuous if C is
dense and any upper bounded A ⊆ C has a supremum.

Obviously, in a continuous ordered set any lower bounded subset B has an
infimum.

9. 1. 5 Definition. Two chains A := (A,<A) and B : = (B,<B) are called
(order-)similar, if they are isomorphic w.r.t. their order.

9. 1. 6 Definition. Let C be a chain. By an open interval (a, b) we mean
the set { x | a < x < b }, and by a closed interval [ a, b ] we mean the set
{x | a ≤ x ≤ b } .
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Furthermore by the left open, right closed interval (a, b ] we mean the set
{x | a < x ≤ b }, etc. Finally, a chain is called right- respectively left-bordered,
if it has a left-, right endpoint, respectively, and, of course, if it has both, a
left and a right endpoint, it is called bordered.

Recall, the chain of rationals is countable (folk). Hence the rational intervals
[ 0, 1 ], (0, 1 ], [ 0, 1), (0, 1) are countable, too.

In fact it holds more

9. 1. 7 Proposition. Any countable, dense chain C is similar to one of the
above presented intervals.

PROOF. Obviously we are through, once it is shown that any unbordered
countable dense chain is similar to the ordered set of rationals Q := (Q,≤).

So let’s start with a countable unbordered chain C and Q, both considered
as sequences, say:

C = { a1 , a2 , a3 , . . . , an, . . . }(9.1)

Q = { b1 , b2 , b3 , . . . , bn, . . . } .(9.2)

We map:

a1 to b1, b2 to the first element of C − {a1} in a similar position w.r.t. a1
as b2 w.r.t. b1, next the first element of C − {a1, a2} to the first element of
Q− {b1, b2} in a similar position w.r.t. {b1, b2} etc.

Since C is assumed to be dense and unbordered, we finally arrive at a bijection,
since any element of Q and also any element of C is taken into account. 2

9. 1. 8 Definition. Let C be a chain. A pair (A|B) is called a cut of C if

(i) A ∪B = K

(ii) A ∩B = ∅
(iii) a < b for all a ∈ A, b ∈ B

More precisely a cut is called a jump if A has a last element and B has a first
element, and it is called a gap, if neither A has a last element nor B has a
first element. In addition we call (C | ∅) a right cut and (∅ |C) a left cut.

For instance π generates a jump in Z and a gap in Q.



134 CHAPTER 9. LINEAR D-MONOIDS

Moreover it is clear that any irrational number generates a uniquely deter-
mined gap in Q, denoted as cut number, and, vice versa, any rational number
defines gap in the set of all irrational numbers.

And, by the way, we see nearly immediately that any countable totally or-
dered set admits an isomorph bijection into Q – fill the jumps by pairwise
disjoint countable dense totally ordered sets.

9. 1. 9 Proposition. Let C be a continuous unbordered chain with a count-
able subset B, dense in C. Then C is similar to R := (R,≤).

PROOF. Generate an order isomorphism between Q and B. Then any
α /∈ B defines a cut in (B,≤) and thereby a uniquely defined cut number of
Q, and moreover this mapping is bijective 2

9. 1. 10 Corollary. Let C be a continuous unbordered chain with a countable
subset B, dense in C. Then C is similar to R := (R,≤).

9.2 Continuous Chains

The most classical example of a continuous chain is the real unit interval
E := [ 0, 1].

9. 2. 1 Definition. Let C be a chain and (an) a sequence of elements of C.
As usual in analysis we say that (an) converges to a, in symbols

(an) −→ a or alternately lim an = a ,

if (an) ends in any open interval I ∋ a, that is if a whole end aN , aN+1, aN+2...

belongs to I .

9. 2. 2 Definition. Let C be a chain. a ∈ C is a cluster point of B ⊆ C
if any open interval I ∋ a of a contains one element of B, different from a –
and thereby infinitely many elements of B.

9. 2. 3 Definition. Let C1,C2 be chains, not necessarily different and f a
function C1 7−→ C2. Then f is called continuous at xo ∈ C1 if

xn −→ x0 =⇒ f(xn) −→ f(x0) ,
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or equivalently if for any open interval C2 ⊇ U2 ∋ f(x0) there exists an open
interval C1 ⊇ U1 ∋ x0 with f(U1) ⊆ U2 .

Continuous chains have strong properties, w.r.t. R well known to any grad-
uate student. Never the less we include here some central and fundamental
results that apply to interval d-semigroups, which will be considered in the
next section.

9. 2. 4 Theorem. Let C be a dense chain2). Then the following are pairwise
equivalent:

(AS) The Axiom of Supremum: Any not empty upper bounded sub-
set of C has a supremum (C,≤), say is upper limited.

(HB) The Theorem of Heine Borel: Any family (ai, bi) (i ∈ I) of
open intervals that covers the closed interval [ a, b ] contains a finite
subfamily of open intervals (ai1, bi1), . . . , (ain, bin) , covering [ a, b ] .

(CD) The Theorem of Cantor: Any intersection empty family of
closed intervals [ ai, bi ] (ai ̸= bi , i ∈ I) contains at least two dis-
joint intervals.

(SM) The Maximum Theorem: Any continuous mapping of [ a, b ]
has a maximum.

(ZS) The Intermediate Value Theorem: Any continuous mapping
of [ a, b ] takes each value between f(a) and f(a).

(MT) The Mapping Theorem: Continuous functions map closed
intervals an closed intervals.

(BW) The Theorem of Bolzano-Weierstraß: Any bounded infinite
subset of C contains at least one cluster point.

PROOF.

(AS) ⇐⇒ (HB):

2)Observe, we do not assume that C has a countable subset, dense in C.
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(=⇒) We define

X := { x | [ a, x ] is (already) covered by a finite subfamily.

Then there exists at least one x properly between a and b , belonging to X,
choose some (ak, bk) ∋ a , and moreover it holds Ω(X) := Ω ≤ b . Choose
now some interval (aℓ, bℓ) ∋ Ω . Then in this interval (aℓ, bℓ) on the left of
Ω there lies at least one element x of X . Consequently Ω must be equal to
b, since otherwise also strictly right of Ω would lie a further element of X .
This proves (=⇒).

(⇐=) C is free of gaps A|B, since otherwise we could choose elements a′ <
a ∈ A and b′ > b ∈ B, such that the set of all (a′, ai) with ai ∈ A∩ [ a, b ] and
the set of all (bi, b

′) with bi ∈ [ a, b ] ∩ B would provide an open covering of
[ a, b ] which would not contain a finite subcover of [ a, b ], a contradiction.

Hence any upper bounded subset of C has a supremum.

(AS) ⇐⇒ (CD):

(=⇒) If there wouldn’t exist a pair

[ ai, bi ] ∩ [ aj, bj ] = ∅ ,

any ai would lie left of any bj . But this would mean

sup{ai} ≤ inf{bj} (i, j ∈ I)

and thereby a contradiction, since sup{ai} would belong to the intersection
of all considered intervals.

(⇐=) Assume now that B ⊆ C is upper bounded, however without a supre-
mum. Then the set of all intervals [ ai, bi ] with ai ∈ B, B < bi forms a family
F of intervals with an empty section (left to the reader). Hence there must
exist two disjoint intervals in F, a contradiction.

(AS) ⇐⇒ (SM):

(=⇒) Let f(a) or f(b) be the maximum of W := f [ a, b ] . Then there is
nothing to show.

Otherwise, consider the set X of all x ∈ [ a, b ] with the property that [ a, x ]
is bounded . This set is not empty since a belongs to X. Moreover it is
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upper bounded, for instance by b, with a supremum, say Ω ≤ b . Since f is
continuous, it results immediately Ω = b and thereby that f is upper bounded
on [ a, b ], whence W := f([ a, b ]) has a supremum, say G .

We consider the set U of all u ∈ [ a, b ] with Supf([ a, u ]) < Supf([ a, b ]) and
the upper limit S of U . We obtain S < b, since otherwise we could choose an
open interval I ⊆ [ a, b ] ∋ S, whose function values would lie properly below
G, a contradiction

Furthermore it must hold f(S) = G, since f(S) > G would lead to contra-
diction.

Consequently f(S) is maximum of W .

(⇐=) Assume that A|B is a gap. Then we are in the position to define a
continuous mapping f on C by

f(x) :=

 x if x ∈ A
a otherwise

with a fix a ∈ A. This function is continuous but does not take a maximum
value. Thus (⇐=) is proven.

(AS) ⇐⇒ (IV):

(=⇒) Suppose f(a) < z < f(b). We define X := { x | f([ a, x ]) < z } and
consider the supremum Ω(X) =: Ω. Then f(Ω) = z, since by construction
and continuity f(Ω) < z and f(Ω) > z, as well, lead to a contradiction.

(⇐= Let A|B a gap. Then we are in the position for define a continuous
mapping f by

f(x) :=

 a if x ∈ A
b otherwise

with constant a ∈ A and b ∈ B, that obviously (IV) dos not fulfil.

(AS) ⇐⇒ (MT).

This is an immediate consequence of the two preceding equivalences, observe
that the existence of a minimum results by duality.

(AS) ⇐⇒ (BW).

(=⇒) Let B be an infinite bounded subset of [ a, b ]. Then infinitely many
elements of B are greater than a. Hence the set X of all elements x, satisfying

Infinitely many elements of B are greater than x
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has a supremum.

Define Ω := Sup (X). Then Ω is a cluster point of B. For choose some
neighbourhood (u, v) of Ω. Then right of v there are only finitely many,
but right of u there are infinitely many elements of B . So infinitely many
elements B belong to (u, v) .

(⇐=) Let A|B be a gap of C. Then to any a ∈ A there exists some a′, a′′ in A
with a < a′ < a′′. Hence for any a we can choose an open interval U(a) ∋ a

such that right of U(a) there exists at least one further u ∈ A .

Consequently, by the counting indices we are in the position to choose suc-
cessively a sequence ai1 < ai2 < . . . < ain < ... of elements, such that any
a ∈ A would lie below some ain. But this leads to a bounded subset without
cluster point, a contradiction. 2

Let henceforth C b a chain with a countable subset, dense in C. Then of
course we may expect a bit more. We mention merely:

9. 2. 5 Proposition. Let C contain a countable subset B, dense in C.
Then apart from 9.2.4 the following property is equivalent with LU :

(MO) The Monotony Principle: Any upper bounded strictly increas-
ing (an) is convergent.

PROOF.

(AS) ⇐⇒ (MO).

(=⇒) Obviously sup{an} = lim an (n ∈ N) .

(⇐=) Let A,B ⊆ C and suppose that B is countable and dense in C. Then
we can choose successively elements b1, . . . , bn, . . . ∈ B such that bn is the
first element of B below all upper bounds of A and greater than all bi (1 ≤
i ≤ n− 1) . Then (bn) is an increasing sequence, satisfying lim(bn) = sup(A),
whence A is upper limited. 2

9.3 Hölder and Clifford

This section is based on papers of Hölder [65], Clifford [47], and Fuchs
[57], as presented in Fuchs [56], and written nearly independently w. r. t.
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the previous chapters. Thus the reader will be in the position to study the
case of real d-semigroups without particular knowledge. The expert however
may turn to the author’s alternative development at the end of this section.

In the class of all d-semigroups those models are of most natural origin, which
arise – what way ever – from the additive group of the reals. These are –
on the one hand – the substructures of (R,+,min) and – on the other hand
– certain homomorphic images of such substructures, the strong properties
being linearity together with a very strict archimedean property.

9. 3. 1 Definition. We call a d-semigroup strictly archimedean if it satisfies:

a ̸= 1 ̸= b =⇒ ∃n ∈ N : an ≥ b .

Strictly archimedean d-semigroups are always positive, since ae = a = ea
and ab ̸≥ a together imply a(e ∧ b) < a. Hence strictly archimedean d-
semigroups in particular are archimedean, since an ≤ b (∀n ∈ N) implies
am = b (∃n ∈ N) and thereby finally ab = am · a = am = b = ba .

9. 3. 2 Lemma. Any strictly archimedean d-semigroup S is linearly (to-
tally, fully) ordered.

PROOF. Let R(a, b, a ′, b ′) with a ′, b ′ ≥ 1 and w. l. o. g. a ′ m ≥ b ′ be satis-
fied. Then it follows

b = (a ∧ b)(b ′ ∧ a ′ m) ≤ (a ∧ b)(a ′ ∧ b ′)m = a ∧ b .

and thereby, of course, b ′ = 1. 2

Next along the lines of Clifford [42] we prove:

9. 3. 3 Lemma. Let S be a non cancellative strictly archimedean d-monoid.
Then it results:

(1) S contains a maximal element u ,

(2) For each a ∈ S (a ̸= e) there exists a natural k with ak = u ,

(3) ab = ac ̸= u (or ba = ca ̸= u) implies b = c.

Hence, in particular S is 0-cancellative.

PROOF. Let a, b, c ∈ S satisfy ab = ac & b < c or ba = ca & b < c . Because
c = bx (∃ x : x ̸= e) the element u = ab satisfies u = ux . So, any y > u with
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xn ≥ y would imply u = uxn ≥ uy ≥ y > u, a contradiction. Thus (1) and
(3) are verified.

Moreover S is strictly archimedean. Hence – with a suitable k ∈ N – from
a ̸= e it follows next ak ≥ u and thereby ak = u. 2

As shown above, archimedean d-monoids are commutative, and hence strictly
archimedean d-monoids are commutative a fortiori. On the other hand the
situation is much clearer in the strictly archimedean case. So we give a special
proof for this special case.

9. 3. 4 Proposition. Any strictly archimedean d-semigroup S is commu-
tative.

PROOF. W. l. o. g. we consider a positive S without identity and discuss
the cases:

(i) S contains a minimal properly positive element a .

(ii) S does not contain a minimal properly positive element.

Ad (i). Start from b ∈ S and a ̸= b . Then there exists an element k ≥ 1
satisfying ak < b ≤ ak+1 and an element c ≤ a satisfying b = akc . But it
holds ak+1 = aka ≥ akc = b ≤ ak+1 ; b = ak+1 . Hence b is a power of a and
S is the set of powers of a with positive exponents.

Ad (ii): In this case for any x ∈ S , there exists an element z ∈ S with
z2 ≤ x, since y < x & x = y · w z = min(y, w) =⇒ min(y, w)2 ≤ x.

Suppose now ab < ba < v, say abx = ba and z2 ≤ x , z ≤ a , z ≤ b (∃z) .

Then it results zm ≤ a ≤ zm+1 & zn ≤ b ≤ zn+1 (∃m,n ∈ N), recall 9.3.3.
But this leads to zm+n ≤ ab, ba ≤ zm+n+2 , a contradiction w. r. t. z2 ≤ x .

If however ab < ba = u(= 0), then it holds b = ax < u V a = by < u and
thereby ax = xa V by = yb, leading to ab = ba . 2

Now we are in the position to prove:

9. 3. 5 A Theorem of Hölder and Clifford. Let S be a strictly archime-
dean d-semigroup. Then S admits an order preserving embedding

(i) into the semigroup of all non negative reals w. r. t. the natural
order, henceforth denoted by P ,
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OR (ii) into the semigroup of all reals of the interval [ 0, 1 ] w. r. t. the
usual order and ab := min(a+ b, 1) , henceforth denoted by P1 ,

OR (iii) into the semigroup of all reals of the interval [ 0, 1 ] , extended
by the symbol ∞ and considered under ab := a+ b, if a+ b ≤ 1,
and ab := ∞, if a+ b > 1 , henceforth denoted by P1

∞ .

PROOF. Let S be generated by a single element a . Then all elements of S
satisfy:

(e <)a < a2 < . . . < an < . . . or (e <)a < . . . < an = an+1 ,

and the function ak → k or ak → k

n

provides an o-isomorphic embedding of S into P or into P1 .

If, however, S is not generated by a single element we drop the identity of
S if S is a monoid. Then for any x ∈ S there exists some z ∈ S such
that z2 ≤ x is valid. And this leads in case of v < x and, say vw = x, to
z2 := (v ∧ w)2 < x . Summarizing we get: For any t ∈ N there exists some
z ∈ S such that zt ≤ x is satisfied.

Suppose now that S contains a maximal element u. Then we choose some
a < u, Otherwise we choose an arbitrary a ∈ S and define a function f on S
as follows:

For each b < u we form two classes of pairs of positive natural numbers:

Lb = [ (m,n) | xm ≤ b and a ≤ xn (∃x ∈ S) ]
and

Ub =
[
(k , ℓ) | b ≤ yk and yℓ ≤ a (∃ y ∈ S )

]
According to the strict archimedean character of S neither Lb nor Ub is empty.
We show:

m

n
≤ k

ℓ
for all (m,n) ∈ Lb and (k, ℓ) ∈ Ub .(9.3)

To this end observe: For any (arbitrary large) t ∈ N+ we find some z ∈ S
with zt ≤ min(x, y) . Hence it holds r ≥ t and s ≥ t for all elements r, s
defined by zr ≤ x < zr+1, zs ≤ y < zs+1 . Consequently, we get

zrm ≤ b < z(s+1)k and zsℓ ≤ a < z(r+1)n,
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leading to rm < (s+ 1)k and sℓ < (r + 1)n , and we infer that

m

n
<

(
1 +

1

r

) (
1 +

1

s

)
k

ℓ

is satisfied for arbitrary elements r, s. Hence, it holds (9.3).

Start now from some t > 0. Then there exists some x with xt ≤ min(a, b).
So we get elements r, s ≥ t with xr ≤ a ≤ xr+1 and xs ≤ b ≤ xs+1, that is
with (s, r + 1) ∈ Lb and (s+ 1, r) ∈ Ub.

t −→ ∞ =⇒ s+ 1

r
− s

r + 1
−→ 0

So, according to (9.3) there exists exactly one real number β for each chosen
b , satisfying:

m

n
≤ β ≤ k

ℓ
for all (m,n) ∈ Lb and (k, ℓ) ∈ Ub .

We put f(b) := β for all b under consideration. In particular this means
f(a) = 1, recall a is a b as well.

Next b1 ≤ b2 implies Lb1 ⊆ Lb2. So f : S\{u} −→ R is isotone with f(x) > 0
for any x ∈ S\{u}. Moreover it holds

f(bc) = f(b) + f(c) ,

whenever bc < u is satisfied – choose z ∈ S small enough. Hence f(x) = f(y)
is satisfied if and only if x = y.

Now, we consider the different two cases (1) and (2) below:

(1)Let S be cancellative. Then S doesn’t contain a maximal element. So,
in this case f is an o-isomorphism (order preserving embedding) of S in P.

(2)Suppose now that S is not cancellative. Then according to 9.3.3 S

contains a maximum u. But the range of f over S\{u}) is bounded, since in
case of ak = u it results that k is an upper bound:

Hence there exists a minimum α with f(x) ≤ α (∀x ∈ S\{u}).

Suppose now that there exists no c ∈ S\{u} with f(c) = α . Then we put
f(u) = α. Otherwise we put f(u) = ∞.

Put now

g(x) =
1

α
· f(x) .
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Then g(x) is obviously an order preserving isomorphism (o-isomorphism) of
S into P1 or P∞

1 .

This completes the proof. 2

It is easily shown that two o-isomorphisms of S into P differ – at most – by
a positive factor, whereas those into P1 or into P1

∞ are necessarily identic.

9. 3. 6 Corollary. Any strictly archimedean positive cancellative semigroup
S satisfying a < b =⇒ a | b without an identity element but with a smallest
element is order isomorphic with (N,+) .

PROOF. Let a be the smallest element of S . Then a < a2 < . . . < an . . .

Suppose now an < x ≤ an+1 . Then for some y ≤ a it follows x = yan, leading
to x = an+1 . Hence S contains exactly the powers of a. 2

The preceding results justify to call strictly archimedean d-semigroups also
real d-semigroups.

By the propositions of this chapter we succeed in completing our results on
subdirectly irreducible d-semigroups.

9. 3. 7 Definition. Let S be an arbitrary d-semigroup. Then by S• we
mean the d-semigroup S, extended by a zero element 0.

9. 3. 8 Proposition. Let S be an archimedean subdirectly irreducible d-
semigroup. Then S admits an embedding into R• or into P∞

1 .

PROOF. Let a, b be a critical pair and assume w. l. o. g. a < b . Recall that
S is linearly ordered and consider the positive and the non positive case.

If S is positive, then S is o-isomorphic to S/{x |x > a} .

If, however, in the opposite case it holds for instance c < 1, then S contains
a group G, and a must belong to G , since the elements x outside of G satisfy
xg = x for all g ∈ G, since S is linearly ordered. Consequently in case of
a /∈ G we succeed by shrinking the elements of G to a new identity element.

Thus in both cases the theorem of Hölder and Clifford contributes es-
sentially to analyzing the situation. 2

The results of this section could also have been developed by showing first
that any strictly archimedean d-semigroup is commutative, in order to prove
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afterwards that any strictly archimedean d-semigroup is linearly ordered and
then to apply the theorem that any cancellative (0-cancellative) positive
strictly archimedean d-monoid S can be embedded into the cancellative (0-
cancellative) linearly ordered complete d-semigroup of its v-ideals.

Hereafter only the three cases, considered above, are possible: The case, in
which S contains no maximum, the case in which S contains a maximum
with hyperatom and the case in which S contains a maximum without such
an hyperatom.

The embedding of this chapter is then done by a short cut.

Observe: Since in a complete linearly ordered d-monoid any a > 0 has a
unique square root or additively spoken admits a bisection, any a admits a
binary representation.

9.4 Archimedean Linear d-semigroups

Based on Hölder and Clifford we are now in the position, to present a
construction theorem for arbitrary linear archimedean d-semigroups.

To this end we observe first that the archimedean classes, considered in gen-
eral in proposition 5.3.4, in totally ordered d-semigroups satisfy the implica-
tion a≈ ∩ b≈ = ∅ & a < b =⇒ x ∈ a≈ & y ∈ b≈ ⇒ x < y & xy = y . So we
get:

9. 4. 1 Proposition. The archimedean classes in totally ordered positive
archimedean d-semigroups are of type P, P1, P

∞
1 , or ({e}, ·).

9. 4. 2 Proposition. Any linear archimedean d-semigroup is an ordinal
sum of components of type P,P1,P

∞
1 or isomorphic to some chain w.r.t.

max.

PROOF. Since the classes are closed under multiplication, by the archimedean
property all elements of lower classes are units of all elements of higher classes.

Consider now a totally ordered set I and replace each of its elements i by
some Si of the above types.

Then putting a◦b = max(a, b) if a, b live in different components, and a◦b = c
if a and b belong to the same component and their product in this component
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is equal to c, we get a totally ordered archimedean d-semigroup, called the
ordinal sum3)

∑
Si. 2

So we arrive at:

9. 4. 3 Theorem. Any positive linear archimedean d-semigroup S with zero
0 can be embedded into a conditionally complete

∨
-continuous d-monoid.

PROOF. We consider a gap, recall, that is a Dedekind cut (A |B) whose
A has no last element and whose B has no first element, and assume that
there exists no pair x, xk with x ∈ A, xk ∈ B. Then this gap can be filled
canonically by some α by defining aα = α if a ∈ A, αα = α and αb = b
if b ∈ B. So, considering the set of all such elements α and defining αβ =
max(α, β) if α and β are separated by some x≈ we obtain an extension whose
archimedean classes are separated by at least one idempotent.

Now in a second step, which could also have been done as the first step, we
replace the equivalence classes by their complete extensions and extend the
multiplication canonically.

Thus S is embedded in a conditionally complete totally ordered d-semigroup∑
, and moreover by construction

∑
is even

∨
-continuous.

This completes the proof. 2

HOWEVER (!)

9. 4. 4 Lemma. Not any positive linear archimedean d-semigroup admits
an embedding in a

∧
-continuous d-semigroup.

Observe:

Any complete d-semigroup is archimedean. Hence any complete d-semigroup
embedding of P∞

1 must satisfy 1 ◦
∧
xx̸=0 = 1 ̸= ∞ =

∧
(1 ◦ x)x̸=0.

9.5 Interval Semigroups

Hereafter we are in the position to characterize classical sub-d-semigroups of
the real unit interval by means of topology.

3)This construction was first presented by Fritz Klein-Barmen, compare [76].
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9. 5. 1 Definition. By a continuum we mean a continuous chain C.

As the most classical example we mention the real unit interval E. But
there exist also continua of higher cardinality than ℵ, as is easily seen. For
instance: Replace the elements β of a well ordered set of what cardinality ever
by the set {(β|r) (r ∈ R+)}, adjoin an element ∞ and extend the operation
canonically.

Next a short cutout of Hofmann and Mislove, [64].

“A linearly ordered set I is called a closed interval if I contains a largest
element 1 and a smallest element 0 and the order is complete and order dense.
In this case I equipped with the order topology is compact and connected....

OBSERVE, ([−1, 1 ], ·) is a compact connected topological semigroup, but, of
course, it is not a totally ordered semigroup, consider −1 < 0, but −1 · −1 =
1 > 0 · −1....

9. 5. 2 Definition. A topological semigroup 4) S defined on a closed interval
I equipped with the order topology is called an I-semigroup, if the 1 acts as
an identity and the 0 as an annihilator 5) of the semigroup S.

.... Three basic examples of I-semigroups [are] quickly surfaced.

1. The real interval [ 0, 1 ] under multiplication. Additively one can obtain
this example by adjoining ∞ to the non negative reals R+ and letting ∞ act
as an annihilator (the isomorphism being given by t −→ − log(t), 0 −→ ∞).

2. The nil interval (pointed out by Calabi) can be defined on [ 1/2, 1 ] by
defining x◦y := max{1/2, xy}. Note that all elements except 1 are nilpotent.
It can alternately be obtained by shrinking the semigroup ideal [ 0, 1/2 ] of
[ 0, 1 ] to a point and obtaining the Rees quotient semigroup [ 0, 1 ]/[ 0, 1/2 ],
or additively as the Rees quotient R+[1] = R≥0/[ 1,∞ ).

3. The min interval, is a commutative idempotent semigroup (i. e. a semi-
lattice) and is defined on [ 0, 1 ] by x ◦ y := min{x, y}....
The systematic study of I-semigroups was initiated by W. M. Faucett in
[53] and [54]. [He obtained]

9. 5. 3 Theorem. (Faucett 1955) An I-semigroup is naturally totally
ordered and commutative.

4)that is, satisfying the rule of limits (an) −→ a & (bn) −→ b =⇒ (an ◦ bn) −→ a ◦ b,
5)that is as zero with the property a ̸= a2 =⇒ (an) −→ 0.
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9. 5. 4 Theorem. (Faucett 1955) If S is an I-semigroup with set of
idempotents E(S) = {0, 1} and S contains no nilpotent elements, then S is
topologically isomorph to the real unit interval [ 0, 1 ] under multiplication.

The article of Hofmann & Lawson in[64] gives a good insight and survey,
as well, w.r.t. the theory of measurement, totally ordered semigroups and
one-parameter semigroups and may hence be considered as the best possi-
ble introduction to this field of mathematics, a field which was studied by
highly recommended authors in highly recommended journals, including five
papers of Clifford on totally ordered semigroups, to cite only one cf. [42],
and moreover papers of Mostert & Shields on a compact manifold with
boundary, cf. [80], [81], [82], and various other aspects, in addition.

Let henceforth C be a continuum endowed with an associative operation ◦,
continuous w.r.t. the order topology. Then

x −→ s ◦ x (s ∈ C) , y −→ y ◦ s (s ∈ C) and x −→ x ◦ s ◦ y (s ∈ C)

are order-continuous mappings.

9. 5. 5 Proposition. (Faucett 1955) Any I-semigroup is a complete
totally ordered d-semigroup, and is thereby in addition commutative.

PROOF. Let (I, 0, 1, ◦) be an interval semigroup with order ≽. Then a◦I =
[ 0, a ] = I ◦ a.

SINCE: On the grounds of the intermediate value theorem, any value between
a (= a ◦ 1) and 0 (= a ◦ 0) is taken by s ◦ x and y ◦ s, whence it holds
a ≽ b =⇒ a ◦ u = b = v ◦ a (∃u, v) .

Hereby it follows next that idempotents satisfy u ≽ a =⇒ au ≼ a, since u ≽ a
implies immediately au = a , and a◦u ≽ a implies x◦a◦u = a =⇒ a◦u = a.

Next we get nearly immediately a2 ̸= a ≻ b =⇒ ab ≼ b since ab ≽ b =⇒
abx = b =⇒ anbxn = b =⇒ a = a2 V b = 0 . So, summarizing we get

a ≽ b⇐⇒ ∃ x, y : ax = b = ya .

Consequently S is a d-semigroup w.r.t x ≤ y := x ≽ y with identity 1 and
zero element 0.

Finally S is archimedean, according to 7.2.6, and hence commutative. 2

9. 5. 6 Proposition. (Faucett 1955) An I-semigroup S with exactly 2
idempotents is isomorphic to the real unit interval under multiplication or
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equivalently additively isomorphic to P iff any nilpotent element is equal to
the zero element 0.

PROOF. By assumption (S,≽) is complete and connected and S is a strictly
archimedean d-semigroup satisfying a ̸= 1 =⇒ an ̸= 0. 2

9. 5. 7 Proposition. (Clifford 1954) An I-semigroup S with exactly 2
idempotents is topologically isomorphic to the real unit interval under mul-
tiplication divided by the ideal [0, 1/2] or – additively spoken – topologically
isomorphic to P1 iff there exists at least one not vanishing nilpotent element.

PROOF. Clearly, if a is nilpotent, then all x ≼ a are nilpotent, too. Moreover
any x properly between 1 and 0 must be nilpotent since otherwise some
element

∧
xn ≽ a would be idempotent but different from 0 and 1.

Hence S is complete and strictly archimedean.

Moreover by assumption the chain (S,≽) is connected. So S cannot admit
an embedding in P∞

1 . Therefore it must be isomorphic to a sub-d-semigroup
of P1 and contain a countable subset, dense in (S,≽).

Consequently by 9.1.10 the chain (S,≽) is order isomorphic to the real unit
interval [ 0, 1 ]. 2

ADDED in August 2013.

Recall: By Hausdorff any multiplication closed chain of a cdl-semingroup S

admits an extension to a maximal multiplication closed chain of S.

9. 5. 8 Proposition. Let S be a cdl-semigroup, recall definition 2.1.8,
with a dense complete lattice satisfying s · (

∨
ai) · t =

∨
(sait). Then any

maximal multiplivation closed chain is naturally ordered.

PROOF. Along the lines of the 9.5.5-proof, here left to the reader. 2



Chapter 10

Jakubuik Chains in lo-groupoids

A mathematical result may be ingenious or fundamental, may be merely
beautiful, or even beautiful and fundamental, too. A result of the second
type is Jakub́ık’s Chain Theorem, at least to the author’s mind. It says:

Jakub́ık’s Chain Theorem. Any unbounded convex chain of an ℓ-group
G containing the identity element 1 is a direct factor of G.

Observe, any unbounded convex chain is a maximal chain, but there may exist
maximal unbounded chains which are not convex. For instance consider in
(N, | ) the chain

1, 2 , 2 · 3 , 2 · 3 · 5 , 2 · 3 · 5 · 7 , ...

Jakub́ık’s theorem is exhibited in [72], and the topic is taken up again in
[?]. There a corresponding theorem is given for MV-Algebras. But in fact,
that paper provides more, as will be pointed out in the present paper.

10. 0. 9 Definition. By a left divisibility-groupoid, for short LD-groupoid,
we mean an inf-closed p.o.-groupoid G = (G,∧, · , 1) with identity element
1, that is a · 1 = a = 1 · a , satisfying

a ≤ b ⇒ ∃ x : a · x = b(LD)

a · (b ∧ c) = ab ∧ ac
(a ∧ b) · c = ac ∧ bc .

(DSM)

If in addition G is a right divisibilty- groupoid that is if G satisfies moreover

a ≤ b ⇒ ∃ y : y · a = b(RD)

149
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we call G a divisibility groupoid, briefly a D-groupoid.

Finally if G is an LD-groupoid satisfying

∀ a, b ∃ a◦⊥ b◦ : (a ∧ b)a◦ = a & (a ∧ b)b◦ = b(RN)

we call G a right normal LD-groupoid, briefly an RN-LD-groupoid, and conse-
quently, if G is even a right normal D-groupoid we call G an RN-D-groupoid.

Clearly (LD) results from (RN), so we could omit axiom (LD) from the logical
point of view. Observe

So far no joins were required !

Classical examples are ℓ-loops and normal complementary semigroups, nowa-
days called hoops, that is complementary semigroups satisfying (N) x ≤
a ∗ b, b ∗ a =⇒ x = 1, compare [15], [25]. Therefore also partially ordered
sets are included inasmuch brouwerian semilattices satisfying (N) are subdi-
rectly decomposable into totally ordered brouwerian lattices, that is chains,
considered w.r.t. a ∗ b = 1 if a ≥ b and a ∗ b = b if a ̸≥ b.

To begin with let G be a positive RN-LD-groupoid, that is let G satisfy
1 ≤ g (∀g ∈ G) .

Henceforth, whenever a RN-LD-groupoid is considered, let a◦ , b◦ tacitly be
a pair of elements satisfying the conditions of axiom (RN) w.r.t a, b. Clearly,
under this assumption x◦ , y◦ are incomparable whenever x, y are incompa-
rable.

10. 0. 10 Lemma. Let S be a positive RN-LD-groupoid and let [1, a] and
[1, b] be chains with incomparable elements a, b . Then a⊥ b .

PROOF. Since a, b are incomparable, a◦ and b◦ are incomparable, too. But
a ∧ b and a◦ belong to [1, a] and a ∧ b and b◦ belong to [1, b]. Therefore it
must hold a ∧ b ≤ a◦, b◦, that is a ∧ b ≤ a◦ ∧ b◦ = 1 . 2

Next we prove:

10. 0. 11 A splitting Lemma.

y ≤ ab & (a ∧ y)y◦ = y =⇒ y = (y ∧ a)y◦ ∧ yb ∧ ab = (y ∧ a)(y◦ ∧ b) .(SP)
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10. 0. 12 Lemma. Let S be a positive RN-LD-groupoid and let [1, a] be a
chain. Then [1, a2] is a chain, too.

PROOF. Suppose that x, y ∈ [ 1, a2 ] are incomparable. Then x◦ and y◦ are
incomparable, too, that is x◦ ̸= 1 ̸= y◦ . But it is (a ∧ x◦) ∧ (a ∧ y◦) = 1
which means a ∧ x◦ = 1 V a ∧ y◦ = 1, say a ∧ x◦ = 1 , and thereby x◦ ≤
(x◦)2 ∧ x◦a ∧ ax◦ ∧ a2 = (x◦ ∧ a)(x◦ ∧ a) = 1 ; x◦ = 1, a contradiction. 2

By lemma 10.0.12 it follows immediately

10. 0. 13 Lemma. In a positive RN-LD-groupoid any convex maximal chain
is multiplication closed.

Now we are ready to prove:

10. 0. 14 A first Factor Theorem. Let S be a positive RN-LD-groupoid
and let C be an unbounded convex chain in S . Then S = C · C⊥ and
S = C · C⊥ is a direct decomposition of (C,∧) .

PROOF. Since C is unbounded, for any a ∈ S there exists some x in C with
x ̸≤ a , that is with a ∧ x < x . Let now (a ∧ x) · x◦ = x and (a ∧ x) · a◦ = a

be satisfied.

Then a ∧ x < x implies x◦ ̸= 1, whence x ∧ x◦ ∧ a◦ = 1 ; a◦ ∧ x = 1 .

Next consider some c ∈ C above x. Then a◦∧c belongs to C and must satisfy
a◦ ∧ c ≤ x that is a◦ ∧ c = 1 .

Hence a◦ is orthogonal to all elements of C, that is a◦ belongs to C⊥ . This
implies a = (a ∧ x) · a◦ ∈ C · C⊥ for all a ∈ S , that is S = C · C⊥.

It remains to show that a = u.v = x.y ∈ C · C⊥ implies u = x and v = y.

Here we succeed by the splitting-lemma, observe

x = (x ∧ u)(x◦ ∧ v) = x ∧ u; x ≤ u

and hence by duality x = u – and y = (y ∧ u)(y ∧ v) = y ∧ v ; y ≤ v, that
is even y = v.

FINALLY in case of a⊥b, d rc⊥a, d we get:

ab ∧ cd = a(b ∧ cd) ∧ cd
= (a ∧ cd)(b ∧ d) ∧ cd
= (a ∧ c)(b ∧ d) ∧ cd
= (a ∧ c)(b ∧ d) ,
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that is ∧ respects the decomposition property. This completes the proof. 2

Sofar all results hold in any positive RN-LD-groupoid, and it has been shown
that the set S may be considered as cartesian product S = C · C⊥.

As a main tool for the next proof we remark

a ∧ bc = a ∧ ac ∧ bc = a ∧ (a ∧ b)c(10.6)

a ∧ bc = a ∧ ba ∧ bc = a ∧ b(a ∧ c) .(10.7)

Now we are ready to verify

10. 0. 15 A second Factor Theorem. Let S be a positive LD-groupoid
satisfying

a · (b ∨ c) = ab ∨ ac
(a ∨ b) · c = ac ∨ bc ,

(DSJ)

for instance let S a an ℓ-loop cone, and suppose S = C×C⊥. Then · respects
× .

PROOF. In any LD-groupoid it holds

u⊥v & u, v ≤ w & w = ux =⇒ v = (u ∧ v) · (v ∧ x) = v ∧ x =⇒ uv ≤ w ,(10.9)

that is

u⊥ v =⇒ uv = u ∨ v = vu .(10.10)

So, in case of a, c ∈ C & b, d ∈ C⊥ by u ∧ vw ≤ (u ∧ v)(u ∧ w) we get first
ac ∈ C & cd ∈ C⊥, and thereby next

ab · cd = (a ∨ b) · (c ∨ d) = ac ∨ ad ∨ bc ∨ bd
= ac ∨ (a ∨ d) ∨ (b ∨ c) ∨ bd = ac ∨ bd = ac · bd

(10.11)
This tells: multiplication respects the decomposition. 2

Finally we remark

10. 0. 16 A third Factor Theorem. Let S be an arbitrary RN-LD-semigroup
and and suppose S = C × C⊥. Then multiplication respects × .

PROOF. If S is positive we get a⊥b =⇒ ab = a∨ b as above. So in this case
the presumption a, c ∈ C & b, d ∈ C⊥ leads to associativity by

ab · cd = a(bc)d = a(cb)d = (ac)(bd) .
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Let now S be an arbitrary RN-DL-monoid and suppose

a(1 ∧ a)−1 = u · v, (1 ∧ a)−1 = x · y (x, u ∈ C, y, v ∈ C⊥)a .

Then

a = a(1∧a)−1·(1∧a) = uv·x−1y−1 = ux−1·vy−1 = (u, x−1 ∈ C, v, y−1 ∈ C⊥) .

Assume next
u1x

−1
1 · v1y−1

1 = u2x
−1
2 · v2y−1

2

Then
u1v1 · (y1x1)

−1 = u2v2 · (y2x2)
−1

with
u1v1⊥y2x2 and u2v2⊥y1x1

which leads to y1x1 = y2x2 and hence by cancellation also to u1v1 = u2v2.

Hence
S = (C ∪ C−1) × (C⊥ ∪ (C⊥)−1)

It remains to verify that (C ∪C−1) with C−1 := {c−1 | c invertible & c ∈ C}
forms a multiplication closed chain.

Clearly, (C ∪C−1) forms a chain. In order to verify that (C ∪C−1) is multi-
plication closed we show:

CASE 1. If 1 ≤ a ≤ b and a−1 exists we get 1 ≤ a−1b, ba−1 ≤ b whence the
products ab−1 and ba−1 belong to C .

CASE 2. If 1 ≤ b ≤ a and a−1 exists then also b−1 exists and b−1a and ab−1

belong to C. But this means that a−1b and ba−1 belong to C−1. 2
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Chapter 11

Special archimedean d-semigroups

11.1 Hyper-archimedean d-Semigroups

In this chapter we will study a type of d-semigroups stronger than archime-
dean d-semigroups in general but weaker than strictly archimedean d-semi-
groups.

In particular we will investigate hyper-archimedean and super-archimedean d-
semigroups, and we shall see that super-archimedean d-semigroups are hyper-
archimedean and hyper-archimedean ℓ-groups are super-archimedean.

11. 1. 1 Definition. A d-semigroup is called hyper-archimedean, if it satis-
fies:

∀a, t ∈ S+ ∃n ∈ N : t · a · t ≤ a ∨ tn .(HY)

Obviously the homomorphic images of a hyper-archimedean d-semigroup are
again hyper-archimedean, and moreover any hyper-archimedean d-semigroup
is a fortiori also archimedean. This provides – according to 9.3.8 –

11. 1. 2 Proposition. The subdirect irreducible images of a hyper-archi-
medean d-semigroup are exactly the sub-d-semigroups of P and P1 , that is:

Any hyper-archimedean d-semigroup is a subdirect product of real d-semi-
groups.

By 7.2.4 the canonical 1-extension of a hyper-archimedean d-semigroup is
always archimedean. But moreover we even get:

11. 1. 3 Proposition. Let S be a hyper-archimedean d-semigroup, then S1

is again hyper-archimedean.

155
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PROOF. Choose some α, β ∈ Σ+. Then, if α ∨ β ∈ S+ and if e is a unit of
α ∨ β, it follows by assumption:

α · β ≤ eα · eβ
≤ eα ∨ (eβ)n

= e(α ∨ βn)
= α ∨ βn (∃n ∈ N) .

Otherwise we may suppose β ∈ Σ+\S+ and β = (1 ∧ a)(1 ∧ b)−1 ≥ 1. Then
β is coprime to f := 1 ∨ b ∈ S+, because (1 ∧ a)(1 ∧ b)−1 ≤ (1 ∧ b)−1 and
(1 ∧ b)−1 ⊥ (1 ∨ b) . Consequently by the first part of the proof we get:

α · β ≤ fα · β ≤ fα ∨ βm (∃m ∈ N) .

Suppose now 1 ≤ g ≤ f with g ∈ S+. Then it holds g⊥ β, and it follows by
analogy:

α · β ≤ gα · β ≤ gα ∨ βn (∃n ∈ N) .

We define k := min(m,n). Then it results

α · β ≤ (fα ∧ gα) ∨ (fα ∧ βn) ∨ (gα ∧ βm) ∨ βk

= gα ∨ (α ∧ βn) ∨ (α ∧ βm) ∨ βk

(observe f, g⊥ β)

= gα ∨ βk

≤ gα ∨ βm ,

that is α · β ≤ gα ∨ βm for all elements g between 1 and f . But this means
– in case of x = xe ∈ S+ with some e between 1 and g:

x · αβ ≤ x · (α ∨ βn) ,

which by varying the element x according to 3.1.10 1) provides

α · β ≤ α ∨ βn .

Thus the proof is complete. 2

Now we are in the position to prove

11. 1. 4 Proposition. Let S be a d-semigroup. Then the following are
pairwise equivalent:

1) Recall: 1 ∧ c stands for I ∧ Fc = F c , an automorphism of S. So it holds 1 ∧ a = 1 ∧ b iff x(1 ∧ a) =
x(1 ∧ b) (∀x ∈ S).
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(i) S is hyper-archimedean.

(ii) S satisfies ∀a, t ∈ S ∃n ∈ N : t · a · t ≤ a ∨ tn .

(iii) Any homomorphic image of S is archimedean.

(iv) Any irreducible ideal of S is archimedean.

(v) Any irreducible filter of S is primary.

(vi) The semigroup of (lattice) ideals of S is archimedean.

(vii) Any irreducible ideal P of S satisfies P = ker(P ) ∪ rad (P ) .

PROOF. (i) =⇒ (ii). Let (i) be satisfied. Then S is archimedean and
thereby commutative. Let moreover a ≥ 1 and t = xy−1 be satisfied in S1

with x⊥ y, that is with x · ym = x ∨ ym . Then for some suitable n ∈ N it
results

ax ≤ a ∨ xn =⇒ ax ∨ ayn−1 ≤ ayn ∨ xn

=⇒ axyn−1 = ax ∨ ayn−1

≤ ayn ∨ xn

=⇒ axy−1 ≤ a ∨ (xy−1)n .

This leads to the general case – recall a = (1 ∧ a)(1 ∨ a) – by

(1 ∨ a)xy−1 ≤ (1 ∨ a) ∨ (xy−1)n

=⇒
(1 ∧ a)(1 ∨ a)xy−1 ≤ (1 ∧ a)(1 ∨ a) ∨ xy−1 .

(ii) =⇒ (iii). If (ii) holds in S, then (ii) holds as well in any homomorphic
image. Consequently any homomorphic image of S is archimedean.

(iii) =⇒ (iv). Let P be an irreducible ideal with tn ∈ P (∀n ∈ N) and
a ∈ P . Then in the linear homomorphic image S/P it holds either a ≤ tm

for some m ∈ N, or it holds a t ≤ a . But this means that a ∈ P & at ̸∈ P is
impossible.

(iv) =⇒ (v) results by definition.

(v) =⇒ (vi). Observe (v) ⇐⇒ (iv) and (iv) =⇒ (vi) for irreducible ideals.
Now, recall that any ideal B is equal to some intersection

∩
Pi (i ∈ I) of

irreducible ideals Pi . Hence in the case of An ⊆ B (∀n ∈ N) it results:

A ⊆ B =⇒ A ⊆ Pi (∀i ∈ I)

=⇒ AB ⊆
∩
APi (i ∈ I) =

∩
Pi = B .
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(vi) =⇒ (vii). Let P be an irreducible and hence according to (vi) also an
archimedean ideal and let t belong to P .

Now, if t /∈ RadP we get Then

∀n ∈ N : tn ∈ P ; Pt ⊆ P .

Thus, in any case, t belongs to rad (P ) ∪ ker(P ).

(vii) =⇒ (iii). By (vii) S is archimedean and hence commutative, which
results as follows:

Suppose w. l. o. g. that tn ≤ a (∀n ∈ N) and a < at (t ∈ S+) . Then there
exists an irreducible ideal P with a, tn ∈ P (∀n ∈ N) but at /∈ P in spite of
t ∈ ker(P ). Hence a · ea ∈ P =⇒ at ≤ a · t · ea ∈ P .

Now we consider a subdirectly irreducible image S of S with critical pair
a < b . According to 5.4.9. S is a totally ordered 0-cancellative d-monoid.
Hence the irreducible ideal P := {x |x ≤ a} satisfies tn ∈ P (∀n ∈ N) =⇒
ta ∈ P , that is t · a = a , a contradiction w. r. t. the 0-cancellation property.
Consequently, by (vii), for each t ∈ P with 1 < t there exists some n ∈ N ,
satisfying tn ∈ S\P , that is tn ≥ a.

This means in particular that each c −1 < 1 satisfies c n ≥ a for some suitable
n ∈ N . Hence S is either positive and thereby isomorphic with S/{y | y > a}
or it is S equal to its cancellative kernel or S is equal to its cancellative kernel
extended by a zero element 0 .

(iii) =⇒ (i). Start from (iii) and suppose that at ̸≤ a∨ tn (∀n ∈ N). Then
there exists an irreducible ideal P with a, tn ∈ P (∀n ∈ N) but at /∈ P .
This provides in the linearly ordered and on the grounds of (iii) archimedean
S := S/P ,

∀n ∈ N : tn < a & a < a · t ,

since a ≤ tm, would lead to a·t ≤ tm·t and thereby to at ∈ P , a contradiction.
Consequently (iii) implies (i), that is S must be hyper-archimedean. 2

11.2 Super-archimedean d-semigroups

11. 2. 1 Definition. A d-semigroup S is called super-archimedean, if it
satisfies:

∀a, t ∈ S+ ∃n ∈ N : a ∧ tn = a ∧ tn+1 .(SU)
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Obviously in particular any locally finite d-semigroup S is super-archime-
dean.

In a super-archimedean S by definition any a ∈ S, contains an idempotent
(private) unit. Furthermore, by evidence any homomorphic image of a super-
archimedean S is super-archimedean and any subdirectly irreducible super-
archimedean d-semigroup is strictly archimedean. So super-archimedean im-
plies archimedean.

As a first hint to the relation between hyper- and super- we get:

11. 2. 2 Lemma. Any super-archimedean d-semigroup S is hyper-archime-
dean.

Any hyper-archimedean ℓ-group is super-archimedean.

PROOF. Let S be a d-semigroup with t ∈ S+ , a ∧ tn = a ∧ tn+1 and
(a ∧ tn)a ′ = a . Then a ∨ tn = a ∨ tn+1 and thereby furthermore

a ≤ a ∨ tn ; at ≤ (a ∨ tn)t = tna ′t = tn+1a ′ = a ∨ tn .

Let next G be an ℓ-group and at ≤ a ∨ tn . Then it results

a · tn+1 ≤ (a2 ∨ atn+1) ∧ (a · tn ∨ t2n) ≤ (a ∧ tn)(a ∨ tn+1) ≤ a · tn+1 ,

that is

(a ∧ tn+1)(a ∨ tn+1) = (a ∧ tn)(a ∨ tn+1) ; a ∧ tn = a ∧ tn+1 . 2

Now we can show:

11. 2. 3 Proposition. If the d-semigroup S is super-archimedean, then S1

is super-archimedean as well.

PROOF. Suppose α, β ∈ S. Then there is nothing to show.

Otherwise, assume α ̸∈ S+ but β =: t ∈ S+ . Then α = (1 ∧ a)(1 ∧ b)−1 with
a = 1 V a ∈ S and b ∈ S, and it holds (1 ∧ a)(1 ∧ b)−1 ≤ (1 ∧ b)−1, and
thereby

(1 ∧ b)−1 ∧ tn = (1 ∧ b)−1 ∧ tn+1 =⇒ α ∧ tn = α ∧ tn+1 .

Consequently it suffices to consider β = (1∧ b)−1 . To this end let us suppose
e ∈ E(t) ∩ S+ and 1 ≤ f ≤ e. Then because e(1 ∧ b)−1 ∈ S+ it results for
some n ∈ N

e(1 ∧ b)−1 ∧ tn = e(1 ∧ b)−1 ∧ tn+1 .
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But for any x , f with fx = x = xf and 1 ≤ f ≤ e this leads to

x((1 ∧ b)−1 ∧ tn) = x((1 ∧ b)−1 ∧ tn+1) .

Consequently, by varying x we get

(1 ∧ b)−1 ∧ tn = (1 ∧ b)−1 ∧ tn+1 .

Suppose next α =: a ∈ S+ and β = (1 ∧ a)(1 ∧ b)−1 ∈ Σ+\S+. Then we
can choose a unit u of a , which is coprime to β, for instance (1 ∨ b) ∧ e with
positive unit e of a, and since S is super-archimedean, we may assume in
addition that u is idempotent. So we get a∧ (uβ)n = a∧ (uβ)n+1 (∃n ∈ N),
and thereby:

a ∧ (uβ)n = a ∧ (uβ)n+1

; a ∧ (u ∨ βn) = a ∧ (u ∨ βn+1)

; (a ∧ u) ∨ (a ∧ βn) = (a ∧ u) ∨ (a ∧ βn+1) .

Because u⊥ β and a = α by intersecting with a ∧ βn+1 this leads to:

α ∧ βn = α ∧ βn+1 .

It remains to settle the case α /∈ S & β /∈ S. But in this case we are acting
in the cancellative kernel and may infer:

Since S is super-archimedean, according to 11.2.2 S is hyper-archimedean
as well. This proves the assertion. 2

Before presenting a representation theorem for super-archimedean d-semi-
groups recall the notion of a real d-semigroup, given in the preceding chapter
on Hölder and Clifford.

11. 2. 4 Proposition. Let S be a d-semigroup. Then the following are
pairwise equivalent:

(i) S is super-archimedean.

(ii) All totally ordered images of S are super-archimedean.

(iii) S admits a subdirect decomposition into real factors such that the
representing functions satisfy:

∀f, g ≥ id ∃n ∈ N : f(x)n ≥ g(x) (∀x : f(x) > 0) .

(iv) S+/F+ is locally finite for all filters F+ ⊆ S+ .



11.2. SUPER-ARCHIMEDEAN D-SEMIGROUPS 161

(v) S admits a subdirect decomposition into C(t) and S/C(t).

PROOF. (i) =⇒ (ii) is evident, since together with S even all homomor-
phic images are super-archimedean.

(ii) =⇒ (i). Let S be represented as a subdirect product of real factors.
Then, according to 9.3.8 there are positive and group factors, determining
a positive homomorphic image Sp and a homomorphic group image Sg, re-
spectively, of S . So it suffices to show that (i) is satisfied in each of these
images.

First we consider a product Sp of strictly archimedean factors. Provided, for
instance, it would hold a ∧ tn ̸= a ∧ tn+1 (∀n ∈ N), then we could turn to
Sp/[a). This would be an image S with tn ̸= tn+1 (∀n ∈ N) & a = 0. Hence
we may start from an image S1 with tn ̸= tn+1 < 0 (∀n ∈ N) . But then
according to 6.2.2 there exists a maximal E(t) containing c-ideal M , which
is in addition irreducible. We form S := S/M . Because

R(x, y, x ′, y ′) =⇒ (t ∧ x)(t ′ ∧ x ′) = t ∧ x =⇒ t ′ ∈M V x ′ ∈M

in this model all x are comparable with t. Hence x is comparable also with
all tn, consider tn w. r. t. M . So, F := {y | y > tn (∀n ∈ N)} is not empty
because 0 ∈ F and in addition it is a filter since tn is comparable with all
x . But then S := S/F is a totally ordered image which is not strictly
archimedean, a contradiction!

Now we turn to the group case. Here hyper- and super- are equivalent.

So, if S+
g is not super-archimedean there exists a pair t ̸= 1, a in S+ with

at ̸≤ a∨ tn (∀n ∈ N) . Consequently, there must exist an irreducible ideal P
with a, tn ∈ P (n ∈ N) & at /∈ P . But in Sg/P =: S this leads to

1 < t & tn ≤ a (∀n ∈ N) & a < a · t ,

since in case of tm ≥ a it would result at ∈ P . But this contradicts the
assumption of a · 1 ∈ P & a · t /∈ P .

(i) ⇐⇒ (iii) is evident.

(i) ⇐⇒ (iv) is nearly evident. For, suppose that some S+/F+ is not locally
finite. Then there exist elements a ∈ F+, t ∈ S+ \ F+ such that a ∧ tn ̸=
a ∧ tn+1 (∀n ∈ N) is satisfied. On the other hand if any S+/F+ is locally
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finite, then in particular any S+/[a) is locally finite, which implies condition
(ii) .

Hence we are through, once (i) ⇐⇒ (v) is verified. To begin with we suppose
that (v) is satisfied and show

(v) =⇒ (i). Obviously any two elements of C(t) are congruent modulo C(t).
Hence the canonical mapping ϕ : S −→ C(t) generates a residue class image
S , isomorphic with C(t) . But, here ϕ(a) lies below some (ϕ(t))n, whence we
get:

ϕ(a ∧ tn) = ϕ(a) ∧ (ϕ(t))n

= ϕ(a) ∧ (ϕ(t))n+1

= ϕ(a) ∧ ϕ(tn+1)

= ϕ(a ∧ tn+1) .

Therefor it must hold a ∧ tn = a ∧ tn+1 .

It remains to show

(i) =⇒ (v). We consider first a super-archimedean positive S. Here any
a ∈ S produces a uniquely determined element a∧tn = a∧tn+1 , since together
with a∧ tn = a∧ tn+1 also a∧ tn+1 = a∧ (a∧ tn)t = a∧ (a∧ tn+1)t = a∧ tn+2

is satisfied. Thus we get a homomorphism ϕ. Observe, that

a ∧ tn+1 = a ∧ tn = b ∧ tn = b ∧ tn+1 ,

leads to ϕ(a) = ϕ(b)
=⇒

sa ∧ tn = s(a ∧ tn) ∧ tn
= s(b ∧ tn) ∧ tn
= sb ∧ tn

=⇒
ϕ(sa) = ϕ(sb) ,

and that a fortiori ϕ(a) = ϕ(b)
=⇒

ϕ(s ∧ a) = ϕ(s ∧ b) .

We consider: x ρ y :⇐⇒ ϕ(x) = ϕ(y)

and xσ y :⇐⇒ x ≡ y (C(t)) .
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Then x ρ y & xσ y ,
x ∧ tk = y ∧ tk = y ∧ tk+1 = x ∧ tk+1

and x ≤ ytp & y ≤ xtp (∃k, p),

that is x ≤ y ∨ tp & y ≤ x ∨ tp ,
and thereby for a suitable ℓ ∈ N

x ∧ tℓ = y ∧ tℓ

and x ∨ tℓ = y ∨ tℓ .
Hence it holds x = y . So, ρ and σ produce a subdirect decomposition of
S = S+.

Since together with S+ also S1+ is super-archimedean, the construction
shows that the subdirect decomposition extends to S1+, respectively that
the congruence ρ is the reduction of ρS1+ to S .

Consequently this proof is complete, once we have shown that the quotient
hull Q(S1+) =: Q decomposes subdirectly even in the sense of the theorem.
To this end suppose ≡ ∈ {ρ, σ} on S1+ .

We consider the extensions of ρ , σ from S1+ to S1, according to 5.1.5. They
provide a subdirect decomposition of S1, and it is nearly immediately clear,
that σQ doesn’t make any problem. So it remains to verify that the extension
of ρ works, too.

This is clear for positive elements, since we obtain:

a+ ρQ b
+ ⇐⇒ a+ ρ b+

⇐⇒ ϕ (a+) = ϕ (b+) .

Let now a be an arbitrary element of Q. Then, inspired by the formula
a = a+ · a− = a+ · (a∗)−1 with cancellable ϕ (a∗) we define

ϕ (a) := ϕ (a+) · (ϕ (a∗))−1 ,

which, according to the rules of arithmetic and to ϕ (a+)⊥ϕ (a∗) implies:

ϕ (x) = ϕ (y) ⇐⇒ ϕ (x+) · ϕ (y∗) = ϕ (y+) · ϕ (x∗)

⇐⇒ ϕ (x+y∗) = ϕ (y+x∗)

⇐⇒ x+y∗ ρ y+x∗

⇐⇒ x+(x∗)−1 ρ
Q
y+(y∗)−1

⇐⇒ x ρ
Q
y .
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This completes the proof. 2

11.3 Discrete Archimedean d-Semigroups

By Sn henceforth we will mean the d-semigroup, built by the set {0, 1, . . . , n}
under – see above – a ◦ b = min(a + b, 1) and a ∧ b := min(a, b) . Obviously
any Sn is a sub-d-semigroup of P1 and also of P1

◦ .

11. 3. 1 Definition. A d-semigroup S is called discrete archimedean if
any subdirectly irreducible image S is of type Z or Z• or Sn .

11. 3. 2 Proposition. For a d-semigroup S the following are equivalent:

(i) S is discrete archimedean.

(ii) If P is prime then A ⊆ P =⇒ A |P .

PROOF. (i) =⇒ (ii). Suppose A ⊆ P ̸= S . S/P is totally ordered and
archimedean of type Sn, Z or Z•. Furthermore no x ∈ P is mapped to the
eventual maximum of some homomorphic image – observe the implication:

y /∈ P & x ∈ P =⇒ ∃e : xe = x ∈ P & ye = y /∈ P .

Consequently P is a principal ideal ( p ] ̸= 0 , and it results A = ( a ] (∃ a) .

Choose now some q ∈ P . Then for suitable elements s it follows

q = (q ∧ a) · s ,

and each a ′ ∈ A satisfies

a ′ · s ≤ a · s = a ∨ q ∈ P .

But it holds P = {x | x ≤ p}. Consequently we get a ′s ∈ P and thereby
A |P .

(ii) =⇒ (i). First we show that S is hyper-archimedean. To this end let
tn ≤ a (∀n ∈ N) but at ̸= a. Then there exists some maximal a containing
but a, at separating ideal P,which by T := {x | x ≤ tn (∃n ∈ N)} leads to
the contradiction

at ̸∈ P & P = XT (∃X) = XTT = PT ∋ at .
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Hence S is at least archimedean.

Let now S be a subdirectly irreducible homomorphic image of S. Then S

is totally ordered, since S is commutative, and we get:

tn ≤ a (∀n ∈ N) =⇒ t · a = a .

For, putting

T := {x | x ≤ tn (∃n ∈ N)} = TT

and P := {x | x ≤ a} ,

it results T ⊆ P , that is, P = TX and thereby TP = P . But this leads to
T P = P and thereby to t · a = a . Consequently any subdirectly irreducible
image of S is archimedean, that is S itself is even hyper-archimedean.

Now we infer:

If S is a subdirectly irreducible image w. r. t. a < b and if in addition c −1 < 1
(c ∈ C(S) =: C), then C is isomorphic with Z. For, C admits an embedding
into R, and if there would exists no minimal strictly positive element, we
could form

A := {a | a < c}
P := {p | p ≤ c}

resulting in A ⊆ P and thereby in A |P and A |P , respectively, a contradic-
tion!

Consequently S must be of type Z or of type Z• . This is clear if a ∈ C .

And in case of a /∈ C it holds for all c ∈ C the equation a c = a, that is
C ⊆ E(a), whence E(a) must be equal to {1} . So S couldn’t contain a
negative element.

But then it results – as above – that S \ {1} contains a minimum. So in this
case it must hold S ∼= Sn (∃n ∈ N) . 2

The question arises whether in the preceding proposition even

A ⊆ B =⇒ A |B

may be required. That such an request is too strong is verified by the product∏
Si+1 (i ∈ N). Consider the ideals

A := ({f | f(j) = 0 for j < i ; f(j) = i for j ≥ i})
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and B := ({f | f(i) ≤ i}) .

Then it holds

A ⊆ B & A−
∣∣∣∣ B .

11.4 Factorial d-Semigroups

As a special class of discrete archimedean d-semigroups will turn out the class
of factorial d-semigroups.

11. 4. 1 Definition. A d-semigroup S is called factorial, if any positive
a ∈ S is a product of primes.

Recall that prime, semiprime and completely prime are equivalent properties,
as was shown in Chapter 1. Recall furthermore, that factorial is a cone
property.

As a first consequence of prime we get, that prime elements commute. Ob-
serve: from p ̸≤ q ̸≤ p it results pq = qx = qpy, that is pq ≤ qp ≤ pq. Hence,
factorial implies commutative. Furthermore we get:

11. 4. 2 Proposition. If S is factorial and
∏
peii = a =

∏
q
ej
j are irredun-

dant products with pairwise incomparable factors pi and pairwise incomparable
factors qj , then these products coincide up to permutation.

PROOF. Recall that primes are completely prime. 2

Now we are in the position to show:

11. 4. 3 Proposition. Let S be a positive d-monoid. Then the following
are pairwise equivalent:

(i) S is factorial.

(ii) The ideal semigroup of S satisfies A ·
∩
Bi =

∩
ABi (i ∈ I).

(iii) The ideal semigroup of S is complementary.

PROOF. We symbolize ideals, generated by a or A, respectively, by (a) or
(A), respectively.
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(i) =⇒ (ii). First of all S is complementary. To realize this, recall that
ax ≥ b ⇐⇒ (a ∧ b)x ≥ b means that all a ∗ b with a ≤ b exist, since
the irredundant prime factor products of the elements a ∈ S are unique,
whence the irredundant prime factor products of the complements in b are
subproducts of their irredundant prime decomposition of b .

In particular, there are only finitely many complements in x .

Let now x belong to
∩
ABi (i ∈ I). Then for any ai ∈ A we find some bi ∈ Bi

with ai ·bi = x, and in addition we may assume bi = ai∗x and ai = x : (ai∗x) .
But there are only finitely many complements ai∗x . Consequently, according
to 2.2.2 we get x =

∨
(x : (bi ∗ x)) ·

∧
(bi ∗ x) with

∨
(x : (bi ∗ x)) ∈ A and∧

(bi ∗ x) ∈
∩
Bi (i ∈ I) . But this implies:

A ·
∩
Bi ⊆

∩
ABi (i ∈ I)

and thereby condition (ii).

(ii) =⇒ (iii). Again we show first that S is complementary, if the condition
– here (ii) – is satisfied. Let to this end {xi | i ∈ I} be the set of all x with
ax ≥ b. Then it holds (a) ·

∩
(xi) =

∩
(a · xi) = (b), whence some y ∈

∩
(xi)

exists with ay = b and y ≤ xi (i ∈ I), that is an element y satisfying y = a∗b,
and dually we get some z with z = b : a.

Now we prove:
A ⊆ B =⇒ B = A ·X = Y · A (∃ X, Y )

for the set of ideals of S.

To this end we start from A ⊆ (b). Then any ai ∈ A satisfies (ai)(ci) =
(b) (∃ci) and thereby A ·

∩
(ci) (i ∈ I) = (b) . This means by duality:

A ⊆ (b) =⇒ (b) = A ·X = Y · A (∃ X, Y ).

Assume now A ⊆ B . Then for any b ∈ B there exists some ideal Xb satisfying
(A ∩ (b)) ·Xb = (b) . This implies next AXb ⊆ B because

x ∈ Xb =⇒ ax = (a : b)((a : b) ∗ a)x ≤ (a : b)b = a ∨ b ∈ B .

Hence it results A ·
∨
Xb (b ∈ B) =

∨
(A ·Xb) = B and its dual.

In particular S is commutative as was shown in the preceding proof, and by
distributivity we get:

A ·
∩
Xi (A ·Xi ⊇ B) = A ·B
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and thereby (iii).

(iii) =⇒ (ii). First we show that together with its ideal semigroup S also S

itself is complementary:

To this end suppose (a)∗(b) = K . Then K must be principal because b ≤ ak
with k ∈ K and (k) ⊆ K. Consequently S is ∗ - closed and : - closed .

Suppose now K = A ∗
∩
ABi (i ∈ I). Then it holds K ⊆ Bi (∀ i ∈ I) and

thereby K ⊆
∩
Bi which leads to A ·K =

∩
ABi ⊆ A ·

∩
Bi (i ∈ I) . Thus

we arrive at (ii) .

Finally we show:

(ii) =⇒ (i). As seen above, under condition (ii) S is complementary . But
this means A ·

∩
Bi =

∩
ABi (i ∈ I) .

Let now a1 < a2 < a3 < . . . be an ascending chain of divisors of a with
ai = bi ∗ a, that is also with ai = (ai ∗ a) ∗ a (i ∈ I). Then we get a =
ai(ai ∗ a) (∀ i ∈ I) ; (a) = (a1 , a2, . . .) ·

∩
(ai ∗ a) (i ∈ I). But it holds

(ai ∗ a) ∗ a = ai, whence there must exist a final an , since otherwise (a) ̸=
(a1, a2, . . .) ·

∩
(ai ∗ a) (i ∈ I) would follow, a contradiction. Hence the set

{bi ∗ a} must satisfy ACC.

But this provides DDC w. r. t. ≽ where a ≻ b :⇐⇒ ∃ c : b = c ∗ a . Observe:
because d ∗ (c ∗ a) = dc ∗ a ≻ is transitive, and the reader easily checks that
for any descending chain a ≻ a1 ≻ a2 . . . there exists a properly ascending
chain of complements. Consequently S is complementary with DCC for ≻ .
But this means that S is factorial, since a ∗ b = 1 V a ∗ b = b means “ b is
prime ”. 2

Finally we study some variations:

11. 4. 4 Corollary. Let G be an ℓ-group. Then the following are pairwise
equivalent:

(i) G is factorial.

(ii) Any bounded ideal of G+ is principal.

(iii) Any bounded filter of G+ is principal.

(iv) If A,B are ideals of G+, then it holds:
A ⊆ B =⇒ B = A ·X = Y · A (∃ X, Y ) .

(v) If A,B are filters of G+, then it holds:
A ⊇ B =⇒ B = A ·X = Y · A (∃ X, Y ) .



11.4. FACTORIAL D-SEMIGROUPS 169

PROOF. G+ is factorial iff it satisfies DCC or equivalently the ACC for
bounded sets. This provides immediately (i) =⇒(ii) & (iii) & (iv) & (v) .

Next it holds (ii) =⇒ (i). Consider a chain a > a1 > a2 > . . . and the ideal,
generated by the elements ai ∗ a .

By analogy we get (iii) =⇒ (i) .

So, it remains to verify that (iv) implies (ii) and that (v) implies (iii), which
is now demonstrated by (iv) =⇒ (ii):

A ⊆ (b) leads to some X satisfying A · X = (b), and thereby to a pair a, x
satisfying a ∈ A, x ∈ X and ax = b. This means further sax = b for all
sa ∈ A, whence by cancellation it results s = 1 and thereby A = (a) . 2

11. 4. 5 Corollary. Let L be a distributive lattice. Then the following are
pairwise equivalent:

(i) L is factorial.

(ii) The ideal lattice of L is
∩

-distributive.

(iii) The ideal lattice of L is complementary.
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Chapter 12

Ideal Extensions

Throughout this chapter S is assumed to be positive

12.1 Cut Criteria

In this section we settle the problem, under which conditions a d-semigroup
S admits some

∧
-complete extension , recall that is some complete extension

satisfying x · (
∧
ai) · y =

∧
(xaiy) (i ∈ I), and dually, under which conditions

some d-semigroup S admits some
∨

-complete extension . In this context the
archimedean property proves to be necessary, of course, since any

∧
- and

any
∨

-complete d-semigroup, as well, is archimedean. But opposite to the
classical case, the archimedean property is not strong enough in general, as
is shown by P◦

1. Hence we have to look for properties, providing – together
with the archimedean property – extensions of the required type. To this end
– according to 2.4.2 – we may start from some positive d-monoid with zero
element 0. This doesn’t really weaken the results, but is more convenient.

In this context, the pair pair v-ideal, u-ideal will prove to be most fruitful,
since these ideals respect the cancellation law, and clearly the v-ideal struc-
ture is an

∧
-complete extension iff a ⊇ b =⇒ a | b , and the u-ideal structure is

a
∨

-complete extension iff it satisfies A ⊆ B =⇒ A|B . Here | means |ℓ & |r.
But, in fact, throughout most parts of this section we will be concerned with
archimedean d-semigroups, and thereby with commutative ones.

It will turn out to be of some advantage, to notice the v-ideal, generated by A
by A and the u-ideal, generated by A by A. Furthermore – again – whenever
A and a or A, respectively, are under consideration we tacitly suppose that
A be a basis of a or A, respectively. Furthermore:

171
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Let
∑

be a sup-d-semigroup of S and suppose Λ ⊆ Σ . We define:

[ Λ ] := {x |x ∈ S & x ≤ Λ} and (Λ) := {x | x ∈ S & Λ ≤ x} .

Here [ Λ ] may be empty, since S has a zero element 0 , and dually (Λ) may
be empty since S has an identity element 1 .

12. 1. 1 Definition. Let
∑

be an extension of G. We call
∑

an extension
of Dedekind type if any α satisfies

α =
∧

(α) =
∨

[α].(12.1)

12. 1. 2 Proposition. A d-semigroup S admits an
∧

-complete extension of
Dedekind type iff V satisfies:

an ⊇ b (∀ : n ∈ N) =⇒ a ◦ b = b = b ◦ a

and a =
∩

(t) ((t) ⊇ a)

(SS)

PROOF. (a) Let
∑

be an
∧

-complete extension of Dedekind type w. r. t.
S . Then

∑
is archimedean and commutative, and it results first for any

v-ideal of S :

A = (
∧
A) .

FOR, since
∑

is a cut extension w. r. t. S , it holds
∧
A =

∨
[A ], whence it

results:
c ∈ A =⇒ c ∈ ([A ])

=⇒ c ∈
(∨

[A ]
)

=⇒ c ∈
(∧

A
)
,

that is A ⊆ (
∧
A) ,

and moreover s, t ∈ S implies:

s |At =⇒ s |
∧

(At)

=⇒ s | (
∧
A) · t ,

that is A ⊇ (
∧
A) ,

whence we get altogether A = (
∧
A) .

Consequently, exactly the sets (α) of
∑

are v-ideals in S. We define ϕ :
α 7−→ (α). Then it results:
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s | (α)(β) =⇒ s |
∧

(α)(β)

=⇒ s |
∧

(α)
∧

(β)

=⇒ s |αβ
=⇒ s | (αβ) .

Hence
∑

is isomorphic with V, and hereby it follows condition (SS).

(b) Let now inversely (SS) be satisfied. Then V is commutative and b.a.
it suffices to verify

a ⊇ b =⇒ a
∣∣∣∣ b(Mv)

To this end suppose next b = b =: b and a = A with a ≤ b (∀ a ∈ A) , and
x := a ∗ b = X with x ≤ b (∀ x ∈ X), and moreover c ≤ AX and d = b ∨ c.
Then for all a ∈ A, x ∈ X it results

ax ≥ d ≥ b
;

x ∈ a ∗ d & a ∈ x ∗ d
;

x ∈ b ∗ d & a ∈ b ∗ d .
;

b ∗ d ⊇ a, x.

This implies furthermore for any t ⊇ b ∗ d ⊇ a, x

ax ≥ b
=⇒

t ◦ (t ∗ a) ◦ t ◦ (t ∗ x) ⊆ t ◦ (t ∗ d) = d
=⇒

t ∗ d = (t ∗ b) ◦ (b ∗ d) ,(12.4)

But, it holds:

t ∗ d = (t ∗ b) ◦ (b ∗ d) ,(12.5)

which results as follows: By evidence we get

t ∗ d ⊇ (t ∗ b) ◦ (b ∗ d) ,(12.6)

and vice versa t ≤ b ≤ d implies t ∗ d ⊆ (t ∗ b) ◦ (b ∗ d) , observe

tu = b & bv = d & y ∈ t ∗ d
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for any y ′ with (y ∧ u)y ′ = y implies first of all tuy ′ = t(u ∨ y) and thereby
furthermore

t(y ∧ u) = b & b(y ′ ∧ v) = d .

So we get y ∈ t ∗ d =⇒ y = y1 · y2 (y1 ∈ t ∗ b, y2 ∈ b ∗ d) , and thereby
equation (12.6) .

Now, by (12.4) and t ⊇ b ∗ d we are in the position to show next:

a ◦ (t ∗ x) ⊆ (t ∗ b) ◦ (b ∗ d)
⊆ t ◦ (t ∗ b)
= b .

Thus, each x ∈ X satisfies t ∗ x ⊆ x which entails – recall t ⊇ b ∗ d ⊇ X:

t ◦ x ⊇ t ◦ (t ∗ x) (x ∈ X)

= x

⊇ t ◦ x ,
;

x = t ◦ x

But this implies tn ◦ x = x ; tn ≤ b (∀ n ∈ N) , meaning b · t = b . Let now g
divide b = b ◦ (b ∗ d) = d. Then g = (b ∧ g) · g′ with g′ ≤ b ∗ d , recall (2.19).
So, by (SS) we get first b = b ◦ (b ∗ d) = d and thereby furthermore b ≥ c ,
which leads to b = a ◦ x .

Let’s consider now the general case. Then for each b ∈ b we get an x
b
satisfying

a · x
b

= b which entails a ·
∑
b∈b

x
b

= b . 2

Dually w. r. t. 12.1.2 we get:

12. 1. 3 Proposition. A d-semigroup S admits a
∨

-complete cut extension
iff S is archimedean and satisfies in addition:

A = [ (A) ](SV)

and in this case any
∨

-complete cut extension is isomorphic with the semi-
group of u-ideals.

PROOF. First of all: The isomorphism, claimed above, results by the map-
ping ϕ : α 7−→ [α ] along the lines below 12.1.2.
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Now we turn to

(a) Condition (SV) is necessary, consult the development below (a) in the
proof of 12.1.2.

(b) Condition (SV) is sufficient:

By (SV) any u-ideal A satisfies A = [ (A) ]. Next, for any pair of u-ideals
A,B it holds

A ⊆ B =⇒ A|B .(Mu)

In the special case A ≤ b with X := {x |Ax ≤ b} it holds c ≥ Ax⇐⇒ c∧b =
d ≥ Ax . So ds = b implies:

AX ⊆ b =⇒ AX ⊆ d

=⇒ AX · s ⊆ d ,

whence it results Xsn ⊆ d implying sn ≤ d (∀ n ∈ N) . This leads further to
d = ds = b and thus to b = [ (b) ] = [ (AX) ] = AX , whence in case of A = A
we get A ·X = b .

Suppose now A ⊆ B, b ∈ B and Ab = {b ∧ a | a ∈ A} . Then, for some
suitable Xb , we get the relations b = Ab ◦ Xb ⊆ A ◦ X b and A ◦ X b ⊆ B ,
the first by the development above, the latter because of the implication
x ∈ Xb =⇒ ax = a ′′(a ∧ b)x ≤ a ′′b = a ∨ b. So we get B = A ◦ X with
X =

∑
b∈B

X b . 2

Proposition 12.1.2 and proposition 12.1.3 provide each a base for charac-
terizing d-semigroups with

∧
- and

∨
-complete cut extension. This is done

w. r. t. 12.1.2.

12. 1. 4 Proposition. S admits an
∧

- &
∨

-complete cut extension iff S

satisfies axiom (SS) and in addition V satisfies:

a ◦
∩
bi =

∩
(a ◦ bi) (i ∈ I) .

PROOF. It is to verify:

a ◦
∩
bi =

∩
(a ◦ bi) (bi ∈ I) .
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This is valid for principal ideals by assumption. Consider now a = A . Then
for each a ∈ A there exists some xa with a = a ◦ xa , and this implies:

a ◦
∩
bi ⊇ xa ◦ a ◦

∩
bi

= a ◦
∩
bi

=
∩

(a ◦ bi)
=

∩
(xa ◦ a ◦ bi)

⊇ xa ◦
∩

(a ◦ bi)

; a ◦
∩
bi ⊇

∑
a∈a

(
xa ◦

∩
a ◦ bi

)
= (

∑
a∈a

xa) ◦
∩

(a ◦ bi)

=
∩

(a ◦ bi) ,

the final line according to (
∑
a∈a

xa) ◦ a = a and a ⊇
∩

(a ◦ bi) .

Consequently, the required condition is valid for the special case where every
bi is principal.

Start now from arbitrary v-ideals bi . Then – according to 12.1.2 – any bi is
the intersection of principal ideals bik (i ∈ I, k ∈ K), and this implies, see
above,

a ◦
∩
bi = a ◦

∩
(
∩
bik)

= a ◦
∩
bik

=
∩

(a ◦ bik)
⊇

∩
(a ◦ bi) . 2

The question arises, when the semigroup of principal ideals of some arbitrary
monoid admits a normal complete d-semigroup extension. This is equivalent
to the question, when the semigroup of v-ideals satisfies

a ⊇ b =⇒ a
∣∣∣∣ b .(M)

By considering some zero-monoid ( ab = 0 ) we see immediately that the
archimedean property for v-ideals in general is not sufficient for the existence
of an

∧
-complete extension. However in the later chapter on real d-semigroups

we shall see that in the positive case the condition

An ⊇ b (∀n ∈ N) =⇒ a · b = b = b · a(CE)
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where A is assumed to be a filter and a is assumed to be the A-generated
v-ideal, guarantees a cube-extension. However we can show:

12. 1. 5 Proposition. A positive d-monoid S admits an
∧

-normal extension∑
that is an

∧
-complete extension, in which any α is infimum of some A ⊇ S ,

iff the semigroup V of v-ideals satisfies:

an ⊇ b (∀ n ∈ N) =⇒ a ◦ b = b = b ◦ a(A)

a ⊇ b ⊇ a ∗ b (∀b ∈ b) =⇒ an ⊇ b (∀n ∈ N) .(C)

PROOF. (a) Let
∑

be an
∧

-normal extension w. r. t. S . Then the mapping
h :

∧
A 7−→ A is a function from

∑
onto V, since

∧
A =

∧
B implies

s |uAv ⇐⇒ s |uBv, that is A = B . Furthermore h is even a homomorphism.
Hence v-ideals satisfy a ⊇ b =⇒ a | b, whence V is

∧
-complete. This proves

necessity by the implication:

a ⊇ b ⊇ a ∗ b (∀b ∈ b) =⇒ a ◦ b ⊇ a ◦
∑

(a ∗ b) = b

=⇒ a ◦ b = b

=⇒ an ⊇ b (∀n ∈ N).

(b) First of all, condition (A) implies commutativity.

Suppose now a = A ∋ b , ∀a ∈ A : a ≤ b , b = b , x = X = a ∗ b and choose
some a ∈ A , x ∈ X . Then it results

au = b (∃u ∈ S) & ax ≥ b & x = us (∃s ∈ S)

and thereby au(a ∧ s) ∈ a ◦ (a ∗ b) =: c ,

that is in particular a ∧ s ⊆ b ∗ c . We next put (a ∧ s) ∗ (a ∧ s) u =: d. This
entails

ad = b and d = (a ∧ s) ∗ (a ∧ s) u ⊇ (a ∧ s) ∗ x ⊇ (b ∗ c) ∗ x ,
whence it follows

a ◦ ((b ∗ c) ∗ x) ⊆ b ; b ∗ c ⊇ a ∗ c = a ∗ b = x ⊇ (b ∗ c) ∗ x (∀ x ∈ x) ,

that is

(b ∗ c) ⊇ x ⊇ (b ∗ c) ∗ x (∀ x ∈ x) =⇒ (b ∗ c)n ⊇ x =⇒ (b ∗ c)n ⊇ b

hence a ◦ (a ∗ b) =: c = b ◦ (b ∗ c) = b.
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Thus the proof is complete, recall a · b = a · ∑ b (b ∈ b). 2

As another characterization of
∧

-normal monoids, we present:

12. 1. 6 Proposition. A positive d-monoid S admits an
∧

-normal extension∑
iff the semigroup V of v-ideals satisfies:

an ⊇ b (∀ n ∈ N) =⇒ a ◦ b = b = b ◦ a(A)

a ∗ b ⊇c =⇒ a ∗ b
∣∣∣∣ c .(F)

PROOF. All we have to show is a ⊇ b =⇒ a | b . So, assume ax ⊆ b = b
with x = a ∗ b, and s | ax. Then it holds:

y := b ∗ s ⊇ x ∗ s ⊇ x ∗ ax ⊇ a ,(⋆)

that is E (1) : y1 | a and y1 | b .

Suppose now E (n) : yn | a and yn | b .

Then a1 := yn ∗ a and b1 := yn ∗ b

leads to a1 ∗ b1 = (yn ∗ a) ∗ (yn ∗ b)

= a ∗ b = x .

Hence we get b1 ⊇ a1 ◦ x .

So, defining s1 := yn ∗ s ,

it results s1 ⊇ yn ∗ a ◦ x
⊇ (yn ∗ a) ◦ x
= a1 ◦ x

and it holds b1 ∗ s1 = (yn ∗ b) ∗ (yn ∗ s)
= b ∗ s = y .

Thus, by (⋆) , we get: y | yn ∗ a ; y | yn ∗ b

implying E (n+ 1) : yn+1|a & yn+1 | b .
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Summarizing: (A) implies b ◦ y = b, and thereby b ◦ y = b ∩ s = b, which
means s ⊇ b.

It remains to show a ◦ x ⊇ b . To this end let s | ax t be satisfied. Then it
holds t∗s ⊇ a ◦ x and along the lines above we get – because b∗( t∗s ) = bt∗s
– that t ∗ s ⊇ b and thereby s ⊇ t( t ∗ s ) ⊇ b ◦ t is satisfied, i. e. s | b t. Thus
it results a ◦ x = b .

Hence: (A) & (F) is also sufficient. 2

12. 1. 7 Corollary. If each a∗b is principal, that is if the underlying monoid
is complementary, then condition (M) is equivalent to the archimedean prop-
erty for principal ideals.

Furthermore it should be given the hint, that the first part of the preceding
proof “works” in any case where b∗s is replaced with some divisor d, satisfying
b ∗ (b ◦ d) = d .

12.2 Sufficient Conditions

Apart from the characteristic conditions in the remainder we will present
some sufficient conditions, necessary (in addition) in various classical struc-
tures, like boolean lattices and ℓ-group cones.

12. 2. 1 Proposition. Let S satisfy the equation [A ][B ] = [AB ], then S

admits an
∧

-complete cut extension .

PROOF. Suppose A ̸= ∅ and X = {x |Ax ≥ b}. Then it follows:

b ∈ [A ][X ] =⇒ b = bAbX (∃ bA ≤ A , bX ≤ X) ,

whence among all x with Ax ≥ b there exists a (uniquely determined) min-
imum A ∗ b and dually, among all y with yA ≥ b a there exists a (uniquely
determined) minimum b : A . Hence [A ] = [B ] =⇒ A = B, since by
[A ] = [B ] it results:

s |uAv ⇐⇒ (s : v) |uA ⇐⇒ u ∗ (s : v) |A
⇐⇒ (u ∗ s) : v |B ⇐⇒ s |uBv .

Consequently the v-ideal structure V is a cut extension w. r. t. S .
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Let now a ⊇ b, a ∗ b = u and b ≤ d ≤ au be given . Then it follows d : u ≤ A
and thereby d : u ≤ b, that is b = (d : u)y with some suitable y . But this
implies Ay ≥ b, that is y ≥ u and thereby b = (d : u)y ≥ (d : u)u = d. Hence
the divisors of au also divide b . So we get au = b .

The rest follows by v-ideal arithmetic. 2

Dually w. r. t. 12.2.1 we get:

12. 2. 2 Proposition. Let S satisfy (A)(B) = (AB) . Then S admits a∨
-complete cut extension .

PROOF. Let A ⊆ b and X = A ∗ b be given . Then it holds b ≥ AX , that
is b = bAbX with bA ≥ A and bX ≥ X . Hence bX is maximum of X . This
implies first

c ≥ AX =⇒ d = b ∧ c ≥ AX
=⇒ d = dA · dX

where dA ≥ A & dX ≥ X ,

and thereby next

b = dAdXs =⇒ dXs ∈ X
=⇒ dXs ≤ dX

=⇒ d = dAdX = dAdXs = b .

So it is proven (AX ) = (b), and we are in the position to verify A = [ (A) ] ,
in order to prove 12.2.1.

Thus we may continue along the proof lines of 12.1.3 – recall, in the final
part of that proof commutativity was not applied. 2

Proposition 12.2.1 implies [A ][B ] = [AB ] , on the one hand, and, of course,
on the other hand also [ a ][B ] = [ aB ]. But the latter condition is equivalent
with existing complements a ∗ b , which has been proven implicitly below
proposition 12.2.1.

In analogy (a)(B) = (aB) holds iff any pair a ≤ b defines a maximum x
w. r. t. ax ≤ b .

So, d-semigroups with [ a ][B ] = [ aB ] , according to 2.8.2 are complementary
– or v-complementary.
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Dually d-semigroups with (a)(B) = (aB) are u-complementary.

12. 2. 3 Proposition. Let S be archimedean and v-complementary. Then
S admits an

∧
-complete cut extension.

PROOF. We get A = ([A ]) along the lines below 12.2.1, and furthermore
in the proof of 12.1.3 the element t may be thought of as b ∗ d . 2

12. 2. 4 Proposition. Let S be archimedean and u-complementary. Then
S admits a

∨
-complete cut extension.

PROOF. Along the proof lines of 12.2.2 we get A = [ (A) ], and, because of
the archimedean property we may apply A ⊆ b =⇒ A| b of the proof below
proposition 12.1.3. 2

Proposition 12.2.3 is not new, of course, since this result has already been
presented in chapter on archimedean d-semigroups.

The proof of 12.2.4 verifies – by applying 12.1.3 – that archimedean d-
semigroups always satisfy b ⊇ A =⇒ b = A ◦ (A ∗ b) . This implies –
as a strengthening of proposition 12.2.4.

12. 2. 5 Proposition. Let S be archimedean and let S satisfy moreover the
implication s = sup(ai) =⇒ s · t = sup(ai) · t . Then S admits a

∨
-complete

extension.

From this it results further, in addition to the results on the 1-extension S1

of
∨

-complete d-semigroups:

12. 2. 6 Corollary. Let S be
∨

-complete. Then also the semigroup of all
u-ideals of S1 is

∨
-complete.

PROOF. Obviously our distributivity requirement is valid for all cancellable
elements t, and if t fails to be cancellable then for any unit e of t we calculate
sup(ait) = sup((aie)t) = t ≥ t sup(ai). 2
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Chapter 13

Polars

13.1 Prime c-ideals

Throughout this chapter let S be a right normal d-monoid, although many
propositions do not really depend on right normality, recall, that according
to 5.4.6 any d-semigroup is embedded in a normal d-semigroup. In order to
emphasize, that not only R(a, b, a ′, b ′) , but also a ′⊥ b ′ is satisfied, we denote
this situation by R(a, b, a◦, b◦) .

The classical (right-)normal d-monoid is the ideal semigroup of arithmetical
commutative rings with identity 1 , that is the ideal semigroup of commuta-
tive rings with:

⟨a1, . . . , an⟩ ⊇ ⟨b⟩ =⇒ ⟨a1, . . . , an⟩
∣∣∣∣⟨b⟩ ,

and thereby in particular any ideal semigroup of some residue class ring Zn ,
observe, that here any ideal is even principal.

Further abstract examples are the boolean algebra, and the ℓ-group, and
thereby of course the ℓ-group cone, in particular the d-semigroup of N , con-
sidered under multiplication and GCD. This latter example, above all, pro-
vides a most helpful background. The reader should check the propositions
of this chapter and the next one in any case with N as background.

In this chapter we investigate the special role of c-ideals. Since these ideals
are operationally closed, we may consider them also as submonoids in the
sense of sub-d-monoids. So we are faced on the one hand with c-ideals A ,
that is special subsets, and on the other hand with c-monoids A of S , with
c-ideal A as carrier.

183
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13. 1. 1 Definition. Let C be a c-ideal and A ⊆ S . Then by the polar of

A in C we mean A⊥C := {x
∣∣∣∣ | a | ∧ |x | ∈ C (∀a ∈ A)} , briefly called the

C-polar, of A.

In particular, if C = {1} we call A⊥{1} briefly the polar of A , symbolized
by A⊥ . In order to simplify the notation we denote (A⊥)⊥ by A⊥⊥ and call
A⊥⊥ a bipolar .

13. 1. 2 Proposition. Let S be a right normal d-monoid and P a c-ideal
of S. Then the following are pairwise equivalent:

(i) P is prime .

(ii) | a | ∧ | b | ∈ P =⇒ | a | ∈ P V | b | ∈ P .

(iii) a+ ∧ b+ ∈ P =⇒ a+ ∈ P V b+ ∈ P .

(iv) a ∧ b = 1 =⇒ a ∈ P V b ∈ P .

(v) S/P is linearly ordered w. r. t. ⊇ .

(vi) {A |P ⊆ A ∈ C(S)} is linearly ordered .

PROOF. (i) =⇒ (ii) , because

| a | ∧ | b | ∈ P =⇒ | a |⊥P ∩ | b |⊥P ⊆ P

=⇒ | a |⊥P ⊆ P V | b |⊥P ⊆ P

=⇒ | a | ∈ P V | b | ∈ P .

(ii) =⇒ (iii) =⇒ (iv) =⇒ (v) results nearly by evidence.

(v) =⇒ (vi) . Let A and B be c-ideals, and let a ∈ A , b ∈ B be arbitrarily
chosen. Then it follows a ∧ b ∈ A ∩B and R(a, b, a◦, b◦) (a◦ ∈ A & b◦ ∈ B).

Let now A , B be incomparable with a◦ ∈ A\B and b◦ ∈ B\A . Then we get
a◦ ≤ b◦e for some e ∈ P or b◦ ≤ a◦f for some f ∈ P , a contradiction!

(vi) =⇒ (i) finally, follows nearly immediately. 2

Next we will characterize prime c-ideals as special intersections of regular
ideals. First of all

13. 1. 3 Proposition. Let S be a right normal d-monoid and P a prime
c-ideal of S. Then the set of all sup-c-ideals of P forms a ⊇-chain.

PROOF. Let A and B be c-ideals with A,B ⊇ P . Then (w. l. o. g.) A ̸⊆ B
would imply the existence of some a ∈ A\B . We consider the set of all
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a∧ b (b ∈ B) . Then, by a /∈ B , in case of R(a, b, a◦, b◦) it results first b◦ ∈ P
and thereby next (a ∧ b)b◦ ∈ A ∩B . So it must hold B ⊆ A . 2

13. 1. 4 Corollary. A c-ideal of a right normal d-monoid is prime if it is
the intersection of a linearly ordered set of regular c-ideals.

13. 1. 5 Definition. Let R be a regular c-ideal and let c be an element in
the sense of 4.2.11. Then R is called a value of c , and the set of all values is
denoted by val (c) .

Since c-ideals C satisfy a ∈ C ⇐⇒ |a| ∈ C it holds val (c) = val (| c |) , and
we get furthermore:

val (a+) ∪ val (a−) = val (| a |) and val (c+) ∩ val (c−) = ∅ .(13.1)

PROOF. By evidence, the left side of the first equation is contained in the
right side.

Furthermore it holds val (a−) = val (a∗) and a+⊥ a∗ . Hence any value of | a |
contains one of the elements a+ , a∗ and is thereby a value of the other one.
So, also the right side of the first equation is contained in the left one.

Moreover, no M can be value of both, c+ and c∗ , since c+ ∧ c∗ = 1 leads to
c+ ∈M or c∗ ∈M . 2

In addition it turned out that any value is value even of a positive element.

13. 1. 6 The projection Theorem. Let S be a d-monoid and let C be a
c-ideal. If then M is a value of c ∈ C in S , then M ∩ C is a value of c
in C and any value of c ∈ C arises this way. Thus R 7−→ R ∩ C provides
a surjective function sending the regular c-ideals of S to the regular c-ideals
of C . Moreover, the restriction of this function to regular c-ideals of S , not
containing C , is even a bijection.

PROOF. Let M be a value of c ∈ C+ and let d belong to C+\M . Then it
follows:

c ≤ dm1 · dm2 · . . . · dmn (mi ∈M+)

; c ≤ (c ∧ d)(c ∧m1) · (c ∧ d)(c ∧m2) · . . . · (c ∧ d)(c ∧mn)

and thereby c ∈ ((C ∩M), d)c . So M ∩ C is a value in C of d .
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Let now D be a value of c ∈ C in C . Then D admits an extension to some
value M of c in S, and this value must satisfy D = M ∩ C .

Hence, the defined mapping is surjective.

Finally, let A , B be two different regular c-ideals of S , not containing C .
Then A ∩ C and B ∩ C must be different. For, assume A ∩ C = B ∩ C ,
and suppose that A is a value of a , B a value of b and that d belongs to
C\(C ∩A∩B) . Then A∩C = B ∩C would be a value of c = a∧ b∧ d in C

, leading to the contradiction:

c ̸∈ C ∩ A ∩B & c ∈ C ∩ (A ∨B) = (C ∩ A) ∨ (C ∩B) = C ∩ A ∩B . 2

13.2 Polars

First of all, recall: a, b ∈ S are called orthogonal if | a | ∧ | b | = 1 . So a and b
are orthogonal iff | a | and b or a and | b | or | a | and | b | are orthogonal.

13. 2. 1 Proposition. Two elements a ̸= 1 ̸= b are orthogonal iff their
values are incomparable.

PROOF. M is a value of a iff M is a value of | a | .
Suppose now that | a |⊥̸ | b | . Then each value of | a |∧| b | admits an extension
to a value A of | a | and to a value B of | b | . But these are comparable,
according to 13.1.3.

Conversely, in case of | a | ⊥ | b | there cannot exist a pair A,B of comparable
elements of val (a) and val (b) , respectively, since from A ⊆ B , for instance,
would follow | a | ̸∈ A & | b | ̸∈ A , in spite of | a | ∧ | b | = 1 . 2

Now we turn to polars. By evidence we get:

A ⊇ B =⇒ B⊥ ⊇ A⊥ .(13.2)

Moreover, by definition, any homomorphism h of (S,∧) satisfies the inclusion
h(A⊥) ⊆ h(A)⊥ .

A ⊆ A⊥⊥ and A⊥ = A⊥⊥⊥ .(13.3)
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PROOF. A ⊆ A⊥⊥ implies A⊥ ⊆ A⊥⊥⊥, while A⊥ ⊇ A⊥⊥⊥ results from
(13.2). 2

13. 2. 2 Corollary. A is a polar iff A = A⊥⊥ .

Orthogonality of elements of S is closely connected with orthogonality of
c-ideals of S . First by polar arithmetic we get:

13. 2. 3 Proposition. Any polar A is a c-ideal.

This leads to

x⊥A ⇐⇒ xc ∩ Ac = {1} .(13.4)

PROOF. x⊥A =⇒ xc ⊆ A⊥ =⇒ A ⊆ xc⊥ =⇒ Ac ⊆ xc⊥ =⇒ xc ∩ Ac = {1}
and xc ∩ Ac = {1} =⇒ | y | ∧ | z | = 1 (∀ y ∈ xc, z ∈ Ac) . 2

In addition it turned out:

A⊥ = (Ac)⊥.(13.5)

Henceforth we denote the set of polars of S by P (S) . Obviously P (S) is
partially ordered, but, in fact, it holds much more. However, before continu-
ing we emphasize, that we will have to distinguish between the c-(ideal-)hull
of two polars and their P -(olar-)hull. Therefore we will indicate by indices c
and p , respectively, which hull is just under consideration. Furthermore we
repeat that

∨
without index stands for the c-ideal-hull.

(
∨
Ai)

⊥ =
∩

(Ai
⊥) (i ∈ I) .(13.6)

PROOF. By (13.2) the left side is contained in the right side. On the other
hand, if x belongs to the right side, x is orthogonal to all Ai, and the positive
cone of

∨
Ai contains exactly the (finite) products of positive elements of the

components Ai , whence also the right side is contained in the left side. 2

In particular, by (13.6) the intersection of polars is again a polar. Further-
more, as immediate consequences, we get:

13. 2. 4 Corollary. P (S) is a Moore family.

13. 2. 5 Corollary. The set of polars forms a complete lattice P(S) under∧
Ai :=

∩
Ai and

∨
p
Ai := (

∩
Ai

⊥)⊥ (i ∈ I) .(13.7)



188 CHAPTER 13. POLARS

PROOF. According to (13.6) along with any family also its intersection is a
polar, and the second assertion results from

P ⊇
∨
Ai ⇐⇒ P⊥ ⊆

∩
Ai

⊥

⇐⇒ P ⊇ (
∩
Ai

⊥)⊥ (i ∈ I) . 2

Next we will show, that the polars do not only form a complete lattice, but
even a complete boolean algebra. To this end we observe first:

13. 2. 6 Proposition. The mapping A 7−→ A⊥⊥ respects boundaries and
is a homomorphism of the lattice of c-ideals of S onto the lattice P(S) of
polars. In particular this implies that the lattice of polars is distributive.

PROOF. Let A,B be c-ideals. Then it results

(A ∨c B)⊥⊥ ⊇ A⊥⊥ ∨p B
⊥⊥ ⊇ A,B(13.8)

and thereby, recall that A⊥⊥ is a polar,

(A ∨c B)⊥⊥ = A⊥⊥ ∨p B
⊥⊥ .(13.9)

Next we obtain

(A ∩B)⊥⊥ = A⊥⊥ ∩B⊥⊥ .(13.10)

FOR: Let’s start from x ∈ A⊥⊥ ∩ B⊥⊥ and y ∈ (A ∩ B)⊥ . Then all a ∈ A ,
b ∈ B satisfy | a | ∧ | b | ∈ A ∩B and

|a| ∧ |b| ∧ |x| ∧ |y| = 1 ; |b| ∧ |x| ∧ |y| ∈ A⊥ ∩ A⊥⊥ = {1} .

And this implies

|x | ∧ | y | ∈ B⊥⊥ ∩B⊥ = {1} ,

that is x ∈ (A ∩ B)⊥⊥ – recall that y was taken as an arbitrary element of
(A ∩B)⊥. 2

The preceding proposition provides nearly immediately:

a⊥⊥ ∩ b⊥⊥ = (| a | ∧ | b |)⊥⊥ ,(13.11)

SINCE a⊥⊥ ∩ b⊥⊥ = ac⊥⊥ ∩ bc⊥⊥ = (ac ∩ bc)⊥⊥ = (| a |c ∩ | b |c)⊥⊥ . 2
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Moreover, according to 13.2.5 any polar A satisfies

A ∩ A⊥ = {1} and A ∨p A
⊥ = S .(13.12)

Thus we are led to the main theorem of this section:

13. 2. 7 Proposition. P (S) forms a complete boolean lattice. This means
in particular, that P (S) satisfies :

A∨p

∧
Bi =

∧
(A ∨p Bi) .(13.13)

A ∩
∨
p
Bi =

∨
p

(A ∩Bi) .(13.14)

PROOF. These laws are valid in any complete boolean algebra – recall the
formula u ∨ v = u ∨ (u ∧ v) implying u ∨ v ≤ u ∨ w ⇐⇒ u ∧ v ≤ u ∧ w and
thereby ∧

(a ∨ bi) = a ∨ (a ∧ x) =⇒ a ∧ x ≤ a ∧ bi (i ∈ I)

=⇒
∧

(a ∨ bi) ≤ a ∨
∧
bi (i ∈ I)

and the dual calculation. 2

13.3 Filets and z-ideals

13. 3. 1 Definition. Let a belong to S . Then the bipolar a⊥⊥ is also called
the principal polar, generated by a , and the set of all principal polars in S

is symbolized by PP (S) .

Immediately we get from 13.2.6:

13. 3. 2 Proposition. The set of principal polars of S forms a sublattice
PP(S) of the lattice of all polars.

Let f : V 7−→ V ′ be some lattice homomorphism and let V ′ have a minimum
z ′ . Then we call kernel of f the set {x | f(x) = z ′} =: ker(f) .

13. 3. 3 Proposition. a+ 7−→ a+⊥⊥ defines a homomorphism of (S+,∧,∨)
onto PP(S) , and the associated lattice congruence ∼f is the coarsest lattice
congruence of S+ with kernel {1} .
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PROOF. By evidence, ϕ is a lattice homomorphism with kernel {1} . Let
now ρ be another congruence with kernel {1} . Then from x ρ y it follows
x ∧ a = 1 =⇒ (y ∧ a) ρ 1 =⇒ y ∧ a = 1 , that is x⊥⊥ = y⊥⊥ . 2

13. 3. 4 Definition. Let S be a right normal d-monoid. Then ∼f is called
the filet-congruence on S+, and its classes F (a) are called the filets of S+ .

So, keep in mind, a+ ∼f b
+ is equivalent to a+⊥⊥ = b+⊥⊥ .

13. 3. 5 Proposition. The filets of a right normal d-monoid are convex and
closed under multiplication, ∧, and ∨ .

PROOF. (13.1) implies a+⊥⊥ = b+⊥⊥ =⇒ a+⊥ = b+⊥ =⇒ (a+b+)⊥⊥ =
(a+a+)⊥⊥ = a+⊥⊥ . The rest follows from (13.8) and (13.9). 2

13. 3. 6 Proposition. If F is the filet of a+ , then F c is equal to a⊥⊥ .

PROOF. First x+ ∈ F =⇒ x+⊥⊥ = a+⊥⊥ =⇒ x+ ∈ a+⊥⊥ ⊆ | a |+⊥⊥ = a⊥⊥ ,

that is F ⊆ a⊥⊥ , and thereby F c ⊆ a⊥⊥ .

Suppose now x ∈ a⊥⊥ . Then it results, recall u⊥⊥ = |u|⊥⊥, x+ ∨ a+ ∈ a⊥⊥ ⊆
a+⊥⊥, implying (x+ ∨ a+)⊥⊥ = x+⊥⊥ ∨ a+⊥⊥ = a+⊥⊥ , that is x+ ∨ a+ ∈ F ,
and hence x ∈ F c since x ≤ x+ ∨ a+ ⊆ F ⊆ F c , meaning a⊥⊥ ⊆ F c . 2

13. 3. 7 Definition. A z-ideal is a c-ideal, closed w. r. t. to ∼f .

By 13.3.6 any z-ideal A satisfies a ∈ A =⇒ a⊥⊥ = | a |⊥⊥ ⊆ A.

13. 3. 8 Proposition. Let S be a d-monoid. Then the following are pairwise
equivalent:

(i) A is a z-ideal.

(ii) A is union of an up-directed set of bipolars.

(iii) A is union of all elements of some sublattice of PP(S) .

(iv) A is union of all elements of some sublattice of P(S) .

(v) A is union of an up-directed set of polars.

PROOF. (i) =⇒ (ii) . First, by assumption of (i) we are led to the im-
plication: x ∈ A+ =⇒ F (x) ⊆ A =⇒ C(F (x)) ⊆ A =⇒ x⊥⊥ ⊆ A ,
i. e. A =

∪
x⊥⊥ (x ∈ A+) . Furthermore we get x, y ∈ A+ =⇒ x ∨ y ∈

x⊥⊥ ∨ y⊥⊥ = (x ∨ y)⊥⊥ ⊆ A .
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(ii) =⇒ (iii) . Let A =
∪
xi

⊥⊥ (i ∈ I) for some up-directed system xi
⊥⊥ .

Then the system of all x⊥⊥ ⊆ xj
⊥⊥ (∃ j ∈ I) satisfies obviously the assertion.

(iii) =⇒ (iv) =⇒ (v) holds a fortiori.

(v) =⇒ (i) . Consider A =
∪
Ai

⊥ (i ∈ I) with some up-directed system of
polars Ai

⊥ . Here we get y+ ∼f x
+ ∈ Aj

⊥ (∃ j ∈ I) =⇒ y ∈ y⊥⊥ ⊆ Aj
⊥⊥ ⊆

A . 2

Next we present a characterization of filet respecting congruences.

13. 3. 9 Proposition. Let h be a homomorphism from some d-monoid S

onto some d-monoid T . Then the following are equivalent:

(i) a⊥ = b⊥ =⇒ h(a)⊥ = h(b)⊥

(ii) H := ker (h) forms a z-ideal.

PROOF. (i) =⇒ (ii) . Let (i) be satisfied and suppose h(a) = e . Then

b⊥ = a⊥ & a ∈ H =⇒ h(b)⊥⊥ = h(a)⊥⊥ = {e}
=⇒ h(b) = e
=⇒ b ∈ H .

(ii) =⇒ (i) . First we show h(a)⊥ ⊇ h(a⊥⊥)⊥ and thereby

h(a)⊥ = h(a⊥⊥)⊥ .(⋆)

OBSERVE: h(x) ∈ h(a)⊥ =⇒ h(|x|) ∧ h(|a|) = h(1)
=⇒ h(|x| ∧ |a|) = h(1)
=⇒ |x| ∧ |a| ∈ ker(h))
=⇒ (|x| ∧ |a|)⊥⊥ ⊆ ker(h)
=⇒ x⊥⊥ ∩ a⊥⊥ ⊆ ker(h)
=⇒ x ∧ y ∈ ker(h) (∀y ∈ a⊥⊥)
=⇒ h(x) ∧ h(y) = h(1) (∀y ∈ a⊥⊥)
=⇒ h(x) ∈ h(a⊥⊥)⊥ .

Now by (⋆) we get

a⊥ = b⊥

=⇒
h(a)⊥ = h(a⊥⊥)⊥ = h(b⊥⊥)⊥ = h(b)⊥ ,



192 CHAPTER 13. POLARS

which had to be proven. 2

Finally we show:

13. 3. 10 Proposition. Let S be a right normal d-monoid. Then the fol-
lowing are pairwise equivalent:

(i) Any c-ideal C is a z-ideal.

(ii) Each a of S satisfies ac = a⊥⊥ .

(iii) a⊥⊥ = b⊥⊥ is equivalent to ac = b c .

PROOF. (i) =⇒ (ii) . ac ⊆ a⊥⊥ is always satisfied, and condition (i)
implies that any z-ideal of type ac satisfies a⊥⊥ ⊆ ac , by definition.

(ii) =⇒ (iii) is obvious.

(iii) =⇒ (i) . Condition (iii) entails

b ∼f a ∈ C =⇒ a⊥⊥ = b⊥⊥ =⇒ bc = ac ⊆ C =⇒ b ∈ C . 2

13.4 Minimal prime c-Ideals

Minimal prime c-ideals on the one hand and polars on the other hand are
closely connected. It turns out that any prime c-ideal is a z-ideal, that is
a union of polars whereas any polar is the intersection of minimal prime
c-ideals. We start by verifying the second assertion.

13. 4. 1 Proposition. Any A⊥ ̸= S of a d-monoid S is the intersection of
all minimal prime c-ideals, not containing A .

PROOF. We show, that A⊥ is the intersection of all values of elements of
A and then that all minimal prime c-ideals, not containing C , contribute to
this intersection.

Since A⊥ is a c-ideal, A⊥ can be extended w. r. t. any a ∈ A to some value of
a . We consider the intersection D of all values of this type. Then it follows
D = A⊥ , since otherwise, there would exist some x+ ∈ D\A⊥ and some
a+ ∈ A , with x+ ∧ a+ ∈ D\A⊥ , a contradiction !



13.4. MINIMAL PRIME C-IDEALS 193

Finally any minimal prime c-ideal P ̸⊇ A , contributes to the intersection,
since a ̸∈ P =⇒ P ⊇ a⊥ =⇒ P ⊇ A⊥ . 2

As shown above, the mapping M −→ S+\M provides a bijection between the
set of all minimal prime c-ideals and the set of all ultrafilters of S+ and this
mapping provides, in a canonical manner, a bijection between the set of all
minimal prime c-ideals of S and the set of all ultrafilters of the lattice PP(S),
since the mapping a+ 7−→ a⊥⊥ provides a surjective lattice homomorphism
of (S+,∧,∨) onto PP(S) with 1 ̸= a+ 7−→ a⊥⊥ ̸= {1} .

13. 4. 2 Proposition. Let P be a proper prime c-ideal of S . Then the
following are pairwise equivalent:

(i) P is a minimal prime c-ideal.

(ii) P =
∪
x⊥ (x ̸∈ P ) .

(iii) y ∈ P =⇒ y⊥ ̸⊆ P .

PROOF. (i) =⇒ (ii) . Let P be prime. Then we get x ̸∈ P =⇒ x⊥ ⊆ P .
Let now P be even minimal prime. Then S+\P forms an ultrafilter, whence
for each x+ ∈ P there exists some y+ ∈ S+\P with x+⊥ y+. Consequently
the cone of P and thereby the whole of P is exhausted by

∪
x⊥ (x ̸∈ P ) .

(ii) =⇒ (iii) . In case of (ii) any y ∈ P is orthogonal to at least one x /∈ P .

(iii) =⇒ (i) . In case of (iii) the set S+\P is an ultrafilter. 2

The previous result implies the stronger proposition

13. 4. 3 Proposition. Let C be a c-ideal of S and let U be an ultrafilter of
C+ . Then the set

∪
x⊥ (x ∈ U) forms a minimal prime c-ideal P in S , and

any minimal prime M ̸⊇ C arises this way.

PROOF. Let U be an ultrafilter in C. We show first, that the subset V :=
{x | ∃ u ∈ U : x ≥ u} is an ultrafilter in S+ . This will prove the first part. To
this end let x ∈ S+\V and u be arbitrary chosen in U , and thereby elements
also of V . Then it holds x ∧ u ∈ C\U , since otherwise x must belong to V .
Consequently there exists some y ∈ U with x ∧ u ∧ y = 1 and thereby some
u ∧ y ∈ V with x ∧ (u ∧ y) = 1.

Let now M be an arbitrary minimal prime c-ideal of S, not containing C.
We define V := S+\M and U = V ∩ C. Thus we get U as an ultrafilter in
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C+, and the elements x ≥ u ∈ U form an ultrafilter in S+, containing the
ultrafilter V , because v ≥ u ∧ v ∈ U . Hence, according to the first part, this
ultrafilter must be equal to V . But, because 1 ≤ u ≤ v =⇒ v⊥ ⊆ u⊥ this
leads to M =

∪
v⊥ (v ∈ V ) =

∪
u⊥ (u ∈ U). 2

Finally we mention, as a certain application of 13.4.1 and as a generalization
of proposition 13.4.2.

13. 4. 4 Corollary. Let P a prime c-ideal of S . Then the intersection D of
all minimal prime c-ideals, contained in P , equals N :=

∪
x⊥ (x ̸∈ P ) .

PROOF. By evidence, it holds N ⊆ D .

Start now from a ∈ D\N . Then it follows | a | ∧ | x | ̸= 1 (∀x ̸∈ P ). Hence,
in this case, the set of all x with | a | ∧ |x | ̸= 1 (| x | ∈ S+\P ) is a filter
F , containing S+\P and embedded in an ultrafilter U , containing a. So
S+\U would be a minimal c-ideal, contained in P , but not containing a , a
contradiction! 2

13.5 Direct Factors

Let S and T be two d-semigroups. Then also their direct product is a
d-semigroup. But there need not be substructures of this direct product,
isomorphic with the starting d-semigroups S , T unless S and T are not
both monoids, that is, like other algebraic structures, also in the case of d-
semigroups to be a direct product does not imply to admit an inner decom-
position. Hence, admitting an inner decomposition is stronger then arising
from direct (outer) factors. In spite of this we will speak of direct factors
instead of inner direct factors.

Henceforth, in this section, we will consider c-ideals as substructures. There-
fore c-ideals will be called c-monoids of S , here. Again, recall the distribu-
tivity of the lattice of all c-monoids of a d-monoid.

13. 5. 1 Lemma. Let S be a d-monoid. Then any inner direct decomposi-
tion S+ induces an inner direct decomposition of S .

PROOF. Let a ∈ S and suppose S+ = S+
1 ×S+

2 . Then it follows ∆:

a = (a+)(a−) = (a+1 · a+2 ) · (a∗2 · a∗1)−1 = (a+1 · a∗1
−1) · (a+2 · a∗2

−1).
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Hence it holds S = S1 · S2 . But it follows as well S1 ∩ S2 = {1} , because
a ∈ S1 ∩S2 =⇒ | a | ∈ S1 ∩S2 =⇒ a = 1 . It remains to verify uniqueness. To
this end, let a = uv = xy with u, x ∈ S1 and v, y ∈ S2 . Then it results

u · v = x · y
=⇒ (u+v+) · (v∗u∗)−1 = (x+y+) · (y∗x∗)−1

=⇒ (u+v+) · (y∗x∗) = (x+y+) · (v∗u∗)

=⇒ u+ = x+ & u∗ = x∗ & v+ = y+ & v∗ = y∗

=⇒ u = x & v = y.

Thus we are through. 2

13. 5. 2 Proposition. Let S be a d-monoid and let A , B be c-monoids in
S . Then it holds S = A⊗B iff S = A ·B , A = B⊥ and B = A⊥.

PROOF. | a | ∧ | b | ̸= 1 would mean that | a | ∧ | b | has different decompo-
sitions. Hence the condition is necessary. But, by the rules of arithmetic it
is also sufficient, since the positive elements are uniquely decomposed. 2

Next we get

13. 5. 3 Proposition. A c-monoid A is a direct factor of S if it satisfies
A · A⊥ = S , and in this case it satisfies moreover A = A⊥⊥ .

PROOF. A ·A⊥ = S implies A⊥⊥ ·A⊥ = S with A = A⊥⊥ , the rest is clear.
2

13. 5. 4 Corollary. Let C be a c-monoid in S . Then A⊥ is a direct factor
of C , iff A⊥ ⊆ C ⊆ A⊥A⊥⊥ .

Now we are in the position to prove:

13. 5. 5 Proposition. Let A , B be direct factors of S . Then it holds

(A ∩B)⊥ = A⊥ ∨B⊥ = A⊥ ·B⊥ .

PROOF. If A, B are direct factors, we get first

AA⊥ = S = BB⊥ =⇒ (A ∩B)(A⊥ ∨B⊥) = S
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with (A ∩ B) ∩ (A⊥ ∨ B⊥) = {1} . So, (A ∩ B)⊥ = A⊥ ∨p B
⊥ , whereby we

get
A⊥ ∨p B

⊥ = A⊥ ·B⊥ ,

by the equations (A ∩ B) · (A⊥B⊥) = S and A⊥B⊥ ⊆ A⊥ ∨p B
⊥ , and the

uniqueness of complements in distributive lattices. 2

13. 5. 6 Corollary. The direct factors of any d-monoid form a boolean sub-
lattice of the lattice of polars.

By a directly indecomposable d-monoid one means a d-monoid, not containing
any non trivial direct factor , like for instance linearly ordered d-monoids or
the ℓ-groups with 0 .

As a less trivial example we present the additive ℓ-group of continuous func-
tions f : R −→ R . Here, for instance, the function f : x 7−→ 1 has no
decomposition into orthogonal components, which results from continuity.

Now we turn to infinite direct products.

13. 5. 7 Definition. Let Ai (i ∈ I) be a family of c-monoids of S and let Bj

for each j ∈ I be the c-monoid, generated in S by the union of all Ai (i ̸= j) .
If then for each i ∈ I S is the direct product of Ai and Bi , then we call S
an inner direct product of the factors Ai and we write P =

⊗
Ai (i ∈ I) .

As an immediate consequence of 13.5.6 this definition leads to

13. 5. 8 Proposition. Let Ai (i ∈ I) be a family of c-monoids of S . Then
S is equal to

⊗
Ai (i ∈ I) iff S is generated by {Ai} and if in addition each

i ̸= j satisfies Ai ⊆ Aj
⊥ .

Furthermore, as an immediate consequence of 13.1.6 we get

13. 5. 9 Proposition. S =
⊗

Ai (i ∈ I) implies that any c-monoid C of
S satisfies

⊗
(Ai ∩ C) (i ∈ I) .

Thus we get next

13. 5. 10 Proposition. Suppose that S =
⊗

Ai (i ∈ I) and S =
⊗

Bj

(j ∈ J) are inner direct decompositions of S . Then
⊗

(Ai∩Bj) (i, j ∈ I×J)
is an inner direct decomposition of S , too.
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In particular this implies

13. 5. 11 Corollary. Whenever S admits a direct decomposition into directly
indecomposable components, then this decomposition is uniquely determined.
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Chapter 14

Orthogonality and Linearity

14.1 Lexicographical Extensions

An Example: Let A be a linearly ordered group and B some ℓ-group. We
put (a1, b1) < (a2, b2) iff a1 < a2 or a1 = a2 and b1 < b2 are satisfied. Then
a new ℓ-group A ◦ B is defined, called the lexicographic product of B over
A. Obviously, then A forms a prime c-monoid, which is majorized by any
positive element of S\A. This motivates the definition:

14. 1. 1 Definition. Let C be a prime c-monoid of S. Then S is called a
lexicographic extension, also a lex-extension of C, if each s ∈ S+\C majorizes
each c ∈ C .

Lex-extensions play a most important role in ℓ-group structure theory. But
we shall see that the results, presented in Bigard-Keimel-Wolfenstein,
[11], up to minimal exceptions remain valid in right normal d-monoids. As a
first result we present:

14. 1. 2 Proposition. Let C be a c-ideal of S. Then the following are
pairwise equivalent:

(i) S is a lex-extension of C .

(ii) C is prime and comparable with all c-ideals L of S .

(iii) C contains all polars, different from S .

(iv) C contains all minimal prime c-ideals of S .

(v) Any a ∈ S outside of C has exactly one value .

(vi) Any a ∈ S outside of C satisfies a⊥ = {1}.

199
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PROOF. (i) =⇒ (ii). (i) implies by definition that C is prime. Let now L
be a further c-ideal, satisfying L ̸⊆ C. Then the positive elements of L\C
majorize the set C+ . Hence we get C ⊆ L.

(ii) =⇒ (iii). In case of (ii) the c-ideal C is prime and comparable with all
polars. Hence from A⊥ ̸⊆ C it follows first A⊥⊥ ⊆ C, that is A⊥⊥ ⊆ A⊥, and
thereby next A ⊆ A⊥⊥ = {1}, which means A⊥ = S.

(iii) =⇒ (iv). Recall, any minimal prime c-ideal is a union of polars.

(iv) =⇒ (v). Consider a ̸∈ C and let V and W be values of a. Then V
and W contain minimal prime c-ideals, which themselves are contained in C.
Hence C is comparable with V and with W , and thereby contained in V and
in W . This means that V and W contain a common prime c-ideal. Hence V
and W are comparable.

(v) =⇒ (vi). Suppose 1 ̸= a⊥ b ̸= 1 with positive elements a , b and a ̸∈ C.
Then a is associated with some value W (b) and b is associated with some
value W (a). But W (a) and W (b) both admit an extension to the uniquely
determined W (a ∨ b). So we get W (a) = W (a ∨ b) = W (b), a contradiction !

(vi) =⇒ (i). By (vi) the c-ideal C is prime, according to 13.1.2 (vi), and if
x ∈ S+\C , y ∈ C+, then there exist elements x◦, y◦ with x◦ ̸∈ C such that
(x ∧ y)x◦ = x and (x ∧ y)y◦ = y are satisfied. And this implies y◦ = 1 by
assumption, and thereby y ≤ x, whence C is a lex-extension of C. 2

Nearly immediately we get

14. 1. 3 Lemma. Let C ⊆ H ⊆ S (C,H ∈ C(S)). Then S is a lex-
extension of C iff S is a lex-extension of H and H is a lex-extension of C.

PROOF. Recall 14.1.2 2

In other words: S is a lex-extension of C iff S is lex-extension of all c-monoids
between C and S.

14. 1. 4 Definition. By the lex-kernel of a d-monoid S, symbolized by
Lex (S), we mean the hull of all proper polars P of S in C(S), that is –
compare 14.1.2 – the hull of all minimal prime c-ideals.

If even Lex (S) = S, S is called lex-simple.

Otherwise, that is if Lex (S) ̸= S is satisfied, then we call S a lex-monoid.

Nearly, by definition, we get
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14. 1. 5 Lemma. A ⊇ B =⇒ Lex (A) ⊇ Lex (B) .

14. 1. 6 Lemma. S is a lex-extension of C iff Lex (S) is contained in C.

14. 1. 7 Lemma. Any linearly ordered convex submonoid of S of cardinality
≥ 2 is a lex-monoid.

Moreover S is obviously linearly ordered iff Lex (S) = {1}.

14. 1. 8 Proposition. Lex (S) is the biggest lex-simple c-monoid of S.

PROOF. If Lex (S) is a lex-extension of C, then according to the preceding
remarks S is a lex-extension of C, too, implying C = Lex (S).

Let now L with L ∈ C(S) be lex-simple. Then according to 14.1.2 (ii) it
holds Lex (S) ⊇ L or Lex (S) ⊆ L. But it cannot hold Lex (S) ⊂ L since L
is lex-simple. 2

Furthermore we get

14. 1. 9 Proposition. Let ac be the c-monoid, generated by a. Then ac is a
lex-monoid iff a has exactly one value.

PROOF. Let ac be a lex-monoid. Then a belongs to ac\Lex (ac) and has
accordingly exactly one value in ac. Hence, in this case, a has only one value
also in S recall 13.1.6.

On the other hand suppose that a has only one value in S. Then a has only
one value W in ac, too. But then W is a value also of all other elements
of ac\W . Consequently in ac any V ∈ val (k) (k ̸∈ W ) admits an extension
to W . Consequently any k ̸∈ W has exactly one value, whence ac is a lex-
monoid by 14.1.2 (v). 2

14. 1. 10 Proposition. Any pair of lex-monoids A , B of S is orthogonal
or comparable.

PROOF. Suppose that A and B are neither orthogonal nor comparable.
Then there exist two elements a ∈ A\B and b ∈ B\A with a ∧ b > 1. We
show that this implies either ac ⊆ bc or bc ⊆ ac.

By 14.1.9 both, ac and bc , are lex-monoids. So both, a and b, in S would
have values C and D, respectively, with

b ∈ B ⊆ C ∈ val (a) & a ∈ A ⊆ D ∈ val (b),
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respectively, and in addition these values would contain a common minimal
prime c-ideal M , for instance a value of a∧b. So it would result C ⊆ D V D ⊆
C, in spite of C ̸⊇ {a, b} ̸⊆ D . 2

Observe, by 14.1.10 one may conclude from the local structure of some sc to
the global structure of S and conversely from the global structure of S to
the local structure of this sc .

14. 1. 11 Proposition. Let A be a lex-monoid of S and let s ≥ 1. Then it
holds s /∈ A× A⊥ =⇒ s > a (∀ a ∈ A) .
PROOF. Let L be the lex-kernel of A, s /∈ A × A⊥ , and t ∈ A+\L, and
suppose R(s, t, s◦, t◦). Then by t = (s∧ t)t◦ /∈ L the assumption s∧ t ∈ L we
would lead first to t◦ ∈ A+\L and thereby next:

t◦ ∧ (s◦ ∧ a) = 1 (∀ a ∈ A+)
=⇒ s◦ ∧ a = 1 (∀ a ∈ A+)
=⇒ s◦ ∈ A⊥

=⇒ s ∈ A× A⊥ ,

a contradiction. Hence it holds s ≥ s∧t > L, that is s > L for all s ̸∈ A×A⊥.

It remains to show s ≥ t ∈ A+\L. To this end we consider s◦. Since t and
thereby also s∧ t belong to A+, recall s /∈ A×A⊥, also the element s◦ cannot
belong to A×A⊥. Therefore t◦ must belong to L, since otherwise t◦ ∧ s◦ ̸= 1
would follow. Thus we get s◦ ≥ t◦ ; t◦ = 1, that is s ≥ t and thereby s > A.

2

14. 1. 12 Corollary. Any lex-monoid A not upper bounded by some s /∈ A

is a direct factor of S.

14. 1. 13 Proposition. Let A and B be two c-ideals of S and let A be
properly contained in B. Then the following are pairwise equivalent:

(i) B is a lex-extension of A .

(ii) B⊥⊥ is a lex-extension of A .

(iii) For all b of B\A it holds bc⊥ = b⊥ = B⊥ .

PROOF. (i) =⇒ (ii). In case of B⊥⊥ = B, there is nothing to show. Oth-
erwise, let 1 < x ∈ B⊥⊥\B be satisfied. Then x cannot belong to B × B⊥,
observe B ×B⊥ = B ∨B⊥ and

(B ∨B⊥) ∩B⊥⊥ = (B ∩B⊥⊥) ∨ (B⊥ ∩B⊥⊥) = B ∩B⊥⊥.
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Consequently, it holds x > B, that is B⊥⊥ is a lex-extension of B and thereby
also of A .

(ii) =⇒ (iii). Let B⊥⊥ be a lex-extension of A. Then also B is a lex-
extension of A. Let now hold 1 < x ∈ B\A and x ∈ b⊥. Then any y ∈ B

satisfies the implication b⊥x =⇒ | b | ⊥ | y | ∧ | x | =⇒ | y | ∧ | x | = 1 and
thereby x ∈ B⊥. Hence, recall 14.1.2 (vi), B is a lex-extension of A .

(iii) =⇒ (i). Suppose b ∈ B\A , x ∈ B , and | b | ∧ | x | = 1 . Then by (iii) we
get |x | ∈ B ∩ b⊥ = B ∩B⊥ = {1}. So it holds (i) by 14.1.2 (vi). 2

14. 1. 14 Corollary. If B be a lex-extension of A in S then B is a maximal
lex-extension of A in S .

PROOF. According to 14.1.10 the lex-extensions C of A with B ⊆ C

form a chain. Hence there exists at most one maximal lex-extension of
the formulated type. Let now B⊥⊥ ⊆ C be satisfied, and let C be a lex-
extension of A. Then according to 14.1.13 (iii) it holds B⊥ = C⊥, that is
B⊥⊥ ⊆ C ⊆ C⊥⊥ = B⊥⊥. 2

14. 1. 15 Proposition. Let B be a lex-extension of A ̸= {1} in S. Then it
follows A⊥ = B⊥.

PROOF. B⊥ ⊆ A⊥ holds a fortiori.

Let now x ∈ A⊥ & b ∈ B . Then we get | b |∧ |x | ∈ B and | a |∧ | x |∧ | b | = 1
for all | a | of A, that is also | b | ∧ |x | ∈ A⊥ ∩B. But | b | ∧ |x | belongs to A,
since | b | ∧ | x | ∈ B\A would imply | b | ∧ | x | ≥ | a | ∈ A+ implying A = {1},
a contradiction !

Hence we get | b |∧| x | ∈ A and thereby | b |∧| x | ∈ A∩A⊥, i.e. | b |∧| x | = 1,
meaning | x | ∈ B⊥, thus leading all at all to A⊥ ⊆ B⊥ . 2

Again we emphasize:

14. 1. 16 Corollary. In case of {1} ̸= A ∈ C(S) the lex-extensions of A

form a chain with maximum A⊥⊥ .

Henceforth we study the relations between the linearly ordered c-ideals of S
on the one hand, and the polars and minimal prime c-ideals of S on the other
hand. First of all we get:
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14. 1. 17 Proposition. Let P be a proper polar of S. Then the following
are pairwise equivalent:

(i) P is linearly ordered.

(ii) P is maximal in the set of all linearly ordered c-ideals.

(iii) P⊥ is prime.

(iv) P⊥ is minimal prime.

(v) P⊥ is a maximal polar.

(vi) P is a minimal polar.

PROOF. (i) =⇒ (ii). Let (i) be satisfied and let C be a linearly ordered
sup-c-ideal of P . Then according to 14.1.7 C is a lex-extension of P with
C ⊇ P , and, according to 14.1.13, along with C also C is a lex-extension of
P and according to 14.1.16 P is a maximal lex-extension of P in S . This
provides C⊥⊥ ⊇ P⊥⊥ = P ; C = P .

(ii) =⇒ (iii). Suppose R(x, y, x◦, y◦) and x∧y ∈ P⊥ , but x◦ , y◦ /∈ P⊥. Then
for some a+, b+ ∈ P we get 1 ̸= x◦ ∧ a+ ∈ P & 1 ̸= y◦ ∧ b+ ∈ P . Since P is
linearly ordered, from this follows x◦∧y◦ > 1 , a contradiction ! Consequently
P⊥ is prime.

(iii) =⇒ (iv), since – according to 13.4.1 – any polar is an intersection of
minimal prime c-ideals.

(iv) =⇒ (v). Let P⊥ be minimal prime and P⊥ ⊆ Q⊥ ⊆ M with some
minimal prime c-ideal M . Then it results P⊥ = Q⊥.

(v) =⇒ (vi). Observe the antitonicity of A 7−→ A⊥ in the boolean algebra of
the polars.

(vi) =⇒ (i). Let x , y ∈ P be satisfied and assume R(x, y, x◦, y◦). Then
x◦ ̸= 1 implies first P = x◦⊥⊥, since P is minimal. This leads further to
y◦ ∈ x◦⊥ ∩ x◦⊥⊥, that is to y◦ = 1 and thereby to y ≤ x. 2

Next we get:

14. 1. 18 Proposition. Let C be a convex set of S with 1 ∈ C. Then the
following are pairwise equivalent:

(i) C is linearly ordered.

(ii) C⊥⊥ is linearly ordered.

(iii) Cc is linearly ordered.
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PROOF. (i) =⇒ (ii). In case of C⊥⊥ = {1} we are through. Otherwise,
suppose 1 ̸= x ∈ C⊥⊥. Then x does not belong to C⊥. Hence, w. r. t. x,
there exists at least one cx ∈ C with x ∧ cx ̸= 1 . Consequently any pair
of positive elements of C⊥⊥, different from 1 , is not orthogonal, since C is
linearly ordered . So from R(a, b, a◦, b◦) it results a◦ = 1 V b◦ = 1. But
hereby any two elements of C⊥⊥ are comparable.

(ii) =⇒ (iii) =⇒ (i) is evident. 2

14. 1. 19 Corollary. The linearly ordered polars of S are exactly the maxi-
mal convex chains containing 1, in other words through 1.

PROOF. Let P be a linearly ordered polar and C ⊇ P a maximal convex
chain. Then, according to 14.1.18, we get C = C⊥⊥ and, according to 14.
1.17, we obtain C = P , since P is a polar and C = C⊥⊥ ⊇ P is a minimal
polar. 2

14. 1. 20 Corollary. Let C be a maximal convex chain through 1, and
without upper bound, not belonging to C. Then C is a c-monoid of S and a
direct factor.

PROOF. Observe 14.1.12 2

As an example we give {pn} (n ∈ N)o with prime numbers p as a maximal
convex chain of (N, ·,GGT) through 1.

If, however we adjoin the zero element 0, then there is an “outer” upper
bound, and a direct decomposition is no longer possible.

On the other hand, that also maximal chains with outer upper bound may
be direct factors, is shown by the boolean algebra. Here any convex chain of
type (1, p), where p is an atom, is a proper direct factor.

14. 1. 21 Corollary. For strictly positive elements the following are pairwise
equivalent:

(i) The interval [ 1, a ] is linearly ordered .

(ii) a⊥⊥ is linearly ordered .

(iii) ac is linearly ordered .

This suggests to define:
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14. 1. 22 Definition. Let S be a d-monoid. We call a ∈ S basic in S, if
[ 1, a ] is linearly ordered .

Obviously any pair of basic elements is orthogonal or comparable. Further-
more – according to 14.1.9 and 14.1.2 – any basic element has exactly one
value.

14.2 d-Monoids with a Base

14. 2. 1 Definition. Let S be a d-monoid and B a subset of S. Then B is
called orthogonal, if B satisfies:

(i) Any b ∈ B is strictly positive.

(ii) Any two elements of B are orthogonal.

Obviously, by Zorns lemma it holds:

14. 2. 2 Lemma. Any orthogonal subset of S admits an extension to a
maximal orthogonal subset.

Furthermore, without any difficulty, we get:

14. 2. 3 Lemma. An orthogonal subset U is maximal iff U⊥ = {e} or
equivalently, iff U⊥⊥ = S is satisfied.

14. 2. 4 Definition. By a base we mean a maximal orthogonal subset B of
S, whose elements are basic. Furthermore we call S basic, if S has a base.

The set of bases of S is closely connected with the set of polars of S.

14. 2. 5 Proposition. Let S be a right normal d-monoid. Then the follow-
ing are pairwise equivalent:

(i) S has a base.

(ii) Any a > 1 majorizes at least one basic element.

(iii) The algebra of polars is atomic.

(iv) Any polar, different from S, is an intersection of maximal polars.

(v) {1} is an intersection of maximal polars.
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PROOF. (i) =⇒ (ii). Let B be a base and let a not belong to B. Then,
for at least one b ∈ B it holds a ̸⊥b, that is 1 ̸= a ∧ b < b and thereby
(a ∧ b)⊥⊥ ⊆ b⊥⊥. Hence (a ∧ b)⊥⊥ is linearly ordered , whence a ∧ b is basic.

(ii) =⇒ (iii). Let A be a polar and let b be a basic element of A. Then it
holds b⊥⊥ ⊆ A , and it is b⊥⊥ a minimal polar, according to 14.1.17.

(iii) =⇒ (iv). Let B be an arbitrary boolean algebra. Then 0 ̸= a <
∧
mi,

where mi = pi and pi is an atom, would provide a prime element p with
p ≤

∧
(mi ∧ a) and co-atom p ≥ a & p ̸≥

∧
mi. Hence it holds a =

∧
mi.

(iv) =⇒ (v) a fortiori.

(v) =⇒ (i). Let Pi (i ∈ I) the family of the maximal polars. Then any Pi
⊥

is a linearly ordered bi
⊥⊥. Hence any bi is basic, and it is clear that any two

different bi , bj are orthogonal.

So, it suffices to show, that the set {bi} of these elements forms a base,
that is that {bi}⊥ = {1} is satisfied. To this end let x ∈ bi

⊥ (∀i ∈ I) be
satisfied. Then it follows bi

⊥ = Pi, because bi
⊥ ⊇ Pi

⊥⊥ = Pi, and thereby
x ∈

∩
bi
⊥ =

∩
Pi = {1}. 2

14.2.5 (ii) implies immediately:

14. 2. 6 Corollary. A right normal d-monoid S is basic iff its c-ideals are
basic.

Maximal polars are minimal prime c-ideals. Hence 14.2.5 tells that in any
right normal d-monoid with a base there exists a family of prime c-ideals
whose intersection is equal to {1}. This theorem is strengthened by

14. 2. 7 Proposition. A right normal d-monoid S is basic iff there exists
a minimal family of prime c-ideals Pi (i ∈ I) with

∩
Pi (i ∈ I) = {1} and

∩
Pi (i ̸= j ∈ I) ̸= {1} .

PROOF. (a) Let the condition be satisfied.

First of all prime c-ideals P satisfy either P⊥⊥ = P or P⊥⊥ = S. For, because
P ⊆ P⊥⊥ the bipolar P⊥⊥ is prime according to 13.1.2. Hence P⊥⊥ is equal
to S or – according to proposition 14.1.17 – P⊥⊥ is a maximal polar and
thereby a minimal prime c-ideal of S.



208 CHAPTER 14. ORTHOGONALITY AND LINEARITY

Let now F be a minimal family in the sense of the theorem with P ∈ F ,
and let D be the intersection of all Q of F , different from P . Then, because
D∩P = {1} it follows first P⊥ ⊇ D ̸= 1, that is P = P⊥⊥ ̸= S, whence next,
according to 14.1.17, P is a maximal polar. Consequently F is a subfamily
of the family of all maximal polars of S.

Let on the other hand C be a maximal polar, that is also a minimal prime
c-ideal. Then there exists an element a with C = a⊥ and some P ∈ F with
a /∈ P . But this implies C = a⊥ ⊆ P , that is C = P , since C is chosen
maximal. Hence P is a polar. Consequently S has a base.

(b) Let now S have a base. Then by 14.2.5 (v) the set {1} is equal to the
intersection of all maximal polars, whence it remains only to prove, that the
family of maximal polars is minimal in the sense of the theorem. But this
follows, since the elements bi, chosen below 14.2.5 in (v) =⇒ (i), form a base,
that is satisfy the condition bi ∈ bj

⊥ (j ̸= i ∈ I), whence bi ∈ Pj
⊥⊥ = Pj

(j ̸= i ∈ I). 2

In the remainder of this section, but only here, let S be even a d-monoid
with complementary cone. Then the congruences of S correspond uniquely
to the invariant c-ideals, which may be accepted by the reader here, and it
holds:

14. 2. 8 Proposition. A d-monoid S with complementary cone has exactly
one irreducible representation, if S is representable and has a base.

PROOF. Let S be representable. Then the polars are invariant, and if in
addition S has a base, then, according to 14.2.7, there exists a 1-disjoint
family of invariant polars. Consequently there is an irreducible representation
of S, recall 14.2.7.

If, on the other hand, S admits an irreducible representation, then there
exists a minimal family Pi of prime c-ideals with

∩
Pi = {1}. 2

14. 2. 9 Corollary. Let S be a right normal d-monoid with complementary
cone. Then any two irreducible representations are generated by the same
c-ideals.

14.3 Ortho-finite d-Monoids

14. 3. 1 Definition. Let S be a right normal d-monoid. An element a is
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said ro have height n, if there exists a maximal chain of polars below a⊥⊥ of
length n

By the rules of modularity all maximal chains of the above type have length
n, if one has length n .

14. 3. 2 Proposition. Let S be a right normal d-monoid. Then the follow-
ing are pairwise equivalent:

(i) a has height n .

(ii) There exists a maximal chain
{1} ⊂ P1 ⊂ P2 . . . ⊂ Pn = a⊥⊥ of polars Pi below a⊥⊥ .

(iii) a⊥⊥ has a base of length n .

(iv) a belongs to all minimal prime c-ideals except for at most n .

(v) If M is an orthogonal set below a then M contains at most n ele-
ments.

PROOF. (i) =⇒ (ii) holds by definition.

(ii) =⇒ (iii). Assume (ii) and let {1} ⊂ P1 ⊂ · · · ⊂ Pn = a⊥⊥ be a chain in
the sense of the theorem. Then the sets Pi+1∩Pi

⊥ are pairwise 1-disjoint and
thereby linearly ordered. For, suppose that the elements x , y ∈ Pi+1 ∩ Pi

⊥

with R(x, y, x◦y◦) are incomparable. Then, also x◦ and y◦ would belong to
Pi+1∩Pi

⊥, and the polar, generated by Pi
⊥ and x◦, would lie strictly between

Pi and Pi+1, since it would hold Pi ⊂ (Pi ∪ {x})⊥⊥ ⊆ Pi+1\{y} , the latter,
since y ̸= 1 belongs to Pi

⊥ and thereby does not belong to to Pi
⊥⊥.

(iii) =⇒ (iv). We show a bit more, namely: Let (a1, . . . , an) be a base of
a⊥⊥. Then a does exactly not belong to the maximal polars and thereby
minimal prime c-ideals ai

⊥ (1 ≤ i ≤ n).

So, let (a1, . . . , an) be a base of a⊥⊥. Then, for instance, the carrier of the
submonoid generated by (a2, . . . , an) is equal to a1

⊥ , that is to a polar, whence
in case of a ∈ a⊥1 it must follow a⊥⊥ ⊆ a⊥1 , a contradiction ! Hence, a cannot
belong to any ai

⊥, which are maximal polars and thereby minimal prime
c-monoids.

Let now M be minimal prime and a ̸∈ M . Then a⊥ ⊆ M and no ai can
belong to M , since ai ∈M =⇒ a⊥⊥

i = M would lead to a ∈ a⊥⊥ ⊆ a⊥i .

(iv) =⇒ (v). Let a1, . . . , am ≤ a be pairwise orthogonal. We form the chain

a1
⊥, (a1 ∨ a2)⊥, . . . , (a1 ∨ a2 ∨ . . . ∨ am)⊥ .
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This chain provides – analogously w. r. t. the procedure below (ii) =⇒ (iii)
– m pairwise orthogonal basic elements with LUB, say b. Then, like below
(iii) =⇒ (iv) we conclude, that b , and thereby also a does not belong to
exactly m minimal prime c-ideals. This means m ≤ n.

(v) =⇒ (i), since a chain in the sense of the proposition of a greater length
than n would lead to more that n many pairwise orthogonal elements below
a, consult the proof of (ii) =⇒ (iii). 2

The next proposition concerns the case of a global n.

14. 3. 3 Proposition. Let S be a right normal d-monoid. Then the follow-
ing are pairwise equivalent:

(i) a is of finite height.

(ii) Any z-ideal Z satisfies a ∈ Z⊥⊥ =⇒ a ∈ Z .

(iii) Any upper bounded orthogonal set is finite.

(iv) The set of the special polars P ⊇ a⊥⊥ satisfies the maximal condi-
tion.

(v) The set of the polars, contained in a⊥⊥, is finite.

PROOF. (i) =⇒ (ii). Let a belong to Z⊥⊥ and let (a1, . . . , an) be a base
of a⊥⊥. Then it holds ai ∈ Z⊥⊥ (1 ≤ i ≤ n), that is ai ̸∈ Z⊥. Consequently
for each 1 ≤ i ≤ n there exists an element zi ∈ Z with 1 < ai ∧ zi. But
ai is basic. Hence ai

⊥⊥ is a minimal polar. This leads next to ai ∈ ai
⊥⊥ =

(ai ∧ zi)⊥⊥ ⊆ zi
⊥⊥ ⊆ Z. Thus we get a ∈ a⊥⊥ = (a1 ∨ . . . ∨ an)⊥⊥ ⊆ Z.

(ii) =⇒ (iii). Let {ai} (i ∈ I) be maximal in the set of all orthogonal sets
upper bounded by a. We consider the union Z of all b⊥⊥ with b ∈

∨
ai

c.
Then Z is the z-ideal, generated by the elements ai, and by a⊥⊥ ⊇ (

∨
ai

c)⊥⊥

it follows a⊥⊥ = (
∨
ai

c)⊥⊥ since the polars form a boolean algebra, and this
leads to a ∈ a⊥⊥ = (

∨
ai

c)⊥⊥ = Z⊥⊥ =⇒ a ∈ Z. Hence there exists an
element b ∈

∨
ai

c with a ∈ b⊥⊥. On the other hand there exists a finite
subset J of I with b ∈

∨
aj

c (j ∈ J). But, this implies I = J . For, assume
that ak is an ai with k ̸∈ J . Then, on the one hand it would follow b ∈ ak

⊥

and thereby on the other hand a ∈ b⊥⊥ ⊆ ak
⊥, that is ak ∈ a⊥ ∩ a⊥⊥.

(iii) =⇒ (iv). As shown above, any proper chain of polars provides an
orthogonal set of at least as many elements as the chain has members.



14.3. ORTHO-FINITE D-MONOIDS 211

(iv) =⇒ (v). The set of polars forms a boolean d-monoid, and the com-
plement of a maximal polar is a minimal polar. So, if there are infinitely
many minimal, and thereby atomic polars, then there exists also an infinite
ascending chain of polars, a contradiction !

(v) =⇒ (i) is evident. 2

14. 3. 4 Corollary. For a right normal d-monoid S the following are pair-
wise equivalent:

(i) Any positive a is of finite height .

(ii) Any upper bounded orthogonal set is finite .

(iii) Any z-ideal is a polar .

Inspired by 14.3.3 we give:

14. 3. 5 Definition. A right normal d-monoid is called ortho-finite, if any
upper bounded orthogonal set is finite.

14. 3. 6 Proposition. Let S be a right normal d-monoid. Then the follow-
ing are pairwise equivalent:

(i) S contains a finite base.

(ii) S is equal to some a⊥⊥ with an element a of finite height.

(iii) S has only finitely many minimal prime c-ideals.

(iv) S has only finitely many polars.

(v) Any orthogonal set of S is finite.

PROOF. (i) =⇒ (ii). Consult the preceding developments and 14.3.2.

(ii) =⇒ (iii) is again a consequence of 14.3.2.

(iii) =⇒ (iv), since any polar is the intersection of minimal prime c-ideals.

(iv) =⇒ (v), since, along with the elements ai also the bipolars ai
⊥⊥ are

pairwise orthogonal.

(v) =⇒ (i) . Choose a maximal orthogonal set {ai} (1 ≤ i ≤ n) and put
a1 ∨ . . . ∨ an =: a. This leads to S = a⊥⊥ by 14.3.2. 2
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14.4 Projectable d-Monoids

14. 4. 1 Definition. A d-monoid S is called projectable, if it satisfies:

a⊥ × a⊥⊥ = S (∀a ∈ S) ,(PR)

that is if S can be projected to any a⊥⊥.

Furthermore S is called semi-projectable, if S satisfies:

(a ∧ b)⊥ = a⊥ ∨ b⊥ .(SP)

14. 4. 2 Proposition. Let S be a projectable right normal d-semigroup.
Then S is also semi-projectable.

PROOF. Choose some a , b ∈ S. Then it holds a⊥ × a⊥⊥ = S = b⊥ × b⊥⊥

and thereby a⊥ ∨ a⊥⊥ = S = b⊥ ∨ b⊥⊥. This implies

(a⊥ ∨ b⊥) ∨ (a⊥⊥ ∩ b⊥⊥) = S = (a⊥ ∨ b⊥) ∨ (a ∧ b)⊥⊥

with 1-disjoint components.

Hence we get further S = (a⊥ ∨ b⊥) · (a ∧ b)⊥⊥ and thereby

a⊥ ∨ b⊥ = (a ∧ b)⊥⊥⊥ = (a ∧ b)⊥ . 2

14. 4. 3 Proposition. Any right normal projectable d-monoid is repre-
sentable .

PROOF. By definition we get s · a⊥ = a⊥ · s. Consider now

xay ∧ ubv = x(a ∧ b)a◦y ∧ u(a ∧ b)b◦v with a◦ ∈ b⊥, b◦ ∈ a⊥. Then there are
elements a∗ ∈ b⊥, b∗ ∈ a⊥ with

xay ∧ ubv = x(a ∧ b)ya∗ ∧ u(a ∧ b)vb∗
≤ (x(a ∧ b)y ∨ u(a ∧ b)v)(a∗ ∧ b∗)
≤ xby ∨ uav .

.
Thus according to the remark below 6.1.2 the proof is complete. 2

Semi-projectable d-monoids are defined by notions on polars. Corresponding
to this definition we get for prime c-ideals
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14. 4. 4 Proposition. A right normal d-monoid S is semi-projectable iff
any proper prime c-ideal contains one and only one minimal prime c-ideal,
namely

∪
x⊥ (x ̸∈ P ) =: N .

PROOF. Let S be semiprojectable and let P be properly prime and con-
taining the minimal primes A , B. Then there are elements a, b satisfying
a ∈ A\B, b ∈ B\A, whence even an orthogonal pair a◦ ∈ A\B, b◦ ∈ B\A
exists with a◦⊥ ⊆ B and b◦⊥ ⊆ A. But this leads to

S = (a◦ ∧ b◦)⊥ = a◦⊥ ∨ b◦⊥ = P

a contradiction ! Hence the condition is necessary.

Now we show, that the condition is sufficient. To this end, observe, that
it always holds a⊥ ∨ b⊥ ⊆ (a ∧ b)⊥. Suppose next that x ̸∈ a⊥ ∨ b⊥ and
let P be a value of x with P ⊇ a⊥ ∨ b⊥. Then – according to 13.4.2 –
the union N =

∪
x⊥ (x ̸∈ P ) is the uniquely determined minimal prime c-

ideal, contained in P . Since a⊥ and b⊥ are contained in P , it further follows
a , b ̸∈ N , that is a∧ b ̸∈ N and thereby (a∧ b)⊥ ⊆ N ⊆ P . So, by x /∈ P we
are led to x ̸∈ (a ∧ b)⊥. Hence it holds condition (SP). 2

It is our next aim to characterize the class of projectable d-monoids like we
did w. r. t. the class of semi-projectable d-monoids.

14. 4. 5 Proposition. Let P be a proper prime c-ideal. Then the union
of all prime z-ideals, contained in P , is equal to the set of all p ∈ P with
p⊥⊥ ⊆ P .

PROOF. Let p belong to some prime z-ideal, contained in P . Then by
definition it follows p⊥⊥ ⊆ P . So, it remains to show that for each p ∈ P
with p⊥⊥ ⊆ P there exists a prime z-ideal Z ⊆ P with p ∈ Z.

To this end we define F := {x⊥⊥ |x ̸∈ P} . Then F forms a filter in the
lattice of all bipolars of S, not containing p⊥⊥. Hence, we are in the position
to extend F to some maximal filter H of this type. We define furthermore
Z := {z | z⊥⊥ ̸∈ H} and shall verify, that this Z fits.

First we verify that Z is closed under the relevant operations. This is evident
w. r. t. all operations except for the multiplication. So, choose some a , b ∈ Z.
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Then w. r. t. multiplication we get:

a, b ∈ Z ; a⊥⊥ , b⊥⊥ ̸∈ H
=⇒

∃x⊥⊥, y⊥⊥ ∈ H : a⊥⊥ ∩ x⊥⊥ ⊆ p⊥⊥ ⊇ b⊥⊥ ∩ y⊥⊥ ,

which, on the grounds of s⊥⊥ = | s |⊥⊥ leads to

(ab)⊥⊥ ∩ (|x | ∧ | y |)⊥⊥ = (a⊥⊥ ∨ b⊥⊥) ∩ (x⊥⊥ ∩ y⊥⊥) ⊆ p⊥⊥

and thereby to (ab)⊥⊥ ̸∈ H, that is ab ∈ Z. Hence Z is closed w. r. t. to its
operations.

But, furthermore Z is a subset of P , because

z ∈ Z =⇒ z⊥⊥ ̸∈ H =⇒ z⊥⊥ ̸∈ F =⇒ z ∈ P .

Thus Z is a prime z-ideal with p ∈ Z ⊆ P . 2

Now we are in the position to show:

14. 4. 6 Proposition. A right normal d-monoid S is projectable iff any
proper prime c-ideal P contains one and only one prime z-ideal, namely
N :=

∪
x⊥ (x ̸∈ P ).

PROOF. Let S be projectable. Let Z be a prime sub-z-monoid of P . Then
it holds a ̸∈ P =⇒ a⊥ ⊆ Z and thereby furthermore N ⊆ Z. We consider
some z with 1 ≤ z ∈ Z and some s with 1 ≤ s ̸∈ P . Then it holds s = u ·v for
some u ∈ z⊥, v ∈ z⊥⊥ ⊆ Z ⊆ P and thereby with u ̸∈ P , which further leads
to z ∈ u⊥ ⊆ N . Consequently it holds Z = N , whence the above condition
is necessary.

The above condition is sufficient. For, if a⊥ × a⊥⊥ ̸= S, then there exists a
proper a⊥ × a⊥⊥ , and hence some a⊥ × a⊥⊥ containing proper prime c-ideal
P . Consequently, if Z is the uniquely determined prime z-ideal contained in
P , we get a ∈ a⊥⊥ ⊆ Z ⊆ P , and by assumption there must exist some b ̸∈ P

with a ∈ b⊥, whence we would get b ̸∈ P & b ∈ a⊥ ⊆ P , a contradiction ! 2

14.5 Lateral Completeness

14. 5. 1 Definition. A d-monoid is called laterally complete, if any orthog-
onal subset has a least upper bound.
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Laterally complete is, for instance, any right normal d-monoid with finite
base.

14. 5. 2 Proposition. Let a d-monoid S be a semigroup of ideal/filter
isomorphisms. Then S is laterally complete.

PROOF. Let {ϕi} (i ∈ I) be orthogonal. Then the carrier T (ϕi), that
is the fixpoint-free components of the domains, are pairwise disjoint. We
put xϕ = x, if x ̸∈

∪
T (ϕi), and xϕ = xϕi otherwise. Then it follows

ϕ = sup ({ϕi}) . 2

Thus we get:

14. 5. 3 Corollary. Any right normal d-monoid admits an embedding into a
laterally complete right normal d-monoid.

Furthermore it holds:

14. 5. 4 Corollary. Any direct product of linearly ordered d-monoid is lat-
erally complete. Consequently any representable d-monoid admits a laterally
complete extension.

Finally we get:

14. 5. 5 Proposition. A right normal d-monoid is a direct product of lin-
early ordered d-monoids iff it has a base, is projectable and is laterally com-
plete.

PROOF. It is nearly obvious, that any direct product of linearly ordered
d-monoids satisfies the above conditions.

On the other hand, if the above conditions do hold, and {ai} (i ∈ I) is a
base, then S is subdirectly decomposed by its polars ai

⊥. Hence, in this
case S admits also a subdirect decomposition into the factors ai

⊥⊥. But,
each element of the direct product is supremum of the orthogonal set of its
projections, and, by assumption S is laterally complete. This means that S

is isomorphic with the direct product
⊗
i∈I
ai

⊥⊥. 2
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Chapter 15

Real extensions

Real d-semigroups were introduced in the chapter on strictly archimedean
d-semigroups. Here we will study subdirect products of these special types
of d-semigroups.

15.1 Subdirect real Products

In this section we turn to the question, when an arbitrary d-semigroup admits
an embedding into an extended cube, that is into some direct product of
factors of type R• or E or E• .

15. 1. 1 Definition. Let S be a d-semigroup and let J be an ideal of S .
We call J real archimedean, if J satisfies:

u · tn · v ∈ J (u, v ∈ S , ∀n ∈ N) & a · b ∈ J =⇒ a · t · b ∈ J.

Let now S be as above and let F be a filter. We call F real primary, if F
satisfies:

a · t · b ∈ F =⇒ a · b ∈ F V u · tn · v ∈ F (∀u, v ∈ S, n ∈ N) .

Obviously J is an irreducible real archimedean ideal iff its complement S\J
is a real primary filter.

15. 1. 2 Proposition. Let S be a d-semigroup. Then the following are
pairwise equivalent:

(i) S is a subdirect product of real d-semigroups.

217
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(ii) S is a subdirect product of linearly ordered d-semigroups.

(iii) Any principal ideal is the intersection of irreducible real archimedean
ideals.

(iv) Any principal ideal is the intersection of irreducible real primary
filters.

PROOF. (i) =⇒ (ii) is evident.

(ii) =⇒ (i) is equivalent to 9.3.8.

(i) V (ii) =⇒ (iii) & (iv) .

Let S be a subdirect product of real d-semigroups. Then for each pair a < b
there exists an index i with i(a) < i(b) , and the ideal Pi := {x | i(x) ≤ i(a)}
is irreducible and real archimedean. Dually the filter Fi := {x | i(x) ≥ i(b)}
is irreducible and real primary. Hence there are enough ideals and enough
filters, in order to verify (iii) and to verify (iv) .

(iii) ⇐⇒ (iv) follows nearly by definition 15.1.1. Observe: If I is an
archimedean ideal, separating the elements a and b, then S\I is a primary
filter separating a and b.

(iii) V (iv) =⇒ (i) & (ii) .

Let (iii) be satisfied. Then S is archimedean and thereby commutative. For,
in fact, t ∈ S+ & tn ≤ a (∀n ∈ N) & a < at would lead to the existence
of some irreducible archimedean ideal P with a ∈ P and thereby to tn ∈
P (∀n ∈ N) , but at /∈ P .

Let now P be an irreducible real archimedean ideal of S and suppose that
tn ≤ c (∀n ∈ N) belong to S := S/P . Then we get

(c · s ∈ P ⇒ 1 · tn · s ∈ P (∀n ∈ N)) =⇒ (c · s ∈ P ⇒ ct · s ∈ P ),

which leads to c·t = c . Thus we get (iii) =⇒ (ii) and thereby the implication
(iii) =⇒ (i) & (ii) . 2

We come back to 11.2.4 There it is shown that super-archimedean d-monoids
are closely related to real function algebras. Moreover it turned out that
super-archimedean d-semigroups always admit a subdirect decomposition
into the factors C(t) and S/C(t) , and it has been mentioned already that
super-archimedean d-semigroups are representable. Here we will show, that
right normal d-monoids satisfy much more, namely:
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15. 1. 3 Proposition. Let S be a right normal d-monoid. Then the follow-
ing are pairwise equivalent:

(i) S is super-archimedean.

(ii) S has a subdirect decomposition into real factors, such that the rep-
resenting real functions satisfy:

∀f, g ≥ id ∃n ∈ N : f(x)n ≥ g(x) (∀x : f(x) > 0) .

(iii) Any prime c-ideal is minimal.

(iv) Any t ∈ S satisfies S = C(t) × C(t)⊥ . 1)

PROOF. (i) =⇒ (ii) . Recall that commutative subdirectly irreducible d-
semigroups are 0-cancellative and that

tn < a (∀n ∈ N) =⇒ ∃m : (tm)2 = tm .

(ii) =⇒ (iii) . First S is super-archimedean, according to (ii) , as is easily
seen.

Furthermore any prime c-ideal P contains a minimal prime c-ideal M . As-
sume now M ̸= P . Then there exists an element x ∈ S+\P , satisfying for
any y ∈ P+ in S/M =: S

x > yn ≥ 1 (∀n ∈ N) .

But this leads to y = 1 , whence it results y ∈M and thereby P = M .

(iii) =⇒ (iv) . Let C(t) × C(t)⊥ ̸= S be satisfied. Then the direct product
C(t) × C(t)⊥ is contained in a minimal prime c-ideal of S . But according to
13.4.2 any minimal prime c-ideal P of S is of type P =

∪
x⊥ (x /∈ P ) , a

contradiction w. r. t. t⊥ ⊆ P & t ∈ P !

(iv) =⇒ (i) finally, results nearly immediately. 2

15.2 Direct real Sums

Next we turn to sums of real d-monoids.

15. 2. 1 Proposition. Let S be a d-monoid. Then the following are pairwise
equivalent:

1) In fact, in this case S is even hyper normal.
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(i) S is a direct sum of real d-monoids.

(ii) The c-ideal lattice of S is boolean.

(iii) S is ortho-finite and satisfies S = C(t) × C(t)⊥ .

PROOF. (i) =⇒ (ii) is nearly evident.

(ii) =⇒ (iii) . If the c-ideal lattice is boolean, then any c-ideal is a direct
factor.

But, S is also ortho-finite, since C(M) cannot be a direct factor, if M is an
infinite set of pairwise orthogonal elements, upper bounded by a ∈ S, since
otherwise we would get a = a1 · a2 with a1 ∈ C(M) & a2 ∈ C(M)⊥ whence
a1 in this case would satisfy a1 ∈ C(M) & a1 ≥ C(M).

(iii) =⇒ (i) . Any C(t) is a direct factor, therefore S is super-archimedean,
according to 11.2.4, whence C(t) is archimedean.

Furthermore S is normal. To get this, we start from R(a, b, a ′, b ′) with
positive elements a ′, b ′ . Then it follows b ′ = b1

′ · b2 ′ with b1
′ ∈ C(a ′) and

b2
′ ∈ C(a ′)⊥ . This implies b1

′ ≤ a ′ n (∃n ∈ N), which – by x ≤ ab =⇒
x = x1 · x2 with x1 ≤ a , x2 ≤ b – leads to b1

′ = b1,1
′ · b1,2 ′ · . . . · b1,n ′ with

b1,i
′ ≤ a ′ ∧ b ′ (1 ≤ i ≤ n) . Thus we get (a ∧ b)b1

′ = a ∧ b and thereby
(a ∧ b)a ′ = a & (a ∧ b)b2 ′ = b with a′⊥ b2

′ .

Suppose now 1 < x, y < an & x ̸≤ y ̸≤ x . Then there would exist coprime
elements x◦, y◦ /∈ {1} , whence C(a) would admit a direct decomposition, say
C(x◦) × D . But this would lead to C(a) = C(a1) × C(a2) , with a1⊥ a2 ,
and thereby – after finitely many repetitions of the procedure – provide a
direct decomposition C(a) =

⊗
C(xi) , where the direct factors C(xi) would

be directly indecomposable and thereby linearly ordered. But
⊗

C(xi) is
unique, according to 13.5.11. Hence only finitely many linearly ordered C(x)
with a ∧ x ̸= 1 are possible.

Thus, by the set of the linearly ordered C(x) , we get a family of strictly
archimedean components in the sense of (i) . 2

15.3 A general Cube Theorem

Recall: P1 is the d-semigroup with carrier E and a ◦ b := min(1, a+ b) and
a ∧ b := min(a, b) . Hence P1

I is the | I |-dimensional cube, under pointwise
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· and ∧ .

Furthermore: Sn is formed by Sn := {0, 1, . . . , n} under the above operations,
where n acts in the sense of 1 .

Obviously any Sn is a sub-d-semigroup of P1 .

We wish to characterize cube-semigroups, i. e. those d-semigroups, which
admit an embedding into some P1

I . To this end we recall first that any
positive d-semigroup has a natural extension by its filters or – equivalently
– by its d-ideals. These extensions are not necessarily d-semigroups, but at
least they are cdl-semigroups w. r. t. to the complex operations. Moreover any
d-semigroup has a further natural extension by its v-ideals, which again need
not be a d-semigroup, but which may be considered as a natural infimum
extension. This suggests to characterize cube-semigroups by the interplay
between d- and v-ideals. To this end, w. l. o. g. we may, of course, start from
positive d-monoids.

15. 3. 1 Proposition. A positive d-monoid S is a cube-semigroup if and
only if it satisfies for any filter A the implication:

An ⊇ b (∀n ∈ N) =⇒ a · b = b = b · a(CE)

PROOF. Necessity: If S is embedded in P1
I , for any i ∈ I with i(b) < 1

we get
inf(i(a)) (a ∈ A) = 0 ,

since otherwise there would exist some ε > 0 satisfying i(a) ≥ ε (∀ a ∈ A) ,
that is an n ∈ N with i(x) > i(b) (∀ x ∈ An) , a contradiction, since propo-
sition (2.4.1) implies

b ∈ An ; b ≥ a1
n ∧ . . . ∧ akn = (a1 ∧ . . . ∧ ak)n (∃ai ∈ A, k ∈ N).

This means furthermore

i(s) ≤ i(a) + i(b) + i(t) (∀ a ∈ A) =⇒ i(s) ≤ i(b) + i(t) ,

that is s |Ab · t =⇒ s | b · t and thereby a ◦ b = b = b ◦ a .

Sufficiency: First of all we get immediately that S is archimedean, and
thereby commutative. Let now a < b be a critical pair. We consider the
subsequent cases:
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Case 1: ∃ x : ax ≤ b & ax ̸= ax2

Case 2: ax ≤ b ⇒ ax = ax2 .

As to Case 1: Obviously there is no e satisfying ae = ax = axe , since
otherwise ax = aex = ax2 would follow. Therefore we are through, if we
are able to separate a and ax by S := Sax/E(ax). So we may start from a
completely integrally closed brick, recall 8.1.4.

To this end we prove a bit more by starting from an archimedean complemen-
tary d-semigroup S with 0, and showing that S admits some a , 0 separating
d-semigroup homomorphism onto P1. This will be done in the following by
transferring the problem to the case a2 = 0 :

If a2 ̸= 0 holds, in case of a ≤ s ̸= s2 ̸= s3 we turn to Ss2/E(s2) , in
order to separate thus s and s2 , whereas in case of a ≤ s =⇒ s2 = s3

the mapping ϕ : z 7−→ (az)2 provides a homomorphism of (S, ·,∧) onto a
distributive lattice, which leads to some a , 0 separating 2-element image,
recall (x ∧ y)2 = x2 ∧ y2 .

So, let S be archimedean, complementary and bounded, and let furthermore
a ̸= a2 = 0 be satisfied. Then it holds p := a ∗ 0 ≤ a , and this yields a pair
x ∈ S , n ∈ N with pnx = a & pn+1 ̸≤ a, since pa ̸= a.

We define S1 := S/E(a) . Here it results p ∗ x ∧ x ∗ p = 1 . For it holds
(p∧x)(p∗x∧x∗p) = p∧x , that is p∗x∧x∗p ∈ E(a) , and it holds x∗p ̸= 1 ,
since otherwise it would follow pnx(x ∗ p) = a(x ∗ p) = a; pn+1 ≤ a . Hence
the set Y := {y |x ∗ p ∧ y = 1} forms a c-ideal in S1 , according to 2.7.2,
containing p ∗ x , but not containing p . Consequently in S there exists a
c-ideal M with p ∗ x ∈ M & p ̸∈ M , which is maximal among all c-ideals
with this property. But then S/M cannot contain any proper c-ideal, and
since pn+2 ≡ pnpp(p∗x) ≡ pnpx(x∗p) ≡ 0 (M) and since together any proper
c-ideal of S/M must contain p.

We consider S2 := S/M . Here we get first t ̸= 1 =⇒ ∃ n ∈ N : tn = 0 .
Suppose now u ̸= 0 ̸= v and (u ∧ v)u ′ = u, (u ∧ v)v ′ = v. Then we get next
u ′ ∧ v ′ = 1 , because (u ∧ v)(u ′ ∧ v ′) = u ∧ v and E(u ∧ v) = {1} . But –
according to 2.7.2 – in case of v ′ ̸= 1 this implies u ′ = u ′∧0 = u ′∧v ′m = 1 ,
whence S2 is linearly ordered .

Hence – in Case 1 – S is strictly archimedean, that is a sub-d-semigroup of
P1 – recall Hölder/Clifford.
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As to Case 2: We consider the different situations;

(a) a2 ∧ b = a

(b) a2 ∧ b ̸= a .

Ad (a) . S := Sb is an image, in which a = a2 is satisfied and thereby – we
are studying case 2 – (a · x)2 = a · x for all a · x . But, by S · a this provides
a distributive lattice as homomorphic image, from which we get again some
a , b separating 2-element image.

Ad (b) Let b = ay , that is a2 > a2 ∧ b = a(a ∧ y) =: c > a . Then a and b
are separated if a and c are separated. So we may start from a < c ≤ a2 , in
order to separate a and c .

This means in a first step, that the filter X := {x | ax ≥ c} cannot be
idempotent since a ∈ Xn would imply a = ax = c . Therefore X must contain
at least one p ≤ a , which cannot be decomposed into two factors belonging
to X , that is, which satisfies:

p = qr & aq ≥ c =⇒ ar ̸≥ c ,(15.2)

and we may assume ap = c , since this property is carried over to all pi ≤ p
with api ≥ c . Furthermore we may assume, that no pi ≤ p has a higher
exponent in a than p . Otherwise we could form a chain p > p1 > . . . > pm >
. . . in such a way that each n ∈ N would be majorized by some exponent of
some pi in a , and this would mean that a would belong to any power of the
filter generated by the elements pi , that is, we would get a = a ◦ p = c, a
contradiction.

Let now p be of the above type, in particular let pnx = a & p ̸≤ x be satisfied
and define:

U := {e | p = eq & aq ≥ c (∃q ∈ S)} .(15.3)

Then p cannot divide any xe with e ∈ U , since this, in case of (p ∧ x)p ′ = p,
would lead to

p ≤ xe =⇒ p = (p ∧ x)(p ′ ∧ e) = (p ∧ x)f(with f := p ′ ∧ e ∈ E) .(15.4)

But because f ≤ e from this would follow the existence of some g with
fg = p & ag ≥ c leading – in case of (p ∧ x ∧ g) · g ′ = g – to the equation

p = fg = f(p ∧ x ∧ g)g ′ (15.4)= fgg ′ ∧ fgg ′ = pg ′ .(15.5)
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Consequently, by p ≤ a , we finally would get

a(p ∧ x) ≥ a(p ∧ x ∧ g) = a(p ∧ x ∧ g)g ′ = ag ≥ c(15.6)

and thereby p ∧ x ∈ X, although the exponent of p ∧ x in a is less than or
equal to the exponent of p in a , a contradiction.

Now we consider the c-ideal I , generated by U . We shall show first, that the
complex product aU is equal to the complex product aI :

By definition, U is an order ideal, that is U satisfies x ≤ u ∈ U =⇒ x ∈ U .

Furthermore U is even a lattice ideal. For, together with u and v also u ∨ v
belongs to U , observe

us = p & as ≥ c
=⇒ (u ∨ v)(s ∧ t) = p & a(s ∧ t) ≥ c .

vt = p & at ≥ c
(15.7)

But it holds a(u ∧ v) ≤ c , because ap = c and u, v ≤ p , and from this it
results (we are studying Case 2)

a(u ∧ v) = a(u ∧ v)2(15.8)

and thereby

a · uv = a(u ∧ v)(u ∨ v) = a(u ∨ v) ,(15.9)

that is aI = aU . In particular this means, that not only p ̸≤ xe (∀e ∈ U) ,
as shown above, but that even p ̸≤ xe (∀e ∈ I) is satisfied, that is that in
S := S/I it holds p ̸≤ x .

We study S . First we get p = a ∗ c = a ∗ ap . For in case of a · y ≥ c , say
c ≤ aye , it follows a(p∧ ye) = c – i.e. f(p∧ ye) = p – with f ∈ U , leading to

p = (p ∧ ye)f ≡ p ∧ ye ≡ p ∧ y .(15.10)

Consequently, a · x ≥ c cannot hold, since otherwise p ≤ xe (∃e ∈ I) would
follow, so if J is the c-ideal, generated by x in S , then p cannot belong to
J , since ax · x = ax – recall we are studying Case 2.

So, if x ∈M is valid for some maximal M in the set of c-ideals of S containing
x, but not containing p , then S/M =: S provides a decomposition with
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a ̸= c , in which p is an atom satisfying pm = a & c = pm+1, since in case of
1 ̸= z ≤ p it must hold z = p , because otherwise – again, we are studying
Case 2 – it would result

p = a ∗ c; p = a ∗ c; a · z = a · zn ̸= c ,(15.11)

that is a contradiction to the maximality of M !

Hence, in this final case the d-semigroup S is a homomorphic image of type
Sm+1 , separating the elements a and c. 2

Proposition 15.3.1 implies nearly immediately:

15. 3. 2 Corollary. Any
∧

-complete positive d-monoid is a cube semigroup.

PROOF. Let A be a filter with An ⊇ b . Then we get
∧
An = (

∧
A)n ≤ b ,

that is (
∧
A)b = b , and thereby a · b = b = b · a . 2

This implies furthermore

15. 3. 3 Proposition. Let S be a positive d-monoid. Then S admits a
complete extension, if S admits an embedding into a cube P1

I , and this is
possible iff the set of (d-ideals ) , here the set of filters, satisfies

An ⊇ b (∀n ∈ N) =⇒ a · b = b = b · a(CE)

The reader should take into account that thereby a positive d-semigroup,
admitting a complete d-semigroup extension what kind ever, admits even an
optimal such extension, that is a complete extension satisfying all rules of
distributivity, stated so far.

15.4 Continuous Cube Extensions

On the one hand theorem 15.3.1 in a certain sense is satisfactory, on the
other hand, central questions remained open, of course, above all, under
which conditions existing bounds are respected.

15. 4. 1 Proposition. A positive
∧

-complete d-monoid S admits a contin-
uous cube extension, if for any pair a, b with b ̸≤ a there exists a ∨-irreducible
element p with p ≤ b & p ̸≤ a .
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PROOF. (a) If S admits an embedding in the sense of the proposition,
then there exists an index i with i(b) > i(a) . But then p =

∧
x (i(x) ≥ i(b))

is ∨-irreducible with p ≤ b & p ̸≤ a .

(b) Suppose now a < b and w. l. o. g. S = Sb . Since p is ∨-irreducible the
relation

u ≡ v (p) :⇐⇒ ux ≥ p⇔ vx ≥ p(15.13)

defines an S-respecting congruence, which proves to be linearly ordered –
recall 6.1.2 – since p is ∨-irreducible.

Let now S = Sb be as above, but linearly ordered.

We consider the set of all x with xn ̸= b (∀n ∈ N) . This set obviously forms
a prime c-Ideal P , and it is easily checked that the decomposition according
to this P provides an a , b separating homomorphic image of the required
type. 2

As an implication we get:

15. 4. 2 Corollary. Any infimum-algebraic d-monoid S , admits an infimum
respecting embedding into some cube.

PROOF. Let c be compact and suppose a ≤ c & b ̸≤ c . Then the infimum
p of any b containing maximal chain bi (i ∈ I) with bi ̸≤ c (∀i ∈ I) is a
∨-irreducible element with p ≤ b & p ̸≤ a, since by the chain maximality on
the one hand and the compactness property of c on the other hand we get
u, v < p =⇒ u, v ≤ c =⇒ u ∨ v ≤ c < p. 2

Next we characterize the complete sub-d-semigroups of the cube.

15. 4. 3 Proposition. A positive conditionally complete d-monoid S is a
complete sub-d-semigroup of some cube iff it satisfies (SVD), meaning the
joint axioms (S), (V) and (D), and in addition any proper interval of I(S)
has a jump.

PROOF. Necessity : Let S admit an embedding in the sense of the theo-
rem. Then, by evidence, condition (SVD) is satisfied. Furthermore in case of
a < b & a = a2, b = b2 it holds at least at one place i ∈ I i(a) = 0 & i(b) = 1 ,
whence the elements

u :=
∧
x ( i(x) = 1 & x = x2 ≥ a )

v :=
∨
y ( i(y) = 0 & y = y2 ≤ b )
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provide a jump [ u ∧ v, u ] in I(S) .

Sufficiency : We may suppose that S is a monoid and start from a < b.
Furthermore E(a) may be supposed to contain only the identity, since E(a)
has in any case an idempotent maximum through which we otherwise could
divide. So we get a = 1 or a < a2.

Now we consider the situation 1 ≤ a ≤ x ≤ x2 & x ≤ b.

Here we are through, if b is an atom or if all x with 1 < x < b are idempotent,
because of the gap-requirement.

Otherwise we are through once we have settled the case c < c2 & c ≤ b that
is w. l. o. g. the case a < a2 & a ≤ b. So we have to settle

Case 1: a2 ∧ b = a

Case 2: a2 ∧ b ̸= a .

As to Case 1 : b = ax implies a = a(a∧x) , that is a∧x = 1 . Thus we get
in S := Sx2 first a = 1 and x ≤ b , and the classes a and b can be separated,
if all y between 1 and x are idempotent. So, in Case 1 we may even start
from some Sy2 , satisfying 1 = a ≤ y < y2 ≤ b = 0 and (SVD) .

As to Case 2 : Let again b = ax . Then we get a < c := a(a ∧ x) ≤ a2 ,
whence we may start from some Sc , satisfying 1 < a < a2 = c = 0 and
(SVD) .

So, we are through, if we succeed in showing, that by (SVD) we find some
boundary respecting homomorphism onto P1 of S0 with a ̸= a2 = 0 , since
then in Case 1 the elements y and y2 and in case Case 2 the elements a
and c are separated.

So let S0 satisfy a ̸= a2 = 0 and let w. l. o. g. a be free from units except 1 .
By assumption S is complementary, and by 2.8.9 we know, that along with
u and v also u ∗ v is idempotent. This leads to au = 0 & u = u2 =⇒ u = 0 ,
for, since a is free from non trivial units au = 0 & u2 = u implies first
au ∗ 0 = a ∗ (u ∗ 0) = 1 and next, since u ∗ 0 is idempotent, a(u ∗ 0) = a , that
is u ∗ 0 = 1 and u = 0 , respectively.

Now we define:

P :=
{
(u, v)

∣∣∣∣ u = u2 & v = v2 & u ∗ 0 = v & v ∗ 0 = u
}

(15.14)
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and consider – influenced by Tarski [95] – all intersections
∧
ui , picking one

element out of each of these pairs. If then p is such an intersection element,
then p must be the identity element 1 or some atom in the lattice (I(S0),∧,∨)
of all idempotents.

Observe : First, in case of 1 ≤ u = u2 ≤ p = p2 , by (u ∗ 0)2 = u ∗ 0 and
((u ∗ 0) ∗ 0)2 = (u ∗ 0) ∗ 0 we obtain:

(u ∗ 0) ∗ ((u ∗ 0) ∗ 0) = (u ∗ 0)2 ∗ 0 = (u ∗ 0) ∗ 0

& ((u ∗ 0) ∗ 0) ∗ (u ∗ 0) = u((u ∗ 0) ∗ 0) ∗ 0 = u ∗ 0

; (u ∗ 0, (u ∗ 0) ∗ 0) ∈ P
; p ≤ u ∗ 0 V p ≤ (u ∗ 0) ∗ 0 .

So, p ≤ u ∗ 0 would imply (u ∗ 0) = p(u ∗ 0) = u(u ∗ 0) = 0 and thereby, recall
a ∗ 0 ≤ a ,

a ∗ 0 = (a ∗ au)(au ∗ 0)
= (a ∗ (a ∨ u))(a ∗ (u ∗ 0))
= (a ∗ u)(a ∗ 0)

; a ∗ u = 1
; u = 1 .

Consequently it holds

1 ̸= u = u2 ≤ p = p2 =⇒ p ≤ (u ∗ 0) ∗ 0 ≤ u; u = p .(15.15)

Hence p is an atom, which leads to a boundary respecting subdirect decom-
position of S0 into components Si satisfying axiom (SVD) , being free from
non trivial idempotents except 0, 1 , and containing a maximum.

HINT : Decompose any x into the components x ∧ pi .

BUT ! Any “SVD-d-monoid” without non trivial idempotents is linearly or-
dered, observe: (x ∧ y)(x ∗ y ∧ y ∗ x) = x ∧ y ̸= 0 implies x ∗ y ∧ y ∗ x = 1 ,
since otherwise x ∧ y would have a maximal unit u ̸= 1 which would lead to
x ∗ y = 1 V y ∗ x = 1, observe

c ̸= 1 ̸= d & c ∧ d = 1 ; 1 ̸=
∨
c⊥ = (

∨
c⊥)2 ̸= 0 .(15.16)

This implies further, that any t ̸= 1 of Si is nilpotent in Si , since otherwise
all powers of t would be placed below pi∧ a , whence

∨
tn = (

∨
tn)2 would be

a unit of a, different from 1, a contradiction !
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So, any Si is continuous and linearly ordered with

1 ̸= t =⇒ tn = 0i := pi ,

that is any Si admits a boundary respecting embedding into P1 , recall
Hölder/Clifford.

Thus our proof is complete. 2

15.5 Lattice Cubes

Two natural questions remained open, sofar.

First of all the question, under which conditions S admits not only a cube
extension but even a lattice cube extension, that is a cube extension, whose
factors are of type Sn for a suitable n ∈ N.

Furthermore the question is interesting, which consequences result, if we
strengthen condition (W) to the requirement, that the filter semigroup be
archimedean, that is a property, stronger than (CE), which follows immedi-
ately from b = b · A =⇒ b = b ◦ a .

15. 5. 1 Proposition. A positive d-monoid S is a lattice-cube-semigroup if
and only if it satisfies for any filter A the implication:

An ⊇ b (∀n ∈ N) =⇒ A · b = b = b · A(LC)

that is if and only its filter semigroup has the archimedean property.

PROOF. Since necessity is nearly obvious, we restrict our consideration to
the verification of

Sufficiency. According to 15.3.1 S satisfies the conditions of a cube (d-)
semigroup. Hence it remains to show, that S is even a lattice cube semigroup.
To this end we need enough homomorphic images of type Sn .

So, let a < b be a critical pair and K a maximal c-ideal w. r. t. a ̸≡ b (I) .
Then the set theoretic complement P of K is a prime filter.

But from the proof of 6.2.6 we know that each x ≤ b is comparable with each
z and that

x · u ≡ x ≤ b =⇒ u = 1 =⇒ u ∈ K(15.18)

is satisfied. Moreover P is a filter of S . We discuss the cases:
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Case 1: a ∈ P & b ∈ P

Case 2: a ∈ K & b ∈ P .

As to Case 1 : Any filter A with A ⊃ P is generated by a base of elements
p ∧ ai ′ =: ai with ai /∈ P (∀ i ∈ I) . Since P is prime, this leads to ai

d · P =
ai

d ∩ P (∀ i ∈ I) , and hence to

AP = (
∑
ai

d ) · P (i ∈ I)

=
∑

( ai
d ∩ P )

= (
∑
ai

d ) ∩ P
= P .

So we get next:

P n ⊇ AB & P ̸⊇ A =⇒ P ⊇ B & P n ⊇ AB
=⇒ P ⊇ B & P n = P n + AB

=⇒ P ⊇ B & P n = P n + (A+ P n)B
=⇒ P ⊇ B & P n ⊇ (P + A)n ·B
=⇒ P n ⊇ B ,

the final implication by P + A ⊃ P ⊇ B and the archimedean property.

But, (in the present Case 1) it holds P ∋ a and in case of P
n ⊇ a , there

exists an element e ∈ K = S\P with pn ≤ ae (∃p ∈ P ) . So by the preceding
development it even results P n ⊇ ad . And this means, that there must exist
an element m with P

m ̸∋ a , since otherwise P · ad = ad would be satisfied,
implying the existence of some p ∈ P with ap = a , that is by (15.18) an
element p with p ∈ K & p ∈ P = S\K , a contradiction !

Consequently there exists an element m satisfying P
m ̸⊇ a , by which it

results in particular a ≤ xm (∀ x with P ∋ x) , recall that a is comparable
with each x (x ∈ P ) .

Now we choose some x ≤ a . If x is properly decomposable into y · z , then
because of linearity of S not only these divisors but also at least one square of
these divisors, say y2, satisfies y2 ≤ a , and we are in the position to continue
the procedure until, recall Pm ̸⊇ a , we arrive at some indecomposable and
thereby prime element p which must be even an atom, apply (15.18) .

Consider, now, the set of all powers pn . It exceeds a , whence for all x

x = pℓ (∃ℓ ∈ N) V pn | x (∀n ∈ N) ,
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recall p is the only atom and thereby even completely prime.

Thus we arrive at a ≤ pk < b (∃k ∈ N) , and the set of all x > a forms a
prime p-ideal in S , since each z between a and b is comparable with each y .
Hence we may identify the elements x > a thus getting O , say. This provides
an a, b separating homomorphic image Sm .

As to Case 2 : (a) Let now a ∈ K and b ∈ P be fulfilled, that is a =
1 < b . If then there exists an element c strictly between 1 and b , then, by
evidence, K is maximal also w. r. t. c ̸≡ b (I) , and we may continue as above.

(b) Otherwise b is the only atom in S , and, again, the set of all x > a

forms a prime filter.

So under each of the assumptions (a) and (b), we may continue as below
Case 1.

Thus our proof is complete. 2
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Chapter 16

Representable d-semigroups

16.1 Foundation

In the chapter on congruences it was shown that completely distributive
lattice monoids are representable iff they satisfy:

xay ∧ ubv ≤ xby ∨ uav .(O)

Obviously condition (O) is also necessary in the general case. Furthermore
the proof above works as well in case that S , extended by an identity, satisfies
condition (O) . Consequently we may start from the basic result:

16. 1. 1 Proposition. A lattice semigroup is representable if it is com-
pletely distributive and if it satisfies in addition condition (O) for all elements
x, y, u, v ∈ S ∪ {1} .

It turns out that commutative completely distributive d-monoids are always
representable. But the above theorem does not hold in the generalcdl-case,
as was shown by Repnitzkii in [84]. In case of a d-semigroup S, however,
(O) operates always, since S contains enough private units.

In this chapter we study representable d-semigroups with the goal to simplify
and to replace (O) by other equations or structure properties, respectively.
This will lead us to some representation results, in particular to an ℓ-group
result, proved by Fuchs, (compare. [49]), telling that for ℓ-groups (O) may
be replaced by

eae ∧ faf = (e ∧ f)a(e ∧ f) .(16.2)

233
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To be as general as possible we start from a cdl-semigroup. In this context
we tacitly apply notions and results of d-semigroup theory if these are free
from axiom (A4). For instance, the reader gets immediately that 2.2.3 and
(2.14) are of this type.

Representability heavily depends on certain substructures, in particular it is
influenced strongly by the structure of the lattice ideal semigroup.

The present chapter interacts with all other chapters, presenting representa-
tions of which type ever. Nevertheless its kernel is based merely on elementary
arithmetic.

16.2 The general Case

First of all some structure theorems for arbitrary d-semigroups.

16. 2. 1 Proposition. Let S be a d-semigroup. Then the following are
pairwise equivalent:

(i) S is representable.

(ii) S satisfies xay ∧ ubv ≤ xby ∨ uav .
(iii) S+ is representable.

(iv) S1+ is representable.

(v) S satisfies ax ∧ yb ≤ ay ∨ xb .
(vi) S satisfies eae ∧ faf = (e ∧ f)a(e ∧ f).

PROOF. (i) ⇐⇒ (ii) results from 6.1.2

(ii) ⇐⇒ (iii). It suffices to verify (iii) =⇒ (ii). To this end suppose that
S+ satisfies (iii). We consider in S

xay ∧ ubv and xby ∨ uav.

Obviously (ii) is valid, if it is valid in case of a, b ∈ S+, since it holds with
suitable (a′′, b′′ ∈ S+)

xay ∧ ubv = xa′′(a ∧ b)y ∧ ub′′(a ∧ b)v
and

xby ∨ uav = xb′′(a ∧ b)y ∨ ua′′(a ∧ b)v
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Next let a, b, x′, u′, y′′, v′′ ∈ S+ satisfy

(a ∧ u)x′ = x, (x ∧ u)u′ = u, y′′(y ∧ v) = y, v′′(y ∧ v) = v .

Then by multiplying from the left with x ∧ u and from the right with y ∧ v
we get

x′ay′′ ∧ u′bv′′ ≤ x′by′′ ∨ u′av′′ ; xay ∧ ubv ≤ xby ∨ uav ,

that is all at all (iii) =⇒ (ii).

(iii) ⇐⇒ (iv) is an immediate consequence of the fact that α , β ∈ Σ are
equal if and only if they satisfy the equation x ·α = x · β (∀x ∈ S+) . This is
verified by the more general result, telling that any equation, holding in S+,
is valid in

∑+
, too, which results by the implication:

xe = x
=⇒

x · f(α1, . . . , αn) = x · f(α1e, . . . , αne) .

We continue by considering (ii), (v), (vi).

(ii) =⇒ (v) is evident – and –

(v) =⇒ (vi) results via

eae∧ faf ≤ eaf ∨ eaf = eaf & faf ∧ eae≤ fae∨ fae= fae
;

(e ∧ f)a(e ∧ f) = eae ∧ eaf ∧ fae ∧ faf .
= eae ∧ faf .

It remains to verify

(vi) =⇒ (ii). Since (ii) ⇐⇒ (iii) it suffices to study the positive case. So,
we may start from a positive subdirectly irreducible S with hyper-atom h.

We consider R = R(h) and L = L(h). It holds L ⊆ R or R ⊆ L and thereby
C = L or C = R, recall C the set of cancellable elements. In order to prove
this we assume L ̸⊆ R ̸⊆ L. Then there exist elements e, f with e ∈ L\R
and f ∈ R\L.

This means

eh = h = hf & he = 0 = fh ,
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leading to:

h = (e ∧ f)h(e ∧ f) = ehe ∧ fhf = 0 ,

a contradiction!

Hence, C is an irreducible c-ideal, whence p⊥ q =⇒ p ∈ C V q ∈ C. On the
other hand we may restrict our attention to orthogonal pairs x⊥u, a⊥b, y⊥v,
since the elements x ′, u ′, a ′′, b ′′, y ′′, v ′′ , constructed below (iii) =⇒ (ii)
fulfil this condition, if x, a, y, u, b, v ≤ h, whereas in case of 0 ∈ {x, a, y, u, b, v}
condition (iii) follows a fortiori.

So, let’s start from

x⊥u , a⊥ b , y⊥ v& w. l. o. g. a ∈ C (!)

For the sake of further reduction, observe, that we may start even from

(x ∧ a) ∧ y = 1 ,

This can be shown as follows: It holds

x ∧ a ∧ y ∧ ubv (2.19)
= 1 .

Suppose now

(x ∧ a ∧ y) · x◦ = x
(x ∧ a ∧ y) · a◦ = a
(x ∧ a ∧ y) · y◦ = y .

Then by

(x ∧ a ∧ y) · (x◦ ∧ a◦ ∧ y◦) = (x ∧ a ∧ y) ∈ C ,

it results:

x◦ ∧ a◦ ∧ y◦ = 1 ,

recall a ∈ C, and we get moreover:

x◦a◦y◦ ∧ ubv (2.19)
= xay ∧ ubv ,

recall x ∧ a ∧ y⊥ubv . Hence in case of

x◦a◦y◦ ∧ ubv ≤ x◦by◦ ∨ ua◦v
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it holds as well: xay ∧ ubv = x◦a◦y◦ ∧ ubv
≤ x◦by◦ ∨ ua◦v ≤ xby ∨ uav.

So, let’s start from

x⊥u & a⊥ b & y⊥ v & a ∧ x⊥ y & a ∈ C .(16.3)

Then by symmetry it suffices to settle the cases:

Case 1 . x, y ∈ C .

Case 2 . x, v ∈ C .

Case 3 . u, v ∈ C .

To this end we remark first of all: Let d and g be coprime. Then it follows

c ∈ C =⇒ cd ∧ gc ≤ dcd ∧ gcg = c

=⇒ c(d ∧ c ∗ gc) = c
=⇒ d⊥ c ∗ gc ,

recall that c ∗ gc and c : gc are uniquely determined. So, by duality we are
led to the implication:

c ∈ C =⇒ d⊥ g
=⇒ d⊥ c ∗ gc & d⊥ cg : c ,

(L)

that is: in case of d⊥ g and c ∈ C there exists a pair s⊥ d with cs = gc and
a pair t⊥ d with cg = tc.

Now we are in the position to clear the Cases 1, 2, 3.

As to Case 1. Since x, y ∈ C we get by (L) and (vi) with orthogonal
elements a◦, b◦

xay ∧ ubv = a◦xy ∧ uvb◦
≤ a◦(xy ∨ uv)a◦ ∧ b◦(xy ∨ uv)b◦

= xy ∨ uv.
= xby ∨ uav.

As to Case 2. On the same grounds as in Case 1 according to (2.19) we
get with orthogonal elements a◦, b◦

xay ∧ ubv = xay ∧ (u ∧ xay)b(v ∧ xay)
= xya◦ ∧ (u ∧ xay)(v ∧ xay)b◦

≤ (xy ∨ uv)a◦ ∧ (xy ∨ uv)b◦

= xby ∨ uav .
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As to Case 3. First by (vi) we get

a2 ∧ x2 = a · 1 · a ∧ x · 1 · x
= (a ∧ x)2 ,

which by cancellation leads to:

(x ∗ a)(a : x) ∧ (a ∗ x)(x : a) = 1 .

Consequently the elements a∗x and a : x commute. Furthermore the elements
a ∧ x and y commute, recall (16.3). So we can calculate:

xay ∧ ubv = (x ∧ a)(a ∗ x)(a : x)(a ∧ x)y ∧ ubv
= (x ∧ a)(a : x)(a ∗ x)y(x ∧ a) ∧ uvb◦ (b◦⊥ a, recall (L))
≤ (x ∧ a)(a : x)(xy ∨ uv)(x ∧ a)(a : x) ∧ b◦(xy ∨ uv)b◦

≤ xy ∨ uv .
≤ xby ∨ uav .

Thus the proof is complete. 2

16.3 d-Monoids

Sofar we have studied d-semigroups in general. We now turn to d-monoids.
This enables us to apply well known notions of ℓ-group theory, introduced by
pioneers like Jaffard and Conrad (cf. [49],[45]) and well discussed above
all in the most deserving lecture note of Bigard-Keimel-Wolfenstein,
compare [11].

In particular representable d-semigroups were characterized by equations.

Now we are going to characterize representable d-semigroups by special sub-
structure properties. Here we will succeed above all, since according to propo-
sition 16.2.1, we may restrict our studies to the (positive) cone.

16. 3. 1 Proposition. Let S be a positive d-monoid and let J be a co-regular
ideal of S. Then the following are pairwise equivalent:

(i) S is representable.

(ii) ker(J) := {k | s · 1 · t ∈ J =⇒ s · k · t ∈ J} is irreducible .
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(iii) The set of c-ideals between ker(J) and J forms a chain under ⊆.

(iv) X⊥ := {y | x ∧ y ∈ ker(J)} and X⊥⊥ := {z | ∀y ∈ x⊥ : y ∧ z ∈
ker(J)} satisfy the equation X⊥ ∪X⊥⊥ = S .

(v) X⊥ and X⊥⊥ satisfy the equation X⊥ ·X⊥⊥ = S .

PROOF. (i) =⇒ (ii). If S is representable, then S/J is totally ordered,
whence {1} is ∧-irreducible. But, ker(J) is the inverse image of {1} . Hence
ker(J) is irreducible, too.

(ii) =⇒ (i). If ker(J) is irreducible, then in S/J the identity {1} is ∧-
irreducible. Consequently S/J is totally ordered according to 5.4.5.

(i) =⇒ (iii). Let J be a co-regular ideal. Then S/J is subdirectly irre-
ducible and thereby normal according to 5.4.5.

Now we consider two different c-ideals A and B between ker(J) and J and
choose w. l. o. g. an element a ∈ A\B and an element b ∈ B. Since S/J is
totally ordered, ker(J) is irreducible. Hence, choosing orthogonal elements
a◦, b◦ with R(a, b, a◦, b◦), we get a◦ ∧ b◦ ∈ ker(J). Consequently this implies
b◦ ∈ ker(J) and thereby (a ∧ b)b◦ = b ∈ A ∩B . So B is contained in A .

(iii) =⇒ (i). By (iii) the kernels of co-regular ideals are irreducible. So, it
suffices to show, that there are enough co-regular ideals. But this is evident,
since there are enough filters.

(i) =⇒ (iv). Let S be representable and let J be a co-regular ideal. Then

S/J =: S is totally ordered, and it holds X
⊥ ∪ X

⊥⊥
= S, which implies

condition (iv).

(iv) =⇒ (i). Let S be defined as below (i) =⇒ (iv) and assume that S

is not totally ordered. Then there exist incomparable elements x, y properly
between 1 and h and consequently there exist also orthogonal elements x◦, y◦

properly between 1 and h . This leads to x◦⊥ < h and thereby also to x◦⊥⊥ <

h , a contradiction!

(i) =⇒ (v). Recall the proof of (i) =⇒ (iv).

(v) =⇒ (i). Let J be a co-regular ideal of S and suppose that S/J =: S is
not totally ordered. Then – according to (v) – the hyper-atom h of S, is a
product of some orthogonal pair x, y. This leads next to x2 ≤ h, y2 ≤ h and
thereby further to the contradiction

h = x · y = x ∨ y = x2 ∨ y2 = x2y2 = h
2

= 0.
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Thus the proof is complete. 2

16. 3. 2 Definition. Let S be a d-monoid. We call S finitely valued, if any
a ∈ S has at most finitely many values.

16. 3. 3 Proposition. Let S be a d-monoid. Then the following are pairwise
equivalent:

(i) S is a direct sum
∑∗

Si (i ∈ I) of totally ordered Si .

(ii) S is finitely valued and semi-projectable.

(iii) S is ortho-finite and projectable.

(iv) Any z-monoid of S is a direct factor.

PROOF. First we prove (i) =⇒ (ii) =⇒ (iii) =⇒ (i). Thereafter we shall
verify (i) =⇒ (iv) =⇒ (iii).

(i) =⇒ (ii) is left to the reader.

(ii) =⇒ (iii). According to 14.4.4 any proper prime c-ideal contains exactly
one minimal prime c-ideal.

Furthermore, similarly to the first part of that proof we get that S is ortho-
finite, since in case of 1 ≤ ai ≤ a (i ∈ I) finitely valued means that I is
finite or at least that there exists some value M of a, containing aj

⊥ and
ak

⊥ (j ̸= k) . But this leads to a contradiction, recall 14.4.4.

Next we see that any M ∈ val (a) is the uniquely determined value w. r. t.
some suitable element c . To this end we start from the family {Mi | i ∈ I}
of all minimal prime c-ideals of S, not containing a . This family is finite
since by 14.4.4 any Mi is uniquely associated with some value of a . Hence
it holds:

{Mi | i ∈ I} = {M0,M1, . . . ,Mn}

with M0 ⊆M & Mi ̸⊆M (1 ≤ i ≤ n) .

Choose now elements ci ∈ Mi\M (1 ≤ i ≤ n) for all i ∈ I and consider a
value W of c := a ∧ c1 ∧ c2 ∧ . . . ∧ cn . W can be extended to some value
of a. But W doesn’t contain any Mi (1 ≤ i ≤ n) . Consequently any value
of c must contain the minimal prime c-ideal M . Hence there can exist only
one value of c , since different values, according to 13.1.2, contain different
minimal prime c-ideals.
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Now we are in the position to verify S = a⊥ × a⊥⊥ .

To this end we assume S ̸= a⊥ × a⊥⊥. Then a⊥ × a⊥⊥ is contained in
some M with {M} = val (c). But it holds a⊥⊥ =

∩
h⊥ (h ∈ a⊥ ) . Hence

there exists at least one h⊥ , not containing c , and thereby admitting an
extension to M . So it is contained in M . But, since h⊥ ⊇ a⊥⊥ this leads to
h ∈ h⊥⊥ ⊆ a⊥ ; a⊥h and consequently to the contradiction:

S ̸= M ⊇ a⊥ ∨ h⊥ = (a ∧ h)⊥ = S.

Thus it has been shown (ii) =⇒ (iii).

(iii) =⇒ (i). Choose some a ∈ S+ and suppose that a⊥⊥ is not totally
ordered. Then there exists an element x in a⊥⊥ with {1} ̸= x⊥⊥ ⊆ a⊥⊥, but
x⊥⊥ ̸= a⊥⊥. This leads to

a⊥⊥ = x⊥⊥ × (x⊥ ∩ a⊥⊥) (13.5.9)

and thereby to a = a1 · a2 with a1 ∈ x⊥⊥ and a2 ∈ x⊥ ∩ a⊥⊥. So, we get
a1⊥ a2 . We will show: a1 ̸= a ̸= a2 . To this end we assume first that a1 = a .
This implies x⊥⊥ = a⊥⊥, a contradiction! Let now a2 = a be satisfied. This
leads to

a ∈ x⊥ =⇒ a⊥ ⊇ x⊥⊥ =⇒ x ∈ a⊥ ∩ a⊥⊥ ,

again a contradiction!

Hence the decomposition of a is proper. So, continuing this procedure of
decomposing, after finitely many steps we arrive at a = a1 · a2 · . . . · an with
pairwise orthogonal elements ai, each of which generates a totally ordered
bipolar ai

⊥⊥ .

Let now x⊥⊥ ̸= y⊥⊥ be two totally ordered bipolars. Then any positive
x+ ∈ x⊥⊥ must satisfy x+⊥⊥ = x⊥⊥, since otherwise there would exist a
decomposition of x⊥⊥ of the above type, and, of course the same must be
true for y⊥⊥ . Hence we get x⊥⊥ ∩ y⊥⊥ = {1} , because |x ∧ y|⊥⊥ ̸= 1 =⇒
|x ∧ y|⊥⊥ = x⊥⊥ = y⊥⊥.

Consequently the family of totally ordered bipolars x⊥⊥ provides a decom-
position of S in the sense of (i) .

Now we turn to (i) =⇒ (iv) =⇒ (iii) :

(i) =⇒ (iv). Suppose S =
∑∗

Si (i ∈ I) and let Z be a z-submonoid of
S. Then it follows Z =

∑∗
(Si ∩ Z) (i ∈ I). We assume Si ∩ Z ̸= {1} and
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consider some s with si ∈ Si ∩ Z. It follows Si = si
⊥⊥ ⊆ Z. Hence Z is of

type
∑∗

Sj (j ∈ J ⊆ I).

(iv) =⇒ (iii). By (iv) any z-monoid of S is a polar. Therefore S is ortho-
finite, recall proposition 14.3.3. Furthermore any s⊥⊥ is a z-monoid and
thereby a direct factor. Hence S = s⊥ × s⊥⊥.

This completes the proof. 2

16.4 Hyper-normal d-Monoids

In this section we specialize the notion of normality in such a way that the
structure of commutative ring ideal semigroups is simulated in a fruitful man-
ner. To this end, first of all, observe that in any ring-principal-ideal-monoid
it holds

⟨a⟩⟨u⟩ = ⟨a⟩ & ⟨a⟩⟨y⟩ = ⟨b⟩ =⇒ ∃⟨v⟩⊥⟨u⟩ : ⟨a⟩⟨v⟩ = ⟨b⟩(16.5)

inded-monoid!hyper-normal

SINCE

⟨a⟩⟨u⟩ = ⟨a⟩ & ⟨a⟩⟨y⟩ = ⟨b⟩ =⇒ a(ux) = a & a(ys) = b (∃x, s)
=⇒ a(ux− 1 + uxys) = b ,

with ⟨u⟩⊥⟨ux− 1 + uxz⟩ =: ⟨v⟩ , and observe furthermore that (16.5) holds
also in any ℓ-group-cone.

16. 4. 1 Definition. A d-monoid is called hyper-normal here if it satisfies:

x, y ∈ S+ & ax ∧ ay = a =⇒ ∃ z⊥x : ay = az
x, y ∈ S+ & xa ∧ ya = a =⇒ ∃ z⊥x : ya = za .

In particular for d-monoids with zero definition 16.4.1 implies

au = a =⇒ ∃v⊥u : av = 0 ,(16.6)

that is a property which is valid in every commutative principal ring ideal
monoid.

16. 4. 2 Lemma. A d-monoid is already hyper-normal if it satisfies:

e ∈ S+ & ae = a ≤ b =⇒ ∃ x⊥ e : b = ax

e ∈ S+ & ea = a ≤ b =⇒ ∃ x⊥ e : b = xa .
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PROOF. Suppose ax ∧ ay = a. We replace y by an element y∗⊥x ∧ y.
Consequently z := y∗ ∧ y satisfies az = ay (z⊥x) . 2

ax | a =⇒ a = axy & a(xy − 1 + xyz) = az .

16. 4. 3 Lemma. Let S be a hyper-normal d-monoid and let J be an in-
variant c-ideal of S. Then S/J is hyper-normal, too.

PROOF. Suppose that au = a ≤ b and b = a ∨ b. Then it follows au ≤
ae ≤ be (e ∈ J) and thereby a(u ∧ e) = a(u ∧ e)u ′ (u ′ ∈ S+) . Hence, with
a suitable positive x we get:

be = a(u ∧ e)x = a(u ∧ e)y ′ (y ′⊥u ′) .

From this it results furthermore:

b = a · (u ∧ e)y ′ with (u ∧ e)y ′ = y⊥u .

The rest follows by duality. 2

16.4.3 obviously implies that S/J is 0-cancellative, if S/J is totally ordered.
Next we show:

16. 4. 4 Proposition. For a positive hyper-normal d-monoid S the follow-
ing are pairwise equivalent:

(i) S is representable.

(ii) S satisfies xa ∧ bx ≤ x(a ∧ b) ∨ (a ∧ b)x .

(iii) S satisfies a ∧ b = 1 =⇒ xa ∧ bx = x .

(iv) S satisfies xa⊥ = a⊥ x .

(v) a, b ∈ S+ & xa ∧ bx = x

=⇒ ∃ c, d ∈ S+ :

 c⊥ a & cx = bx
d⊥ b & xd = xa

(vi) Any minimal prime submonoid of S is invariant.

(vii) If J is regular w. r. t. invariant c-ideals, then J is prime w. r. t.
invariant c-ideals.

PROOF. (i) =⇒ (ii) =⇒ (iii) is evident.
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(iii) =⇒ (iv). Suppose a⊥ b and bx = xc . Then it follows

xa ∧ bx = x = xa ∧ xc = x(a ∧ c).

But this implies xc = xc∗ with c∗⊥ c ∧ a, whence z = c∗ ∧ c satisfies
z⊥ a & bx = xz . This way we get a⊥ x ⊆ xa⊥ and dually it follows
xa⊥ ⊆ a⊥ x.

(iv) ⇐⇒ (v). Suppose xa ∧ bx = x. We get bx = xu and thereby

xa ∧ bx = x =⇒ xa ∧ xu = x
=⇒ xu = xu∗ (u∗⊥ a)
=⇒ bx = xu∗ = cx ( c ⊥ a) .

Hence it follows (v) from (iv).

Let now (v) be satisfied and suppose a⊥ b and xb = dx. Then we get xa∧dx =
x, whence according to (v) there exists an element c satisfying a⊥ c and
cx = dx = xb . But this implies xa⊥ ⊆ a⊥ x and (dually) a⊥ x ⊆ xa⊥ , that
is axiom (iv) .

(iv) ⇐⇒ (vi). Since according to 13.4.2 any minimal prime c-Ideal is a
union of polars, it holds (iv) =⇒ (vi) .

On the other hand, in case of (vi), any a, b separating c-ideal of S contains
an invariant minimal prime sub-c-monoid of S . Thus (vi) implies (i) and
thereby (iv).

(iv) =⇒ (vii). Observe that invariant c-ideals J carry over condition (iv)
from S to S/J , since R(a, b, a◦, b◦) implies:

a ∧ b ∈ J =⇒ xb = x(a ∧ b)b◦ = cx(a ∧ b) (c⊥ a◦)

and thereby xb = cx (a⊥ c).

Consequently J = 1 is a prime c-ideal, which follows along the proof-lines
of 4.1.3 Hence J itself is a prime c-ideal, too. This means that (iv) implies
(vii).

Finally we get (vii) =⇒ (i) =⇒ (iv). 2

16. 4. 5 Corollary. A hyper-normal d-monoid is representable, if its cone
satisfies the conditions of 16.4.4 .
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Of course, the conditions of 16.4.4 might also be formulated independent from
the cone, for instance by applying the absolute values. However, approaching
by the cone seems to be more transparent.

ADDED in May, 14th 2010:

16. 4. 6 Proposition. Let S be a positive and hyper-normal d-semigroup,
and let i be any d-ideal. Then S/i is hyper-normal, too.

PROOF. Suppose w. l. o. g. that x ∈ p and that x∧au = x∧a & x∧a ≤ x∧b .
The we obtain:

a · u = a ≤ b =⇒ x ∧ au = x ∧ a ≤ x ∧ b (∃x ∈ i)
=⇒ (x ∧ a)x′ ∧ (x ∧ a)u = x ∧ a ≤ x ∧ b
=⇒ (x ∧ a)(x′ ∧ u) = x ∧ a ≤ x ∧ b
=⇒ (x ∧ a)v = x ∧ b (x′ ∧ u ∧ v = 1)
=⇒ (x ∧ a)(x′ ∧ v) = x ∧ (x ∧ a) · v = x ∧ b
=⇒ x ∧ a(x′ ∧ v) = x ∧ b
=⇒ a · (x′ ∧ v) = b with x′ ∧ v ⊥ u . 2

16. 4. 7 Proposition. Let S be a positive and hyper-normal d-semigroup,
and let p be a prime d-ideal. Then

a · b = 0 =⇒ a = 0 V b = 0.(16.7)

16. 4. 8 Proposition. Let S be a positive and hyper-normal d-semigroup,
and let p be a prime d-ideal. Then

a ̸= a · x = a · y =⇒ x = y.(16.8)

PROOF. a ̸= 0 & a · u = a =⇒ ∃v ⊥ u : a · v = 0
=⇒ v = 0 & 0 ⊥ u
=⇒ u = 1 .

Hence a · x ̸= 0 & a · x = a · y =⇒ a(x ∧ y) · x ′ = a(x ∧ y)
=⇒ x ′ = 1
=⇒ x ≤ y .

This proves the assertion by duality. 2

UNPUBLISHED SOFAR :
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ADDED in May, 15th 2010:

Clearly, if p is a d-ideal, then a ∈ p =⇒ a ≡ 0. Observe a ∧ 0 = a = a ∧ a.

Furthermore: Given two elements a, b, there exists an element c with c /∈
d-ideal a iff a ̸≡ b mod a .

16. 4. 9 Proposition. If S is hyper-normal with radical {0} and has the
above property, then S owns a subdirect decomposition into ℓ-group-cones
with zero, and vice versa.

So, commutative radical free hyper-normal d-semigroups are separative, com-
pare the next chapter.

ADDED in May, 27th 2010:

16. 4. 10 Proposition. Let S be a hyper-normal d-monoid, and let its
radical R be a prime d-ideal. Then S\R is a cancellative d-monoid, and any
x ∈ S\R divides any element a ∈ R.

PROOF. First of all it holds

am = 0 =⇒ a⊥ = {1},(16.9)

sine any b divides 0 = am. Next

a ∈ R & x /∈ R & R(x, a, x′, a′) =⇒ (x ∧ a)(x′ ∧ a′) = x ∧ a
=⇒ ∃u⊥(x′ ∧ a′) & (a ∧ x)u = 0

=⇒ ∃u ∈ R & u⊥x′ ∧ a′

=⇒ x′ ∧ a′ = 1 =⇒ x′ = 1 .

Let finally a, x, y ∈ S\R.ax = ay . Then

ax = ay =⇒ a(x ∧ y) = a(x ∧ y)x′

=⇒ ∃u⊥x′ : a(x ∧ y)u = 0

=⇒ ∃u ∈ R : u⊥x′ =⇒ x′ = 1 .

2

At this place it is a pleasure for the author to thank for a dedication and to
give a hint to the three-men-paper [3] of Ánh, Márki, Vámos. There the
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close connection of hyper-normal d-monoids to ideal monoids of Bézout rings
is investigated from the topological point of view.

As to subdirect decompositions of complementary semigroups into idempo-
tent and cancellative ones see also [14], and [34].
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Chapter 17

Separative d-semigroups

A semigroup is called inverse, if there exists for any element a a uniquely
determined element a−1 satisfying

a · a−1 · a = a and a−1 · a · a−1 = a−1 .(17.1)

Hence the inverse semigroup is a common abstraction of group and semilat-
tice.

A d-semigroup S is called inverse, if (S, ·) is inverse. Consequently the inverse
d-semigroup is a common abstraction of ℓ-group and d-lattice.

Let S be an inverse d-monoid. Then Ge := {x | xx−1 = e} is equal with
the set of all ec with e ∧ (1 ∨ c)(1 ∧ c)−1 = 1 and cc−1 = 1 . So any inverse
d-semigroup is a semilattice of ℓ-groups Gu with u ≤ v =⇒ (Gu)v = Gv .

As a most natural generalization of the inverse d-semigroup will turn out the
separative d-semigroup, defined by

(ab = aa & ba = bb) V (ab = bb & ba = aa) =⇒ a = b .(17.2)

The main result of this chapter will be that a d-semigroup admits an embed-
ding into an inverse d-semigroup iff it is separative.

According to Clifford any inverse d-semigroup is structured in a cano-
nical manner, starting from some distributive lattice D and a system Gα

(α ∈ D) of ℓ-groups together with homomorphisms ϕα,α∨β : Gα −→ Gα∨β
and ψα,α∧β : Gα −→ Gα∧β.

For the sake of a most general approach to the theory of inverse d-semigroups
we start from a separative d-semigroup. In particular we will go ahead as
follows:

249
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First of all we study the subsemigroup E · C of arbitrary d-semigroups S .
This structure will turn out – in some sense – as a canonical sub-d-semigroup
of S . Moreover from the methodical point of view we will go ahead in
such a manner, that a representation theorem of McAlister for inverse
d-semigroups is subsumed as a special case.

In a second paragraph we present a series of conditions, equivalent with
separativeness, showing that a d-semigroup is separative iff it is a subdirect
product of cancellative d-semigroups with or without 0. This will be the
fundament for characterizing the finest separative congruence and thereby
describing the largest separative image of arbitrary d-semigroups S .

In the next chapter we then will apply the above results to inverse d-semi-
groups.

17.1 The Structure of E·C

In this section we continue the study of arithmetic – recall Chapter 1 – that
is, we investigate, how C and E interact one with another. Since cancellative
elements can exists only in d-monoids, let in this section S always be a d-
monoid. Recall 5.2.7. It is our goal to apply the congruences ρ and σ w. r. t.
clearing the structure of d-monoids. As a first result of this type we get:

17. 1. 1 Proposition. Let S be a d-monoid. Then E · C is a Clifford-
structure over a distributive lattice.

PROOF. Let e be idempotent. Then obviously eC is operatively closed
and since by ec · x = ed also (ec)(ex) = ed is satisfied, E · C is a union of
sub-d-monoids with e in the role of an identity.

Furthermore these substructures eC are pairwise disjoint. For, consider some
ua = vb with idempotent factors u, v and cancellable factors a, b. Then in
the quotient hull Q it follows u = vba−1, leading to vu = u and hence by
symmetry also to uv = v . Consequently E · C is the disjoint union of the
subsets eC (e = e2). So, the set of all eC forms a distributive lattice .

Finally, it is clear, that the mappings

ϕe : a 7−→ ea(17.3)
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for idempotent u, v forms a directed set of homomorphisms

ϕu,u∨v : u · C −→ (u ∨ v) · C(17.4)

that is of homomorphisms ϕu,u∨v satisfying

ϕu∧v,v · ϕv,u∨v = ϕu∧v,u∨v .(17.5)

In particular this implies:

a ∈ uC & b ∈ vC
=⇒

a = ux & b = vy

=⇒
ab = uva · uvb = a ϕu,u∨v · b ϕv,u∨v .

Consequently E · C is a Clifford-semigroup over a distributive lattice. 2

We now shall introduce the operation σe . To this end recall the definitions
of a+, a−, a∗ and | a | . In particular recall:

| a | ⊥ | b | ⇐⇒ a+⊥ b+⊥ a∗ & b+⊥ a+⊥ b∗ .

17. 1. 2 Proposition. Let S be a d-monoid. Then the decomposition ac-
cording to 5.2.7 induced by e is even an inner direct decomposition of C into
the induced kernels of σ and ρ.

PROOF. We show first that any c ∈ C has a decomposition into c = c1 · c2
with c1 ρ c σ c2 .

Observe: Since – according to 2.7.13 – coprime elements commute one with
another and thereby also with the corresponding inverses, we get first:

c = c+ · c−
= (e ∧ c+)(e ∗ c+) · ((e ∧ c∗)(e ∗ c∗))−1

= (e ∧ c+)(e ∗ c+) · (e ∗ c∗)−1(e ∧ c∗)−1

= (e ∧ c+)(e ∧ c∗)−1 · (e ∗ c+)(e ∗ c∗)−1

=: c1 · c2
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with c1 ρ c , since e ∧ c∗e ∧ c∗c+ = e ∧ c+e ∧ c+c∗
;

c∗(e ∧ c+) ρ c+(e ∧ c∗)
;

c1 = (e ∧ c+)(e ∧ c∗)−1 ρ c+c∗ −1 = c ,

and c2 σ c , since e(e ∗ c+) = ec+ = ecc∗ = ec(e ∗ c∗)
;

e ∗ c+ σ c(e ∗ c∗)
;

c2 = (e ∗ c+)(e ∗ c∗)−1 σ c .

Furthermore we get

Cσ := {c ∈ C | ce = e} = kerσ

& Cρ := {c ∈ C | e⊥ | c | } = ker ρ .

Observe: The first assertion is evident and the second one follows from
c ∈ Cρ =⇒ c ρ 1 – since c ρ 1

=⇒
c+ ρ c∗

=⇒ es+s− ∧ c+ = es+s− ∧ c∗ (∃ s ∈ S)
=⇒ es+ ∧ c+s∗ = es+ ∧ c∗s∗

= es+ ∧ c+s∗ ∧ c∗s∗
= es+ ∧ (c+ ∧ c∗)s∗
= es+ ∧ s∗
= e ∧ s∗ (2.19)

=⇒ (e ∧ c+)(e ∧ s∗) ≤ e ∧ s∗ ∈ C
=⇒ (e ∧ c+)(e ∧ s∗) = 1 · (e ∧ s∗) ∈ C

=⇒ e ∧ c+ = 1 ,

since by duality this implication provides c ρ 1 =⇒ e∧c∗ = 1, that is c ρ 1 =⇒
c ∈ V . So by 2.7.13 we get for any c ∈ C :

c = (e ∧ c+)(e ∧ c∗)−1 · (e ∗ c+)(e ∗ c∗)−1

= c1 · c2 (c1 ∈ Cσ , c2 ∈ Cρ)

and thereby according to 5.2.7

Cσ ∩ Cρ = {1} & Cσ · Cρ = C .(17.6)
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But – by 13.5.2 – this leads to: C = Cσ ⊗ Cρ .

Thus the proof is complete. 2

Next we get:

17. 1. 3 Proposition. Let S be an arbitrary d-monoid and let u, v ∈ S
be idempotent. Then any a ∈ u · C admits a unique decomposition of type
a = u · ca with u⊥ | ca | ∈ C, and in case of a = u · ca , b = v · cb there hold
the equations:

uca · vcb = uv · (v ∗ c+a )(v ∗ c∗a)−1(u ∗ c+b )(u ∗ c∗b)−1

with
uv ⊥

∣∣∣ (v ∗ c+a )(v ∗ c∗a)−1(u ∗ c+b )(u ∗ c∗b)−1
∣∣∣(P)

uca ∧ vcb = (u ∧ v) · (u ∧ (cb : ca))(v ∧ (ca : cb))(ca ∧ cb)
with

(u ∧ v) ⊥ | (u ∧ (cb : ca))(v ∧ (ca : cb))(ca ∧ cb) |
(D)

PROOF. Let w · c be an element with w = w2 and c ∈ C. Then it holds
w = w(w ∧ c∗) = w(w ∧ c+) and thereby

wc = w · (w ∧ c+)(w ∧ c∗)−1(w ∗ c+)(w ∗ c∗)−1

= w · (w ∗ c+)(w ∗ c∗)−1

with w ⊥
∣∣∣ (w ∗ c+)(w ∗ c∗)−1

∣∣∣ .
In addition this product is uniquely determined, since:

uc = vd & u⊥ | c |, v⊥ | d | leads to u(c : d) = v(d : c) that is c : d ≤ v and
d : c ≤ u – recall (2.19) – and thereby to u(d : c)(c : d) = v(c : d)(d : c),
meaning u = v, by cancellation. So, we get u · cc∗d∗ = u · dc∗d∗ leading to
cc∗d∗ = dc∗d∗ – recall again (2.19) – that is c = d.

Next we turn to (D). Here the first line follows from (2.17) while the second
line follows from 2.7.2.

So, let’s turn to (P) and suppose that u⊥ | ca | . Then u ∗ c+a = c+a . As an
example we obtain

uv ∗ c+a = v ∗ (u ∗ c+a ) = v ∗ c+a(17.9)

and thereby – in general – the asserted product formula.
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Finally the asserted orthogonality results according to 2.7.13.

This leads to property (P) whereby the proof is complete. 2

Now we are in the position to prove a first crucial result in the context of
separatively.

17. 1. 4 Proposition. Let S be an arbitrary d-monoid. Then E · C is a
separative sub-d-monoid of S.

PROOF. As just shown, E ·C is operatively closed. Furthermore axiom (A4)
is satisfied, since cancellative elements a, b with R(a, b, a◦, b◦) fulfil:

ua ≤ vb =⇒ ua◦ ≤ vb◦

=⇒ a◦ ≤ v
=⇒ (ua◦)(vb◦) = vb◦

=⇒ (ua)(vb◦) = vb .

So it remains to verify that E · C is separative. To this end choose elements
u, v ∈ E and a, b ∈ C and suppose u⊥ | a | , v⊥ | b | , and

ua · ua = ua · vb
vb · vb = vb · ua .

Then it follows: ua = uvb & vb = uva
;

ua ≥ vb & vb ≥ ua . 2

Let now with each idempotent element e be associated the function ψe defined
by

ψe : ec 7−→ (e ∗ c+)(e ∗ c∗)−1 .(17.10)

ψe maps any ec to its uniquely determined cancellable and in addition e-
orthogonal part. In particular this leads to monomorphisms ϕe,1 .

Recall: different elements ex, ey have different components ψe(ex), ψe(ey) and
the homomorphism property by definition results from the above proposition
17.1.3.

The general relevance of this definition stems from the fact that it concerns
all u · C (u ∈ E), since u ·S is a d-semigroup with identity u. So, in case of
u, v ∈ E the mapping

ψu,u∧v : uc 7−→ (u ∧ v) · ψu(uc)(17.11)
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provides a monomorphism of uC onto (u∧v)C, and the set of these monomor-
phisms is directed, that is it satisfies

ψu,u∧v ◦ ψu∧v , u∧v∧w = ψu , u∧v∧w .(17.12)

Now we turn to the interplay of the homomorphisms

ϕu,u∨v and ψu,u∧v .

As a first equation we get:

ψu,u∧v ◦ ϕu∧v,u = ϕu,u ,(17.13)

and it follows as a second equation:

ψu,u∧v ◦ ϕu∧v,v = ϕu,u∨v ◦ ψu∨v,v .(17.14)

PROOF. Let u ∈ E, c ∈ C be chosen with u⊥ | c |, in particular suppose
u ∗ c+ = c+ and u ∗ c∗ = c∗ . Then – recall that v is central – according to
uv = u ∨ v and v(v ∗ c∗) = vc∗ ; v(v ∗ c∗)−1 = vc∗−1 it follows:

uc ϕu,u∨v ◦ ψu∨v,v = vu · c ϕu∨v,v
= (uv ∧ v) · (uv ∗ c+)(uv ∗ c∗)−1

= v · (v ∗ (u ∗ c+))(v ∗ (u ∗ c∗))−1

= v · (v ∗ c+)(v ∗ c∗)−1

= v · c
= v · (u ∧ v)c
= v(u ∧ v)(u ∗ c+)(u ∗ c∗)−1

= ucψu,u∧v ◦ ϕu∧v,v . 2

Thus a semigroup theoretical approach to [78] is realized.

17.2 Separative congruences

17. 2. 1 Definition. A semigroup S is called separative, cf. [38], if it
satisfies:

ab = aa ab = bb
& V & =⇒ a = b .

ba = bb ba = aa
(S)



256 CHAPTER 17. SEPARATIVE D-SEMIGROUPS

In particular any inverse d-semigroup is separative, which follows immediately
from a = aa−1a = a−1aa = a−1a · b =⇒ a ≥ b .

17. 2. 2 Proposition. A semigroup S is separative if and only if it satisfies
one of the following conditions:

aba = aaa

& =⇒ a = b .
bab = bbb

(S ′)

aa = ab = bb =⇒ a = b

& axa = aya =⇒ ax = ay & xa = ya

(S ′′)

aa = ab = bb =⇒ a = b
& axb = ayb =⇒ abx = aby & xab = yab .

(S ′′′)

PROOF. (S) =⇒ (S ′), since by (S) it follows:

aa · ba = aa · aa
aba = aaa =⇒ & =⇒ aa = ba ,

ba · aa = ba · ba

that is – by symmetry – axiom (S ′) .

(S ′) =⇒ (S ′′), since (S ′) implies first:

aba = aaa
aa = ab = bb =⇒ & =⇒ a = b ,

bab = bbb

and thereby:

ax · ay · ax = ax · ax · ax
axa = aya =⇒ & =⇒ ax = ay ,

ay · ax · ay = ay · ay · ay .

which leads – again by symmetry – to axiom (S ′′) .

(S ′′) =⇒ S ′′′), since from (S ′′) it follows first xa = ya⇐⇒ ax = ay , and
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hereby furthermore

axb = ayb
=⇒ xb · a = yb · a
=⇒ bx · ba = by · ba
=⇒ ba · bx = ba · by
=⇒ b · abxa = b · abya
=⇒ ab · x · ab = ab · y · ab
=⇒ ab · x = ab · y

&
x · ab = y · ab ,

leading to (S ′′′).

(S ′′′) =⇒ (S), since we get first

ab = aa & ba = bb
=⇒

bab = bbb
=⇒

a · bb = bb · a

and thereby according to (S ′′′)

ab = aa & ba = bb
=⇒

ab · ab = ab · ba
= bb · aa
= bb · ba
= ba · ba

=⇒
aa = ab = bb

=⇒
a = b .

This leads – again by symmetry – to condition (S). 2

17. 2. 3 Lemma. A d-monoid S is separative iff its cone P is separative.
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PROOF. Let ab = aa & ba = bb. We multiply from right with (a ∧ b)∗ and
from left with suitable positive elements x, y satisfying.

xa = a(a ∧ b)∗ and yb = b(a ∧ b)∗ .
Thus we get

xa · b(a ∧ b)∗ = xa · a(a ∧ b)∗ & yb · a(a ∧ b)∗ = yb · b(a ∧ b)∗

that is

a(a∧b)∗ ·b(a∧b)∗ = a(a∧b)∗ ·a(a∧b)∗ & b(a∧b)∗ ·a(a∧b)∗ = b(a∧b)∗ ·b(a∧b)∗ ,

which implies

a(a ∧ b)∗ = b(a ∧ b)∗ .

Let e now be a common identity of a, b and suppose that e = u(e ∧ (a ∧ b)).
Then we obtain

a = a · u(e ∧ (a ∧ b))(a ∧ b)∗(e ∧ (a ∧ b))
= b · u(e ∧ (a ∧ b))(a ∧ b)∗(e ∧ (a ∧ b)) = b . 2

17. 2. 4 Lemma. If S is a separative d-monoid, then its 1-Extension
∑

is
separative, too.

PROOF. Each element of
∑+\S+ is cancellative and of type 1, or of type

(1 ∧ b)−1, or of type (1 ∧ a)(1 ∧ b)−1. 2

The next result is based on proposition 5.3.4.

17. 2. 5 Proposition. Let S be a d-semigroup. Then the following are
pairwise equivalent:

(i) S is separative

(ii) S is a (distributive) lattice of cancellative lattice semigroups.

(iii) If η is the finest idempotent congruence, then any η-class is can-
cellative.

PROOF. (i) =⇒ (ii). If S is separative then a ≡ b ⇐⇒ ax = ay ⇐⇒ bx =
by defines a congruence with operatively closed cancellative classes.

Clearly ≡ is an equivalence relation and the congruence property for multi-
plication follows immediately, since S is assumed to be separative.
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Assume now b ≡ c. Then by (A4) it follows again immediately:

(a ∧ b)x = (a ∧ b)y =⇒ ax = ay & bx = by

=⇒ ax = ay & cx = cy
=⇒ (a ∧ c)x = (a ∧ c)y ,

leading to a ∧ b ≡ a ∧ c .
In a similar manner we get that the classes are closed under ∧. A bit more
difficult it is to show that the classes are also closed and cancellative under
multiplication. To this end we start from a ≡ b . By (S ′′′) this implies S/σ
is a homomorphic image of the wanted type, and assume – for the sake of
convenience – that S itself is (already) the considered image.

We get first: Any non cancellable element x generates a proper separative
congruence by c ≡ d :⇐⇒ cx = dx. Clearly this is a congruence – recall
(S ′′′). Moreover ≡ is separative, because – choose a common unit x of u and
v uv ≡ uu & vu ≡ vv

=⇒
uv · xx = uu · xx & vu · xx = vv · xx

=⇒
ux · vx = ux · ux & vx · ux = vx · vx

=⇒
ux = vx ,

=⇒
u = v .

But on the one hand this means that at least one of the elements a, b is
cancellative – whence S is a monoid – since otherwise it would result aa =
ba & ab = bb , and on the other hand this means that any x ̸∈ C satisfies
ax = bx . Consequently S = C or S\C must be a d-ideal because

x, y ∈ S\C =⇒ a(x ∧ y) = b(x ∧ y)

=⇒ x ∧ y ∈ S\C
& sx ∈ S\C (∀ s ∈ S) .

Hence in case of S ̸= C we are in the position to decompose S by o := S\C ,
and it will turn out that this congruence is separative. Idea: S\C collapses
to zero and the elements of C remain cancellable.
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In order to verify this, we start from x ∈ o, c ∈ C, (x ∧ c)x ′ = x, and
s, t ∈ S+ . Then it follows x ′ ∈ o and

x ∧ cs = x ∧ ct
=⇒

(x ∧ c)(x ′ ∧ s) = (x ∧ c)(x ′ ∧ t)
=⇒

x ′ ∧ s = x ′ ∧ t
=⇒

s ≡ t mod o .

Thus, by axb = ayb =⇒ abx = aby, we get first for negative elements s, t ∈ S

c · s ≡ c · t =⇒ c · st−1 ≡ c · tt−1

=⇒ c · t−1s ≡ c
=⇒ c · t−1 ≡ c · s−1

=⇒ s ≡ t

and thereby for arbitrary elements s, t

c · s ≡ c · t =⇒ c · (1 ∨ s) ≡ c · (1 ∨ t) & c · (1 ∧ s) ≡ c · (1 ∧ t) =⇒ s ≡ t .

Therefore we are through once we have shown that the congruence modulo
o separates a, b . For, in this case S itself is a cancellative d-semigroup, with
or without zero element.

So, let us assume that x belongs to o and satisfies x ∧ a = x ∧ b and – see
above – ax = bx. Then in case R(a, b, a ′, b ′) it follows

(a ∧ b) · a ′x = (a ∧ b) · b ′x
; a ′ · x = b ′ · x (a ∧ b ∈ C)

; (b ∧ x) · a ′ = (a ∧ x) · b′ (ab ′ = ba ′ & S ′′)

; (a ∧ b ∧ x) · a ′ = (a ∧ b ∧ x) · b ′ (a ∧ x = b ∧ x)

; a ′ = b ′

; a = b .

This completes the proof. 2

The preceding proposition entails

17. 2. 6 Corollary. Let S be a d-semigroup. Then the following are pairwise
equivalent:
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(i) S is separative

(ii) S is a subdirect product of cancellative d-semigroups with or without
zero

(iii) S admits an embedding into an inverse d-monoid.

Finally we are in the position to characterize the finest separative congruence
on arbitrary d-semigroups.

17. 2. 7 Proposition. The finest separative congruence of a d-semigroup S

is equal to the intersection of all congruences of type

a σ b⇐⇒ xay ≡ xby ( p ) (x, y /∈ p, pa prime d-ideal ).

intersected with the finest cancellative congruence κ.

PROOF. First of all the congruences under consideration are separative. So
they contribute to the intersection of all separative congruences.

It remains to verify that each pair a, b that is separated by some separative
congruence, is (already) separated by a congruence of the given type. To this
end observe:

If a and b are separated by a separative congruence ρ, then – according to 17.
2.6 – a and b are also separated in some S/σ, cancellative with or without
zero.

Clearly, if S/σ is cancellative, then a and b are separated by κ .

And, if otherwise S/σ is cancellative with a zero element 0, then the inverse
image of 0 in S is a prime d-ideal, generating a congruence in the sense of
the theorem, finer than σ. 2
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Chapter 18

Inverse divisibility structures

18.1 Inverse left d-semigroups

To begin with, we study a problem of McAlister, answered in a theorem
of Billhardt. In [78] McAlister puts the question, whether in the inverse
case it suffices to require merely left quotients, that is to replace (A4) by

a ≤ b =⇒ ∃x : ax = b .(A4 ’)

Clearly: If S is inverse, then it holds

a|ℓ b⇐⇒ aa−1bb−1 = bb−1 ⇐⇒ aa−1|ℓ bb
−1 .

In order to show that along with a |ℓ b also a |r b is satisfied, it suffices to
verify, that idempotents are central, since in this case we get first

aa−1 = aa−1aa−1 = a−1a · aa−1 = aa−1 · a−1a = a−1a · a−1a = a−1a

and thereby furthermore

a ≤ b =⇒ a |ℓ b =⇒ b = aa−1 · b = b · aa−1 = ba−1 · a =⇒ a|r b .

Consequently the McAlister question is answered once it is verified that
inverse right-d-semigroups have central idempotents.

A first proof verification of this fact was given by Billhardt , however,
in his unpublished paper he applied a subdirect decomposition (by Zorns
lemma) , after verifying that S is a cdl-semigroup. Furthermore his note
requires a ≤ ae ∧ ea for all idempotents.

263
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Here we give an elementary proof due to the author, presented first in [?] and
published later in [32].

To this end we start with some rules of arithmetic, developed for inverse
semigroups, satisfying the axioms (A1),...,(A3) and (A4 ’) and show first of
all, that idempotent elements are positive.

Let u = u2 & v = v2. Then by calculation we get:

(u ∧ v)2 = (u ∧ v)3 = ...... = (u ∧ v)n......(18.2)

and furthermore

(u ∧ v) · (u ∧ v)(u ∧ v)−1 = (u ∧ v)(u ∧ v)−1 · (u ∧ v) .(18.3)

But (u ∧ v) · (u ∧ v)−1 · (u ∧ v) is a left divisor of u. Hence we get:

u = (u ∧ v)(u ∧ v)−1(u ∧ v) · x (∃x ∈ S)
= (u ∧ v)(u ∧ v)(u ∧ v)−1 · x
= (u ∧ v)(u ∧ v)(u ∧ v)(u ∧ v)−1 · x
= (u ∧ v)(u ∧ v)(u ∧ v)−1(u ∧ v) · x
= (u ∧ v)u
= u(u ∧ v) ,

(18.4)

that is, by symmetry,

(u ∧ v)1 = (u ∧ v)2(18.5)

and moreover

u · (u ∧ v) = u ∧ uv = u

; u ≤ uv = vu .

(18.6)

By a = (aa−1) ·a = a · (a−1a), this means further, that idempotent elements e
are positive, that is satisfy se∧ es ≥ s, and moreover this means for positive
elements a :

a−1 ≤ a · a−1 ; aa−1 = a−1x (∃x ∈ S)
; a−1a · aa−1 = aa−1

; a−1a ≤ aa−1

(18.7)

Now we are in the position to show:
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18. 1. 1 Lemma. The positive elements a of S satisfy – even

a · a−1 = a−1 · a .

PROOF. a · a−1 (18.7)
= aa−1a−1 · aaa−1

= (aaa−1)−1 · (aaa−1)
= (aaa−1 ∧ aa)−1 · (aaa−1 ∧ aa)
= ((aaa−1a−1 ∧ a)a)−1 · (aaa−1a−1 ∧ a)a

= a−1 ·
(
aaa−1a−1 ∧ a

)−1 ·
(
aaa−1a−1 ∧ a

)
· a

(18.7)

≤ a−1 ·
(
aaa−1a−1 ∧ a

)
·
(
aaa−1a−1 ∧ a

)−1 · a
= a−1 · aa−1 · a
= a−1 · a

(18.7)

≤ a · a−1
2

Let next u be idempotent and x be positive. Then, by 18.1.1, we obtain:

x ∈ P (S) ; xu · ux−1 = ux−1 · xu
; xux−1x = x−1xux

(18.7)
; xu = ux .

the final implication by x−1x = xx−1 .

Let now again a be positive and let e be an idempotent unit of a , for instance
choose a−1a . Then it follows

(e ∧ a)(e ∧ a)−1 · a = a with (e ∧ a)−1 · (e ∧ a) ≤ (e ∧ a)−1 · a .

Thus a is splitted into e∧a and a positive factor. So, we are through once we
have shown that idempotent elements commute with any e ∧ a of the given
type. Here we get:

(e ∧ a) ≤ e ; (e ∧ a)(e ∧ a)−1 ≤ e(e ∧ a)−1 = ((e ∧ a) · e)−1

; (e ∧ a)(e ∧ a)−1 ≤ (e ∧ a)−1 .

Consequently (e ∧ a)−1 is positive and therefore an element commuting with
all idempotents. Therefore all idempotent elements are central, since u =
u2 & us−1 = s−1u =⇒ su = us , recall (ab)−1 = b−1a−1 .

Henceforth S is assumed to be an inverse d-semigroup .
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Since the idempotents of a d-semigroup are central, a d-semigroup S is even
inverse whenever it is regular, i. e. if S for any a ∈ S contains an element a ′

satisfying a·a ′·a = a . Suppose now axa = a . Then the element z = xax even
satisfies aza = a & zaz = z . And by the d-property we get in addition that,
given two elements x, y satisfying axa = a = aya and xax = x , yay = y , are
equal because (ax)2 = ax and (ay)2 = ay lead to

x = xaxax = xayax = xaxay = xayay = yaxay = yayay = y .

Before continuing, recall that inverse d-semigroups satisfy aa−1 = a−1a which
leads to a |ℓ b⇐⇒ aa−1 ≤ bb−1 ⇐⇒ a |r b .
Now we give a first structure theorem for inverse d-semigroups.

18. 1. 2 Proposition. A d-semigroup S is inverse if it satisfies S = E · C .

PROOF. If C is empty we are through. Otherwise S is a monoid, and it
follows a = (1∨a)(1∧a) with 1∨a = a+ . Hence we may restrict our attention
to positive elements. We get:

a = a+ =⇒ aa−1 ≤ a

=⇒ aa−1 = a(1 ∧ a−1)
=⇒ a = aa−1 · (1 ∧ a−1)−1 ,

where aa−1 is idempotent and (1 ∧ a−1)−1 is cancellable. 2

As two further formulas we present

aa−1 ∧ bb−1 = (a ∧ b)(a ∧ b)−1(18.8)

aa−1 ∨ bb−1 = (a ∨ b)(a ∨ b)−1 ,(18.9)

where (18.8) holds, since the right side is obviously contained in the left side
and since by the equation a∧ b = a∧ bb−1a∧ b∧ aa−1b = (aa−1 ∧ bb−1)(a∧ b)
the left side is contained in the right side, hint: multiply from right with
(a ∧ b)−1,

and where (18.9) holds, since the left side L is obviously contained in the
right side and since by a ∨ b = ab ′ with b ′ |r b we get

(a ∨ b)(a ∨ b)−1 = (ab ′)(b ′−1a−1) = aa−1 · b ′b ′−1

whence also the right side R is contained in the left side, hint: LR = L.

Observe furthermore, that 18.8 holds already if in (S, · ,∧) only left divisors
are required !
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18.2 Representation

First of all we consider the coarsest congruence with operationally closed
cancellative classes. This congruence admits a most elementary description,
since by defining ax = ay ⇐⇒ xa = ya and xx−1 = x−1x we are led to the
equivalence:

ax = ay ⇐⇒ bx = by iff aa−1 = bb−1 .(18.10)

This is evident from the right to the left side, and starting from the left side
it follows for any common unit e of a and b

aaa−1 = ae =⇒ baa−1 = be =⇒ b−1b · aa−1 = b−1b =⇒ aa−1 | bb−1 ,

which completes the proof by duality.

It was shown already below 5.4.1 that a subdirectly irreducible d-semigroup
contains at most two idempotent elements. This implies nearly directly the
inverse pendant to 17.2.6:

18. 2. 1 Proposition. Any inverse d-semigroup is a subdirect product of
ℓ-groups with or without an zero element.

PROOF. Any homomorphic image S of an inverse d-semigroup is inverse.

Let now a, b be a critical pair. Then aa−1 ∧ bb−1 is an a, b separating idem-
potent, and hence the identity of S. If in addition aa−1 ∧ bb−1 is the only
idempotent then S an ℓ-group.

Otherwise there exists exactly one further idempotent, acting as zero element.
So in this case S is an ℓ-group with zero. 2

Thus the pendant of 17.2.6 turns out as an easy consequence of the general
proposition 5.4.1.

Let now S be even a subdirect product of ℓ-groups and d-lattices. Then the
lattice components on the one hand and the ℓ-group components on the other
hand may be combined to an ℓ-group G and to a d-lattice L , respectively.
Hence, in this case S is representable as a subdirect product L |G of L and
G .

But it holds more, in fact in the above situation it holds even S = L ⊗ G .
In particular:
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18. 2. 2 Proposition. Let S be an inverse d-semigroup. Then the following
are pairwise equivalent:

(i) S is a subdirect product of some d-lattice L and some ℓ-group G .

(ii) S is a direct product of some d-lattice L and some ℓ-group G .

(iii) S satisfies: (aa−1 ∧ (b ∨ cc−1))2 = aa−1 ∧ (b ∨ cc−1) .

PROOF. (i) =⇒ (ii). Start from (u | r) and (v | s) . It has to be shown
w. l. o. g. that also (u | s) is contained in the subdirect product V |G . We
succeed as follows:

(u | r), (v | s) ∈ V |G =⇒ (u | r−1), (v | s−1) ∈ V |G
=⇒ (u | 1), (v | 1) ∈ V |G
=⇒ (u ∧ v | 1 ∧ s−1), (u | 1) ∈ V |G
=⇒ (u ∧ v | 1 ∨ s), (u ∧ v | 1 ∧ s) ∈ V |G
=⇒ (u ∧ v | s) ∈ V |G
=⇒ (u | 1)(u ∧ v | s) ∈ V |G
=⇒ (u | s) ∈ V |G.

(ii) =⇒ (iii). By evidence, the equation (iii) is satisfied in both, in d-lattices
and in ℓ-groups.

(iii) =⇒ (i) .

Consider some subdirectly irreducible component. If this component has only
one idempotent, then this idempotent is its identity, and the component is
an ℓ-group.

Otherwise there exists a zero element 0 different from the identity element
1 . We put in (iii) a = 1 and b = 0 . This implies that all positive elements
are idempotent. Consequently in this case this component is a distributive
lattice. 2

It has already been shown that inverse d-semigroups satisfy S = E · C .

Let S be an inverse d-semigroup. Then by the introduced functions ϕu,u∨v
and ψu,u∧v we have available two directed systems of homomorphisms ϕα,α∨β
and ψα,α∧β , which facilitates a characterization of inverse d-semigroups by
means of special substructures, more precisely by the underlying lattice of
idempotents and the groups associated with these idempotents, that is a
characterization as it was given for Clifford-semigroups by Clifford.
Here one part has already been verified, namely
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18. 2. 3 Proposition. Any inverse d-semigroup satisfies

ϕα,α∨β ◦ ψα∨β,β = ψα,α∧β ◦ ϕα∧β,β(A)

x ∈ Gα =⇒ xψα,α∧β ϕα∧β,α = x(B)

kerϕα∧β,α ∩ kerϕα∧β,β = {α ∧ β} .(C)

Now we will show, that the system (A), (B), (C) is not only necessary but
also sufficient.

18. 2. 4 Proposition. Let D be a distributive lattice with minimum 1 , let
Gα (α ∈ D) be a family of pairwise disjoint ℓ-groups and let ϕα,α∨β be a
family of directed surjective homomorphisms Gα −→ Gα∨β and let ψα,α∧β be
a family of directed homomorphisms Gα −→ Gα∧β such that the following
conditions hold:

ϕα,α∨β ◦ ψα∨β,β = ψα,α∧β ◦ ϕα∧β,β(A)

x ∈ Gα =⇒ xψα,α∧β ϕα∧β,α = x(B)

kerϕα∧β,α ∩ kerϕα∧β,β = {α ∧ β}(C)

Then defining for a ∈ Gα, b ∈ Gβ

a · b := a ϕα,α∨β · b ϕβ,α∨β
a ∨ b := a ϕα,α∨β ∨ b ϕβ,α∨β∪

Gα (α ∈ D) =: S becomes an inverse semiring S = (S, ·,∨) such that any
Gα is embedded in S, such that G1 is the cancellative kernel, and such that
the set of the idempotents of Gα forms the idempotent kernel.

PROOF. That (S, ·) defines a semigroup and (S,∨) is a semilattice fol-
lows nearly by definition and was first noticed by Clifford. Furthermore
the reader verifies easily that multiplication distributes over ∨ , whence in
particular multiplication is isotone. So, S is a semilattice semigroup satis-
fying x(a ∨ b)y = xa ∨ xby . The corresponding partial order is given by
a ≤ b ⇐⇒ a · β ≤ b . This should be kept in mind. Furthermore the reader
should recall that by construction the elements α , β . . . are idempotent and
thereby central.
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Finally, elements a ∈ Gα are positive in S iff they are positive in Gα . In
particular the identity elements of the various Gα are positive. 2

Now we identify the identity elements of Gα with α . Then α ∧ β in D will
remain the infimum of α and β in S .

SINCE: Given a positive c ≤ α, β , then with γ := cc−1 it follows on the
one hand c ϕγ,α ≤ α and on the other hand c ϕγ,β ≤ β . This means that
c ϕγ,α∧β ∨ (α ∧ β) belongs to the kernel of ϕα∧β,α and also to the kernel of
ϕα∧β,β . And this means that c ϕγ,α∧β ∨ (α ∧ β) is equal to α ∧ β .

Finally, by evidence, G1 is the cancellative kernel of S .

We will detect the structure under consideration as an inverse d-monoid. To
this end we remark first that S is ∧-closed iff its cone S+ is ∧-closed. This
is done as follows:

Since cancellable elements are invertible we get:

18. 2. 5 Lemma. Provided inf(a, b) exists and c ∈ S is cancellative then
there exists also inf(c · a, c · b) and it holds:

inf (c · a, c · b) = c · inf (a, b) and inf (a · c, b · c) = inf (a, b) · c .

PROOF. By assumption d ≤ a · c , b · c is equivalent with d · c−1 ≤ a , b ,
whence we succeed by duality. 2

Furthermore any element is a product of some positive and some invertible
element of type α · (1 ∨ c)(1 ∧ c) . Hence if (S+ , ∨) is ∧-closed we multiply
the elements α · (1 ∨ c)(1 ∧ c) and β · (1 ∨ d)(1 ∧ d) from the right with
((1∧ c)(1∧d))−1 , construct the infimum of the products in S+ , and find the
wanted inf (a, b) by finally re-multiplying (with (1 ∧ c)(1 ∧ d)).

Therefore, let’s restrict our considerations to positive elements.

G1 = kerϕ1,α ⊗ imψα,1 .(18.17)

PROOF. Since G1 is a group, the elements c ∈ G1 satisfy,

c = c(cϕ1,αψα,1)
−1 · (cϕ1,αψα,1) .(18.18)

But by applying the operator ϕ1,α the left side and according to (A), (B) also
the second component is transferred to cϕ1,α .
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So the first component is transferred to α, whence G1 = kerϕ1,α · imψα,1 .

Finally let a = u · v with u ∈ kerϕ1,α , v ∈ imψα,1 . Then we get the equation
v = vϕ1,αψα,1 = aϕ1,αψα,1 . Thereby the second component and hence also
the first component are uniquely determined, whence it even holds G1 =
kerϕ1,α ⊗ imψα,1 . 2

The preceding proposition concerns the structure of G1, but it is immediately
clear that this restriction is negligible since Gα is the cancellative part of the
homomorphic image Gα of G.

It has already been shown, that idempotent elements take along their meet
from D to S . We now will show that the set of all pairs α · c with positive
and cancellative factor c is inf-closed, which will lead us easily to infima in
general. We start with:

18. 2. 6 Lemma. Under the assumptions of proposition 18.2.4 an inverse
d-semigroup S for all pairs α, c with α ∈ D , c ∈ C+ satisfies:

c1 = c · (c ϕ1,α ψα,1)
−1 = inf (α, c) .

PROOF. First we get straightforwardly c1α = α , which means c1 ≤ α , and
furthermore it holds c1 ≤ c , since together with c also cϕ1,α ψα, 1 is positive.

Suppose now d ≤ α, c . Then it results 1 ∨ d ≤ α, c , whence d may be
assumed to be positive.

So, the decompositions d1 ·d2 and c1 · c2 – in the sense of (18.18) – on the one
hand satisfy d1 ≤ c1 and on the other hand satisfy d2 = dϕ1,α ψα,1 = αψα,1 =
1 .

Thus the proof is complete 2

18. 2. 7 Corollary. Any pair of elements α · β and α · c with c ∈ C has an
infimum.

PROOF. Consider (Sα, ·,∨) . This is a monoid with α as identity. 2

Now we are in the position to verify as a first principal result:

18. 2. 8 Lemma. Let S fulfill the assumptions of 18.2.4. Then for any pair
α, a , β, b with α, β ∈ D and a, b ∈ C we obtain:

α · a ∧ β · b = (α ∧ β) · (α ∧ b) · (β ∧ a)(a ∧ b) .
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PROOF. We may start from the special case α ·a , β · b with cancellable and
coprime elements a, b – observe:

(αa ′′ ∧ βb ′′)(c ∧ d) = αc ∧ βd .

But in that case it suffices to show that any γ · c with cancellable c , that
divides α · a and β · b as well, is a divisor of (α ∧ β) · (α ∧ b) · (β ∧ a) . So let
γ · c be of this type with cancellative c . Then it holds γ ≤ α ∧ β , and c is a
product of type cα · ca with cα ≤ α , ca ≤ a , recall (18.18). This leads to the
further decompositions cα = cα,β · cα,b and ca = ca,β · ca,b with cα,β ≤ α ∧ β ,
cα,b ≤ α ∧ b , ca,β ≤ a ∧ β and ca,b ≤ a ∧ b = 1 .

Thus the proof is complete. 2

It remains to verify (A3) w. r. t. ∧ for idempotent left factors.

18. 2. 9 Lemma. By (A), (B), (C) the structure (S+,∨) satisfies for all
triples c ∈ C , α, β ∈ D :

α · (β ∧ c) = α · β ∧ α · c .

PROOF. Since G1 is an ℓ-group the mappings ϕ1,α are also ∧-homomor-
phisms. Recall again α · c = c ϕ1,α . Hence by 18.2.6 according to 18.2.7 we
obtain:

α · (β ∧ c) = α
(
c · (c ϕ1,β ψβ,1)

−1
)

= (α · c) · (α · (c ϕ1,β ψβ,1))
−1

and α · β ∧ α · c = (α · c) · ((α · c)ϕα,α∨β ψα∨β,α)−1 .

But it holds: α · (c ϕ1,β ψβ,1) = c ϕ1,β ψβ,1 ϕ1,α
= c ϕ1,β ψβ,α∧β ψα∧β,1 ϕ1,α∧β ϕα∧β,α
= c ϕ1,β ψβ,α∧β ϕα∧β,α
= c ϕ1,β ϕβ,α∨β ψα∨β,α
= c ϕ1,α ϕα,α∨β ψα∨β,α
= (α · c)ϕα,α∨β ψα∨β,α .

This completes the proof. 2

Now, applying 18.2.9, in case of a, b ∈ C and γ, α, β ∈ D we obtain :

γ · (α · a ∧ β · b) = γ · α · a ∧ γ · β · b .(18.19)



18.2. REPRESENTATION 273

PROOF. According to 18.2.5 and 18.2.9 we infer – recall (2.17)

γ · (α · a ∧ β · b)
= γ · (α · a ′′ ∧ β · b ′′) · (a ∧ b)
= γ · (α ∧ β) · (α ∧ b ′′) · (β ∧ a ′′) · (a ∧ b)
= (γα ∧ γβ) · (γα ∧ γb ′′) · (γβ ∧ γa ′′) · (a ∧ b)
≥ (γα ∧ γβ) · (γα ∧ b ′′) · (γβ ∧ a ′′) · (a ∧ b)
≥ (γα · a ′′ ∧ γβ · b ′′) · (a ∧ b)
= γ · α · a ∧ γ · β · b . 2

So, summarizing we have arrived at:

18. 2. 10 A Theorem of McAlister. Under the assumptions of 18.2.4 the
lattice semigroup (S, ·,∨) forms even an (inverse ) d-semigroup.

But the identity element 1 is irrelevant. So we may formulate in general:

18. 2. 11 Proposition. There are no inverse d-semigroups apart from those,
constructed below 18.2.4.
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Chapter 19

Axiomatical outlook

19.1 Some Axiomatic

The question arises, whether in the inverse case further formal reductions
are possible. So in this section we give some examples of inverse structures
near to inverse d-semigroups, in order to prevent useless attempts on the
one hand, but maybe to motivate interesting trials of generalization – on the
other hand.

To this end let us start from a completely distributive lattice ordered semi-
group, for short a cdl-semigroup, again, that is a distributive lattice ordered
semigroup S in which multiplication distributes over meet and join. Recall,
d-semigroups are of this type, and consequently normal complementary semi-
groups are of this type, too. Since (S,∧,∨) is distributive, the set E of all
lattice endomorphisms of S forms a cdl-semigroup under pointwise building
of ∧ and ∨.

19. 1. 1 Proposition. Let S be a cdl-semigroup and let E be the semigroup
of all lattice endomorphisms under composition. Then w. r. t.

a . α ◦ b . β = a ∧ αb . αβ .
and a . α ⊆ b . β :⇔ a ≤ b, α ≤ β

LE := {a . α | a, α ∈ S × E} forms a distributive ℓ-semigroup LE whose multi-
plication ◦ distributes over ∧.

PROOF. First of all LE forms a semigroup under ◦ and a lattice under

a . α ∩ b . β := (a ∧ b) . (α ∧ β) and a . α ∪ b . β := (a ∨ b) . (α ∨ β) ,
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as is easily checked by the reader. Next it results:

(a . α ∩ b . β) ∪ c . γ = (a ∧ b . α ∧ β) ∪ c . γ
= (a ∧ b) ∨ c . (α ∧ β) ∨ γ)
= (a ∨ c) ∧ (b ∨ c) . ((α ∨ γ) ∧ (β ∨ γ))
= (a ∨ c) . (α ∨ γ) ∧ (b ∨ c) . (β ∨ γ)
= (a . α ∪ c . γ) ∩ (b . β ∪ c . γ) .

So the lattice under consideration is distributive.

The rest, that is the equations

a . α ◦ (b . β ∧ c . γ) = a . α ◦ b . β ∧ a . α ◦ c . γ(19.1)

(a . α ∧ b . β) ◦ c . γ = a . α ◦ c . γ ∧ b . β ◦ c . γ .(19.2)

follow straightforwardly. 2

19. 1. 2 Proposition. Let S be a totally ordered semigroup and let A be the
semigroup of all chain automorphisms with id =: ε. Then A forms an ℓ-group
under pointwise max and min – as is clearly well known to the insiders since
Birkhoff [13], and Σ := {a.α | a ∈ S, α ∈ A} forms a semi-lattice ordered
semigroup

∑
w. r. t.

a . α ⊆ b . β :⇐⇒ a ≤ b . α ≤ β

and an e-unitary partially ordered inverse ℓ-semigroup w. r. t.

a . α ◦ b . β = (a ∨ αb) . αβ

satisfying

a . α ⊆ b . β =⇒ a . α | ℓ b . β

on the one hand and satisfying on the other hand:

a . α ◦ (b . β ∩ c . γ) = a . α ◦ b . β ∩ a . α ◦ c .γ ,(DML)

(a.α ∪ b.β) ◦ c.γ = a.α ◦ c.γ ∪ b.β ◦ c.γ ,(DJR)

a . α ◦ (b . β ∪ c . γ) = a . α ◦ b . β ∪ a . α ◦ c . γ .(DJL)
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PROOF. First of all, (Σ, ◦) is a semigroup, which follows straightforwardly.
Next (Σ, ◦) is regular with α−1a.α−1 in the role of (a.α)−1 . Next, exactly the
elements of type a.ε are idempotent because

(a . α)2 = a . α =⇒ (a ∨ αa) . α2 = a . α

=⇒ α2 = α ⇒ α = ε
&

a . ε ◦ a . ε = a . ε .

Hence idempotents commute, that is (Σ, ◦) is even inverse, and moreover
(Σ, ◦) is e-unitary by the implication a . ε ◦ b . β = c . ε =⇒ β = ε .

We now turn to order properties. First of all we get

a . α ⊆ b . β

=⇒
a . α ◦ α−1b . α−1β = b . β

I remains to verify (DML), (DMR), (DJL), again a sake of routine and left
to the reader. 2

In particular the preceding proposition shows that condition (DMR) is es-
sential in order that a distributively lattice ordered semigroup with right
quotients be a d-semigroup.

Constructing new ℓ-semigroups from known ones is along the lines of general
algebra. So we take this chance to present some further constructions which
might be interesting.

This in mind we turn to regarding the case of inverse d-semigroups, together
with their elements b considered as lattice endomorphisms ϕb =: β .

19. 1. 3 Proposition. Let S be an inverse d-semigroup and LE the set of
all lattice endomorphisms of type β := ϕb and let Σ be the set of all a . β in
the sense above endowed with ◦ defined by

a . α ◦ b . β := a ∧ αb . αβ .

and a . α ∩ b . β := a ∧ b . α ∧ β .

We consider S × S with respect to the operations of proposition 19.1.2 Then
the corresponding structure

∑
:= (S × S , ◦, ∧) is an inverse ∩-semilattice

ordered structure
∑

satisfying (DML) and (DJL).
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Furthermore,
∑

is e-unitary, iff S is e-unitary.

PROOF.
∑

is regular by

a . α ◦ α−1a . α−1 ◦ a . α = a . α(19.6)

(a . α)2 = a . α ⇔ α = α2(19.7)

α = α2 & β = β2 =⇒ (αβ)2 = αβ ,(19.8)

recall: in d-semigroups idempotents are central.

So
∑

is e-unitary if S is e-unitary.

Finally, (DML) and (DJL) are verified by routine. 2

The fundamental idea is, of course, to consider elements as operators with
respect to the underlying lattice. This ensures that the resulting structure is
always an inverse semigroup if we consider an ℓ-group.

19. 1. 4 Proposition. Let S be a cdl-semigroup. Then the set Σ :=
{a . α | a, α ∈ S} forms a ∧-distributive lattice ordered band under

a . α ∩ b . β = a ∧ b . α ∧ β
a . α ∪ b . β = a ∨ b . α ∨ β

and
a . α ◦ b . β = a ∨ (α ∧ b) . α ∧ β .

with (DML) and (DJL) and a . α ⊆ b . β =⇒ b . β ◦ a . α = b . β . Moreover,
denoting the pairs a . α by A, b . β by B we get ABA = AB .

PROOF. Straightforward. 2

19. 1. 5 Proposition. Let G be an ℓ-group and a, b, α, β ∈ G . Define a
multiplication on G×G by A ◦B = a . α ◦ b . β = a ∨ (α ∧ b) . α ∧ β and put

xA := (xax−1 . xαx−1) .

Define next
∑

:= {A . x | a, α, x ∈ G} . Then
∑

forms a regular semigroup
and a lattice under

(A.x) ⊙ (B.y) := (A ◦ xB . xy).

& (A.x) ∩ (B.y) := (A ∩B . x ∧ y) ,
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satisfying (DML) and (DJL).

PROOF. First of all we get the equations

x(U ◦ V ) = xU ◦ xV.(19.9)

x(U ∩ V ) = xU ∩ xV(19.10)

x(U ∪ V ) = xU ∪ xV.(19.11)

Next ⊙ is associative because

(A . x) ⊙ ((B . y) ⊙ (C . z)) = (A . x) ⊙ (B ◦ yC . yz)

= A ◦ x(B ◦ yC) . xyz

= A ◦ (xB ◦ (xy)C . xyz

= (A ◦ xB) ◦ ((xy)C) . xyz)

= ((A . x) ⊙ (B . y)) ⊙ (C . z) .

and ⊙ is regular since

(A . x) = (A . x) ⊙ (x−1A . x−1) ⊙ (A . x) .

Next idempotent are exactly all pairs (A . 1), since

(A . x)2 = (A . x) =⇒ x2 = x = 1.

Finally we get (DML) and (DJL) which – for example – is shown here for
(DML) by

(A.x) ⊙ ((B . y) ∩ (C . z)) = (A . x) ⊙ ((B ∩ C . y ∧ z))
(19.9)
= A ◦ (xB ∩ xC) . x(y ∧ z)
= A ◦ xB ∩ A ◦ xC . x(y ∧ z)
= A ◦ xB ∩ A ◦ xC . xy ∧ xz
= (A . x)(B . y) ∩ (A . x)(C . z)

and which follows for (DJL) by analogy. 2
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(1959), 53 - 63.

[73] Jakubik, J.:Lattice-ordered groups with a basis. Math. Nachr. 53
(1972), 217 - 236.

[74] Jakubik, J.:Lattice-ordered groups of f inite breadth. Coll. Math. 27
(1973), 13 - 20.

[75] Jakubik, J.: Strongly projectable lattice-ordered groups. Czech. M.
Journ. 26 (1976), 642 - 652.
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In advance

In the following we are concerned with ideal monoids, that is abstractions of
ideal structures like those of semigroups, rings, or lattices. The first to initiate
and to stimulate such an element free ideal theory was Wolfgang Krull

in 1924. It is a great pleasure for the author to present this lecture note in
honour of that great pioneer.

It will be offered both, a historical development of abstract ideal theory on
the one hand, and an investigation of ideal monoids satisfying

TO CONTAIN IS TO DIVIDE

on the other hand.

The historical part reviews abstract ideal theory until about 1994, and is
partially antiquated in general, but nevertheless it should still be interesting
for all fans of abstract ideal theory.

That is the reason why we decided to present the 1994-draft, in spite of the
fantastic results on Fermat’s last theorem achieved by Andrew Wiles, the
more as our historical introduction and its citations doesn’t take anything
from whomsoever.
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Chapter 1

History and Development

1.1 Historical Remarks

According to a speech, [188], of Kurt Hensel (1861-1941), for a long pe-
riod it has been a common opinion, that ideal theory originated, when and
because Ernst Eduard Kummer (1810-1893) was faced with a gap in
his “proof of Fermat’s last theorem”, caused by the incorrect assumption
of unique factorization in number domains of type Z [ζ], where ζ is a p-th
primitive identity-root .

Nowadays, however, this view seems to be no longer
tenable, as Edwards explains in [112], [113] . All we
know seems to be that Kummer treated certain prob-
lems on higher residues, assuming unique factorization
in Z [ζ] , and that he contributed to Fermat’s prob-
lem, which led to an award of the Parisian Academy,
although Kummer himself informed Liouville and
Cauchy that his expositions were still suffering from
some gaps which he was endeavoured to fill.
Whether this endeavour or his endeavour on higher
residues led to the creation of ideal complex numbers
seems to be open until now, whereas on the other hand

Ernst Eduard
Kummer
1815 -1864

it is certified that Kummer successfully made use of “his ideal numbers”
in treating problems of algebraic number theory.

Nevertheless, if merely a demonstration is wanted how decomposition the-
ory may be applied in treating number theoretical problems, Fermat’s
problem turns out to be most suitable.

5
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The central idea here is to factorize sums in order to apply the rules of divis-
ibility. This will be demonstrated, briefly, along the lines of the monograph
of Borewicz/Šafarevič, [55].

Pierre de Fermat
1607 - 1665

As well known, Pierre Fermat, (jurist, 1601-
1665), believed to have a proof of the theorem
– meanwhile proven by Andrew Whiles – that
there are no nontrivial integral solutions of

xn + yn = zn (n ∈ N)(1.1)

except for n ∈ {1, 2} . However, given n = mℓ ,
(1.1) leads to

(xm)ℓ + (ym)ℓ = (zm)ℓ ,(1.2)

whence Fermat’s theorem is proven once it is
proven for all odd prime numbers and the number

4. So, since already Fermat himself gave an elementary proof for n = 4
the problem diminishes to treating all odd prime numbers.

Furthermore it is easily seen that a solution with pairwise relatively prime
numbers x, y, z must exist if a solution, whatever, exists in Z \ {0}, since
each t, dividing two of the three numbers x, y, z , is a divisor of the third
one, too, because tp | ap =⇒ t | a .

Therefore two principal cases remain to be studied, namely:

(1) xp + yp = zp with: p divides exactly one u ∈ {x, y, z}
and
(2) xp + yp = zp with: p divides not even one u ∈ {x, y, z}.

We discuss only the first case, since we are merely interested in a histori-
cal feedback, and refer the reader to Borewicz/ Šafarevič [55], where
classical ideal theory is presented along the lines of Hensel’s p-adic valu-
ations.

First of all: if ζ is a non-real p-th primitive identity-root, then the set
{ζ0, ζ1, . . . , ζp−1} exhausts the set of all roots of xp − 1 , and this means

zp =
∏ p−1

0 (x+ ζky)(1.3)
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since the coefficients of the polynomial on the right side have, respectively,
the same absolute values as the coefficients of xp − 1.

Furthermore : under the assumption above, one can show that any pair of
factors of x+ ζky is relatively prime in Z [ζ] . Assuming now unique prime
factorization, this leads to

x+ ζky = εkα
p
k(1.4)

where εk is a unit and αk belongs to Z [ζ]. In particular this implies

x+ ζy = ε1α
p (with α = α1).

Hence by symmetry it follows :

x− ζz = ε2 β
p .

However – according to [55] – by relatively simple methods this leads to a
contradiction.

That unique prime factorization in Z [ζ] is by no means satisfied in any
case, was discovered by Kummer himself via studying the case p = 23,
consult [254].

What now? Kummer found out, that in many cases much less than unique
prime factorization suffices to verify number theoretical interrelations. In
particular he observed that already multiplicative extensions may turn out
as powerful tools. This brought him to considering congruence classes as
ideal complex numbers, and he achieved this way that in the correspond-
ing multiplicative extension all elements of the original structure became
uniquely prime decomposable. But, his method failed in providing unique
prime factorizations also for all elements, added by the extension process.

Nevertheless, by Kummer’s construction number theoretical problems be-
came solvable, which had successfully withdrawn any solution, so far. One
most essential idea in this context was to select certain elements of Q [ζ],
ζ a p-th primitive identity-root, as integral numbers.

This was the starting point of Richard Dedekind (1831-1916), who
cleared divisibility in arbitrary number domains by taking up Kummer’s
crucial idea and completing ideal theory in such a way – compare the X.
supplement of the 2. and the XI. supplement of the 3. and 4. edition of
Dirichlet’s lectures on number theory, [104]
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– that nowadays ideal theory is
Dedekindian Ideal Theory.
Dedekind asked, how in general by in-
cluding also ideal objects a divisibility the-
ory for number domains of type Q [ϑ] , ϑ
an arbitrary algebraic number, could be es-
tablished.
In accordance to the theory of inte-
gral complex numbers due to Carl

Friedrich Gauss (1777-1855) – Dede-
kind had been his last student – he inves-
tigated, which elements of Q [ϑ] could act
as integral elements in such a way that in-

Richard Dedekind
1831 - 1916

tegral rationals remained integral and no other rationals became integral.

That such a requirement makes sense is an easy consequence of the fact that
divisibility in Z can, of course, not be studied by considering extensions
violating divisibility relations in the initial domain.

Furthermore, distinguishing integral elements has to take into account,
that together with α also all conjugates of α become integral, since other-
wise there would exist an integral element α and a non-integral element β
satisfying the same rational relations with respect to Z .

So, at least the coefficients of a normed irreducible polynomial fα with
fα(α) = 0 are to be taken as rational numbers, since these coefficients
are values of elementary symmetrical functions of the conjugated elements

αi (1 ≤ i ≤ n) of α and since ai =
ui
vi

leads to vi |z ui . Therefore, integral

have to be all algebraic numbers satisfying some relation

αn = an−1α
n−1 + ......+ a1α

1 + a0(1.5)

since g(α) = 0 =⇒ fα | g (in Z [x]) , and moreover one should be in the
position to calculate integral algebraic numbers without leaving the set of
algebraic integers.

Dedekind showed – by determinants and modules – that together with α
and β also α+β and α ·β satisfy some equation of type (1.5), i. e. that the
integers in the sense of (1.5) form a ring. Moreover : he showed that α is
already integral in the sense of (1.5) if α is root of some normed polynomial
with integral algebraic coefficients. Summarizing he discovered:
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The algebraic integers form an integrally closed ring G.

Furthermore it is easily seen :

If α is an algebraic number then some quotient
α

m
is even an

algebraic integer.

Recall : By definition every algebraic number is a root of some polynomial

f(x) = a0 + a1x+ ......+ anx
n

with an =: m ∈ Z. Therefore, multiplication with mn−1 provides a poly-
nomial

g(x) = a0m
n−1 + a1m

n−2(mx) + ......+ (mx)n ,

i. e. a polynomial g with g( α
m) = 0. So – given an algebraic ϑ –

The ring of all algebraic integers of Q [ϑ] is integrally closed in
its quotient field.

Dedekind dropped the requirement that the extension should be a number
domain and looked for an extension of (N, ·, | ), such that a, b ∈ N satisfy
a | b in this extension iff a | b is satisfied already in N . Such an extension
should have – above all – an optimal divisibility arithmetic and, of course,
this depends highly on the elementary property that for all a, b there exist
elements u, v satisfying

ua+ vb = c with c | a & c | b (∃u, v) .(L)

So it doesn’t seem unlike that Dedekind was led by this phenomenon to
his solution, most satisfactory not only for the particular case Q [ζ], ζ a
primitive p-th identity-root, but even clearing divisibility interrelations of
Z in the framework of fields of type Q [ϑ] .

Dedekind created the notion of an ideal by considering number sets a,
closed under + and containing together with each x ∈ a all multiples of
this x – and constructed thus an extension (A, ·,⊇) of (N, ·, | ) satisfying

⟨a⟩ · ⟨b⟩ = ⟨ab⟩
& ⟨a⟩ ⊇ ⟨b⟩ ⇐⇒ a | b ,
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and having the unique prime decomposition property. By this structure
Dedekind then could contribute efficiently to a deepening and extension
of Kummer’s results on Fermat’s problem, cf. Borewicz/Šafarevič.

Dedekind gave three different outlines of his theory in the supplements,
cited above. In particular, in the fourth edition he presented the Grup-
pensatz, telling that the group property of the semigroup of modules m

which can be multiplied by some c into some ideal a = m · c leads to the
implication

a ⊇ b =⇒ a | b(M)

which turned out to guarantee an ideal (unique) prime factorization.

It is easily seen that Dedekind’s outline up to the
Hauptsatz der Idealtheorie is of purely algebraic nature.
Hence it seems to be most natural that in a funda-
mental joint paper on function fields, [102], Richard
Dedekind and Heinrich Weber in 1882 obtain sim-
ilar results for Q (x) as Dedekind before did w. r. t.
algebraic extensions Q (ϑ), thus pushing forward even
to the theorem of Riemann/Roch . Dedekind’s suc-
cess gave rise to intensive endeavours on alternative ap-
proaches to some ideal arithmetic. We notice here the
contributions of Zolotarev, [435], Engström, [120],
and Grav, [168], [169], on the one hand – and the out-
lines of Hurwitz, [204], Prüfer, [351], Tschebota-

Leopold
Kronecker
1823 -1891

rev, [404], von Neumann, [335], and Zyglinski, [437], on the other
hand.

But, of course, first and formost there is to mention the concept of Leopold

Kronecker (1823 -1891).

Readers,interested in Kronecker’s theory and its significance are referred
to the genetic-analytic presentation [118] of Edwards where not only the
number theoretical aspects discussed but also its algebraic-geometrical rel-
evance up to Riemann/Roch from a new point of view, partially even
exceeding Kronecker .

As to this introduction, we will restrict our considerations to a brief sketch
of Kronecker’s principal idea, just as done above w.r.t. to Dedekind’s
theory.
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Kronecker’s concept is quite different from Dedekind’s one. His prin-
cipal interest is not ideal unique factoring but ideal linear combining the
GCD. So he restores property (L) whereby he obtains all advantages of an
ideal arithmetic.

Starting from function rings over “natural” rings Kronecker shows – in
a modern view – that

Any integrally closed integral domain I admits a ring extension
Ix within the transcendental extension K(x) of its quotient field
K satisfying Ix ∩ K = I, such that every finitely generated ideal
is a principal ideal.

That is, from the modern point of view, Dedekind-extensions lead to
some abelian lattice ordered group satisfying DCC whereas Kronecker-
extensions may lead merely to some abelian lattice ordered group admitting
infinite chains.

The advantage of Kronecker’s construction, however, is that it provides
even a Bézout-domain, whence Kronecker is in the position to calculate
along classical lines, whereas Dedekind has to work in merely multiplica-
tive structures. Moreover, from the modern point of view, Kronecker’s
approach is more constructive than Dedekind’s approach is.

However, Kronecker’s theory withdraws any attempt of abstract gene-
ralization – because of the central and fundamental role of K(x).

This is quite different with the “post Dedekindian” approach [186], due
to Kurt Hensel:

Like Dedekind’s fundamental idea Hensel’s principal idea is as ele-
mentary as fundamental as efficient :

Let I be an integral domain with “a good ideal prime factorization arith-
metic”. Then each principal ideal ⟨a⟩ is a unique product of finitely many
ideal prime factors pi (1 ≤ i ≤ n), such that we are in the position to
associate with each a ∈ I a uniquely determined exponent p (a), called
the exponent of p in the ideal prime factorization of ⟨a⟩. Thus each ⟨a⟩
and thereby also each a is coded by a sequence, vanishing at all places but
finitely many ones, such that any two different elements a, b have the same
code, briefly the same exponent, iff a | b and b | a.

Obviously such an exponent admits an extension to the quotient field K of
I, and it is easily seen that the function p satisfies p (a · b) = p (a) + p (b) .
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Next : If p satisfies the implication p | ⟨a⟩, ⟨a+ b⟩ =⇒ p | ⟨b⟩, then one gets
nearly immediately p (a+ b) ≥ min ( p (a), p (b) ).

Finally : If I is not a field then there exists at least one a∗ ∈ K satisfying
p (a∗) = 1.

Therefore : Ideal arithmetic in the sense of Dedekind provides necessarily
a system of valuations w in the preceding sense, but, the opposite is false!
For instance, such a system may provide infinitely many relevant non van-
ishing values, since ACC need not be satisfied in general, even though it is
satisfied in the classical number theoretical situation.

Nevertheless, also in this case we have an ideal system, called the system
of v-ideals, introduced by van der Waerden in [416] and Arnold in
[25], respectively. This will be elabourated below.

For more detailed information about ideal theory, see above all the report
[245] of Wolfgang Krull, most historical, genetical and analytical as
well, a brilliant presentation of ideal theory, ab ovo!

1.2 Towards an Abstract Ideal Theory

Emmy Noether
1882 -1935

Approximately 45 years after the fundamen-
tal contribution of Dedekind and Weber
the question of unique ideal decomposition is
taken up again in [337] by Emmy Noether,
who studies abstract integral domains exhibit-
ing the principal result :
Genau dann zerfallen die Ideale eines In-
tegritätsbereiches I eindeutig in Primideale,
wenn I in seinem Quotientenkörper K ganz-
abgeschlossen ist und zudem I die aufsteigende
Kettenbedingung (N) sowie jeder echte Restk-
lassenring von I die absteigende Kettenbedin-
gung (A) erfüllt.

Already in 1917, 1918 M. Sono had discussed abstract ideal theory in
[400], [401], requiring a Jordan composition sequence and the implica-
tion p ⊇ x ⊇ p2 =⇒ p = x V x = p2 , a certain “substitute” of integral
completeness.
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Nevertheless it is Emmy Noether’s contribution, which is considered and
celebrated as the

very beginning of that, what nowadays is called the theory of Dedekind
domains.

Most interesting in addition it seems, that this paper does not appear until
1927, although her Idealtheorie in Ringbereichen, [337], appeared already
in 1921 and although the notion of integral completeness had played an
essential role in her early paper [336], even though in a different context.

The importance of these two Noether papers has nowadays to be seen in
their methodical aspects rather than in their results. This view is confirmed
also by Emmy Noether herself, who liked to emphasize:

Es steht alles schon bei Dedekind !

But her axiomatical approach may be regarded as some change in doing
algebra, sometimes considered even as a milestone in algebra.

Next to Emmy Noether there are to mention Heinz Prüfer and above
all Wolfgang Krull who contribute fundamentally to ideal theory al-
ready in the twenties.

Prüfer studies divisibility under the assumption that all finitely gener-
ated ideals ⟨a1, . . . , an⟩ be divisors, i. e. under the condition

⟨a1, . . . , an⟩ ⊇ ⟨b⟩ =⇒ ⟨a1, . . . , an⟩
∣∣∣∣⟨b⟩ ,(P)

[351] and [352], whereas Krull introduces the notion of an AM-Ring 1),
i. e. a ring satisfying a ⊃ b =⇒ a | b , however with ACC, which leads even
to the implication a ⊇ b =⇒ a | b .
Non-Noetherian AM-rings are considered first by Akizuki in [2].

But not until the early thirties it is Shinziro Mori, who turns sys-
tematically to a general theory of multiplication rings , briefly M-rings,
(a ⊇ b =⇒ a | b) . His papers scatter over a period of about 25 years from
1932 by 1957, such that Gilmer/Mott remark in [163] : “Mori developed
most of the structure theory.” Nevertheless one has to say that Mori gives

1) Allgemeiner Multiplikations-Ring
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a characterization of arbitrary multiplication rings merely modulo the re-
quirement that each ideal be an irredundant intersection of primary ideals.

However, applying a crucial result of Krull, ( [244], Satz 10 ), Mori ver-
ifies

(a = ker a (∀ a)) ⇐⇒ (p prime⇒ p idemp. V p irred.).

Here ker a means the intersection of all primary ideals q ⊇ a where Rad q =:
p be minimal prime above a.

In 1964 Mott takes up the problem of describing M-rings, again, consult
[304]. He finds out that R is an M-ring iff

(i) ker a = a.

(ii) q primary =⇒ q = (Rad q)n.

(iii) If p is a minimal prime divisor of a and if in addition n is the
first exponent such that pn is an isolated primary component of
a with pn ̸= pn+1, then p does not contain the intersection of the
remaining primary divisors pni

i of a with minimal pi above a.

These investigations are completed in 1965 by Gilmer/Mott in [163],
with respect to arbitrary commutative rings. One central result of that
paper tells :

(a = ker a (∀ a)) ⇐⇒ (Rad a prime ⇒ a primary),

another one is the equivalence:

R is an M-ring ⇐⇒ R is a weak M-ring,

i. e., in order that R be an M-ring it suffices that each prime ideal p of R
satisfies the implication p ⊇ b =⇒ p | b .

But in both papers, in [163] and in [304] as well, and again in [268] this fact
is proven ring theoretically. Finally Gilmer/Mott characterize commu-
tative M-rings as rings satisfying

(i) Rad a prime =⇒ a primary .

(ii) q primary =⇒ q = pn, (p prime) .

(iii) If p is a proper prime ideal of R and if in addition pn ⊇ a ̸⊆ pn+1

then there exists an element y ̸∈ p with pn = a : ⟨y⟩ ,
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and additionally – based on ring theoretical aspects – they point out that
the combined condition (i) & (ii) is equivalent to the implication

Rad a prime =⇒ a = (Rad a)n (∃n ∈ N) .

M-rings with a view to their total quotient rings are investigated by Grif-
fin in [175]. Here it is shown, in particular, that in M-rings satisfying

∀a ∈ R ∃ ea = e2a : aea = a

finitely generated ideals are 2-generated.

As soon as a good commutative theory is exhibited, the question arises
whether there is an adequate non-commutative generalization. This ques-
tion is attacked partly by Ukegawa, lateron in co-operation with Umaya
and Smith, respectively, in [405],. . . , [411], and [394], culminating finally
in Smith, [278], where it is shown that also in the non-commutative case
weak AM-rings are even AM-rings.

Merely for the sake of completeness we mention the non-commutative con-
tributions of Murata, [311],. . . ,[315], which, however, don’t have any
meaning for this paper.

A first Summary : Already Dedekind emphasizes the impor-
tance of the Gruppensatz and shows in principal that this prop-
erty is equivalent to condition (M) above.

This condition (M) is taken up in the twenties and leads to the
notion of a multiplication ring which since then has been an ob-
ject of intensive and extensive investigations.

Integral domains satisfying (P) were studied first by Prüfer, [352] , in
honor of whom these rings are called nowadays Prüfer domains. But the
most important characterization of Prüfer domains is due to Krull, who
pointed out that a domain is a Prüfer domain iff each of its localizations
RP is a valuation ring, say has comparable ideals.

Since the method of localization, coming from p-adic considerations, and
generalized to arbitrary commutative rings by Krull, is a powerful tool
in ring theory, in particular most suitable when studying Prüfer domains,
this method may be assumed to be of high importance also w. r. t. lattice
theoretical approaches of abstract ideal theory.
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Nevertheless, apart from Krull’s condition, there is a most interesting
lattice condition, characterizing Prüfer rings. More precisely : the Prüfer
condition is equivalent to distributivity of the ideal lattice, that is satisfies

a ∩ (b + c) = (a ∩ b) + (a ∩ c) .(D)

This condition was introduced by Fuchs in [131], and is taken up by
Jensen who proves (D)⇐⇒(P) and gives a new push to the theory of
Prüfer rings in such a way that Larsen/McCarthy in [268] pay much
attention to Prüfer structures and Dedekind structures as well. Simultane-
ously once again there arises much discussion of Prüfer structures, culmi-
nating in Huckaba’s book [203], where Prüfer rings are defined as rings in
which every finitely generated ideal a, containing at least one cancellable el-
ement, is invertible or equivalently satisfies the implication a ⊇ b =⇒ a | b .

The most significant aspect of condition (D) is, of course, that it tells
exclusively about order relations in the set of congruences. Hence it is
even of general algebraic nature.

Next, we have to cite a paper of D. D. Anderson, [3], where the interac-
tion of R, R [x] and R (x) is investigated, based, of course, on preceding
papers. Here it is proved, apart from other results :

(i) R [x] is an M-ring iff R is a finite direct product of fields.

(ii) R (x) is an M-ring iff R is an M-ring .

(iii) R (x) satisfies (D) iff R satisfies (D), and in this case R (x) is
even a Bézout ring.

Recall Kronecker’s approach. The analogy between condition (iii) and
Kronecker’s theorem is obvious.

We return to the conditions (M), (P), (N) and (D) . Obviously these condi-
tions do not depend on any typical ring theoretical property. Objects under
consideration are sets and inclusions, products and congruences. Conse-
quently the conditions above are easily redefined for arbitrary groupoids and
thereby in particular for semigroups of complexes. Moreover the Prüfer,
and the Mori problem as well, admit more abstract versions w.r.t. the
structure of a (complete) algebraic m-lattice (multiplicative lattice), i. e. a
complete lattice on which a multiplication is defined, satisfying :

A · (
∑

i∈IBi) · C =
∑

i∈I(ABiC) .(AML)



1.2. TOWARDS AN ABSTRACT IDEAL THEORY 17

That this is not exhibited explicitly until the late thirties should have a
simple reason. Only gradually algebraists turn to thinking in lattice struc-
tures, even though already Dedekind had made first steps “in lattices”,
which he called dual groups, [100], [101].

However, Krull presented some contributions to an element free ideal
theory already in the early twenties. The proposal to do ideal theory in
an axiomatical way, based on ideal properties only, is due to him, [240],
compare his article

Axiomatische Begründung der Idealtheorie

and he is the first, as well, who contributes – implicitly – already in 1929
to theory of algebraic m-lattices by his article :

Idealtheorie in Ringen ohne Endlichkeitsbedingung.

Cum grano salis, in this paper the structure of a ring is taken merely as
means of discussion.2)

Among the rings with a good ideal arithmetic, so far, there are missing
two most classical structures, which obviously have an extraordinary ideal
theory although not being Dedekindian, namely : The ring G of all algebraic
integers and the ring Q [x, y]. This gives rise to the question, whether
another type of ideal might succeed where Dedekindian ideals fail. And,
moreover, since addition participates merely from a secondary point of
view, whereas multiplicative aspects are highly dominating, an attempt is
motivated, to settle ideal theory from a purely algebraic point of view , i. e.
to start from a monoid or some monoid with zero. First attempts in this
direction go back to 1929.

We recall Hensel’s valuations or equivalently exponents, and start from a
cancellative monoid. Building w.r.t. a set A in a first step the set [A] of
all elements, whose exponent remains below every exponent coding some
a ∈ A, and after this building the v-ideal a := ([A]) of all elements, with
exponents majorizing each exponent, coding an element of [A], we arrive
at some set of “ideals”, called v-ideals (in German: Vielfachen-Ideale) ,

2) At this place the author would like to mention Isidore Fleischer’s analysis [126] of Krulls early
influence in abstract ideal theory. That paper offers a short cut introduction to abstract ideal theory
including logical and topological aspects, and in a certain sense might be considered as an “ homage” to
Wolfgang Krull.
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behaving like d-ideals and satisfying :

a is a v−ideal iff

(
s

t

∣∣∣∣∣
S
a =⇒ s

t

∣∣∣∣∣
S
c

)
=⇒ c ∈ a

or, equivalently, according to Clifford, [93],

a is a v−ideal iff ( s | a · t =⇒ s | c · t ) =⇒ c ∈ a .

Thus a semigroup theoretical approach to a general ideal theory of semi-
group theoretical relevance is obtained.

First3) contributions to v-ideal theory in cancellative monoids appear in
1929, due to Arnold and van der Waerden, respectively, independent
one from each other, but influenced by Emmy Noether – two papers, not
onely methodically, but even definitely operating semigroup theoretically
and presenting the result :

A cancellative monoid (S, ·, 1) owns an S-division respecting ex-
tension with the unique prime factorization property iff its v-ideal
semigroup has this property.

This approach is taken up in the thirties w.r.t. arbitrary commutative
monoids by A. H. Clifford in [93]. Clifford modifies the notion of a
v-ideal in the above sense and studies the question of unique ideal prime
factorization under the condition, that the ideal primes are irreducible. Fi-
nally the author takes up Clifford’s ideas in the late fifties/early sixties,
settling the general case in [59], [60], [61] .

For integral domains the result of Arnold/van der Waerden means
nothing else but that exponents in the above sense do exist if and only
if the ZPI-theorem for v-ideals is valid, i. e. iff every v-ideal has a unique
v-prime ideal decomposition.

Let α be integral w.r.t. the integral domain I. Then the module {αn} is
finitely generated in the quotient field K of I. Consequently there exists
an element c ∈ I with c · {αn} ⊆ I. This motivates to call β almost integral
over the ring R if β satisfies c · {βn} ⊆ I . Thus we are led to a v-ideal
criterion for condition (M) via the implication

sn | c · tn (∀n ∈ N) =⇒ s | t ,(v)

3) Clearly, a v-ideal in general is what upper classes of Dedekind-cuts are in the particular case of
the rationals. From this point of view, Dedekind is again the forerunner.
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meaning nothing else but that in the quotient field of I does’t exist any
almost integral element α outside of S , satisfying c · {αn} ⊆ S (c ∈ S) ,
whence in this case I is called completely integrally closed.

Completely integrally closed are for instance the domain G of all algebraic
integers, and the domain Q [x1, . . . , xn] . This is easily seen, since condition
(v) is satisfied in every UF-domain (unique factorization domain).

But : G does not satisfy ACC for d-ideals and Q [x, y] does not satisfy
DCC for d-ideals w.r.t. proper residue class rings.

So, these domains do not satisfy the d-group theorem, but by (v) these
structures satisfy the v-group theorem and thereby condition (M) for v-
ideals, thus proving to be a strong alternative ideal arithmetic.

Furthermore it has to be stressed that in field extensions exponent exten-
sions are easier to handle than the d-ideal extensions are.

Finally we emphasize that the v-ideal semigroup is a homomorphic image
of any other ideal semigroup, already in the semigroup case.

This means for commutative rings R with identity, that the v-ideal semi-
group is a homomorphic image of all other ideal semigroups whose ideals
are also d-ideals. In this sense, the d-ideal semigroup is the finest, the v-
ideal semigroup the coarsest semigroup of d-ideals with the property that
all 1-generated ideals are of type R · a .

However, v-ideals suffer from two essential lacks. On the one hand, from
the number theoretical point of view, v-ideals in rings R need not satisfy
a + b = R =⇒ a + b = 1 (∃ a ∈ a, b ∈ b). On the other hand, from the
algebraical point of view, they need not have the crucial property of finite
character which requires that an element a is contained in the ideal hull of
a family Ai (i ∈ I) of ideals, if it is contained already in the hull of a finite
subfamily of Ai (i ∈ I) .

But, in spite of these lacks, the v-ideal offers a possibility to transfer the
d-ideal to monoids. To this end we consider G, the domain of algebraic
integers.

Here finitely generated d-ideals are finitely generated v-ideals and vice
versa, whence arbitrary d-ideals may be considered as subsets a, containing
together with each finite subset also the v-ideal, generated by this subset.
Subsets of this type were introduced as t-ideals by Lorenzen in [275] and
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prove to be a most suitable substitute of d-ideals in arbitrary commutative
monoids (with zero).

Altogether : As far as a sketch may achieve this, it should have
become clear, at least a bit, which way the d-ideal system on the
one hand and the v-ideal system on the other hand contribute to
classical ideal theory. But again, the reader should not hesitate
to consult Krull [245].

So, maybe apart from others, there are two possibilities, above all, of trans-
ferring classical ideal theory to abstract structures, namely one along the
lines of v-ideal theory, and another one along the lines of t-ideal theory.

As to the first, recall Arnold, van der Waerden, Clifford and the
author’s contributions to v-ideal theory.

As to the second, there is to mention first of all Paul Lorenzen, who
presents in [275] a general abstract ideal theory for cancellative monoids,
introducing, apart from other aspects, the system of t-ideals. Lorenzen’s
ideas are then taken up by Paul Jaffard and Karl Egil Aubert, com-
pare for instance Jaffard’s contribution to the ideal theory of cancellative
monoids, [213], and Aubert’s fundamental paper on x-ideals, [38], aside
from others, look at [29],. . . , [41].

But a strong theory of cancellative monoids á la Arnold/van der Waer-

den is not given until the eighties, based on [55], and an article of Skula
[392], improving the results of Borewicz/Šafarevič. Most interesting :
this is done by number theoretists rather than algebraists, like Narkiewicz,
cf. [333], [334], and Halter-Koch, Geroldinger, Lettl w.r.t. ques-
tions of algebraic number theory, ring theory, and convex geometry, cf.
[140], [141], [177],. . . , [179], [272]. And even a paper of analytical charac-
ter is published, cf. Krause, [237].

Cancellative monoids á la Arnold/van der Waerden are nowadays
called cancellative monoids with divisor theory. They have a good ana-
lytical characterization due to Krause, and a most important algebraic
characterization due to Halter-Koch, who proved in [178] :

S has a divisor theory
iff

S is the divisibility monoid of some Krull domain
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i. e. a domain whose monoid of principal ideals has a divisor theory. So
– according to a verbal proposal of Franz Halter-Koch – cancellative
monoids with divisor theory in this note are also called Krull-monoids.

Given an arbitrary semigroup, the very first question arises, which subsets
should be defined as ideals. From the semigroup theoretical point of view
the Rees ideal (SI ⊆ I ⊇ IS) seems to be some suitable candidate, but
looking at rings, these sets are obviously too narrow, in what sense ever.
As a lattice distributive system, however, Rees ideal semigroups have most
interesting aspects from the general point of view, and may contribute to
characterizing classes of special semigroups in a nice way.

To get an insight, the reader should study D. D. Anderson and E. W.
Johnson, [14]. Here the particularities of Rees ideals are referred, however
the articles [103] and [219], concerning order ideals, remain unconsidered.

As to the Mori property and related problems on Rees ideals, the reader
is referred to Dorofeeva, Manepalli and Satyanarayana, [107],. . . ,
[109] and [285],. . . , [288], respectively. Here the authors uncover, in a cer-
tain sense, the semigroup theoretical component of certain ring theoretical
contributions.

We come back to lattice theoretical aspects, i. e. to ideal theory in m-
lattices. Grown up from the pioneer papers of Morgan Ward and
Robert P. Dilworth in the late thirties, [419], . . . , [422], and the fun-
damental paper of Dilworth, [103], m-lattice theory provides a most nat-
ural generalization of classical ideal theory, as is pointed out for instance
in Fuchs [135].

And, last but by no means least, there is an article of Fleischer, [109],
analyzing and referring relations between m-lattices and x-ideals.

Finally, we take up again t-ideals, this time w.r.t. rings.

That v-ideal and t-ideal investigations are recently booming is indicated
by contributions to the theory of Krull and Mori domains for instance by
Valentina Barucci and Stephania Gabelli, respectively, [48], [49],
[18], [379], [137], and above all by Moshe Roitman et al., [377], [378],
[379], [97], [106], by Zafrullah et al., [281], [198], by Dobbs et al., [11],
[105], [106], where [11] is even a six-men-paper, and by Griffin, [170],
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Ira Papik, [345], and Kang, [225], [226], on v-multiplication rings, and
by Griffin, [172], Kennedy, [231], and Mott, [305],[307], on Krull rings.

Altogether, v-ideals and t-ideals have attracted much interest in cancella-
tive monoids and integral domains, and there is no lack in interesting re-
sults. But, as far as arbitrary monoids are considered, acceptable answers
to the questions

Which properties characterize the Prüfer condition (P) ?

Which properties characterize the Mori condition (M) ?

have remained open, so far.

This is by no means different w.r.t. the investigations of the author towards
a general theory of divisibility semigroups, abbreviated d-semigroups.

Starting from the system (A,+, ·) of the finitely generated ideals a of an
arithmetical commutative ring with identity, i. e. a ring with distributive
ideal lattice, we get :

(S, ·) is a semigroup.(A1)

(S,+) is a semi-lattice.(A2)

x(a + b)y = xay + xby .(A3)

a ⊇ b =⇒ a | b .(A4)

And choosing these conditions as defining axioms we are led to the structure
of d-semigroups, whose theory is studied by the author in [63],. . . ,[75], and
presented also in the lecture note [77], whose final version is part I of the
present folder on TOPICS OF DIVISIBILITY.

But, while the lattice semigroups of the lattice ideals and the multiplicative
ideals w.r.t. their formative influence are studied in a satisfactory manner
in [74] and [75], respectively, this is quite different with the system of m-
filters, i. e. subsets, satisfying the implications (a, b ∈ F =⇒ a∧ b ∈ F and
a ∈ F =⇒ sat ∈ F ) .

And open as well remained up till now the question, which properties do
provide a good description of lattice semigroups, satisfying condition (A4).

Hence, studying the Prüfer and the Mori problem in arbitrary situations,
really imposes itself to people working on po-structures. And this the
more, since references from d-semigroups to Prüfer rings and vice versa are
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missing, in spite of respectable developments in both of these fields within
the last 25 years. In this sense we may announce :

This paper is both :

A contribution to abstract ideal theory

and

A contribution to the theory of lattice semigroups.

1.3 The Contents

Central and fundamental structure of the main chapters will always be a
complete m-lattice V = (A, + , ∩ , ·) whose elements are in general denoted
by capital Roman letters – with a fixed basis A0 whose elements will be
denoted by lower case Roman letters, whenever we want to emphasize that
we are dealing with generators. Provided A is even algebraic, we will tacitly
suppose that A0 is even a system of compact generators.

If each a ∈ A0 is even a divisor (a ⊇ b =⇒ aX = b = Y a (∃X, Y )), A
will be called an ideal structure, and if moreover A0 is even closed under
multiplication with compact identity 1, A will be called an ideal semigroup.

Generators, of course, are considered as something like principal ideals of
rings, semirings or semigroups, but, as is well known, an abstract charac-
terization of principal ideals of rings is impossible. Nevertheless, in many
cases the principal elements t introduced by Dilworth in [103] via

(a ∩ b : t) · t = a · t ∩ b (∀ a, b)
and (a+ b · t) : t = a : t+ b (∀ a, b)

are a reasonable substitute. They are always divisors, forming always a
semigroup. However, there are ideal systems, such that even each ideal
is a principal element in the sense above, for example this is the case in
Dedekind domains.

In this note principal elements remain outside, except for some remarks at
the end of chapter 7. Our way is to start from an AML with a fixed basis.
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Let us note A |ℓB iff A is a left divisor, i. e. if A satisfies some equation
AX = B (∃X) and let us note A |B if A is a divisor, i. e. if A satisfies
even AX = B = Y A (∃X, Y ) .

Hereby the meaning of the left Prüfer condition and the Mori condition
should be clear.

In order to give a most classical model of the central structures settled
later on, we start with a chapter on factorial rings.

After this we offer an approach to the theory of ideals in semigroups, start-
ing from a closure operator.

This idea goes back to Prüfer [351] and is explicitly cultivated by Krull
in [245], where the notions of the v-ideal and the a-ideal are exhibited in
a most intensive consideration, by Fuchs in [135], by Kirby in [233], and
by Gilmer in [156]. Beyond that one has to mention within this context
L. J. Ratliff’s article on the ∆-Operator, [354]. Here the ideal structure
of a commutative ring with identity seems to serve merely as specialized
algebraic multiplication lattice, whence this paper contributes indirectly to
an element free ideal theory, exactly in the sense of Krull.

From this point of view our approach is by no means new, but nevertheless
there are some insights, seeming new, as far as the author was able to
check.

The next chapter provides the arithmetic of m-lattices, as far as this will
be necessary for later developments. In particular we will define residue
systems and localizations. Parts could have been cited w.r.t. other papers,
however not without disturbing continuity. And moreover one has to take
into account that the underlying structure is formally weaker than that of a
semigroup of ideals, since abstract ideal theory here is done in an element
free manner, whence it has to be verified in any case that the classical
methods ar still working under (our) weaker assumptions.

We then start discussing Prüfer problems, beginning with the left side case.
The structure under consideration will be the Algebraic Multiplication
Lattice, generated by left divisors. This means that the results of this
chapter do not remain true in general for semigroups of v-ideals, but large
parts will turn out to be independent from the finite character property and
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consequently most suitable to contribute to a particular study of v-ideals,
which is left to a final chapter.

Fundamental will be the theorem that left Prüfer structures are character-
ized by a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) & (a+ b)(a ∗ b+ b ∗ a) = a+ b .

Most central and fundamental is the chapter on prime divisors and Mori
structures. Here the Mori problem is discussed w.r.t. to an arbitrary AML,
which is not assumed to be commutative, but which will turn out to be
commutative. Some special AML, for instance, is the lattice of ideals of a
semiring.

In accordance to arbitrary rings it is shown next that condition (M) is
satisfied iff (M) is satisfied for all prime supelements P of B .

Furthermore, as a most surprising result we obtain that an AML, generated
by some A0 of left divisors, is a Mori structure if and only if it satisfies
simultaneously the subsequent equations :

An ⊇ B (∀n ∈ N) =⇒ AB = B = BA ,(A)

(A ∗B +B ∗ A)2 = A ∗B +B ∗ A ,(J∗)

(A : B +B : A)2 = A : B +B : A .(J:)

Here the reader may think of A ∗ B as of the right ideal quotient and of
B : A as of the left ideal quotient in rings.

Therefore, a commutative ring R with identity 1 is a multiplication ring,
iff its ideal system has the archimedean property and satisfies in addition
(a : b + b : a)2 = a : b + b : a .

Finally the particular case of a divisor generated AML is considered.

Next we turn to hyper-normal ideal structures. Hyper-normality deals with
the ring theoretical particularity that ⟨a⟩⟨u⟩ = ⟨a⟩ implies the existence of
some ⟨u⟩∗⊥⟨u⟩ with ⟨a⟩⟨u⟩∗ = ⟨0⟩ , for instance ⟨1 − u⟩ .

This chapter is closely related to classical ideal theory. But since we are
working “without elements” new ways of proofs are required. Furthermore
one has to take into account, that the class of AMLs considered here is
larger than that of ideal systems of commutative rings with identity. But,
nevertheless, the progress is rather based on the methods than on the
results. It’s lattice theory, not ring theory!
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One result among others, which may show the power of such endeavour in
the sense of Krull, is the proposition telling, that in hyper-normal ideal
structures idempotent elements are sums of idempotent generators, a result
for commutative rings with identity going back to Mori [300] and for more
general cases proven in Gilmer/Mott [163] and in Griffin [175] as well.

The chapter on hyper-normal ideal structures is followed by a chapter on
factorial AMLs on the one hand, and on classical ideal semigroups, i. e.
lattice modular ideal semigroups satisfying that prime elements produce
residue systems without zero divisors, that is elements satisfying A∗0 ̸= 0 .

Next we investigate archimedean Prüfer ideal semigroups. Main result
will be that these ideal semigroups in the classical and also in the hyper-
normal case are exactly those whose localizations AM are even Mori-ideal
semigroups. This property serves in commutative ring theory as definition
of the almost multiplication ring.

Thus – according to our results – a commutative ring R with identity is an
almost multiplication ring iff its ideal system forms an archimedean Prüfer
structure.

But also in the general case this chapter provides an interesting result, as
far as an answer is given to an open question on d-semigroups, telling that
the semigroup of the positive filters of a d-semigroup S is archimedean iff
S admits an embedding in a cube lattice.

In a final chapter we then investigate v- and t-ideal semigroups of monoids.
This will point out again, indirectly, the big power of the algebraic prop-
erty, which in general is missing, of course, in v-ideal semigroups. But
in spite of this we will succeed in characterizing v-ideal semigroups with
Prüfer or Mori property by combining the archimedean property with the
requirement that each ⟨a⟩ ∗ ⟨b⟩ be a divisor.

In addition this result clears the interrelation of the archimedean property
and the classical being completely integrally closed since in cancellative
monoids (v) is equivalent to the combination above.

Furthermore, amazingly it turns out that a cancellative monoid is a Mori
monoid with respect to some semigroup of ideals iff its v-ideal semigroup
satisfies the implication

a · x = a · y =⇒ (a ∩ b) · x = (a ∩ b) · y ,
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which in particular is satisfied, of course, if v-ideals are cancelable.

Worth mentioning seem to be also the characterizations of Krull monoids.

In particular the characterization of Krull monoids via by the property
to be completely integrally closed combined with the condition that each
maximal m be some ⟨a⟩ ∗ ⟨b⟩ , leads near to a description of Dedekind
domains, given by Krull, cf. [418].

1.4 Some final Remarks

This lecture note concerns above all the distributive part of classical ideal
theory, originating from number theory. Questions concerning modular
ideal theory, originating from geometry, will be considered elsewhere.

The text is written in a self contained manner, except for some elemen-
tary lattice theory and universal algebra. For further information the
reader is referred to the monographs of Fuchs [135], Gilmer [156] and
Larsen/McCarthy [268].

The references at the end of the paper are a rich source for those, in-
terested in the subject and, of course, much more than the papers cited.
Nevertheless the reader is referred also to the references of the references.
Many of these papers – by a critical view – turn out to concern algebraic
multiplication lattices rather than rings.

Aknowledgement : The author is very indebted to a real fan of ideal
theory, Frau Christel Schnaase, Albertus Magnus Gymnasium Bensberg,
for proof reading and critical remarks in “statu nascendi” of the German
1994-version via lots(!) of letters – over a long lasting period, when
things changed again and again.
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Chapter 2

Factorial Rings

2.1 Preface

Classical ideal theory originated from decomposition problems in certain
number domains. Therefore first of all we are faced with the fundamental
question

What are the factorial rings characterized by ?

It will be pointed out in this section that factorial rings, i. e. rings whose
elements are products of primes (p | ab =⇒ p | a V p | b), coincide with prin-
cipal t-ideal rings.

On the basis of semigroup theoretical insights this result was implicitly
exhibited in papers [56] through [61], focussed on a prolongation and a
deepening of the Fraenkel, [128], Arnold,[1], and Clifford, [93], pa-
pers.

However, in a classic paper, [241], Krull had cleared already the question
which types of principal ideal rings do exist, clearly a special case w.r.t.
the above theorem. Observe that any principal ideal ring is also a principal
t-ideal ring. Krull’s answer:

Es gibt im wesentlichen keine anderen Hauptidealringe
als die endlichen direkten Produkte von Komponenten
des Typs Z oder Zp.

Since Krull avoided ring arithmetic as far as possible and relied on ideal
arithmetic aside from the formula (a + b)(a + b) = a2 − b2 one could say

29
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that by this paper abstract ideal theory was borne, and recalling Krull’s
1929 paper on kernels one would like to declare

Abstract ideal theory goes back to Wolfgang Krull ! 1)

The relation between this chapter and Krulls pioneer paper [241], is eas-
ily described: we are concerned with the wider class of principal t-ideal
rings, whereas Krull studied the classical class of principal d-ideal rings.
However, one most important difference has to be mentioned: Whereas
Krull studied the behaviour of ideals from the purely ideal theoretical
point of view 2) the author started from element decompositions.

Again, factorial rings carry a strong t-ideal semigroup which is, however,
by no means in any case identic with their d-ideal semigroup, recall the
examples given in the introduction. On the other hand this means – in
some sense – that factorial rings offer a most interesting starting point for
abstract ideal theory. More precisely:

The t-ideal monoid of factorial rings satisfies all condi-
tions studied in this lecture note and so may serve as a
universal model !

To write as self-contained as possible, we develop the notions of a v-ideal
and that of a t-ideal and in addition their calculation rules as far as nec-
essary for understanding this chapter, although this will be done ab ovo
in the subsequent chapter, starting with a development of some abstract
ideal theory.

It will turn out that factorial rings have a direct decomposition into facto-
rial domains and special primary rings, i. e. rings whose ideal semigroup is
exhausted by the powers of some prime element generated ideal ⟨p⟩. Thus
structure theory of factorial rings basically is structure theory of facto-
rial domains, a theory to which many authors have contributed, we cite
P. Samuel, [384], and the contribution of Larsen/McCarthy in [177],
p. 190 - 200.

1) This the more, according to his paper[240], titled “Axiomatische Begründung der Idealtheorie”.
2) The author would like to regret that – concentrated in the semigroup situation and very busy

outside of any University – he failed to discover Krulls pioneer paper, and so missed the chance of
bringing together Krulls result and his own one.
But in 1961, when Studienreferendar of the Ernst Moritz Arndt Gymnasium Bonn he had – invited

by Krull – the chance to meet Krull for discussing his result walking together with that famous math-
ematician from the Mathematical Institute of the University of Bonn (on the other side of the street) to
Krull’s flat. Unforgettable, very impressed, deeply impressed.
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Commutative decomposition theory seems to have at least one origin in the
paper [128] of A. Fraenkel. All results of this chapter are taken from
[56] through [61], except for a result due to D. D. Anderson [3] proven in
an alternative manner.

Unique factorization problems play a crucial role in algebraic number the-
ory. But as was pointed out by Mott in [308] unique factorization is also of
important relevance in algebraic geometry. So, for the sake of completeness
– we copy a most concentrated remark of Mott:

“. . . . . . Unique factorization has its place in algebraic geometry,
too.

Zariski [1947] discovered that there are two distinct concepts of
a simple (or non-singular) point on an r-dimensional algebraic
variety V in affine n-space. Traditionally, a point P of V had
been defined to be simple if and only if rank JP = n − r, where
JP is the Jacobian matrix [δfi/δxj] at P , where

{f1(x1, . . . , xn) , f2(x1, . . . , xn), . . . , ft(x1, . . . , xn)}

is a basis of the defining prime ideal of V . Zariski defined P
to be simple if and only if the corresponding local ring (R,M),
where M is the unique maximal ideal of R, is a regular local ring.
Then he observed that the two definitions are equivalent if the
ground field k has characteristic 0 or is a perfect field of char-
acteristic p ̸= 0. Now it is common practice to call P a regular
point if P has a corresponding regular local ring, and to call P a
smooth point if the Jacobian criterion is satisfied at P .
But the regular local rings (R,M) that occur in algebraic geom-
etry as local rings corresponding to regular points are special in
that they contain the ground field k. Moreover, R∗ (the comple-
tion of R with respect to the topology determined by the powers
of the maximal ideal M) is isomorphic to the ring of formal power
series in r determinants over the residue field R/M . Thus R∗ is
a UFD and Zariski observed that R is a unique factorization
domain as well. For several years it was unknown whether this
observation could be extended, but Auslander and Buchs-

baum [1959] proved that an arbitrary regular local ring is a UFD.
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The line of investigation started by Zariski reached its zenith
in Hironaka’s [1964] spectacular proof of the resolution of sin-
gularities theorem for algebraic varieties over algebraically closed
fields of characteristic 0.”

2.2 Prime Element Factorizations

Throughout this chapter ring will mean a commutative ring with identity
element 1.

Divisibility, whatever this might be, begins with N and thereby in (Z,+, · ) .
Drop now all properties apart from those of rings . Then the classical
divisibility theory gets lost, but nevertheless there remain good substitutes.
So, let henceforth R be a ring.

a ∈ R is called a divisor of b ∈ R (b a multiple of a), by symbols a | b , if
there exists some x with ax = b.

Let a, b be elements of R and d | c for all common divisors c of a and b,
that is for all c | a, b. Then d is called a greatest common divisor, briefly
a GCD of a and b . If in particular 1 is a GCD of a, b then the elements
a, b are called relatively prime. c ∈ R is called a lowest common multiple,
briefly an LCM of a and b if a, b | c & a, b | d =⇒ c | d.

Let a | b but let b not divide a, denoted by b |− a . Then a is called a proper
divisor of b (b a proper multiple of a), in symbols a ∥ b. Let a | b & b | a.
Then a is called equivalent to b, by symbols a ∼ b. Obviously | is transitive
and, according to R ∋ 1 , the relation | is in addition reflexive.

a ∈ R is called a unit, if a | 1. a ∈ R is called a zero divisor, if 0 = a · y
with y ̸= 0.

The following is well known, of course: If a is a non zero divisor then a is
cancellable since we get in this case

a · x = a · y =⇒ a · (x− y) = 0 =⇒ x− y = 0 =⇒ x = y ,

and if a is cancellable then a is no zero divisor since in this case

a · y = a · 0 =⇒ y = 0 .
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Finally, we call a and b associated, symbolized by a ≡ b , if a = bε with
ε | 1 .

“There seems to be no book showing that the relations ≡ and ∼ may be
different”. This is a remark in Irvin Kaplansky [227], where the ring
of real continuous functions is presented as an example with ≡ ̸= ∼ . To
see this, consider suitable functions f, g with f(x) = −g(x) if x ≤ a < b,
f(x) = g(x) = 0 if a ≤ x ≤ b and f(x) = g(x) if b ≤ x .

2. 2. 1 Lemma. ∼ and ≡ are congruence relatons w. r. t. multiplication.

PROOF. Straightforwardly. 2

2. 2. 2 Lemma. The units of R form a group.

PROOF. Straightforwardly. 2

2. 2. 3 Definition. Let S be a commutative monoid. We call

p ∈ S semiprime, if : p ∼ ab =⇒ p | a V p | b ,
p ∈ S prime, if : p | ab =⇒ p | a V p | b ,
p ∈ S completely prime, if : pn | ab =⇒ pn | a V p | b ,
p ∈ S irreducible, if : a ∥ p =⇒ a | 1 .

Let p be semiprime and let a ∥ p . Then ax = p (∃x ∈ R) and consequently
it follows p = apy = p · ay (∃y ∈ R) by p |− a

2. 2. 4 Lemma. p ∈ R is semiprime if and only if

ap & b ∥ p =⇒ ab ∥ p

i. e. if the set of proper divisors of p forms a monoid.

PROOF. a ∥ p & b ∥ p =⇒ p = asp = btp (∃s, t ∈ R)

=⇒ p = asbtp

=⇒ p = ab · stp & p |− ab ,

and a ∥ p & b ∥ p =⇒ ab ∥ p implies

p ∼ uv =⇒ p |u V p | v ,

because p ̸∼ uv. 2

Henceforth the ∼-class of a will be denoted by a and the corresponding
homomorphic image of (R, ·) by (R, ·) or R, respectively.
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Obviously (R, ·) is isomorphic with the monoid of principal ideals ⟨a⟩ w. r. t.
multiplication, and moreover it holds

a | b⇐⇒ a | b and a ∥ b⇐⇒ a ∥ b .

Thus | defines a partial order in (R, · ) . Hence we may write

a ≤ b instead of a | b
a < b instead of a ∥ b ,

and a ∧ b = c instead of c is GCD of a, b .

Furthermore it is clear that properties like to be reducible, semiprime,
prime, or completely prime are transferred from R to R and from R to R .

The main goal of this section is a characterization of rings whose elements
are products of primes.

2. 2. 5 Definition. R is called factorial if each a ∈ R is a product of
prime elements.

We continue by a series of lemmata.

a2 | a & a ∼ b =⇒ a ≡ b .(2.1)

PROOF. a2x = a & au = b =⇒ a(ax−1+axu) = b =⇒ ( ) | b | a =⇒ ( ) | 1.
2

2.1 leads straightforwardly to

m > n & am | an =⇒ am ≡ an .(2.2)

PROOF. m > n & am | an =⇒ (an)2 | an ∼ am. 2

2. 2. 6 Lemma. If R is finite then a ∼ b =⇒ a ≡ b.

PROOF. Suppose ax = b & by = a. Then it follows a(xy)nx = b and
there exists some r ∈ R with xr+1 = xr · ε . Hence b = ax = a(xy)rε = aε.

2

2. 2. 7 Lemma. If a is not semiprime then a is decomposable, meaning
that a is equal to some product bc with b | a & c | a .

PROOF. By assumption there exists a product bc satisfying the equiva-
lence a ∼ bc & b | a & c | a.
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Suppose now a = bcd. If in addition bd ∥ a or cd | a, the proof is complete.
Otherwise we have a ∼ cd and a ∼ bd , say

au = cd and av = bd .

But this implies a = bcd = bau = cav

;

a = cbauv
= bc · a · uv
∼ a2 .

So, it follows a ≡ bc, say a = b · cε, with b ∥ a, cε ∥ a. 2

p semiprime ⇐⇒ p = ab⇒ p | a V p | b .(2.3)

PROOF. According to the preceding lemma p is not semiprime iff p does
not satisfy p = ab =⇒ p | a V p | b . 2

2. 2. 8 Lemma. Every reducible semiprime element is a zero divisor.

PROOF. 1 ∥ a ∥ p =⇒ p ∼ ay =⇒ p = pax =⇒ p(1 − ax) = 0 with
ax− 1 ̸= 0, since otherwise it would result a | 1 . 2

2. 2. 9 Lemma. If p is semiprime and a ∥ p then a is cancellable.

PROOF. a ∥ p =⇒ p = pax. Suppose now ad = 0. It follows p ∼ ap =

a(p+ d) ; p
∣∣∣∣ p+ d; p | d, say d = py. Hence it results d = py = axpy =

axd = 0. 2

In other words: p is semiprime iff the proper divisors of p form a cancella-
tive monoid, p is irreducible iff the proper divisors of p form even a group.

2. 2. 10 Corollary. In a finite R each semiprime p is irreducible.

2. 2. 11 Lemma. If p and q are prime then

p | q V q | p V (d
∣∣∣∣ p, q =⇒ d | 1) .
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PROOF. Suppose p |− q & q |− p and d
∣∣∣∣ p, q. Then d ∥ p, q which leads to

p = pdx =⇒ p(1 − dx) = 0 (∃x ∈ R)
=⇒ q | 1 − dx
=⇒ qy + dx = 1
=⇒ d | 1 .

2
1 ∥ a ∥ p & p completely prime =⇒ p2

∣∣∣∣ p.(2.4)

PROOF. p2 |− p & a | p =⇒ p = pax (∃x)
=⇒ p | p(1 − ax) = 0
=⇒ p | 1 − ax

=⇒ py + ax = 1 (∃y ∈ R)
=⇒ a | 1 .

Thus the assertion follows by contraposition. 2

2. 2. 12 Definition. Let M be a commutative monoid. We call t∗ a
complement of t (in a) if t∗ satisfies t·t∗ = a and t·t∗ = t·x =⇒ t∗ | x (⇐⇒
t∗ |x) .

2. 2. 13 Lemma. If t∗ is a complement of t it follows

t · t∗ | t · x =⇒ t∗ | x.

PROOF. t · t∗ | t · x =⇒ t · t∗y = t · x
=⇒ t · (t∗y − x+ t∗) = t · t∗
=⇒ t∗ | (t∗y − x+ t∗)
=⇒ t∗ | x. 2

2. 2. 14 Definition. We call R semi-factorial, if each a is a product
of semiprimes in such a way that irredundant decompositions of the same
element have the same set of factors.

2. 2. 15 Lemma. In a semi-factorial R semiprime elements p are prime.

PROOF. Put p ≼ a iff p is factor of at least one and thereby of each
irredundant semiprime decomposition of a .

It is to prove p | ab =⇒ p | a V p | b or equivalently p | ab =⇒ p | a V p | b .
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(i) In case of p ≼ ab the proof is clear.

(ii) Otherwise we get p ̸≼ ab; p ·ab = ab; a ·p ≤ a ·b and (w. l. o. g.)
p ̸≤ a.

But this means a < ap and thereby p ≼ x for all x with a ·x = a · p. Hence
p is the (uniquely determined) complement of a and consequently a divisor
of b. 2

2.2.15 provides as a first main result

2. 2. 16 Corollary. A ring R is semi-factorial iff each a is a product of
primes.

2. 2. 17 Lemma. Let R be a ring in which any a is a product of primes.
Then each prime element is even completely prime.

PROOF. First assume pm+1 |− pm . Then p is the complement of pm, be-
cause with a suitable a it holds:

pmp | pmx =⇒ pm(pa− x+ p) = pmp

=⇒ ( ) | p V p | ( )
=⇒ p | (pa− x+ p)

=⇒ p | x.

Suppose now p n ≤ ab & p n ̸≤ a.

Then it follows pm · x = a with p ̸≤ x and 0 ≤ m < n, and this provides

pm · p ≤ pm · x · b
;

p ≤ x · b
;

p ≤ b (recall p ̸≤ x) . 2

Summarizing we get:

2. 2. 18 Proposition. For a (commutative) ring (with identity) the
following are pairwise equivalent:

(i) R is semi-factorial.

(ii) Each a of R is a product of primes.
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(iii) Each a of R is a product of completely primes.

We investigate factorial rings w. r. t. their arithmetics.

2. 2. 19 Lemma. In a factorial ring any prime element p satisfies :

a ≤ b ⇐⇒ p e ≤ a⇒ p e ≤ b .

PROOF. (⇐=) : Let a =
s∏
1

p nσ be an irredundant prime-factor-decomposi-

tion satisfying σ′ ̸= σ′′ =⇒ pσ′ ̸≤ pσ′′. Then the right side provides elements
xσ (1 ≤ σ ≤ s) with

b = p n1
1 · x1 = p n1

1 · p n2 · x2 . . . (2.2.17)
;

b = a · xσ .

The other direction is obvious. 2

2. 2. 20 Lemma. Factorial rings satisfy the ascending chain condition,
briefly ACC, for principal ideals.

PROOF. We prove the descending chain condition w.r.t. ∥ . To this end
we start from a chain a > a1 > . . . > an > . . . and the uniquely determined
irredundant decomposition a =

∏s

1p
nσ with incomparable factors pσ in R .

There may be reducible factors in this product, but these are idempotent
and their proper divisors are cancellable and hence irreducible. Therefore
after finitely many steps we arrive at an element am whose irredundant
prime-factor-decomposition contains no longer any reducible factor. 2

2.2.20 and 2.2.7 provide as a further main result

2. 2. 21 Lemma. Any semi-factorial ring R is even factorial.

2. 2. 22 Lemma. Factorial rings satisfy a ∼ b =⇒ a ≡ b.

PROOF. There is nothing to show for prime elements p , q with p ∼ q
since in the case of p2 |− p all proper divisors of p and q , respectively, are
units.

Let now pe and qf be prime factor powers satisfying pe ∼ qf . Then it
follows q = pε with ε | 1 and we get immediately pe ≡ pf , if e = f , and
w. l. o. g. pe ≡ pf if e < f , since in this case we have (pe)2 | pe .



2.3. A DIRECT RING DECOMPOSITION 39

Thus, since primes are completely prime, the proof is complete by lemma
2.2.21 2

We finish this section by a result that sheds some further light on the
structure of factorial rings. It is easily seen that in factorial rings for each
pair of principal ideal ⟨a⟩, ⟨b⟩ there exists a uniquely determined ⟨c⟩ with

⟨c⟩ = {x
∣∣∣∣ b | ax} := ⟨b⟩ : ⟨a⟩ . We show w.r.t. rings of this type:

2. 2. 23 Proposition. Let R be a commutative ring whose ideal quotients
⟨b⟩ : ⟨a⟩ are principal. Then R satisfies in addition:

⟨b⟩ : ⟨a⟩ + ⟨b⟩ : ⟨a⟩ = ⟨1⟩(N)

PROOF. It holds the special implication:

⟨b⟩ : ⟨a⟩ = ⟨c⟩ & aef = a & cef = c

=⇒ b | a(ef − 1 + c)

=⇒ e | c
∣∣∣∣ (ef − 1 + c) =⇒ e | 1 ,

which in particular leads to (N). 2

Property (N) plays an important role in commutative ring theory, since it
is characteristic for rings satisfying.

⟨a1, a2, ..., an⟩ ⊇ b =⇒ ⟨a1, a2, ..., an⟩
∣∣∣∣ b .(FD)

More precisely it holds: A commutative ring with identity is called arith-
metical iff its ideal lattice is distributive, and this is the case iff it satisfies
(N) iff it satisfies (FD).

2.3 A direct Ring Decomposition

The goal of this section is a direct decomposition of factorial rings. Essen-
tial for this decomposition will be the divisibility arithmetic, in particular
the existence of GCDs and LCMs.

It has already been shown that each pair of primes has a GCD. Next we
show that R forms a lattice under ∧ and ∨ .

2. 3. 1 Proposition. In factorial rings any pair a, b has both, a LCM and
a GCD .
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PROOF. Choose a, b ∈ R , decompose a, b in R and form prime factor
powers. If then

a =
∏
pmσ
σ and b =

∏
q nτ
τ

are the uniquely determined irredundant decompositions of a and of b ,
respectively, then the product of the maximal elements of

{pm1
1 , . . . , pms

s , q n1
1 , . . . , q

nt
t }

is the LCM of a, b in R and each preimage of this LCM is a LCM of a, b in
the ring R.

Now we construct the GCD of a, b in R as follows : According to 2.2.11
for each pair of primes p, q there exists the GCD p ∧ q . Hence in the case
of p ̸≤ q & q ̸≤ p we get

pm ∧ q n = p ∧ q (observe a < p =⇒ ap = p)

and thereby

LCM (pmσ
σ ∧ q nτ

τ )
(
1≤σ≤s
1≤τ≤t

)
= GCD (a, b) =: a ∧ b .

Hence each preimage of a ∧ b is a GCD of a and b in R . 2

2. 3. 2 Definition. A ring R is called a special primary ring if it contains
a prime element p ∈ R such that the set of all ideals of R is exhausted by
the set of all ⟨pk⟩ .

Now we are ready to prove:

2. 3. 3 The Decomposition Theorem. A ring R is factorial iff it is a
finite inner direct sum whose summands are factorial domains or special
primary rings.

PROOF. Let 0 =
∏
p nσ
σ be the irredundant prime decomposition of 0. We

may assume that 0 =
∏
p σnσ (1 ≤ σ ≤ s) with p nσ

σ · pσ = p nσ
σ (1 ≤ σ ≤

s) , since it holds

p nσ
σ · pσ

∣∣∣∣ p nσ
σ ; p nσ

σ (p σε) = p nσ
σ

; (pσε)
nσ · (pσε) = (pσε)

nσ ,

whence all we have to do, is to replace pσ by pσε , if necessary. We define

e′σ :=
∏
p nσ
σ (σ ̸= σ′) .
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Then e1 + . . .+ en is an orthogonal sum, that is e2i = ei , ei · ej = 0 (i ̸= j) ,
and

1 = e1 + . . .+ en .

To see this, observe, that e1 + . . . + es is idempotent and that in addition
each prime divisor p of e1 + . . . + es divides some pσ and thereby each
eσ′ and consequently eσ as well. But this means that p divides at least
two different and thereby relatively prime elements pσ, pσ′, that is elements
whose common divisors are units. Hence p itself must be a unit, too.
Consequently R is a finite inner direct sum of the ideals Reσ , i. e.:

R = Re1 ⊕ . . .⊕Res .

It remains to show that each Reσ is a domain or a special primary ring.
To this end we consider the cases pσ = p 2

σ and pσ ̸= p 2
σ .

(i) Suppose pσ = p 2
σ and aeσ ·beσ = 0. Then pσ | ab whence pσ | a V pσ | b

and thereby aeσ = 0 V beσ = 0.

(ii) Suppose pσ ̸= p 2
σ. Then each proper divisor of pσ is a unit, and all

elements of Reσ are of type beσ with b ∼ ptσ (∃ t ∈ N).

Observe: From p := pσ, n := nσ, e := eσ in the case of p |− a the
irreducibility of p implies

a ≤ 0 = p n · e
;

a = a ∧ pn · e
≤ (a ∧ pn) · (a ∧ e)
= a ∧ e
;

ae ≤ ee = e
; ae ≡ e .

Thereby in the case of pm | ae & pm+1 |− ae (∃1 ≤ m ∈ N) we get:

ae = pme · x & p |−x; xe ≡ e . 2

We now turn to the interaction of R and R [x] .

2. 3. 4 Theorem. R [x] is factorial iff R is a factorial ring satisfying
the implication a2 = 0 ̸= a =⇒ a = 0 .
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PROOF. (a) Let R be a factorial ring satisfying the implication above.
Then R is a direct product of factorial domains and the factorial property
is transferred from R to R [x] according the classical result of Gauss.

(b) Let now R [x] be factorial. Then R [x] satisfies the ascending
chain condition for principal ideals and each a ∈ R has a decomposition
a = pi · . . . · pσ into semiprime factors pσ (1 ≤ σ ≤ s) ∈ R [x] . Recall now :

a |R [x] b =⇒ a |R b

and a ∼R [x] b =⇒ a ≡R b ,

where the second line follows from

a0 + a1x+ · · · + anx
n
∣∣∣∣ 1 =⇒ a0

∣∣∣∣ 1 .
This means that semiprime elements p of R with prime decomposition
p =

∏
pi(x) in R [x] satisfy

p =
∏
pi(x) ; p ∼ pj0 (∃j ∈ I)

and thereby p | ab =⇒ pj(x) | a V pj(x) | b
=⇒ pj0 | a V pj0 | b
=⇒ p | a V p | b .

Hence each semiprime element of R is prime in R . But semiprimes of R
are not only prime in R but even prime in R [x] .

To this end suppose that there are first coefficients ak in f(x) and bℓ in
g(x) satisfying p | ak, p |− bℓ . This would imply p | ak · bℓ in contradiction to
p | aibj (1 ≤ i, j ≤ n) .

Hence irredundant prime factorizations of 0 in R remain irredundant prime
factorizations of 0 in R [x] .

Suppose now a2 = 0 ̸= a . Then there would be a triple p, n, e := pσ, nσ, eσ
satisfying p2 |− p; a | p =⇒ a | 1 .

Hence each prime factor of ex in Re [x] must be cancellable since ex is
cancellable in Re [x] , and in addition it must be a divisor of pe , and even
a proper divisor of pe , according to (pe)n = 0 .
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But this would yield xe | e ; x|R e , a contradiction! 2

2. 3. 5 Corollary. A finite ring is factorial iff it is a principal d-ideal
ring.

PROOF. In the finite case each integral component of the decomposition
theorem is a field. Hence the decomposition theorem provides a direct
product of principal ideal rings. 2

There are two natural questions, which now will be considered.

First we ask: when is a factorial ring is a direct product even of fields. The
answer is trivial, of course. This is the case iff any a ∈ R satisfies a2 | a ,
i. e. if R is von Neumann regular.

In this case R [x] is a direct product of the principal ideal rings R·eσi
[x]

components and hence a multiplication ring, that is a ring satisfying con-
dition (M) of the introduction.

So, it should be mentioned that D. D. Anderson in [3] has shown, that
condition (M) for R [x] is not only necessary, in order that R be a direct
product of fields, but also sufficient. This will now be proven alternatively
to [3]

2. 3. 6 Proposition. Let R be a commutative ring with identity 1. Then
R [x] is a multiplication ring if and only if R is a direct product of fields.

PROOF. One direction is clear.

Let now R [x] be a multiplication ring. Then the lattice of ideals of R [x]
satisfies:

a ∩ (b + c) = (a : (b + c) ) · (b + c)
= (a : (b + c) ) · b + (a : (b + c) ) · c
⊆ (a : b) ) · b + (a : b) ) · c
= (a ∩ b) + (a ∩ c)
⊆ a ∩ (b + c).

This implies that R is (von Neumann) regular, since every a ∈ R satisfies

⟨a⟩ ⊇ ⟨x− a⟩ + ⟨x⟩ =⇒ (⟨a⟩ ∩ ⟨x− a⟩) + (⟨a⟩ ∩ ⟨x⟩ ,
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which implies a = (x− a) · f(x) + x · g(x)

with a | x · g(x) ; a | g(x)

; a | (x− a) · f(x)

; a |xf(x) ; a | f(x)

; a2 | af(x) = x( f(x) + g(x) ) − a

; a2 | a .

Thus the principal ideals form a boolean algebra.

We now show that R has the Noether property. From this it will follow that
R is indeed a direct product of fields. To this end let A = ⟨ai⟩ (a2i = ai )
be an ideal of R and suppose

⟨A, x⟩ ·B = ⟨x⟩

in R [x]. Then there exists an element a = a2 ∈ A with

⟨a, x⟩ ·B = ⟨x⟩
= ⟨A, x⟩ · B ,

and by B | ⟨x⟩ , B is cancellable if ⟨x⟩ is cancellable. But this means

⟨a, x⟩ = ⟨A, x⟩.

that is for each ai ∈ A

ai = a · u(x) + x · v(x)
(∃ : u(x), v(x) ∈ R(x)

= a · si (∃si ∈ R) .

This completes the proof. 2

2.4 Ideal theoretical Aspects

2. 4. 1 Lemma. Factorial rings satisfy

a · (b ∧ c) = a · b ∧ a · c .(D)



2.4. IDEAL THEORETICAL ASPECTS 45

PROOF. Obviously we get

a · (b ∧ c) ≤ a · b ∧ a · c .

It remains to show a · b ∧ a · c ≤ a · (b ∧ c) .
To this end let p be prime, p n | ab, ac and pm | a & pm+1 |− a . Then it follows
p n−m | b, c and thereby p n | a · (b ∧ c) , whence a · b ∧ a · c ≤ a · (b ∧ c) . 2

2. 4. 2 Definition. By a GCD-ring we mean a ring with GCDs satisfying
condition (D).

In particular every factorial R is a GCD-ring.

2. 4. 3 Lemma. GCD-rings satisfy

a | b · c & a ∧ b = 1 ⇒ a ≤ c .

PROOF. a = a ∧ b · c ≤ (a ∧ b) · (a ∧ c) = a ∧ c . 2

2. 4. 4 Lemma. In GCD-rings every semiprime p is completely prime.

PROOF. Let p be semiprime and suppose p ≤ a · b. It follows:

p = p ∧ a · b ≤ (p ∧ a) · (p ∧ b) .

From this we get p = p∧a V p = p∧b , since otherwise p ≤ (p∧a)·(p∧b) < p

must be satisfied. So we have p ≤ a V p ≤ b. Consider some p n satisfying

p n ≤ a · b & p ̸≤ a.

Then p ≤ b whence p n = p n ∧ a · b
≤ (p n ∧ a n) · (p n ∧ b)
≤ (p ∧ a)n · (p n ∧ b)
= p n ∧ b . 2

Suppose now that R is even a principal ideal ring. Then g is GCD of a
and b iff ⟨b, c⟩ = ⟨g⟩, and and it holds the equation

⟨a⟩ · ⟨b, c⟩ = ⟨ab, ac⟩ .

Hence (D) is satisfied for the classes x .
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In addition R satisfies ACC for principal ideals because

⟨a1⟩ ⊂ ⟨a2⟩ ⊂ ⟨a3⟩ ⊂ . . . & ⟨{ai}⟩ = ⟨c⟩
=⇒

c
∣∣∣∣ ai (i ∈ N) & c ∈ ⟨a1, . . . , aℓ⟩ = ⟨aℓ⟩ (∃ aℓ)

;

⟨aℓ⟩ = ⟨aℓ+1⟩ · · · .

Hence any principal ideal ring is factorial. But, of course, the opposite is
not true. Consider Z [x, y] . By Gauss Z [x, y] is factorial but 1 has no
linear combination by x, y . So we have to look for a weakened condition.

Apart from the usual Dedekindian ideal, for short d-ideal, there exist fur-
ther most important ideals.

2. 4. 5 Definition. Let S be a commutative monoid. A subset a of S is
called a v-ideal if it satisfies – compare the preface –(

s
∣∣∣∣ a · t⇒ s

∣∣∣∣ c · t ) =⇒ c ∈ a .

Obviously, in a ring the zero element 0 is contained in every v-ideal. There-
fore no intersection of a family of v-ideals is empty. Furthermore it is easily
seen that the intersection of a family of v-ideals is always again a v-ideal.
Consequently for each A ⊆ R there exists a finest A containing v-ideal Av ,
generated by A . For these ideal types we get:

Av = Bv & Cv = Dv =⇒ ⟨AC⟩v = ⟨BD⟩v ,

because by assumption

s
∣∣∣∣ (AC)t⇐⇒ s

∣∣∣∣ (AD)t⇐⇒ s
∣∣∣∣ (BD)t .

So v-ideals may be calculated in a similar manner as d-ideals are calculated.
Based on v-ideals we now define

2. 4. 6 Definition. A subset a of S is called a t-ideal if it contains all
v-ideals generated by finite subsets of a .

The calculation laws for t-ideals are the same as those for v-ideals, as is
pointed out in the next chapter. In particular each subset A of S generates
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uniquely a finest t-ideal At by taking all (Ai)t with finite Ai ⊆ A. And
forming their set theoretical union, we get

At = Bt & Ct = Dt =⇒ ⟨AC⟩t = ⟨BD⟩t ,

which is left to the reader at this point, since t-ideals are not multiplied in
this section.

But, different from v-ideals, t-ideals are of finite character, meaning that
an element contained in At is already contained in some Et where E is a
finite subset of A .

Obviously v- and t-ideals satisfy av = at = ⟨a⟩ = aS . Hence any principal
v-ideal ring and similarly any principal t-ideal ring is a GCD -ring. And,
like d-ideals, v-ideals and also t-ideals satisfy

⟨a⟩t · ⟨b, c⟩t = ⟨ab, ac⟩t ,(Dt)

that is the classes x satisfy condition (D). This leads to

2. 4. 7 The Characterization Theorem. A ring R is factorial iff it is
a principal t-ideal ring.

PROOF. (a) Let R be factorial. Then according to ACC for principal
ideals each At of R contains some a having no proper divisor in At . But
this a satisfies ⟨a, c⟩t = ⟨d⟩t = ⟨a⟩t ; a | c (c ∈ At) , observe ⟨d⟩t =
⟨a, c⟩t =⇒ d ∈ At & d | a =⇒ d ∼ a.

(b) Let now R be a principal t-ideal ring. Then R is a GCD-ring, recall
condition (D), and like above we get ACC for principal ideals.

Consequently R is factorial. 2

Based on the preceding results We finish this section by a new proof of
corollary 2.3.5.

2. 4. 8 Proposition. A finite commutative ring with identity 1 is facto-
rial iff it is a principal d-ideal ring.

PROOF. It suffices to verify necessity. To this end let R be finite and
factorial. We show

a ∧ b = c =⇒ ⟨a, b⟩ = ⟨c⟩ .
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To this end we start from

a ∧ b = c with a = c · a ′, b = c · b ′ .

Here we may assume that a ′, b ′ are orthogonal, or equivalently relatively
prime.

FOR: By 2.2.10 we may start in R from irredundant decompositions of
a ′, b ′ into irreducible factors, consult 2.2.10. Moreover, since any common

p implies cp
∣∣∣∣ c ; cp = c we may delete common factors successively until

there remain orthogonal products.

If now a ′ | 1 or b ′ | 1, there exists a fortiori a linear combination

a ′x+ b ′y = 1 .

Otherwise there exists an n, satisfying

(a ′)n+1
∣∣∣∣ (a ′)n ; (a ′)n(a ′u) = (a ′)n ; (a ′)n(1 − a ′u) = 0 .

But a ′ , b ′ are orthogonal. Hence b ′ | (1− a ′u), say b ′v = 1− a ′u, whence

b ′v + a ′u = 1 ; ca ′u+ cb ′v = au+ bv = c ,

that is ⟨a, b⟩ = ⟨c⟩ . So, by induction we get:

⟨a1, . . . , an⟩ = ⟨d⟩ (∃d ∈ R) . 2

A final Remark. Again, w.r.t. what is developed in the remainder of
this paper, this chapter may serve as a nucleus. This will be clear in
most situations, whence we omit additional comments and remarks. The
interested reader is invited to verify step by step the introducing statement:

2.5 Towards abstract considerations

We finish this chapter by considering the concrete results from an abstract
point of view.

Again, v- and t-ideals satisfy av = at = ⟨a⟩ = aS . Hence any principal
v-ideal monoid with zero and similarly any principal t-ideal monoid with
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zero is a GCD-monoid. And, like d-ideals, v-ideals and also t-ideals satisfy

⟨a⟩t · ⟨b, c⟩t = ⟨ab, ac⟩t .(Dt)

Henceforth ideal will always mean t-ideal. We denote principal ideals by
lower case slanted letters, whereas lower case Gothic letters are taken to
denote ideals in general.

2. 5. 1 Definition. S is said to be ringlike if its ideals satisfy the
implication

a · u = a =⇒ ∃u∗⊥u : a · u∗ = 0 .

Let henceforth S be ringlike and A be its ideal extension. Observe S

is isomorphic to the set of principal ideals, but moreover principal ideals
admit an addition and constructing quotients within A. Therefore we will
calculate with principal ideals instead of elements.

As a first fundamental result we get:

b : a = c & au = a & cu = c
=⇒ b ⊇ a(u∗ + c)
=⇒ u ⊇ c ⊇ (u∗ + c)
=⇒ u ⊇ u∗ ⇒ u = 1 .

(2.10)

This implies in any case

u = u2 ⊇ a2 : a ̸= 0 =⇒ u = 1 .(2.11)

Assume now that S is complementary. Then we get first:

c ∈ a ⇐⇒ s | a =⇒ s | c(2.12)

by:
s |Av =⇒ s : v |A =⇒ (s : v) | c =⇒ (s : v)v | cv =⇒ s | cv

Furthermore we get for finite ideals

⟨a1, . . . , an⟩ ⊇ b ⇐⇒ ⟨a1, . . . , an⟩
∣∣∣∣ b .(2.13)

FOR, put c :=
∨n

1(b : ai). Then it follows:

d | b =⇒ d | a · c
&

d | a · c =⇒ c ≤ b ∨ d =: g | a · c
=⇒ g : c | a
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=⇒ g : c | b
=⇒ (g : c)x = b
=⇒ ax ≥ b
=⇒ x ≥ c

=⇒ (g : c)c ≤ b
=⇒ g | b
=⇒ d | b,

that is a · c = b, in other words A is a Prüfer DV-IDM, satisfying in
particular (a + b)(b : a) = a. This leads next to

(a : b) : (b : a) = a : b ,(2.14)

(a : b + b : a)2 = a : b + b : a(2.15)

PROOF. (2.14) follows by a : b = a : (a + b)(b : a)
= (a : (a + b)) : (b : a)
= (a : b) : (b : a)

Put now u := a : b+ b : a . Then it results (2.15) by

(a : b+ b : a)2 = (a : b) · u + (b : a) · u
= a : b+ b : a .

This completes the prof. 2

Let now S be ringlike and complementary. Then S is even normal (com-
plementary), that is, then A satisfies:

a : b + b : a = 1(2.16)

Let in the sequel S be complementary. Then

2. 5. 2 Proposition. The subsequent conditions are equivalent:

(a) Any a admits a decomposition u · v where u is idempotent and v
is cancellable.

(b) S is complementary and semiprime, that is satisfies the implica-
tion a2 = 0 =⇒ a = 0.

PROOF. (a)=⇒(b). Assume that a = uv where uis idempotent and v is
cancellable. Then it follows

an = 0 =⇒ (uv)n = 0 =⇒ uvn = 0 =⇒ slu = 0 =⇒ a = 0 ,
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whence A is semiprime.

(b)=⇒(a) By assumption it results:

b · c = 0 =⇒ (bc)2 = 0 = (c ∨ b)2 =⇒ b ∨ c = 0 = cb .

So, in case of b ̸= 0 we get 0 : c =: v ̸= 0 and 1 ̸==: v =: u ≤ c which by
0 : (0 : (0 : u)) = 0 : u = 0 : (0 : v)) = v leads to the implication

u + v = 0 : v + 0 : u = u ∩ 0 : v∗ = 1
implies

u⊥ v & u2 | uv = 0 =⇒ u = u2 ≤ c .

Consequently in case of b ̸= 0 the element c must contain some proper
idempotent divisor.

In particular a2 : a would contain some proper idempotent divisor, in case
of x ̸= 0 & x · (a ∗ a)2 = 0, which is impossible, as was shown above.

Hence a2 : a is cancellable. But

(a : (a2 : a)))(a2 : a)·(a : (a2 : a)(a2 : a) = a2 = (a2 : a)(a : (a2 : a))·(a2 : a)

whence (a : (a2 : a))2 = (a : (a2 : a)) , that is

a = (a : (a2 : a)))(a2 : a) =: u · v

where u is idempotent and v is cancellable. 2

In the next proof we write slanted letters instead of roman letters, when
ever we want to stress that we have the corresponding principal ideal in
mind. Observe that + always means the ideal addition.

So a + b means ⟨a, b⟩ but it may happen that a + b = ⟨a ∧ b⟩ .

2. 5. 3 Proposition. For S, A the subsequent conditions are equivalent:

(a) A has the Noether property and any a : b is principal.

(b) Any a ∈ S is a product of completely prime elements of S.

(c) Any a is principal.

PROOF. (a)=⇒(b) By the Noether property any a has a decomposition
into semiprime elements.

But S is complementary, which entails for any semiprime element p the
implication p ⊇ ab =⇒ (p : b) : a = 1, whence p is prime, and furthermore
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pn ⊇ ab & p ̸⊇ a =⇒ pn ⊇ pn + (a + p)nb = pn + b , whence p is even
completely prime.

(b)=⇒(c). First of all pk ⊇ a & pk+1 ̸⊇ a & pk+ℓ ⊇ b =⇒ pℓ | x. Let
now b =

∏
pi

ni be the unique irredundant prime factor decomposition of
b. Then we take for each i the exponent ℓi in the above sense and get
b : a =

∏
pi

ℓi . That is S is complementary. Next by (2.16) it holds
a : (a : b) ∨ b : (b : a) = a + b. This follows since

a + b ⊆ a : (a : b) ∨ b : (b : a)

is evident and since b : (b : (b : a)) = b : a entails

(a + b) :
(
a : (a : b) ∨ b : (b : a)

)
⊇

(
a : (a : (a : b))

)
+
(
b : (b : (b : a))

)
= a : b + b : a = 1

that is a + b ⊇ (a : (a : b) ∨ b : (b : a)

and thereby a + b = ⟨a, b⟩. But (a : (a : b) ∨ b : (b : a) is principally
generated a ∧ b. Hence we may write a + b = a ∧ b .

Let now 0 = pn1
1 · ... · pini · ... · pknk be the decomposition of 0. Then we may

assume that no pi divides any pj ̸= pi, and that 1 ̸= a ⊃ pi ̸= pi
2 implies

a = 1, since p2 = p · (pa + a∗) =⇒ p ⊇ (pa + a∗) =⇒ a ⊇ p ⊇ pa + a∗ =⇒
1 ̸= a ⊇ a∗, a contradiction.

Furthermore it holds au = a ⊃ p =⇒ au∗ = 0 =⇒ u ⊇ p ⊇ u∗ =⇒ u = 1
and thereby ax = ay ⊃ p =⇒ a(x + y)x ′ = a(x + y) =⇒ x ′ = 1 that is the
cancellation law for the set of all a ⊃ p.

This finally leads to a direct decomposition of S by the idempotent powers
ui := eni whose factors are factorial in any case and in addition primary
or cancellative with zero 0. This entails the ascending chain condition for
principal ideals and thereby the Noether property, recall the implication
b ⊆ a & b ∈ b & a ∈ a− b =⇒ b ⊂ b ∧ a ∈ a− b .

Thus it is shown by Noether that any a is finitely based and it was shown
above that any finitely generated ideal is a principal ideal.

Finitely (c)=⇒(a) follows by definition. 2

All conditions of this note will be phrased in the language of
algebraic multiplication lattices, that is a generalization of the
t-ideal structure of monoids.



Chapter 3

Lattices

3.1 Some Remarks on Posets

3. 1. 1 Definition. (M,≤) is a poset (partially ordered set) if

a ≤ a (∀a)(R)

a ≤ b ≤ a =⇒ a = b(S)

a ≤ b ≤ c =⇒ a ≤ c .(T)

(M,≤) is called a totally ordered set, equivalently a chain, if any two ele-
ments a, b are comparable, that is satisfy a ≤ b V b ≤ a .

Bounds, limits, intervals, maximal etc. are defined as usual.

Some examples:

[a, b] := {x | a ≤ x ≤ b} , (a, b) := {x | a < x < b}, (a, b] := {x | a < x ≤ b},
(a] := {x | x < a} and S = Sup(A) :⇐⇒ (a ≤ S (∀a ∈ A)) & (a ≤
b (∀a ∈ A) =⇒ S ≤ b).

The theory of posets is fundamental and exciting, as well, and there is an
abundance of interesting results. Here, however, we are interested merely
in the most cited lemma of mathematics.

3. 1. 2 (ZL) Zorn’s Lemma. Let P be a non empty poset whose chains
are upper limited. Then P contains at least one maximal element.

Later we will verify the equivalence of (ZL) with

53
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3. 1. 3 (AC) The Axiom of Choice. Let {Ai} (i ∈ I) be a family of
pairwise disjoint sets. Then there exists a set A, which contains exactly
one element of each Ai .

Precisely one would have to speak of Zorn’s principle. In his paper [436]
Zorn demonstrated that the maximum principle, telling that any system
of sets which contains together with any chain also the union of the mem-
bers of this chain, does contain at least one maximal set, leads in many
situations of abstract mathematics to well known results proven before by
the axiom of choice, see below.

As will be shown below (ZL) =⇒ (AC) is nearly obvious, whereas (AC)
=⇒ (ZL) requires some mathematical power. So, in concrete situations,
starting from (ZL) this power works implicitly and shortens the proof –
sometimes extremely. As examples, left to the reader, we give the theorems
that any linear space contains a basis, and that in any ring with identity,
there exists at least one maximal ideal in the set of all ideals, not containing
the identity element 1.

In the early days of set theory sometimes the obvious logical equivalent of
(ZL), due to Hausdorff/Kuratowski, is stressed, telling

3. 1. 4 (HK). Any poset contains a maximal chain.

But Zorn’s lemma is nowadays the standard formulation.

We restrict ourselves to these few results here. In another lecture note the
reader will find further equivalents.

The real fan, however, is referred to Rubin/Rubin [382]. Here more than
two hundred equivalents distributed over nearly all fields of structure the-
ory are presented.

As to the equivalent (ZL) ⇐⇒ (AC) the implication (ZL) =⇒ (AC)
is nearly obvious – consider the family of all sets containing at most one
element of each Ai. So it remains to be verified

3. 1. 5 Theorem. AC =⇒ ZL.

PROOF. This proof is done indirectly along the lines of Martin Kneser,
[235], as it is given by Hermes in [190].
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We start from a poset H = (H,≤) without any maximal element, whose
non empty chains K are limited, and whose SupK’s are denoted by g(K) .

Next we associate with each x ∈ H the set s(x) := {y | y > x}, and we
denote by M the set of all S(x) .

By AC the set M admits a function φ with φ(S(x)) := f(x) ∈ S(x) . In
particular this means

x < f(x) .

Finally we choose and fix an element a0 ∈ H .

On the basis of these ingredients we now act as follows:

Call Zorn-set any Z ⊆ H that satisfies the subsequent three conditions
(i) through (iii)

(i) a0 ∈ Z

(ii) x ∈ Z =⇒ f(x) ∈ Z

(iii) ∅ ̸= K ⊆ H & K a chain =⇒ g(K) ∈ Z.

Trivial Zorn-sets are H itself or [a0) := {x | a0 ≤ x} . Furthermore the
intersection Z0 of all Zorn-sets is obviously again a Zorn-set.

Hence Z0 is the smallest Zorn-set and each element of Z0 lies above a0,
since [a0) contributes to the intersection.

We will show that Z0 is even a chain. This will complete the proof since
(Z0) by (ii) would contain f(g(Z0)) > g(Z0) , a contradiction to the sup-
property of g(Z0).

Henceforth elements z will always be supposed to be an element of Z0.
An element a ∈ Z0 will be called distinguished if z < a =⇒ f(z) ≤ a .

Evidently a0 is distinguished since there exists no z < a0 .

Now we associate with each distinguished element a the set

B(a) := {z ∈ Z0 | z ≤ a V f(a) ≤ z} ⊆ Z0

and consider a (fixed) distinguished element a:

(a) By a0 ≤ a we get a0 ∈ B(a).

(b) In case of z ∈ B(a) it holds one of the following three cases:

(i) z < a , (ii) z = a , (iii) f(a) ≤ z .
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In case (i) we conclude f(z) ≤ a, since a is distinguished. In each of the
other cases we infer immediately f(a) ≤ f(z). Hence in each of these cases
it results f(z) ∈ B(a).

(c) Let now K be a not empty chain of elements of B(a).

Case 1. All elements of K lie below a . Then g(K) ≤ a lies below a, too,
and thereby because g(K) ∈ Z0 it holds also g(K) ∈ B(a).

Case 2. There exists some k ∈ K which does not lie below a . Then it
results f(a) ≤ k ≤ g(K), that is again g(K) ∈ B(a).

Combining (a), (b), (c), we get that B(a) is a Zorn-set, which leads to
Z0 ⊆ B(a). This means in particular that any distinguished element a is
comparable with any element of Z0 .

In a last step we now show that the set A of all distinguished elements
forms a Zorn-set, leading to Z0 = B(a) and thereby to comparability of
any pair a, b of distinguished elements.

(a) a0 is distinguished, as was shown above.

(b) Let a be distinguished. Then f(a) is distinguished again.

To this end we consider some z < f(a). By our development above z
belongs to B(a) = Z0, whence z ≤ a or f(a) ≤ z is fulfilled. In the case
under consideration this means z ≤ a .

Assume first z = a. Then there remains nothing to be shown.

Assume next z < a. Then we get f(z) ≤ a < f(a), since a is distinguished.

(c) Let finally K be a non empty chain of distinguished elements. We
have still to verify that g(K) is distinguished, too. Clearly g(K) ∈ Z0, since
all distinguished elements belong to Z0 . We consider some z < g(K) .

In case of k ∈ K (∃k ∈ K with z < k) it follows f(z) ≤ k since k is
distinguished, and thereby f(z) ≤ g(K).

But the opposite case is impossible,

For: All k ∈ K are distinguished. Hence each k is comparable with
each z . Hence in this case z would be an upper bound of K and thereby
g(K) ≤ z in spite of z < g(K).

Consequently: The set of all distinguished elements forms a Zorn-set
and is thereby equal to Z0. But this means that each element of Z0 is
distinguished and consequently comparable with each other element of Z0 .
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Hence Z0 is a chain and g(Z0) is maximal in (H,≤) . 2

3.2 Lattices

We now turn to special posets, called (semi-) lattices.

3. 2. 1 Definition. A poset (M,≤) is called a sup-semi-lattice, if it
satisfies

∀a, b ∃ c =: sup(a, b) : (a, b ≤ c) & (a, b ≤ x =⇒ c ≤ x),

Dually the inf-semi-lattice is defined.

Let (M,≤) be a sup-semi-lattice . Then we denote sup(a, b) by a ∨ b and
read a join b and in case that (M,≤) is an inf-semi-lattice , we denote
inf(a, b) by a ∧ b and read a meet b.

3. 2. 2 Lemma. Let (M,≤) be a sup-semi-lattice . Then

a ∨ a = a(I)

a ∨ b = b ∨ a(K)

a ∨ (b ∨ c) = (a ∨ b) ∨ c .(A)

PROOF. sup(a, b) = sup(x, y) means u ≥ a, b⇐⇒ u ≥ x, y . 2

3. 2. 3 Lemma. Let (S, ·) be a groupoid, satisfying (I), (K) and (A), that
is a commutative idempotent semigroup. Then

a ≤ b :⇐⇒ a · b = b

defines a sup-closed partial order on S with sup(a, b) = ab.

PROOF. Under the conditions above it holds:

(R) by a · a = a; a ≤ a ,

(S) by a · b = b & b · a = a =⇒ a = b · a = a · b = b ,

(T) by a · b = b & b · c = c =⇒ a · c = a · b · c = b · c = c
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and moreover we get a · b = sup(a, b) by

a, b ≤ a · b & a · x = x = b · x =⇒ (a · b) · x = x. 2

According to 3.2.2 and 3.2.3 any sup-semi-lattice (M,≤) is associated with
a commutative, idempotent semigroup S(M) and conversely any commu-
tative idempotent semigroup (S, ·) is associated with some sup-semi-lattice
P(S). Moreover it holds:

3. 2. 4 Proposition. Choose the operators S and P as above. Then

P(S(M,≤)) ∼= (M,≤)

and S(P(S, · )) ∼= (S, ·) ,

a result which is left to the reader.

The structure of lattices was introduced by Dedekind under the name
dual group, cf. [101].

3. 2. 5 Definition. Let L := (L,∨,∧) be an algebra of type (2,2). Then
L is called a lattice if

a ∨ a = a (I∧) a ∧ a = a(I∨)

a ∨ b = b ∨ a (K∧) a ∧ b = b ∧ a(K∨)

a ∨ (b ∨ c) = (a ∨ b) ∨ c (A∧) a ∧ (b ∧ c) = (a ∧ b) ∧ c(A∨)

a ∨ (b ∧ a) = a (V∧) a ∧ (b ∨ a) = a .(V∨)

It is immediately seen that the lattice structure is self dual . This means:
given an equation in L this equation “remains” valid if the operations
∧ and ∨ are exchanged. Less evident is, however, that (I∨) and (I∧)
are developable from the remaining equations, which is shown as follows:
Suppose that (K∨),. . . ,(V∧) are valid. Then:

a ∧ a = a ∧ (a ∨ (b ∧ a)) (V∨)
= a ∧ ((b ∧ a) ∨ a) (K∨)
= a (V∧) .

Furthermore, applying (A∧), we get

a ∧ b = a ⇐⇒ a ∨ b = b .(3.11)
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Hence a ≤ b :⇐⇒ a ∨ b = b implies a ≥ b :⇐⇒ a ∧ b = b, that is
a ≤ b :⇐⇒ a ∧ b = a. Consequently: if (L,∨,∧) is a lattice then

a ≤ b :⇐⇒ a ∧ b = a

(⇐⇒ a ∨ b = b)

defines a partial order on L satisfying by (3.11) the rule of isotonicity:

b ≤ c =⇒ a ∧ b ≤ a ∧ c
& a ∨ b ≤ a ∨ c .

(ISO)

3.3 Modular and distributive Lattices

Within the abundance of lattices some classes turn out as most central
and fundamental. Roughly speaking these are the lattices closely related
to foundations, that is logics, general algebra, and geometry, and w.r.t.
applications like the algebra of circuits.

3. 3. 1 Definition. A lattice is called distributive, if it satisfies

(D∧) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(D∨) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

that is – by isotonicity, since ≥ is always given – if it satisfies:

(D ′
∧) a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c)

(D ′
∨) a ∨ (b ∧ c) ≥ (a ∨ b) ∧ (a ∨ c).

Distributivity is required dually. So distributive lattices ar self dual. How-
ever, we may drop one of the two requirements.

3. 3. 2 Lemma. (L,∨,∧) is – already – a distributive lattice if only one
of the two equations (D′

∧), (D′
∨) is fulfilled. .

PROOF. Let (D′
∧) be satisfied then it follows (D∧) and by (V∨) we get

(a ∨ b) ∧ (a ∨ c) = ((a ∨ b) ∧ a) ∨ ((a ∨ b) ∧ c)
= a ∨ (a ∧ c) ∨ (b ∧ c)
= a ∨ (b ∧ c) . 2

There are various semi-lattice oriented versions of distributivity. Here we
We present:
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3. 3. 3 Proposition. A lattice L is distributive, if it has the decomposition
property

x ≤ a ∨ b =⇒ x = xa ∨ xb (∃xa, xb : xa ≤ a, xb ≤ b) .(SD)

PROOF. First of all observe that L is already distributive, if

a ≤ b ∨ c =⇒ a = (a ∧ b) ∨ (a ∧ c)

is satisfied since

a ∧ (b ∨ c) = (a ∧ (b ∨ c)) ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) .

Suppose now that a ≤ b∨c . Then a = ab∨ac with ab ≤ a∧b and ac ≤ a∧c ,
that is a ≤ (a∧b)∨(a∧c) whereby the equation results a = (a∧b)∨(a∧c) .
Thus the decomposition property implies distributivity.

Conversely let L be distributive. Then

x = x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b)
=: xa ∨ xb with xa ≤ a & xb ≤ b. 2

3. 3. 4 Definition. A lattice is called modular, if it satisfies the self dual
implication

a ≥ c =⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ c .(MO)

Observe: (MO) is readable as equation. Replace a by a ∨ c. Then (MO)
reads

(a ∨ c) ∧ (b ∨ c) = ((a ∨ c) ∧ b) ∨ c .

Further one observes that it suffices to require – merely – the inclusion of
the left side w.r.t. the right side.

SINCE: it holds always a ≥ a ∧ b and furthermore by isotonicity we get
b ∨ c ≥ (a ∧ b) ∨ c.
In particular by definition all distributive lattices are modular – a fortiori.

A classical example of a modular lattice is the lattice of all subgroups of an
abelian group.
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PROOF. Let G be an abelian group. Then x ∈ G belongs to the subgroups
A,B if it equals some a+ b (a ∈ A, b ∈ B) . Suppose now A ⊇ C. Then it
results

x ∈ A ∩ (B + C) =⇒ x = b+ c ∈ A (b ∈ B, c ∈ C)
=⇒ b = x− c ∈ A ∩B (recall C ⊆ A)
=⇒ x = b+ c ∈ (A ∩B) + C ,

that is A ∩ (B + C) ⊆ (A ∩B) + C. 2

3. 3. 5 Corollary. Let A be an algebra, defined by equations implying
explicitly or implicitly an abelian group operation. Then the lattice of all
closed subsets is modular.

Hence, in particular the lattice of all subspaces of some linear space and
the lattice of all ideals of any ring are modular.

3. 3. 6 Definition. A lattice L := (L,∨,∧) with minimum 0 and maxi-
mum 1 is called complemented if any x is associated with some x′ satisfying

x ∨ x′ = 1 & x ∧ x′ = 0.(COM)

L is called relatively complemented if (COM) is valid – merely – for any
closed interval ( a ] := {x |x ≤ a} of L .

Finally we remark:

3. 3. 7 Definition. Let L be distributive and complemented. Then L is
called a boolean lattice, or synonymously a boolean algebra.

The absolutely best possible candidate here is the power set lattice. As a
most important technical example recall the algebra of circuits.

We are now going to present two classical characterizations of modular and
distributive lattices, respectively, due to R. Dedekind and G. Birkhoff,

respectively. First of all, a remark:

Let P := (P,≤) be a finite poset. Then P admits a representation by a
Hasse-diagram . To this end we associate any a ∈ M with some point of
R × R in such a manner that all x ≥ a are accessible from below, when
starting from a.
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One way of characterizing classes of lattices is the method of forbidden
sublattices. The most trivial example: A lattice is a chain, if it does not
contain any ({a, b, 0, 1},∧,∨) with a ̸≤ b ̸≤ a and a ∧ b = 0, a ∨ b = 1 .

Distributive and modular lattices admit a characterization by forbidding
the subsequent lattices, called pentagon and diamond, respectively.
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3. 3. 8 Dedekind. A lattice is modular iff none of its sublattices is iso-
morphic to the pentagon.

PROOF. If L is not modular then there exist elements a, b, c with a ≥ c,
satisfying

A := a ∧ (b ∨ c) > (a ∧ b) ∨ c =: C ,

and b =: B cannot be larger than C and cannot be less than A, since
otherwise, in the first case, it would follow b ≥ c and in the second case
b ≤ a and thus in any case it would result a ∧ (b ∨ c) = (a ∧ b) ∨ c .

Hence the elements A,B,C are pairwise different, and it holds moreover
B ∧ A = b ∧ a ≥ B ∧ C ≥ b ∧ a , that is B ∧ A = B ∧ C , and dually
B ∨ A = B ∨ C.

Assume now that the underlying lattice contains some pentagon. Then
modularity is obviously violated. 2

The preceding theorem raises an issue, which gives rise to a special consid-
eration.

Obviously in the pentagon there are two maximal chains of different length
between 0 and 1 . In the modular case, however this will not happen, as is
pointed out by
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3. 3. 9 The Modular Chain Theorem. Let L be a modular lattice and
let a > a1 . . . > an = b be some maximal chain in [ a, b ] – of length n.
Then a > a1 > . . . > an is even of maximal length in the set of all chains
from a to b.

PROOF. By induction:

Obviously the assertion is true in the case that a covers b, that is the case
where the a-chain has length 1.

Let now the assertion already been proved for all maximal chains of a
length between 1 and n−1 . We start from a maximal a-chain and assume
that a > b1 > b2 > . . . > bn > bn+1 = b is a formally longer chain.

Case 1. Suppose ak ≥ bm. Then by induction assumption (IA) we can
put in some maximal chain ak > c1 > c2 > . . . > cℓ > cℓ+1 = bm and again
by (IA) we calculate that from a to b via a1, . . . , ak, c1, . . . bm, . . . , bn it is
not longer than along a1, . . . , an−1. This provides nearly immediately that
the b-chain from a to b contains at most as much members as the a-chain.

Case 2. There exists no pair of the case 1 type. Then it holds

a1 ∧ b1 > a1 ∧ b2 > a1 ∧ b3 > . . . > a1 ∧ bn > a1 ∧ bn+1 .

So, by (IA) there are at least two different elements bi, bj with a1∧bi = a1∧bj
and by maximality of the a-chain also with a1 ∨ bi = a1 ∨ bj = a, that is a
pentagon in V, a contradiction. 2

Next we present:

3. 3. 10 The Interval Theorem. Let L be modular and let a, b ∈ L.
Then the intervals [ a ∧ b, b ] and [ a, a ∨ b ] are order isomorphic.

PROOF. Put fa(x) := a ∨ x (x ∈ [ a ∧ b, b ])

fb(y) := b ∧ y (y ∈ [ a, a ∨ b ]) .

Then u ≤ v =⇒ fa(u) ≤ fa(v) by isotonicity, and by modularity

fa(fb(y)) = fa(b ∧ y) = a ∨ (b ∧ y) = (a ∨ b) ∧ y = y

and dually

fb(fa(x)) = fb(a ∨ x) = b ∧ (a ∨ x) = (b ∧ a) ∨ x = x .
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Hence fa is surjective, injective and isotone. 2

Suppose a < b and [ a, b ] = {a, b}. Then a and b are called neighboured,
or equivalently a is called a lower neighbour of b, respectively, b is called
an upper neighbour of a . In this case we write a ≻ b .

3. 3. 11 The Neighbour Theorem. Let L be a modular lattice and let p
be an upper neighbour of p ∧ q . Then p ∨ q is an upper neighbour

3. 3. 12 Definition. A lattice is called of finite length if any chain a1 >

a2 > . . . > an . . . is finite.

Clearly, if L is modular and of finite length any a is associated uniquely
with the common length of all maximal chains from 0 to a. Recall, by
Zorn there exists a maximal chain, which must be finite by assumption.
We symbolize this number by dim(a), it is called the dimension of a in L.

Now we are ready to prove a well known result of linear algebra:

3. 3. 13 The Dimension Formula. Let L be a modular lattice of finite
length. Then all pairs a, b satisfy:

dim(a) + dim(b) = dim(a ∧ b) + dim(a ∨ b) .(DIM)

PROOF. Recall that the intervals [ a ∧ b, b ] and [ a, a ∨ b ] are isomorphic
and “walk” one time from a ∧ b along a, the other time from a ∧ b along b
to a ∨ b. This leads immediately to (DIM). 2

3. 3. 14 Lemma. Let L be modular. Then it is easily checked

(x ∧ (y ∨ z)) ∨ (y ∧ z) = (x ∨ (y ∧ z)) ∧ (y ∨ z) ,

and the elements

A = (a ∧ (b ∨ c)) ∨ (b ∧ c), . . . , C = (c ∧ (a ∨ b)) ∨ (a ∧ b)

satisfy

A ∨B = B ∨ C = C ∨ A = (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ b) =: 1A,B,C

and by duality

A ∧B = B ∧ C = C ∧ A = (a ∧ c) ∨ (b ∧ c) ∨ (a ∧ b) =: 0A,B,C .
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PROOF.

A ∨B = (a ∧ (b ∨ c)) ∨ (b ∧ c) ∨ (b ∧ (c ∨ a)) ∨ (c ∧ a)
= (a ∧ (b ∨ c)) ∨ (b ∧ (c ∨ a)
= ((a ∧ (b ∨ c)) ∨ b) ∧ (a ∨ c) (MO)
= (a ∨ b) ∧ (b ∨ c) ∧ (a ∨ c) (MO) . 2

3. 3. 15 G.Birkhoff. A lattice L is distributive iff it contains no sublattice
isomorphic to the pentagon or to the diamond.

PROOF. We may start from a lattice, which is modular but not distribu-
tive. Define A,B,C as above. In case that two of these elements are equal,
we get w. l. o. g. A ≤ B. This leads further to:

a ∧ (b ∨ c) = (a ∧ (b ∨ c)) ∧ ((b ∧ (a ∨ c)) ∨ (a ∧ c)
= (a ∧ (b ∨ c) ∧ b ∧ (a ∨ c)) ∨ (a ∧ c) (MO)
= (a ∧ b) ∨ (a ∧ c) .

Hence by symmetry in case of a ∧ (b ∨ c) ̸≤ (a ∧ b) ∨ (a ∨ c) we get A ̸= B
and A ̸= C .

But, because of 3.3.14 it can neither hold B ≤ C (nor C ≤ B), since in
case of < modularity would be violated and in case of = rule 3.3.14 would
be violated. Consequently in the case of a ∧ (b ∨ c) ̸≤ (a ∧ b) ∨ (a ∨ c) by
duality we are led to five different elements 0A,B,C , A,B,C, 1A,B,C , which
form a sublattice of the diamond type.

Conversely, lattices containing the pentagon or diamond as sublattice ob-
viously cannot be distributive. 2

By the preceding two propositions we get in addition:

3. 3. 16 Corollary. A lattice is distributive iff it satisfies the self dual
equation:

(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) = (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a) .(DIS)

PROOF. This equation excludes the pentagon and the diamond, as well,
as sublattices, that is (DIS) provides distributivity.

On the other hand (DIS) follows straightforwardly by (D∧). 2

(DIS) says obviously that the elements 0A,B,C and 1A,B,C of the proof above
collapse, that is diamonds degenerate to points.
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3. 3. 17 Proposition. A lattice L is distributive iff it satisfies

a ∧ x = a ∧ y
& =⇒ x = y .

a ∨ x = a ∨ y

PROOF. If (L,∧,∨) is not distributive, then L contains a pentagon or a
diamond, whence x = y cannot follow by the premise. And: if, conversely,
L is distributive, we get by the premise

x = x ∧ (a ∨ y)
= (x ∧ a) ∨ (x ∧ y)
= (y ∧ a) ∨ (y ∧ x)
= y ∧ (a ∨ x)
= y ∧ (a ∨ y)
= y . 2

3.4 Representation

Let S be any structure, for instance some linear space or a group or a ring
or a topological space or some geometry or some poset. Then the elements of
this structure are usually not concretely defined. If, however, we succeed to
show that the abstract structure is isomorphic to some concrete structure
then – maybe – this leads to advantages w. r. t. further investigations.

This is most impressive shown by the structure of a linear space. Here
we start from an abstract linear space, we show that this space contains a
basis and are thus in the position to consider the vectors of this space as
n-tuples of scalars, that is elements of the underlying field.

Thus the given linear space turns to a concrete structure, modulo the un-
derlying field. This is the point, when students feel most relieved, since
they rediscover what they studied at school.

Similarly we could discuss the representation of the linear space of linear
operators from Km into some Kn by matrices.

At this place we are concerned with posets and the trial of their represen-
tation.
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Clearly, the value of our efforts will be demonstrated by the results. But,
didactically considered, their value might be much more important, since
the method of proof is extremely elementary but will demonstrate – most
impressively – all essentials of a representation procedure in general.

The fundamental idea is simple. We want to encode the elements of P by
0, 1-sequences. This will lead to further representation possibilities.

3. 4. 1 Definition. Let P be a poset. By an order filter of P we mean
any subset A of P – not necessarily ̸= ∅ – which contains together with
any x also all y ≥ x . Dually, by an order ideal we mean any subset B of
P , which contains together with any y also all elements x ≤ y .

In particular in case of F = [x ) := {u | x ≤ u} we call F a principal order
filter and define dually the notion of a principal order ideal.

Obviously the set theoretical complement of an order filter is an order ideal
and conversely the complement of an order ideal is an order filter.

Also, we see immediately that there are enough ideals and enough filters,
meaning that for any pair a ̸= b there exist at least one ideal and at least
one filter, respectively, containing one of these two elements but avoiding
the other one.

Now we consider the family of all decompositions P = Ai + Bi (i ∈ I),
where Ai is a filter and Bi = P − Ai is an ideal. Then for a fixed element
x ∈ P it holds componentwise x ∈ Ai aut x ∈ Bi. Thus the mapping
fx : i 7−→ xi ∈ {0, 1} with

fx(i) = xi = 1 ⇐⇒ x ∈ Ai

fx(i) = xi = 0 ⇐⇒ x /∈ Ai

provides a unique encoding for x such that:

x ≤ y ⇐⇒ xi ≤ yi (∀i ∈ I)

is satisfied. Applying his equivalence we are immediately led to

3. 4. 2 The Representation Theorem for Posets. Any poset may be
considered as a set of 0, 1-sequences, w. r. t. component comparing.

And this implies:

Any poset may be considered as a system of sets w.r.t. inclusion .
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PROOF. Part one is clear by the construction described above.

In order to prove part 2 we associate with each sequence {xi} that subset
of I, which contains exactly the indices i with xi = 1 . 2

A Hint: It should be emphasized that the set of filters, including the
empty set, and dually the set of ideals, containing the empty set as well, is
closed w.r.t.

∩
and

∪
. Consequently we could have shown that any poset

may be considered as a system of sets w.r.t. inclusion. In this case the
elements of P would be represented by the principal filters and principal
ideals of P, respectively, and we would get a codification of the elements
by choosing the set of all filters or ideals, respectively as index set I.

We now turn to semi-lattices.

3. 4. 3 Definition. Let S be a ∨-semi-lattice . Then a subset I of S ,
maybe empty, is a semi-lattice ideal if

a ∨ b ∈ I ⇐⇒ a, b ∈ I .

I ⊆ S is consequently an ideal iff firstly together with any a, b also a ∨ b
belongs to I and secondly together with any y ∈ I also all x ≤ y are in I.

Observe: Any semi-lattice ideal is also an order ideal of the corresponding
poset.

Obviously S itself is a semi-lattice ideal and together with any family
of semi-lattice ideals also the intersection of this family is a semi-lattice
ideal. Hence any subset A of S generates a smallest ideal ⟨A⟩ namely the
intersection of all A containing ideals, denoted by [A ] . This externally
defined hull turns out as

{x
∣∣∣∣x ≤ a1 ∨ . . . ∨ an (∃ai ∈ A (1 ≤ i ≤ n)}

and is thus also internally definable.

Let now a ̸= b be two elements of a semi-lattice S . Then obviously
there exists some a and b separating ideal. This means that the above
representation theorem holds similarly also for semi-lattices.

Like posets and semi-lattices also lattices generate representation problems.
But if this shall be realized by subsets of a set we have to take into account
that this is impossible unless the lattice under consideration is distributive.
In the distributive case, however we succeed relatively straightforwardly.
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FOR: u ̸= v are separated once u ∧ y and u ∨ v are separated, whence we
may start from some u < v. Then there exists a value M that is a maximal
u containing but v avoiding ideal with a, b /∈ M =⇒ a ∧ b /∈ M , that is
a ∧ b ∈M =⇒ a ∈M V b ∈M , whence M is prime.

FOR: L is distributive, hence in case of a, b /∈M and a∧ b ∈M on the one
hand the set of all x with a ∧ x ∈M forms a proper supideal B of M and
on the other hand the set of all y with y ∧ b ∈M (∀b ∈ B) forms a proper
supideal A of M . This would lead to v ∈ A ∧ B that is v = v ∧ v ∈ M ,
opposite to the assumption. Consequently the method of proof for posets
can be transferred to distributive lattices in a ∧-respecting manner , that
is we get:

3. 4. 4 (G. Birkhoff). Any distributive lattice is a lattice of sets.

Analogously we obtain

3. 4. 5 M.H. Stone. Any boolean algebra is a field (F,∩,∪,′ ) of sets.

3.5 Complete Lattices

We symbolize Sup(ai) (i ∈ I) also by
∨
A and Inf(ai) (i ∈ I) also by∧

A.

3. 5. 1 Definition. A lattice is called conditionally complete if any upper
bounded supset is even upper limited. A conditionally compete lattice is
called Sup-distributive if is it satisfies

s =
∧
ai (i ∈ I) =⇒ x ∨ s =

∧
(x ∨ ai) (i ∈ I) .(DV)

Dually the notion of Inf-distributivity and axiom (DS) are defined.

Finally, a conditionally complete lattice is called completely distributive if
it satisfies – for all existing limits:∧

C

[∨
Aγ
aγ,α

]
=

∨
Φ

[∧
C
aγ,ϕ(γ)

]
(DV1)

∨
C

[∧
Aγ
aγ,α

]
=

∧
Φ

[∨
C
aγ,ϕ(γ)

]
,(DV2)
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where γ runs through the set C and Φ denotes the set of all mappings ϕ
from C into the union of all Aγ with ϕ(γ) ∈ Aγ .

Obviously any conditionally complete chain is completely distributive, and
thereby in particular Sup- and Inf- distributive. On the other hand (DV1)
and (DV2) are independent one from each other.

FOR:Consider the system of all closed subsets of the plane. Let further C
be the circle x2 + y2 = 1 and denote by Ck the sets of points x2 + y2 ≤
1 − k−2 (k ∈ N). Then in the lattice of all closed subsets of the plane it
holds

C ∩
∨
Ck = C ̸= ∅ =

∨
(C ∩ Ck) .

3. 5. 2 Definition. A lattice L is called complete, if each A ⊆ L is upper
limited – by Sup(A) . This is, of course, equivalent to the property that
each A ⊆ L is lower limited – by Inf(A).

If L is complete we denote Inf(L) by 0 and Sup(L) by 1.

Observe: By definition the empty set 2 satisfies Sup(2) = Inf(L) = 0 and
Inf(2) = Sup(V ) = 1 .



Chapter 4

Ideal Systems

4.1 Ideal Operators

Let (S, ·) =: S be a semigroup. By the global G(S) =: G of S we mean
the powerset of S considered w. r. t. the complex product

A ·B := {a · b | a ∈ A, b ∈ B} =: AB := A ·B , (A,B ⊆ S)

and hence in particular with A ·2 = 2 = 2 · A.

By a monoid we mean, of course, a semigroup with identity 1. A monoid
is called a 0-monoid if it contains a zero 0 satisfying 0 · a = 0 = a · 0.

Obviously the global of a 0-monoid is again a 0-monoid.

Any semigroup admits a 0-monoid-extension. If necessary, adjoin an iden-
tity 1 or a zero 0.

A semigroup satisfying xa = xb ⇐⇒ a = b ⇐⇒ ax = bx is called can-
cellative. If S is a cancellative monoid without identity, the corresponding
monoid is again a cancellative monoid.

A semigroup with 0 is called 0-cancellative, if it satisfies xa = xb ̸= 0 =⇒
a = b and ax = bx ̸= 0 =⇒ a = b .

Finally, by a cancellative semigroup with zero we mean a cancellative semi-
group with adjoined 0.

Let G := G(S) be the global of the semigroup S. Then G is a poset w.r.t.
⊇ and (G(S) ,∪,∩ ) is a boolean algebra and a po-semigroup, as well, since

A ⊇ B

=⇒
AX ⊇ BX & XA ⊇ XB .

71
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Next, defining :
∑

Ai :=
∪
Ai (i ∈ I) ,

we get X · (
∑

Ai) · Y =
∑

(X · Ai · Y ) .

We are interested in certain ideal homomorphic images of G(S) with mul-
tiplication ◦ where S is a 0-monoid . The reason ?

Let R be a classical number domain. Then prime factorization – even
though perhaps possible – by no means need be unique. Hence the question
arises whether uniqueness might be restored in some extension. This is the
central subject of ideal theory.

The method, in general, is the following :

Consider semigroups of ideals, in order to investigate divisibility of R via

⟨t⟩
∣∣∣∣ ⟨a⟩ .

To this end we have to certify in general at least

ideal ⟨a⟩ ⊇ ideal ⟨b⟩
⇒
a
∣∣∣∣ b

and in rings one should try to ensure

a, b ∈ I =⇒ a± b ∈ I

in order to save as much addition as possible by

a = b+ c & a, b ∈ I

⇒
c ∈ I .

There may exist a large variety of interesting homomorphic images, but
in general different images are of different value, of course, w. r. t. our
purpose.

In particular we are interested in certain ϕ-images whose elements are
subsets of S satisfying

ϕX = ϕY
=⇒

ϕ (AX) = ϕ (AY ) & ϕ (XA) = ϕ (Y A) .

(C0)
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In other words we are looking for homomorphisms ϕ of G(S) on semigroups
of subsets of S with multiplication ◦ satisfying ϕ (A) ◦ ϕ (B) = ϕ (AB) .
Observe that in case of (C0) we are in the position to define a product
ϕA ◦ ϕB by ϕA ◦ ϕB := ϕ (AB) .

Most ideal are, of course, furthermore images satisfying

S · A · S ⊆ ϕA(i)

X ◦ (
∑
Ai) ◦ Y =

∑
(X · Ai · Y ) (i ∈ I) ,(ii)

where · is taken as symbol of the complex product in G , ◦ as multiplication
symbol of the image of G , and

∑
as symbol of the finest ϕ (X) containing

all components.

Let henceforth S be a 0-monoid and G its global. We call ϕ an ideal
operator and ϕ (A) a ϕ-ideal if the operator ϕ satisfies (C0) and thereby
ϕA ◦ ϕB := ϕ (AB) and if in addition the subsequent conditions (C1)
through (CI) are satisfied:

A ⊆ ϕA(C1)

ϕ (ϕA) = ϕA(C2)

A ⊆ B ⇒ ϕA ⊆ ϕB(C3)

S · a · S ⊆ ϕ (a) .(CI)

Clearly, by an ideal semigroup we mean the set of all ϕ (A) w.r.t. ◦ where
ϕ is an ideal operator. As usual ϕ (A) is called a principal ideal if ϕ (A) is
equal to some ϕ (a) .

Obviously by (C1) through (C3) ϕ is a closure operator, meaning in par-
ticular, that the intersection of closed sets is closed, whereas ϕ by (CI) is
an ideal operator satisfying S · (ϕA) · S ⊆ ϕA . Observe:

x ∈ ϕA =⇒ S · x · S ⊆ ϕx ⊆ ϕA

=⇒ S · x · S ⊆ ϕA

;

S · (ϕA) · S ⊆ ϕA .

Furthermore (C1) through (C3) imply :

Ai = ϕ (Ai
′) =⇒

∑
Ai = ϕ (

∑
Ai) (i ∈ I) .(4.8)
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PROOF. Suppose Ai = ϕ (Ai
′) . It follows Ai = ϕ (Ai) and thereby

ϕ (
∩
Ai) ⊆ ϕ (Ai) = Ai (∀i ∈ I)

;

ϕ (
∩
Ai) ⊆

∩
Ai

;

ϕ (
∩
Ai) =

∩
Ai ,

the final conclusion by (C1) . 2

As an example of a homomorphism satisfying (C1) through (C3) but not
(CI) we give :

G(R,+) −→ ( {[a, b] | a, b ∈ R∞} ∪2 , + )

with ϕ (A) :=
∑

[a, b] ( [a, b] ⊇ A ) .

As the very first ideal semigroup we present the semigroup of Rees ideals of
commutative 0-monoids, briefly the semigroup of r-ideals ϕr A satisfying

ϕr A := ⟨A⟩r := SA .

Obviously in commutative semigroups satisfying a | b & b | a =⇒ a = b
r-ideals are order filters and vice versa.

Another example is given by the classical c-ideals (linear (c) ombining-
ideals) ϕcA of commutative rings with identity, defined via

ϕcA := ⟨A⟩c := {
∑n

1 ri ai | ri ∈ R, ai ∈ A} =: ⟨a1, . . . , an⟩ .
Every 0-monoid S may be considered in a canonical manner as a semi-ring
by defining a + b := 0 . This allows to consider the r-ideals and c-ideals
above, as well, as semiring ideals of some commutative semiring.

Here a semiring is supposed to be an algebra of type (H,+, ·, 0, 1) where
(H,+, 0) is a commutative (additive) monoid with identity 0 and where
(H, ·, 1) is a monoid, not necessarily commutative, with identity 1, satis-
fying x(a+ b) y = xay + xby .

Apart from the given semi-ring ideal type there is another one of similar
interest.

Consider again the c-ideal c of a commutative ring with identity. c owns
the properties that together with a and a+ b also b belongs to c and that
together with each a also all elements ar belong to c . The same is true
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if we define semi-ring ideals in this sense, in particular for the semi-rings
(H,∧, ·, 1, 0) with x(a ∧ b)y = xay ∧ xby. This includes the semigroup of
m-filters, that is filters F satisfying (a, b ∈ F ⇐⇒ a ∧ b ∈ F ) of lattice
ordered semigroups, in particular of the distributive lattice and of the lattice
group cone with zero .

Thus most classical situations are included if we define d-ideals for com-
mutative semi-rings with 0 and 1 by

a ∈ d =⇒ ar ∈ d(∀ r ∈ H) & a, b ∈ d =⇒ (a, a+ b ∈ d ⇒ b ∈ d).

It is easily seen that this definition provides in fact a system of ideals,
and it is moreover easily seen that commutativity is unessential for this
definition.

Let now ϕ be an ideal operator, i. e. let ϕ satisfy ϕ (AB) = (ϕA) ◦ (ϕB) .
For the sake of convenience we will formulate the subsequent rules of this
section merely one sided. But, again, recall that by right-left symmetry
the right-left dual versions are valid, too.

4. 1. 1 Definition. Let ϕ (Ai) (i ∈ I) be a family of ϕ-images. We
define ∑

ϕ (Ai) :=
∩
ϕ (Bj) (ϕ (Bj) ⊇ Ai (∀i ∈ I)) .

Clearly we could have required equivalently ϕ (Bj) ⊇ ϕ
∪

(Ai) . Hence we
get immediately: ∑

ϕ (Ai) = ϕ
(∪

Ai

)
(i ∈ I) .(4.9)

Furthermore it holds:

ϕ
∑
ϕ (Ai) =

∑
ϕ (Ai) (i ∈ I) .(4.10)

PROOF. Recall 4.8 and observe that ϕ
∑
Ai is the intersection of closed

sets. 2

In particular the preceding lemma certifies

ϕA =
∑

ϕ (a) (a ∈ A) .(4.11)

Moreover (4.10) implies

(ϕX ) ◦
∑
ϕAi =

∑
(ϕX) ◦ (ϕAi ) (i ∈ I) .(4.12)
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PROOF. (ϕX) ◦
∑
ϕAi = (ϕX) ◦ ϕ

(∪
Ai

)
(i ∈ I)

= ϕ
(
X ·

∪
Ai

)
= ϕ (

∪
(X · Ai) )

=
∑
ϕ (X · Ai) (4.10)

=
∑

( (ϕX) ◦ (ϕAi) ) . 2

Next we obtain

ϕA =
∑
ϕ (Bi) (ϕ (Bi ) ⊇ A ) (i ∈ I)(4.13)

PROOF. By (4.11) we get

ϕA =
∑

ϕ (a) (a ∈ A) .

Hence, by (4.10), it results

ϕA =
∩
ϕ (Bi) (ϕ (Bi) ⊇ ϕ (a) , a ∈ A )

;

ϕA =
∑
ϕ (Bi) (ϕ (Bi ) ⊇ A ) . 2

Put now

A ∗ ϕB := {x |A · x ⊆ ϕB} (x ∈ S) .

ϕB : A := {y | y · A ⊆ ϕB} (y ∈ S) .

(4.14)

This provides the crucial rule :

A ∗ ϕB = (ϕA) ∗ (ϕB)

=
∑
ϕ (x) (A · x ⊆ ϕB) .

(4.15)

PROOF. A · x ⊆ ϕB =⇒ ϕ ( (ϕA) · x ) ⊆ ϕB (C1,C2)

=⇒ (ϕA) · x ⊆ ϕB , (C1)

; A ∗ ϕB ⊆ (ϕA) ∗ (ϕB) ⊆ A ∗ ϕ (B)

and – putting X := (ϕA) ∗ (ϕB) = A ∗ ϕB – we get

A ·X ⊆ ϕB

;

A · (ϕX) ⊆ (ϕA) ◦ (ϕX)
⊆ ϕB

;∑
ϕ (x) = ϕX = X .
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we are through. 2

In particular, together with ϕA, ϕB by (4.15) also (ϕA) ∗ (ϕB) is a ϕX .

Finally : Given a family of subsets of S it may be useful to verify first
(C1) through (CI) , in order to define a multiplication by

(ϕA) ◦ (ϕX) := ϕ (AX) .

But, of course, one succeeds only if and if

ϕX = ϕY =⇒ ϕ (AX) = ϕ (AY )

& ϕ (XA) = ϕ (Y A)

This idea will be taken up in the next section.

The rules developed so far follow from (C0) through (CI) , and it is easily
seen that the subsets ϕX behave most similarly to classical ideals .

Nevertheless, with respect to classical problems and with respect to an
optimal ideal arithmetic the axioms stated above fail to be strong enough.
Therefore we now turn to special ideal semigroups.

We consider in (R≥0,+) the operator ϕA := Inf (A) . ϕ is ideal, of course,
but ϕ fails to satisfy

c ∈ ϕA =⇒ c ∈ ϕ (a1, . . . , an)

(∃ ai (1 ≤ i ≤ n) ∈ A) .

(FC)

However, any ideal operator ϕ is associated in a canonical manner with an
ideal operator ϕe of finite character, i. e. some ϕe satisfying (FC) . More
precisely :

4. 1. 2 Proposition. Let ϕ be an ideal operator. Then

ϕeA :=
∪
ϕ (a1, . . . , an) (ai ∈ A)

is an ideal operator, too, satisfying in addition axiom (FC) .

PROOF. The conditions (C1) through (CI) and (FC) are satisfied evi-
dently. So it remains to verify that

(ϕeA) ◦ (ϕeB) := ϕe (A ·B)
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makes sense, or – equivalently – that we get

ϕeX = ϕe Y =⇒ ϕe (AX) = ϕe (AY ) .

But this results from

x ∈ ϕeX =⇒ x ∈ ϕ (yi1, . . . , yis) (∃ yi... ∈ Y )

via : ϕeX = ϕe Y & u ∈ ϕe (AX)
=⇒

u ∈ ϕ (a1x1, . . . , anxn)(xi ∈ X)

⊆ ϕ (a1, . . . , an) ◦ ϕ (x1, . . . , xn)

⊆ ϕ (a1, . . . , an) ◦ ϕ (y1, . . . , ym)

⊆ ϕ (a1y1, . . . , anym) (yi ∈ Y )

=⇒
u ∈ ϕe (AY )

;

ϕe (AX) ⊆ ϕe (AY )

;

ϕe (AX) = ϕe (AY ) ,

where the final conclusion follows by duality. 2

Obviously a subset a is some ϕeA if and only if with each finite subset
E ⊆ a the set ϕE is again contained in a .

This view provides immediately that each ϕA is some ϕeB but, of course,
not necessarily equal to ϕeA . Hence in particular each A ∗ ϕeB is some
ϕeX , and together with a family ϕeAi (i ∈ I) its intersection is some
ϕeA .

4.2 A finest Ideal System in general

Obviously Dedekind ideals of arbitrary rings satisfy much of ideal theory
presented above. But they fail to satisfy (C0). This motivates looking for
some substitute for the non commutative case. To begin with, we define :

ϕmax (2) := 2

& ϕmax (A ̸= 2) := S .
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Then it follows

4. 2. 1 Proposition. ϕ := ϕmax is an ideal operator, and there exists a
finest ideal operator ϕmin =: κ defined by the family of all ideal operators
ϕi via :

⟨A⟩κ := ϕminA :=
∩
ϕiA ,

and this operator κ satisfies moreover condition (FC) .

PROOF. A ⊆ ⟨A⟩κ, A ⊆ B =⇒ ⟨A⟩κ ⊆ ⟨B⟩κ and S · a · S ⊆ ⟨a⟩κ are
evident. Next ⟨A⟩κκ = ⟨A⟩κ follows from

A ⊆ ⟨A⟩κ ; ⟨A⟩κ ⊆ ⟨A⟩κκ
&

⟨A⟩κκ = ⟨
∩
ϕiA, (i ∈ I) ⟩ κ

=
∩

(ϕj
∩
ϕiA) (i, j ∈ I)

⊆
∩
ϕi (ϕiA) (i ∈ I)

= ⟨A⟩κ .
Furthermore it holds

⟨X⟩κ = ⟨Y ⟩κ =⇒ ⟨A ·X⟩κ = ⟨A · Y ⟩κ(COL)

⟨U⟩κ = ⟨V ⟩κ =⇒ ⟨U · A⟩κ = ⟨ V · A⟩κ ,(COR)

since ⟨X⟩κ = ⟨Y ⟩κ implies

ϕi (A ·X) = ϕi (ϕiA · ϕiX) ⊇ ϕi (ϕiA · Y ) = ϕi (A · Y ) .

Finally we consider κe . Since κ is an ideal operator, κe is again ideal whence
κe contributes to κ . Hence κ = κe . 2

We will not return to κ . All we wished to show was the existence of ideal
operators also in the non commutative case. But, we will come back to r-
and d-ideals ⟨A⟩, respectively, in the non commutative case.

As is easily seen these ideals need not satisfy ⟨a⟩r·⟨b⟩r = ⟨ab⟩r or ⟨a⟩d·⟨b⟩d =
⟨ab⟩d , respectively. Nevertheless they behave distributively, and they satisfy

⟨A⟩ =
∑
a∈A

⟨a⟩ .

So they are examples of ideals apart from ideal operators – in the sense of
this paper.

This shows that an ideal system may be most important though it does
not satisfy condition (C0) .
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4.3 v- and t-Ideals

An efficient ideal theory for monoids requires, of course, an ideal notion as
near as possible to the d-ideal notion. Starting from v-ideals this can be
realized cum grano salis by the t-ideals, introduced by Paul Lorenzen
in [275]. Recall the chapter on rings!

Again, let S be a commutative 0-monoid. We define

s |A :⇐⇒ s | a (∀ a ∈ A)

and ϕv A =: ⟨A⟩v := {c
∣∣∣∣ s |A · t =⇒ s | c · t} .

This provides a function of the power set G(S) into itself. Furthermore
we have

⟨X⟩v = ⟨Y ⟩v =⇒ ( s | (A ·X) t =⇒ s | (A · Y ) t )

=⇒ ⟨A ·X⟩v = ⟨A · Y ⟩v

and thereby

⟨A⟩v ◦ ⟨B⟩v := ⟨AB⟩v .

We now verify (C1) through (CI) .

Ad (C1): A ⊆ ⟨A⟩v because (a ∈ A) =⇒ (s |At =⇒ s | at) .
Ad (C2): ⟨A⟩vv = ⟨A⟩v by

s |X · t =⇒ s | ⟨X⟩v · t ; ⟨A⟩vv ⊆ ⟨A⟩v .

Ad (C3): A ⊇ B & c ∈ ⟨B⟩v
=⇒

s |At⇒ s |Bt ⇒ s | ct
;

s |At ⇒ s | ct
;

c ∈ ⟨A⟩v .

Ad (CI): c ∈ ⟨a⟩v ⇐⇒ a | c .
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v-ideals work sometimes in rings where d-ideals fail to have a good ideal
arithmetic – as has been developed already within our historical remarks,
again – consider for instance Q [x , y], and in addition v-ideals are of great
importance in analysis, recall that upper classes of Dedekindian cuts of
(R≥0,+) are v-ideals. Unfortunately v-ideals fail to be of finite character.
But – as shown above – we can change to the operator

ϕtA := ⟨A⟩t :=
{
c
∣∣∣∣ s |Et =⇒ s | ct (∃E ⊆ A ,E = ⟨e1, . . . , en⟩)

}

satisfying condition (FC). For cancellative monoids this means that v-ideals
admit a description by quotients via A−1 := {x |Ax ⊆ S} because

c ∈ Av ⇐⇒ s |A · t⇒ s | c · t
⇐⇒ A · ts−1 ⊆ S ⇒ c · ts−1 ⊆ S
⇐⇒ c · A−1 ⊆ S
⇐⇒ c ∈ (A−1)−1 .

This is essential for our next consideration:

As remarked already in the introduction, in the integral domain G of all
algebraic integers any v-ideal is a d-ideal.

Sketch of a proof: 1) Let γ1, γ2, . . . , γn be elements of G and let
Gγ be the integral part of Q [γ1, γ2, . . . , γn] . W. r. t. Gγ each d-ideal
⟨β1, β2, . . . , βm⟩ of Gγ is equal to the corresponding t-ideal ⟨β1, β2, . . . , βm⟩t ,
since the d-ideals of Gγ form a divisor theory. Hence d-ideals of Gγ are
also v-ideals of Gγ .

A Hint: According to Dedekind, we get a · a−1 = ⟨1⟩ for any ideal a
of any Gγ . Furthermore a 7−→ av provides a homomorphism satisfying

av ⊇ bv =⇒ av
∣∣∣∣ bv . Hence in the semigroup of d-ideals and the semigroup

of v-ideals of Gγ, too, may both be considered as a divisor theory, and
it remains only to show a = av . This is clear in case of an irreducible p

since pv = (p−1)−1 = ⟨1⟩ would lead to p−1 = R , in contradiction to the
Gruppensatz. So, let a be an arbitrary ideal with av ⊃ a . Then, since av is
also a d-ideal there exists some irreducible p with av · p ⊇ a ; av · pv = av
for at least one irreducible p , and thereby furthermore to pv = p = ⟨1⟩ , a
contradiction.

1) The interested reader is referred to the final chapter
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Consequently each finitely generated d-ideal of Gγ is also a t-Ideal of Gγ .

Let now a := ⟨α1, α2, . . . , αn⟩G be a finitely generated d-ideal of G and
suppose

σ
∣∣∣∣
G
a · τ =⇒ σ

∣∣∣∣
G
γ · τ .

We consider the integral part G∗ of Q [α1, α2, . . . , αn, γ] , and here in par-
ticular the d-ideal a∗ := ⟨α1, α2, . . . , αn⟩∗ .

On the one hand, a∗ is a t-ideal in G∗ and on the other hand each pair
α∗ , β∗ ∈ G∗ satisfies

α∗
∣∣∣∣
G
β∗ =⇒ α∗

∣∣∣∣
G∗
β∗ ,

recall, if the quotient of two elements of G∗ belongs to G , then this quotient
is even contained in G∗ .

Consequently γ belongs to a∗, whence it is representable – even – in G∗ by
a linear combination

∑
αi (1 ≤ i ≤ n) .

W. r. t. the great significance of t-ideals we remark that Clifford was
the first to work with finitely generated v-ideals in arbitrary commutative
monoids in [93], and that Lorenzen was the one who exhibited the no-
tion of a t-ideal when studying ideal theory of commutative cancellative
monoids in [275].

But in spite of this, for a long time t-ideals were not respected adequately,
as is emphasized by Aubert in his article [41] on ideals of finite character.

That things have changed should be cleared by the series of “t-papers”
mentioned in the introduction and in addition by the preceding chapter on
factorial rings.

Finally : v-ideals admit a non commutative version by defined by the
equivalence a | b :⇐⇒ b ∈ SaS and

⟨A⟩v := {c
∣∣∣∣ s |uAv =⇒ s |ucv} .

The concrete relevance of v-ideals was already discussed.

The abstract relevance of v-ideals stems from ⟨a⟩v = S · a · S and the fact
that the v-ideal semigroup is a homomorphic image of each semigroup of
ideals satisfying the v-implication.
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Observe: If ⋆ is an ideal operator of the described type then ⟨A⟩⋆ 7−→ ⟨A⟩v
provides a function and thereby a homomorphism, since from ⟨A⟩⋆ = ⟨B⟩⋆
it results :

s
∣∣∣∣uAv =⇒ ⟨u⟩⋆ ◦ ⟨A⟩⋆ ◦ ⟨v⟩⋆ ⊆ ⟨s⟩⋆

=⇒ ⟨u⟩⋆ ◦ ⟨B⟩⋆ ◦ ⟨v⟩⋆ ⊆ ⟨s⟩⋆ =⇒ s
∣∣∣∣uBv .

Summarizing: In any monoid ideal arithmetic strongly depends on its
v-ideal arithmetic.
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Chapter 5

Algebraic m-Lattices

5.1 The Notion

5. 1. 1 Definition. Let (L,≤) be a complete lattice. a ∈ V is called
compact if

a ≤
∨
bi (i ∈ I) =⇒ a ≤ bi1 ∨ . . . ∨ bin

(ik ∈ I, 1 ≤ k ≤ n).

5. 1. 2 Definition. Let (L,≤) be a complete lattice. Then (L,≤) is called
algebraic, if any b ∈ L is some

∨
ai (i ∈ I) with compact elements ai ∈ V .

Most classical models are for instance the lattice of all subspaces of some
linear space, the lattice of all filters of some poset or some semi-lattice,
and, of course, the lattice of all ideals of some monoid or of some ring. But
also, of course any powerset lattice is algebraic, too.

This in mind we denote the elements of algebraic lattices by capitals and
reserve lower case letters for special – selected – elements, representing
principal ideals

Furthermore remembering that concrete ideal theory is the back ground of
abstract ideal theory, we denote ≤ by ⊆ and

∑
Ai (i ∈ I) :=

∨
Ai (i ∈ I)∩

Ai (i ∈ I) :=
∧
Ai (i ∈ I).

Symptomatic is the lattice of all ideals of a ∨-semi-lattice .

85
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FOR: Let L be an algebraic lattice. Obviously, together with any pair
a, b also the sum of this pair is compact. Associate now with any A the set
ϕ (A) of all compact elements, contained in A. Then it is easily checked
that this leads to a

∑
and

∩
-respecting bijection.

Let A be an algebraic lattice. Then again and again the relation

A ≽ B :⇐⇒ (A ⊇ X ⊇ B ⇒ A = X V X = B)

does play a technical role. Hence, we introduce this relation explicitly
again, although it was defined already in the above chapter on posets and
lattices. As usual A ≻ B will mean, of course, A ≽ B & A ̸= B .

5. 1. 3 Definition. Let A = (A,∑,∩) be an algebraic lattice. Then
A is called an algebraic multiplicative lattice , if on A in addition some
associative multiplication is defined,, satisfying:

1 · A = A = A · 1

and X · (
∑
Ai) · Y =

∑
(XAiY ) (i ∈ I).

AGAIN: The most classical Algebraic Multiplicative Lattice, in the sequel
abbreviated by AML, is the lattice of all ideals of some commutative ring
with identity 1.

5. 1. 4 Definition. D ∈ A is called a left divisor of C, symbolized by

D
∣∣∣∣
ℓ
C, if C = DX (∃X) .

D is called a left divisor of A if D is a left divisor of all elements C ∈ A
below D .

Finally we call D a divisor, if D satisfies the implication:

D ⊇ C =⇒ D
∣∣∣∣
ℓ
C & D

∣∣∣∣
r
C .

In this case we write D
∣∣∣∣C .

5. 1. 5 Definition. Let A be an AML. Then A is called left divisor-AML,
abbreviated LD-AML if there exists some basis A0 consisting of compact
left divisors such that any A is a sum of elements of A0 .
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Consequently A is called a divisor AML, abbreviated D-AML, if it even
contains a basis A0 consisting of compact divisors, that is an A0 of elements
a satisfying the implication a ⊇ B =⇒ B = aX = Y a (∃X, Y ) .

If this is the case we keep some basis of this type fixed and denote its
elements by lower case Roman letters.

RECALL that 0 is generated by the empty set of generators.

Let A be an AML with A0 consisting of arbitrary compact generators. If
in addition A0 is multiplicatively closed we call A an ideal structure.

If moreover all elements of A0 are even left divisors or divisors, respectively,
we call A a left divisor AML, briefly an LD-AML or a divisor semigroup,
briefly a D-AML, respectively.

If finally A is generated by a monoid of compact divisors we call A an ideal
divisor monoid, for short an IDM.

Lastly we call A integer, if all generators x ̸= 0 satisfy:

x · A = x ·B ⇐⇒ A = B

⇐⇒ A · x = B · x .
It is nearly obvious that ideal semigroups may be considered as semigroups
of ideals (A0, ·), define for A ⊆ A0

⟨A⟩ := {x
∣∣∣∣x ≥

∑
a (a ∈ A)} ,

and by definition these ideals are of finite character.

On the other hand the semigroups of v-ideals, need not have the FC-
property. Consequently we have to distinguish between ideal semigroups
and semigroups of ideals.

Prototype of an integral ideal semigroup is, of course, the d-ideal semigroup
of the integral domain, but also the t-ideal semigroup of the ℓ-group cone
extended by 0 or more generally of the cancellative d-semigroup extended
by a zero element 0, satisfy the conditions of an integral ideal semigroup.

Finally we emphasize that two elements A,B are called orthogonal, also
relatively prime, if A+B = 1 .

We finish this short introduction by two central notions:
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5. 1. 6 Definition. An AML is called noetherian, equivalently is said to
have the Noether property, if

Any element is sum of finitely many generators.(N)

An AML is called archimedean if it has the archimedean property

An ⊇ B (∀n ∈ N) =⇒ AB = B = BA .(A)

5.2 Examples

5. 2. 1 Example. Define on {1, u, a, 0} a lattice order by putting 1 ≤
u ≤ a ≤ 0 and a multiplication via 1x = x = x1 , 0x = 0 = x0 , u2 =
u , ua = a , au = a2 = 0 . Then all elements are left divisors, but u is no
right divisor.

5. 2. 2 Example. Define on {1, u, a, b, 0} a lattice order by putting 1 ≤
u ≤ a ≤ 0 & 1 ≤ u ≤ b ≤ 0 and a multiplication via 1x = x = x1 , 0x =
0 = x0 , u2 = u, ua = aub = b, au = ab = ba = bu = 0 . Then all elements
are left divisors, but u is no right divisor, and it holds: (a+ b)u = uu = u ,

but au ̸= a .

5. 2. 3 Example. Define on {1, u, v, w, 0} a multiplication by 1 · x = x =
x · 1, u2 = u, uv = w, vu = v2 = vw = 0 and consider the set of Rees ideals.
This is in particular a distributive lattice, generated by {⟨1⟩, ⟨u⟩, ⟨v⟩, ⟨0⟩} .
Here ⟨u⟩ is a left but no right divisor while ⟨v⟩ is a right but no left divisor.

5. 2. 4 Example. Consider the semigroup S of pairs (a | b) of non nega-
tive numbers w.r.t. (a | b) ◦ (c | d) := (a + c | 2cb + d) . It is not difficult to
verify that right divisors are (also) left divisors whereas the converse need
not hold.

This means that S(a | b)S is always equal to (a | b)S . Consequently all
principal ideals are left divisors, but not necessarily also right divisors of
this lattice distributive Rees ideal structure.
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5. 2. 5 Example. Put in R2 (a, b) ⊂ (c, d) iff b < d. Then

M :=
{
(0, 0), (0,

1

2
), (0,

3

4
), . . . ,

(0,
2n − 1

2n
), (0, 1), (−1, 2), (+1, 2), (0, 3)

}
.

is a complete algebraic lattice, satisfying

x ∩
∑

i∈I ai =
∑

i∈I (x ∩ ai) ,

(that is an AML w.r.t. ∩), and the elements a := (−1, 2) and b := (+1, 2)
are compact, whereas a ∩ b = (0,1) fails to be compact.

5.3 Arithmetics

Throughout this chapter A will denote at least an arbitrary AML. Ele-
ments of A in general are symbolized by capital Roman letters, elements
symbolized by lower case Roman letters are always tacitly supposed to be
some compact generator. This means that each A ∈ A is of type

∑
i∈I ai

and thereby in particular :

(A ⊆ B) ⇐⇒ (x ⊆ A⇒ x ⊆ B) .(5.3)

First of all we collect some (· , ⊆)-rules, however, on the grounds of duality
we restrict our considerations to one side only.

A ⊆ B =⇒ B = B + A

=⇒ X ·B = X · (B + A)

=⇒ X ·B = X ·B +X · A
=⇒ X · A ⊆ X ·B .

(5.4)

Because X ⊆ 1 this implies

X · A ⊆ A .(5.5)

A+BC = A+ A · C +B · C
= A+ (A+B) · C .

(5.6)
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So by induction we get :

A+Bi (1 ≤ i ≤ n) = 1 =⇒ A+
n∏
1

Bi = 1 .(5.7)

A+BC ⊇ AA+ AC +BA+BC

= (A+B) · (A+ C) .

(5.8)

In particular the preceding lemma leads by induction to

A+Bn ⊇ (A+B)n .(5.9)

Putting A⊥B :⇐⇒ A+B = 1, equation (5.8) provides immediately

A ⊇ BC & A⊥C =⇒ A ⊇ B .(5.10)

Furthermore, AB = BA =⇒ AB ⊇ (A+B)(A ∩B) . Hence we get

AB = BA & A⊥B =⇒ AB = A ∩B .(5.11)

As a divisor criterion we formulate:

A
∣∣∣∣B ⇐⇒ A(A ∗B) = A ∩B .(5.12)

Again, we say that A covers B, in symbols A ≻ B, if A is different from B
and A ⊃ X ⊇ B =⇒ X = B . We write A ≽ B if no element lies strictly
between A and B, that is if A = B or A ≻ B . By definition, for instance,
the maximal elements cover the identity element 1 .

Apart from multiplication, taken as fundamental operation, in the following
we will be concerned above all with residuation which reflects the forming
of quotient ideals, f. i. in rings.

5. 3. 1 Definition. Let A,B ∈ A. By the right quotient, or synonymously
right residual of A in B we mean the element

A ∗B :=
∑

i∈I xi (A · xi ⊆ B) .

Right-left dually the element B : A is defined.

As immediate consequences we get :

A ⊇ B ⇐⇒ B ∗ A = 1(R1)
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A ∗B = (A+B) ∗B
= A ∗ (A ∩B)

(R2)

A ∗B ⊇ A ∗ AB ⊇ B(R3)

A,B ⊆ A : (B ∗ A) ,(R4)

and their right-left dual versions. Furthermore we get :

(
∑
Ai) ∗B =

∩
(Ai ∗B) (i ∈ I) .(5.17)

PROOF. x ⊆ (
∑
Ai) ∗B

⇐⇒ (
∑
Ai) · x ⊆ B

⇐⇒
∑

(Ai · x) ⊆ B

⇐⇒ Ai · x ⊆ B (∀ i ∈ I)

⇐⇒ x ⊆ Ai ∗B
⇐⇒ x ⊆

∩
(Ai ∗B) (i ∈ I) . 2

A ∗
∩
Bi =

∩
(A ∗Bi) (i ∈ I) .(5.18)

PROOF. x ⊆ A ∗
∩
Bi

⇐⇒ A · x ⊆
∩
Bi

⇐⇒ A · x ⊆ Bi ∀ i ∈ I)

⇐⇒ x ⊆ A ∗Bi

⇐⇒ x ⊆
∩

(A ∗Bi) (i ∈ I) . 2

A ⊆ B =⇒ C ∗ A ⊆ C ∗B .(5.19)

PROOF. A ⊆ B =⇒ A = A ∩B
=⇒ C ∗ A = C ∗ A ∩ C ∗B
=⇒ C ∗ A ⊆ C ∗B

and A ⊆ B =⇒ B = B + A

=⇒ B ∗ C = (B + A) ∗ C
=⇒ B ∗ C = B ∗ C ∩ A ∗ C (5.17)

=⇒ A ∗ C ⊇ B ∗ C . 2

(A ∩B) ∗ (A ∩ C) ⊇ B ∗ C ⊆ (A+B) ∗ (A+ C) .(5.20)
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PROOF. (A ∩B) ∗ (A ∩ C) = (A ∩B) ∗ C (5.18)

⊇ B ∗ C
⊆ B ∗ (A+ C)

= (A+B) ∗ (A+ C). 2

AB ∗ C = B ∗ (A ∗ C)(5.21)

PROOF. x ⊆ AB ∗ C ⇐⇒ A · (B · x) ⊆ C

⇐⇒ (B · x) ⊆ A ∗ C
⇐⇒ x ⊆ B ∗ (A ∗ C) . 2

A ∗ (B : C) = (A ∗B) : C .(5.22)

PROOF. x ⊆ A ∗ (B : C) ⇐⇒ A · x ⊆ B : C

⇐⇒ A · x · C ⊆ B

⇐⇒ x · C ⊆ A ∗B
⇐⇒ x ⊆ (A ∗B) : C . 2

5. 3. 2 Lemma. Let A =
∑

i∈I ai and B =
∑

j∈Jbj. Then

A ·B =
∑

(ai · bj) ( (i, j) ∈ I × J ) ,

A+B =
∑

(ai + bj) ( (i, j) ∈ I × J )

and A ∩B =
∑

((ai1 + . . .+ aim) ∩ (bj1 + . . .+ bjn))

(i1, . . . , im ∈ I , j1, . . . , jn ∈ J) .

PROOF. A∩B ⊇
∑
... is evident and x ⊆ A∩B implies the existence of

some a1, . . . , am ⊆ A, b1, . . . , bn ⊆ B satisfying :

x ⊆ A ∩B =⇒ x ⊆ A & x ⊆ B

=⇒ x ⊆ a1 + . . .+ am

& x ⊆ b1 + . . .+ bn

=⇒ x ⊆ (a1 + . . .+ am) ∩ (b1 + . . .+ bn)

=⇒ x ⊆
∑
... . 2

Recall: An AML is called lattice distributive, briefly distributive, if its
lattice satisfies

A ∩ (B + C) = (A ∩B) + (A ∩ C).(D)
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5. 3. 3 Lemma. If (D) is fulfilled for all finitely generated elements
A,B,C, then it follows even in general

A ∩
∑
Bi =

∑
(A ∩Bi) (i ∈ I).(5.24)

PROOF. The first assertion follows by 5.3.2, the second by :

x ⊆ A ∩ (B + C)

=⇒ x ⊆ (a1 ∩ b1) + (a1 ∩ b2) + . . .+ (aℓ ∩ bm)

+ (a1 ∩ c1) + (a1 ∩ c2) + . . .+ (aℓ ∩ cn)

⊆ (A ∩B) + (A ∩ C).

Finally we get: A ∩
∑
Bi ⊇

∑
(A ∩ Bi) is evident and x ⊆ A ∩

∑
Bi

implies the inclusion x ⊆ A & x ⊆
∑
Bi and thereby x ⊆ A & x ⊆

Bi1 + . . .+Bin , which leads to x ⊆ (A∩Bi1)+ . . .+(A∩Bin) ⊆
∑

(A∩Bi)
(i ∈ I). 2

As a most important consequence of (D) we next point out:

5. 3. 4 Lemma. Let A be an arbitrary AML. Then it holds:

(A+B)U = U =⇒ BU : A = B : A .(5.25)

PROOF. (A+B)U = A+B

=⇒
BU : A = BU : (A+BU)

⊇ BU : (A+B)
= BU : (A+B)U
= (BU : U) : (A+B)
⊇ B : (A+B)
= B : A . 2

5. 3. 5 Lemma. Let A be a lattice distributive AML and let A be a right
divisor. Then

(A+B)U = A+B =⇒ BU = B .
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PROOF. A+BU = A+ (A+B)U
= A+B
&

A ∩BU = (BU : A)A
= (B : A)A (see above)
= A ∩B
;

BU = B

this implies BU = B by distributivity, cf. 3.3.17. 2

5. 3. 6 Corollary. Under the assumption of the preceding lemma A =
a1 + . . .+ an implies AU = A ⊇ B =⇒ BU = B – by induction.

5. 3. 7 Corollary. If A is lattice distributive and generated by right divi-
sors, then it holds

(a1 + . . .+ an) · U = (a1 + . . .+ an) ⊇ B =⇒ BU = B .

Observe

(a1 + . . .+ an) ⊇ B ⇐⇒ (a1 + . . .+ an) = (B + a1 + . . .+ an).

The question arises whether this is true in general. To this end we consider
the filters (x ≥ y ∈ F =⇒ x ∈ F ) of (Q≥0,min,+). Here we get Q++Q+ =
Q+ but ⟨1⟩ ⊃ ⟨1⟩+Q: = {x|x ≥ 1}. Hence the rule of 5.3.7 does not hold
in general.

Next we present

5. 3. 8 The power lemma. Any AML A satisfies

Am ⊇ B ⊇ Am+p & An ≽ An+1

(∀n : m ≤ n ≤ m+ p− 1)
=⇒

B = Am+ℓ (∃ℓ ≤ p) .

(5.26)
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PROOF. Let Ak ⊇ B & Ak+1 ̸⊇ B & B ⊇ Ak+ℓ be satisfied. Then we
obtain B + Ak+1 = Ak and thereby:

B = B + Ak · Aℓ

= B + Ak+1 · Aℓ−1

(5.6)
= B + (B + Ak+1)Aℓ−1

= B + Ak · Aℓ−1

= B + Ak (by induction)
= Ak (by assumption).

2

Finally we give

5. 3. 9 The Divisor Lemma. Let A be a complete, commutative, not
necessarily algebraic multiplicative lattice.

Let moreover A ⊇ B ⊃ A(A ∗ B) and S ⊇ A(A ∗ B) and let B ∗ S be a

divisor. Then it follows (B ∗ S)n
∣∣∣∣B (∀n ∈ N) .

PROOF. Put A ∗B := X . Then S ⊇ AX implies

Y := B ∗ S ⊇ X ∗ S ⊇ X ∗ AX ⊇ A ⊇ B ,(5.27)

which leads to

Y 1
∣∣∣∣A & Y 1

∣∣∣∣B .(E(1))

Assume now that

Y n
∣∣∣∣A and Y n

∣∣∣∣B .(E(n))

is already proven. Then putting

A1 := Y n ∗ A and B1 := Y n ∗B

we obtain A1 ∗B1 = (Y n ∗ A) ∗ (Y n ∗B)
= A ∗B
= X

and thereby B1 ⊇ A1 ·X.
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Define now: S1 := Y n ∗ S .

Then it results: S1 ⊇ Y n ∗ A ·X
⊇ (Y n ∗ A) ·X
= A1 ·X
= A1 · (A1 ∗B1)

&

B1 ∗ S1 = (Y n ∗B) ∗ (Y n ∗ S)

= B ∗ S = Y .

So, by (5.27) remains valid even if we replace A by A1 and B by B1, whence

Y
∣∣∣∣A1 ; Y

∣∣∣∣B1

that is Y
∣∣∣∣Y n ∗ A ; Y

∣∣∣∣Y n ∗B

meaning

Y n+1|A & Y n+1
∣∣∣∣B .(E(n+ 1))

This completes the proof. 2

5. 3. 10 Corollary. Assume P ⊇ A(A ∗ b) & b ∗ bP = P . Then P n ⊇
A (∀n ∈ N) .

After this excursion on general arithmetic we now turn to certain special
elements.

5.4 Prime Elements and primary Elements

Recall: D ∈ A is called a left divisor of C, by symbols D
∣∣∣∣
ℓ
C , if C =

DX (∃X) . D is called a left divisor of A if D is a left divisor of all
elements contained in D . Dually right divisors are defined.

D is called a divisor if D is both, a left- and a right-divisor, symbolized by

D
∣∣∣∣C .
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5. 4. 1 Lemma. Left divisors D ∈ A satisfy

D(D ∗ C) = D ∩ C .

PROOF. By assumption D ∩ C = DX (∃X) with X ⊆ D ∗ C , and this
implies D(D ∗ C) ⊆ D ∩ C = DX ⊆ D(D ∗ C) . 2

Again we emphasize that the basic structure under consideration is an
AML, and again we recall that by definition A is right-left dual, meaning
in particular that A is ∗ , : - dual.

5. 4. 2 Definition. Let A be an AML. An element P ∈ A different from
1 is called prime if

ab ⊆ P =⇒ a ⊆ P V b ⊆ P ,

and Q ∈ A different from 1 is called primary iff

ab ⊆ Q
=⇒

a ⊆ Q V bn ⊆ Q (∃n ∈ N) & b ⊆ Q V an ⊆ Q (∃n ∈ N) .

If moreover Q satisfies xn ⊆ Q ⇒ x ⊆ P then Q is called more precisely
P-primary.

Finally we call P ∈ A completely prime if each P n is primary.

Hence P is completely prime iff P is a prime element satisfying in addition :

P n ⊇ AB

=⇒
P n ⊇ A V P ⊇ B & P n ⊇ B V P ⊇ A .

5. 4. 3 Lemma. P is prime iff

P ⊇ AB =⇒ P ⊇ A V P ⊇ B .

Therefore the prime property is independent from the distinguished basis.

PROOF. A =
∑m

1 ai & B =
∑n

1bj =⇒ AB =
∑m,n

1,1 ai bj (5.3.2). Suppose
now P ⊇ AB & P ̸⊇ A with prime element P . Then there exists some
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ai
′ ⊆ A with P ̸⊇ ai

′ & P ⊇ ai
′bj (∀ j ∈ J) . This leads to P ⊇ bj (j ∈ J)

and thereby to P ⊇ B . – The rest follows a fortiori. 2

5. 4. 4 Definition. Let A be an AML. By the radical of A ∈ A we mean

RadA :=
∑

i∈I xi (xi
ni ⊆ A)

(∃xi ∈ A0 , ni ∈ N).

By definition it evidently results A ⊇ B =⇒ RadA ⊇ RadB.

5. 4. 5 Lemma. If X ⊆ RadA is compact then Xn ⊆ A (∃n ∈ N).

Hence the radical property is independent from the distinguished basis.

PROOF. It holds ap , bq ⊆ A =⇒ (a+ b)p+q ⊆ A . Hence

x ⊆ RadA =⇒ x ⊆
∑k

1ai with (ai
ℓi ⊆ A (∃ ℓi))

=⇒ xn ⊆ A (∃n ∈ N) .

which completes the proof. 2

The preceding lemma provides

5. 4. 6 Lemma. Q is primary iff Q is different from 1 and satisfies in
addition the implication :

Q ⊇ ab
=⇒

Q ⊇ a V RadQ ⊇ b & Q ⊇ b V RadQ ⊇ a

or respectively – cf. the proof of 5.4.3 – the implication :

Q ⊇ AB
=⇒

Q ⊇ A V RadQ ⊇ B & Q ⊇ B V RadQ ⊇ A

Consequently the primary property is independent from the fixed basis.

Furthermore we get :

5. 4. 7 Lemma. If A is even an ideal semigroup and Q is primary with
RadQ = P then P is prime .
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PROOF. P ⊇ xy & P ̸⊇ x =⇒ Q ⊇ y(xy)n−1 =⇒ P ⊇ y V Q ⊇ (xy)n−1 .

Hence P ⊇ xy & P ̸⊇ x =⇒ P ⊇ y , since the opposite would lead to a
contradiction. 2

The subsequent lemma will play a key role in various proofs.

5. 4. 8 Lemma. Suppose A ·X ⊂ b. Then there exists a maximal P ⊇ X
satisfying b ·P ⊂ b and this P is prime and satisfies in addition b∗bP = P .

PROOF. Let Xi (i ∈ I) be an ascending ⊇-chain satisfying Xi ⊇ X and
b · Xi ⊂ b . Then we get

∑
i∈I b · Xi = b ·

∑
i∈I Xi ⊂ b . Therefore the

ascending chain Xi (i ∈ I) is bounded by
∑

i∈I Xi . So by Zorn there
exists a maximal P with P ⊇ X and b · P ⊂ b .

Assume now P ⊇ U · V but P ̸⊇ U , V . Then it follows

bP ⊇ b (U + P ) · (V + P )

= b (V + P ) = b .

Hence P is prime.

It remains to show b ∗ bP = P . Here first we get b ∗ bP =: Y ̸= 1 because
b ∗ bP = 1 =⇒ b = bP . But this means 1 ̸= Y ⊇ P and thereby Y = P
since P was chosen maximal w. r. t. C ⊇ X and b ⊃ b · C . 2

5. 4. 9 Lemma. Let A be an AML with compact identity 1 and A ̸=
1. Then there exists a maximal prime element P ⊇ A and among all A
containing prime elements at least one minimal prime element P over A.

PROOF. The first assertion results from 5.4.8, the second since the inter-
section of a chain of prime elements is again prime. 2

As usual we will call maximal the successors of 1 . Obviously maximal
elements are prime. Furthermore we will call minimal prime those elements
which are minimal in the set of prime elements .

5.5 Residues

The classical residue classes in rings are reflected as residue elements in
the structure of an AML, where they play a similar role like in ring theory.
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5. 5. 1 Lemma. Let A be an element of an AML A . Then ϕA : X 7−→
A+X =: X provides a

∑
-respecting homomorphism with X◦Y := A+XY

satisfying in addition

Ai ⊇ A (∀ i ∈ I) =⇒ ϕx(
∩

i∈IAi ) =
∩

i∈IϕxAi .

PROOF. According to (5.6) the operator ϕA provides a multiplicative
∑

-
homomorphism respecting the algebraic property. The rest is evident. 2

5. 5. 2 Lemma. Let A be an AML . Then in A/A exactly the elements of
type

∑n

1ci are compact and if b and c are compact then A+ b equals A+ c
iff there exists a compact Ae ⊆ A with Ae + b = Ae + c .

PROOF. One part follows straightforwardly . The other one by

Ae1 + b ⊇ c & Ae2 + c ⊇ b =⇒ (Ae1 + Ae2) + b ⊇ c
& (Ae1 + Ae2) + c ⊇ b

=⇒
(Ae1 + Ae2) + b = (Ae1 + Ae2) + c . 2

In an arbitrary A the image of a divisor under X 7−→ A + X need not be
again a divisor, put for instance in the pentagon x2 = 0 and adjoin a new
identity . However, it holds :

5. 5. 3 Proposition. If A is lattice modular then divisors “remain” divi-
sors in A/A .

PROOF. Let D be a divisor in A and suppose w.l.o.g. C ⊇ A . Applying
modularity we get

D ⊇ C =⇒ C = A+ (D ∩ C)

=⇒ C = A+D(D ∗ C)

=⇒ C = A+ (A+D)(A+D ∗ C)

=⇒ C = D ·D ∗ C ,

whence D is a divisor of A. 2

5. 5. 4 Lemma. Let A be lattice modular and as ideal semigroup be gen-
erated by a set A0 of compact divisors.

Then in case that the elements a ̸= 0 of A0 are cancellable in A and that
P is prime, A0/P =: A0 is integral (w.r.t. A0) .
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PROOF. Let a ̸= P = 0. Then a · x = 0 implies immediately x = 0, and
in addition we get in case of a ·X ̸= 0 , that is in particular if a ̸⊆ P

a ·X = a · Y
=⇒ P + aX = P + aY
=⇒ a ∩ (P + aX) = a ∩ (P + aY )

=⇒ (a ∩ P ) + aX
(MO)
= (a ∩ P ) + aY

=⇒ a(a ∗ P ) + aX = a(a ∗ P ) + aY

=⇒ aP + aX = aP + aY
=⇒ a(P +X) = a(P + Y )
=⇒ P +X = P + Y

=⇒ X = Y . 2

Finally

5. 5. 5 Lemma. Let A be lattice modular and as ideal semigroup be gen-
erated by a set A0 of compact divisors, and let moreover A satisfy

au = a =⇒ ∃u⊥u∗ : au∗ = 0 1)

Then P + au = P + a =⇒ P + u = P + 1 .

PROOF. By assumption we obtain:

a · u = a
=⇒ P + a = P + au
(MD)
=⇒ a = (a ∩ P ) + au)
=⇒ a = a(p+ u) = as (s /∈ P )
=⇒ P ⊇ as∗ = 0 ; P ⊇ s∗

=⇒ P + s = P + s∗ + s = P + 1
=⇒ P + u = P + 1 .

2

5.6 Localization

As a second most important tool of finding ideal homomorphisms, ring
theoretists apply the method of localization which will now be developed

1) This property will play an important role, when studying classical aspects.
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for our purposes. However, for the sake of clearness and convenience we
will restrict our considerations to commutative ideal semigroups and hence
to commutative ideal monoids.

5. 6. 1 Definition. Let A be a commutative IDM, A ∈ A and S a
multiplicatively closed subset of A0. We define

AS :=
∑

i∈I xi (si · xi ⊆ A (∃si ∈ S)).

As is easily verified, the operator S is a closure operator.

5. 6. 2 Proposition. Let A be a commutative ideal monoid and let S be
a multiplicatively closed subset of A. Then we obtain

(A+B)S = (AS +BS)S(L1)

(A ·B)S = (AS ·BS)S(L2)

(a ∗B)S = aS ∗BS(L3)

(A ∩B)S = AS ∩BS(L4)

(
∑
Ai)S = (

∑
(Ai S) )S (i ∈ I) .(L5)

PROOF. Ad (L1). A fortiori we get

(AS +BS)S ⊇ (A+B)S ,

and it follows for each x ∈ A0 :

x ⊆ (AS +BS)S =⇒ xs ⊆ AS +BS (∃ s ∈ S)

=⇒ ∃ : ai ⊆ AS & bj ⊆ BS :

xs ⊆ a1 + . . .+ am + b1 + . . .+ bn

=⇒ ∃ t ∈ S : ai · t ⊆ A & bj · t ⊆ B

& x(st) ⊆ a1 · t+ . . .+ bn · t
=⇒ x ⊆ (A+B)S .

Ad (L2). We proceed in a similar manner as below (L1).

Ad (L3). First suppose x ⊆ (a ∗ B)S. Then there exists an element s ∈ S

with xs ⊆ a∗B and thereby with as ·x ⊆ B ⊆ BS. If now a′ ⊆ aS it results
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next with some t ∈ S in a first step a′ · t ⊆ a and hence in a second step
a′ · x · (st) ⊆ B . Thus we get a′ · x ⊆ BS and thereby finally x ⊆ aS ∗BS .

Suppose now x ∈ aS ∗ BS. Then we get aS · x ⊆ BS whence ax ⊆ BS is
satisfied. But this implies a · xs ⊆ B (∃s ∈ S) and thereby x ⊆ (a ∗B)S.

Ad (L4). AS ∩BS ⊇ (A∩B)S is evident and x · s ⊆ A & x · t ⊆ B implies
x · st ⊆ A ∩B .

Ad (L5). This follows straightforwardly from (L1). 2

The formulas just proven have far reaching consequences.

5. 6. 3 Proposition. Let A be a commutative IDM and S a multiplica-
tively closed subset of compact divisors. Then by

AS ◦BS := (A ·B)S

AS ⊕BS := (A+B)S

two operations on the set of all AS are defined such that this set of all
AS forms a commutative IDM which is a homomorphic image of A under
ΦS : A 7−→ AS.

PROOF. First of all, by 5.6.2, ◦ and ⊕ don’t depend on the arguments
A,B, ... of AS, BS, .... Hence ◦ and ⊕ are functions.

Furthermore, again on the grounds of 5.6.2, the mapping A 7−→ AS pro-
vides a homomorphism of A on AS w. r. t. · 7−→ ◦ and + 7−→ ⊕, and by
(L4) the intersection in AS is identic with the intersection in A.

Finally
∑

S acts as
∑

-operation in this lattice.

Hence ΦS provides a
∑

-respecting homomorphism of A on AS .

We now show that AS is not merely an AML but even a commutative IDM
.Since A is a commutative IDM , compact generators produce compact
products whence we may infer :

xS ⊆
∑

S(Ai S) =⇒ xS ⊆ (
∑
Ai)S

=⇒ x ⊆ (
∑
Ai)S

=⇒ xs ⊆ a1 + ...+ an

(∃ s ⊆ S , ak ⊆ Aik , 1 ≤ k ≤ n)

=⇒ ∀ x′ ⊆ xS ∃ t ∈ S :

x′ · t · s ⊆ a1 + ...+ an

=⇒ xS ⊆ (a1)S ⊕ . . .⊕ (an)S.
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Consequently the set of all xS forms a set of compact generators of AS and
in particular 1S is compact. Furthermore each xS is a divisor since

aS ⊇ bS =⇒ bS = aS ∩ bS
= (a ∩ b)S
= (a(a ∗ b))S
= aS ◦ (a ∗ b)S =⇒ aS

∣∣∣∣ bS .
Therefore, recall xS ◦ yS = (xy)S, S is a commutative IDM, generated by
{xS}. 2

5. 6. 4 Proposition. Let A be a commutative IDM and S a multiplica-
tively closed system of generators. Then each prime element P of A is
“extended” to a prime PS of AS and each primary Q of A is “extended” to
a primary QS of AS .

PROOF. aS · bS ⊆ PS implies a · bs ⊆ P (∃s ∈ S) from which follows
a ⊆ P V bs ⊆ P leading to aS ⊆ PS V bS ⊆ PS . In an analogous manner
we get that QS is primary in AS if Q is primary in A . 2

The great importance of the introduced operator results from the fact that
ideal identities may be checked by consulting AS .

In particular one may restrict to considering the localizations AS where
S consists of all s not contained in a given prime element P . To empha-
size this, one writes alternatively AP instead of A{x|x̸⊆P} and calls AP the
localization of A at the place P .

A final Remark. The reader should take into account that a prime
element P with S := {s | s ̸⊆ P} satisfies PS = P on the one hand and
that aP = 1P holds for all a ̸⊆ P on the other hand, because

a ⊆ PS =⇒ as ⊆ P (∃ s ∈ S)
=⇒ a ⊆ P ,

and since a ̸⊆ P =⇒ 1 · a ⊆ a (a ∈ S) , respectively.



Chapter 6

Krull’s Classics

6.1 The Localization Theorem

As far as the author is in the position to judge the method of localization
was introduced by Wolfgang Krull. This method provides a reduction
of consideration to special models, namely the components AP of localiza-
tion, having exactly one maximal prime element.

6. 1. 1 Krull’s Localization Lemma. In a commutative IDM A two
elements A,B are equal iff AM = BM for all maximal elements M .

PROOF. First of all a ⊆ A =⇒ a ⊆ AM = BM

=⇒ a · eM ⊆ B (eM ̸⊆M) .

Hence for each maximal element M there exists some eM with a · eM ⊆ B .

We consider
∑

eM (M maximal) and get
∑

eM = 1 , since in case of∑
eM ̸= 1 there would exist some eM ′ whose maximal M ′ is not contained

in
∑

eM . Hence we get

a = a ·
∑
eM ⊆ B (∀ a ∈ A)

and thereby A ⊆ B . This completes the proof by symmetry. 2

Recall again: If P is prime and S := {s | s ̸⊆ P} then on the one hand it
holds PS = P and on the other hand any a ̸⊆ P satisfies aP = 1P ,

Remark. Considering the ideal structure of (Z,+, ·) as an AML it becomes
obvious that the localization lemma acts as a compensation and general-
ization, respectively, of the fundamental theorem of elementary number
theory – in any commutative ring with identity.

105
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6.2 The Kernel of an Element

The kernel of an element was introduced by Krull , see also [163]. It will
play a central role in this section. In particular we will exhibit an equivalent
of kerA = A according to Gilmer/Mott [163] and a characterization of
unique representability of kerA which in the special case of commutative
rings with identity is again due to Krull [251].

To begin with some lemmata, again basically due to Krull.

6. 2. 1 Krull’s Separation Lemma. Let A be a commutative IDM and
let S be a multiplication closed system of generators. Then there exists a
prime element P with

P ⊇ A & cs ̸⊆ P (∀ s ∈ S) .

PROOF. Let P be maximal among all elements B satisfying

B ⊇ A & s ̸⊆ B (∀ s ∈ S) .

Then a · b ⊆ P implies a ⊆ P V b ⊆ P since otherwise P + a ⊃ P and
P + b ⊃ P would follow implying P ⊇ (P +a) · (P + b) with P +a ⊇ s ∈ S,
P + b ⊇ t ∈ S . But this would lead to s · t ⊆ P , in spite of st ∈ S . 2

6. 2. 2 Proposition. Let A be a commutative IDM and let P be minimal
prime over A . Then AP is P -primary on the one hand and equal to the
intersection of all A containing P -primary elements of A.

PROOF. We start from S = {s
∣∣∣∣ s ̸⊆ P} . Since xn ⊆ AP =⇒ sxn ⊆ A ⊆ P

we get RadAP ⊆ P . But P ⊆ RadAP holds as well, for p ⊆ P yields the
existence of at least one spn (s ∈ S) in A since otherwise, by 6.2.1, a prime
element P ′ ̸= P containing A would exist in which no spn is contained. But
this contradicts that each minimal prime Pm ̸= P over A must contain at
least one s ̸⊆ P , according to Pm ̸⊇ P .

Assume now xy ⊆ AP . This implies sx · y ⊆ A and thereby in the case of
x ̸⊆ RadAP = P first of all sx /∈ P , that is sx ∈ S , whence we get next
y ⊆ AP . Hence AP is P -primary.
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Let finally Q be a further P -primary element with Q ⊇ A . Then each
x ⊆ AP by definition satisfies sx ⊆ A (∃ s ̸⊆ P ) , whence sx ⊆ Q and
consequently x ⊆ Q . 2

6. 2. 3 Definition. Let A be a commutative IDM and A ∈ A.

By an isolated primary component of A we mean any AP in the sense of
6.2.2. By the kernel of A , abbreviated kerA , we mean the intersection of
all isolated primary components AP of A.

6. 2. 4 Krull’s Kernel Lemma. Let A be a commutative IDM and let
a ⊆ A∗ := kerA . Then each P ⊇ a ∗ A properly contains at least one
prime element Pm minimal over A .

PROOF. Suppose A∗ ⊇ a and P ⊇ a ∗ A. Then P ⊇ a ∗ A ⊇ A and
thereby P ⊇ Pm for at least one Pm , minimal prime over A.

Assume now even P = Pm . Then, according to 6.2.2, we would get

sa ⊆ A (∃ s ̸⊆ P ) ; s ⊆ a ∗ A ⊆ P ,

a contradiction! 2

Now we are in the position to prove

6. 2. 5 Proposition. In a commutative IDM A any A is equal to its
kernel, iff any prime element P satisfies

X ⊃ P ⊇ p =⇒ pX = p .

PROOF. Let the condition be satisfied and suppose kerA ⊃ A . Then,
according to 5.4.8, it follows for at least one b ⊆ kerA and one prime
element Q

b ̸= bQ & Q ⊇ b ∗ b(b ∗ A) ⊇ b ∗ A .

But according to 6.2.4 – for at least one P , minimal over A – this leads to
the contradiction:

Q ⊃ P ⊇ A; Q ⊃ P ⊇ b; b = bQ .

Suppose now kerA = A (∀A) and X ⊃ P ⊇ p , where P is prime and
p ⊃ pX . Then there exists a prime element Q ⊇ X satisfying p ⊃ pQ,
where p and pQ have the same minimal prime supelements.
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We show that p and pQ have in addition the same isolated primary com-
ponents.

To this end we start from a primary element Q1 with Rad (Q1) minimal
prime over pQ and Q1 ⊇ pQ , that is Q1 ⊇ pq (∀q ∈ Q). Since Q is
not minimal over pQ , recall Q ⊃ X ⊇ p , there exists some q ⊆ Q with
q ̸⊆ Rad (Q1) , leading to p ⊆ Rad (Q1).

But that would imply pQ = p , a contradiction. 2

Clearly, A = kerA is equivalent with the assertion that each A is equal to
the intersection of all primary elements containing A. So, the fundamental
theorem of number theory is again transferred to certain IDMs including
the domain Z of integers.

In Z the intersection of primary components is in addition irredundant.
This in mind we turn to a further step up, employing Krull’s Qu-Bedin-
gung, compare [251].

6. 2. 6 Corollary. Let A be a commutative IDM satisfying A = kerA.
Then kerA is irredundant iff the all i.p.c. (isolated primary components)
Qi with Pi = RadQi of A are of type c ∗ A.

PROOF. (a) Let
∩
Qi = A be irredundant and suppose that the prime

element P contains D :=
∩
Qj (j ̸= i). Then there exists an i.p.c R of

D with RadR = P , since P is minimal in D, and with D ∩ R = D, in
spite of the required irredundance. Hence there exists some c ⊆ D with
c ̸⊆ P . But RadQ = P ̸⊇ c =⇒ c ∗ Q ⊆ Q =⇒ c ∗ Q = Q . So, we get
c ∗Q = c ∗D ∩ c ∗Q = c ∗ (D ∩Q) = c ∗ A .
(b) Let now all primary components Qi be of type ci∗A . Then by cQi ⊆ A
and RadQj = Pj ̸⊇ Qi we get Qj ⊇ c (∀j ̸= i) that is D :=

∩
Qj ̸=i ⊇ c.

But D ∩Q = D would imply

Q = c ∗ A = c ∗D ∩Qi = 1, ,

a contradiction! 2

6.3 The Principal Ideal Theorem

We start from a commutative ideal monoid A . The fundamental structure
of this section will be the modular, noetherian, hyper-normal commutative
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ideal monoid. The developments of this section are along the lines of chap-
ter VII of Larsen/McCarthy [267], consult Leonhardt [271]. But,
for the sake of fairness:

It’s Krull time, again.

In algebraic geometry one central and fundamental notion is that of a
dimension.

Consider a chain of primes P0 ⊂ P1 ⊂ . . . ⊆ Pr. We say that this chain
has length r. Its first term is P0 its last term is Pr .

6. 3. 1 Definition. The Krull dimension of A is the supreme of the
lengths of all chains of distinct proper prime elements of A . The Krull
dimension of A is denoted by dimA .

Clearly dimA may be equal to ∞ and also equal to 0. Otherwise it is a
natural number (̸= 0) .

6. 3. 2 Definition. Let P be a proper prime element of A . The height
of P , denoted by ht(P ), is the Krull dimension of AP . The depth of P ,
denoted by dpt (P ) is the Krull dimension of A/P .

6. 3. 3 Definition. Let A be a proper element of A . By the height of A ,
denoted ht(A), we mean the minimum, by the dimension of A, denoted by
dim(A), we mean the supreme of the values of ht(P ) , as P runs over all
minimal prime divisors of A .

6. 3. 4 Krull’s Dimension Theorem. Let R be a noetherian integral
domain. Then all ideals p, minimal prime over the ideal (a1, . . . , ar) are of
a height ht(p) ≤ r .

Fundamental for this dimension theorem is

6. 3. 5 Krull’s Principal Ideal Theorem. Let R be a Noetherian inte-
gral domain and choose some a ∈ R and p minimal prime over the principal
ideal ⟨a⟩ . Then ht(p) = 1 .

To the opinion of Irvin Kaplansky, [229], this principal ideal theorem is
the most important single-theorem of commutative algebra.
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Consider now some n-dimensional affine space An(K) over the field K .
Assume that p is prime in K [X1, . . . , Xn] and that

V(p) = {(k1, . . . , kn) ∈ An(K) : f(k1, . . . , kn) = 0 for f ∈ p}

is the affine irreducible variety, associated with p. Then, since any maximal
chain of prime ideals of K [X1, . . . , Xn] has length n, the principal ideal
theorem implies:

dimV(p) = dimK [X1, . . . , Xn]/p

= dimK, [X1, . . . , Xn] − ht(p)

= n− minmal number of generators of p ,

as will turn out by the general principal ideal theorem. And this corre-
sponds, of course, with our vision of a dimension of V(P ) .

Another application of the principal ideal theorem leads to a theorem on
implicit complex functions.

Let 0 ̸= f ∈ C [X1, . . . , Xn], n ≥ 2 and let V(f) be a complex manifold.
Then by the principal ideal theorem it holds ht(f) = 1 , that is dimV(f) =
n− 1 .

That the dimension of V(f) is equal to n − 1 corresponds in a desirable
manner with our visual conceptions. For, if f ̸= 0 in case of dimV(f) ≥ 1
there exists some w = (w1, . . . , wn) ∈ V(f) – by the property of holomor-
phic functions – and to any neighbourhood U of this w there exist points
z = (z1, . . . , zn) ∈ U ∩ V(f) satisfying

∂

∂Xi
f(X1, . . . , Xn)

∣∣∣∣ X1=z1,...,Xn=zn ̸= 0 .

Suppose now i = n. Then by the theorem on unique continuous implicit
functions in complex analysis there exists g : V −→ W , where V is some
neighbourhood of (z1, . . . , zn−1) ∈ Cn−1 and W some neighbourhood of
zn ∈ C with

g(z1, . . . , zn−1) = zn
&

f(z1 , . . . , zn−1 , g(z1, . . . , zn−1)) = 0 .

Hence in this neighbourhood the solution set of f(X1, . . . , Xn) .= 0 has
dimension n− 1 .
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We now turn to the proofs, starting with

6. 3. 6 Krull’s Intersection Theorem (KIT). Let A be a hyper-nor-
mal and archimedean IDM, that is in particular some modular noetherian
hyper-normal ideal monoid. Then the following are equivalent:

(i) A+ A∗ = 1 & A∗c = 0 =⇒ c = 0

(ii)
∩

n∈NA
n = 0.

PROOF. Suppose (i). Then

∩
n∈NA

n =: M =⇒ AM = M ⊇ m
=⇒ Am = m

=⇒ ∃A∗⊥A with A∗m = 0
(i)

=⇒ m = 0 .

=⇒ M =
∩

n∈NA
n = 0 .

Let now (ii) be satisfied. Then

A+ A∗ = 1 & A∗c = 0 =⇒ c = (A+ (A∗))c = Ac

=⇒ c = 0 V
∩

n∈NA
n ̸= 0 . 2

As an immediate consequence we get:

6. 3. 7 Corollary. Let A be archimedean and hyper-normal and let A be
contained in all maximal elements M . Then

∩
n∈NqA

n = 0 .

PROOF. A+ A∗ = 1 & A∗c = 0 =⇒ A∗ = 1 =⇒ c = 0 . 2

6. 3. 8 Lemma. Let A be noetherian, modular and hyper-normal, and let
a be contained in all maximal elements M . Then it follows

B ⊆ A ⊆ B + a & a ∗ A = A =⇒ A = B .

PROOF. Let M be the uniquely determined maximal element of A. Then
A and A := A/B are ringlike, and it holds

A = (a+B) ∗ A = B + (a+B) ∗ A = a ⋆ A .

But, a ∈ A is a divisor. This means next

A = a ◦ (a ⋆ A) = a ◦ A.
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So, it follows M ◦A = A. We now apply hyper-normality and the archime-
dean property of A . Then (KIT) implies A = B that is a + B = B and
thereby A = B . 2

6. 3. 9 Lemma. Let A be noetherian with unique maximal P , modular
and hyper-normal and let P be minimal prime over a. Then A satisfies the
descending chain condition DCC.

PROOF. First of all A/a satisfies the conditions above (again) if A satisfies
these conditions, and obviously is suffices here to prove the ascending chain
condition ACC. So we may start already from A/a and on this account
suppose a = 0. Here we observe first

x ⊃ y =⇒ x ∗ 0 ⊂ y ∗ 0 ,

since otherwise – by P ⊇ x ∗ y – we would get xP = x, that is by hyper-
normality xP ∗ = 0 with some P ∗⊥P , a contradiction.

Hence the chain a1 ⊃ a2 ⊃ . . . ai ⊃ ... must be finite by the Noether
property. Consequently there is a minimal generator m above 0, which is
necessarily minimal in the set of all X ⊃ 0.

So, in our original A/a there exists a minimal m =: a + m by which the
procedure can be continued, recall that by modularity divisors are sent to
divisors. Thus we are led to a minimal m over m etc. until this procedure
stops, according to the Noether property.

Thus a finite maximal chain is constructed, which by the modular chain
theorem, consult 3.3.9, is even of maximal length. Hence all descending
chains between a and P are finite. 2

Now we are in the position to prove:

6. 3. 10 Krull’s Principal ideal theorem (KPIT). Let A have the
Noether property and suppose that A is modular and hyper-normal and
let 0 be prime. Suppose moreover that P is minimal prime over a ̸= 0, 1 .
Then ht(P ) = 1 .

PROOF. Let P be minimal prime over a and let Q be prime and contained
in P . We have to verify Q = 0 . To this end some pre-consideration,
compare also [3]:
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First of all the prepositions for A are transferred to all AP (P prime).

Next in AP by 5.6.4 P = PP is the unique minimal prime element over aP .
And, if Q is prime in A and contained in P , then also QP = Q ⊆ PP = P
is prime in AP . Moreover it holds

Qk
Q = 0Q =⇒ Qk ⊆ 0 =⇒ Q = 0 .

Hence we are through, once it is shown Qk
Q = 0Q for at least one k ∈ N .

To this end we start from some modular, noetherian hyper-normal A with
P as unique maximal element, which is assumed to be prime over a , and
some prime Q ⊂ P with a ̸⊆ Q , which will turn out as 0 .

Again, let A , a , P and Q be chosen as above.

We consider A/a =: A . Here a + P = P is the unique maximal element,
and by the Noether property we get: P n ⊆ a (∃n ∈ N) , that is P

n
= a .

So, by DCC there exists some suitable n ∈ N, satisfying the equality
a+Qk

Q = a+Qn
Q (∀k > n) and thereby

Qk
Q ⊆ Qn

Q ⊆ a+Qk
Q .

From this, since Qn
Q is Q-primary in A and a ̸⊆ Q it follows next

a ∗Qn
Q = Qn

Q ,

that is – by 6.3.8 – finally Qk
Q = Qn

Q for all k > n .

Thus, lastly we get Qn
Q = 0Q in AQ , by corollary 6.3.7, meaning that the

height of P equals 1. 2

Applying KPIT we are now in the position to prove

6. 3. 11 Krull’s Dimension Theorem (KDT). Let A have the Noether
property and suppose that A is modular and hyper-normal and that 0 is
prime. Suppose furthermore that P is minimal prime over (a1 + . . .+ ar) .
Then ht(P ) ≤ r , that is by definition dim(a1 + . . .+ ar) ≤ r .

PROOF. Let P be minimal prime over a1 + a2 + . . .+ an . We shall show
htP ≤ r . We may assume that P is the uniquely determined maximal
element of A and have to show that prime element chains P = P0 ⊃ P1 ⊃
. . . ⊃ Ps satisfy s ≤ r . Furthermore we may replace A by A/Ps and
suppose on this account that the generators of A form an ideal semigroup
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with prime element 0. Moreover we may suppose that there is no prime
element strictly between P and P1.

Now, P is minimal prime over a1+. . .+ar. Consequently a1+. . .+ar ̸⊇ P1 ,
say a1 ̸⊆ P1 . But then there cannot exist any prime element P ′ with
P1 + a1 ⊆ P ′ ⊂ P . Hence P is uniquely prime over P1 + a1 , which
implies P = Rad (P1 + a1) . So, there exists a natural number t satisfying
ai

t ⊆ P1 + a1 (i = 1, . . . r) .

We suppose ai
t = a1 · bi + ci (bi ⊆ A0) , ci ⊆ P1 and consider c2 + . . .+ cr .

By c2 + . . .+ cr ⊆ P1 there exists some minimal prime P1
′ over c2 + . . .+ cr

with P1
′ ⊆ P1 . And according to ai ⊆ Rad (a1 + . . . + cr) (i = 1, . . . r) P

is the unique prime over a1 + c2 + . . . + cr . Consequently in A1 := A/P1
′

the element P/P1
′ is the unique minimal prime over a1 = a1 + P1

′ , which
is shown as follows:

Case 1. Suppose a1 ⊆ P1
′.

Then a1 + . . .+ ar is contained in P1
′, too. This leads to P1 = P , since P

is the uniquely determined minimal prime over a1 + . . .+ ar .

Case 2. Suppose a1 ̸⊆ P1
′.

Then a1+P1 is in A/P1
′ neither zero nor identity, observe a1+P1 ⊆ P ̸= 1 .

Consequently, by PIT we get ht(P/P1
′) = 1 , whence we may conclude

P1
′ = P1 .

The rest follows by induction:

In case of r = 1 the proposition follows by the PIT.

We suppose that the assertion is verified for all b1 + . . .+ bs with s ≤ r−1 .

Then by minimal primeness of P1 over c2+ . . .+cr , for s in the sense above
it follows s− 1 ≤ r − 1 , that is s ≤ r . 2



Chapter 7

Prüfer Structures

7.1 Left Prüfer Structures

Rings with a distributive ideal lattice have a strong structure theory, not
only in the commutative case. The crucial reason: Rings are always con-
gruence permutable therefore the class of rings with a distributive ideal
lattice forms an arithmetical variety, and – arithmetical varieties do have
a very strong structure theory, whence they are objects in their own right,
consult for instance Burris/Sankappanavar, [87].

Commutative rings with a distributive ideal lattice were investigated by
C. U. Jensen in a series of papers, cf. [220] through [223].

One main result: The class of arithmetical commutative rings with identity
is exactly the class of commutative rings with identity having the divisor
property (P) for finitely generated ideals. Hence [77] applies to them in any
case. But, of course, their divisibility theory is much stronger than that
of commutative d-semigroups. One reason: Given a commutative arith-
metical ring, there exists some Bézout ring, that is a ring in which finitely
generated ideals are principal, with an isomorphic divisibility theory. This
was shown by D. D. Anderson in [3]. For the theory of d-semigroups the
reader is referred to [77]. 1)

Arithmetical rings are stronger than Prüfer rings, which are defined as
commutative rings whose finitely generated regular ideals – these are the
ideals containing at least one cancellable element – are required to be in-
vertible. So the best name for the structures below might be something

1) unpublished but available
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like ideal left divisibility semigroup, briefly ideal ld-semigroup or ideal di-
visibility semigroup, briefly ideal d-semigroup.

Nevertheless we think that there will arise no ambiguity if we give the
honor of structures of this type to Heinz Prüfer. “Prüfer properties”
from a general point of view were studied by I. Fleischer in [124] and
[125].

7. 1. 1 Definition. By a left Prüfer structure we mean an AML A =
(A,Ac, · ,∩,Σ) with:

a1 + . . .+ an ⊇ B =⇒ a1 + . . .+ an |ℓB .(LP)

Hence any left Prüfer structure is an LD-AML. But, of course, Ac need not
be closed under multiplication, compare 5.2.5. Left Prüfer structures are
defined from the left. Dually right Prüfer structures are defined. Conse-
quently, by a Prüfer structure we mean an AML which is both, a left and
a right Prüfer structure.

7. 1. 2 Lemma. If A is an AML and B is compact in A with AX = B,
then there exists even a finite sum x1+ . . .+xn ⊆ X satisfying the equation
A · (x1 + . . .+ xn) = B .

PROOF. A ·X = B =⇒ A ·X ⊆ B ⊆ A · (x1 + . . .+ xn)
(∃ xi ∈ X (1 ≤ i ≤ n))

=⇒ A ·X = B = A · (x1 + . . .+ xn) . 2

7. 1. 3 Proposition. Let A be an LD-AML. Then A is a left Prüfer
structure if and only if A satisfies the equations:

a+ b = (a+ b) · (a ∗ b+ b ∗ a)(e)

A ∩ (B + C) = (A ∩B) + (A ∩ C).(D)

PROOF. (a) Let A satisfy (e) and (D).

We say that an element A is n-generated if it is a sum of n elements but
no sum of less than n elements. In this case we say also that A has length
n . We say that an element A is at most n-generated if it is k-generated
with 1 ≤ k ≤ n .

We will carry out the proof by induction along the length of A,B . To
begin with:
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Step 1: If A and B are left divisors satisfying

A+B = (A+B) · (A ∗B +B ∗ A) ,(E)

then A+B is again a left divisor.

Verification: By (E) and (D) we get:

A + (A+B) · (A ∗B) ⊇ (A+B) · (A ∗B)
+ A(B ∗ A) +B(B ∗ A)

= (A+B) · (A ∗B +B ∗ A)
(E)
;

A + (A+B) · (A ∗B) = A+B

and
A ∩ (A+B) · (A ∗B) = A ∩ (A(A ∗B) +B(A ∗B) )

= (A ∩ A ∩B) + (A ∩B(A ∗B) )
= A ∩B
;

A ∩ (A+B) · (A ∗B) = A ∩B .

Hence it holds by (COM):

(A+B) · (A ∗B) = B .(7.5)

Suppose now A+B ⊇ C . Then it follows by (D) and (7.5) :

C = (A ∩ C) + (B ∩ C)

= A(A ∗ C) +B(B ∗ C)

= (A+B) · (B ∗ A) · (A ∗ C) + (A+B) · (A ∗B) · (B ∗ C)

= (A+B) · ( (B ∗ A) · (A ∗ C) + (A ∗B) · (B ∗ C) ) .

Thus we get (A+B)
∣∣∣∣
ℓ
C .

Once more, the preceding step was done for arbitrary left divisors A,B
under condition (E). In particular so far we obtained that any a + b is a
left divisor, since all generators are left divisors satisfying condition (e).

Step 2: First we notice

AU = A = AV =⇒ A(U ∩ V ) ⊇ (AU)V ⊇ AV = A .(7.6)
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Now we assume that all k-generated (1 ≤ k ≤ n) elements are (already)
verified as left divisors and that all ℓ-generated (1 ≤ ℓ ≤ n − 1) elements
A satisfy

A+ b = (A+ b) · (A ∗ b+ b ∗ A) .(7.7)

Then every n-generated element satisfies (7.7) , too, as is shown now:

Assume D = A+B with D of length n and A,B both of length ≤ n− 1 .
Then

D + c
⊇ (D + c) · (A ∗ c+ c ∗ A+ c ∗B)

⊇ ((A+ c) + (B + c)) · (A ∗ c+ c ∗ A+ c ∗B)

= ((A+ c) · (A ∗ c+ c ∗ A+ c ∗B)
+ ((B + c) · (A ∗ c+ c ∗ A+ c ∗B)

⊇ ((A+ c) · (A ∗ c+ c ∗ A) + ((B + c) · (c ∗B)
= (A+ c) +B

= (A+B) + c

= D + c .

So, by symmetry and (7.6) we obtain

D + c
⊇ (D + c) · (D ∗ c+ c ∗D)

= (D + c) · ( (A+B) ∗ c+ c ∗ (A+B) )

⊇ (D + c) · ( (A ∗ c ∩B ∗ c) + (c ∗ A+ c ∗B) )
(D)
= (D + c) · ( (A ∗ c+ c ∗ A+ c ∗B) ∩ (B ∗ c+ c ∗B + c ∗ A) )
(7.6)
= D + c .

Thus condition (7.7) is verified for D .

Now, combining Step 1 and Step 2, we get that any finitely generated
element is a left divisor.

So far the algebraic property has not yet been applied.

(b) Let now A be a left Prüfer structure. Then condition (e) results by

(a+ b)(b ∗ a) = a & (a+ b)(a ∗ b) = b; (a+ b)(a ∗ b+ b ∗ a) = a+ b .
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Next for any finitely generated triple A,B,C we get

A ∩ (B + C) = (B + C)( (B + C) ∗ A )

= B( (B + C) ∗ A ) + C( (B + C) ∗ A )

⊆ B(B ∗ A) + C(C ∗ A)

= (A ∩B) + (A ∩ C)

⊆ A ∩ (B + C).

Suppose now that A is an AML satisfying (D) only for finitely generated el-
ements and consider A =

∑
i∈I

ai and B =
∑
j∈J

bj. Then we get by definition:

A ·B =
∑

(ai · bj) ( (i, j) ∈ I × J )

A+B =
∑

(ai + bj) ( (i, j) ∈ I × J )

and it results by calculation

A ∩B =
∑

(ai ∩ bj) ( (i, j) ∈ I × J ).

FOR: It suffices to prove that the left side is contained in the right side. So
we start with some x ⊆ A ∩B. Then there exist elements a1, . . . , am ⊆ A,
and b1, . . . , bn ⊆ B satisfying :

x ⊆ a1 + . . .+ am & x ⊆ b1 + . . .+ bn

;

x ⊆ (a1 + . . .+ am) ∩ (b1 + . . .+ bn)
= (a1 ∩ b1) + (a1 ∩ b2) + . . . (am ∩ bn)

(since A is finitely distributive)
;

x ⊆
∑

... .

And this leads to (D) via

x ⊆ A ∩ (B + C)
⇒

x ⊆ (a1 ∩ b1) + (a1 ∩ b2) + . . .+ (aℓ ∩ bm)
+ (a1 ∩ c1) + (a1 ∩ c2) + . . .+ (aℓ ∩ cn)

⇒
x ⊆ (A ∩B) + (A ∩ C) 2

It is noteworthy that a left Prüfer structure need not satisfy the equation
a(a∗b+b∗a) = a . Recall Example 5.2.3. But in an AML whose generators
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are both, left and right divisors, this equation is valid if only the underlying
lattice is distributive, as was shown under 5.3.5.

In particular this provides:

7. 1. 4 Proposition. Let A be a D-AML. Then A is a left Prüfer structure
if and only if A satisfies the equations:

a = a (a ∗ b+ b ∗ a)(e’)

A(B ∩ C) = AB ∩ AC .(Kr)

PROOF. (a) Condition (e’) implies, recall the proof of (a) below propo-
sition 7.1.3, that any a+ b is a left divisor of its components.

b = b(a ∗ b+ b ∗ a)
= b(a ∗ b) + (b ∩ a)
= b(a ∗ b) + a(a ∗ b)
= (a+ b)(a ∗ b) .

Suppose now
A := a1 + . . .+ an ⊇ c .

Then (Kr) implies
AB = CD =⇒ (A+ C) · (B ∩D) = AB

whence we get by induction:

c = (a1 + c) · (a1 ∗ c) = . . . = (an + c) · (an ∗ c)
; c = ( (a1 + c) + . . .+ (an + c) ) · ( a1 ∗ c ∩ . . . ∩ an ∗ c )

= (a1 + . . .+ an) · (a1 ∗ c ∩ . . . ∩ an ∗ c)
; A |ℓ c .

(b) Let now A be Prüfer D-AML . Then it results first

A(b ∩ c) = Ab(b ∗ c) + Ac(c ∗ b)
⊇ (Ab ∩ Ac) · (b ∗ c+ c ∗ b)
= Ab ∩ Ac
⊇ A(b ∩ c),

and thereby next a1b ∩ a2c ⊆ (a1 + a2)b ∩ (a1 + a2)c
= (a1 + a2) · (b ∩ c) .
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Thus, consult 5.3.3, we get (Kr) , which completes the proof. 2

7. 1. 5 Corollary. Let A be generated by a set of divisors such that all
elements have finite length, say that A has the Noether property. Then A

is a left Prüfer structure if and only if it satisfies:

(a ∗ b+ b ∗ a)2 = a ∗ b+ b ∗ a(j)

A ∩ (B + C) = (A ∩B) + (A ∩ C) .(D)

PROOF. All we have to show is the necessity of (j). But in any left Prüfer
structure finitely generated elements A,B satisfy (A + B) · (B ∗ A) = A .
Hence any divisor generated Noether AML with the left Prüfer property
satisfies:

a ∗ b = (a+ b) · (b ∗ a) ∗ b
= (b ∗ a) ∗ ((a+ b) ∗ b)
= (b ∗ a) ∗ (a ∗ b)
= (a ∗ b+ b ∗ a) ∗ (a ∗ b)
;

(a ∗ b+ b ∗ a)2 = (a ∗ b+ b ∗ a) · (a ∗ b)
+ (a ∗ b+ b ∗ a) · (b ∗ a)

= a ∗ b+ b ∗ a . 2

Some remarks: The question arises whether in 7.1.3 and 7.1.4 condition
(e) and (e’), respectively, are necessary. The answer is given by monoids
since the Rees ideal lattice is always distributive.

Furthermore: The reader should take into account that in the preceding
proofs the algebraic property has not been applied to verify sufficiency.
Hence the corresponding parts remain valid also for v-ideals, for instance.

If A is even a Prüfer monoid then of course (A∩B)C = AC ∩BC is valid
as well.

Next: Since by condition (Kr) left divisors A,B satisfy

AB ⊇ C =⇒ C = A(B ∩ A ∗ C) = AB(B ∗ C) ,

condition (Kr) yields that products of left divisors A,B are again left di-
visors. Thus we are led to:

7. 1. 6 Lemma. In a left Prüfer structure satisfying (Kr) any divisor A
satisfies A∩B = A(A∗B) = A((A+B)∗B). Hence in these structures the
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set submonoid generated by the basis is closed under · , + ∩, and | on the
grounds of 7.1.2, that is forms a submonoid, for the insider a divisibility
submonoid C =: (C, · , + , ∩) .

7.2 Normal Prüfer monoids

According to the results exhibited so far, a commutative ring with fixing
elements ( ∀ a ∃ ea : aea = a ) is a Prüfer ring in the sense of this paper if
and only if it is arithmetical , i. e. iff the ideal lattice is distributive.

Hint: Let R be arithmetical and let u be a common fixing element (pri-
vate unit) of a and b for instance u = v − vw + w with av = a, bw = b .
Then it holds

a ∈ ⟨a⟩ ∩ ( ⟨b⟩ + ⟨a− b⟩ )
= ( ⟨a⟩ ∩ ⟨b⟩ ) + ( ⟨a⟩ ∩ ⟨a− b⟩ )

; au = t+ c(a− b) ( t ∈ ⟨a⟩ ∩ ⟨b⟩, c ∈ ⟨a⟩ : ⟨b⟩ )
; a (u− c) = t− cb (u− c ∈ ⟨b⟩ : ⟨a⟩ ),

and this means u = c+ (u− c) ∈ ⟨a⟩ : ⟨b⟩ + ⟨b⟩ : ⟨a⟩, whence

⟨a, b⟩ = ⟨a, b⟩( ⟨a⟩ : ⟨b⟩ + ⟨b⟩ : ⟨a⟩ ) .

Thus for arithmetical commutative rings we even get

⟨1⟩ = ⟨a⟩ : ⟨b⟩ + ⟨b⟩ : ⟨a⟩ ,

choose u = 1. Similar, if all x ∈ A0 are left cancellable in A, then

a · 1 = a (a ∗ b+ b ∗ a) ; a ∗ b+ b ∗ a = 1 .

This motivates a study of normal IDMs, that is IDMs satisfying

(jn∗) a ∗ b+ b ∗ a = 1 and (jn:) a : b+ b : a = 1

in a particular manner.

7. 2. 1 Proposition. Let A be an arbitrary IDM. Then A is normal if
and only if it satisfies one of the two subsequent conditions:

A ∗ (B + C) = A ∗B + A ∗ C ( A,B,C finitely generated ) .(D∗
+)
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(A ∩B) ∗ C = A ∗ C +B ∗ C (A,B finitely generated ) .(D∗
∩)

If moreover A is commutative then we get even

(JN∗) ⇐⇒ (D∗
∩) ⇐⇒ (D∗

+) .

PROOF. First we verify

(jn∗) ⇐⇒ (JN∗) A ∗B +B ∗ A = 1 (A,B finitely generated) .

To this end we suppose that A ∗B +B ∗A = 1 is already proven for all at
most n-generated elements, and infer from this A ∗ B + B ∗ A = 1 for all
at most (n+ 1)-generated components.

So, let B and C be at most n-generated. We put

T := (B + b) ∗ (C + c) + (C + c) ∗ (B + b) .

It follows for at most n-generated elements X

1 ⊇ (B+b) ∗X+X ∗ (B+b)

⊇ (B ∗X) · (b ∗X)+(X ∗B)+(X ∗ b)
⊇ (B ∗X+X ∗B+X ∗ b) · (b ∗X+X ∗B+X ∗ b) = 1 ,

and furthermore

T = (B+b) ∗ (C+c)+(C+c) ∗ (B+b)

⊇ ( (B+b) ∗ C+(B+b) ∗ c )+(C ∗ (B+b) ∩ c ∗ (B+b) )

⊇ ( (B+b) ∗ C+(B+b) ∗ c )+(C ∗ (B+b) ) · ( c ∗ (B+b) )

⊇ ( (B+b) ∗ C+C ∗ (B+b) ) · ( (B+b) ∗ c+c ∗ (B+b) )

⊇ 1 .

Let now B,C be finitely generated. Then we get:

1 ⊇ (A ∗ (B + C) ) ∗ (A ∗B+A ∗ C )

⊇ (A ∗ (B+C) ) ∗ (A ∗B)+(A ∗ (B+C) ) ∗ (A ∗ C)

= A(A ∗ (B+C) ) ∗B+A(A ∗ (B+C) ) ∗ C
⊇ C ∗B+B ∗ C = 1 .

This verifies (JN∗) =⇒ (D∗
+) because A ∗ (B+C) ⊇ A ∗B+A ∗ C .
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We now turn to (D∗
+). Here finitely generated elements A,B satisfy

A ∗B +B ∗ A = (A+B) ∗B + (A+B) ∗ A
= (A+B) ∗ (B + A) = 1 ,

meaning (D∗
+) =⇒ (JN∗) . –

Finally we consider the commutative case. Here we get first, as above,
condition (JN∗) and thereby

1 ⊇ ( (A ∩B) ∗ C ) ∗ (A ∗ C+B ∗ C)

⊇ ( (A ∩B) ∗ C ) ∗ (A ∗ C)+( (A ∩B) ∗ C ) ∗ (B ∗ C)

= A ∗ ( ( (A ∩B) ∗ C ) ∗ C )+B ∗ ( ( (A ∩B) ∗ C ) ∗ C )
⊇ A ∗ (A ∩B)+B ∗ (B ∩ A) (R4)

⊇ A ∗B+B ∗ A = 1 .

This means (JN∗) =⇒ (D∗
∩), observe (A ∩B) ∗ C ⊇ (A ∗ C) + (B ∗ C).

On the other hand D(∗∩) implies for finitely generated elements A,B

A ∗B +B ∗ A = A ∗ (A ∩B) +B ∗ (A ∩B) (R2)
= (A ∩B) ∗ (A ∩B) = 1 .

Hence (D∗
∩) ⇐⇒ (JN∗) . 2

Caution: If R is a commutative ring with identity then obviously the
implication holds: d-normal =⇒ t-normal =⇒ v-normal. But the arrows
must not be turned.

7. 2. 2 Lemma. Let A satisfy condition (JN∗). Then A is lattice distri-
butive.

PROOF. Suppose that B,C are finitely generated. Then it follows:

A ∩ (B + C) = (a ∩B) + (A ∩ C) ,(D∩)

SINCE 1 ⊇ A ∩ (B+C) ∗ ( (A ∩B)+(A ∩ C) )

⊇ (A ∩ (B+C) ) ∗ (A ∩B)+(A ∩ (B+C) ) ∗ (A ∩ C)

⊇ (B+C) ∗ (A ∩B)+(B+C) ∗ (A ∩ C)
⊇ C ∗B+B ∗ C = 1 .

This completes the proof. 2

7. 2. 3 Corollary. An IDM satisfying (jn∗) is a Prüfer monoid.
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Next we apply the preceding propositions to special cases. To begin with

7. 2. 4 Definition. By a valuation monoid we mean a totally ordered
IDM .

7. 2. 5 Proposition. A commutative Prüfer IDM is normal if and only
if each AM is a valuation monoid.

PROOF. We put S := {s | s ̸⊆ M} . Then we get – as pointed out above
– aS ∗ bS = (a∗ b)S, and this means comparability for each pair of elements
aS, bS, since a ∗ b and b ∗ a cannot be contained in the same M , recall
a ∗ b+b ∗ a = 1 . From this we get straightforwardly the comparability of
each pair of elements AS, BS ∈ AM . 2

Recall, an integral IDM is an IDM with cancellable generators.

7. 2. 6 Proposition. Let A be a commutative integral semigroup of ideals,
not necessarily of finite character, that is v-ideals not excluded. Then the
following properties are pairwise equivalent:

ab = (a+ b) · (a ∩ b)(i)

A(B ∩ C) = AB ∩ AC(ii)

a ∩ (b+ c) = (a ∩ b) + (a ∩ c) (d)
(a+ b)2 = a2 + b2 (0)

(iii)

Each AP is a valuation monoid.(iv)

A is a Prüfer monoid.(v)

PROOF. By assumption each generating divisor is cancellable and the
product of cancellable divisors is again cancellable,

SINCE AB ⊇ X ̸= 0 =⇒ AB ⊇ A(A ∗X) = X

=⇒ AB = A(B + A ∗X)

=⇒ B = B + A ∗X
=⇒ B

∣∣∣∣ (A ∗X)

=⇒ AB |A(A ∗X) = X .

Hence A is even a commutative IDM.

Next, recall that cancellable divisors A satisfy

A(B ∩ C) = AB ∩ AC
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since AB ∩ AC = AX =⇒ AB ⊇ AX ⊆ AC
=⇒ B ⊇ X ⊆ C

=⇒ B ∩ C ⊇ X
=⇒ A(B ∩ C) = AB ∩ AC .

Finally observe, that the conditions above are always satisfied if one of
the elements is equal to 0, and that 0 ∗ a + a ∗ 0 = 1 is valid a fortiori.
Consequently we may restrict our considerations to non vanishing elements
a, b, c, . . . .

(i) ⇐⇒ (v). By (i) we get :

ab · (b ∗ a+ a ∗ b) = ab (b ∗ a) + ba (a ∗ b)
= a (a ∩ b) + b (a ∩ b)
= (a+ b) · (a ∩ b)
= ab · 1
;

a ∗ b+ b ∗ a = 1 .

(ii) ⇐⇒ (v). It holds (ii) =⇒ (i) and (v) =⇒ (ii).

(iii) ⇐⇒ (v). (iii) implies (i) by

ab = ab ∩ (a2 + b2)

= (ab ∩ a2) + (ab ∩ b2)
= a(b ∩ a) + b(a ∩ b)
= (a+ b)(a ∩ b) .

Let now A satisfy the Prüfer condition. Then (d) is valid a fortiori, and
from (D) and (K) it follows:

ab ∩ (a2 + b2) = (ab ∩ a2) + (ab ∩ b2)
= a(b ∩ a) + b(a ∩ b)
= (a+ b)(a ∩ b)
= ab ,

meaning (a+ b)2 = a2 + ab+ b2

= a2 + b2 .

(iv) ⇐⇒ (v). (i) and thereby (v) follow immediately if each AP is totally
ordered.



7.2. NORMAL PRÜFER MONOIDS 127

Let now (v) be satisfied. Then a ∗ b+ b ∗ a = 1 follows by cancellation, and
(iv) results in a manner, similar to that in the proof of 7.2.5 2

Again: The results given here for the normal case remain valid, of course,
for monoids of ideals of commutative monoids since the algebraic property
didn’t play any role in the proof of 7.1.3 and hasn’t either been involved
in the preceding proof. This will turn out as most relevant in the later
chapter on monoids of v-ideals.

Excursion: As already referred in the introduction Kronecker empha-
sized that the essential advantage of a UF-extension is that of an ideal
GCD-extension. So we take the chance of discussing the preceding results.

Any ideal theory begins with some reduced monoid, i. e. a monoid satisfying

a |ℓ b⇐⇒ a |r b and a | b & b | a =⇒ a = b.

So, given a reduced monoid S, we are faced with the question whether
there exists a reduced monoid extension

∑
such that not divisible in S

remains valid in
∑

.

7. 2. 7 Definition. Let S be a reduced monoid. By a |-normal divisibility
extension of S we mean a reduced inf-closed supmonoid

∑
satisfying

α ⊇ β =⇒ α | β(PE0)

α |Σ β =⇒ α |S β(PE1)

α ∈
∑

=⇒ α =
∑n

1 ai (∃ ai ∈ S) .(PE2)

In this language we get via 7.1.3.

7. 2. 8 Corollary. Let S be a holoid. Then S admits a |-normal Prüfer
extension P iff the t-ideal monoid T is distributive and in addition satisfies
condition (e) and its left dual.

PROOF. The one direction is obvious.

Assume now that P satisfies (PE0) through (PE2). We consider the im-
plication a1 ∧ . . . ∧ an 7−→ ⟨a1, . . . , an⟩v. This is a function which P maps
m-homomorphically on the monoid of the finitely generated v-ideals. Hence
T is a Prüfer extension. 2

Requiring the algebraic property, things become essentially restricted, and
it might be that there exist non algebraic |-normal divisibility extensions
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but no algebraic |-normal divisibility extension. In this case we may change
to the v-IDM, thus getting an extension whose finite infima are divisors of
their components, but maybe by factors not necessarily finitely generated.

As an example of this type we present the monoid (Q≥0,+,min), extended
by π. It is easily seen that the elements of this monoid, considered as
principal ideals, are divisors of the v-IDM – but not w.r.t. finitely generated
v-ideals.

In general, of course, the quality of v-ideal extensions depends essentially
on the quality of the basic monoid.

If, for instance, S satisfies (D) and (Kr), then according to [72] S is rep-
resentable.

Since the combination (D) & (Kr) is a necessary condition in order that
S have a d-monoid extension we could solve the commutative embedding
problem once we had good descriptions of totally ordered monoids admit-
ting a d-monoid extension.

But: It seems to be very unlikely that there exist nice descriptions at all.

7.3 Prüfer Implications

In this final section we develop some properties of Prüfer monoids w.r.t.
further investigations. We start with a most important implication:

7. 3. 1 Lemma. Let A be a lattice modular LD-IDM. Then the implication
holds:

A ≽ A2 implies As ⊇ B ⊇ As+k = An =⇒ B = Aℓ (∃ ℓ).

PROOF. In a lattice modular LD-IDM in case of A ≻ A2 for each triple
s, k, n of natural numbers satisfies the implication

As ⊇ B ⊇ As+k = An =⇒ B = Aℓ .
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Hint: According to (5.8) x ⊆ A but x ̸⊆ A2 implies successively A+ x =
A2 + x = A(A2 + x) + x = A3 + x . . . and thereby

A+ x = An + x

;

As ⊇ An + xs

⊇ (An + x)s = As (5.8)

;

As = An + xs .

If now B lies between As and An and if in addition B ̸⊆ As+1, then by
lattice modularity and the left divisor property of xs it results for some C

B = An + xs · C

with xs · C = B ∩ xs ̸⊆ As+1 . Hence there exists some c ⊆ C satisfying
xc ̸⊆ A2 and thereby – recall xc ⊆ A & xc ̸⊆ A2 – satisfying

As = An + (xc)s

⊆ An +B = B .

This completes the proof. 2

7. 3. 2 Lemma. Let A be a Prüfer monoid and suppose a, b ⊆ P n but
a, b ̸⊆ P n+1. Then it follows (P n+1 + (a+ b)) · (P + a ∗ b) = P n+1 + b.

PROOF. From b ∈ P n & b ̸⊆ P n+1 it follows a∗b = (a+b)∗b ̸⊆ P . Hence
it holds P + a ∗ b ⊃ P , whence we get according to 7.3.7:

(P n+1 + (a+ b)) · (P + a ∗ b)
= P n+1(P + a ∗ b) + (a+ b)P + (a+ b) · (a ∗ b)
= P n+1 + b . 2

7. 3. 3 Corollary. Let A be a Prüfer monoid. Then each maximal M
satisfies Mn ≽Mn+1 (∀n ∈ N).

PROOF. Suppose Mn ⊃ X ⊃Mn+1 and a, b ∈Mn. Then by the preced-
ing method of proof it would result Mn+1 +a = Mn+1 + b and hence in the
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case of a ̸⊆ X, b ⊆ X it would follow Mn+1 + a ⊆ X . This completes the
proof by contradiction. 2

7. 3. 4 Lemma. In any Prüfer monoid any prime element is completely
prime. So prime divisors satisfy Pm+k ̸= P (m+k)−1 =⇒ Pm ∗ Pm+k = P k.

PROOF. First we get:

P n ⊇ AB & P ̸⊇ B =⇒ P n ⊇ (P n + A) · (P n +B)

=⇒ P n ⊇ (P n + A) · (P +B)n

=⇒ P n ⊇ P n + A (7.3.7(A)) .

Let now P be a prime divisor and Pm+k ⊇ Pm · x. Then P 1 · (P 1 ∗ x) = x
and we get successively P ℓ · (P ℓ ∗ x) = x for all (2 ≤ ℓ ≤ k) , that is finally

P k
∣∣∣∣x and thereby Pm ∗ Pm+k = P k . 2

Finally we remark:

7. 3. 5 Proposition. Let A be an arbitrary AML and let P be prime in
A , satisfying the implication P n ⊇ X ⊇ P n+k =⇒ X = P ℓ (∃1 ≤ ℓ ≤ k) .
Then from P n ̸= P n+1 (∀n ∈ N) it follows that Q :=

∩
P n (n ∈ N) is

prime.

PROOF. Suppose Q ⊇ ab and Q ̸⊇ a, b. Let moreover k ≥ 0 be highest
exponent with P k ⊇ a but P k+1 ̸⊇ a and let ℓ ≥ 0 be the highest exponent
with P ℓ ⊇ b but P ℓ+1 ̸⊇ b . Then it results P k+1+a = P k and P ℓ+1+b = P ℓ

and thereby

P k+ℓ+1 ⊇ ab
;

P k+ℓ+1 = P k+ℓ+1 + ab

= P k+ℓ+1 + (P k+ℓ+1 + a) · (P k+ℓ+1 + b)
= P k+ℓ+1 + (P k+1 + a)P ℓ · (P ℓ+1 + b)P k

= P k+ℓ+1 + (P kP ℓ + a) · (P ℓP k + b)
...
= P k+ℓ+1 + (P k+1 + a) · (P ℓ+1 + b)
= P k+ℓ+1 + P k · P ℓ

= P k · P ℓ ,
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a contradiction! 2

7. 3. 6 Corollary. Let A be a left Prüfer monoid and let M be maximal
with Mn ̸= Mn+1. Then Q :=

∩
Mn (n ∈ N) is prime.

7. 3. 7 Lemma. Let A be a left Prüfer monoid and let P ∈ A be a prime
element. Then

A ⊃ P =⇒ AP = P .(Iℓ)

PROOF. From A ⊇ a & P ̸⊇ a & P ⊇ p , we get (a + p)(a ∗ p) = p with
P ⊇ a ∗ p , and thereby AP ⊇ A(a ∗ p) ⊇ p which leads to AP = P . 2

Summarizing we keep in mind:

7. 3. 8 Proposition. Let A be a Prüfer IDM. Then A satisfies:

A ∩ (B + C) = (A ∩B) + (A ∩ C).(D)

A ⊃ P ⇒ AP = P = PA( I )

A(B ∩ C) = AB ∩ AC(K)

AB = CD ⇒ AB = (A ∩ C) · (B +D)
= (A+ C) · (B ∩D) = CD

(L)

A := a1 + . . .+ am ⊇ b ⇒ b = A(x1 + . . . xn)
(∃x1, . . . , xn )

(P)

AB = BA ⇒ (A+B)n = An +Bn(Q)

AB = BA ⇒ (A ∩B)n = An ∩Bn .(R)

PROOF. The properties above result successively as follows:

(D): Compare 7.1.3.

( I ): Apply (Iℓ).

(K): Compare 7.1.4.

(L): Distribute once over ∩ – and once over + .

(P): Compare 7.1.2

(Q): Observe (L), and continue by induction:
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Assuming that (Q) holds for all k between 1 and n it results:

An+1 +Bn+1 ⊇ (A ∩B)k(An+1−k +Bn+1−k) (2k ≤ n+ 1)

= (A ∩B)k(A+B)n+1−k

= (AB)k · (A+B)n+1−2k (apply (L))

= An+1−kBk + AkBn+1−k .

(R). Operate dually to the preceding conclusion (below (Q)). 2

7. 3. 9 Lemma. Let A be a Prüfer IDM, and let P ∈ A be prime. Then

(∀C ⊆ P ) A ⊃ P ≻ P 2 =⇒ AC = C = CA .

PROOF. On the grounds of duality we may restrict our considerations to
a proof of AC = C .

We start from A ⊃ P ≻ P 2 and suppose b, p ⊆ P but b ̸⊆ P 2. We denote
b + p by B. Then it follows P ⊇ B & B | p, whence it suffices to prove
AB = B for this particular element B . So assume XB ⊆ P 2. Then – by
P 2 +B = P – it follows

P 2 ⊇ XB =⇒ P 2 ⊇ (P 2 +X) · (P 2 +B)

=⇒ P 2 ⊇ (P +X)2 · P

But because P 2 ̸⊇ P and because of 7.3.7 this means P+X = P ; P ⊇ X
and thereby P 2 : B = P . So, because A ⊃ P ; AP = P , we get:

P 2 + AB = A(P 2 +B ) = AP = P

= P 2 +B

and P 2 ∩ AB = A(P 2 ∩B )

= A(P 2 : B )B

= AP ·B
= P ·B
= (P 2 : B )B

= P 2 ∩B ,

which provides AB = B – by lattice distributivity. 2



Chapter 8

Mori Structures

8.1 The Prime Criterion

In this section we investigate algebraic multiplication lattices whose prime
elements are divisors , also called prime divisors. In particular by this
requirement any maximal element is a prime divisor, observe xy ⊆M =⇒
x ⊆M V y ⊆M .

The main result will be that an AML of this type is a commutative AML,
satisfying condition (M), including the result of Smith, [278], that a ring
is an AM-ring iff any prime ideal is a divisor.

8. 1. 1 Lemma. Let A be an AML whose prime elements are left divisors,
and let P be prime. Then it results

A ⊃ P =⇒ AP = P .(I)

PROOF. A · P ⊂ P =⇒ Ap ⊂ p = PX (∃p ∈ P )
=⇒ Q · p ⊂ p (∃Q prime ⊇ A ⊃ P )
& Q · p = Q · PX = PX = p ,

the last line by QY = P =⇒ Y = P , that is a contradiction. 2

8. 1. 2 Lemma. Let A be an AML and let P be a prime left divisor
satisfying A ⊃ P =⇒ AP = P . Then all prime powers of P are left
divisors, too.

PROOF. Consider some prime element P together with some B satisfying

P n
∣∣∣∣
ℓ
B and P n+1 ⊇ B for some n ≥ 1 . Then we get first P n(P n ∗B) = B ,

133
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from which follows P n · P = P n · (P + (P n ∗ B)) . We consider the cases
P + (P n ∗ B) = P and P + (P n ∗ B) ⊃ P . In the first case we get

P
∣∣∣∣
ℓ
P n ∗B and thereby P n+1 |ℓB , in the second case we get P n+1 = P n

∣∣∣∣
ℓ
B

by assumption. 2

8. 1. 3 Lemma. Let A be an AML and let P be a prime left divisor
satisfying A ⊃ P =⇒ AP = P . Then

P ⊇ A ⊇ P n =⇒ A = Pm (∃ 1 ̸= m ≤ n) .

PROOF. By the premiss in case of Pm ⊇ A ̸⊆ Pm+1 (m + 1 ≤ n) we get
P + Pm ∗ A ⊃ P , recall 8.1.2, and thereby

A = Pm · (Pm ∗ A)
⊇ Pm · ( (Pm ∗ A) + P n−m )

⊇ Pm( (Pm ∗ A) + P )n−m(5.8)
= Pm (by assumption) . 2

8. 1. 4 Lemma. Let A be an AML and let P be a prime element satisfying
A ⊃ P =⇒ AP = P . Then it holds

Pm−1 ̸= Pm ⊇ A ·B
=⇒

(∃ k, ℓ ≥ 0 : P k ⊇ A & P ℓ ⊇ B & k + ℓ ≥ m) .

This means that under the condition above prime elements P satisfy the
implication:

Pm+k ̸= P (m+k)+1 =⇒ Pm ∗ Pm+(k+1) = P k+1 .

PROOF. Evidently

Pm ⊇ AB =⇒ Pm ⊇ (Pm + A) · (Pm +B).

Suppose now P ⊇ A,B. Then – according to 8.1.3 – it follows

Pm + A = P k & Pm +B = P ℓ where k + ℓ ≥ m.

Otherwise, assume P ⊇ A and P ̸⊇ B . Then it holds

Pm ⊇ P k · (P +B)m = P k (8.1.1)
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and thereby k = m . The rest follows by analogy. 2

As an immediate consequence of the preceding lemmata we get:

8. 1. 5 Corollary. If all prime elements P of an AML A are left divisors
then

Pm ̸= Pm+1 (∀m ∈ N) =⇒
∩
Pm =: Q is prime .

8. 1. 6 Lemma. If all prime elements P of an AML A are (not only left,
but even left/right-) divisors then each pair U, V commutes.

PROOF. First we obtain for any A

A =
∩
Pi

ei (Pi
ei ⊇ A) .

Suppose
∩
Pi

ei (Pi
ei ⊇ A) =: B ⊃ A. Then there would exist at least

one b ⊆ B satisfying b (B ∗ A) ⊂ b which by 5.4.8 would provide a prime
element P ⊇ B ∗ A with b · P ⊂ b.

We assume P n ⊇ A (∀n ∈ N) , leading to P n ⊇ B (∀n ∈ N). Then it

follows either Pm = Pm+1
∣∣∣∣ b (∃m ∈ N) or

∩
Pi

ei = Q by 8.1.5 is a prime

divisor with P ⊃ Q
∣∣∣∣B ⊇ b . Therefore, in any case we would get bP = b ,

a contradiction! Consequently there is an m ∈ N with

Pm ⊇ A & Pm+1 ̸⊇ A .

But this leads to the contradiction

P ̸⊇ Pm ∗ A ⊆ B ∗ A ⊆ P .

Hence each U, V ∈ A commutes, since P e ⊇ UV =⇒ P e ⊇ V U by lemma
8.1.4 . 2

Now we are in the position to prove :

8. 1. 7 The Prime Criterion. A is a multiplication AML if and only if
all prime elements are prime divisors,

PROOF. First of all recall that by the preceding lemma A is commutative.
Next observe:

Obviously it suffices to verify that A ⊇ b =⇒ A
∣∣∣∣ b.
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Start now from A ⊇ b and A(A ∗ b) ⊂ b. It follows b( b ∗A(A ∗ b) ) ⊂ b and
this leads by 5.4.8 to some prime element P satisfying

1 ̸= P ⊇ b ∗ A(A ∗ b)(8.2)

& bP ⊂ b & b ∗ bP = P .(8.3)

Let E(n) mean P n |A . We will show that E(n) is satisfied for all n ∈ N .
By (5.19) and (8.2) we are led to the inclusion :

P ⊇ (A ∗ b) ∗ A(A ∗ b)
= (A ∗ b) ∗ (A ∗ b)A ⊇ A .

Hence it holds

P 1
∣∣∣∣ A .(E1)

This means in particular P
∣∣∣∣ b . Next we show

P · b ⊇ A · (A ∗ b) .(8.5)

This is evident if b is a divisor, since then bP ⊇ b(b ∗A(A ∗ b)) = A(A ∗ b) ,
apply (8.2). However, the inclusion holds also in the general case which is
shown as follows :

By assumption and by 8.1.2 and 8.1.5 the element
∩
P n (n ∈ N) in any

case is a divisor of b, provided every power Pm is a divisor of b, more
precisely an idempotent divisor, if Pm = Pm+1 (∃m ∈ N) , and a prime
divisor otherwise. So in case of P n ⊇ b (∀n ∈ N) we get in particular
bP = b. Hence we may restrict our attention to considering the case in
which there exists some e ∈ N with P e ⊇ b & P e+1 ̸⊇ b , satisfying:

P · b = P · P e(P e ∗ b)
⊇ (P e+1 ∩ (P e ∗ b)) · (P e+1 + (P e ∗ b))
⊇ (P e+1 ∩ (P e ∗ b)) · (P + (P e ∗ b))e+1

= P e+1 ∩ (P e ∗ b) (8.1.1)

⊇ P · b ,
;

Pb = P e+1 ∩ (P e ∗ b)
⊇ P e+1 ∩ (P e ∗ A(A ∗ b))
⊇ A(A ∗ b) ,
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the last line since P e+1 ̸⊇ A(A ∗ b) by 8.1.2 would imply

P e+1 ̸⊇ A(A ∗ b)
(8.2)
;

P ̸⊇ P e ∗ A(A ∗ b) ⊆ b ∗ A(A ∗ b) ) ⊆ P .

Now we are in the position to verify

P k
∣∣∣∣ A (∀k ∈ N)(Ek)

by showing E (n) =⇒ E (n+ 1)

in order to construct a contradiction to b ⊃ b · P . To this end suppose
E (n) . Then it follows :

b · P
(8.5)

⊇ A · (A ∗ b)
(5.19)

⊇ A · (P n ∗ b)
(E (n)

= P n(P n ∗ b) · (P n ∗ A)

= b · (P n ∗ A)

;

P | P n ∗ A (by b ∗ bP = P )

;

P n+1
∣∣∣∣ A .

Thus E(n) entails E(n+ 1).

This completes the proof. 2

A final Remark: The prime criterion is proven for commutative rings
with identity in Mott, [304], for arbitrary commutative rings by Gilmer/
Mott in [163], and for arbitrary not necessarily commutative rings by
Smith in [278]. But these papers are based on ring theoretical particular-
ities. Hence they do not present general AML-results, although, of course,
parts remain correct also in the general case.

However, it should be emphasized that Smith, in [278], presents a series of
non-commutative classical examples of AM-rings, justifying this way the
present investigation.
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That in [163] and in [278] the identity requirement is dropped turns out to
be irrelevant, since the lattice of ideals may be extended to an AML with
identity by adjoining some compact identity element 1 .

So AM-ring-ideal-semigroups form an AML, generated by compact ele-
ments which are not divisors a priori. This points out, that structures
of the investigated type above “in fact do live in the real (mathematical)
world.”

8.2 Mori Implications

Again, let A denote an AML. We call A a Mori 1) also a multiplication
structure, briefly an M-structure, if A satisfies a multiplication AML, also
synonymously an M-structure if A satisfies

A ⊇ B =⇒ A ·X = B = Y · A (∃X,Y ) ,

briefly if A satisfies

A ⊇ B =⇒ A
∣∣∣∣B .(M)

Clearly, by definition every M-structure is even an ideal structure since each
of its elements is a divisor. But, since 1 is not required to be compact, an
M-structure need not be an ideal semigroup! Consider for instance the
semigroup of ideals of a boolean ring B without identity. Although B fails
to have an identity, its ideal semigroup does have an identity, namely B ,
but, of course, not necessarily compact. Next recall :

Investigating M-structures means investigating Dedekind domains from a
general point of view and hence it means moreover an abstract treating of
classical ideal theory.

So it doesn’t surprise that the arithmetic of M-structures is dominated
by classical regularities, since missing prime decompositions are strongly
substituted by condition (M).

In order to make this most general assertion a bit clearer we start with a
series of rules most familiar to ring theoretists in the Dedekindian situation.

1) This might lead to some irritation with respect to Mori domains, which are defined as integral
domains with ACC on v-ideals. But it seems adequate w.r.t. to the pioneer Shinziro Mori.
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However we restrict our attention to those implications, which play some
role with respect to this paper. A series of results holding already in AMLs
satisfying condition (M) merely for finitely generated elements will be given
within an investigation of ideal d-semigroups.

8. 2. 1 Proposition. Let A be an M-structure and P ∈ A be a prime
Then it holds: in addition to the Prüfer rules (D), (I), (K), (L), (P),
(Q), (R) A satisfies :

AB = BA(AB)

An ⊇ B (∀n ∈ N) ⇒ A ·B = B(Aℓ)

A ⊇ An ∗B (∀n ∈ N) ⇒ A ·B = B(Bℓ)

A ⊇ An ∗B ⇒ An+1 ⊇ B(C∗ )

P n ⊇ B & P n+1 ̸⊇ B ⇒ ∃ a ̸⊆ P : P n = a ∗B(E∗)

A =
∩
Pi

ei (Pi
ei ⊇ A) =: ker′A(F)

A ⊃ P ⊇ B ⇒ A ·B = B(Gℓ )

RadQ prime ⇒ Q = (RadQ)n(H0)

RadQ prime ⇒ Q primary(H)

A ⊃ P ⇒ AP = P(I∗)

A ∗B +B ∗ A =: U = U 2(J∗)

a ∗ b+ b ∗ a := U = U 2(N∗ )

Pm ≽ Pm+1 (∀m ≥ 1)(S)

U = U 2 ⊇ B =⇒ UB = B(Tℓ)

(A ∩B) · U = A ∩B ⇒ A · U = A
U · (A ∩B) = A ∩B ⇒ U · A = A.

(U)

P ⊇ X ⊇ P n ⇒ X = P ℓ (∃ℓ ∈ N)(X)

together with the right/left dual versions (Ar), (C∗), . . . which will be com-
bined with the “opposite” cases to (A), (C), . . .

PROOF. First of all it holds (AB), that is A is commutative, recall lemma
8.1.6. Applying this without further hint we get successively:

(Aℓ) : Suppose An ⊇ B (∀n ∈ N) and B ⊇ b and let moreover P be
prime with P ⊇ A and Pb ⊂ b. Then

∩
P n (n ∈ N) =: Q is a divisor
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of B, and Q is idempotent or prime. This leads to Pb = b and hence to
Ab = b , according to 5.4.8.

The proof just given heavily depends on the algebraic property. But ac-
tually, conditions (A) (and thereby (B)) follow from condition (M) even
though A might fail to be algebraic. This was shown in [68] through [70] .

(Bℓ) : A ⊇ An ∗B (∀n ∈ N) implies An ⊇ B (∀n ∈ N) , whence we get
AB = B , according to (A).

(C∗) : (C∗) is equivalent to

An ⊇ B & An+1 ̸⊇ B =⇒ A ̸⊇ An ∗B (n ∈ N) ,(C∗′)

which is inductively shown by A ⊇ An ∗B =⇒ A ⊇ An−k ∗B. So, we prove

(C∗′) : If A is an M-structure and if An+1 ̸⊇ B then there exists a smallest
k ∈ N with Ak ⊇ B & Ak+1 ̸⊇ B, maybe k = 0. But this leads to
Ak(Ak ∗B) = B with A ̸⊇ Ak ∗B and thereby a fortiori with A ̸⊇ An ∗B ,
because An ∗B ⊇ Ak ∗B.

(E∗) : Suppose X · P n = B. It follows P ̸⊇ X since P n+1 ̸⊇ B. Conse-
quently there exists some a ⊆ X with a ̸⊆ P . And this means

a · P n ⊆ B & a · Y ⊆ B =⇒ P n ⊇ a · Y
=⇒ P n ⊇ Y ,

whence we get P n = a ∗B .

according to 8.1.4

(F) : Recall the proof of 8.1.6

(G) : Combine condition (I) of the preceding section with condition (A).

(H0) : Put RadQ =: P and suppose P n ̸= Q (∀n ∈ N) . We falsify the
cases (a) through (c) below :

(1) P n ̸= P n+1 (∀n ∈ N) &
∩
P n =: T ⊇ Q

(2) Pm = Pm+1 ⊃ Q (∃m ∈ N)

(3) Pm ⊃ Q & Pm+1 ̸⊇ Q (∃m ∈ N) .

(1) In this case it would hold T ⊂ P and hence there would exist some a
satisfying a ⊆ P & a ̸⊆ T and ak ⊆ Q ⊆ T (∃ k ∈ N) ; a ⊆ T , as well, a
contradiction!
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(2) Suppose a ⊆ Pm & a ̸⊆ Q . Then by to (Aℓ) it follows Pa = a ̸⊆ Q on
the one hand and a = (

∑n

1 pi )a = (
∑n

1 pi )ka ⊆ Q (∃ k ∈ N) on the other
hand, recall : au ⊆ Q & bv ⊆ Q =⇒ (a+ b)u+v ⊆ Q.

(3) By (F) and 8.1.1 we get Q ⊆ Pm ∩ R with some prime R ̸⊇ P . But
this entails some p ⊆ P with p ̸⊆ R & pk ⊆ Q ⊆ R (∃ k ∈ N) that is
p ⊆ R, a contradiction!

(H) : (H) follows from (H0) since P n
∣∣∣∣AB =⇒ P

∣∣∣∣A V P n
∣∣∣∣B .

(I∗): Recall 8.1.1

(J∗): Starting from (A+B)(A ∗B) = B we get

A ∗B = (A+B) · (B ∗ A) ∗B
= (B ∗ A) ∗ (A ∗B) .

;

(A ∗B +B ∗ A)2 = (A ∗B +B ∗ A) · (A ∗B)
+(A ∗B +B ∗ A) · (B ∗ A)

= A ∗B +B ∗ A .

(N∗) : Observe (J∗).

(S) : X = Pm(Y + P ) (∃Y ) ; X = Pm V X = Pm+1 .

(U). Observe (Ar) .

(Tℓ) : Apply (Aℓ).

(X) : Recall 8.1.3. 2

Some remarks:

FIRST OF ALL, the reader should notice that condition (A) by 5.4.8
results already from

P n ⊇ B (∀n ∈ N) =⇒ PB = B = BP,(A’)

and that condition (C∗) is equivalent to

An ⊇ B & An+1 ̸⊇ B =⇒ A ̸⊇ An ∗B .(C∗’)
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As will turn out, this second version will fit most conveniently in many of
our proofs.

NEXT WE EMPHASIZE the evidence of (E:) =⇒ (C∗), whence, required
in a Mori criterion, condition (C∗) may be replaced by the Gilmer/Mott-
condition (E :), “which resembles what Krull calls Qu-Bedingung für
i.K.I.” in [251] [ “Jedes aS ist ein a : (s)” ] , compare [163].

Obviously the power of (E∗) results from the fact that it does not only
certify condition (C∗) but moreover yields also Pm ⊇ B & Pm+1 ̸⊇ B =⇒
Pm = a ∗ B (∃a) , which means that each not idempotent prime power
Pm ∈ A is of type a ∗ b , observe:

Pm ⊇ B & Pm+1 ̸⊇ B =⇒ ∃ b ⊆ B : Pm ⊇ b & Pm+1 ̸⊇ b

=⇒ Pm = a ∗ b .

8.3 M-Equivalents

8. 3. 1 Proposition. An arbitrary AML A is a multiplication AML iff it
satisfies the conditions (B), (U), and (S) . 2)

PROOF. Any prime element P satisfies

A ⊃ P =⇒ AP ⊆ P & AX ⊆ P =⇒ P ⊇ X ,

meaning A ∗ P = P . Hence we are further led to:

A ⊃ P ⊇ B =⇒ A ⊃ P = An ∗ P ⊇ An ∗B (∀n ∈ N)

=⇒ BA = B ,
that is – by duality – to condition (G).

Next assume P s ⊇ B & P s+1 ̸⊇ B . By (S) =⇒ P n ≽ P n+1 (∀n ∈ N) this
leads to P ̸⊇ P s ∗B ,

SINCE: P s ⊇ B & P s+1 ̸⊇ B ,

implies P ∗ (P s ∗B) = P s+1 ∗B
= (P s+1 +B) ∗B
= P s ∗B

whence P k ∗ (P s ∗B) = P k+s ∗B (∀k ∈ N)
= P s ∗B

that is P ̸⊇ P s ∗B (⋆)

2) Condition (U) may be replaced by condition (AB), as is approved by the subsequent development.
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where (⋆) results from the fact that otherwise (B) would imply (P s∗B)·P =
P s ∗B and thereby P s+1 ⊇ P s ∗B ⊇ B . This proves the assertion.

Hereby – on the grounds of (S) – it results next

P ⊇ X ⊇ P n =⇒ X = P ℓ (∃ℓ ∈ N),(X)

observe that in case of P e ⊇ X & P e+1 ̸⊇ X it follows:

X ⊇ P e · (P e ∗X) = P e · (P e ∗X + P n−e)

⊇ P e · (P e ∗X + P )n−e (⋆)
= P e .

(∆)

In particular this implies 8.1.5 which follows along the line of the corre-
sponding proof. So by (U) and (G) we get that is the archimedean property
for prime elements P , that is

P n ⊇ A (∀n ∈ N) =⇒ PA = A = AP(AP)

Next we show that condition (F) is satisfied, recall that ist

A =
∩
Pi

ei (Pi prime and Pi
ei ⊇ A) .

To this end we suppose
∩
Pi

ei (Pi
ei ⊇ A) =: B ⊃ A. Then there would

exist at least one b ⊆ B satisfying b (B ∗ A) ⊂ b which by 5.4.8 would
provide a prime element P ⊇ B ∗ A with b · P ⊂ b , and it would exist
some m ∈ N with P ̸⊇ Pm∗A , because otherwise P n |A =⇒ P n |B | b =⇒
bP = b would follow. But this would lead to the contradiction

P ⊇ B ∗ A ⊇ Pm ∗ A ̸⊆ P

Hence each U, V ∈ A commutes, observe that by (X) in case of P ⊇ U, V
and P e ⊇ UV we get

P e = P e + UV = P e + (P e + U) · (P e + V ) = P e + V U .

and that in case of P ⊇ A & P ̸⊇ B we get the same equation by applying
(5.8) and condition (G) – see above.

Now we are in the position to show that any prime element is even a prime
divisor.

To this end suppose first P ⊇ B and P ⊇ P n ∗ B (∀n ∈ N) . Then we
succeed by condition (B).
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Otherwise there is some m ∈ N satisfying Pm ⊇ B & P ̸⊇ Pm ∗B . In this
case we get by commutativity :

B ⊇ Pm · (Pm ∗B)
(AB)
= (Pm ∩ (Pm ∗B)) · (Pm + (Pm ∗B))
(5.8)

⊇ (Pm ∩ (Pm ∗B)) · (P + (Pm ∗B))m

⊇ Pm ∩ (Pm ∗B) (G)
⊇ B

;

B = Pm · (Pm ∗B) ; Pm
∣∣∣∣B .

This completes the proof by the prime criterion. 2

8. 3. 2 Proposition. An arbitrary AML A is a multiplication AML iff it
satisfies the conditions (A) and (C) .

PROOF. By 8.3.1 it suffices to show that (A) combined with (C) implies
the conditions (B) and (S) .

So, combine (A) and (C). This leads to (B) and thereby to (G), because
P ⊇ P n ∗ A (∀n ∈ N) =⇒ P n ⊇ A (∀n ∈ N) .

Let now (G) be satisfied. Then it holds Pm∗X ⊇ P . Suppose Pm∗X = P .
Then – according to (C) – we get Pm+1 ⊇ X and thereby Pm+1 = X . If,
however, Pm ∗X ⊃ P is valid we get X ⊇ Pm(Pm ∗X) = Pm, according
to (G). Hence condition (S) is satisfied, too. 2

8.4 The left Divisor Case

8. 4. 1 Proposition. Let A be an LD-AML. Then A is a multiplication
AML iff it satisfies the conditions (B) and (N∗) .

PROOF. First recall: (∗) A ⊃ P ⊇ B =⇒ AB = B = BA , which
was shown in the proof of 8.3.1.

We now show that the required conditions imply condition (S) :

By condition (N∗) we are in the position to infer

a = a (a ∗ b+ b ∗ a)
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To this end suppose

a ̸= a (a ∗ b+ b ∗ a) .

Then there exists some prime element P with

aP ⊂ a & P ⊇ a ∗ b+ b ∗ a ⊇ a+ b ⊇ a, b ,

and some k ∈ N with

P ̸⊇ P k ∗ a & P k ⊇ a (∀n ∈ N) .

But, on the grounds of P k ⊇ a ∗ b + b ∗ a ⊇ b this would lead to the
contradiction

P ⊇ b ∗ a ⊇ P k ∗ a ̸⊆ P .

Next, by a(a ∗ b+ b ∗ a) = a the sum a+ b proves to be a left divisor of a
(and b), because

a = a(a ∗ b+ b ∗ a)
= a(a ∗ b) + a(b ∗ a)
= b(b ∗ a) + a(b ∗ a)
= (b+ a) · (b ∗ a) .

Let us assume now Pm ⊃ X ⊃ Pm+1 . Then there exist elements a , b
satisfying

a ⊆ Pm & a ̸⊆ X & b ⊆ X & b ̸⊆ Pm+1 .

Hence, because a ∗ b = (a+ b) ∗ b ̸⊆ P , including P + a ∗ b ⊃ P , we get :

Pm+1 + a+ b = (Pm+1 + (a+ b)) · (P + a ∗ b) (by (∗))
= Pm+1(P + a ∗ b) + (a+ b)P + (a+ b) · (a ∗ b)
= Pm+1 + b , (by Pm+1 ⊇ (a+ b)P )

opposite to a ̸⊆ Pm+1 + b . Consequently condition (S) is satisfied, too. 2

8. 4. 2 Proposition. Let A be an LD-AML. Then A is a multiplication
AML iff it satisfies the conditions (A) and (J) .

PROOF. First of all we verify A ⊃ P =⇒ AP = P = PA that is condition
(I) . To this end we recall duality and suppose that some prime element P
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would satisfy the inclusion A ⊃ P ⊃ AP . Then according to (Aℓ) there
would exist some n ∈ N with An ⊇ P and An+1 ̸⊇ P , and, because

P ∗ An+1 ⊇ An ∗ An+1 ⊇ A ⊇ P

we would get

P ∗ An+1 = P + P ∗ An+1

= An+1 ∗ P + P ∗ An+1

that is – by (J∗) –

P ∗ An+1 = (P ∗ An+1)2 ,

and therefore, according to (Ar) , furthermore

An+1 ⊇ P · (P ∗ An+1) = P ,

a contradiction!

We now verify condition (B) , starting from P ⊇ P n ∗ B (∀n ∈ N) , in
particular P ⊇ B . If then each P n contains B , we are through by condition
(A) . In the opposite case there exists some Pm ̸⊇ B , leading to Pm ⊇
B(B ∗ Pm) ⊇ B(B ∗ P )m that is P ⊇ B ∗ P , since otherwise (I) would
imply P (B ∗ P )n = P which then by (A) would lead to B(B ∗ P )m = B
that is Pm ⊇ B , a contradiction. Hence we get P ⊇ Pm ∗ B + B ∗ P ⊇
Pm∗B+B∗Pm ⊇ B , and thereby – according to (J) – P n ⊇ B (∀n ∈ N) ,
whence by condition by (A) we get PB = B = BP . 2

The characterization of the preceding proposition reflects the character-
ization of Dedekind domains in an optimal manner. Apart from other
characterizations Larsen/McCarthy, for instance, give as one central
description of Dedekind domains the Noether property together with the
equation (a) : (b) + (b) : (a) = (1) . But as is easily seen the archimedean
property (A) results from the Noether property and (a) : (b)+(b) : (a) = (1)
leads to A : B + B : A = (1) for finitely generated ideals – here for all
ideals, consult the proof of 7.2.1. Thus (A) & (J) is formally weaker than
the description of Dedekind domains above, but still strong enough in the
most general case of an LD-AML in order to imply condition (M).
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8.5 The Divisor Case

8. 5. 1 Proposition. Let A be an AML, generated by compact divisors.
Then A is a multiplication AML iff A satisfies the conditions (J) and (T) .

PROOF. We show that all prime elements P are divisors.

First of all – by (J) and (T) – we get a(a ∗ b + b ∗ a) = a and a + b |ℓ b
– consult the proof of 8.4.1 This leads to condition (I), since from A ⊇
a & P ̸⊇ a & P ⊇ p we get (a+ p)(a ∗ p) = p with P ⊇ a ∗ p , and thereby
AP ⊇ A(a∗p) ⊇ p which leads to AP = P , and thereby to (I) – by duality,
and to (G) by (I) and (T).

Next it results condition (S), consult the proof of 8.4.1

Assume now that P is an idempotent prime element. Then P is a divisor
by condition (T).

Otherwise, let P be a not idempotent prime element. Then we continue as
follows:

Condition (J) implies (C∗′) that is in particular Pm ⊇ B & Pm+1 ̸⊇ B =⇒
P ̸⊇ Pm ∗B , since

P ⊇ Pm ∗B = (Pm+1 +B) ∗B
leads to P ⊇ Pm+1 ∗B + P

= Pm+1 ∗B + Pm ∗ Pm+1

= Pm+1 ∗B + (B + Pm+1) ∗ Pm+1

= Pm+1 ∗B +B ∗ Pm+1

⊇ P

from which by (J) would follow P 2 = P . Hence by (S) we get (X) along the
proof of 8.3.1 And this leads to commutativity – again along that proof.

Finally suppose a ⊆ P and a ̸⊆ P 2 . Then for all p ⊆ P it follows a+p ⊆ P .
We consider such an a + p =: B . It holds P ⊇ B . So we get first BX ⊆
P 2 =⇒ P 2 = P 2+(P 2+B)X = P 2+PX = P (P +X) leading to B ∗P 2 =
P , whence we get further P 2∗B+B∗P 2 = (P 2+B)∗B+B∗P 2 = (P ∗B+
P )2. But this means either P ⊇ P ∗B and thereby P 2 = P , a contradiction,
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or P + P ∗B ⊃ P . Consequently we get – recall commutativity:

B ⊇ P (P ∗B)
⊇ (P ∩ (P ∗B)) · (P + (P ∗B))
⊇ P ∩ (P ∗B)( by (I) , (T))
⊇ B

and thereby P |B = a+ p | p .

This completes the proof 2

A Hint. The assumption might arise that in ideal semigroup condition
(M) results already from condition (B) (without any further requirement).

That this is not the case, even though A should be lattice distributive,
is shown by the example of a zero-monoid (a ̸= 1 ̸= b =⇒ ab = 0) with
respect to its Rees ideals.

8.6 Further Criteria

8. 6. 1 Proposition. An arbitrary AML A is a multiplication AML iff it
satisfies the conditions (B) and (S) .

PROOF. Let P be prime and assume A ⊃ P . Then P ⊇ AX =⇒ P ⊇ X ,
meaning A ∗ P = P . Hence we are led to:

A ⊃ P ⊇ B =⇒ A ⊃ P = An ∗ P
⊇ An ∗B (∀n ∈ N)

=⇒ AB = B ,

that is – by duality – condition (G).

Next recall

P n ≽ P n+1(S)

Let now P s ⊇ B & P s+1 ̸⊇ B be satisfied. Then we get P ̸⊇ P s ∗B , since
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it holds

P s ⊇ B & P s+1 ̸⊇ B ,

leading to P ∗ (P s ∗B) = P s+1 ∗B
= (P s+1 +B) ∗B
= P s ∗B

leading to P k ∗ (P s ∗B) = P k+s ∗B (∀k ∈ N)
= P s ∗B

leading to (⋆) P ̸⊇ P s ∗B ,

the final conclusion since otherwise (B) would imply P (P s ∗ B) = P s ∗ B
and thereby P s+1 ⊇ P s ∗B ⊇ B . This proves the assertion.

Next we get

A =
∩
Pi

ei (Pi
ei ⊇ A) .

To this end suppose
∩
Pi

ei (Pi
ei ⊇ A) =: B ⊃ A. Then there would exist

at least one b ⊆ B satisfying b (B ∗A) ⊂ b which by 5.4.8 would provide a
prime element P ⊇ B ∗ A with b · P ⊂ b , and by (B) it must exist some
m ∈ N with P ̸⊇ Pm ∗ A . But this leads to the contradiction

P ̸⊇ Pm ∗ A ⊆ B ∗ A ⊆ P .

Thus – on the grounds of (S) – it results furthermore

P ⊇ X ⊇ P n =⇒ X = P ℓ (∃ℓ ∈ N) ,
(X)

observe that in case of P e ⊇ X & P e+1 ̸⊇ X it follows:

X ⊇ P e · (P e ∗X) = P e · (P e ∗X + P n−e) ⊇ P e · (P e ∗X + P )e
(⋆)
= P e .

Hence each U, V ∈ A commutes, observe that in case of P e ⊇ UV we get

P e = P e + UV = P e + (P e + U) · (P e + V ) = P e + V U .

Now we are in the position to show that any prime element is even a prime
divisor. To this end we suppose first P n ⊇ B (∀n ∈ N) and assume
P ⊇ P n ∗B (∀n ∈ N) . Then we are through by condition (B).
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Otherwise there is some m ∈ N satisfying Pm ⊇ B & P ̸⊇ Pm ∗B . In this
case we get – according to commutativity –

B ⊇ Pm(Pm ∗B)
⊇ (Pm ∩ (Pm ∗B)) · (Pm + (Pm ∗B))
⊇ (Pm ∩ (Pm ∗B)) · (P + (Pm ∗B))m

⊇ Pm ∩ (Pm ∗B) (G)
⊇ B

that is Pm
∣∣∣∣ B .

This completes the proof by the prime criterion. 2

We finish this section by some implications.

8. 6. 2 Proposition. Any AML A satisfies the implication :

(H) =⇒ (I) .

PROOF. It holds in general (A ⊃ P & Q P -primary) =⇒ (AQ = Q) ,
since one infers Q ⊃ AQ & AQ P -primary & RadAQ = P ̸⊇ A implies
AQ ⊇ Q . 2

8. 6. 3 Proposition. Any AML A satisfies the implication :

(F) & (H) =⇒ (A) .

PROOF. By condition (H) all prime powers Pm are primary. Hence we
get :

Pm ⊇ AB & P ̸⊇ A =⇒ Pm ⊇ B .

We continue similarly to the proof of 8.1.6: To this end suppose again
An ⊇ B (∀n ∈ N). Then for prime elements Pi we get

Pi
ei ⊇ BA

=⇒ (Pi ⊇ A; Pi
ei ⊇ B) V (Pi ̸⊇ A; Pi

ei ⊇ B) .

But this would lead to BA = B , according to condition (F).

The rest follows by duality. 2
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8.7 Left Prüfer Cases

We start with

8. 7. 1 Lemma. Let A be a left Prüfer structure and let P be prime. Then
P ̸⊇ A implies AP ⊇ PA .

PROOF. By P ̸⊇ A there exists some a ⊆ A with P ̸⊇ a and hence with
P ̸⊇ a+ ai for all ai ⊆ A, ai ∈ Ac . So, we get P · (a+ ai) = (a+ ai) ·Xi ;

P ⊇ Xi ; P · A ⊆ A · P . 2

8. 7. 2 Proposition. A left Prüfer monoid 3) A is an M-monoid iff A

satisfies
A ⊇ An ∗B (∀n ∈ N) =⇒ AB = B

& A ⊇ B : An (∀n ∈ N) =⇒ BA = B .
(B)

PROOF. Sufficiency. First of all we get

A ⊃ P ⊇ C =⇒ AC = C = CA(G)

applying A ⊃ P ⊇ C =⇒ A ⊇ P = A ∗ P = An ∗ P ⊇ An ∗C and its dual.

Assume now Pm ⊇ X ⊃ Pm+1 and Pm ⊇ a & X ⊇ b ̸⊆ Pm+1 . Then
(a+ b)(a ∗ b) = b leads to P ̸⊇ a ∗ b and hence to

Pm+1 + (a+ b) = (Pm+1 + (a+ b)) · (P + a ∗ b)
= Pm+1(P + (a ∗ b)) + (a+ b)P + (a+ b)(a ∗ b)
= Pm+1 + b .

In particular, by (5.26) this means that there are only powers of P between
1 ̸= P and Pm ̸= 1 .

Next we prove

P n ⊇ b (∀n ∈ N) =⇒ bP = b .(LA)

Case 1: If P n ≻ P n+1 (∀n ∈ N) then Q =
∩
P n is prime, since (G) implies

(I). Hence we get bP = b by (G), observe P ⊃ Q ⊇ b .

Case 2: If P e = P e+1 and P ⊇ b : P n (∀n ∈ N) then bP = b by (B).

3) The reader will easily verify that we will apply only (a+ b)(a ∗ b) = b .
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Case 3: If P e = P e+1 and P ̸⊇ b : Pm (∃m ∈ N) then it holds all the
more P ̸⊇ b : P e leading by 8.7.1 to (b : P e)P e ⊇ P e(b : P e) . This implies

b ⊇ (b : P e)P e

⊇ (b : P e + P e)(b : P e ∩ P e)
⊇ (b : P e + P )e(b : P e ∩ P e)
⊇ (b : P e ∩ P e)
⊇ b

that is b = (b : P e)P e = (b : P e)P e · P = bP .

Now we are in the position to show that A is commutative.

To this end suppose
∩
Pi

ei (Pi
ei ⊇ A) =: B ⊃ A. Then there exists at

least one b ⊆ B satisfying b (B ∗A) ⊂ b , and by 5.4.8 this provides a prime
element P ⊇ B ∗ A with b · P ⊂ b .

We verify that both, P ⊇ P n ∗ A (∀n ∈ N) and P ̸⊇ Pm ∗ A (∃m ∈ N)
are impossible.

Case A. Assume first P ⊇ P n ∗ A (∀n ∈ N) . Then by (LA) it results

AP = A ; P n ⊇ A (∀n ∈ N)
; P n ⊇ B (∀n ∈ N)
; P n ⊇ b (∀n ∈ N)
; bP = b .

Thus the assumption P ⊇ P n ∗ A (∀n ∈ N) leads to a contradiction.

Case B. Assume now P ̸⊇ Pm ∗ A (m ∈ N) . This implies P ⊇ B ∗ A ⊇
Pm ∗ A ̸⊆ P , again a contradiction.

Hence it must hold A = B .

Next, by (G) and (5.26) we get P 1 ⊇ B ⊇ P n =⇒ B = P ℓ . So each
U, V ∈ A commutes since – compare above –

P e ⊇ UV =⇒ P e = P e + UV
(5.8)
= P e + (P e + U) · (P e + V ) = P e + V U .

Finally assume P n ⊇ B & P n+1 ̸⊇ B =
∩

i∈IPi
ei . Then by (G) we may

suppose that P and all prime elements Pi are minimal over B , since Pi ⊃ Pj

implies Pj
n ∩ Pi = Pi (∀n ∈ N) and P ∗ P ei

i = (P + P ei) ∗ P ei
i = P ei

i . So
we get P n ∗ (P n ∗ B) = P n ∗

∩
Pi ̸=PP

ei
i =

∩
Pi ̸=PP

ei
i , that is by (G) the

implication Q ⊇ B =⇒ Q |B – for arbitrary prime elements Q .
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Thus we are finished by the prime criterion 8.1.7, which in the commu-
tative case – as it is given here – will turn out as a consequence of the
divisor lemma, presented in the next section. However, also another cal-
culation is possible, as will be shown in the next proof. 2

We now turn to Prüfer cases.

8. 7. 3 Proposition. A Prüfer monoid A is an M-monoid iff satisfies

a = a · (a ∗B +B ∗ a)(PE)

P ⊃ P 2 =⇒ P ≻ P 2(PS)

P = P 2 ⊇ p =⇒ P | p .(PU)

PROOF. Clearly conditions (PE) and (PU) are necessary and we get (PS)
via P ⊇ X ⊃ P 2 =⇒ X = PY = P (Y + P ) ⊃ P 2 =⇒ P + Y ⊃ P which
under (M) leads to X = P .

Let now (PE), (PU), and (PS) be satisfied. We show that all prime ele-
ments P are divisors:

If P is idempotent, this is clear by (PU).

If P is not idempotent assume P ⊇ p and P ⊇ a & P 2 ̸⊇ a . We shall show
P | a+ p =: b which implies P | p .

First assume P ⊇ P ∗ a . Then it holds a = a · (a ∗ P 2 + P 2 ∗ a) =
a((a + P 2) ∗ P 2 + (P 2 + a) ∗ a) = a · (P ∗ P 2 + P ∗ a) ⊆ aP ⊆ P 2 , a
contradiction to a ̸⊆ P 2 .

So P cannot contain P ∗a whence we get P ̸⊇ P ∗ (p+a) . Put B := p+a .
Then by 8.7.1 and 7.3.9 we obtain:

P · (P ∗B) ⊇ (P ∪ P ∗B) · (P + P ∗B)

= P ∪ P ∗B ⊇ B ; P · (P ∗B) = B .

Therefore – by duality – all prime elements are prime divisors.

Suppose now A ⊇ b and b ⊃ A(A ∗ b) = b · (b ∗ A(A ∗ b)) . Then by 5.4.8
there exists a prime element P containing b ∗A(A ∗ b) ⊇ A · (A ∗ b), which
leads to P ⊇ A V P ⊇ A ∗ b; P | b and satisfying bP ̸= b .
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Next assume P e |ℓ b but P e+1 |− b . Then it results:

P e · P ⊇ b · P ⊇ A(A ∗ b)
⊇ A(P e ∗ b)
⊇ P e · (P e ∗ b)
= P e · (P + P e ∗ b)) = b .

This means P n ⊇ b (∀n ∈ N) .

We consider first P n ≻ P n+1 (∀n ∈ N). Here – by 7.3.5 – the element
Q :=

∩
P n (n ∈ N) would be a prime divisor of b implying bP = b .

Next we consider Pm = Pm+1 (∃m ∈ N) . In this case we get – by (U) –
Y · Pm = b = bP (∃Y ), since P k ̸= P k+1 & X · P k = b & P k+1 ⊇ b =⇒
P k+1 = (P +X)P k =⇒ P |X =⇒ P k+1 | b .
Thus the proof is complete. 2

8.8 The commutative Case

Mori AMLs are always commutative. Hence it doesn’t mean a real restric-
tion to start with commutativity. Right- left- interpretations then usually
are of success also in the non commutative case. But it seems to the author
that the characterizing conditions don’t become simpler.

On the other hand, certain notions of commutative algebra are based on
commutativity. So we add some systems, not only implying but even con-
taining commutativity.

First of all we recall 6.2.5, that is (G)⇐⇒ kerA = A (∀A ∈ A) .

Next we take up 8.4.1 and get in particular

8. 8. 1 Corollary. A commutative ring with identity 1 is a multiplica-
tion ring iff it satisfies condition (B) and if in addition its ideal lattice is
distributive .

Furthermore we remark:

8. 8. 2 Lemma. Every commutative ideal semigroup A satisfies the im-
plication

(G) & (H0) =⇒ (F) & (A) .
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PROOF. Since A is commutative, according to (H0) each primary element
of A is a prime power, since the generators are assumed to be compact
divisors. Consequently by condition (G) also condition (F) is satisfied,
and furthermore it results condition (H), since on the grounds of the given
circumstances every prime power P n is the intersection of all its isolated
primary components, each of which is of type P e . Consequently condition
(A) is valid, according to 8.6.3 2

By 8.4.2 the preceding lemma provides

8. 8. 3 Corollary. A commutative ideal semigroup is a Mori AML iff it
satisfies the conditions (G) , (H0) , and (J) .

We finish this section by an alternate proof of a result due to Mott, [304]:

8. 8. 4 Proposition. Let R be a commutative ring with identity and A

be its ideal semigroup. Then R is a multiplication ring iff it satisfies:

(i) If RadQ = P is prime, then Q = P n (∃n ∈ N) .

(ii) Each ideal is equal to its kernel.

(iii) If Qi is an isolated P -primary component of A then P does not
contain the intersection of the remaining isolated primary com-
ponents of A . 4)

PROOF. As is easily seen, this characterization is equivalent to the com-
bined conditions (Ho) & (F) & (E) . Let now these conditions be satisfied.

Then it follows first in case of some prime element P with A ⊇ P that
AP =: Q is P -primary with RadQ = P ̸⊇ A, leading to Q ⊇ P, leading to
AP = P , i. e. condition (I).

Next, by evidence, exactly all prime powers are primary whence (H) and
(Ho) coincide. But this implies condition (A) by 8.6.3.

Finally (E) implies (C) for prime elements P since

P n = B : c & P ⊇ P n ∗B
=⇒ P ⊇ P n ∗ (B : c)c = P n ∗ P n · c ⊇ c .

4) This result is true also for arbitrary commutative ideal semigroups. However, since we did not
develop the notion of a kernel, we have to restrict our assertion here to the ring case.
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This completes the proof. 2

Recall again: The proofs of this chapter do not depend on compactness
of the identity. This means in the case of a ring R without identity that we
may change to the ideal semigroup R enlarged by an element 1 . Maybe
that this adjoined identity is not compact in the extended ideal semigroup,
but nevertheless by replacing (J) through (C) we get the ring theoretical
results of Mott, [304], and Gilmer/Mott, [163].



Chapter 9

Classical Ideal Structures

9.1 Preface

Again, all multiplicative structures of this chapter are supposed to be com-
mutative. We consider a commutative ring with identity 1 and a lattice
group cone.

In both cases we are faced with lattice modular ideal semigroups, the d-
ideal-semigroup on the one hand, and the filter semigroup on the other
hand. In each of these cases any A/P =: A with prime element P is can-
cellative with 0, for short, each of these ideal semigroups is P -cancellative.

Moreover, recall that 5.5.5 entails that any ringlike Prüfer DV-IDM is
P -cancellative, because ax = ay =⇒ a(x ∧ y)x′ = a(x ∧ y) =⇒ x′ = 1.

In this chapter we give some examples showing how modularity and the
P -cancellation property work together, but no theory in general is at-
tempted – much more should be possible. So, after general definitions,
we will restrict ourselves to studying modular P -cancellative commutative
DV-IDMs, even though much material could be carried over to weaker
situations.

9. 1. 1 Definition. Let A be an AMV. We call A P -cancellative if for all
prime elements P the homomorphic image A/P =: A satifies the condition

a ·X = a · Y =⇒ a = 0 V X = Y .

Furthermore we call A classical if it is P -cancellative and lattice modular.
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In particular – according to 5.5.2 and 5.5.3 – in the classical case A/P is
generated by cancellable generators.

Classical are, as shown above, all ringlike Prüfer AMLs and, as will be
shown below, every modular AML which is generated by a semigroup of
cancellable elements. Classical is as well the semigroup of ideals of a com-
mutative ring without identity, extended by an identity.

9.2 Modular Divisor Ideal Monoids

First of all recall 5.5.4, that is:

9. 2. 1 Lemma. Let A be modular and as
∑

-ideal semigroup generated
by a set A0 of compact divisors.

Then in case that the elements a ̸= 0 of A0 are cancellable in A and that
P is prime, A0/P =: A0 is integral w.r.t. (A0) .

9. 2. 2 Lemma. Let A be a modular Noether DV-IDM. Then every ∩-
irreducible Q is primary.

PROOF. Let Q be ∩-irreducible and ax ⊆ Q, but x ̸⊆ Q. Then, for some
n ∈ N, it follows from the ascending chain condition

a ∗Q ⊆ a2 ∗Q ⊆ a3 ∗Q ⊆ . . . ⊆ an ∗Q = an+1 ∗Q

and furthermore with Z := (Q+ an) ∩ (Q+ x) ⊇ Q it holds the equation :

(Q+ an) ∩ Z = Z = (Q+ x) ∩ Z .

And this leads to : Z = Q+ (an ∩ Z)
= Q+ (x ∩ Z)
;

Z = Q+ an · (an ∗ Z) (∗)
= Q+ x · (x ∗ Z)
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;

aZ = aQ+ an+1(an ∗ Z)
= aQ+ ax · (x ∗ Z) ⊆ Q
;

an+1 · (an ∗ Z) ⊆ aZ

;

an ∗ Z ⊆ an+1 ∗ aZ
⊆ an+1 ∗Q = an ∗Q
;

Z
(∗)
= Q = Q+ an V Q
= Q+ x
;

an ⊆ Q ,

which had to be shown. 2

The proof, presented here, is based on Emmy Noether’s crucial idea of
applying chain condition in algebraic number theory.

Another proof of 9.2.2, based on r∗A ⊃ A =⇒ rn∗A = rn+1∗A (∃n ∈ N)
as well, was given by Holzapfel in [193].

On the grounds of 9.2.2 in a modular Noether DV-IDM each A ∈ A is an
intersection of primary elements. This means, see below, that the Noether
property implies the archimedean property.

9. 2. 3 Definition. An AML is called hyper-archimedean if

∀A,B ∃m ∈ N : A ∩Bm ⊆ A ·B(H-A)

As is easily seen the hyper-archimedean property implies the archime-
dean property. Moreover it is immediately seen that homomorphic images
of hyper-archimedean AMLs are again hyper-archimedean. Hence, · , ∩-
homomorphic images of any hyper-archimedean AML are archimedean.

9. 2. 4 Proposition. Let A be a not necessarily lattice modular. Noether
DV-IDM whose elements are intersections of primary elements. Then A

is hyper-archimedean .

PROOF. Suppose Q ⊇ AB but Q ̸⊇ A . It follows RadQ ⊇ B , and
hence, because of the Noether property, Q ⊇ Bn (∃n ∈ N) . Thus we get
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A ·B ⊇ A ∩Bm (∃m ∈ N) , i. e. (H-A). 2

In integral domains R the archimedean property implies that nonunits r
satisfy ∩

⟨r⟩n = ⟨0⟩ .(ar)

On the other hand, if (ar) is satisfied, then principal ideals have the
archimedean property in the sense of this paper.

(ar) seems to be introduced by Sheldon in [389] . But the stronger
archimedean property in our sense seems to be unsettled up till now. How-
ever, it should be stressed that the archimedean property of commutative
Noether rings with identity 1 is an immediate consequence of Artin-Rees .

Finally, by 8.6.2, 9.2.2, 9.2.4 we get :

9. 2. 5 Proposition. Let A be a modular Noether DV-IDM. Then the
following are equivalent :

(i) kerA = A

(ii) RadQ prime implies Q primary .

PROOF. (i) =⇒ (ii) follows by definition.
(ii) =⇒ (i). Because of the Noether property every A is intersection of ∩-
irreducible and hence by modularity an intersection of primary elements.
Furthermore condition (I) is satisfied on the grounds of (ii), i. e. condition
(H), according to 8.6.2. Consequently, by the Noether property, primary
elements Q satisfy the inclusion Q ⊇ (RadQ)n for some suitable n and by
(ii) it follows

RadQ1 = P1 ⊃ P2 = RadQ2 =⇒ Q1 ·Q2 = Q2 .(⋆)

Furthermore we may assume that different elements Qi (1 ≤ i ≤ n) have
different radicals Pi , since the meet of two P -primary elements is again
P -primary.

Therefore primary decompositions Q1∩. . .∩Qn are equal to their associated
product Q1 · . . . ·Qn , which is shown as follows:

Let Q1 ·. . .·Qn be associated with the primary decomposition Q1∩. . .∩Qn .
We denote RadQi by Pi . Then, if i ̸= j we obtain first Pi ̸⊇ Pj & Pj ̸⊇ Pi

and thereby according to (⋆) furthermore (Qi +Qj) ·Qj = Qj , since every
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prime element P containing both, Qi and Qj, contains Pj even properly.
And this provides by induction, if the assumption is proven already for all
k with 1 ≤ k ≤ n :

Q1 · (Q2 · . . . ·Qn) ⊇ (Q1 +
∏
Qi) · (Q1 ∩

∏
Qi) (2 ≤ i ≤ n)

= (Q1 +
∏
Qi) · (Q1 ∩

∩
Qi)

⊇ (
∏

(Q1 +Qi)) · (Q1 ∩
∩
Qi)

= Q1 ∩
∩
Qi

;

Q1 · . . . ·Qn = Q1 ∩ . . . ∩Qn .

So it remains to show that the Pi under consideration are minimal over A.
To this end assume the opposite. Then it follows Pi ⊃ P ⊇ Pj for some
prime P , minimal over A , and at least one i, j with 1 ≤ i, j ≤ n . But this
leads to Pi ⊃ Pj for at least one pair Pi , Pj , a contradiction! 2

9.3 Classical Divisor Ideal Monoids

In a commutative Noetherian multiplication ring R with identity, for short
a Noetherian M-ring, any a is a product of prime ideals pi .

Coincidentally classical DV-IDMs satisfy :

9. 3. 1 Proposition. Let A be a classical DV-IDM. Then the following
are equivalent :

(i) Each A of A is a product of primes.

(ii) A is a Mori AML with Noether property.

PROOF. We succeed along classical lines, cf. [268].

(ii) =⇒ (i) : Consult the proof of 12.1.1

(i) =⇒ (ii). First of all we show that condition (I) (A ⊃ P =⇒ AP = P )
is satisfied. According to (i) this will imply that A is a Mori AML.

On this we choose and fix for some given prime element P some a ̸⊆ P

and consider the elements P + a2 and (P + a)2 with prime factorizations

P + a2 = P1 · . . . · Pm and (P + a)2 = Q1 · . . . ·Qn .
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Then all Pi (1 ≤ i ≤ m) and all Qj (1 ≤ j ≤ n) are sup-elements of P
satisfying thereby w.r.t. X := P +X

P i ⊇ Qj ⊇ P k ⇐⇒ Pi ⊇ Qj ⊇ Pk .

But by assumption the elements a und a2 = a2 are cancellable in A .

Consequently, as divisors of a2 , the elements P i and Qj are cancellable in
A , too.

We now show that in A condition (I) is satisfied at least for prime factors
of a2 and infer then that A satisfies condition (I) in general.

To this end we consider P i ⊃ P k. Here we get first S · P i = a2 ⊇
S · P k (∃S) and thereby furthermore

S · P k = S · P i · (S · P i ⋆ S · P k)

= S · P i · (P i ⋆ (S ⋆ S · P k))

= S · P i · (P i ⋆ P k)

= S · P i P k .

So, by cancellation, it results :

P k = P i · P k .

We go back to the prime factorizations above. Because of a2 = a2 and the
prime property we get immediately that there exists for each P i some Qj

with P i ⊇ Qj and for each Qj some P k with Qj ⊇ P k. But according to
condition (I) and the cancellation property this means that each P i is a
Qj and each Qj is a P i , because of irredundancy.

Hence the overlined prime factor products and thereby the corresponding
original products coincide up to permutation. But this provides

P + a2 = (P + a)2 ,

and thereby P ⊆ P 2 + Pa+ a2

;

P = P ∩ ((P 2 + Pa) + a2)

= (P 2 + Pa) + (P ∩ a2)
= P 2 + Pa+ a2 · (a2 ∗ P )

= P 2 + Pa+ Pa2

= P (P + a) .
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Consequently, if A ⊃ P , we get P = P (P + A) a fortiori.

Thus condition (I) is verified and thereby condition (M) as well, since all
elements are prime factor products.

We now show that A has the Noether property.

Since each prime element is even completely prime, irredundant prime
factor decompositions of the same A coincide up to permutation. Con-
sequently A ⊃ B implies that the irredundant prime decomposition of
A admits a decomposition into a proper sub-product of the irredundant
prime product of B , 1 included as a formal prime product, and a prod-
uct of primes dividing at least one of the factors of the irredundant prime
factor decomposition of B , 1 again included as a formal prime product.

But : any ascending chain, starting with a prime element, is finite.

For, if P and Q are prime with P ⊃ Q then P is maximal and hence
irreducible, since 1 ̸= A ⊃ P would imply in A/Q the contradiction p·A = p

for some p ∈ P , p /∈ Q .

Consequently A satisfies ACC or equivalently the Noether property. 2

9. 3. 2 Proposition. Let A be a classical DV-IDM. Then the following
are equivalent :

(ii) A is a Mori AML with Noether property.

(iii) A has the Noether property and each maximal element M of A

satisfies M ≽M 2. 1)

PROOF. (ii) =⇒ (iii) follows from condition (X). It remains to show

(iii) =⇒ (ii) . According to 9.3.1 it suffices to prove (iii) =⇒ (i) .

To this end we verify first condition (I). So, assume M ⊃ P . A/P has the
Noether property and thereby also the archimedean property, because of
modularity according to 9.2.4. But this leads to

∩
Mn = P , consult the

proof of 10.2.10.

Hence, each prime element of A is maximal or minimal and each pair P,Q
of primes is comparable or co-maximal (P +Q = 1) . In particular different
minimal primes are co-maximal .

1) Recall : this is Sono’s condition, c. f. [400], [401].
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Furthermore M ⊃ P =⇒ MP = P is satisfied by the archimedean prop-
erty, and from this follows condition (I) :

For A ⊃ P ⊃ AP would imply the existence of some M ⊇ A ⊃ P ⊇ p with
maximal M and p ⊃ p ·M , a contradiction! Recall : A is archimedean and
M · P = P ⊇ p.

We now turn to the Mori condition.

According to 9.2.2 and by the Noether property for any A there exists a
primary decomposition Q1 ∩ . . . ∩Qs . Moreover, each primary element Q
of A satisfies P = RadQ ⊇ Q ⊇ P n (∃n ∈ N) – again by the Noether
property.

Hence all primary elements whose radical is maximal are prime powers,
according to (iii) and 7.3.1.

But, also the other primary elements are prime powers. To realize this,
recall first that primes are maximal or minimal.

Let now 0 = Q1 ∩ . . . ∩ Qm be a primary decomposition of 0 with Pi-
primary Qi (1 ≤ j ≤ m) . If then m = 1 it follows Q1 = 0 = P n

1 for
some n ∈ N , because of the Noether property. Otherwise we may start
from two different isolated primary components Q1 , Q2 with minimal co-
maximal prime elements P1 , P2 as radicals.

But then Q1 , Q2 are co-maximal, too, since otherwise, the radicals of
Q1, Q2 could not be co-maximal because

M maximal & Q primary & M ⊇ Q =⇒M ⊇ RadQ .

In particular each of both radicals is co-maximal to each power of the other
one.

Hence for isolated primary components Q of 0 and minimal P we get
by P ⊇ Q ⊇ P n that the prime power P n must contain the primary
component Q , since it contains 0 and since P is co-maximal to all primary
components, different from Q . Thus we arrive at Q = P n.

Let now A = Q1 ∩ . . . ∩Qn be a primary decomposition with pairwise co-
maximal components. Then, according to (5.8), it follows A = Q1 · . . . ·Qn

by the inclusion X · Y ⊇ (X ∩ Y ) · (X + Y ) .

Thus it is proven that (ii) implies (i) and thereby (iii) .

This completes the proof. 2



Chapter 10

Ringlike Ideal Structures

In this section all AMLs are assumed to be commutative.

The most essential problem of abstract ideal theory is an adequate de-
scription of what is called in concrete situations a principal ideal. This is
impossible in general. For, consider the ideal structure of some Dedekind
domain, it acts like the principal ideal structure of a principal ideal domain.

Nevertheless, in [103], Robert P. Dilworth succeeded in characterizing
the principal ideals of the polynomial rings over fields by defining principal
elements T via :

T · (A ∩ T ∗B) = T · A ∩ B (∀A,B)(MP)

T ∗ (A+ T ·B) = T ∗ A+B (∀A,B) ,(JP )

where (MP) stands for meet principle (∩ - principle) and (JP) stands for
join principle (+ - principle).

Thus in [103] Dilworth got into the position of completing his investiga-
tions on abstract commutative ideal theory, initiated by Morgan Ward

in [154] and afterwards continued by Ward and Dilworth himself, com-
pare the references. As one main result he presented an abstract proof of
the celebrated Theorem of Lasker 1).

It is not difficult to see that the principal ideals of commutative rings
with identity are principal elements in the sense above. Furthermore it is
easily checked that products of + - principal elements and products of ∩ -
principal elements, respectively, are again + - principal and ∩ - principal,

1) to say it fair, the importance of Lasker’s contribution results above all from its constructive
methods.
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respectively. Moreover, putting A = 1 in (MP) we get

T (T ∗B) = T ∩B .(PD)

Elements satisfying (PD) are called weak meet principle in multiplicative
lattice theory, here they are called divisors, as usual in algebra.

Principal elements remain principal with respect to localization and residue
class building, which is shown in [103], and will be shown for join principal
elements under 10.2.5 and 10.2.2.

Dilworth’s principal elements and generalizations of it led to a tremen-
dous renaissance of abstract ideal theory, initiated by D. D. Anderson
in [4], and afterwards developed essentially under his leadership by himself
and “his group”. Roughly speaking it led to a branch of abstract ideal
theory in its own right, closely along concrete ideal theory of commutative
rings.

In this chapter we are concerned with ideal monoids, generated by compact
join principle divisors, below the level of Dilworth.

It will turn out that in the modular case the conditions (PD) and (JP) are
stable w.r.t. residue class building and localization.

10.1 Starting ab ovo

Let R be a commutative ring with identity 1 and A its d-ideal semigroup.
Then

⟨a⟩ ⊆ B + ⟨a⟩C =⇒ a = b+ acx (∃ cx ∈ C)

=⇒ a (1 − cx) = b

=⇒ ⟨a⟩ ∗B ⊥ C ,

that is

⟨a⟩ ⊆ B + ⟨a⟩C =⇒ (⟨a⟩ ∗B) ⊥ C .(RL)

Similarly in cancellative semi-rings – like lattice group cones – d-ideals, as
defined above, satisfy (RL) since by suitable elements xi , yi (1 ≤ i ≤ n)
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one infers

⟨a⟩ ⊆ B + ⟨a⟩C =⇒ a = b1x1 + . . .+ bnxn + ac

=⇒ a · 1 = a · (y1 + . . .+ yn + c)
=⇒ 1 = y1 + . . .+ yn + c

=⇒ ⟨a⟩ ∗B ⊥ C ,

the final implication because ⟨a⟩ ∗B ⊇ ⟨a⟩ ∗ ⟨y1 + . . .+ yn⟩ . In particular
for B = 0 condition (RL) leads to

⟨a⟩U = ⟨a⟩ =⇒ ⟨a⟩U ∗ = 0 (∃U ∗⊥U) .(HN)

10. 1. 1 Definition. An ideal structure is called hyper-normal if at least
one basis Ac of compact divisors satisfies condition (HN) .

Condition (HN) is obviously satisfied by definition if every element of A0

is even + - principal, see above. But in this section we are concentrated in
the hyper-normal situation.

Let A be a hyper-normal lattice modular ideal structure. Then condition
(HN) is even equivalent to condition (RL),

SINCE : a ⊆ B + aC =⇒ a · 1 = (a ∩B) + aC

=⇒ a · 1 = a · (a ∗B + C)

=⇒ ∃U ∗ : U ∗⊥ a ∗B + C & a · U∗ = 0

=⇒ a ∗B = U ∗ + a ∗B ⊥ C .

As an example we consider a commutative ring with identity 1. Choosing
as basis the semigroup of principal ideals, here condition (HN) 2) is satisfied
by the semigroup of d-ideals, but – it is also satisfied in principal ideal rings,
what sort of ideals ever 3).

The notion hyper-normal suggests that the underlying structure is “at
least” normal, compare 7.2.1. But this need not be true, even in the
distributive case. To check this, the reader may study the r-ideal semigroup
S of

2) Observe : In commutative monoids (HN) can be deduced from

(HN
∗
) I + ⟨a⟩ · ⟨x⟩ = I + ⟨a⟩ · ⟨y⟩ =⇒ ∃ z : ⟨a⟩ · ⟨z⟩ = ⟨0⟩ & ⟨x, z⟩ = ⟨x, y⟩ = ⟨z, y⟩ ,

a condition which like (RL) is always satisfied by d-ideals in commutative rings with identity.
3) Recall ⟨a⟩ · ⟨b⟩ = ⟨a⟩ =⇒ ab

∣∣ a =⇒ a(bx− 1) = 0 with ⟨bx⟩ ⊥ ⟨bx− 1⟩ ; ⟨b⟩ ⊥ ⟨bx− 1⟩.
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10. 1. 2 Example. Define on {1, x, y, z, 0} a commutative multiplication
by xx = xy = yy = z and zx = zz = zy = 0 and consider the ideal lattice.
Then it holds (x)∗(0+(x)(y)) = (x)+(y) ̸= (y) = (z)+(y) = (x)∗(0)+(y) .

Condition (HN) implies always that a(U∗ + a ∗ b) = a ∩ b ; a ∗ b =
U∗+a∗b (∃U ∗) whence it results (HN) =⇒ (jn) if condition (e) is satisfied.

However, in general (HN) =⇒ (jn) does not hold, as is verified by

10. 1. 3 Example. Let p ∈ N be prime and {pn}∪{0} be the set P of its
powers, extended by 0 and considered w.r.t. multiplication.

Adjoin an element u with 1 · u := u =: u · 1 and ux := 0 =: xu (x ̸= 1) .
Here each principal ideal is even a + - principal element, whence S is hyper-
normal. But in spite of this it holds :

⟨u⟩ ∗ ⟨a⟩ + ⟨a⟩ ∗ ⟨u⟩ ̸= ⟨1⟩ .
Under 5.5.1 it was shown that the mapping

ϕA : X 7−→ A+X =: Xw.r.t.X ◦ Y := A+XY

provides a
∑

- respecting homomorphism with algebraic image, satisfying

Ai ⊇ A (∀ i ∈ I) =⇒ ϕx(
∩

i∈IAi ) =
∩

i∈IϕxAi .

Furthermore it was pointed out that in the modular case divisors are sent
to divisors. We continue by studying the hyper-normal situation.

10. 1. 4 Proposition. Let A be a hyper-normal and (lattice) modular
ideal structure and suppose A ∈ A . Then A/A =: A is hyper-normal (and
modular) again.

PROOF. By modularity condition (HN) is equivalent to condition (RL).
Let now ◦ denote the multiplication of A . Then it results :

b ◦ U = b =⇒ bU + A = b+ A

=⇒ b ⊆ A+ bU
=⇒ b ∗ A⊥U
=⇒ b ∗ A⊥U 2

If A is distributive, then – by 5.3.5 – condition (HN) is satisfied even for
all compact elements A := a1 + . . . + an (ai ∈ A0). This follows by 5.3.5
via

A · U = A =⇒ ai · U = ai (1 ≤ i ≤ n),
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which by (5.7) leads to U ⊥ ai ∗ 0 (1 ≤ i ≤ n) and thereby to the equality

U ⊥U ∗ :=
n∏
1

(ai ∗ 0) with ai · U ∗ = 0 ; A · U∗ = 0 .

10.2 Nearer to Dilworth

Henceforth, let A always be an AML, generated by compact divisors, (but)
not necessarily closed under multiplication.

10. 2. 1 Definition. By a ringlike AML we mean an AML, that is gen-
erated by an Ac of compact + - principle divisors.

This means in the language of Dilworth, that A is generated by a subset
of + - principal weak ∩ - principal elements.

Moreover recall that A is said to be hyper-normal if (HN) holds w.r.t. at
least one generating system Ac.

(HN) does not imply (RL), not even in the distributive case, as was shown
by example 10.1.2. But if A is a Prüfer monoid – or merely satisfying

a(B ∩ C) = aB ∩ aC(k∩)

then A satisfies (RL) if only (HN) is satisfied – which is shown next:

To this end recall again that in the lattice modular case hyper-normality
implies condition (RL). And applying (RL) and (k∩) we obtain:

x ⊆ a ∗ (B + aC) =⇒ ax ⊆ B + aC

=⇒ ax ⊆ B + (ax ∩ aC)

=⇒ ax ⊆ B + ax(x ∗ C) (k∩)

=⇒ ax ∗B + x ∗ C = 1 (RL)

=⇒ (x ∗ (a ∗B)) + x ∗ C = 1

=⇒ x ∗ (a ∗B + C) = 1

=⇒ x ⊆ (a ∗B) + C .

So we may state a ∗ (B + aC) ⊆ (a ∗B) +C ⊆ a ∗ (B + aC) , that is (RL).

Finally we show

10. 2. 2 Proposition. Let A satisfy (JP) & (RL). Then A/D satisfies
(JP) & (RL), too, w.r.t. A ⋆ B := (D + A) ∗ (D +B) .
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PROOF. Suppose that (JP) is satisfied. We calculate:

a ◦X ⊆ B + a ◦ C =⇒ aX ⊆ (D +B) + aC

=⇒ X ⊆ (a ∗ (D +B)) + C

=⇒ D +X ⊆ ((D + a) ∗ (D +B)) + (D + C)

=⇒ X ⊆ a ⋆ B + C .

The proof for (RL) is done by putting X = 1. 2

10. 2. 3 Proposition. Let A satisfy (JP), let a be a generator of A and
let P be prime in A. Then in A/P =: A it holds

a ◦X = a ◦ Y ̸= 0 = P =⇒ X = Y .

PROOF. It holds a ◦X = a ◦Y ̸= 0 =⇒ P +aX = P +aY ̸= P =⇒ aX ⊆
P + aY =⇒ X ⊆ a ∗ P + Y = P + Y =⇒ X ⊆ Y . The rest follows by
symmetry. 2

Next we present:

10. 2. 4 Proposition. Let A satisfy (HN) and moreover a(b∩c) = ab∩ac.
Then any AP satisfies (HN) again.

PROOF. Assume aS◦US = (aU)S = aS ̸= 0S . Then there exists a compact
u satisfying aS ◦ uS = aS that is with aus = at = at(t ∗ us) (s, t ̸⊆ P ).
Hence there exists some (t ∗ us)∗⊥ (t ∗ us) with (at) · (t ∗ us)∗ = 0 and
thereby with uP = usP = (t ∗ us)P that is with

aP ◦ ((t ∗ us)∗)P = 0P & ((t ∗ us)∗)P ⊥uP .

But uP ⊥XP =⇒ UP ⊥XP . This completes the proof. 2

10. 2. 5 Proposition. Let A satisfy (JP). Then any AP satisfies (JP)
again.

PROOF. aS ◦ xS ⊆ BS ⊕ a ◦ Y =⇒ ax ⊆ (B + aY )S

=⇒ a(xs) ⊆ B + aY

=⇒ xs ⊆ a ∗B + Y

=⇒ x ⊆ (a ∗B + Y )S

=⇒ xS ⊆ aS ∗BS ⊕ YS . 2
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Recall: An AML is said to be normal if it satisfies

a ∗ b+ b ∗ a = 1 (a, b ∈ Ac) .(n)

If A is normal and A,B are finitely generated. Then

A ∗B +B ∗ A = 1 .(N)

Any normal AML is lattice-distributive, that is satisfies

A ∩ (B + C) = (A ∩B) + (A ∩ C) .(D)

Studying normality it turned out that normal IDMs have the Prüfer prop-
erty. For the sake of completeness we give next a short proof of this fact,
in addition, based on the normality of the substructure of all compact
elements.

10. 2. 6 Lemma. Let A be a normal ideal monoid. Then A is a Prüfer
ideal monoid.

PROOF. By assumption all 1-generated elements, that is all generators are
divisors. Suppose now that all at most n-generated elements are divisors
and assume that A,B are at most n-generated. Then it results

(A+B)(A ∗B) = A(A ∗B) +B(A ∗B)

= B(B ∗ A) +B(A ∗B)

= B(A ∗B +B ∗ A)

= B .

Thus, by induction, all finitely generated elements are divisors. 2

Clearly, a ringlike AML need not be normal, observe: otherwise any com-
mutative ring with identity would be arithmetical that is have a distributive
ideal lattice, consult f. i. Larsen/McCarthy.

But the question arises wether a lattice distributive ringlike ideal A is a
Prüfer monoid. That this is not the case was shown by example 10.1.3.

Here each principal Rees ideal is even a + - principal element, whence S is
hyper-normal. But in spite of this it holds :

⟨u⟩ ∗ ⟨a⟩ + ⟨a⟩ ∗ ⟨u⟩ ̸= ⟨1⟩ .
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However, condition (HN) implies

a · U = a =⇒ a · U ∗ = 0 (∃U ∗⊥U)
=⇒ a · (U ∗ + a ∗ b) = a ∩ b
; a ∗ b = U ∗ + a ∗ b (∃U ∗).

Hence under assumption of (HN) condition (jn) holds, if only condition
a · (a ∗ b+ b ∗ a) = a is guaranteed. Therefore

10. 2. 7 Proposition. A ringlike ideal monoid is a Prüfer monoid if
and only if it is normal.

Finally we remark that in a lattice distributive A condition (HN) is carried
over to all compact elements A := a1 + . . .+ an (ai ∈ Ac), since

A · U = A
5.3.5
=⇒ ai · U = ai (1 ≤ i ≤ n)

leads to U ⊥ ai ∗ 0 (1 ≤ i ≤ n) from which by (5.8) follows the equation

U ⊥U ∗ :=
n∏
1

(ai ∗ 0) with A · U ∗ = 0 .

Next we give some remarks concerning special structures.

10. 2. 8 Lemma. Ringlike AP-ideal-monoids satisfy

1 ̸= A ⊃ P,Q (P,Q prime) =⇒ P = Q .

PROOF. By (I) and (A) we get A ⊃ P ⊇ c ; cA = c ; cA∗ = 0 with
some A∗⊥A , whence it follows Q ⊇ c, observe A ̸⊇ A∗. 2

10. 2. 9 Proposition. Let A be a ringlike Prüfer ideal monoid generated
by Ac and let P be prime. Then A/P is a Prüfer ideal monoid whose
compact elements are 0-cancellable, that is (recall) satisfy the implication
a ◦X = a ◦ Y ̸= 0 = P =⇒ X = Y ,

If moreover A has even the multiplication property (M) then A/P again
satisfies (M) and is moreover cancellative with 0.

PROOF. By distributivity, divisors are sent to divisors. Hence all a1 +
. . . + an are divisors in A/P . Consequently A/P has the Prüfer property
(M-property), if A has the Prüfer property (M-property).
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Moreover, all generator images a are 0-cancellable, recall 10.2.3. But this
means that in the Prüfer case all a1 + . . . + an are cancellable, since they
are divisors of – for instance – a1, and by analogy (M) implies that all
elements A are 0-cancellable divisors. 2

10. 2. 10 Lemma. Let A be an archimedean ideal-monoid. Then each
prime element P satisfies the implication

1 ̸= M ⊃ P =⇒ P =
∩
Mn (n ∈ N) .

PROOF. Otherwise we would get A/P = A with
∩
M

n ⊇ S ⊃ 0 = P for
some prime P and thereby some c ̸= 0 with c ◦M = c ◦ 1 ; M = 1 , a
contradiction! 2

10.3 The Kernel

Throughout this section A is assumed to be an AML with respect to some
fixed submonoid of compact generators, not necessarily divisors.

We study the kernel of an element, introduced by Krull , see also [163].
To this end we need lemmata, basically due to Krull, whose proofs remain
valid even in general since paper [244] is of purely multiplicative character.

We exhibit some equivalents of kerA = A, valid in arbitrary AMLs of the
above type, partly along the lines of Mori, [300], partly along the lines of
Gilmer/Mott, [163].

First of all recall 6.2.4, that is

Krull’s Kernel Lemma. Let A be a compactly generated AML. Then the
following are equivalent :

(i) kerA = A (∀A ∈ A) .

(ii) X ⊃ P ⊇ p =⇒ pX = p .

We now turn to the ringlike case.

10. 3. 1 Proposition. Let A be an AML compactly generated by a sub-
monoid and ringlike with respect to this submonoid. Then the following are
equivalent :
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(i) kerA = A (∀A ∈ A).

(iii) Non maximal primes are idempotent divisors.

PROOF. Obviously by 6.2.5 condition (iii) implies condition (i).

So, it remains to prove (i) =⇒ (iii) . We suppose 1 ̸= A ⊃ P ⊇ p . Then
(ii) implies pA = p ; pA∗ = 0 (∃A∗⊥A), that is pP = p(P + A∗) = p by
P + A∗ = P =⇒ A ⊇ P ⊇ A∗ , so non maximal primes are divisors. 2

10. 3. 2 Lemma. Let A be an AML that is compactly generated by a sub-
monoid and ringlike with respect to this submonoid. Suppose furthermore
1 ̸= A ⊃ P . Then any P -primary element Q is equal to P .

PROOF. Assume a ⊆ A & a ̸⊆ P and p ⊆ P & p ̸⊆ Q. Then it follows:

ab ⊆ Q+ ap & a ̸⊆ P =⇒ p ⊆ Q+ ap =⇒ pa∗ ⊆ Q with a∗⊥a.

But it holds a∗ ̸⊆ P, since otherwise it would follow A ⊇ a+a∗ = 1. Hence
no power of a∗ is contained in P . So we get Q ⊇ p and thereby in general
Q ⊇ P , that is Q = P . 2

10. 3. 3 Proposition. Let A be an AML that is compactly generated by a
submonoid and ringlike with respect to this submonoid. Then the following
are equivalent :

(i) kerA = A (∀A ∈ A).

(iv) RadA prime =⇒ A is primary.

PROOF. Suppose (iv) and M ⊇ P with minimal P and P ⊇ p. Then
by 10.3.2 we get 0M = P . Hence there exists some s ̸⊆ M with ps = 0
leading to pM = p(M + s) = p since M is maximal. Thus it results (ii).

Let now RadA = P be prime and kerA = A. Then P is the only minimal
prime over A whence A is primary. 2

10.4 Idempotency

We start with a lemma, which was proven for rings by Mori, [300] and
[302], respectively : 4)

4) In this section slanted letters will denote compact elements.
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10. 4. 1 Lemma. Let A be a multiplication AML, not necessarily with
compact identity. Put N := Rad 0 . Then to each compact c there exists a
compact u ⊆ (c ∗N) ∗N with c ⊆ N + cu .

PROOF. First by

y ⊆ c ∗N ∩ (c ∗N) ∗N =⇒ y2 ⊆ N =⇒ y ⊆ N(10.10)

it follows

N = c ∗N ∩ (c ∗N) ∗N .(10.11)

Next by (M) there exists some divisor D with

(c + c ∗N)D = c = cD + (c ∗N)D .(10.12)

This implies in particular – recall (10.11) –

(c ∗N)D ⊆ c ∩ c ∗N
⊆ (c ∗N) ∗N ∩ c ∗N = N

; D ⊆ (c ∗N) ∗N .

Thus by (10.12) we get

c ⊆ c · ((c ∗N) ∗N) +N(10.13)

which leads to some compact u ∈ (c ∗N) ∗N with

c ⊆ N + cu .(10.14)

This completes the proof. 2

Applying (10.14) we get in particular:

10. 4. 2 Corollary. Any ringlike multiplication AML satisfies:

c ∗N + (c ∗N) ∗N = 1 .(Nc)

PROOF. Suppose c ⊆ N + cu with u ⊆ (c ∗N) ∗N . This entails

c ⊆ N + cu =⇒ c ∗N + u = 1
=⇒ c ∗N + (c ∗N) ∗N = 1 . 2

Now we are in the position to prove a result which was exhibited for com-
mutative rings by Gilmer/Mott in [163] :
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10. 4. 3 Proposition. Let A be a ringlike multiplication ideal monoid.
Then any idempotent element is a sum of idempotent compact elements.

PROOF. Let U be idempotent, and let A be the subelement that is gen-
erated by the set of all compact idempotents contained in U . This set is
not empty because 0 is idempotent. We prove:

U = U 2 ⊃ A =⇒ ∃ e : U ⊇ e = e2 ̸⊆ A .

To this end suppose A ⊂ U and c ⊆ U but c ̸⊆ A . By property (M) we get
U · c = c, whence there exists some f ⊆ U with fc = c and thereby with
f nc = c . So we may assume that already c satisfies cn ̸⊆ A , in particular
that c is not contained in N . Then by (Nc) and U · c = c we get

c = c · (c ∗N) + c · U · ((c ∗N) ∗N)

whence we find some u ⊆ U with

c ⊆ N + cu (u ⊆ (c ∗N) ∗N) .

This leads in A to some u∗ ⊆ c ∗N with u∗⊥u and uu∗ ⊆ N and hence to
some power (uu∗)k = 0 (∃ k ∈ N) . Therefore by (5.9) we get next

uk = uk(uk + u∗k)

= (uk)2 + (uu∗)k

= (uk)2 .

But by c ⊆ N + cu ; cu ⊆ Nu + cu2 we get c ⊆ N + cuk . Hence, the
element u of lemma 10.4.1 may be assumed to be idempotent.

It remains to show that uk =: e is not contained in A. But it holds
c ⊆ N + ce and hence c ⊆ n + ce (∃ n ⊆ N) . So there exists some m ∈ N
with

cm ⊆ (n + ce)m = nm + cme = cme ; cm = cme .(10.16)

Therefore e cannot belong to A , since cm is not contained in A . 2

As is easily checked, the proof that idempotent elements are sums of idem-
potent compact elements does not depend on compactness of the identity
but merely on the existence of some u∗, for every compact u, satisfying
u · u∗ = 0 and u = u · (u + u∗) . Such elements u∗ exist, for instance, in
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the ideal monoids of (commutative) M-rings with fixing elements, that is
elements ea with a · ea = a .

Moreover: commutative rings with fixing elements, monoids or d-monoids
have ideal structures in which the product of any principal ideal with an ar-
bitrary ideal is equal to the complex product. In those cases the proof above
works even for principal ideals instead of compact ones, that is finitely gen-
erated ideals, as is easily verified by the reader.

In particular: property (M) guarantees fixing elements whence in analogy
to the element ⟨c⟩ of (RL) one finds some ⟨c⟩∗ satisfying ⟨c⟩ · ⟨c⟩∗ = ⟨0⟩
and ⟨c⟩ = ⟨c⟩ (⟨c⟩ + ⟨c⟩∗ ) . This means that M-rings and thereby also
idempotent ideals of M-rings are generated idempotently, on the grounds
of a2x = a =⇒ (ax)2 = ax .

10.5 Decomposition Theorems

First a ring theoretical result. Here we denote the radical N from above
by n and prime ideals by p .

10. 5. 1 A Decomposition Theorem for Rings. Every M-ring with
identity 1 has a subdirect decomposition into components which are can-
cellative with 0 or primary.

PROOF. Let R be an M-ring with identity 1. Then the subdirect irre-
ducible images of R are again M-rings containing in particular no idempo-
tents different from 0 and 1 . But this means that the corresponding ideal
monoids are nilpotent or otherwise that in 10.4.3 we get first ⟨e⟩ = ⟨1⟩ and
thereby furthermore ( ⟨c⟩ ∗ n ) ∗ n = ⟨1⟩ , recall ⟨e⟩ ⊆ ( ⟨c⟩ ∗ n ) ∗ n .

So, in the non nilpotent components we get ⟨c⟩∗n = n, as is easily checked,
and thereby ⟨c⟩ ∗ ⟨0⟩ = ⟨0⟩, which results as follows :

Suppose in the proof of 10.4.3 the equation (⟨c⟩ ∗ n) ∗ n = ⟨1⟩. Then from
⟨c⟩ ∗n = n it follows ⟨c⟩n ∗n = n (∀n ∈ N). So, if c ·y = 0, it follows y ∈ n

and thereby yn = 0 for some n ∈ N. Consequently every minimal prime
element p contains y .

We show that not only each minimal prime p contains y but also all its
powers pn . From this, by ker 0 = 0, it then results y = 0 (and thereby
⟨c⟩ ∗ ⟨0⟩ = ⟨0⟩).
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Observe: It holds p ⊇ n and if y /∈ pm+1 we get p ̸⊇ pm ∗ ⟨y⟩ and thereby
c /∈ p , because 0 = c · y /∈ pm+1 . But this leads to the contradiction

p ⊇ n = ⟨c⟩m ∗ n ⊇ pm ∗ n ⊇ pm ∗ ⟨y⟩ ̸⊆ p .

Thus the proof is complete. 2

As an immediate consequence we obtain:

10. 5. 2 Corollary. Any ringlike multiplication AML admits a subdirect
decomposition into factors satisfying ⟨c⟩ ∗ ⟨0⟩ = ⟨0⟩ or mn = 0 for all and
thereby for exactly one maximal element.

Next recall condition (F), that is

10. 5. 3 Proposition. Any multiplication AML satisfies:

A =
∩
Pi

ei (P prime and Pi
ei ⊇ A) .(DC)

Obviously by 10.5.3 and 10.2.3 we obtain again 10.5.2, since in the M-case
any A/P is again a multiplication AML and thereby 0-cancellative.

10. 5. 4 Proposition. A ringlike M-ideal-monoid A is a direct product in
the sense of 10.5.2 if and only if for each family of idempotent elements
B i (i ∈ I) the equation holds :

A+
∩
Bi =

∩
(A+Bi ) (i ∈ I) .(D ∩)

PROOF. (D∩) is obviously necessary. Let now
∩
Pi

ei = 0 be the repre-
sentation of 0 by minimal prime powers. Then each factor Pi

ei =: Ui is
idempotent and each A ∈ A can be decomposed into

A = A+ 0 = A+
∩
Ui =

∩
(A+ Ui ) (=:

∩
Ai ) (i ∈ I) .

Now, by 10.2.8 we get Pi ̸= Pj =⇒ Pi⊥Pj . But by (D∩) this leads to
Ui⊥

∩
Uj (j ̸= i) . Hereby the proof is complete. 2

The most natural question arises, when a ringlike multiplication AML has
the Noether property. There is an abundance of necessary and sufficient
conditions. In particular, since multiplication AMLs are archimedean ideal
monoids, the reader may consult the corresponding section. Moreover,
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since components A/P with idempotent minimal P may by Jaffard,
[208], be considered as the ideal structure of some integral domain, and
since any component of type A/P n with P n−1 ̸= P n = P n+1 may be
considered as ideal structure of some residue class ring Z/pn we are arrived
at Mott, [306].

For the sake of completeness only one characterization, which will not be
mentioned in the chapter on archimedean Prüfer structures.

10. 5. 5 Proposition. A ringlike M-ideal-monoid A with compact identity
1 is a finite direct product in the sense of 10.5.1 if and only if:

U = U 2 =⇒ U + U ∗ 0 = 1 .(D∗)

PROOF. By assumption it follows immediately that idempotent elements
are finitely generated since

U + U ∗ 0 = 1 =⇒ u + u∗ = 1 (∃ u ⊆ U, u∗ ⊆ U ∗ 0) .

Observe U · u∗ = 0 =⇒ u ⊇ U , apply (5.8).

Hence the set of idempotent elements satisfies the ascending chain condi-
tion. So, since all kernel components of 0 are idempotent, the set of kernel
components of 0 is finite. 2

Finally, a ring theoretical result, due to D. D. Anderson, compare [3], is
proved in an alternate manner.

10. 5. 6 Proposition. Let R be a ring with identity 1. Then R [ x ] is a
multiplication ring if and only if R is a direct product of fields.

PROOF. The one direction is clear. So let R [x ] be a multiplication
ring. Then R is (von Neumann) regular, since by distributivity of the
ideal lattice every a ∈ R satisfies

⟨a⟩ ⊇ ⟨x− a⟩ + ⟨x⟩ =⇒ (⟨a⟩ ∩ ⟨x− a⟩) + (⟨a⟩ ∩ ⟨x⟩ ,

which implies a = (x− a) · f(x) + x · g(x)

with a | x · g(x) ; a | g(x)

; a | (x− a) · f(x)

; a |xf(x) ; a | f(x)

; a2 | af(x) = x( f(x) + g(x) ) − a

; a2 | a .
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Thus the principal ideals form a boolean algebra, whence in particular all
finitely generated ideals are principal ideals, which results by u = u2 & v =
v2 =⇒ ⟨u, v⟩ = ⟨u− uv + v⟩ .

We now show that R has the Noether property. From this it will follow that
R is indeed a direct product of fields. To this end let A = ⟨ai⟩ (a2i = ai )
be an ideal of R and suppose ⟨A, x⟩ · B = ⟨x⟩ in R [x ]. Then we obtain
⟨A, x⟩ · B = ⟨x⟩ = ⟨a1, . . . , an, x⟩ · B (∃ ai ∈ A, 1 ≤ i ≤ n) ⊇ ⟨x⟩ ;

⟨a1, . . . , an, x⟩ ·B = ⟨x⟩ .
Now, by B | ⟨x⟩ , B is cancellable since ⟨x⟩ is cancellable. Hence we obtain:
⟨A, x⟩ = ⟨a1, . . . , an, x⟩ = ⟨a, x⟩ with ⟨a⟩ = ⟨a1, . . . , an⟩ and hence for all
ai ∈ A some a · u(x) + x · v(x) = ai that is, by the rules of polynomial
arithmetic, ai = as with s ∈ R . Thus it is – even – shown A = ⟨a⟩ . 2

10.6 M-characterizations

Throughout this section we are concerned with ringlike AMLs. In this
case we may hope for M-characterizations based on ringlike particularities
shedding some special light.

10. 6. 1 Lemma. In a ringlike ideal monoid A satisfying

a ∗B +B ∗ a = 1(M1)

P ≽ P 2 (∀P prime)(RP)

any prime power satisfies P n ⊇ AB&P ̸⊇ B =⇒ P n ⊇ A. Evidently this
means in particular that any prime power is primary.

PROOF. 5) First of all observe that A has the Prüfer property. Suppose
now P n ⊇ AB&P ̸⊇ B , then P n ⊇ (P n+A)(P+B)n. We put P+B =: D
and shall show in general D ⊃ P ⊇ p =⇒ Dp = p .

To this end suppose p ⊆ P & p ̸⊆ P 2. Then

PX ⊆ P 2 =⇒ P (P +X) = P 2 =⇒ P +X = P ,

that is – by (I) – P ⊇ P ∗ P 2 and thereby P = P ∗ P 2 .

5) This proof avoids the Prime Criterion, but for the sake of plurality and in order to write in a more
self-contained manner we decided for this alternative method of proof.
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This leads next to p ∗ P 2 = (p + P 2) ∗ P 2 = P ∗ P 2 = P and P 2 ∗ p =
(P 2 + p) ∗ p = P ∗ p . Consequently it holds P ⊥ P ∗ p , that is by (5.11)
P | p . Hence we get

D ⊃ P ⊇ p =⇒ D · p = D · P · (P ∗ p) = P · (P ∗ p) = p . 2

As a first characterization we present:

10. 6. 2 Proposition. A ringlike ideal monoid A has property (M) if and
only if it satisfies the conditions: 6)

a ∗B +B ∗ a = 1(M1)

U = U 2 =⇒ U =
∑

ui (ui = ui
2)(M2)

P prime & P ⊃ X ⊇ P 2 =⇒ X is P -primary(M3)

PROOF. Necessity: Condition (M1) follows by (HN) and the equation
a(a ∗B +B ∗ a) = a, recall a ∗B = a ∗B + a ∗ 0 .

Next, condition (M2) was proven in the preceding section.

Finally let’s turn to condition (M3). Obviously, under our assumption
above we get X = PY = P (P + Y ). So – by condition (I) – X must be
equal to P 2. But P 2 is primary because

P 2 ⊇ ab & P ̸⊇ a =⇒ P 2 ⊇ (P + a)2(P 2 + b) = P 2 + b .

Sufficiency: By (M1) the underlying ideal monoid has the Prüfer prop-
erty. So, any idempotent U is a divisor because it is a sum of compact
idempotents.

Furthermore by condition (M3) prime elements are maximal or idempotent,
recall 10.3.2. This means in particular (M3) & (M2) =⇒ kerA = A .

Next, by (M1), we get (x+ y) ∗B +B ∗ (x+ y) = 1 , because

(x+ y) ∗B +B ∗ (x+ y)

= ((x ∗B) ∩ (y ∗B)) +B ∗ (x+ y)

= ((x ∗B) +B ∗ (x+ y)) ∩ ((y ∗B) +B ∗ (x+ y))

⊇ (x ∗B +B ∗ x) ∩ (y ∗B) + (B ∗ y) = 1 .

6) Evidently condition (M3) results from kerA = A as well as from RadA prime =⇒ A primary.
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Consider now some x ⊆ M with x ̸⊆ M 2 . Then by M ≻ M 2 for each
m ⊆M , defining b := x+m, it follows

M2 ∗ b + b ∗M2 = (M 2 + b) ∗ b + (M 2 + b) ∗M 2 = M ∗ b +M = 1 .

But by (5.11) this leads to M · (M ∗ b) = M ∩ (M ∗ b) ⊇ b , that is M | b .

So, given some b ⊆ M we find some x ⊆ M with x ̸⊆ M2 implying
M | b+ x | b and thereby M ⊇ B =⇒M |B .

Summarizing: By (M1),(M2),(M3) any prime element is even a prime di-
visor. This completes the proof by the prime criterion. 2

10. 6. 3 Proposition. A ringlike ideal monoid A is a multiplication AML
iff it satisfies

a ∗B +B ∗ a = 1(M1)

A =
∩
Pi

ei (P prime and Pi
ei ⊇ A) .(DC)

PROOF. By the results above it suffices to verify

Sufficiency: By (DC) A satisfies condition (S) whence according to
lemma 10.6.1 any prime power is primary. Conversely by (DC) any primary
element is a prime power.

Assume now P n ⊇ B (∀n ∈ N) but B ̸= PB . Then any prime power Qm

with Qm ⊇ PB either satisfies Q ⊇ P =⇒ Qm ⊇ B or we get Q ̸⊇ P =⇒
Qm ⊇ B , since Qm is primary. Hence A has the archimedean property,
leading to U 2 = U ⊇ B ; UB = B . Therefore the rest is done along the
proof lines of 10.6.2 by applying the Prüfer property. 2

Recall: 8.8.4 provides

10. 6. 4 Proposition. In an arbitrary commutative ideal monoid A the
following are equivalent:

(i) A is a multiplication AML.

(ii) A is a weak multiplication AML, that is for each prime element
P A satisfies the implication P ⊇ B =⇒ P |B.

(iii) A satisfies:

(a) Every element is equal to its kernel.
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(b) Every primary element is a power of its radical.

(c) If P is minimal prime over A, if n is the least positive integer
such that P n is the isolated P -primary component of A and if
P n ̸= P n+1, then P does not contain the meet of the remaining
isolated primary components.

For the ideal structure of commutative rings with identity 1 this result is
due to Mott, [304]. It was carried over to ringlike AMLs in a joint paper
of Alarcon/Anderson/Jayaram in [2]. Here we add:

10. 6. 5 Proposition. A ringlike ideal monoid A is a multiplication AML
iff it satisfies

a ∗B +B ∗ a = 1(M1)

RadA = P prime =⇒ A = P n (∃n ∈ N).(RP)

PROOF. Let RadA be prime. Then by (RP) A is equal to some P n .
Hence by (DC) of 10.6.3 it suffices to show kerA = A, which by 10.3.3
is equivalent to RadB is prime =⇒ B is primary . But, by (RP) it holds
P ≽ P 2 whence B is primary by 10.6.1. 2
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Chapter 11

Archimedean Prüfer Ideal Monoids

11.1 Preliminaries

Throughout this chapter multiplication where ever, is assumed to be com-
mutative. However in the considered situations this will not mean a real
restriction, since archimedean Prüfer monoids are always commutative, as
was shown by the author, cf. consult [69], [70], [77].

So, let A be a commutative AML, generated by a monoid of compact
divisors. This applies for instance to Rees ideals in monoids or to Dedekind
ideals in rings with identity, but also, of course to t-ideals in monoids and
rings.

If in addition any a1 + a2 + ... + an is a divisor A is called a Prüfer IDM.
In this case the set of all a1 + a2 + ... + an forms a monoid of compact
divisors which is closed under ·, +, ∩, and |, that is – briefly – generated
by a Prüfer monoid and denoted as a Prüfer ideal monoid, briefly a Prüfer
IDM or a P-IDM.

11. 1. 1 Example. Consider an arithmetical ring with identity. Here the
set of principal ideals may be considered as a monoid of compact divisors,
whereas the set of all finitely generated ideals may be considered as a Prüfer
basis, that is a generating submonoid of compact divisors, closed under +,
∩, and |.

For the sake of convenience the reader may read this chapter w.r.t. Püfer
ideal monoids. The interested insider however is invited to check each sit-
uation also w.r.t. DV-IDMs, again these are AMLs generated by a monoid
of compact divisors, not necessarily closed under +.

185
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Main subject will be the archimedean Prüfer IDM , briefly AP-IDM. By
definition in any AP-IDM the set AC of compact elements is closed under
· , +, and ∩. From this point of view – again – the reader may presume
that Prüfer IDMs are always considered w.r.t. their subset C of compact
elements as distinguished basis of divisors. Nevertheless in some proofs we
will employ slanted letters for compact elements, not necessarily a gener-
ator, having in mind the situation of monoids or rings with identity, for
instance.

Recall, AP-IDMs satisfy ker A = A, by 6.2.5 and property (I∗).

A ̸= 0 is called a zero divisor if A satisfies A ∗ 0 ̸= 0 . This reflects the
situation in rings. A is called an AML without zero divisors if there are
no zero divisors, which means if there are no compact zero divisors, since
AX = 0 =⇒ aX = 0 (∀a ⊆ A) .

Recall, A is said to be hyper-normal, if at least one system of compact
generators a satisfies

aU = a =⇒ ∃U ∗ : U⊥U ∗ & aU ∗ = 0 .(HN)

Let A be a commutative hyper-normal AP-IDM. Then A has no zero di-
visors iff 0 is prime. And this is the case iff ax = ay ̸= 0 =⇒ x = y is
satisfied, because

ax = ay =⇒ a(x+ y)x′ = a(x+ y)
=⇒ ∃u⊥x′ : a(x+ y)u = 0
=⇒ u = 0 ; x′ = 1 .

In particular by 10.1.4 hyper-normal Prüfer monoids are P -cancellative.

11.2 Arithmetics

11. 2. 1 Definition. Let A be an archimedean Prüfer-structure (-ideal
monoid). Then we call A briefly an AP-structure (AP-IDM).

Next recall 10.2.8, that is: Any hyper-normal AP-monoid A satisfies:

1 ̸= A ⊃ P,Q (P,Q prim) =⇒ P = Q .

11. 2. 2 Lemma. In any hyper-normal Prüfer monoid each idempotent
prime element P is minimal.
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PROOF. Suppose P ⊃ Q where Q is prime. Then by 5.3.5 there exists
an element p and P ⊇ p ̸⊆ Q and p · P = p, p · P ∗ = 0 with (P ∗⊥P ).
But by P ̸⊇ P ∗ this would lead to Q ̸⊇ P ∗ that is to Q ⊇ p , that is a
contradiction. 2

11. 2. 3 Lemma. In any hyper-normal AP-IDM A each prime element
is irreducible or an idempotent divisor, whence by 7.3.3 and 7.3.1 it holds
in particular P n ≽ P n+1 (∀n ∈ N) .

PROOF. Recall 10.3.1 2

11.3 Localizations of AP−ideal-monoids

11. 3. 1 Proposition. Let A be a commutative Prüfer IDM and let P be
prime in A. Then P is idempotent or P is compact in AP . Moreover the
following are pairwise equivalent:

(i) A is an AP -IDM.

(ii) Each AM (M maximal) is an AP -IDM.

(iii) Each AP (P prime) is an AP -IDM.

PROOF. Consider first P in AP and suppose a ⊆ P & a ̸⊆ P 2 and b ⊆ P .
Then by the Prüfer property we get (a+ b)(b ∗ a) = a and hence P ̸⊇ b ∗ a.
So it results (b ∗ a)P = 1P and thereby aP ⊇ bP . This leads to PP = aP .

Next, let M be a maximal element and S the set of generators {s | s ̸⊆M} .
We denote the elements of AM by AS , BS , . . .

(i) =⇒ (ii). By assumption each AM has the Prüfer property. Recall that
(D) and (e) are transferred.

Furthermore each AM satisfies condition (A). To show this we may restrict
our considerations to prime elements PS . Recall that PS is prime in AM if
and only if PS is prime in A .

By (A) and according to 7.3.4 each prime element P of A is even com-
pletely prime, that is, see above, each prime element P of A satisfies
P n ⊇ AB & P ̸⊇ B =⇒ P n ⊇ A . Hence, in case of PS ̸= 1S, that is
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if s ̸⊆ P (∀ s ̸⊆ M) , then it results (PS)n = (P n)S = P n . This provides
next (PS)n ⊇ BS =⇒ P n ⊇ B , implying:

(PS)n ⊇ BS (∀n ∈ N) =⇒ PS ◦BS = (P ·B)S = BS .

Thus condition (A) is proven for prime elements and thereby also for ar-
bitrary elements.

(ii) =⇒ (i) . First of all by the rules of localization it holds

aS(aS ∗ bS ⊕ bS ∗ aS) = aS = (a(a ∗ b+ b ∗ a))S .

Hence applying the localization theorem we obtain condition (e) for A –
and in a similar manner we get condition (D).

Finally it results

P n ⊇ A (∀n ∈ N) =⇒ P n
S ⊇ AS (∀n ∈ N,∀maximal M)

⇒ PSAS = AS = (PA)S

leading to condition (A) for A, again by the localization theorem.

(i) ⇐⇒ (iii) . Consult (i) ⇐⇒ (ii) .

This completes the proof. 2

The conjecture might come up that each AM would need to be even a
multiplication AML. That this is wrong is easily seen. Assume that an
AML satisfies condition (AP) but not condition (M). Then we could add
a new identity. This way the original identity would turn to the unique
maximal element of this extension but the extension would not satisfy
condition (M).

However, observe for instance the ideal structure of a commutative ring
may be extended by a new identity in the above sense, to a new AML. But
this new AML will in general not be isomorphic to the ideal structure of
some commutative ring with identity.

11. 3. 2 Definition. By a lattice cube we mean a lattice ordered monoid
(S , ∧ , ∨ , · ) admitting a subdirect decomposition whose factors are of type
Sn := ({0, 1, . . . , n}, ◦,∧) where

a ◦ b := min (n, a+ b) and a ∧ b := min (a, b) .
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By 7.1.6 the set C of all compact elements forms a d−semigroup under
·, + , ∩ denoted here by C . The elements of C are exactly all

∑n
1 ai. For

the sake of convenience they will be denoted by lower case slanted letters
here. That is, for instance a is a sum a1 + ...+ an of generators ai.

The focus of the subsequent considerations will be the 0-monoid of all
compact elements, again denoted by lower case slanted letters.

We shall say that there are enough prime elements P of a certain property
if the corresponding structures AP separate each pair of different compact
elements a, b, that is guarantee at least one prime element P satisfying the
inequality aS ̸= bS (S = {s | s ̸⊆ P}) .

Now we are in the position to present:

11. 3. 3 Proposition. Let A be a commutative IDM 1) and let C be the
set of its compact elements. Then the following are pairwise equivalent :

(i) A is an AP -IDM.

(ii) C is a lattice cube, satisfying
(j) (a ∗ b + b ∗ a)2 = a ∗ b + b ∗ a .

(iii) Any C/c is a lattice cube, satisfying condition (j) .

PROOF. Let P be a prime element and put S := {x | x ̸⊆ P}. Then,
obviously we obtain:

(a1 + ...+ an)S = (b1 + ...+ bm)S
⇒

a1 + ...+ an ⊇ b1 · e1 + ...+ bm · em
⊇ b1 · e1, ..., bm · em
⇒

a1 + ...+ an ⊇ b1 · (e1e2 · ... · em), . . . . . . bm · (e1e2 · ... · em)
⇒

a1 + ...+ an ⊇ (b1 + ...+ bm) · u (∃u ∈ S)
& b1 + ...+ bm ⊇ (a1 + ...+ an) · v (∃v ∈ S( (by symmetry) ,

that is in general

aS = bS ⇐⇒ a · w = b · w (∃w ∈ S)(11.2)

1) recall again: that is an AML generated by a monoid of compact divisors. In particular the sets
{x|x ̸⊆ P} are multiplicatively closed.
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Furthermore by lattice distributivity X ̸= Y are separated iff X + Y and
X ∩ Y are separated.

(i) =⇒ (ii) .

By the preceding remark we may start from a ⊃ b.

Then there exists a maximal chain of convex multiplicatively closed sets
Si ∋ 1 (i ∈ I) of compact elements, that is subsets of C, such that no Si
contains an element u satisfying b ⊆ au . It follows that the union S of
these Si is again such a set, satisfying moreover

x + y ⊆ S =⇒ x ∈ S V y ∈ S .

In order to verify this, we suppose x, y /∈ S but x + y ∈ S ∋ (x + y)n .

Then the set of all z ⊇ xn ·s (s ∈ S) is a convex and multiplicatively closed
proper subset of S . Hence there exists an element e ∈ S with a · xk · e ⊆ b
and – by symmetry – an element f ∈ S with a · yℓ · f ⊆ b , respectively.
Consequently, putting n := max (k, ℓ), u := ef we get

a · x2n · u ⊆ b and a · y2nu ⊆ b .

But x2n +y2n = (x + y)2n , whence 2) we obtain a · ((x + y)2n ·u) ⊆ b with
(x + y)2n · u ∈ S, a contradiction. In particular P :=

∑
x (x /∈ S) is

prime, whence we obtain AS = AP .

Now we get in any case

(aS ⊕ xS) ◦ uS = aS ⊕ xS ⊃ bS =⇒ uS = 1S =⇒ u ∈ S ,

since otherwise u /∈ S would imply aS(un)eS = aS(un)S = aS ⊆ bS for some
exponent n ∈ N.

Hence aS is comparable with each xS since (a + x)a′ = a & (a + x)x ′ = x
leads to

(a + x)(a′ + x ′) = a + x ; aS(a′ + x ′)S = aS

; (a′ + x ′)S = 1S .

Hence a′ + x ′ ∈ S and thereby a′ ∈ S V x ′ ∈ S that is xS ⊇ aS V aS ⊇ xS .

2) We choose the way along condition (Q) which is more convenient here. But it should be mentioned
that the prime property does not depend on commutativity.
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Next we show that in any case the elements xS above aS are powers of some
compact prime pS , in particular that aS = pS

n (∃n ∈ N) is satisfied, and
that moreover aS properly contains at least one of these powers.

(a) First let a and thereby b as well be contained in P .

Recall PS
n = P n . Suppose now P n ⊇ aS and thereby Pn ⊇ a (∀n ∈ N) .

Then, according to the archimedean property, we get aP = a . This leads
to some p ⊆ P satisfying ap = a , and thereby to p ∈ S & p ⊆ P , a
contradiction w.r.t. the definition of P .

Consequently there exists an exponent m ∈ N with Pm ̸⊇ a whence
by comparability of aS with all pS it follows aS ⊇ PS

m , and thereby
aS ⊇ xS

m (∀ xS with P ⊇ x) .

But, in a local Prüfer monoid the uniquely determined maximal element
M satisfies the implication M ⊃ M 2 =⇒ M =

∑
(p + xi) (i ∈ I) with

p, xi ⊆ M . So, if M properly contains M 2 then in particular M contains
some p ̸⊆M 2 , and each element of this type satisfies xS ̸= 1S =⇒ pS ⊇ xS ,
since x ∗ p ∈ M would imply (x + p)(x ∗ p) = p ⊆ M 2 . Hence we get
MS = M = pS and thereby :

pS
ℓ(pS

ℓ ∗ AS) = AS =⇒ pS
ℓ ∗ AS = 1 V pS

ℓ ∗ AS ⊆M = pS ,

that is xS = pS
ℓ (∃ℓ ∈ N) V pS

n
∣∣∣∣ xS (∀n ∈ N) .

Thus in case (a) it is shown xS ⊇ aS =⇒ xS = pS
ℓ (∃ℓ ∈ N) .

(b) Suppose now a ̸⊆ P but b ⊆ P or equivalently a ∈ S and b ⊆P . If
there is some cS properly between 1S and bS then, of course, S is maximal
with respect to c and b , and we may continue as above.

Otherwise it holds 1S ≽ bS and 1S ̸= PS ⊇ bS ; P = PS = bS , and again,
we may continue as above.

NEXT send all xS ⊂ aS to 0 . This provides a homomorphic Sm since
together with uS, vS ⊂ aS we have uS ⊕ vS ⊂ aS .

Observe that by construction aS = 1S or aS = pS
k ⊂ pS

k+1 .

Hence, C is a lattice satisfying condition (j), since this condition is satisfied
by the localization theorem.

(ii) =⇒ (iii) and (iii) =⇒ (iv) follow nearly immediately.



192 CHAPTER 11. ARCHIMEDEAN PRÜFER IDEAL MONOIDS

(iv) =⇒ (i) . Since all components are 0-cancellative, that is satisfy the
implication ax = ay ̸= 0 =⇒ x = y , any lattice cube satisfies condition
(K) of 7.1.4. Hence, by condition (j) any lattice cube has the Prüfer
property, recall 7.1.4. Finally lattice cubes are archimedean by evidence,
whence there filter-monoid is archimedean, too, recall any homomorphism
of a Prüfer monoid P generates – in a canonical manner – a homomorphism
of its filter monoid, whence any subdirect decomposition of P leads to a
subdirect decomposition of its filter extension of P . 2

In [71] it was shown that a divisibility monoid admits a cube extension Eω

with E := [0, 1] and

a ◦ b := min (1, a+ b) , a ∧ b := min (a, b)

iff An ⊇ b (∀ ∈ N) =⇒ a · b = b ,

where A is a filter, a is the v−ideal, generated by A, and b is the v−ideal,
generated by b .

But the question remained unsettled what an archimedean filter monoid
might yield. By the preceding theorem this question is answered via ideal
theory.

11.4 P -cancellative AP -ideal-monoids

In this section we study 11.3.1 with respect to P -cancellative DV-IDMs.

11. 4. 1 Proposition. Let A be a commutative P -cancellative DV-IDM.
Then the following are pairwise equivalent :

(i) A is an AP-IDM.

(ii) All elements of each AM are compact divisors.

(iii) Each AM is a normal archimedean valuation structure .

(iv) A is normal and archimedean.

PROOF. Recall the denotations under 11.3.1

(i) =⇒ (ii) . We know that each AM is an AP-IDM. We show that further-
more each AS ∈ AM is a power of some compact prime element. According
to 11.3.1 the element AS is prime in AM only if AS is prime in A .
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Let now P be prime, satisfying M ⊃ P . It follows Q :=
∩
Mn = P , since

A is P -cancellative , whence A/P =: A has no idempotent elements except
for 0 . Hence each maximal M contains at most one (necessarily minimal)
prime element P ̸= M .

Suppose next P = P 2 . Then according to the archimedean property all
a ⊆ P satisfy ap = a (p ⊆ P ) and thereby aS ◦ pS = aS . But, the set of
private units of aS in AM is closed w. r. t. multiplication.

Hence, by the separation lemma, it follows aS = 0S and thereby PS = 0S ,
since otherwise there would exist some prime element QS different from
MS = M and PS .

If, however, it holds P ̸= P 2 and a, b ⊆ P but a, b ̸⊆ P 2 , then it follows
a+ b ⊆ P but a ∗ b /∈ P . Hence in this case we get (a ∗ b)S = 1S and thus

aS ⊕ bS = (aS ⊕ bS) ◦ 1S = (aS ⊕ bS) ◦ (aS ∗ bS) = bS .

Consequently it holds aS ⊕ bS = bS = aS and thereby PS = pS for any
P ⊇ p ̸⊆ P 2 . In particular, this provides MS = mS . Hence each AS is a
power of mS or of pS .

Thus AM is normal and totally ordered.

(ii) =⇒ (iii) . By (ii) each AM is a Mori structure. Hence, according to
11.3.1, A is an AP-IDM. Therefore each AM is normal and totally ordered
as shown below (i) =⇒ (ii) .

(iii) =⇒ (iv) . If each AM is a normal valuation structure then each AM

and thereby, according to the localization theorem, A is normal, too. And
if each AM is archimedean then A is archimedean, too.

(iv) =⇒ (i) Normality implies the Prüfer property. 2

Gilmer had tried, compare [148], to characterize Dedekind domains as
domains whose DV-IDMs are cancellative with 0 , before he discovered
that these structures are weaker then originally expected. This will be
demonstrated now.

11. 4. 2 Proposition. Let A be a commutative P -cancellative DV-IDM
without zero divisors. Then the following are pairwise equivalent :

(i) A is an AP-IDM.
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(ii) A is distributive and cancellative with 0 .

(iii) A is normal and satisfies A ̸= 1 =⇒
∩
An = 0 .

PROOF. First of all : Since A is P -cancellative without zero divisors the
generators a satisfy : aX = aY ̸= 0 =⇒ X = Y .

(i) =⇒ (ii) . Suppose now AX = AY ̸= 0 . Then in all AM it follows
AS ◦ XS = AS ◦ YS whence for a ⊆ A we get aS ◦ XS = aS ◦ YS , since –
according to 11.4.1 – each AS is some cS .

So by localization we get in A a ·X = a · Y (∃a ̸= 0) and thereby X = Y .

(ii) =⇒ (iii) . We infer by cancellation

(A+B)(A+B)2 = (A+B)(A2 +B2)
;

(A+B)2 = A2 +B2 .

This leads to the Prüfer property, according to 7.2.6, which implies in
particular normality, and furthermore, according to 7.3.8,

x ̸⊆ P ̸= 0 ; P (P + x) = P

; P + x = 1 .

Thus every prime element is equal to 0 or maximal and consequently, ac-
cording to 7.3.3, every

∩
Mn with maximal M is prime and hence equal

to 0. But this yields a fortiori A ⊆ M ;
∩
An = 0 , that is in particular

the archimedean property.

(iii) =⇒ (i) . The Prüfer property is certified by 7.2.3 and the archimedean
property is certified by A ̸= 1 =⇒

∩
An = 0 . 2

11.5 Ringlike AP -ideal monoids

11. 5. 1 Proposition. Let A be a ringlike DV-IDM. Then A is an AP-
IDM if and only if it satisfies:

a1 + ...+ an ⊇ b =⇒ a1 + ...+ an
∣∣∣∣ b(P)

U = U 2 ⊇ A =⇒ UA = A = AU(U)
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P prime =⇒ P ≽ P 2(Z)

PROOF. Sufficiency. In any ringlike Prüfer IDM prime elements are
idempotent or maximal. Therefore assume that M is maximal satisfying
Mn ̸= Mn+1 & Mn ⊇ b (∀n ∈ N) . Then

∩
Mn is an idempotent prime

element, cf. 7.3.6. So in any case Mn ⊇ b (∀n ∈ N) =⇒ Mb = b . Hence
A is archimedean.

Necessity. By the Prüfer property it holds ( I ), and by the archimedean
property any AP-IDM satisfies kerA = A, according to Krull’s kernel
lemma. In the ringlike case this means that M ⊃ X ⊇M 2 implies that X
is primary, according to proposition 10.3.3.

Assume now M ⊃ X ⊃M 2 and M ⊇ a & X ̸⊇ a & X ⊇ b & M ̸⊇ b for a
maximal M . Then

X ⊇ b = (a+ b)(a ∗ b) & X ̸⊇ a+ b; RadX = M ⊇ a ∗ b

But this leads to M 2 ⊇ (a+ b)(a ∗ b) = b, a contradiction. 2

Next we get

11. 5. 2 Lemma. Let A be a commutative ringlike AP-IDM. Then zero
divisors of A are exactly the elements A which are contained in some mini-
mal prime P .

PROOF. First of all recall kerA = A, see above.

Let now A be contained in no minimal prime Pi . Then – by 5.4.6 – for the
corresponding primary components Qi it follows Qi ⊇ A ∗ 0 , which leads
to A ∗ 0 = 0 . Hence all zero divisors are contained in some minimal prime
element Pi .

Next let P be minimal prime. Then there exists some e ∈ N with (P e) 2 =
P e =: U , since otherwise, according to 11.2.3 and 7.3.5, P was not mini-
mal prime. Consequently each compact x ⊆ P satisfies xe ·U = xe for some
suitable exponent eand thereby xeU∗ = 0 for some U ∗⊥U with U ∗ ̸= 0 ,
because U ̸= 1 . Therefore there exists for each 0 ̸= x ⊆ P a first xmU ∗ ̸= 0
with x · xmU ∗ = 0 , may be xoU ∗ and this entails x ∗ 0 ̸= 0 . 2

Provided I is even finite, the second part of the preceding proof admits the
abbreviation : x ⊆ Pi =⇒ x ∗ 0 ⊇

∩
j ̸=i

Qj ̸= 0 =⇒ x ∗ 0 ̸= 0 .
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Apart from the AP-IDMs without zero divisors in the subsequent theorem
special primary DV-IDMs will play a crucial role. Recall: These are those
DV-IDMs, whose elements are powers of a fixed prime element p . More
precisely : Motivated by the ring theoretic result of D. D. Anderson, [3],
we show :

11. 5. 3 Proposition. Let A be a commutative ringlike AP-IDM. Then
the following are pairwise equivalent :

(i) A is a finite direct product of components which are primary or
don’t contain any zero divisors.

(ii) Minimal primes of A are compact.

(iii) A has only finitely many minimal primes.

(iv) There are finitely many minimal primes Pi (1 ≤ i ≤ n), such that
each zero divisor of A is contained in one of these Pi .

PROOF. (i) =⇒ (ii) . First of all, each component contains exactly one
minimal prime element, namely the generating p in the primary case and
0 in the zero divisor free case.

So there are only finitely many elements (11, . . . , Pi, . . . , 1n) , that is with
components 1j , except for one component Pi , minimal prime in Ai , and

these are prime in A =
n⊗
1

Ai . Consequently exactly elements of this type

are minimal prime in A . Hence the minimal primes P of A are compact.

(ii) =⇒ (iii) . Let p be a minimal, and by assumption compact prime
element, and let Qi (i ∈ I) be the family of isolated primary components
of 0 , satisfying the radical condition Rad Qi =: pi ̸= p . Then p is co-
maximal w.r.t.

∩
Qi , which results as follows:

First we get (pe)2 = pe =: u (∃e ∈ N) since otherwise dis
∩
pn would

be prime but different from p. So u · u∗ = 0 (∃u∗⊥u) . Consequently
all isolated primary components Qi of 0 with RadQi = pi ̸= p satisfy
RadQi ̸⊇ u ; Qi ⊇ u∗ . Hence we get

∩
Qi (pi ̸= p) ⊇ u∗ and thereby

p⊥
∩
Qi (pi ̸= p) .

Let now Q be the isolated P -component of 0 . Then RadQ = p ̸⊇ u∗ leads
to Q ⊇ pe . On the other hand we have pe ⊇ Q , since pe is completely
prime and Q · u∗ = 0 . But this means Q = pe . Hence, choosing pi instead
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of p and ei instead of e , we obtain

pi
ei ⊥

∩
j ̸=i

pj
ej ,(11.6)

and in addition u∗ and u∗i are idempotent, by (u∗)2 ⊇ u · u∗ and u⊥ u∗ .

Next, let Q be an arbitrary P -primary element. Then P contains at least
one pi and, according to (11.6) it does not contain pi

ei ∗ 0 . So, if J ⊆ I ,
this means for minimal pj (j ∈ J)

P ⊇
∩
p
fj
j (1 ≤ fj ≤ ej , pj min) =⇒ P ⊇ pj∗ (∃j∗ ∈ J) .

Hence – by 7.3.4 the elements pi
fi (1 ≤ fi ≤ ei) are exactly all isolated

primary components of
∩
pi

fi (0 ≤ fi ≤ ei) .

Therefore, according to 10.2.8, if a maximal element M contains elements
of type

∩
pi

fi in common then these elements have a common minimal
prime divisor pi∗ . So by ker A = A , products, residues and sums on the
set

{x
∣∣∣∣x =

∩
pi

fi (0 ≤ fi ≤ ei )}

are built componentwise. This is clear w.r.t. + and ∩, and follows w.r.t.
∗ by

∩
pi

ki = pi
ki ∩

∩
j ̸=i

pj
kj = pki

i ·
∩
j ̸=i

pj
kj(11.7)

which in case of fi ≤ gi (∀i ∈ I) entails – recall the powers of any pi are
completely prime:pfi

i ·
∩
j ̸=i

pj
fj

 ·X ⊆ pi
gi ·

∩
j ̸=i

pj
gj =⇒ pi

gi−fi ⊇ X =⇒
∩
i∈I

pi
gi−fi ⊇ X .

and

∩
i∈I

pi
fi

 ·
∩
i∈I

pi
gi−fi

 ⊆
∩
i∈I
pi

gi

that is ∩
i∈I

pj
fj

 ∗
∩
i∈I

pj
gj

 =

∩
i∈I

pi
gi−fi

(11.8)

Finally (11.8) implies:

(
∩
pi

fi ∗
∩
pi

gi ) ∗
∩
pi

gi = (
∩
pi

gi ∗
∩
pi

fi ) ∗
∩
pi

fi .
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Consequently the considered substructure is closed under
∑

,
∩

and · , and
in addition, according to 12.4.1, it satisfies A ∗ ∑Bi =

∑
(A ∗ Bi) . But

this means that along the lines of the proof of 12.1.1 A satisfies ACC
for elements of type

∩
p
ej
j (j ∈ J ⊆ I) . Hence 0 has only finitely many

isolated primary components whereby A has only finitely many minimal
primes.

(iii) =⇒ (iv) . Consult 11.5.2

(iv) =⇒ (i) . To begin with, according to 11.5.2 there are only finitely
many minimal prime elements Pi , and, according to 10.2.8, each pair
of different elements Pi and thereby also each pair of the corresponding
isolated primary components Qi of 0 is co-maximal where Qi is of type
P ei = (P ei)2 .

Hence A =
n⊗
1

(A/Qi) provides a direct decomposition with each of the

components Ai := A/Qi (1 ≤ i ≤ n) having exact one minimal prime
element P i .

Suppose now P i = 0i . Then Ai has no zero divisors.

But if P i differs from 0i then it follows P 2
i ̸= Pi . Hence, in this case, Pi

is not only minimal in A, according to 11.2.3, but at the same time it is
maximal. From this, by P ei

i = 0i (∃ei ∈ N) and Pi ≻ Pi
2 , observing

the archimedean property we get from 7.3.1 the compactness of Pi , i. e.
P i = pi for any pi with Pi ⊇ pi ̸⊆ Pi

2. Thus, in this case Ai turns out to
be primary. 2

11. 5. 4 Corollary. A ringlike Mori-IDM has the Noether property iff it
has only finitely many minimal prime elements iff ker 0 has only finitely
many components.



Chapter 12

Factorial Structures

A classical problem of commutative ring theory is whether each ideal is a
product of prime ideals. If so, then in addition it holds a ⊇ b =⇒ a | b .
In analogy we ask under which conditions the elements of an AML are
products of primes.

Usually such prime factorizations are studied in Noether structures.

In this section we present conditions yielding prime factorization even in
arbitrary, not necessarily Noether DV-IDMs. Provided the underlying DV-
IDM is even hyper-normal, these conditions are not only sufficient but even
necessary.

12.1 UF-Structures

In the following we will call UFS (Unique Factorization Structure) each
AML, whose elements are unique products of primes.

12. 1. 1 Proposition. Let A be a commutative DV-IDM. Then each of

the two subsequent conditions is sufficient in order that A ⊇ B =⇒ A
∣∣∣∣B

be satisfied and that each A ∈ A is a product of primes :

A ∗
∑
i∈I

Bi =
∑
i∈I

(A ∗Bi )(a)

(
∩
i∈I

Ai ) ∗B =
∑
i∈I

(Ai ∗B) ,(b)

and in addition (a), and (b) as well, yield that irredundant prime decom-
positions of the same element coincide up to permutation.

199
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PROOF. As is easily checked it holds a(a∗b) = b(b∗a) and each condition
implies a ∗ b + b ∗ a = 1, replace the first components by a + b and apply
(a) – replace the second components by a∩ b and apply (b) . Thus we get

(a+ b)(a ∗ b) = a(a ∗ b) + b(a ∗ b)
= b(b ∗ a) + b(a ∗ b)
= b(a ∗ b+ b ∗ a)
= b .

(12.3)

In order to verify afterwards the UF-property, We now show that both, (a)

and (b), imply condition (M) A ⊇ B =⇒ A
∣∣∣∣B .

Ad (a) : By (a) A is a Prüfer AML. Let a1 ⊂ a1 + a2 ⊂ a1 + a2 + a3 ⊂ . . .
be an infinite chain of finitely generated elements An = a1+ . . .+an . Then
it results (

∑
n∈N

An) ⊃ Am (∀m ∈ N) and thereby (
∑
n∈N

An) ∗ Am ̸= 1 . But,

because of 1-compactness this leads to the contradiction

1 = (
∑
n∈N

An) ∗ (
∑

m∈N
An)

=
∑

m∈N
( (

∑
n∈N

An) ∗ Am)

̸= 1 .

Hence A has the Prüfer and the Noether property.

Ad (b) : By (b) A is a Prüfer AML, according to (12.3). Hence it holds
(a+ c) · (a ∗ c) = c . Furthermore we get :

x ·
∩
i∈I
ai =

∩
i∈I

(x · ai) (i ∈ I),

SINCE (
∩
xai ) ∗ (x ·

∩
ai ) =

∑
(xaj ∗ x ·

∩
ai ) (j, i ∈ I)

=
∑
j∈J

(aj ∗ (x ∗ x ·
∩
ai ))

⊇
∑
j∈J

(aj ∗
∩
ai )

= (
∩
ai ) ∗ (

∩
ai )

= 1 (by (b)).
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So, distributing alternatively we are led to∑
(ai + c) ·

∩
(ai ∗ c) = A ·

∩
(ai ∗ c)

= c .

But this means A ⊇ B =
∑
j∈J

bj =⇒ A(A ∗ bj) = bj (∀ j ∈ J), from which

follows A ⊇ B =⇒ A
∣∣∣∣B .

We now start from some ⊂∗-chain

A ⊂∗ A1 ⊂∗ A2 ⊂∗ . . .

satisfying Ai+1 = Xi ∗ Ai (∃Xi ). Here each Ai is a right residuum of A,
recall X ∗ (Y ∗ Z) = Y X ∗ Z , and thereby equal to (Ai ∗ A) ∗ A. We
consider

1 ⊇ B1 ⊇ B2 ⊇ . . .

with Bi = Ai ∗ A, and form B :=
∩
Bi . Since A is a divisor it follows

B ⊇ A; B(B ∗ A) = A, and by Ai = (Ai ∗ A) ∗ A all Ai are of type

Ai = Bi ∗ A = (Bi ∗B) · (B ∗ A) .

FOR: suppose X ⊇ Y ⊇ Z. Then it follows

X ∗ Z = (X ∗ Y )U (∃U)
;

Z = Y U
;

(Y ∗ Z)V = U (∃V )
;

(X ∗ Y ) · (Y ∗ Z)V = X ∗ Z .)
But this means that Ai ̸= Aj implies Bi ∗B ̸= Bj ∗B whence the chain

B1 ∗B ⊂ B2 ∗B ⊂ . . .

would not finish if the chain Ai would be infinite. But the ascending chain

B1 ∗B ⊂ B2 ∗B ⊂ . . .

cannot be infinite, since this would imply the contradiction

1 = B ∗B = (
∩
Bi ) ∗B

=
∑

(Bi ∗B)

̸= 1 (i ∈ I)
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So in both cases each ⊂∗-chain is finite.

We now verify the UF-property by combining the divisor property and
⊂∗-chain condition.

First of all P is prime iff P = AB =⇒ P = A V P = B :

By the divisor property we get X ⊃ P & Y ⊃ P =⇒ XY ⊃ P which by
the assumption above yields :

P ⊇ UV =⇒ P ⊇ (P + U) · (P + V )
=⇒ P = U + P V P = V + P
=⇒ P ⊇ U V P ⊇ V .

Suppose now that there would exist some X different from all prime factor
products. Then the set of indecomposable elements would not be empty
and hence would contain some ⊂∗-maximal element A . So, by the divisor
property we would get A = BC and thereby A = (B∗A)·( (B∗A)∗A) with
B ⊃ A ⊂ C . But this would imply A ⊂∗ B∗A and A ⊂∗ (B∗A)∗A whence
B ∗ A and (B ∗ A) ∗ A would be prime factor products, a contradiction!

It remains to show that irredundant prime factor decompositions of the
same element coincide up to permutation. To this end we take into account
that each irredundant prime factor product P1 · . . . · Pn satisfies Pi ⊇
Pj =⇒ Pi = Pj , recall the implication A ⊃ P =⇒ P = AX = AP .
This completes the proof on the grounds of 8.1.4 (Pm ⊇ P nB =⇒ Pm ⊇
P n V P ⊇ B ) . 2

12.2 Special cases

We now study some situations, close to classical ring theory.

12. 2. 1 Proposition. Let A be a hyper-normal DV-IDM. Then the fol-
lowing are equivalent :

(i) A is a Noether Mori AML.

(ii) A satisfies (a) A ∗
∑
i∈I

Bi =
∑
i∈I

(A ∗Bi ) .
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PROOF. Let (i) be satisfied. Then A is normal, since from (Y) and
a (a∗b+b∗a) = a it results (a∗0+a∗b)+b∗a = 1 with a∗0+a∗b = a∗b .

Furthermore we get (a). To this end consider some
∑

Bi . Then by the
Noether property there exists a finite chain

B1 ⊂ B1 +B2 ⊂ B1 +B2 +B3 ⊂ . . . ⊂ B1 + . . .+Bn ,

whose final element is equal to
∑
i∈I

Bi . But putting B1 + . . . + Bk =: Ck

this provides :
n∑
1

(A ∗Bi) =
n∑
1

(A ∗ Ci) = A ∗
n∑
1

Bi .

Consequently A satisfies condition (ii) .

Let now condition (ii) be satisfied. Then condition (i) follows along the
lines in the proof of 12.1.1. 2

12. 2. 2 Proposition. Let A be a hyper-normal DV-IDM. Then the fol-
lowing are equivalent :

(i) Each A ∈ A is a product of maximal elements.

(ii) A satisfies (b) (
∩
i∈I

Ai ) ∗B =
∑
i∈I

(Ai ∗B) .

PROOF. (i) =⇒ (ii). From condition (i) it follows that A is an atomic
Mori structure. In particular this means that A is finite since 0 has only
finitely many divisors. Hence A satisfies condition (ii) .

(ii) =⇒ (i). Suppose (ii). Then A is a hyper-normal Noether Mori
structure. It remains to verify that any prime is maximal.

To this end let P be prime and 1 ̸= M ⊃ P with maximal M . Then it
follows ∩

n∈N M
n =: U = U2 ,

since either some power of M is idempotent or otherwise
∩

n∈N M
n is a

prime element which must be idempotent, too, according to 11.2.3

Hence we get U = U2 ⊇ P . But U ⊃ P is impossible since U ̸= P would
lead to U ⊃ P ⊇ U ∗ . So it holds U = P . But this leads to

1 = P ∗ P = U ∗ P = (
∩

n∈N
Mn) ∗ P =

∑
n∈N

(Mn ∗ P ) =
∑

P = P .

a contradiction! Consequently P is maximal. 2
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12.3 Mori Criterions in the integral Case

We start with a general proposition not based on the cancellation property
.12. 3. 1 Proposition. Any AMV, whose elements A ̸= 0 are products of
maximal elements has the Mori property (M).

PROOF. Evidently, under the assumption above any prime element is a
prime divisor and starting from A ⊇ b ̸= A(A ∗ b) by 5.4.8 we are led to
some maximal M satisfying b ∗ bM = M and Mn ≽Mn+1 (∀n ∈ N) . So,
by the divisor lemma we get Q :=

∩
Mn | b (n ∈ N) whence Q must be

prime by (5.26), that is must be equal to 0, a contradiction. 2

One of Krull’s fundamental theorems, apart from those presented above,
is a simple but important lemma. This lemma was added in proof by
Krull in [], after he had omitted this fact in his original version. We give
an extension and generalization here:

12. 3. 2 The Finiteness Lemma. Let A be a complete lattice and suppose
A(A ∗ B) = B = B(B : A) with cancellable divisor B . Then also A is a
cancellable divisor.

If moreover A is an AML and B is compact, then also A is compact.

PROOF. Clearly, divisors of cancellable elements are cancellable. Suppose
now A · (A ∗B) = B with cancellable divisor B . Then it results:

A ⊇ C =⇒ B = A · (A ∗B) ⊇ C · (A ∗B)
=⇒ AY · (A ∗B) = C · (A ∗B)
=⇒ A · Y = C (∃Y ) .

Let now A be algebraic and suppose that B is a cancellable compact divisor.
Then it follows:

A · (A ∗B) = B =⇒ B = (
n∑
1

ai) · (A ∗B)

=⇒ A =
n∑
1

ai (∃ ai (1 ≤ i ≤ n)) .

Hence, divisors of cancellable generators are again divisors, compare [245].
2

12. 3. 3 Corollary. (Krull). If A is generated by a cancellable monoid
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Ac , then A is a Mori ideal monoid iff A has the Noether and the Prüfer
property.

Furthermore it holds:

12. 3. 4 Proposition. Let A be an integral ideal monoid. Then A is
an UF-ideal-monoid iff A is a Mori structure and this is the case iff A is
cancellable with 0, satisfying moreover condition (J) .

PROOF. (a) The conditions above are necessary. This is clear w.r.t.
(J) and it results in case of the cancellation property with 0 from the
implication A ⊇ c =⇒ A ·B = c (∃B) .

(b) The stated conditions are sufficient:

SINCE: First of all A∗B+B ∗A = 1 = A : B+B : A is evident, whence
A has the Prüfer property. And, moreover, condition (S) is fulfilled. To
this end observe that any prime element P with P s ⊃ X ⊃ P s+1 implies
the existence of elements a, b satisfying

a ⊆ P s & a ̸⊆ X & b ⊆ X & b ̸⊆ P s+1 & P (P + a ∗ b) = P .

This would imply next P + a ∗ b = 1 from which by 7.3.2

P s+1 + (a+ b) = (P s+1 + (a+ b)) · (P + a ∗ b)
= P s+1 + b

would result, a contradiction! Consequently it holds P s ≽ P s+1 – for all
exponents s .

But this means, in case of P n ⊇ A (∀n ∈ N), that Q :=
∩

n∈NP
n is prime

by 7.3.5 satisfying Q ≽ Q2 . Consequently, by 7.3.9, we get (A′), that
is the archimedean property for all prime elements P , which leads to the
general archimedean property (A). 2

Next applying 5.3.9 and 8.1.7 we obtain:

12. 3. 5 Proposition. Any AMV, whose elements A ̸= 0 are products of
maximal elements has the Mori property (M).

PROOF. Evidently, under the assumption above any prime element is a
prime divisor and starting from A ⊇ b ̸= A(A ∗ b) by 5.4.8 we are led to
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some maximal M satisfying b ∗ bM = M and Mn ≽Mn+1 (∀n ∈ N) . So,
by the divisor lemma we get Q :=

∩
Mn | b (n ∈ N) whence Q must be

prime by (5.26), that is must be equal to 0, a contradiction. 2

We now turn to laws of distributivity.

12. 3. 6 Proposition. Let A be a commutative AML generated by a
cancellative monoid of divisors with zero, say Ac. Then A has the multi-
plication property if and only if A is cancellative with zero, satisfying

Xi ⊇ b ̸= 0 (∀ i ∈ I) =⇒ A+
∩
Xi =

∩
(A+Xi) (i ∈ I).(D+)

PROOF. Necessity: Obviously the conditions are necessary, recall that
property (M) implies the unique factorization property whence any B has
only finitely many supelements.

Sufficiency: It holds (a + b) · (a + b)2 = (a + b)(a2 + b2) and thereby
ab ⊆ a2 + b2 that is ab = (ab ∩ a2) + (ab ∩ b2) = (ab)(ab ∗ aa + ab ∗ bb) =
(ab)(b∗a+a∗b) , leading by cancellation to the property a∗b+b∗a = 1 . In
particular by 7.2.3 and (D+) this means that A has the Prüfer property.

Next, if M is maximal and moreover a divisor and if P is prime, then
M ⊃ P would lead to M · P = P and hence by cancellation to M = 1 .
Consequently, if all maximal elements are divisors there cannot exist any
non maximal prime elements, except for 0, possibly. Consequently, by the
divisor lemma, all we have to show is that maximal elements are divisors,

since by the Prüfer property
∞∩
1

Mn is prime.

But there are no idempotent maximal elements different from 0 since A is
cancellative (with zero).

So, let M :=
∑
mi (i ∈ I) be maximal with c ∈M and c /∈M 2 . Consider

(
∑
mi) ∗ c =

∩
(mi ∗ c) . By (n) we get (mi + c) · (mi ∗ c) = c . Hence

M cannot contain any mi ∗ c . Consequently it holds M +
∩

(mi ∗ c) =∩
(M +mi ∗ c) = 1

(5.11)
; M | c . 2

12. 3. 7 Proposition. An integral commutative DV-IDM A is a Mori
AML iff it satisfies one of the subsequent distributivity laws:

A ·
∩
Bi =

∩
ABi(D1)
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A ∗
∑

Bi =
∑

(A ∗Bi )(D2) ∩
Ai ̸= 0

=⇒ (
∩
Ai ) ∗B =

∑
(Ai ∗B) .

(D3)

PROOF. (a) The conditions above are necessary, since the cancellation
law is obvious by (M), whereby we are led to (D1) through (D3) as follows :

(D1) and (D2) are evident for A = 0 . Therefore we may start from can-
cellable elements A and

∩
Ai , respectively. We put∑

Xi :=
∑
i∈I
Xi and

∩
Xi :=

∩
i∈IXi .

Then condition (D1) follows by

A ·
∩
Bi = A(

∩
A ∗ ABi )

= A · (A ∗ (
∩
ABi ))

=
∩
ABi ,

and condition (D2) follows by

A · (A ∗
∑

Bi ) = A ∩
∑

Bi

=
∑

(A ∩Bi )

=
∑

A(A ∗Bi )

= A ·
∑

(A ∗Bi )

;

(A ∗
∑

Bi ) =
∑

(A ∗Bi ) .

Finally we get condition (D3) from

∩
Ai ) · (

∑
(Ai ∗B)) =

∩
(Ai

∑
(Ai ∗B)) (by (D1))

⊇
∩

(Ai ∩B)

= (
∩
Ai ) ∩B

= (
∩
Ai ) · ((

∩
Ai ) ∗B)

;∑
(Ai ∗B) ⊇ (

∩
Ai ) ∗B ⊇

∑
(Ai ∗B) .

(b) The conditions above are sufficient.

Since : (D1) certifies the assertion as shown above below 12.1.1 while
(D2) and (D3) worked even as conditions. 2
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12.4 Factorial Duo structures

We start from a not necessarily commutative ideal structure satisfying the
equivalence (A |ℓB ⇐⇒ A |rB ) , called duo DV-IDM.

12. 4. 1 Proposition. Let A be a duo DV-IDM. Then the following are
equivalent :

(i) Each A ∈ A is a product of maximal elements.

(ii) (A : B) ∗ A = B : (A ∗B) .

PROOF. First of all recall that (ii) is self-dual.

(i) =⇒ (ii). Suppose (i). Then each prime element P of A is an atom
and a divisor as well. From this commutativity follows because maximal
elements P ̸= Q satisfy PQ = AP = QB . Observe : Q ⊇ A and P ⊇ B

implies PQ ⊇ QP ⊇ PQ and thereby UV = V U .

Since prime elements are divisors, according to 8.1.3 each prime element
is even completely prime.

Consequently in case of U ⊇ V the right quotient U ∗V is equal to the rest
product of the canonical decomposition of U w. r. t. the canonical decom-
position of V . But, this leads to

(A ∗B) ∗B = ( (A+B) ∗B ) ∗B
= ( (A+B) ∗ A ) ∗ A = (B ∗ A) ∗ A .

(ii) =⇒ (i). First of all : any prime element is maximal. To this end
observe that 1 ⊇ A ⊃ P =⇒ A = (A : P ) ∗ A = P : (A ∗ P ) = P : P = 1 .

Next it holds: A+B ⊆ (A : B) ∗ A

and it results: A+B ⊇ (A : B) ∗ A .

Put A+B =: C . Then it follows A ∗ C = 1 = C : B and thereby

C : ( (A : B) ∗ A ) = (C : (A ∗ C) ) : ( (A : B) ∗ A )

= ( (A : C) ∗ A ) : ( (A : B) ∗ A )

= (A : C) ∗ (A : ( (A : B) ∗ A ) )

= (A : C) ∗ (A : B)

= ( (A : C) ∗ A ) : B

= (C : (A ∗ C) ) : B

= C : B = 1 .
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Hence A : (B ∗ A) = A+B = (A : B) ∗ A .

Choose now some C ⊆
∩
Ai (i ∈ I) . Then it results:

x ⊆
∑

(Ai ∗ C) (i ∈ I)

⇐⇒ C : x ⊇ C :
∑

(Ai ∗ C)

⇐⇒ C : x ⊇
∩

(C : (Ai ∗ C) ) =
∩
Ai

⇐⇒ (C : x) ∗ C ⊆
(∩

Ai

)
∗ C

⇐⇒ x ⊆
(∩

Ai

)
∗ C ,

;(∩
Ai

)
∗ C =

∑
(Ai ∗ C)

& C :
(∩

Ai

)
=

∑
(C : Ai ) ,

that is in general: (∩
Ai

)
∗ C =

(∩
Ai

)
∗
(
C ∩ y

∩
Ai

)
=

∑ (
Ai ∗

(
C ∩

∩
Ai

))
⊆

∑
(Ai ∗ C)

;
(∩

Ai

)
∗ C =

∑
(Ai ∗ C) .

Hence, we could continue along the lines of 12.1.1(b) . But (ii) offers the
shorter calculation:

A ∩B = x : ( (A ∩B) ∗ x )

= x : (A ∗ x+B ∗ x)

= x : ( ( (A ∗ x) : (B ∗ x) ) ∗ (A ∗ x) )

= x : ( (A ∗ (x : (B ∗ x)) ) ∗ (A ∗ x) )

= x : ( (A ∗B) ∗ (A ∗ x) )

= x : (A (A ∗B) ∗ x )

= A (A ∗B) ,
;

A ⊇ B ⇒ A |ℓB & A |rB .

It remains to show that A has the Noether property which, according to
12.1.1(a), is done by the calculation:
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C ∗
∑

Ai = (C ∗ 0) :
∩

(Ai ∗ 0)

=
∑

( (C ∗ 0) : (Ai ∗ 0) )

=
∑

(C ∗ (0 : (Ai ∗ 0) ) )

=
∑

(C ∗ Ai ) .

Thus the proof is complete. 2

A bit more general we can deduce from the preceding proposition:

12. 4. 2 Corollary. Let A be a cancellative DV-IDM with 0 . Then, any
not vanishing A of A is a product of finitely many maximal elements iff all
A ̸= 0 ̸= B satisfy the equation

(A : B) ∗ A = (B : A) ∗B .

PROOF. Each pair A,B ̸= 0 of A has a not vanishing intersection C with
[C, 1] satisfying (ii) of 12.4.1 2



Chapter 13

v- and t-Ideals

13.1 Preliminaries

By the theorems of chapter 5 various characterizations of algebraic Prüfer
AMLs were given, by the theorems of chapter 7 various characterizations of
algebraic Mori structures were presented. One crucial assumption of these
chapters has been the algebraic property. For instance : Lattice distribu-
tivity of Prüfer AMLs was proven by applying the algebraic property, and
moreover (MP)=⇒(M) resulted from algebraic property of the underlying
structure A .

In this chapter we are concerned with concrete monoids of ideals, which
need not be ideal monoids. Again, it will mean no essential restriction
that we start from commutative structures, since condition (M) implies
the archimedean property even though A fails to be algebraic. Consult
[68] and [69].

Mainly we will study monoids of v- and t-ideals, whose importance was
pointed out already in former chapters. To this end we start from a com-
mutative monoid S, considered with respect to some fixed monoid of ideals
A . In order to emphasize that we are concerned with monoids of ideals
rather than with ideal monoids, we will denote ideals in general by lower
case Gothic letters, and ideals, generated by A ⊆ S , by ⟨A⟩ . Moreover, in
the finite case we will freely write ⟨a1, . . . , an⟩ instead of ⟨{a1, . . . , an}⟩ , and
given some a and some A the set A should be assumed to be a generating
subset of a .

Furthermore, let us agree, to call (S , · , 1 ) itself, for instance, a Prüfer

211
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monoid or a Mori monoid , without any suffix whenever the monoid of
ideals under consideration has the corresponding property and is well fixed.

In detail we will do the following :

After a description of Prüfer structures in general we study the cancellative
case. It will turn out that the Prüfer property (P) here is equivalent to
the equation ⟨a⟩ ∗ ⟨b⟩ + ⟨b⟩ ∗ ⟨a⟩ = ⟨1⟩, whence 7.2.6 will contribute to
characterizations of monoids of ideals of cancellative monoids.

Next we will characterize Mori v-monoids by the archimedean property
combined with the condition that all ⟨a⟩ ∗ ⟨b⟩ be divisors.

We then turn to monoids of v- and t-ideals, respectively, of cancellative
monoids. Here we will present results on t-ideals, in classical ring theory
due to Krull and on v-ideals due to van der Waerden.

13.2 The general Case

13. 2. 1 Proposition. Let S be a monoid and A some monoid of ideals
of S . Then S is a Prüfer monoid w. r. t. A iff A for finitely generated
a , b , c satisfies :

⟨a⟩ = ⟨a⟩ · ( ⟨a⟩ ∗ b + b ∗ ⟨a⟩ )(P1∗)

⟨a⟩ = ( b : ⟨a⟩ + ⟨a⟩ : b ) · ⟨a⟩(P1: )

a ∩ (b + c) = (a ∩ b) + (a ∩ c) .(P2 )

PROOF. Necessity is certified by the proof of 7.1.3

Sufficiency : By definition each ⟨a⟩ is a divisor. So, let us assume that
all ⟨a1 , . . . , ak⟩ with (k ≤ n) are (already) divisors. Then we get by
assumption

⟨a⟩ = ⟨a⟩ · (⟨a⟩∗⟨a1 , . . . , an⟩+⟨a1, . . . , an⟩∗⟨a⟩)
= ⟨a⟩·(⟨a⟩ ∗ ⟨a1, . . . , an⟩)+⟨a⟩ · (⟨a1, . . . , an⟩∗⟨a⟩)
= ⟨a1, . . . , an⟩ · (⟨a1, . . . , an⟩∗⟨a⟩)+⟨a⟩·(⟨a1, . . . , an⟩∗⟨a⟩)
= ⟨a1, . . . , an, a⟩ · (⟨a1, . . . , an⟩∗⟨a⟩) .
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Hence, all (n + 1)-generated ideals are divisors, too. This completes the
proof by induction. 2

By 13.2.1 Prüfer monoids are characterized by a weakened distributivity
but a stronger absorption law.

If A is a left Prüfer AML then a finitely generated A divides a finitely
generated B from the left iff there exists a finitely generated X satisfying
A · X = B. So in algebraic left Prüfer structures compact elements A,B
produce a compact A ∩B which thereby is a left divisor. This is different
in non algebraic Prüfer structures!

For example : In the additive v-ideal monoid of real numbers r = a +
bπ (a, b ∈ N0) it holds ⟨2⟩ ⊇ ⟨π⟩ but, of course, there is no finitely gener-
ated v-ideal summand of, for instance, ⟨2⟩ with respect to ⟨π⟩. From this
point of view it seems desirable to get some more information about Prüfer
structures.

13. 2. 2 Proposition. Let S be a Prüfer monoid. Then the meet a ∩ b

of compact divisors a , b is again a divisor.

PROOF. Suppose a∩ b ⊇ ⟨x⟩. It follows a · ( a ∗ ⟨x⟩ ) = ⟨x⟩ = b · ( b ∗ ⟨x⟩ )
(already from (P1)). And this implies

(a ∩ b) · (a ∗ ⟨x⟩ + b ∗ ⟨x⟩)
= a (a ∗ b)( a ∗ ⟨x⟩ ) + b (b ∗ a)( b ∗ ⟨x⟩ )

= ⟨x⟩ · (a ∗ b) + ⟨x⟩ · (b ∗ a)

= ⟨x⟩ · (a ∗ b + b ∗ a) = ⟨x⟩ . 2

We now turn to Mori v-monoids. We begin with the general case and then
will specialize the results towards the classical theorem that a cancellative
monoid is a Mori v-monoid iff it is completely integrally closed.

13. 2. 3 Proposition. A commutative monoid S is a Mori v-monoid iff
the semigroups V of v-ideals V satisfies the conditions :

V has the archimedean property .(A)

Every ⟨a⟩ ∗ ⟨b⟩ is a divisor .(d)

PROOF. Assume b = b and s ⊇ a ◦ (a ∗ b) . Then by the divisor lemma
we get b ◦ (b ∗ s) = b = b ∩ s, that is s | b.
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It remains to show a ◦ (a ∗ b) ⊇ b . To this end suppose s | a(a ∗ bt) . Then
it follows a ⊇ bt ⊇ a ◦ (a ∗ bt) , s ⊇ a ◦ (a ∗ bt) , and bt ∗ s is a divisor.
Hence, it holds bt = a ◦ (a ∗bt) or we can apply 13.2.3 by putting bt := B
and s := S.

This leads – in any case – to bt ∪ s = bt and thereby to s | b · t. Thus it
results a ◦ (a ∗ b) = b .

Consequently, the conditions (A) and (d) are sufficient.

On the other hand, the conditions (A) and (d) are necessary, too.

FOR: Recall y = x ∗ xy & z = xy ∗ (xy)z =⇒ yz = x ∗ x(yz) .

Let now an ⊇ b (∀n ∈ N) be satisfied. We suppose b · a ⊂ b that is

b ∗ ba =: x ̸= ⟨1⟩ . Then it holds xn ∗ xn+1 = x and thereby
∞∩
1

xn ⊇ x ∗
∞∩
1

xn ,

implying
∞∩
1

xn = x ∗
∞∩
1

xn, that is x ·
∞∩
1

xn =
∞∩
1

xn . But this leads to b · x = b,

a contradiction. 2

There are two aspects which should be taken into account :

As is immediately seen, the preceding proof has shown a bit more than
explicitly emphasized. On the one hand we notice

13. 2. 4 Corollary. If S is a complementary monoid, i. e. if each ⟨a⟩ ∗
⟨b⟩ is principal then the Mori property is equivalent with the archimedean
property for principal ideals.

On the other hand it should be remarked that the proof of 13.2.3 remains
correct by assumption of the (noncommutative) duo-situation if we replace
zn by a suitable z′n in the (only) line where zn is commuted.

13.3 Cancellative Monoids

Integral domains with condition (M) and (P), respectively, for v-ideals
were investigated by Zafrullah in [432] and since v- and t-ideals don’t
depend on addition, the conditions of [432] are carried over to cancellative
monoids with 0. But apart from this, further characterizations are possible,
of course.
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First of all we get the most important rule :

13. 3. 1 Lemma. Let S be a duo cancellative monoid. Then each of its
principal ideals ⟨a⟩ is cancellable, as well in the v-ideal monoid as in the
t-ideal monoid.

PROOF. Suppose ⟨a⟩ · x = ⟨a⟩ · y . Then it follows

s | ux v =⇒ as | ⟨a⟩u x v
=⇒ as | ⟨a⟩u y v
=⇒ s |u y v

and thereby x = y.

Now we consider the t-situation. For each x ∈ x with suitable y1, . . . , yn ∈ y

we get
⟨a⟩ · ⟨x⟩ ⊆ ⟨a⟩ · ⟨y1, . . . , yn⟩v ,

which leads to x ∈ ⟨y1, . . . , yn⟩v ⊆ y , and thereby to x ⊆ y .

This means x = y , by duality. 2

In particular we are led to a theorem, resulting immediately from 7.2.1
and 7.2.6 :

13. 3. 2 Proposition. A commutative cancellative monoid S is a Prüfer
v-monoid iff its v-ideal monoid satisfies one of the subsequent equations:

(⟨a⟩ + ⟨b⟩)(⟨a⟩ ∩ ⟨b⟩) = ⟨ab⟩(13.6)

⟨a⟩ ∗ ⟨b⟩ + ⟨b⟩ ∗ ⟨a⟩ = ⟨1⟩(13.7)

⟨a⟩ ∩ ( ⟨b⟩ + ⟨c⟩ ) = ( ⟨a⟩ ∩ ⟨b⟩ ) + ( ⟨a⟩ ∩ ⟨c⟩ )(13.8)

& ( ⟨a⟩ + ⟨b⟩ )2 = ⟨a⟩2 + ⟨b⟩2 .(13.9)

Furthermore, according to 12.4.2, we get

13. 3. 3 Proposition. A commutative cancellative monoid S is a Mori
v-monoid iff its semigroup of v-ideals satisfies :

(a ∗ b) ∗ b = (b ∗ a) ∗ a .(13.10)
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PROOF. Recall : the proof of 12.4.2 does not depend on the algebraic
property as far as (M) is considered, and in addition cancellative Mori v-
monoids always satisfy (a ∗ b) ∗ b = (b ∗ a) ∗ a . 2

Let S be a cancellative Mori monoid w. r. t. an integral monoid A of ideals
of finite character. Then A has the Noether property :

Suppose a ⊇ ⟨c⟩ . According to 7.1.2 it follows a · b = ⟨c⟩ = a′ · b where a′

is finitely generated which by cancellation leads to a = a′.

But this means that the Noether condition combined with the correspond-
ing condition of 7.2.6 provides criteria for integral Mori semigroups of
ideals and that integral Mori t-monoids, for instance, may be considered
as cancellative monoids with divisor theory.

Remark : A cancellative monoid S is called a monoid with divisor theory
if the holoid H of its principle ideals admits an extension

∑
respecting

divisibility in H (and thereby in S) , having the UF-property and satisfying
in addition the implication α ∈

∑
=⇒ α = GCD (a1, . . . , an) (∃ ai ∈

S , 1 ≤ i ≤ n) .

So, the question of an existing divisor theory, discussed for instance in
Borewicz/ Šafarevič and actualized by Skula in [392] , and recently
by Halter-Koch and his co-workers Geroldinger and Lettl is equiv-
alent to the Mori problem for t-ideals, compare the introduction. More
precisely :

13. 3. 4 Proposition. A commutative cancellative monoid S is a Mori
t-monoid (has a divisor theory) iff the semigroup of t-ideals satisfies :

(a ∗ b) ∗ b = (b ∗ a) ∗ a .(13.11)

PROOF. Recall : The Mori condition implies the Noether property. 2

13.4 Cancellative Mori v-Monoids

Let S be a semigroup of ideals of S having the Mori property. Then S is
a Mori v-Monoid, as was shown above. This is interesting above all in the
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cancellative case, since it will turn out in the next proposition that here
condition (M) for v-ideals is equivalent to(

s

t

)n ∣∣∣∣∣
S
c ∈ S (∀n ∈ N) =⇒ s

t

∣∣∣∣∣
S

1 =⇒ s

∣∣∣∣∣ t
or, respectively, to

sn
∣∣∣∣ c · tn (∀n ∈ N) =⇒ s

∣∣∣∣ t .(v)

If (v) is satisfied, S is called completely integrally closed. Obviously (v)
implies the cancellation law.

In particular we may state that (v) depends on divisibility in S and not
on ideals whatever under consideration. More precisely condition (v) is
satisfied whenever there exists a semigroup of ideals, satisfying condition
(M).

From this point of view it surprises a bit that condition (v) isn’t really
present in the rich literature on Dedekind domains, for instance in the
monograph of Larsen/ McCarthy, [268] . One reason might be that in
these situations one is faced with even integrally closed “structures” . Thus,
in Dedekind domains these ring theoretic aspect dominates the semigroup
theoretical aspect (v) . In semigroup situations, condition (v) will turn out
to be a central, most efficient tool of M-structures, whatever.

Recall 13.2.3. It follows :

13. 4. 1 Proposition. Let S be a commutative cancellative monoid, and
let V be its monoid of v-ideals. Then the following are pairwise equivalent.

(i) S is completely integrally closed.

(ii) V satisfies condition (A) and condition (P).

(iii) V satisfies condition (A), and every ⟨a⟩ ∩ ⟨b⟩ is a divisor.

(iv) S is a Mori v-monoid.

(v) V satisfies (A), and it holds ( ⟨a⟩ ∩ ⟨b⟩ )2 = ⟨a⟩2 ∩ ⟨b⟩2 .

PROOF. (i) =⇒ (ii). We put ⟨a⟩∗⟨b⟩+⟨b⟩∗⟨a⟩ =: x. Then by cancellation
it follows for principal ideals ⟨s⟩ in a first step ⟨s⟩ · ⟨a⟩ ∩ ⟨s⟩ · ⟨b⟩ = ⟨s⟩ ·
( ⟨a⟩ ∩ ⟨b⟩ ) and thereby in a second step :

s | x t =⇒ sa | ( ⟨a⟩ ∩ ⟨b⟩ )t & sb | ( ⟨a⟩ ∩ ⟨b⟩ )t

=⇒ ⟨s⟩( ⟨a⟩ ∩ ⟨b⟩ ) ⊇ ( ⟨a⟩ ∩ ⟨b⟩ )t
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=⇒ sn ( ⟨a⟩ ∩ ⟨b⟩ ) ⊇ ( ⟨a⟩ ∩ ⟨b⟩ )tn

=⇒ sn | c · tn (∀ c ∈ ⟨a⟩ ∩ ⟨b⟩, ∀n ∈ N)

=⇒ s | 1 t
;

x = ⟨1⟩.
Hence V is normal. Furthermore S is archimedean. To verify this, suppose
an ⊇ ⟨b⟩ (∀n ∈ N) . Then it follows a = ⟨1⟩ , because

s | a · t =⇒ sn | an · tn =⇒ sn | b · tn =⇒ s | 1 · t =⇒ a = ⟨1⟩ .

(ii) =⇒ (iii) results from 13.2.2

(iii) =⇒ (iv). If ⟨b⟩ ∩ ⟨a⟩ is a divisor then it follows

⟨b⟩ ∗ ⟨a⟩ ⊇ x =⇒ ⟨b⟩ · ( ⟨b⟩ ∗ ⟨a⟩ ) ⊇ ⟨b⟩ · x
=⇒ ⟨b⟩ · ( ⟨b⟩ ∗ ⟨a⟩ ) · y = ⟨b⟩ · x ,

whence by cancellation ( ⟨b⟩ ∗ ⟨a⟩ ) · y = x .

(iv) =⇒ (v). According to ⟨a⟩ ∗ ⟨b⟩ + ⟨b⟩ ∗ ⟨a⟩ = ⟨1⟩ we get

( ⟨a⟩2 ∩ ⟨b⟩2 ) ∗ ⟨a⟩ · ⟨b⟩ = ⟨a⟩ ∗ ⟨b⟩ + ⟨b⟩ ∗ ⟨a⟩ = ⟨1⟩ ,

consult the proof of 7.2.1.

(v) =⇒ (i). (v) provides ⟨a⟩2 ∗ ⟨b⟩2 = ( ⟨a⟩ ∗ ⟨b⟩ )2 , which by (A) leads to

sn | c · tn (∀n ∈ N) =⇒ ⟨c⟩ ∗ ( ⟨t⟩2m ∗ ⟨s⟩2m ) = ⟨1⟩ (∀m ∈ N)

=⇒ ⟨c⟩ ∗ ( ⟨t⟩ ∗ ⟨s⟩ )2
m

= ⟨1⟩ (∀m ∈ N)

=⇒ ⟨t⟩ ∗ ⟨s⟩ = ⟨1⟩
=⇒ s | t .

This completes the proof. 2

Opposite to the algebraic case, where the Prüfer property combined with
the archimedean property by no means guarantees the Mori property, in the
v-ideal case we get: A commutative cancellative monoid is a Mori v-ideal
monoid if and only if it satisfies the properties (A) and (P). However, it has
to be taken into account, of course, that the Mori v-quality is significantly
weaker than the Mori t-quality is.
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The conditions of 13.4.1 may be weakened. As is easily seen, each divisor
of a principal v-ideal is cancellable, and because of this each divisor of
a principal v-ideal is a divisor in general. Consequently a commutative
cancellative monoid is a Mori v-monoid if any a is divisor of at least one
principal ideal. More precisely :

13. 4. 2 Corollary. Let S be a commutative cancellative monoid and V

its monoid of v-ideals. Then the following are pairwise equivalent :

(i) S is a Mori v-monoid.

(ii) V satisfies (A), and each ⟨a⟩ ∩ ⟨b⟩ of V is divisor of some ⟨c⟩.
(iii) V satisfies (A), and each ⟨a , b⟩ = ⟨a⟩+⟨b⟩ is divisor of some ⟨c⟩.
(iv) A satisfies (A), and ( ⟨a⟩+⟨b⟩ )·( ⟨a⟩∩⟨b⟩ ) = ⟨ab⟩ for all elements

a , b ,.

(v) A satisfies (A), and it holds a · (b ∩ c) = (a · b) ∩ (a · c).

(vi) Every v-ideal a divides at least one principal ideal ⟨c⟩.

Next we turn to the v-Gruppensatz of van der Waerden

Let S be a commutative cancellative monoid, G its quotient group, and A
a subset of G . Then A−1 is defined by {x ∈ G |Ax ⊆ S}, and a ⊆ G is
called a v-module or equivalently a fractional v-ideal if (a−1)−1 = a .

The module definition extends the v-ideal definition, observe

α ∈ (A−1)−1 iff s
∣∣∣∣
S
At =⇒ A · t

s
⊆ S =⇒ α · t

s
∈ S =⇒ s

∣∣∣∣
S
α · t .

In particular, by definition v-modules behave like v-ideals, and the monoid
of v-ideals is embedded in the monoid of v-modules. Thus we are led to
van der Waerden.

13. 4. 3 The v-Gruppensatz. Let S be a commutative cancellative mo-
noid with quotient group G and let M be the corresponding monoid of
v-modules of G . Then the following are pairwise equivalent :

(i) S is completely integrally closed.

(ii) M is a group with identity S.

(iii) M satisfies (a · b)−1 = a−1 · b−1 .

(iv) S is a Mori v-monoid.
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PROOF. (i) =⇒ (ii) . If (i) is satisfied then each α ∈ G with α ∈
(a ·a−1)−1 satisfies α ·aa−1 ⊆ S and thereby αa−1 ⊆ a−1. But this provides
furthermore αn · a−1 ⊆ a−1 (∀n ∈ N) , leading to αn · aa−1 ⊆ S . Choose
now some c ∈ aa−1. Then all elements αn·c (n ∈ N) belong to S . Hence we
get α ∈ S and thereby (aa−1)−1 ⊆ S . This implies aa−1 ⊇ S ; aa−1 = S .

(ii) =⇒ (iii) follows from a · a−1 ⊆ S = S−1 ⊆ a−1 · a , by
(
a−1

)−1
= a .

(iii) =⇒ (iv). If G is a group and if a ⊇ b then a−1b is integral and
a · (a−1b) = b.

(iv) =⇒ (i) . By the cancellative law we get a ·
∩
bi =

∩
abi , which

implies the archimedean property. Hence we may continue along the proof
of 13.4.1 (v). 2

13. 4. 4 Corollary. Let S be a commutative cancellative monoid with
quotient group G and let M be the corresponding monoid of v-modules of
G . Then S is a Mori v-monoid iff M satisfies :

(a · b)−1 = a−1 · b−1 .(V)

For d-ideals the cancellation law

a ̸= o & a · x = a · y =⇒ x = y

does not imply the Mori property. This is quite different in the case of
v-ideals.

13. 4. 5 Proposition. A commutative cancellative monoid is a Mori v-
monoid iff its v-ideals satisfy the cancellation law.

PROOF. First we get ⟨a⟩ ∗ ⟨b⟩ + ⟨b⟩ ∗ ⟨a⟩ = ⟨1⟩, since

s | ( ⟨a⟩ ∗ ⟨b⟩ + ⟨b⟩ ∗ ⟨a⟩ ) · t
=⇒ a · s ⊇ ⟨a⟩( ⟨a⟩ ∗ ⟨b⟩ ) · t
=⇒ a · s ⊇ ( ⟨a⟩ ∩ ⟨b⟩ ) · t
& b · s ⊇ ( ⟨a⟩ ∩ ⟨b⟩ ) · t

=⇒ ( ⟨a⟩ ∩ ⟨b⟩ ) · s ⊇ ( ⟨a⟩ ∩ ⟨b⟩ ) · t
=⇒ ( ⟨a⟩ ∩ ⟨b⟩ ) · ⟨s, t⟩ = ( ⟨a⟩ ∩ ⟨b⟩ ) · ⟨s⟩
=⇒ s | 1 · t
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leads to ⟨a⟩ ∗ ⟨b⟩ + ⟨b⟩ ∗ ⟨a⟩ = ⟨1⟩ .
Consequently, each ⟨a⟩+ ⟨b⟩ divides some principal ideal, for instance ⟨b⟩ ,
and hence – according to (iii) =⇒ (iv) in the proof of 13.4.1 – ⟨a⟩ + ⟨b⟩ is
even a cancellable divisor. The same is true for ⟨a⟩ ∗ ⟨b⟩ . This means in
particular

( ⟨s⟩ + ⟨t⟩ ) · ( ⟨s⟩ ∗ ⟨t⟩) = ⟨t⟩ .

Suppose now sn | a · tn (∀n ∈ N) . Then, by cancellation property of ⟨s⟩ +
⟨t⟩ , according to (5.7) and (5.6), it results successively

( ⟨t⟩ ∗ ⟨s⟩ )n
∣∣∣∣ ⟨a⟩ (n ∈ N) .

But this leads to

( ⟨t⟩ ∗ ⟨s⟩ ) ∗
∩

n∈N( ⟨t⟩ ∗ ⟨s⟩ )n =
∩

n∈N( ⟨t⟩ ∗ ⟨s⟩ )n−1

=
∩

n∈N( ⟨t⟩ ∗ ⟨s⟩ )n ,

and hereby to∩
n∈N( ⟨t⟩ ∗ ⟨s⟩ )n = ( ⟨t⟩ ∗ ⟨s⟩ ) ·

∩
n∈N( ⟨t⟩ ∗ ⟨s⟩ )n

;

⟨t⟩ ∗ ⟨s⟩ = ⟨1⟩ ; s | t .

Hence S is completely integrally closed. 2

The proof, presented here, is along the lines of this paper, and will serve as
orientation for the proof of 13.5.2 (ii) . But an alternative proof is possible
according to ideas of Butts, [148], via the monoid of v-modules, point-
ing out the relation between the notions integrally closed and completely
integrally closed.

If an integral domain is completely integrally closed in its quotient field
K then I contains all quotients α , whose corresponding modules a =
(1, α1, α2, . . . , αn, . . .) can be multiplied into I by a suitable c ∈ I , whereas
an integral domain is integrally closed if it contains all quotients whose cor-
responding modules (1, α1, α2, . . . , αn, . . .) are finitely generated and hence
a fortiori can be multiplied into I by some suitable c ∈ I .

Let now ca =: b ⊆ I be an ideal. Then, according to the cancellation law
for non vanishing ideals it follows from a2 = a first that b · b = b · ⟨c⟩
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is valid . Hence, if b is a cancellable d- or t- or v-ideal, it follows further
⟨c⟩ = b = a⟨c⟩ .

Thus integrally closed implies completely integrally closed.

13. 4. 6 Corollary. A commutative cancellative monoid is a Mori v-
monoid iff its v-ideals satisfy

a · x = a · y =⇒ (a ∩ b) · x = (a ∩ b) · y .

PROOF. According to 13.3.1 each principal ideal is cancellable. Hence
we get a · x = a · y =⇒ ⟨a⟩x = ⟨a⟩y =⇒ x = y . 2

13.5 Krull Monoids

In [25] it is shown that a commutative cancellative monoid S admits a
divisor theory if and only if the semigroup of v-ideals is a divisor theory.
And this is the case, as shown above, if and only if the monoid of v-ideals
has the Prüfer and the Noether property, meaning – see above – that S

be a Mori t-monoid.

On the other hand it is due to Halter-Koch that cancellative monoids
with divisor theory may be considered as divisibility monoids of some Krull
domain, compare [178]. Consequently Mori t-monoids may alternatively
be called Krull monoids. This will be done in the following, initiated by a
verbal remark of Franz Halter-Koch to the author .

Theory of Krull monoids fills a lecture note by itself. So we refer the reader
to the series of papers cited within our historical remarks.

In particular, we will omit divisor class group theory or the interesting
results on finitely generated Krull monoids, based on convex geometry ,
c. f. [272] .

Since t-ideals are of finite character chapter 7 a fortiori applies to Krull
monoids. But since Krull monoids are cancellative monoids we may expect
characterizations closer to classical characterizations of Dedekind domains.

First of all, because of 7.2.6 we get by t-cancellation
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13. 5. 1 Corollary. A commutative cancellative monoid S is a Prüfer t-
monoid iff the monoid of t-ideals of S satisfies at least one of the conditions
below 7.2.6

Furthermore it holds

13. 5. 2 Proposition. Let S be a commutative cancellative monoid and
let A be the monoid of its t-ideals ⟨A⟩ . Then the following are pairwise
equivalent :

(i) The finitely generated t-ideals of S are cancellable ,
and A is lattice distributive.

(ii) ⟨a1, . . . , an⟩ ∗ ⟨a1, . . . , an⟩ · ⟨b⟩ = ⟨b⟩ ,
and all ⟨a⟩ ∩ ⟨b⟩ are finitely generated.

(iii) S is a Prüfer t-monoid.

PROOF. Suppose (i). Then finitely generated ideals a, b satisfy

(a + b)(a + b)2 = (a + b)(a2 + b2) ; (a + b)2 = a2 + b2

and hereby the Prüfer condition, according to 7.2.6

Let now (ii) be satisfied. Since ⟨a⟩ ∩ ⟨b⟩ is finitely generated, according to
7.1.2 there exists a finitely generated x satisfying ⟨a⟩ · x = ⟨a⟩ · ( ⟨a⟩ ∗ ⟨b⟩ ) .
Hence ⟨a⟩ ∗ ⟨b⟩ is equal to x and thereby finitely generated. Start now as
in the proof of 13.4.5 . Then, according to condition (ii) we get

( ⟨a⟩ ∩ ⟨b⟩) · ⟨t⟩ ∗ ( ⟨a⟩ ∩ ⟨b⟩) · ⟨s⟩ = ⟨t⟩ ∗ ⟨s⟩ = ⟨1⟩ ,

implying ⟨a⟩ ∗ ⟨b⟩ + ⟨a⟩ ∗ ⟨b⟩ = ⟨1⟩ .

On the other hand 7.1.3 implies (iii) =⇒ (i) & (ii) , by cancellation.

This completes the proof. 2

13. 5. 3 Corollary. Let S be a commutative cancellative monoid. Then
S is a Krull monoid iff any t-ideal is finitely generated and in addition one
of the conditions below 7.2.6 is satisfied by the monoid of t-ideals.

Recall : If S is a Krull monoid then S is also a Mori v-monoid. Hence Krull
monoids are completely integrally closed. This results also by the proof of
(v) =⇒ (i) below 13.4.1 – as we shall see. But, under which conditions
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is a completely integrally closed commutative cancellative monoid, i. e. a
Mori v-monoid, even a Mori t-monoid, alias a Krull monoid?

13. 5. 4 Proposition. A commutative cancellative monoid S is a Krull
monoid iff it satisfies simultaneously for at least one system A of ideals of
finite character with cancellable principal ideals :

S is completely integrally closed .(v)

Each maximal m is of type ⟨a⟩ ∗ ⟨b⟩ .(w)

PROOF. Necessity : Suppose the multiplication property for A . Then
it follows the v-multiplication property, as was pointed out above. Recall
at this point, that (v) was developed by applying the cancellation law
for principal ideals, the Prüfer property and the property a · u = a =⇒
(a ∩ b) · u = a ∩ b . So, this part remains valid in general also for arbitrary
multiplication monoids with cancellable principal ideals. Consequently, S
satisfies condition (v) .

It remains to verify condition (w) . So, suppose that m is maximal and
m ⊇ b is satisfied. Then it follows m · (m ∗ b ) = b. But because of the
cancellation property of b it cannot hold b = m ∗ b . Hence there exists
some a with a ∈ m ∗ b but a /∈ b. This leads further to a · m ⊆ b and
consequently to a∗b ⊇ m . So it holds either a∗b = 1 and thereby ⟨a⟩ ⊆ b,
a contradiction, or, on the grounds of maximality, m = a ∗ b , q, e. d.

Sufficiency : First of all we show that maximal t-ideals m are divisors
and thereby a fortiori cancellable. We recall that by assumption maximal
t-ideals are even v-ideals and that

⟨A⟩ · ⟨B⟩ = ⟨C⟩ =⇒ ⟨A⟩v · ⟨B⟩v = ⟨C⟩v

is satisfied. According to (v), in the monoid of v-ideals each c ∈ m satisfies

m · (m ∗ c) = c .

Suppose next m · (m ∗ c) ̸= c .

Then it holds

1 ̸= c ∗m · (m ∗ c) ⊇ m ; c ∗m · (m ∗ c) = m

and thereby m · (m ∗ c) = m · c ,
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since in the semigroup of v-ideals this would lead to

m · c = c ; m = ⟨1⟩ ,

a contradiction w.r.t. b |− a . So, we get m · (m ∗ c) = c also in A Hence
each maximal m of A is a cancellable divisor.

We now prove that A satisfies condition (A) for maximal elements m . First
a hint: If b ·z ̸= b then any m , maximal in the set of all y ⊇ z with by ̸= b ,
is maximal even in A , because

u ⊃ m =⇒ b · u = b = b · 1 ; u ⊃ m =⇒ u = 1 .

Suppose now c · p ̸= c , in spite of pn ⊇ c (∀n ∈ N) . Then for each
maximal m in the sense of our hint we get mn ⊇ c (∀n ∈ N) on the one
hand and c · m ̸= c on the other hand. But each maximal m is a divisor
of type a ∗ b as was shown above. Consequently mn ⊇ c (∀n ∈ N) would
imply next b ⊇ a ·m and thereby

mn ⊇ c (∀n ∈ N) ; bn ⊇ mn · an (∀n ∈ N)

; bn
∣∣∣∣ c · an (∀n ∈ N)

; b | a ,

a contradiction! Hence A satisfies:

pn
∣∣∣∣⟨b⟩ (∀n ∈ N) =⇒ p⟨b⟩ = ⟨b⟩ .(A)

Finally assume :

a ⊇ b and b ⊃ b ·m ⊇ a · ( a ∗ b ) with maximal m ⊇ b ∗ a( a ∗ b ) .

Then it results :

m ⊇ ⟨b⟩ ∗ a · ( a ∗ b ) ⊇ a ∗ a · ( a ∗ b ) = a ∗ b =: x .

Hence for x , defined this way, it follows

a ·m · (m ∗ x) = a · x ⊆ b ·m ; a · (m ∗ x) ⊆ b

; x = a ∗ b ⊇ m ∗ x
; x = m ∗ x
; m · x = m · (m ∗ x) = x .
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This completes the proof, since the final line implies b · m = b · 1 by
condition (A) and thereby m = 1 , a contradiction! 2

By the preceding theorem the archimedean property is a most natural
substitute of condition (v). For, (A) combined with (jn) is equivalent to
(v) combined with (jn), but (A) makes sense in arbitrary situations whereas
condition (v) - as shown above - makes sense only in integral structures.
Furthermore it seems to be interesting that cancellation property of the
monoid of v-ideals certifies the Krull condition up to m = ⟨a⟩ ∗ ⟨b⟩ for
maximal t-ideals m , a condition, which has to be introduced in which form
ever.

Observe furthermore, that the proof of 13.5.4 offers a proof line for

13. 5. 5 Proposition. A commutative cancellative monoid S is a Krull
monoid iff it satisfies simultaneously for at least one system A of ideals of
finite character with cancellable principal ideals :

a ⊇ an ∗ b (∀n ∈ N) ⇒ a · b = a(B)

Each maximal m is cancellable .(c)

Since: m ∗ ⟨c⟩ = ⟨c⟩ implies m · ⟨c⟩ = ⟨1⟩ · ⟨c⟩ that is m = ⟨1⟩ and since by
analogy we may infer m = ⟨1⟩ from m ⊇ m ∗ x =⇒ m ⊇ m ∗ ⟨x⟩ (∀x ∈ x) –
without proving condition (A) ! 2

As a further result it follows from 13.5.4

13. 5. 6 Proposition. Let S be a commutative cancellative monoid and
A be some monoid of ideals of S of finite character. Then A is a Mori
structure iff it satisfies:

⟨s1, . . . , sm⟩n
∣∣∣∣ ⟨c⟩ · ⟨t⟩n (∀n ∈ N) =⇒ ⟨s1, . . . , sm⟩ | ⟨t⟩ .(ve)

Each maximal m is a v-ideal.(w)

PROOF. As is easily seen, it suffices to show that principal ideals a satisfy

⟨a⟩ · x = ⟨a⟩ · y =⇒ x = y .

To this end we start from the premise and choose some x ∈ x . It follows
for suitable yi (1 ≤ i ≤ m)

⟨a⟩ · ⟨x, y1, . . . , ym⟩ = ⟨a⟩ · ⟨y1, . . . , ym⟩
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and thereby ⟨a⟩ · ⟨x, y1, . . . , ym⟩n = ⟨a⟩ · ⟨y1, . . . , ym⟩n ,

which implies ⟨y1, . . . , ym⟩n
∣∣∣∣ ⟨a⟩ · ⟨x, y1, . . . , ym⟩n ,

that is by (ve) ⟨y1, . . . , ym⟩ ⊇ ⟨x, y1, . . . , ym⟩ ,
;

⟨y1, . . . , ym⟩ ⊇ ⟨x⟩ .

Thus it results y ⊇ x , whence by duality it follows y = x . 2

The next proposition resembles a classical result due to Krull, compare
[418].

13. 5. 7 Proposition. Let S be a commutative cancellative monoid and
let A an arbitrary monoid of ideals of finite character. Then A is a Mori
AML iff it satisfies simultaneously :

Each a is finitely generated(n)

⟨a1, . . . , an⟩ ∗ ⟨a1, . . . , an⟩ · ⟨b⟩ = ⟨b⟩(g)

Each prime ideal p is maximal.(m)

PROOF. According to 13.5.7 and 13.5.4 the conditions above are neces-
sary.

So, it remains to verify sufficiency.

First of all (n) certifies that each a contains an irredundant t-prime product,
since not prime means a ⊇ bc (∃ b, c : a + b ⊃ a & a + c ⊃ a) .

Let now p be prime and 0 ̸= b ∈ p and let moreover p1 · . . . ·pn be a shortest
prime ideal product, contained in ⟨b⟩ . Then p is equal to one of these
pi (1 ≤ i ≤ n), say equal to p1, and because of irredundancy there exists
at least one element a in p2 · . . . · pn which is not divided by b . But this
means :

p · p2 · . . . · pn ⊆ ⟨b⟩ ; p⟨a⟩ ⊆ ⟨b⟩ .

Thus we get p ∗ ( ⟨a⟩ ∗ ⟨b⟩ ) = ⟨1⟩ ,

which, according to b |− a and the maximality of p, leads to

p = ⟨a⟩ ∗ ⟨b⟩ .
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Continuing from here we get further that together with p = ⟨a⟩ ∗ ⟨b⟩ also
p ⊇ ⟨b⟩ and p ∗ ⟨b⟩ ⊇ ⟨a⟩ are satisfied, and that by

⟨b⟩ ∗ p( p ∗ ⟨b⟩ ) ⊇ ( p ∗ ⟨b⟩ ) ∗ p( p ∗ ⟨b⟩ )
⊇ p

that is p( p ∗ ⟨b⟩ ) = ⟨b⟩ V p( p ∗ ⟨b⟩ ) = ⟨b⟩p

and thereby p( p ∗ ⟨b⟩ ) = ⟨b⟩

is satisfied, since otherwise by p ∗ ⟨b⟩ ⊇ ⟨a⟩ and according to (g) we would
get

p = ⟨a⟩ ∗ ⟨b⟩ = p · ⟨a⟩ ∗ p · ⟨b⟩
= p · ⟨a⟩ ∗ p( p ∗ ⟨b⟩ )
⊇ ⟨a⟩ ∗ ( p ∗ ⟨b⟩ )
= ⟨1⟩ ,

a contradiction ! Hence p is even a divisor and resulting from this S is a
Krull monoid. 2

If I is an integral domain then (g), with respect to d-ideals, is equivalent
to integral closedness, which was shown above and which follows on the
other hand from Prüfer’s paper [352], compare also Krull [245].

This demonstrates the analogy with a result due to Krull and presented
by van der Waerden in [418] , telling :

Dedekindsch

⇐⇒
noethersch + ganz-abgeschlossen + prim ist maximal.

In a former chapter we considered archimedean Prüfer AMLs. The most
natural question arises which the difference is between Mori t-cancellative-
monoids, alias Krull monoids, and AP-t-cancellative-monoids.

A Remark : Let H := (H, + · ) be a cancellative commutative semi-ring
with identity 1. Then H admits an embedding into a quotient-extension
Q, and the notion of an H-ideal, in the sense of a semi-ring ideal, is carried
over to Q by defining {

∑n

1 hi · ai (hi ∈ H , ai ∈ A)} as module ⟨A⟩ . This
way in Q by the H-module a new type of ideal is exhibited. Among these
modules those are of special interest,
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“die sich durch Multiplikation mit einem c ∈ H in ein Ideal ver-
wandeln lassen”

(Dedekind, recall the historical part! ). These modules are called frac-
tional ideals, whereas the semi-ring ideals are alternatively also called in-
tegral ideals. Like the integral ideals the fractional ideals are symbolized
by Gothic letters.

By definition each semi-ring ideal a is a fractional ideal, as well. Further-
more the fractional ideals in any case form an extension monoid of the
monoid of integral ideals.

Let now a be an H-module of Q . Then the set of all x , satisfying a ·x ⊆ H
forms an H-module a−1, and it may hold a ·a−1 = H , consider for instance
a principal ideal. In this case a is called invertible. As is easily seen
invertibility implies the existence of some c ∈ H with ac ⊆ H . Hence the
Gruppensatz is already satisfied if each integral ideal a is invertible.

Thus in semi-rings divisibility can be studied via fractional ideals. This
is, of course, not in any case possible, since ideals in general are not de-
fined internally. So, f. i. the H-ideal, generated by A and the H-module,
generated by A may be different.

As one example among others for applying quotients we give a final result,
thereby doing a further step towards Krull, compare again [112] :

13. 5. 8 Proposition. Let H be a commutative cancellative semi-ring with
identity 1 , let Q be its quotient extension, and M the monoid of modules
of Q . Then the following are pairwise equivalent :

(i) H is a multiplication semi-ring.

(ii) M is a group with identity H.

(iii) (n) Each a is finitely generated ,
(g) ⟨a1, . . . , an⟩ ∗ ⟨a1, . . . , an⟩ · ⟨b⟩ = ⟨b⟩
(x) If p is maximal integral then p−1 is proper fractional.

PROOF. We get successively :

(i) =⇒ (ii). If A is a Mori structure and a a fractional ideal, then there
exists some c ∈ S satisfying a·⟨c⟩ ⊆ H .Hence for some suitable d we get the
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inclusion a · ⟨c⟩ ⊇ ⟨d⟩ and thereby the equation a · ⟨c⟩ · x · ⟨d⟩−1 = ⟨1⟩ (∃ x) .
But this implies a · a−1 ⊇ ⟨1⟩ and thereby a · a−1 = ⟨1⟩ = S .

(ii) =⇒ (i). By (ii) we get a ⊇ b =⇒ a−1 ⊆ b−1 , whence it follows
a · a−1b = b with a−1b ⊆ S .

(i) ⇐⇒ (iii). It suffices to verify (iii) =⇒ (i) and thereby it suffices –
according to 13.5.7 – to prove the equivalence of (x) and (w), which follows
by :

a/b ∈ p−1 ⇐⇒ p · ⟨a⟩ ⊆ ⟨b⟩ (withb |− a)

⇐⇒ ⟨a⟩ ∗ ⟨b⟩ ⊇ p

⇐⇒ ⟨a⟩ ∗ ⟨b⟩ = p ,

the final equivalence because of maximality of p. 2

Dedekind gave three different approaches, compare [104], to his cele-
brated fundamental theorem of classical ideal theory. He showed, that on
the one hand it is possible to develop the fundamental theorem first, in
order to prove the multiplication property, but that on the other hand,
it is possible as well, to prove the multiplication property first, in order
to develop the ZPI-(Zerlegung (in) Prim/Ideale)-property, starting from
condition (M).

In [41] Aubert posed the question whether this result also holds for t-
ideals. Twelve years later, in [41], Aubert informs that the answer is
affirmative, as was pointed out by (his PhD-student) 1), K. Gudlaugsson,
[176]. We prove Gudlaugssons result along the lines of the present paper.

Recall – by our remark above, according to [245] – it holds:

13. 5. 9 Proposition. Let S be a cancellative monoid. Then condition
(M) for t-ideals implies the Noether property for t-ideals.

This implies further along well known lines, that Mori t-ideal monoids have
the ZPI property. But it also holds:

13. 5. 10 Proposition. Let S be a cancellative commutative monoid.
Then S is a t-multiplication-monoid iff each t-ideal is a product of prime
t-ideals.

1) personal remark of the author
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PROOF. We prove first that the quotient b ∗ c of divisors b, c is again a
divisor, and thereby finitely generated, according to the proof of Krulls
lemma above.

We start from the prime factorizations of b , c . Since all principal t-ideals
are cancellable, the prime t-ideals of these factorizations are clearly can-
cellable, and they are divisors since in case that p · x is a divisor it results
p ⊇ ⟨c⟩ =⇒ p · x ⊇ ⟨c⟩ · x =⇒ p · x · y = ⟨c⟩ · x =⇒ p · y = ⟨c⟩ . But in case
a ⊃ p with divisor a and prime divisor p we get a·p = p ; a = ⟨1⟩ . Conse-
quently prime divisors can’t properly contain prime divisors. In particular
this means that in case a | b with divisors a, b the prime ideal decomposi-
tion of a is a subproduct of the prime ideal decomposition of b . From this
it follows easily by dividing and cancelling that b ∩ c is built by maximal
prime powers like the classical LCM in N . Hence b∩ c is a product of can-
cellable prime divisors and thereby a divisor itself. Hence b∗ c = b∗ (a ∩ c)
is a divisor, too, with

(b ∗ (b ∩ c))∗(b ∩ c) = b .(13.24)

We now show that all t-ideals are finitely generated.

To this end consider some arbitrary t-ideal a . If a is of type ⟨b⟩ ∗ ⟨c⟩ ,
then a is a divisor and hence finitely generated. Otherwise there exists a
finitely generated sub-t-ideal ⟨a1, . . . , an⟩, satisfying for some suitable pair
b1, c1 and some suitable an+1

c1 | ⟨a1, . . . , an⟩ · b1 & c1 |− ⟨a1, . . . , an, an+1⟩ · b1
;

⟨b⟩1 ∗ ⟨c⟩1 ⊇ ⟨a1, . . . , an⟩ & ⟨b⟩1 ∗ ⟨c⟩1 ̸⊇ ⟨a1, . . . , an, an+1⟩

Next we find some ⟨b⟩2 ∗ ⟨c⟩2 ⊇ ⟨a1, . . . , an, an+1⟩ but – for some suitable
an+2 – satisfying ⟨b⟩2 ∗ ⟨c⟩2 ̸⊇ ⟨a1, . . . , an+1, an+2⟩ etc. Thus we are led
successively to a series ⟨b⟩1 ∗ ⟨c⟩1 , . . . , ⟨b⟩n ∗ ⟨c⟩n , . . . of divisors of ⟨a⟩1,
and it is easily seen by (13.24) that these divisors have pairwise different
complements (⟨b⟩k ∗ ⟨c⟩k) ∗ ⟨a⟩1 .

Hence a is finitely generated. But this means that 13.3.2 works also in the
present situation, in particular that ⟨a⟩ ∗ ⟨b⟩ + ⟨b⟩ ∗ ⟨a⟩ = ⟨1⟩ is satisfied.

2

A Remark: Obviously the preceding proof works even in case that we
require the ZPI-property for v-ideals. But, of course, v-multiplication-
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monoids need not have the ZPI-property. Consider some infinite boolean
ring.

In [39] Aubert stated the problem whether the classical theorem that
condition (M) holds for d-ideals if and only if any d-ideal is a product of
prime d-ideals is valid for t-ideals, too. 12 years later he informs in [41]
that his PHD-student Gudlaugson succeeded in solving that problem.
We give a proof based on the divisor lemma.

13. 5. 11 Proposition. A cancellative monoid S is a t-multiplication
monoid iff any t-ideal is a product of prime t-ideals.

PROOF. Necessity is obvious, since by 13.5.9 the chain condition holds.

Sufficiency. The first part of this proof is valid for any ideal system
with cancellable principal ideals.

We consider a prime divisor, observe, not only a prime element but even
a prime divisor. Since any such prime divisor divides some a any prime
divisor is cancellable. So prime divisors cannot properly contain prime
divisors. In particular this means that in case of divisors a ⊇ b the prime
ideal decomposition of a is a subproduct of that of b. From this it results
next that the prime ideal decomposition of divisors b ∩ c is built like the
GCD in number theory. Hence b ∗ c = b ∗ (b ∩ c) is a divisor, too. This
means in particular that any a ∗ b is a divisor, meaning that condition (d)
is satisfied.

Hence we are through if we can show, that all t-ideals are finitely generated,
since in that case all t-ideals are also v-ideals and vice versa, and since
moreover in that case any principal t-ideal has only finitely many divisors,
yielding an | b (∀n ∈ N) =⇒ a = 1 .

So, assume that a is no divisor, in particular not of type b ∗ c. Then
there exists a finitely generated sub−t-ideal ⟨a1, . . . , an⟩ with some b1 ∗
c1 ⊇ ⟨a1, . . . , an⟩ but – for some suitable an+1 – satisfying b1 ∗ c1 ̸⊇
⟨a1, . . . , an, an+1⟩ . And next we get some b2, c2, an+2 satisfying the con-
ditions b2 ∗ c2 ⊇ ⟨a1, . . . , an, an+1⟩ but b2 ∗ c2 ̸⊇ ⟨a1, . . . , an+1, an+2⟩ .
Continuing, thus we are led to a series b1 ∗c1, . . . , bn ∗cn of divisors of – for
instance a1, and it is easily seen that divisors b, c satisfy (b∗(b∩c))∗(b∩c) =
b whence the divisors (bk ∗ ck) ∗ a1 have pairwise different complements.
But all complements are subproducts of the prime decomposition of a1.
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Hence a is finitely generated. This means that any v-ideal is finite. So,
applying 13.5.9 the proof is complete. 2

Next we turn to AMLs with cancellable generators, thus including r- d-
and t-ideals of cancellative zero monoids and integral domains.

Applying 12.3.1 and 13.5.9 here we get as a first result:

13. 5. 12 Proposition. Let A be an AML generated by a cancellative
zero monoid Ac. Then A has the multiplication property if and only if any
A ̸= 0 is a product of maximal elements.

The proof of the preceding proposition could also have been done by ap-
plying 13.4.1 and the Prüfer property. The way above, however avoids
(n)=⇒(P).

13.6 Sorrowing looking back

Starting point of the author’s scientific work was the Clifford paper

[93] written in 1932 – the author’s birth year – and published in 1938.

Clifford’s question: Which conditions are necessary and sufficient in
order that a given holoid (S, · , 1) admits a normal extension (

∑
, · , 1)

whose elements are unique irredundant products of atoms of
∑

. At this
place we come back to that question – after a break of more than 40 years,
compare [60, 61].

13. 6. 1 A general v-Ideal-Theorem. Let S be a commutative monoid.
Then S admits a normal extension with unique atom decompositions if and
only if its t-ideal monoid satisfies the condition:

(a ∗ b) ∗ b = (b ∗ a) ∗ a.

PROOF. One direction is clear, recall 12.4.2. The other one is a conse-
quence of the uniqueness property which by 7.2.7 implies the existence of
some | - normal extension meaning that the v-ideal extension and thereby
the t-ideal extension has the Noether- and the Prüfer property. 2



234 CHAPTER 13. V - AND T -IDEALS



Bibliography

[1] Arnold, I.: Ideale in kommutativen Halbgruppen. Math. Sb. 36
(1929), 401 - 407.

[2] Akizuki, Y.: Bemerkungen über den Aufbau des Nullideals. Proc.
Phys.-Math. Soc. Japan 14 (1932), 253 - 262.

[3] Anderson, D. D.: Multiplication ideals, Multiplication rings, and
the ring R (X). Canad. J. Math XXVIII (1976), 760 -768.

[4] Anderson, D. D.: Abstract commutative ideal theory without chain
condition. Alg. Univ. 6 (1976), 131 - 145.

[5] Anderson, D. D.: Some remarks on the Ring R (X). Comm. Math.
Univ. St. Pauli 2 (1977), 137 - 140.

[6] Anderson, D. D.: Noetherian rings in which every ideal is a prod-
uct of primary ideals. Canad. Math. Bull. 23 (1980), 457 - 459.

[7] Anderson, D. D.: Some remarks on multiplication ideals. Math.
Japon. 25 (1980), 463 - 469.

[8] Anderson, D. D. and D. F. Anderson: Generalized GCD-Do-
mains. Comm. Math. Univ. St. Pauli 28 (1979), 215 - 221.

[9] Anderson, D. D. and D. F. Anderson: Some remarks on cancel-
lation ideals. Math. Japon. 29 (1984), 879 - 886.

[10] Anderson, D. D., Anderson, D. F. and R. Markanda: The
rings R (X) and R⟨X⟩. J. Algebra 95 (1985), 96 - 115.

[11] Anderson, D. D., Anderson, D. F., Costa, D. L., Dobbs,

D. E., Mott, J. L. and M. Zafrullah: Some characterizations
of v-domains and related properties. Coll. Math. 58 (1989), no. 1,
1 - 9.

[12] Anderson, D. D., Anderson, D. F., M. Zafrullah: Splitting
the t-class group. J. Pure Appl. Algebra 74 (1991), no. 1, 17 - 37.

235



236 BIBLIOGRAPHY

[13] Anderson, D. D. and E. W. Johnson: Arithmetically embeddable
local Noether lattices. Michigan Math. J. 23 (1976), 177 - 184.

[14] Anderson, D. D. and E. W. Johnson: Ideal Theory in commuta-
tive Semigoups. Semig. For. 30 (1984), 127 - 158.

[15] Anderson, D. D. and E. W. Johnson: A new characterization of
Dedekind domains. Glasgow. Math. J. 28 (1986), 237 - 239.

[16] Anderson, D. D. and B. G. Kang: Some remarks on the Ring
R (X). Comm. Math. Univ. St.Pauli 2 (1977), 137 - 140.

[17] Anderson, D. D. and R. Markanda: Unique factorization rings
with zero divisors. Houston J. Math. 11 (1985), 15 - 30.

[18] Anderson, D. D. and L. A. Mahaney: Commutative rings in
which every ideal is a product of primary ideals.J. Algebra 106
(1987), 528 - 535.

[19] Anderson, D. D. and L. A. Mahaney: On primary factorization.
J. Pure and Applied Algebra 54 (1988), 141 - 154.

[20] Anderson, D. D., and J. Pascual: Characterizing Prüfer rings via
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ung. J. Algebra 83 (1983), 237 - 255.

[72] Bosbach, B.: Lattice ordered binary systems. Acta Sci. Math. 52
(1988), 257 - 289.

[73] Bosbach, B.: Separative Teilbarkeitshalbgruppen. Contrib. Alg. 6
(1988), 49 - 65.

[74] Bosbach, B.: Hyperarchimedische Teilbarkeitshalbgruppen. Czech.
Math. J. 39 (114) (1989), 528 - 543.

[75] Bosbach, B.: Representable Divisibility Semigroups. Proc. Edinb.
Math. Soc. 34 (1991), 45 - 64.

[76] Bosbach, B.: Idealhalbgruppen – a ⊇ b =⇒ a | b. Universität Kas-
sel, 1994, a private manuscript.



240 BIBLIOGRAPHY

[77] Bosbach, B.: Teilbarkeitshalbgruppen. Universität Kassel, 1997, a
private manuscript.

[78] Bosbach, B.: Residuationsstrukturen. Universität Kassel 1997, a
private manuscript.

[79] Bosbach, B.: Algebraic multiplication m-lattices. Alg. Univ. 44
(2000), 47 - 64.

[80] Bosbach, B.: Classical Ideal Semigroups. Result. Math. 37 (2000),
36 - 46.

[81] Bosbach, B.: Convex chains in lattice monoids and lattice loops.
Acta. Sc. Math. (Szeged) 67 (2001), 57 - 75.
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Prüfer rings. J. Reine Angew. Math. 250 (1971), 109 - 112.

[120] Engström, H. T.: The theorem of Dedekind in the ideal theory of
Zolotarev. Trans. Amer. Math. Soc. 32 (1930), 879 - 887.
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[125] Fleischer, I.: Abstract Prüfer Ideal Theory. J. Algebra 115 (1988),
332 - 339.

[126] Fleischer, I.: Abstract Ideal Theory. Normat 3 (1995), 120 - 135.

[127] Fitting, H.: Primärkomponentenzerlegung in nicht kommutativen
Ringen. Math. Ann. 111 (1935), 19 - 41.

[128] Fraenkel, A.: Über die Teiler der Null und die Zerlegung von
Ringen. (Crelles) J. Reine Angew. Math. 145 (1915), 139 176.

[129] Fuchs, L.: On quasi-primary ideals. Acta. Sci. Math. 11 (1947),
174 - 183.

[130] Fuchs, L.: A condition under which an irreducible ideal is pri-
mary.Quart. J. Math. Oxford. Ser. 19 (1948), 235 - 237.
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[242] Krull, W.: Über Multiplikationsringe. S. B. Heidelberger Akad.
Wiss. 5 (1925), 13 - 18.

[243] Krull, W.: Die Theorie der allgemeinen Zahlringe. Math. Ann. 99
(1928), 51 - 70.

[244] Krull, W.: Idealtheorie in Ringen ohne Endlichkeitsbedingung.
Math. Ann. 101 (1929), 729 - 744.

[245] Krull, W.: Idealtheorie. Springer, Berlin, Heidelberg, New York,
1. Auflage 1935, 2. Auflage 1968.
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[290] Matsusita, K.: Über ein bewertungstheoretisches Axiomensys-
tem für die Dedekind-Noethersche Idealtheorie. Japan. J. Math. 19
(1944), 97 - 110.

[291] McCarthy, P. J.: Note on primary ideal decompositons. Canad. J.
Math. 18 (1966), 950 - 952.

[292] McCarthy, P. J.: Note on abstract commutative ideal theory.
Amer. Math. Monthly 74 (1967), 706 - 707.

[293] McCarthy, P. J.: Arithmetical rings and multiplicative lattices.
Ann. Mat. Pura Appl. 82 (1969), 267 - 274.

[294] McCarthy, P. J.: The ring of polynomials over a von Neumann
regular ring. Proc. Amer. Math. Soc. 39 (1971), 43 - 45.
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[300] Mori, Sh.: Über allgemeine Multiplikationsringe I. J. Sci. Hiroshima
Univ. Ser. A 4 (1934), 1 - 26.
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[335] Neuman, J. von: Zur Prüferschen Theorie der idealen Zahlen. Acta
Litt. Sci. Szeged 2 (1926), 193 - 227.

[336] Noether, Emmy.: Die allgemeinsten Bereiche aus ganzen tran-
szendenten Zahlen. Math. Ann. 77 (1915), 103 - 128.

[337] Noether, Emmy.: Idealtheorie in Ringbereichen. Math. Ann. 83
(1921), 23 - 67.

[338] Noether, Emmy.: Abstrakter Aufbau der Idealtheorie in algebrais-
chen Zahl- und Funktionenkörpern. Math. Ann. 96 (1927), 26 - 61.

[339] Northcott, D. G.: A note on the intersection theorem for ideals.
Proc. Cambridge Philos. Soc. 48 (1952), 366 - 367.

[340] Northcott, D. G.: A note on classical ideal theory. Proc. Cam-
bridge Philos. Soc. 51 (1955), 766 - 767.

[341] Ohm, J.: Primary ideals in Prüfer domains. Canad. J. Math. 18
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[349] Perić, V.: Fastinvertierbare Primideale der kommutativen Ringe.
Publ. Inst. Math. (Beograd) 7 (1967), 99 - 109.

[350] Pirtle, E. M.: Families of valuations and semigroups of fractionary
ideal classes. Trans. Amer. Math. Soc. 144 (1969), 427 - 440.
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[367] Ribenboim, P.: Un théorème sur les anneaux primaires et complèt-
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domains. J. Pure Appl. Algebra 79, (1992), no. 1, 63 - 85.

[396] Snapper, E.: Completely primary rings I. Ann. of Math. (2) 52
(1950), 666 - 693.

[397] Snapper, E.: Completely primary rings II. Algebraic and transcen-
dental extensions. Ann. of Math. (2) 53 (1951), 125 - 142.

[398] Snapper, E.: Completely primary rings III. Imbedding and isomor-
phism theorems. Ann. of Math. (2) 53 (1951), 207 - 234.

[399] Snapper, E.: Completely primary rings IV. Chain conditions. Ann.
of Math. (2) 55 (1952), 46 - 64.

[400] Sono, M.: On congruences I. Mem. Coll. Sci. Kyoto 2 (1917), 203 -
226.

[401] Sono, M.: On congruences II. Mem. Coll. Sci. Kyoto 3 (1918), 113 -
149.

[402] Storrer, H. H.: A characterization of Prüfer rings. Canad. Math.
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Kapitel 1

Ein Wort vorweg

Residuation ist der natürlichste Gegenspieler der Multiplikation und ist
über einen Zeitraum von 80 Jahren in den verschiedensten Rollen und Si-
tuationen studiert worden, z.B. als verallgemeinertes Quotientenideal oder
auch als verallgemeinerte Implikation.

1.1 Einführung

(1) Man betrachte das natürliche Intervall {O, l} oder auch das reelle
Intervall [0, 1] bezüglich a ∗ b := b− min(a, b).

(2) Man betrachte einen Ring und setze

a ∗ b := b : a .

(3) Man betrachte die logische Implikation ⇒ und setze

a ∗ b := a⇒ b .

(4) Man betrachte eine po-set mit Minimum 1 und setze

a ∗ b :=

{
1 gdw. a ≥ b

b gdw. a ̸≥ b .

(5) Man betrachte eine Gruppe und setze

a ∗ b := a−1b.

(6) Man betrachte die Menge A aller Ordnungsautomorphismen einer Ket-
te bezüglich der Komposition und punktweisen Maximum- und Minimum-
bildung. Dann bildet A eine verbandsgeordnete Gruppe, in englisch eine

5
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lattice group, kurz eine ℓ-Gruppe, d.h. eine Algebra (A,∧,∨, ·,−1 ) des Typs
(2, 2, 2, 1), die bezüglich · den Gruppenbedingungen und bezüglich ∧, ∨ den
Verbandsbedingungen genügt und zudem das Gesetz der Isotonie

(ISO) a ≤ b =⇒ xay ≤ xby (∀x, y) .

erfüllt. Definiere nun

a ∗ b := 1 ∨ a−1b and a : b := ba−1 ∨ 1 .

(7) Betrachte einen Verbandsgruppenkegel und definiere

a ∗ b := a\(a ∨ b) and a : b := (b ∨ a)/a .

In jeder dieser Situationen ist eine
”
Residuation” erklärt, die

auf dem Wege schlichter Zusatzforderungen außerordentlich
starke Implikationen gewährleistet.

Wie fruchtbar Residuation und Multiplikation zu interagieren vermögen,
wird evident durch das

Theorem: Es gibt ein gemeinsames Muster einer 1-basigen Charakteri-
sierung der booleschen’schen Algebra, des (abelschen) ℓ-Gruppenkegels, des
abelschen ℓ-Loopkegels, der (abelschen) ℓ-Gruppe, der (abelschen) ℓ-Loop,
nämlich

(F) fx ◦
{((

fy ◦ (a ◦ (a ∗ b) ∆ (b ∗ a))
)
◦ c
)

∆ c
}

= b ,

worin ∆ in dem einen Falle die Bedeutung (a ∗ b) ◦ (b ∗ a) haben mag,
während in einem anderen Falle ∆ zu lesen ist als : , man vergleiche [21].
Das ständig wachsende Interesse an der Residuation erschließt sich ein-
drucksvoll aus einer Flut von Artikeln und den Monographien[67], [51] und
[13].
Jedoch: obwohl diese Monographien tiefgreifend und inhaltsreich zugleich
sind, decken sie nicht das gesamte weite Feld ab. So fehlt beispielsweise
eine Berücksichtigung der

”
Industrie” der element-freien Idealtheorie, zu

deren Studium schon Wofgang Krull angeregt hat.
In dieser Lecture Note stellen wir Ergebnisse des Autors zusammen, wie
sie sich über eine längere Phase seiner Forschungsbemühungen eingestellt
haben. Nicht hingegen gehen wir ein auf die Flut der Publikationen wie sie
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sich eingestellt hat über Artikel und Monographien. Abschwächend könnte
man sagen:

Vorgestellt werden nach einer Grundlegung der verbandstheore-
tischen Voraussetzungen ausschließlich Ergebnisse des Autors in
neuer Komposition auf dem Feld der Residuation – zur Erleich-
terung für die Akteure.

Zitiert werden demzufolge lediglich die in den Arbeiten des Autors bereits
zitierten Arbeiten.
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Kapitel 2

Verbände

Ziel dieses Kapitels ist eine Einführung in die Verbandstheorie soweit sie
einerseits als Basis für die späteren Kapitel vonnöten ist, zum anderen
aber darüber hinaus so ausladend, dass der Leser einen Einblick in die-
se Theorie zu gewinnen vermag, soweit sie als Teil jeder mathematischen
Allgemeinbildung anerkannt sein sollte.

2.1 Partialordnung und Verband

2. 1. 1 Definition. Eine Menge M zusammen mit einer auf ihr definier-
ten 2-stelligen Relation Relation ≤ – kurz ein (M,≤) – heißt eine partial
geordnete Menge, wenn ≤ für alle a, b, c den Bedingungen genügt:

(R) a ≤ a

(S) a ≤ b ≤ a =⇒ a = b

(T) a ≤ b ≤ c =⇒ a ≤ c .

Gilt darüber hinaus

∀a, b ∃ c =: sup(a, b) : (a ≤ c ≥ b) & (a ≤ x ≥ b =⇒ c ≤ x) ,

so heißt (M,≤) ein sup-Halbverband. Dual erklärt man den Begriff inf-
Halbverband.
Schließlich heißt (M,≤) eine Kette, wenn je zwei Elemente vergleichbar
sind.

Ist (M,≤) ein sup-Halbverband, so symbolisieren wir sup(a, b) auch mittels
a ∨ b, gelesen als a sup b bzw. als a verbunden b, und ist (M,≤) ein inf-
Halbverband, so schreiben wir inf(a, b) auch als a ∧ b, gelesen als a inf b
bzw. als a geschnitten b.

9
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2. 1. 2 Lemma. Ist (M,≤) ein sup-Halbverband, so haben wir:

( I ) a ∨ a = a

(K) a ∨ b = b ∨ a
(A) a ∨ (b ∨ c) = (a ∨ b) ∨ c .

DENN: sup(a, b) = sup(x, y) ist äquivalent zu u ≥ a, b⇐⇒ u ≥ x, y. 2

2. 1. 3 Lemma. Sei (H, ·) ein Gruppoid, das (I), (K) und (A) erfüllt, also
eine idempotente kommutative Halbgruppe. Dann liefert die Festsetzung

a ≤ b :⇐⇒ a · b = b

auf H eine sup-abgeschlossene Partialordnung mit sup(a, b) = ab.

BEWEIS. Unter den gegebenen Umständen gelten:

(R) wegen a · a = a; a ≤ a ,

(S) wegen a · b = b & b · a = a =⇒ a = b · a = a · b = b ,

(T) wegen a · b = b & b · c = c =⇒ a · c = a · b · c = b · c = c

und
a · b = sup(a, b), wegen a, b ≤ a · b & a · x = x = b · x =⇒ (a · b) · x = x. 2

Nach 2.1.2 und 2.1.3 können wir also jedem sup-Halbverband (M,≤) eine
idempotente, kommutative Halbgruppe H(M,≤) zuordnen und jeder idem-
potenten kommutativen Halbgruppe (H, ·) einen sup-Halbverband P(H, ·).
Tatsächlich erhalten wir sogar noch mehr, nämlich:

2. 1. 4 Proposition. Die oben erklärten Operatoren H und P erfüllen:

P(H(M,≤)) ∼= (M,≤)

und H(P(H, ·)) ∼= (H, ·) .
Hiernach kommen wir zur Definition des Verbandes, einer Struktur, die
schon von Dedekind unter dem Namen Dualgruppe eingeführt wurde, vgl.
[99].

2. 1. 5 Definition. Sei V := (V,∨,∧) eine Algebra vom Typ (2,2). Dann
heißt V ein Verband, wenn gilt:

( I∨ ) a ∨ a = a ( I∧ ) a ∧ a = a
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(K∨) a ∨ b = b ∨ a (K∧) a ∧ b = b ∧ a
(A∨) a ∨ (b ∨ c) = (a ∨ b) ∨ c (A∧) a ∧ (b ∧ c) = (a ∧ b) ∧ c
(V∨) a ∨ (b ∧ a) = a (V∧) a ∧ (b ∨ a) = a

Wie man unmittelbar erkennt, ist der Verband eine selbstduale Struktur.
Das bedeutet: mit jeder Gleichung in V gilt auch die durch Umpolung
(∨ 7−→ ∧,∧ 7−→ ∨) gewonnene Gleichung.

Weniger evident ist die Tatsache, dass (I∨) und (I∧) aus den übrigen Glei-
chungen ableitbar sind, was sich wie folgt ergibt:

Gelten etwa (V∨),(K∨),(V∧), so folgt

a ∧ a = a ∧ (a ∨ (b ∧ a))(V∨)
= a ∧ ((b ∧ a) ∨ a)(K∨)
= a (V∧) .

Weiter erhalten wir mittels (K∨), (K∧), (V∧), (V∨) die Äquivalenz:

(2.11) a ∧ b = a ⇐⇒ a ∨ b = b .

Damit erhalten wir zusammenfassend die

2. 1. 6 Proposition. Ist (V,∨,∧) ein Verband, so liefert die Festsetzung

a ≤ b :⇐⇒ a ∧ b = a

(⇐⇒ a ∨ b = b)

eine Partialordnung auf V , die nach (2.11) den Regeln der Isotonie genügt:

(ISO) b ≤ c =⇒ a ∧ b ≤ a ∧ c
& a ∨ b ≤ a ∨ c .

2.2 Distributive Verbände

Bei der großen Vielfalt an Verbänden sind wir natürlich interessiert an fun-
damentalen und zentralen Klassen von Verbänden. Solche Klassen werden
hier jene Verbandsklassen sein, die in ein System von Mengen oder auch
in ein System von Gruppen

”
hineinspielen”.
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Als natürliche Beispiele seien angeführt Verbände von Schaltungen bzw.
Aussagen einerseits sowie Verbände von Unterräumen linearer Räume an-
dererseits.

2. 2. 1 Definition. Ein Verband heißt distributiv, wenn er die beiden
Distributivgesetze erfüllt:

(D∧) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(D∨) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

also nach (ISO), wenn er den beiden Abschätzungen genügt:

(D ′
∧) a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c)

(D ′
∨) a ∨ (b ∧ c) ≥ (a ∨ b) ∧ (a ∨ c),

da die jeweils umgekehrte Vergleichsrelation stets erfüllt ist.

Man beachte, dass mit Blick auf die Selbstdualität des Verbandes auch
die Distributivität – zunächst – selbstdual gefordert wird, während die
distributive Kopplung etwa bei Ringen

”
unsymmetrisch” ist. Tatsächlich

lässt sich diese selbstduale Forderung aber ohne Verlust reduzieren, wie der
nächste Satz zeigt:

2. 2. 2 Proposition. (V,∨,∧) ist schon dann distributiv, wenn eines der
beiden oben genannten Gesetze (D ′

∧), (D ′
∨) erfüllt ist.

DENN: gelte (D′∧), dann folgt (D∧) und wir erhalten mittels (V∨)

(a ∨ b) ∧ (a ∨ c) =
(
(a ∨ b) ∧ a

)
∨
(
(a ∨ b) ∧ c

)
= a ∨ (a ∧ c) ∨ (b ∧ c)
= a ∨ (b ∧ c) . 2

Als ein halbverbandstheoretisches Äquivalent der Distributivität – unter
vielen anderen – erhalten wir

2. 2. 3 Proposition. Ein Verband V ist genau dann distributiv, wenn er
die nachfolgende Zerlegungsbedingung erfüllt:

(Z) x ≤ a ∨ b =⇒ x = xa ∨ xb (xa ≤ a, xb ≤ b)

BEWEIS. Wir bemerken vorweg, dass V schon dann distributiv ist, wenn

a ≤ b ∨ c =⇒ a = (a ∧ b) ∨ (a ∧ c) ,
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erfüllt ist, was sich vermöge a ∧ (b ∨ c) = a = (a ∧ b) ∨ (a ∧ c) einstellt.

Gelte nun (Z). Dann folgt a ≤ b ∨ c =⇒ a = ab ∨ ac mit ab ≤ a ∧ b und
ac ≤ a∧ c , also a ≤ (a∧ b) ∨ (a∧ c) und damit a = (a∧ b) ∨ (a∧ c) , da ≥
stets gilt. Also gilt (Z) =⇒ (D):

Sei nun (D) erfüllt. Dann folgt (Z) unmittelbar via

x = x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b) =: xa ∨ xb (xa ≤ a, xb ≤ b) . 2

2. 2. 4 Proposition. Ist ein Verband V distributiv, so erfüllt er die Im-
plikation:

(CD)
a ∧ x = a ∧ y

& =⇒ x = y .
a ∨ x = a ∨ y

DENN: Aus der Prämisse folgt mittels der Verschmelzungs- und der Dis-
tributivgesetze:

x = x ∧ (a ∨ x)
= x ∧ (a ∨ y)
= (x ∧ a) ∨ (x ∧ y)
= (y ∧ a) ∨ (y ∧ x)
= y ∧ (a ∨ x)
= y ∧ (a ∨ y)
= y .

2

2. 2. 5 Definition. Ein Verband (V,∨,∧) mit 0 als Minimum und 1 als
Maximum heißt komplementär, wenn zu jedem x ein x ′ existiert mit

(COM) x ∨ x ′ = 1 & x ∧ x ′ = 0.

Ist diese Bedingung bezogen auf jedes Hauptideal (x ] erfüllt, so nennt man
V abschnittskomplementär.

2. 2. 6 Definition. Ist V distributiv und komplementär, so heißt V ein
boolescher Verband, auch eine boolesche Algebra.

Das klassische Beispiel für den booleschen Verband ist der Potenzmengen-
verband.
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2.3 Vollständige Verbände

2. 3. 1 Definition. Ein Verband V heißt vollständig, wenn zu jedem A ⊆
V unter allen oberen Schranken s ≥ a (∀a ∈ A) eine und damit die kleinste
existiert, symbolisiert durch Sup(A) und bezeichnet als obere Grenze. .
Dual erklärt man das Element Inf(A), bezeichnet als untere Grenze.

Ist V vollständig, so bezeichnen wir Inf(V ) mit 0 und Sup(V ) mit 1.
Offenbar ist ein Verband schon dann vollständig, wenn alle Sup(A) oder alle
Inf(A) existieren. (Man beachte, dass die leere Menge 2 den Gleichungen
Sup(2) = Inf(V ) und Inf(2) = Sup(V ) genügt).

2. 3. 2 Definition. Ein Verband heißt bedingt vollständig, wenn er lücken-
frei ist, d. h., wenn jede nach oben beschränkte Teilmenge sogar nach oben
begrenzt, also wenn zu jeder nach oben beschränkten Teilmenge das Su-
premum existiert. Ein bedingt vollständiger Verband heißt vereinigungs-
distributiv, wenn er das Gesetz erfüllt:

(DV) s =
∧
ai (i ∈ I) =⇒ x ∨ s =

∧
(x ∨ ai) (i ∈ I) ,

Dual erklärt man den Begriff des durchschnitts-distributiven Verbandes,
bzw. das Axiom (DS).
Schließlich heißt ein bedingt vollständiger Verband vollständig distributiv,
wenn er (für jeweils existierende Grenzen) den Gesetzen genügt:

(DV1)

∧
C

[∨
Aγ
aγ,α

]
=

∨
Φ

[∧
C
aγ,ϕ(γ)

]
(DV2)

∨
C

[∧
Aγ
aγ,α

]
=

∧
Φ

[∨
C
aγ,ϕ(γ)

]
,

worin die γ die Menge C durchlaufen und Φ die Menge aller Abbildungen ϕ
von C in die Vereinigungsmenge derjenigen Aγ darstellt, die der Bedingung
ϕ(γ) ∈ Aγ genügen.

Offenbar ist jede bedingt vollständige Kette vollständig distributiv, insbe-
sondere also auch vereinigungs- und durchschnitts-distributiv. Andererseits
lässt sich zeigen, dass (DV1) und (DV2) voneinander unabhängig sind.
Denn: Man betrachte das System aller abgeschlossenen Punktmengen der
Ebene. Ist dann C der Kreis x2 + y2 = 1 und bezeichnen wir mit Ck

die Punktmengen x2 + y2 ≤ 1 − k−2 (k ∈ N), so gilt im Verband aller
abgeschlossenen Teilmengen der Ebene C ∩

∨
Ck = C ̸= ∅ =

∨
(C ∩ Ck).
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2.4 Der boolesche Verband

Der Begriff des booleschen Verbandes wurde unter 2.2.6 erklärt. Über boo-
lesche Algebren existiert eine Flut an Literatur, mehr als verständlich, wenn
man bedenkt, dass hier Ringe, Gruppen, topologische Räume und Verbände
zusammenspielen.
Uns geht es in diesem Kapitel lediglich um die Auffassung des Booleschen
Verbandes als Ring. Hierzu vorweg eine Reduktion des Axiomensystems.

2. 4. 1 Proposition. Eine Algebra B := (B,∧,∨,′ ) ist schon dann ein
boolescher Verband, wenn sie den Gleichungen genügt:

(B11) a ∧ b = b ∧ a

(B12) a ∨ b = b ∨ a

(B21) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(B22) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(B31) a ∧ (b ∨ b′) = a

(B32) a ∨ (b ∧ b′) = a

BEWEIS. Wir beweisen zunächst die beiden Gleichungen:

a ∧ a′ = b ∧ b′(2.25)

a ∨ a′ = b ∨ b′.(2.26)

Wegen der ∧/∨ Dualität reicht es natürlich die Gleichung (2.25) zu bewei-
sen, die sich wie folgt einstellt:

b ∨ b′ = (b ∨ b′) ∧ (c ∨ c′)
= (c ∨ c′) ∧ (b ∨ b′)
= c ∨ c′

Hiernach bezeichnen wir a ∧ a′ mit 0 und a ∨ a′ mit 1. Weiter lassen sich
(I,∧) und (I,∨) leicht bestätigen vermöge

a ∧ a = (a ∧ a) ∨ (a ∧ a′)
= a ∧ (a ∨ a′)
= a ∧ 1
= a
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und der hierzu dualen Herleitung. Als nächstes verifizieren wir:

a ∧ 0 = a(2.27)

a ∨ 1 = 1(2.28)

via a ∧ 0 = (a ∧ 0) ∨ 0
= 0 ∨ (a ∧ 0)
= (a ∧ a′) ∨ (a ∨ 0)
= a ∧ (a′ ∨ 0)
= a ∧ a′
= 0

Bevor wir zum alles entscheidenden Assoziativgesetz kommen, vorweg noch
die beiden Verschmelzungsgesetze

(V∧) a ∧ (b ∨ a) = a

(V∨) a ∧ (b ∨ a) = a

die sich geradeaus ergeben vermöge:

a ∧ (b ∨ a) = (a ∧ b) ∨ (a ∧ a)
= (a ∧ b) ∨ (a ∨ 1)
= (a ∧ b) ∨ 1
= a ∧ 1
= a

und er hierzu ∧/∨-dualen Herleitung.

Hiernach lässt sich Assoziativitätsgesetz herleiten. Dabei werden wir als
alles entscheidende Methode die Überführung von (a ∧ b) ∧ c in einen a, c-
symmetrischen Term einsetzen. Klar – immer ist es leichter, eine Klammer
aufzulösen als eine Klammer zu setzen. Deshalb verfahren wir

”
von hinten

nach vorne” und erhalten:

((a ∧ b) ∧ c) ∨ (a ∧ (b ∧ c)) = ((a ∧ b) ∨ (a ∧ (b ∧ c))
)
∧
(
c ∨ (a ∧ (b ∧ c)))

= (a ∧ (b ∨ (b ∧ c))) ∧ ((c ∨ a) ∧ (c ∨ (b ∧ c)
= (a ∧ b) ∧ ((c ∨ a) ∧ c)
= (a ∧ b) ∧ c
= f(a, b, c)
= f(c, b, a)
= a ∧ (b ∧ c
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Wir halten ausdrücklich fest, was zu beweisen war:

(A∧) a ∧ (b ∧ c) = (a ∧ b) ∧ c

(A∨) a ∨ (b ∨ c) = (a ∨ b) ∨ c

Wir erinnern noch einmal an (COM), insbesondere also an a′′ = a. Diese
Gleichung liefert uns zusammen mit der Distributivität:

2. 4. 2 Die Regeln von de Morgan.

(V∧) (a ∧ b) ′ = a ′ ∨ b ′

(V∨) (a ∨ b) ′ = a ′ ∧ b ′

DENN, man beachte die beiden Gleichungen

(a ∧ b) ∧ (a ′ ∨ b ′) = (a ∧ b ∧ a ′) ∨ (a ∧ b ∧ b ′) = 0

(a ∨ b) ∨ (a ′ ∧ b ′) = (a ∨ b ∨ a ′) ∧ (a ∨ b ∨ b ′) = 1

und ziehe die (2.27), (2.28) heran . 2

boolesche Algebren lassen neben den Verbandsoperationen die Definition
einer Gruppenoperation zu, die schönere Eigenschaften nicht haben könnte.
Doch es gilt noch sehr viel mehr, nämlich:

2. 4. 3 Proposition. Setzen wir in einem booleschen Verband (V,∧,∨,′ )

a⊕ b := (a ∧ b′) ∨ (b ∧ a′)(2.35)

a⊙ b := a ∧ b ,(2.36)

so bildet V bezüglich dieser beiden Operationen einen idempotenten Ring
R(V ), und es bildet umgekehrt jeder idempotente Ring (R,+, ·, 1) bezüglich

a ∧ b := a · b(2.37)

a ∨ b := a+ ab+ b(2.38)

a′ := a+ 1(2.39)

einen booleschen Verband V(R). Darüber hinaus erfüllen die beiden hier
vorgestellten Operatoren die Galoisbedingung:

(2.40) V(R(V ) = V & R(V(R) = R
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BEWEIS. Der Leser ermittelt geradeaus:

(R11) a⊙ b = b⊙ a

(R12) (a⊙ b) ⊙ c = a⊙ (b⊙ c)

(R13) a⊙ a = a

(R14) a⊙ 1 = a

(R21) a⊕ b = b⊕ a

(R22) a⊕ a = 0

(R22) a⊕ 0 = a

Komplizierter sind die beiden restlichen Herleitungen. Zunächst verifizieren
wir das Assoziativgesetz

(R23) a⊕ (b⊕ c) = (a⊕ b) ⊕ c

Hier kommen wir zum Ziel vermöge:

a⊕ (b⊕ c)

=

(
a ∧ ((b ∧ c′) ∨ (c ∧ b′))′

)
∨
(

((b ∧ c′) ∨ (c ∧ b′)) ∧ a′
)

=

(
a ∧ (b′ ∨ c) ∧ (c′ ∧ b))

)
∨
(
b ∧ c′ ∧ a′

)
∨
(
a ∧ b′ ∧ a′

)
=

(
a ∧ ((b′ ∧ c′) ∨ 0 ∨ 0 ∨ (c ∧ b)

)
∨
(
b ∧ c′ ∧ a′

)
∨
(
c ∧ b′ ∧ a′

)
= (a ∧ b′ ∧ c′) ∨ (a ∧ c ∧ b) ∨ (b ∧ c′ ∧ a′) ∨ (c ∧ b′ ∧ a′)
= f(a, b, c) = f(c, b, a)

= (a⊕ b) ⊕ c .

Schließlich erhalten wir das Distributivgesetz

(R23) a⊙ (b⊕ c) = a⊙ b⊕ a⊙ c

via a⊙ (b⊕ c) = a ∧ ((b ∧ c′) ∨ (c ∧ b′))
= (a ∧ b ∧ c′) ∨ (a ∧ c ∧ b′)
= 0 ∨ (a ∧ b ∧ c′) ∨ 0 ∨ (a ∧ c ∧ b′)
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=

(
a ∧ b ∧ a′

)
∨
(
a ∧ b ∧ c′

)
∨
(
a ∧ c ∧ a′

)
∨
(
a ∧ c ∧ b′

)
=

(
(a ∧ b) ∧ (a′ ∨ c′)

)
∨
(

(a ∧ c) ∧ (a′ ∨ b′)
)

=

(
(a ∧ b) ∧ (a ∧ c)′

)
∨
(

(a ∧ c) ∧ (a ∧ b)′
)

= (a ∧ b) ⊕ (a ∧ c)
= (a⊙ b) ⊕ (a⊙ c) .

Damit ist dem booleschen Verband V ein idempotenter Ring R gemäß den
angegebenen Regeln zugeordnet.
Sei hiernach R ein idempotenter Ring. Dann erhalten wir aus der Idempo-
tenz unmittelbar

a+ a = (a+ a)2 = a2 + a2 + a2 + a2 = a+ a+ a+ a =⇒ a+ a = 0

also a = −a , woraus

a+ b = (a+ b)2 = a2 + ab+ ba+ b2 =⇒ ab+ ba = 0 ,

und damit

(2.50) ab = ba

resultiert. Der Rest darf dem Leser als Übung überlassen bleiben.
Zu verifizieren bleibt (2.40). Betrachten wir also die Operatoren V und
R . Hier haben wir zunächst ab = a ∧ b = a ⊙ b und a′ = a + 1, wegen
a′ ⊕ a = 0 ; a′ = a+ 1 . Und dies impliziert weiter:

a+ b = ab+ a+ ab+ ab+ ab+ ab+ ba+ b
= a(b+ 1) + a(b+ 1) · b(a+ 1) + b(a+ 1)
= (a ∧ b′) ∨ (b ∧ a′)
= a⊕ b

Damit sind wir am Ziel. 2

Obacht: Neben den booleschen Ringen (mit 1) existieren natürlich auch
idempotente Ringe ohne Eins, denn es bildet ja jedes Ideal eines booleschen
Ringes einen solchen idempotenten Ring.
Um der Klarheit willen werden wir im folgenden unterscheiden zwischen
booleschen Ringen, also idempotenten Ringen mit 1 , und idempotenten
Ringen.
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Ferner werden wir den booleschen Verband und den booleschen Ring mit-
einander identifizieren zur booleschen Algebra, d. h. wir werden von boo-
leschen Algebren sprechen und dabei die Operationen ∧,∨, ′ , · , + , 1 ge-
meinsam vor Augen haben.

2.5 Zur Verbandsgruppenarithmetik

Eine Algebra (G, ·,∧,∨) heißt eine ℓ-Gruppe – herrührend vom englischen
lattice group, zu deutsch auch Verbandsgruppe – wenn (G, ·) eine Gruppe,

(G,∧,∨) ein Verband ist und wenn zusätzlich gilt: a ≤ b⇒ xay ≤ xby. Ist
dies erfüllt,so resultiert:

(2.51) a ≤ b⇐⇒ a−1ab−1 ≤ a−1bb−1 ⇐⇒ b−1 ≤ a−1.

Hieraus folgen weiter

x(a ∧ b)y = xay ∧ xby,(2.52)

x(a ∨ b)y = xay ∨ xby,(2.53)

wegen
z ≤ x(a ∧ b)y ⇐⇒ x−1zy−1 ≤ a ∧ b

⇐⇒ x−1zy−1 ≤ a & x−1zy−1 ≤ b
⇐⇒ z ≤ xay ∧ z ≤ xby
⇐⇒ z ≤ xay ∧ xby,

und der hierzu dualen Herleitung. Hiernach erhalten wir insbesondere

(2.54) (1 ∧ a)(1 ∨ a) = 1 = (1 ∨ a)(1 ∧ a)

vermöge

(2.55) a ≤ (1 ∨ a) ∧ (a ∨ a2) = (1 ∨ a)(1 ∧ a)

= (1 ∧ a) ∨ (a ∧ a2) ≤ a.

Als nächstes erhalten wir

(a ∧ b)−1 = 1 = a−1 ∨ b−1(2.56)

(a ∨ b)−1 = 1 = a−1 ∧ b−1(2.57)

wegen x ≤ (a ∨ b)−1 ⇐⇒ x−1 ≥ a ∨ b
⇐⇒ x−1 ≥ a & x−1 ≤ b
⇐⇒ x ≤ a−1 & x ≤ b−1

⇐⇒ x ≤ a−1 ∧ b−1
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und der hierzu dualen Herleitung.

(2.58) x = ab & a ∧ b−1 = 1 =⇒ 1 ∨ x = a & 1 ∧ x = b ,

denn die Prämisse führt wegen a−1 ∨ b = a ∧ b−1 zu

1 ∨ x = 1 ∨ ab = aa−1 ∨ ab = a(a−1 ∨ b) = a

& 1 ∧ x = 1 ∧ ab = b−1b ∧ ab = (b−1 ∧ a)b = b .

Als nächstes folgt:

(2.59) (1 ∨ a) ∧ (1 ∧ a)−1 = 1,

wegen (1 ∨ a) ∧ (1 ∧ a)−1 = a(1 ∨ a−1) ∧ 1(1 ∧ a)−1

= a(1 ∧ a)−1 ∧ 1(1 ∧ a)−1

= (a ∧ 1)(1 ∧ a)−1

= 1.

Nun sind wir in der Lage, die Distributuivität nachzuweisen:

(2.60) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

BEWEIS. a ∧ (b ∨ c) = (b ∨ c)((b ∨ c)−1a ∧ 1)

= (b ∨ c)((b−1 ∧ c−1)a ∧ 1)

= (b ∨ c)(b−1a ∧ c−1a ∧ 1)

= (a ∧ bc−1a ∧ b) ∨ (cb−1a ∧ a ∧ c)
≤ (a ∧ b) ∨ (a ∧ c)

=⇒
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Fertig ! 2

Zur Erinnerung: mit (2.60) gilt, wie wir ja schon wissen, auch

(2.61) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Hiernach betrachten wir den Kegel P von (G, ·,∨,∧), das ist die Men-
ge aller positiven Elemente, also P := {x

∣∣x ≥ 1}. Wir erhalten sofort,
dass P abgeschlossen ist bezüglich ·,∨,∧, und man verifiziert leicht für die
Operationen ∗ and : , definiert über

a ∗ b := (a ∧ b)−1 · b = 1 ∨ a−1b ∈ P,
und b : a := b · (a ∧ b)−1 = 1 ∨ ba−1 ∈ P,
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die Gleichungen

(A1) a ∗ ab = b

(A2) ba : a = b

(A3) a(a ∗ b) = b(b ∗ a)

(A4) (b : a)a = b(b ∗ a)

(A5) ab ∗ c = b ∗ (a ∗ c).

Auf der anderen Seite haben wir gezeigt, dass jede Algebra (P, ·, ∗. :) , die
den Gesetzen (A1) bis (A5) genügt, als ein ℓ-Gruppen-Kegel betrachtet
werden kann mit

a(a ∗ b) = a ∨ b = (b : a)a

und b : (a ∗ b) = a ∨ b = (a : b) ∗ a.

Das soll in diesem Kapitel genügen.



Kapitel 3

Komplementäre Halbgruppen

3.1 Einleitung

Sei S := (S, ·) eine Halbgruppe, also eine Menge S betrachtet unter einer
assoziativen binären Operation. Dann stehe a

∣∣
ℓ
b für

”
a ist Links-Teiler

von b”, also für die Existenz eines x ∈ S mit a · x = b , und es stehe dual
a
∣∣
r
b für

”
a ist Rechts-Teiler von b”, also für die Existenz eines y ∈ S mit

y · a = b. Als linkskürzbar bezeichnet man S genau dann, wenn alle a der
Äquivalenz a · x = a · y ⇐⇒ x = y genügen. Dual ist die rechtskürzbare
Halbgruppe definiert. Ist S sowohl links- als auch rechts-kürzbar, so nennt
man S kürzbar. Eine Halbgruppe S heißt idempotent, wenn für alle a ∈ S
die Gleichheit a2 = a erfüllt ist. S heiße rechtskomplementär , wenn zu
je zwei Elementen a, b aus S genau ein Element a ∗ b in S existiert mit
b
∣∣
ℓ
a · x ⇐⇒ a ∗ b

∣∣
ℓ
x bezeichnet als das Rechtskomplement von a in b.

Dual definieren wir die linkskomplementäre Halbgruppe und bezeichnen
das Linkskomplement mit b : a. Als Lesart ließe sich einführen a rechts-
ergänzt zu b bzw. a links-ergänzt zu b. Ist S eine rechtskomplementäre
Halbgruppe, so existiert in S, wie wir später sehen werden, eine 1 mit
a · 1 = a = 1 · a, und es gilt a

∣∣
ℓ
b & b

∣∣
ℓ
a =⇒ a = b. Daher ist jede

rechtskomplementäre Halbgruppe bezüglich
∣∣
ℓ

teilweise geordnet , weshalb
wir auch a ≤ℓ b statt a

∣∣
ℓ
b schreiben werden und a <ℓ b statt a

∣∣
ℓ
b & a ̸= b.

Eine Halbgruppe S, die sowohl rechts- als auch linkskomplementär ist,
heiße komplementär, wenn sie a · S = S · a erfüllt für alle a ∈ S, also wenn∣∣
ℓ

und
∣∣
r

übereinstimmen.

Rechtskomplementäre Halbgruppen sind ∨-abgeschlossen und zwar gilt
genauer a(a ∗ b) = sup(a, b) , doch sind nicht einmal komplementäre Halb-
gruppen notwendig ∧-abgeschlossen.

23
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Als Beispiel einer linear geordneten linkskürzbaren rechtskomplementären
Halbgruppe, die keine komplementäre Halbgruppe ist, sei die Menge der
Ordinalzahlen von der Mächtigkeit ℵ0 bezüglich der Addition genannt. Als
Beispiel einer komplementären Halbgruppe nennen wir den Bereich N der
natürlichen Zahlen, betrachtet bezüglich der Multiplikation, oder allgemein
jede Zerlegungshalbgruppe, (in [16] bezeichnet als vollkanonisches Holoid),
den Bereich Q≥0 der rationalen Zahlen ≥ 0, betrachtet bezüglich der Ad-
dition, oder allgemein die Klasse der streng archimedischen d-Halbgruppen,
siehe [39]. Weiter erwähnen wir die Menge der Ordnungsautomorphismen
ϕ mit a ≤ ϕ(a) (∀a) auf der Kette Q oder allgemein jeden Verbandsgrup-
penkegel und schließlich die Potenzmenge von N, betrachtet bezüglich ∪
oder allgemein jeden booleschen Ring, betrachtet bezüglich seiner Multi-
plikation. Diese Konkretisierungen machen die zentrale Stellung der kom-
plementären Halbgruppe deutlich.

Dem nun folgenden ersten großen Kaptitel über Residuation liegt der fol-
gende Plan zugrunde:

In Abschnitt 1 wird die Struktur der rechtskomplementären Halbgruppen
unter Berücksichtigung der rechtskürzbaren und der idempotenten Halb-
gruppen durch Gleichungssysteme charakterisiert, so dass diese fast unmit-
telbar eine Charakterisierung der entsprechenden komplementären Halb-
gruppen in Abschnitt 2 ermöglichen.

Abschnitt 3 liefert die für alle weiteren Untersuchungen wesentlichen arith-
metischen Gesetze der komplementären Halbgruppen. In Abschnitt 4 engen
wir die komplementäre Halbgruppe durch jeweils ein Zusatzaxiom nachein-
ander ein zur Zerlegungshalbgruppe, zur archimedischen komplementären
Halbgruppe, zum brouwerschen Halbverband, zum Verbandsgruppenkegel,
zum booleschen Verband bzw. zum booleschen Ring, sowie zum direkten
Produkt des brouwerschen Halbverbandes mit einem Verbandsgruppenke-
gel, um hiernach jene komplementären Halbgruppen zu charakterisieren,
die subdirekt zerfallen in Verbandsgruppenkegel und boolesche Ringe, bzw.
in Verbandsgruppenkegel mit 0.

Hinter den einzelnen Axiomen erwähnen wir jeweils, abgekürzt in der Form(
Bn
)
, dasjenige Beispiel – siehe hierzu den späteren Abschnitt über Bei-

spiele –, das die Unabhängigkeit dieses Axioms von den übrigen des auf-
gestellten Systems beweist, hinter den einzelnen Beweiszeilen vielfach in
runden Klammern denjenigen Hilfssatz, der den vollzogenen Schritt be-
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gründet. Schließlich sei noch darauf hingewiesen, dass wir duale Aussagen
natürlich als wesensgleich erachten und sie mitunter ohne Kommentar nur
in einer Form erwähnen, respektive beweisen.
Schließlich noch eine Anmerkung: Wie üblich werden wir in dieser Lecture
Note das Operationszeichen ·

”
unterdrücken” bzw. fallen lassen.

3.2 Axiomatik

Wir erinnern: Eine Halbgruppe heißt rechtskomplementär, wenn sie der
Bedingung genügt:

(RK) ∀ a, b ∃ (!) a ∗ b : b
∣∣
ℓ
ax⇐⇒ a ∗ b

∣∣
ℓ
x .

∃ (!) steht hier im Sinne von genau ein, andernfalls wäre etwa jede Gruppe
eine komplementäre Halbgruppe.
Als klassische Vertreter seien genannt der brouwersche Halbverband und
der Verbandsgruppenkegel.
Ziel dieses Abschnitts ist der Nachweis, dass die Klasse der rechtskom-
plementären Halbgruppen gleichungsdefiniert ist, also eine Varietät bildet,
und sich damit den Fragen der allgemeinen Algebra öffnet.
Sei hiernach S := (S, ·, ∗) ein Doppelgruppoid, das den Axiomen genügt:

(A1) a(a ∗ b) = b(b ∗ a)
(
B1
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B2
)

(A3) a(b ∗ b) = a .
(
B3
)

Wir werden in einer Serie von Kalkulationen herleiten, dass S eine rechts-
komplementäre Halbgruppe mit a∗b als Rechtskomplement darstellt. Dabei
behalten wir im Hinterkopf, dass natürlich alle Herleitungen ihre rechts-
links - dualen Entsprechungen haben.
Im einzelnen erhalten wir – ausgehend von dem aufgeführten Axiomensy-
stem – als erstes die Assoziativität vermöge der Herleitung:

(3.5) a ∗ a = (a ∗ a)(b ∗ b) (A3)
= (a ∗ a)

(
b(a ∗ a) ∗ b

)
(A3)

= (a ∗ a)
(
(a ∗ a) ∗ (b ∗ b)

)
(A2)

= (b ∗ b)
(
(b ∗ b) ∗ (a ∗ a)

)
(A1)

= b ∗ b := e (A3)
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(3.6) (ab)c ∗ d = c ∗ (ab ∗ d) (A2)
= c ∗

(
b ∗ (a ∗ d)

)
(A2)

= bc ∗ (a ∗ d) (A2)
= a(bc) ∗ d (A2)

(3.7) (ab)c =
(
(ab)c

)(
a(bc) ∗ a(bc)

)
(A3)

=
(
(ab)c

)(
(ab)c ∗ a(bc)

)
(3.6)

=
(
a(bc)

)(
a(bc) ∗ (ab)c

)
(A1)

=
(
a(bc)

)(
(ab)c ∗ (ab)c

)
(3.6)

= a(bc) . (A3)

Dies liefert weiter die Existenz eines Einselementes vermöge der Herleitung:

(3.8) (e ∗ a) ∗ e = (e ∗ a) ∗ (e ∗ e) (3.5)
= e(e ∗ a) ∗ e (A2)
= a(a ∗ e) ∗ e (A1)
= (a ∗ e) ∗ (a ∗ e) (A2)
= e (3.5)

(3.9) e ∗ a = (e ∗ a)
(
(e ∗ a) ∗ e

)
(3.8)

= e
(
e ∗ (e ∗ a)

)
= e(ee ∗ a)
= e(e ∗ a)

(3.10) (e ∗ a) ∗ a = e(e ∗ a) ∗ a (3.9)
= (e ∗ a) ∗ (e ∗ a)
= e

(3.11) e ∗ a = (e ∗ a)e
= (e ∗ a)

(
(e ∗ a) ∗ a

)
(3.10)

= a
(
a ∗ (e ∗ a)

)
= a(ea ∗ a)
= ea(ea ∗ a) (3.9)
= a(a ∗ ea)
= ea(a ∗ ea) (3.9)

(3.12) e ∗ ea = e(ea)
(
ea ∗ e(ea)

)
(3.11)

= ea(ea ∗ ea)
= ea
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(3.13) ea = ea(ea ∗ ea)
= ea

(
a ∗ (e ∗ ea)

)
= ea(a ∗ ea) (3.12)
= e ∗ a (3.11)

(3.14) ea = e ∗ a
= a(ea ∗ a) (3.11)
= a

(
(e ∗ a) ∗ a

)
(3.13)

= ae (3.10)
= a .

Im weiteren schreiben wir 1 statt e, um zu betonen, dass e nicht nur Rechts-
eins ist, wie per definitionem gefordert, sondern auch Linkseins und damit
eindeutig bestimmte Eins der Halbgruppe (S, · ). Für diese 1 gilt weiter:

(3.15) a ∗ 1 = 1(1 ∗ a) ∗ 1
= a(a ∗ 1) ∗ 1
= (a ∗ 1) ∗ (a ∗ 1)
= 1

(3.16) ax = b

⇒
b ∗ a = ax ∗ a = x ∗ (a ∗ a) = 1

&
b ∗ a = 1

⇒
b = b(b ∗ a) = a(a ∗ b) ,

und damit gleichbedeutend

(3.17) a
∣∣
ℓ
b ⇐⇒ b ∗ a = 1 .

Das liefert uns weiter:

(3.18) ax = b & by = a
=⇒

a = a1 = a(a ∗ b) = b(b ∗ a) = b1 = b (3.16)

bzw. die Äquivalenz:

(3.19) b
∣∣
ℓ
ax ⇐⇒ x ∗ (a ∗ b) = 1 ,
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die sich aus ax = by =⇒ x ∗ (a ∗ b) = ax ∗ b = by ∗ b = 1
&

x ∗ (a ∗ b) = 1 =⇒ ax ∗ b = 1 =⇒ b
∣∣
ℓ
ax

ergibt.

Aus (3.18) folgt, dass S durch
∣∣
ℓ

teilweise geordnet wird, nach (3.19) ist
S rechtskomplementär.
Bevor wir zeigen, dass auch jede rechtskomplementäre Halbgruppe die
Axiome (A1), (A2), (A3) erfüllt, beweisen wir noch die Abgeschlossenheit
von S bezüglich ∨. Genauer werden wir sehen, dass a(a ∗ b) = b(b ∗ a) als
Supremum fungiert, also c ≥ a, b ⇐⇒ c ≥ a(a ∗ b) erfüllt. Dies ergibt sich
aus den beiden nachfolgenden Implikationen:

(3.20) c ∗ a = 1 = c ∗ b
=⇒

(a ∗ c) ∗ (a ∗ b) = a(a ∗ c) ∗ b
= c(c ∗ a) ∗ b
= c ∗ b
= 1

=⇒
a(a ∗ b)

∣∣
ℓ
a(a ∗ c) = c(c ∗ a) = c (3.19)

(3.21) a(a ∗ b) ∗ b = b(b ∗ a) ∗ b
= (b ∗ a) ∗ (b ∗ b)
= (b ∗ a) ∗ 1 = 1
;

a, b
∣∣
ℓ
a(a ∗ b) = b(b ∗ a) . (3.19)

Wir können also festhalten:

(3.22) a(a ∗ b) = a ∨ b = b ∨ a = b(b ∗ a)

Sei nun umgekehrt S eine rechtskomplementäre Halbgruppe. Dann gelten
bezüglich der Rechtskomplementierung a ∗ b die Axiome (A1), (A2), (A3).
Denn a ∗ a = e muss Linksteiler aller b aus S sein und deshalb auch
mit seinen sämtlichen Potenzen jedes Element linksteilen, woraus e2 = e
resultiert, da sowohl e als auch e2 die Bedingung für a∗a erfüllt. Gilt weiter
a
∣∣
ℓ
b & b

∣∣
ℓ
a, so erhalten wir a = e∗a = b. Schließlich haben wir hiernach:

(A1’) a(a ∗ b) = bx ≥ b(b ∗ a) = ay ≥ a(a ∗ b) ,
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(A2’) x ≥ ab ∗ c⇔ abx ≥ c ⇔ x ≥ ab ∗ c⇔ x ≥ b ∗ (a ∗ c)
(A3) a(b ∗ b) = a(a ∗ e) = e(e ∗ a) = a .

Somit können wir formulieren:

3. 2. 1 Proposition. Ein Doppel-Gruppoid S = (S, ·, ∗) ist eine rechts-
komplementäre Halbgruppe mit a ∗ b als Rechtskomplementierung gdw. es
die Bedingungen (A1), (A2), (A3) erfüllt.

Hiernach wenden wir uns dem linkskürzbaren Fall zu. Offenbar gilt hier
notwendig:

(A1) a(a ∗ b) (B8)
= b(b ∗ a)

(A2) ab ∗ c (B9)
= b ∗ (a ∗ c)

(V1) a ∗ ab (B3)
= b

Seien also (A1), (A2), (V1) erfüllt. Dann erhalten wir zunächst:

(3.29) (ab)c ∗ d = c ∗ (b ∗ (a ∗ d))
= a(bc) ∗ d

(3.30) ab = a(a ∗ ab)
= (ab)(ab ∗ a)

(3.31) ab ∗ ab = ab ∗ (ab)(ab ∗ a) (3.30)
= ab ∗ a

(3.32) (ab)(ab ∗ ab) = (ab)(ab ∗ a) (3.31)
= a(a ∗ ab)
= ab

Daraus folgt im Falle au = a die spezielle Assoziativität (au)b = a(ub) , die
weiter zur Existenz einer Rechtseins führt, wie wir nun sehen werden. Sei
also au = a . Dann folgen nacheinander:
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(3.33) (au)b =
(
(au)b

)(
(au)b ∗ au

)
(3.30)

=
(
(au)b

)(
a(ub) ∗ au

)
(A2)

=
(
(au)b

)(
a(ub) ∗ a

)
=
(
(au)b

)(
a(ub) ∗ a(ub)

)
(3.30)

=
(
(au)b

)(
(au)b ∗ a(ub)

)
(A2)

=
(
a(ub)

)(
a(ub) ∗ (au)b

)
(A1)

=
(
a(ub)

)(
(au)b ∗ (au)b

)
(A2)

=
(
a(ub)

)(
ab ∗ ab

)
=
(
a(ub)

)(
ab ∗ a

)
(3.30)

=
(
a(ub)

)(
(au)b ∗ a

)
=
(
a(ub)

)(
a(ub) ∗ a

)
(A2)

= a(ub) (3.30)

(3.34)
au = a

⇒
ub = a ∗ a(ub) = a ∗ (au)b = b (∀b ∈ G) (3.33)

(3.35) ub = b
⇒

u ∗ b = u ∗ ub = b (3.33)

(3.36) au = a = av (∀a ∈ G)
⇒

vu = v(v ∗ u) = u(u ∗ v) = uv (3.35)

Für die soeben nachgewiesene eindeutige Linkseinheit e gilt nun weiter:

(3.37) a(a ∗ e) = e(e ∗ a)
= e ∗ a (3.34)
= a (3.35)

; a ∗ e = e
;

ae = a

Verifizieren wir jetzt noch b ∗ b = e, so ist der Anschluss an (A1), (A2),
(A3) hergestellt. Es gilt aber:

(3.38) b ∗ b = be ∗ be = e ∗ (b ∗ be) = e ∗ e = e =⇒ ae = a
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Zusammenfassend erhalten wir damit via Satz 3.2.1

3. 2. 2 Proposition. Ein Gruppoid S ist eine linkskürzbare rechtskom-
plementäre Halbgruppe gdw. es bezüglich einer weiteren Operation ∗ die
Axiome (A1), (A2), (V1) erfüllt.

Hiernach betrachten wir idempotente rechtskomplementäre Halbgruppen.
Als notwendig ergeben sich die Axiome:

(I1) a2(a ∗ b) = b(b ∗ a)
(
B1
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B2
)

(A3) a(b ∗ b) = a
(
B3
)

Dass diese Axiome auch hinreichen, folgt fast unmittelbar, man setze in
(I1) b := a .
Somit folgt

3. 2. 3 Proposition. Ein Gruppoid S ist eine idempotente rechtskom-
lementäre Halbgruppe gdw. es bezüglich einer weiteren Operation ∗ den
Axiomen (I1),(A2), (A3) genügt.

3. 2. 4 Proposition. Ein Gruppoid S ist eine kommutative kürzbare
(rechts-) komplementäre Halbgruppe gdw. es bezüglich einer weiteren Ope-
ration ∗ den Axiomen genügt:

(A1) a(a ∗ b) = b(b ∗ a)
(
B8
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B9
)

(V2) a ∗ ba = b
(
B3
)

Zum Zwecke des Beweises wählen wir zunächst ein festes a und betrachten
hierzu das Element u := a2 ∗ a . Dann folgen nacheinander:

(3.45) a2 = a(a ∗ a2) (V2)
= a2(a2 ∗ a)

(3.46) a2 ∗ a = a2(a2 ∗ a) ∗ a (3.45)
= (a2 ∗ a) ∗ (a2 ∗ a)
=: u
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(3.47) u2 ∗ u = u ∗ (u ∗ u)
= u ∗ u (3.46)
= u

(3.48) u = u ∗ u2
= u ∗ u(u ∗ u2) (V2)
= u ∗ u2(u2 ∗ u)
= u ∗ u2u (3.47)
= u2

(3.49) v2 = v
⇒

bv = v ∗ (bv)v (3.48)
= v ∗

(
v ∗ (bv)v

)
= v ∗ bv
= b

(3.50) v2 = v

⇒
v ∗ b = v ∗ bv (3.49)

= b

(3.51) v2 = v & u2 = u

⇒
v = vu (3.49)

= v(v ∗ u) (3.50)
= u(u ∗ v)
= u .

Es gibt also nach unseren Herleitungen genau ein idempotentes Element.
Dies sei von nun an mit 1 bezeichnet. Dann erhalten wir die Gleichungen:
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(3.52) b ∗ 1 = b ∗ (1 ∗ 1)
= 1b ∗ 1
= 1(1 ∗ b) ∗ 1 (3.50)
= b(b ∗ 1) ∗ 1
= (b ∗ 1) ∗ (b ∗ 1)
= (b ∗ 1)2 ∗ (b ∗ 1)
= 1

(3.53) b1 = b(b ∗ 1) (3.52)
= 1(1 ∗ b)
= 1b

(3.54) b ∗ b = b ∗ (1 ∗ b1)
= 1b ∗ b1
= b1 ∗ 1b (3.53)
= 1 ∗ (b ∗ 1b)
= 1 ∗ 1
= 1

(3.55) ab ∗ ba = b ∗ (a ∗ ba)
= b ∗ b
= 1 .

Offenbar implizieren (3.53) und (3.54) das Axiom (A3), während (3.55) die
Kommutativität gewährleistet.
Die Sätze 3.2.1, 3.2.2 und 3.2.4 zeigen den Zusammenhang auf zwischen
den rechtskomplementären, den linkskürzbaren rechtskomplementären und
den kommutativen kürzbaren komplementären Halbgruppen.

3. 2. 5 Proposition. Ein Gruppoid S ein brouwerscher Halbverband,
gdw. es bezüglich einer weiteren Operation ∗ die Axiome

(I 1) a2(a ∗ b) = b(b ∗ a)
(
B1
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B9
)

(I 2) ab ∗ b = a ∗ (b ∗ b)
(
B10

)
(A3) a(b ∗ b) = a

(
B3
)
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DENN: Aufgrund von Axiom (I2) gilt a∗b
∣∣ b , wegen b∗(a∗b) = ab∗b = a∗

(b∗b) = 1, also ab ≥ a∨b, was mit ab ≤ a∨b weiter zu ab = a∨b = b∨a = ba
führt. 2

Satz 3.2.5 hat noch mit ergeben, dass jede idempotente komplementäre
Halbgruppe notwendig kommutativ ist.

Hinweis: Später werden wir auf die Axiomatik der hier betrachteten Stuk-
turen zurückkommen und weitere Systeme präsentieren!

3.3 Arithmetik und ideale Arithmetik

Weiter oben hatten wir die komplementäre Halbgruppe verbal erklärt. For-
mal erfassen wir sie natürlich mit der Beschreibung

3. 3. 1 Definition. Eine Algebra (S, ·, ∗, :) :=: S ist eine komplementäre
Halbgruppe gdw. sie den Bedingungen genügt:

(A1) a(a ∗ b) = b(b ∗ a) (B1) (b : a)a = (a : b)b

(A2) ab ∗ c = b ∗ (a ∗ c) (B2) c : ab = (c : a) : b

(A3) a(b ∗ b) = a (B3) (b : b)a = a

(SYM) a(a ∗ b) = (b : a)a

Wir erkennen sofort die genuin gegebene ∗/ :-Dualität auch an den gewähl-
ten Axiomen, die hier bewusst abhängig gewählt wurden, um diesen dualen
Charakter zu betonen. Zum Einmaleins der komplementären Halbgruppe
sei erwähnt:

3. 3. 2 Proposition. Jede komplementäre Halbgruppe erfüllt:

a ∗ (b : c) = (a ∗ b) : c(3.64)

(a : b) : (c : b) = (a : (b ∗ c)) : b(3.65)

(a ∗ b) ∗ (a ∗ c) = a ∗ ((b : a) ∗ c)(3.66)

DENN: (3.64) ergibt sich aus ax ≥ b : c ⇐⇒ axc ≥ b ⇐⇒ xc ≥ a ∗ b ⇐⇒
x ≥ (a ∗ b) : c , und der Rest ist klar. 2

Sei im folgenden S durchgehend eine komplementäre Halbgruppe. Wir
entwickeln in diesem Paragraphen Regeln der Arithmetik, wie sie für das
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Weitere von Bedeutung sein werden. Dabei beschränken wir uns meist auf
eine

”
Richtung” erinnern aber

”
ein für alle Mal“ daran, dass die jeweils

∗ , : - duale Version stets mitbewiesen ist.

(3.67) a ≤ b =⇒ c ∗ a ≤ c ∗ b & a ≤ b =⇒ a ∗ c ≥ b ∗ c

DENN: a ≤ b =⇒ c(c ∗ b) ≥ a & b(a ∗ c) ≥ c . 2

Unter Berücksichtigung von (3.67) erhalten wir weiter 1):

(3.68) a(b ∨ c) = ab ∨ ac

DENN: ab ∨ ac = ab(ab ∗ ac)
= ab(b ∗ (a ∗ ac))
= a(a ∗ ac)((a ∗ ac) ∗ b)
≥ ac(c ∗ b)
= a(b ∨ c) . 2

3. 3. 3 Lemma. Mit a ∧ b existieren auch ax ∧ bx und xa ∧ xb , und es
gilt:

x(a ∧ b) = xa ∧ xb und (a ∧ b)x = ax ∧ bx.

DENN: c ≤ xa & c ≤ xb
=⇒ x ∗ c ≤ a & x ∗ c ≤ b
=⇒ x ∗ c ≤ a ∧ b
=⇒ x(x ∗ c) ≤ x(a ∧ b)
=⇒ c ≤ x(a ∧ b) . 2

Wie schon erwähnt, ist eine komplementäre Halbgruppe nicht notwendig
∧-abgeschlossen. Es gilt aber das hochrelevante Resultat:

3. 3. 4 Proposition. Ist S ∧-abgeschlossen, so ist S verbands-distributiv.

DENN: a ∨ (b ∧ c) = (b ∧ c)((b ∧ c) ∗ a)
= b((b ∧ c) ∗ a) ∧ c((b ∧ c) ∗ a)
≥ b(b ∗ a) ∧ c(c ∗ a)
= (a ∨ b) ∧ (a ∨ c) . 2

Weiter haben wir

(3.69) a ∗ (b ∨ c) = (a ∗ b) ∨ (a ∗ c)

1) schon für den rechtskomplemetären Fall, falls a ∗ b ≤ b, wie der Leser leicht bestätigt



36 KAPITEL 3. KOMPLEMENTÄRE HALBGRUPPEN

DENN: ax ≥ b ∨ c⇐⇒ x ≥ (a ∗ b) ∨ (a ∗ c) . 2

Aus der letzten Gleichung folgt insbesondere:

(3.70) a ∗ a(a ∗ b) = a ∗ (a ∨ b) = (a ∗ a) ∨ (a ∗ b) = a ∗ b

3. 3. 5 Lemma. Existiert a ∧ b, so gilt

(3.71) (a ∧ b) ∗ c = (a ∗ c) ∨ (b ∗ c)

DENN: (a ∧ b)x ≥ c⇐⇒ ax ≥ c ≤ bx⇐⇒ a ∗ c ≤ x ≥ b ∗ c . 2

Schließlich erhalten wir

(3.72) a ∗ b = (b : (a ∗ b)) ∗ b

DENN: (b : (a ∗ b)) ∗ b ≤ a ∗ b & b : (a ∗ b) ≤ a
;

(b : (a ∗ b)) ∗ b ≥ a ∗ b . 2

Komplementäre Halbgruppen sind nicht notwendig ∧-abgeschlossen. Ge-
nauer gilt:

3. 3. 6 Lemma. Sind a und b zwei beliebige Elemente aus S, so ist c genau
dann Infimum zu a und b, wenn für jedes d aus S gilt:

c ∗ d = (a ∗ d) ∨ (b ∗ d) bzw. d : c = (d : a) ∨ (d : b) .

BEWEIS. Die aufgestellte Bedingung folgt aus der Behauptung nach 3.
3.5 . Umgekehrt ergeben sich aus der aufgestellten Bedingung die Implika-
tionen

c ∗ c = 1 =⇒ (a ∗ c) ∨ (b ∗ c) = 1 =⇒ a ∗ c = 1 = b ∗ c =⇒ a, b ≥ c

und d ≤ a, b =⇒ (a ∗ d) ∨ (b ∗ d) = 1 =⇒ c ∗ d = 1 =⇒ d
∣∣ c.

Damit sind wir am Ziel. 2

Nach 3.3.6 sind zwei Elemente a, b genau dann (teiler-) fremd, im weiteren
auch orthogonal, i. Z. a⊥ b , wenn alle c aus S der Gleichung genügen:
(a ∗ c) ∨ (b ∗ c) = c. Das liefert weiter a ∧ b = 1 =⇒ a ∗ b = b und damit:

(3.73) a⊥ b & ab = ba =⇒ a
∣∣bc V a

∣∣ cb =⇒ a
∣∣ c .
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DENN: Nach Voraussetzung haben wir: ab = a(a ∗ b) = b(b ∗ a) = ba und
c ∗ a = c ∗ (b ∗ a) = bc ∗ a = 1 . 2

3. 3. 7 Definition. p ∈ S heißt halbprim, wenn p der Implikation genügt:
p = ab =⇒ p = a V p = b .

Offenbar ist p ∈ S halbprim gdw. a < p =⇒ ap = p erfüllt ist. Weiter gilt

3. 3. 8 Lemma. Ein Element p aus S ist halbprim gdw. für alle c ∈ S
die Gleichung c ∗ p = 1 V c ∗ p = p erfüllt ist, und dies impliziert weiter
p
∣∣ ab =⇒ p

∣∣ a V p
∣∣ b .

DENN: Ist p halbprim, so resultiert aus

p = (p : (c ∗ p))(c ∗ p) =⇒ c ∗ p = p V p : (c ∗ p) = p ,

dass c ∗ p = p oder c ∗ p = (p : (c ∗ p)) ∗ p = p ∗ p = 1 erfüllt ist.

Umgekehrt folgt aus p = ab & p ̸= a, dass a ∗ p = p also auch b = p sein
muss.

Gilt schließlich zudem p
∣∣ ab, so erhalten wir die Implikation

ab ∗ p = 1 =⇒ b ∗ (a ∗ p) = 1 =⇒ a ∗ p = 1 V b ∗ p = 1
=⇒ p

∣∣ a V p
∣∣ b .

Fertig! 2

3. 3. 9 Lemma. Je zwei Halbprimelemente p , q kommutieren.

DENN: Ist pq = q, so folgt xp = q (∃x ∈ S) , und es muss x = q V p = q
erfüllt sein. Analog schließen wir für pq = p .

Gilt aber p ̸= pq ̸= q ̸= p, so ist zunächst p ∗ q = q und q ∗ p = p erfüllt,
woraus dann pq = p(p ∗ q) = q(q ∗ p) = qp resultiert. 2

3. 3. 10 Lemma. Ist p halbprim und gilt a ̸= ap, so folgt a ∗ ap = p.

DENN: Sei x = a ∗ ap . Dann gilt ap = ax. Wäre nun p ̸≤ x, so hätten wir
a = a ′p, also wegen x < p dann weiter a = ax = ap – mit Widerspruch!

2

3. 3. 11 Definition. p ∈ S heiße vollprim, wenn p im Falle pn
∣∣ ab beide

oder aber pn mindestens einen der beiden Faktoren teilt.

3. 3. 12 Lemma. Jedes halbprime p aus S ist sogar vollprim.
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DENN: Sei k ≤ n der höchste Exponent mit pk ≤ a . Wäre dann k < n so
ergäbe sich a = pk · a ′ · b , und es müsste nach 3.3.10 p

∣∣ a ′ · b erfüllt sein,
ein Widerspruch! 2

Wir kommen nun zu den Idempotenten in komplementären Halbgruppen.

3. 3. 13 Lemma. Sei S eine komplementäre Halbgruppe. Dann liegen die
idempotenten Elemente im Zentrum und die Menge E der Idempotenten
ist abgeschlossen bezüglich der Operationen · , ∗ , : , ∨ und ∧.

BEWEIS. Sei a2 = a. Dann haben wir ab = a ∨ b wegen b ≤ a ∨ b und
a(a ∨ b) = a ∨ b.
Hieraus erhalten wir weiter für je zwei Idempotenta, b die Gleichung (ab)2 =
a2b2 = ab = a ∨ b = (a ∨ b)2. Also ist E abgeschlossen bezüglich · und ∨ .

Wir zeigen nun, dass E auch abgeschlossen ist bezüglich ∗ .

Seien also a und b idempotent. Dann ist auch a∨ b idempotent, so dass wir
wegen a∗b = a∗(a∨b) o. B. d. A. a < b annehmen dürfen. Das liefert weiter
mit a∗b =: x die Abschätzung a∗ (x∗x2) ≤ a∗ (x∗ax2) = ax∗ax = 1, also
a(x∗x2) = a . Daraus folgt dann aber für jedes y mit y(x∗x2) = x zunächst
ay = ay(x ∗ x2) = ax = b, also x ≤ y, woraus weiter die Abschätzung
x2 = x(x ∗ x2) ≤ y(x ∗ x2) = x resultiert.

Ist S schließlich ∧-abgeschlossen, so gilt für idempotente a, b zusätzlich
(a ∧ b)2 = a ∧ ab ∧ b = a ∧ b. 2

Zur Erarbeitung der weiteren Arithmetik führen wir den Bereich V der
endlich erzeugten, kurz endlichen, v-Ideale ein. Wir gehen aus von Halb-
gruppen S mit

∣∣
r

=
∣∣
ℓ

.

3. 3. 14 Definition. Sei S eine beliebige Halbgruppe. Dann heiße ein
nicht leeres a ⊆ S ein v-Ideal, wenn gilt:

(s
∣∣u · a · v =⇒ s

∣∣ucv) =⇒ c ∈ a .

Wie üblich nehmen wir also die leere Menge nicht mit unter die v-Ideale
auf, weisen aber darauf hin, dass dies möglich wäre. Damit haben wir:

A fortiori ist S ein v-Ideal in S und man bestätigt leicht, dass der Durch-
schnitt einer Familie von v-Idealen leer ist oder wieder ein v-Ideal liefert,
sowie, dass der Durchschnitt {A} aller A umfassenden v-Ideale gleich der
Menge aller c ist, die der Bedingung genügen:

s
∣∣uAv =⇒ s

∣∣ucv .
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Weiter gilt {A}{B} ⊆ {AB} ,

wegen
s
∣∣uABv =⇒ s

∣∣u{A}{B}v ,

sowie
{A} = {A′} & {B} = {B′} =⇒ {AB} = {A′B′} ,

wegen
s
∣∣uABv =⇒ s

∣∣uA′Bv =⇒ s
∣∣uA′B′v .

Aufgrund dieser Zusammenhänge wird jedem Paar von v-Idealen eindeutig
ein Produktideal zugeordnet. Schließlich bildet zu je zwei v-Idealen a, b die
Menge a/b aller x mit ax ⊆ b und entsprechend die Menge b\a aller y mit
ya ⊆ b ein v-Ideal. Denn die Festsetzung a/b =: x liefert:

r
∣∣u · x · v ⇒ r

∣∣u · c · v
=⇒

s
∣∣u · b · v ⇒ s

∣∣u · ax · v
⇒ s

∣∣u · ac · v
⇒ a · c ⊆ b

=⇒
c ∈ x .

Im folgenden sei S komplementär. Dann gehören genau diejenigen Elemen-
te aus S zu {A}, die gemeinsames Vielfaches aller gemeinsamen Teiler von
A sind. Denn s

∣∣A =⇒ s
∣∣ {A} und aus g

∣∣A =⇒ g
∣∣ c für alle g ∈ S folgt:

s
∣∣uAv =⇒ s : v

∣∣uA
=⇒ u ∗ (s : v)

∣∣A
=⇒ u ∗ (s : v)

∣∣ c
=⇒ u(u ∗ (s : v))

∣∣uc
=⇒ u ∨ (s : v)

∣∣uc
=⇒ s : v

∣∣uc
=⇒ (s : v)v

∣∣ucv
=⇒ s ∨ v

∣∣ucv
=⇒ s

∣∣ucv .
Insbesondere haben wir hiernach für komplementäre Halbgruppen:

{A} = {a} =⇒ a =
∧
x (x ∈ A) .
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Weiter ergibt sich für endliche v-Ideale die wichtige Äquivalenz:

(3.74) a ⊇ b ⇐⇒ a
∣∣∣
ℓ
b ⇐⇒ a

∣∣∣
r
b .

Zunächst haben wir ax = b =⇒ a ⊇ b und gilt umgekehrt a ⊇ b, so erhalten
wir im Falle a = {a1, . . . , an} ∋ b für c =

∨n
1(ai ∗ b) die Implikation:

d
∣∣ b =⇒ d

∣∣ a · c
&

d
∣∣ a · c =⇒ c ≤ b ∨ d =: g

∣∣ a · c
=⇒ g : c

∣∣ a
=⇒ g : c

∣∣ b
=⇒ (g : c)x = b
=⇒ ax ≥ b
=⇒ x ≥ c
=⇒ (g : c)c ≤ b

=⇒ g
∣∣ b

=⇒ d
∣∣ b .

Somit ist a{c} = {b} . Durchläuft nun b eine endliche Basis B = b1, . . . , bm
von b mit korrespondierenden ck so erhalten wir die erste Behauptung mit
a{ci} = {bk} .
Der Rest folgt dual.
Da S isomorph ist zum Bereich aller Hauptideale {a}, dürfen wir im fol-
genden die Hauptideale mit ihren Erzeugern identifizieren. Weiter sei ver-
abredet, den Durchschnitt zweier v-Ideale a, b mit a ∨ b zu bezeichnen.
Es wird also im weiteren b das Ideal {b} bedeuten und a ∗ b das eindeutig
bestimmte Element c mit ax ⊆ {b} ⇐⇒ c

∣∣x. Für a , b ergibt sich dann
leicht ab ∗ c = b ∗ (a ∗ c) sowie {a, b} ∗ c = a ∗ c ∨ b ∗ c (= a ∗ c ∩ b ∗ c) .
Wie wir sofort sehen, bildet der Bereich V der v-Ideale eine verbandsge-
ordnete Struktur, in die S als komplementäre Halbgruppe eingebettet ist.
Darüber hinaus erfüllt V alle

”
wünschenswerten” Distributivgesetze, wie

wir zeigen werden. Um dies herzuleiten, beachten wir (3.74). Hiermit folgt
unmittelbar

(3.75) a · (a ∗ {c}) = a ∨ {c} = a ∩ {c}
und somit weiter:

(3.76) {c} ∨ a = {c ∨ a1, . . . , c ∨ an} .
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DENN: a · (a ∗ {c}) ⊇ {c ∨ a1, . . . , c ∨ an} ist evident, und es gilt

a · (a ∗ {c}) = {a1(a ∗ {c}), . . . , an(a ∗ {c})}
⊆ {a1 ∨ c, . . . , an ∨ c} . 2

Zusammenfassend erhalten wir hiernach:

3. 3. 15 Proposition. Der Bereich der endlichen v-Ideale einer komple-
mentären Halbgruppe erfüllt stets die Gleichungen:

(D) a ∩ (b , c) = {(a ∩ b), a ∩ c}
(D∨) a · (b ∩ c) = a · b ∩ a · c
(D∧) a · (b , c) = {a · b , a · c}

bzw. in Verbandssymbolik

(D) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(D∨) a · (b ∨ c) = a · b ∨ a · c
(D∧) a · (b ∧ c) = a · b ∧ a · c

BEWEIS. Dies ist klar für (D∧) und folgt für (D) analog dem Beweis zu
3.3.4.
Seien nun a = {a1, . . . , am}, b = {b1, . . . , bn}, c = {c1, . . . , cp} gegeben.
Dann folgen die beiden Gleichungen:

a · b ∩ a · c = {ai bk ∨ aj cℓ} (1 ≤ i, j ≤ m, 1 ≤ k ≤ n, 1 ≤ ℓ ≤ p)

und

a · (b ∩ c) = {ai bk ∨ ai cℓ} (1 ≤ i ≤ m, 1 ≤ k ≤ n, 1 ≤ ℓ ≤ p)

und es bleibt zu zeigen:
a · b ∩ a · c ⊆ a · (b ∩ c)

Es gilt aber

aibk ∨ ajcℓ ∈ {aibk, aicℓ} ∩ {ajbk, ajcℓ}) ⊆ a · (b ∩ c)

Damit sind wir am Ziel. 2

Wir wenden uns nun den endlichen idempotenten v-Idealen zu. Hier erhal-
ten wir wegen a = a2 =⇒ a · {x} ⊇ a ∨ {x} zunächst:

(3.83) a = a2 =⇒ a · x = x · a & a ∗ x = x : a & a · x = a · (a ∗ x) .
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Weiter erhalten wir die beiden Gleichungen:

{a ∗ b, b ∗ a}2 = {a ∗ b, b ∗ a}(3.84)

(a ∗ b) ∗ (b ∗ a) = b ∗ a = (b ∗ a) : (a ∗ b) .(3.85)

DENN: Zunächst erhalten wir

a ∗ b = {a, b}(b ∗ a) ∗ b
= (b ∗ a) ∗

(
{a, b} ∗ b

)
= (b ∗ a) ∗ (a ∗ b)

Setzen wir nun u := {a ∗ b, b ∗ a} , so folgt weiter

u ∗ {a ∗ b} = {b ∗ a} ∗ {a ∗ b} = {a ∗ b}

und u(u ∗ {a ∗ b}) = {a ∗ b}

Das liefert uns dann (3.84) via

{a ∗ b, b ∗ a}2 = {u · (a ∗ b), u · (b ∗ a)}
= {a ∗ b, b ∗ a}

Schließlich erhalten wir (3.85) vermöge

(a ∗ b) : (b ∗ a) = (a ∗ b) : u
= u ∗ (a ∗ b)
= (b ∗ a) ∗ (a ∗ b)
= a ∗ b .

Damit sind wir am Ziel. 2

Hilfssatz (3.84) liefert als weitere Folgerungen:

(a ∗ b)(b ∗ a) = (b ∗ a)(a ∗ b)(3.86)

x ≤ a ∗ b, b ∗ a =⇒ x(a ∗ b) = a ∗ b = (a ∗ b)x .(3.87)

DENN: Der Beweis der ersten Behauptung verläuft analog zum Beweis von
(3.73) . Der zweite Teil ergibt sich aus (3.84) wegen {a ∗ b, b ∗ a}(a ∗ b) =
a ∗ b =⇒ x(a ∗ b) = a ∗ b und Hilfssatz (3.83) . 2

Eine komplementäre Halbgruppe heiße normal, wenn sie das Gesetz erfüllt:

(N) (a ∗ b) ∧ (b ∗ a) = 1 = (a : b) ∧ (b : a)
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3. 3. 16 Proposition. Normale komplementäre Halbgruppen sind durch
jedes der beiden nachfolgenden Gesetze (N’) bzw. (N∗) charakterisiert:

(N’) b : (a ∗ b) ∨ a : (b ∗ a) = a ∧ b
(N∗) (a ∗ b) ∧ (b ∗ a) = 1 .

BEWEIS. Es gilt stets

a, b ≥ b : (a ∗ b) ∨ a : (b ∗ a) .

Sei nun zudem (N∗) erfüllt. Dann folgt für jedes c mit c
∣∣ a, b bezüglich des

Elementes x := b : (a ∗ b) ∨ a : (b ∗ a) , man beachte (3.72) ,

c
∣∣ a & c

∣∣ b =⇒ x ∗ c ≤ x ∗ b ≤ a ∗ b
& x ∗ c ≤ x ∗ a ≤ b ∗ a

=⇒ x ∗ c ≤ (a ∗ b) ∧ (b ∗ a) = 1
=⇒ c

∣∣x
und damit insgesamt (N’) . Sei hiernach (N’) erfüllt. Dann folgt

(a : b) ∧ (b : a) = ((a : b) : ((b : a) ∗ (a : b)))
∨ ((b : a) : ((a : b) ∗ (b : a)))

= ((a : b) : (a : b)) ∨ ((b : a) : (b : a))

= 1 .

Damit ist aus Dualitätsgründen alles gezeigt. 2

Für ∧-abgeschlossene komplementäre Halbgruppen gilt noch ein Satz, der
für den kommutativen Fall bereits in [158] bewiesen wurde, jedoch mit
einer Methode, die sich nicht übernehmen lässt. Wir zeigen:

3. 3. 17 Proposition. Eine ∧-abgeschlossene komplementäre Halbgruppe
S ist genau dann normal, wenn sie eines der beiden Gesetze erfüllt:

(N∗∧) a ∗ (b ∧ c) = (a ∗ b) ∧ (a ∗ c)
(N∗∨) (a ∨ b) ∗ c = (a ∗ c) ∧ (b ∗ c) .

BEWEIS. Ist S normal, so folgt zunächst für a ≤ b ∧ c :

a ∗ (b ∧ c) = (a ∗ (b ∧ c))((b ∗ c) ∧ (c ∗ b))
= (a ∗ (b ∧ c))((b ∧ c) ∗ c)
∧ (a ∗ (b ∧ c))((b ∧ c) ∗ b)
= (a ∗ b) ∧ (a ∗ c) .
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Nehmen wir hiernach a beliebig an, so ist – wie behauptet:

a ∗ (b ∧ c) = a ∗ (a ∨ (b ∧ c))
= a ∗ ((a ∨ b) ∧ (a ∨ c))
= (a ∗ (a ∨ b)) ∧ (a ∗ (a ∨ c))
= (a ∗ b) ∧ (a ∗ c) , .

Umgekehrt impliziert (N∗∧)

(a ∗ b) ∧ (b ∗ a) = ((a ∧ b) ∗ b) ∧ ((a ∧ b) ∗ a)
= (a ∧ b) ∗ (b ∧ a) = 1 .

Analog liefert uns das Gesetz (N∗∨)

(a ∗ b) ∧ (b ∗ a) = (a ∗ (a ∨ b)) ∧ (b ∗ (a ∨ b))
= (a ∨ b) ∗ (b ∨ a) = 1 .

Schließlich liefert (N) zunächst für a ∨ b ≤ c die Gleichung

(a ∨ b) ∗ c = (a ∗ b ∧ b ∗ a)((a ∨ b) ∗ c))
= ((a ∗ (a ∨ b)) ∧ ((b ∗ (a ∨ b)))

· ((a ∨ b) ∗ c)
= (a ∗ (a ∨ b))((a ∨ b) ∗ c)
∧ (b ∗ (a ∨ b))((a ∨ b) ∗ c)
= (a ∗ c) ∧ (b ∗ c) ,

und damit allgemein:

(a ∨ b) ∗ c = ((a ∨ b) ∧ c) ∗ c
= ((a ∧ c) ∨ (b ∧ c)) ∗ c
= ((a ∧ c) ∗ c) ∧ ((b ∧ c) ∗ c)
= a ∗ c ∧ b ∗ c . 2

Aus (3.87) folgt noch

3. 3. 18 Lemma. Eine komplementäre Halbgruppe ist schon dann normal,
wenn sie eines der beiden nachfolgenden Gesetze erfüllt:

(BV’) a : (b ∗ a) = b : (a ∗ b)

(BV) a : (b ∗ a) = (b : a) ∗ b .

BEWEIS. Es gilt stets a, b ≥ a : (b ∗ a) .
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und es folgt unter Voraussetzung von (BV’)

a, b ≥ c =⇒ a : (b ∗ a) ≥ a : (c ∗ a) = c : (a ∗ c) = c.

Daher ist a : (b∗a) = a∧b = b : (a∗b) erfüllt, und wir können zurückgreifen
auf 3.3.16. Analog schließen wir im Fall (BV). 2

Im letzten Teil dieses Paragraphen befassen wir uns mit der Arithmetik der
kürzbaren Elemente. Sie sind offenbar charakterisiert durch die Gleichung
(a ∗ a(xa : a)) ∗ x = 1. Eine weitere wichtige Charakterisierung, die eine
entscheidende Rolle bei der Konstruktion der Quotientenhülle spielen wird,
lernen wir im Anschluss an den nun folgenden Satz kennen.

3. 3. 19 Proposition. Die Menge der kürzbaren Elemente einer jeden
komplementären Halbgruppe bildet ein operativ abgeschlossenes Ordnungs-
ideal C .

BEWEIS. Natürlich ist das Einselement 1 kürzbar, und es ergibt sich fast
unmittelbar, dass mit a und b auch ab und mit ab auch a kürzbar ist.
Hieraus resultiert die Kürzbarkeit von a ∗ b, b : a, a ∨ b und – im Falle
seiner Existenz – die Kürzbarkeit von a ∧ b. Dass für ein jedes kürzbare a
alle a∧b existieren, folgt aus a∗b, b∗a ≥ x =⇒ x(b∗a) = 1(b∗a) =⇒ x = 1
und dem ersten Teil des Beweises zu 3.3.16 2

Nun bringen wir die angekündigte Charakterisierung:

3. 3. 20 Proposition. Ein Element aus S ist kürzbar gdw. es als a mit
allen Paaren b, c bzw. als b mit allen Paaren a, c die Gleichungen erfüllt:

(C∗) a ∗ bc = (a ∗ b)
(
(b ∗ a) ∗ c

)
(C :) cb : a =

(
c : (a : b)

)
(b : a) .

BEWEIS. Genügt x den Bedingungen des Satzes, so wähle man a = b = x.
Dann erhält man x ∗ xc = (x ∗ x)

(
(x ∗ x) ∗ c

)
= c =

(
c : (x : x)

)
(x : x) =

cx : x.

Umgekehrt kann man zeigen:

a(a ∗ b)
(
(b ∗ a) ∗ c

)
= b(b ∗ a)

(
(b ∗ a) ∗ c

)
≥ bc
;

(a ∗ b)
(
(b ∗ a) ∗ c

)
≥ a ∗ bc .
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Weiter gilt wegen a ∗ bc ≥ a ∗ b etwa a ∗ bc = (a ∗ b)y und damit dann

a(a ∗ b)y ≥ bc .

Hieraus ergibt sich für kürzbares a oder b als nächstes die Implikation:

(a ∧ b)(b ∗ a)(a ∗ b)y ≥ (a ∧ b)(a ∗ b)c
;

(b ∗ a)(a ∗ b)y ≥ (a ∗ b)c
;

(a ∗ b)(b ∗ a)y ≥ (a ∗ b)c .

Wir untersuchen den weiteren Sachverhalt zunächst für a ∈ C. Dann gilt
auch b∗a ∈ C, weshalb wir – man beachte a∗ bc = (a∗ b)y – die Herleitung
erhalten:

(b ∗ a)(a ∗ b)y = (a ∗ b)(b ∗ a)y

≥ (a ∗ b)c ∨ (a ∗ b)(b ∗ a)

= (a ∗ b)
(
c ∨ (b ∗ a)

)
= (a ∗ b)(b ∗ a)

(
(b ∗ a) ∗ c

)
= (b ∗ a)(a ∗ b)

(
(b ∗ a) ∗ c

)
;

a ∗ bc = (a ∗ b)y ≥ (a ∗ b)
(
(b ∗ a) ∗ c

)
Ist hingegen b aus C, also auch a ∗ b aus C, so schließen wir:

(a ∗ b)(b ∗ a)y ≥ (a ∗ b)c
; (b ∗ a)y ≥ c
; y ≥ (b ∗ a) ∗ c
; x = (a ∗ b)y ≥ (a ∗ b)

(
(b ∗ a) ∗ c

)
; x = a ∗ bc ≥ (a ∗ b)

(
(b ∗ a) ∗ c

)
.

Der Rest folgt dual. 2

Abschließend halten wir für spätere Entwicklungen noch fest:

3. 3. 21 Proposition. Ist S kürzbar, so gelten die Regeln:

(3.97) x ∗ y ⊥ y ∗ x
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DENN: (a ∧ b)(a ∗ b) ∧ (b ∗ a) = a ∧ b. 2

(3.98) u⊥ v ⇐⇒ u ∗ v = v

DENN: u ∗ v = (a ∧ v) ∗ v . 2

(3.99) (a ∧ b) ∗ c = a ∗ c ∨ b ∗ c

DENN: Vergleiche (3.71). 2

(3.100) a ∗ (b ∨ c) = a ∗ b ∨ a ∗ c

DENN: Vergleiche (3.69). 2

(3.101) a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c

DENN: Vergleiche (N∗∧). 2

(3.102) (a ∨ b) ∗ c = a ∗ c ∧ b ∗ c

DENN: Vergleiche (N∗∨). 2

(3.103) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

DENN: Vergleiche 3.3.4. 2

(3.104) u⊥ v ⇐⇒ uv = vu

DENN: Beachte (3.73) 2

(3.105) a(b ∧ c) = ab ∧ ac

DENN: Beachte 3.3.3. 2

(3.106) a ∧ bc (3.105)
= a ∧ (a ∧ b)c

(3.107) a
∣∣ bc & a⊥ b

(3.105)⇒ a
∣∣ c .
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3.4 Komplementäre Halbgruppen und Ringe

3. 4. 1 Definition. Eine Teilmenge a von S heißt ein t-Ideal, wenn sie mit
jeder endlichen Teilmenge E ⊆ a auch das von E erzeugte v-Ideal enthält.

Die Arithmetik der t-Ideale entspricht der Arithmetik der v-Ideale. Insbe-
sondere erzeugt jede Teilmenge A von S ein eindeutig bestimmtes feinstes
t-Ideal At, das wir erhalten, wenn wir alle (Ai)t mit endlichem Ai ⊆ A
zu ihrer mengentheoretischen Vereinigung zusammen führen. U.a. gilt die
Implikation

At = Bt & Ct = Dt =⇒ ⟨AC⟩t = ⟨BD⟩t ,

deren Bestätigung hier dem Leser überlassen bleibe.

Jedoch, im Gegensatz zu v-Idealen, sind t-Ideale von endlichem Charakter,
womit gemeint ist, das jedes Element aus At schon in einem Et enthalten
ist, mit einem endlichen E aus A .

Offenbar haben wir av := ⟨a⟩v = ⟨a⟩ = at := ⟨a⟩t = aS . Folglich hat S die
GGT-Eigenschaft, falls jedes v-Ideal eins-erzeugt, also ein Haupt-v-ideal
ist, und – genau so wie im Falle von Dedekind-Idealen, hier abgekürzt als
d-Ideale – erfüllen v-Ideale und auch t-Ideale das Gesetz;

(Dt) ⟨a⟩t · ⟨b, c⟩t = ⟨ab, ac⟩t .

Von nun an bedeute Ideal stets t-Ideal.

Wir notieren Hauptideale mittels kleiner Buchstabe im sf-Format. während
Kleinbuchstaben im Frakturformat zu Bezeichnung von Idealen im Allge-
meinen dienen werden.

3. 4. 2 Definition. Ein Monoid S heiße ring-artig, wenn es ein Null-
Element 0 enthält, worauf bezogen die Ideale der Implikation genügen:

(Dt) a · u = a =⇒ ∃ u∗⊥u : a · u∗ = 0 .

Sei im weiteren S eine ringartige komplementäre Halbgruppe und sei A
die korrespondierende Ideal-Erweiterung. Man beachte, dass S isomorph
ist zu der Halbgruppe der Hauptideale, die jedoch über die Multiplikation
hinaus in A noch via a+b := (a, b) auch eine Addition zulassen – sowie die
Konstruktion von Quotienten (in A). Aus diesem Grunde werden wir mit
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Hauptidealen kalkulieren statt mit Elementen. Als ein erstes Hauptergebnis
erhalten wir:

(3.110) b : a = c & au = a & cu = c
=⇒ b ⊇ a(u∗ + c)
=⇒ u ⊇ c ⊇ (u∗ + c)
=⇒ u ⊇ u∗ ⇒ u = 1 .

Dies impliziert in jedem Falle

u = u2 ⊇ a2 : a ̸= 0 =⇒ u = 1 .(3.111)

Sei hiernach S eine komplementäre Halbgruppe. Dann folgt wegen

s
∣∣Av =⇒ s : v

∣∣A =⇒ (s : v)
∣∣c =⇒ (s : v)v

∣∣cv =⇒ s
∣∣cv

zunächst:

(3.112) c ∈ a ⇐⇒ s
∣∣ a =⇒ s

∣∣c
Weiterhin erhalten wir, vgl. 3.74,

(3.113) ⟨a1, . . . , an⟩ ⊇ b ⇐⇒ ⟨a1, . . . , an⟩ ·
∨n

1(b : ai) = b ,

wie der Leser bestätige. Dies liefert dann weiter:

(a : b) : (b : a) = a : b(3.114)

(a : b + b : a)2 = a : b + b : a(3.115)

da (3.114) aus
a : b = a : (a + b)(b : a)

= (a : (a + b)) : (b : a)
= (a : b) : (b : a)

folgt und u := a : b+ b : a zu (3.115) führt, wegen

(a : b+ b : a)2 = (a : b) · u + (b : a) · u
= a : b+ b : a .

Sei hiernach S ringartig und komplementär. Dann erfüllt A nach (3.111):

a : b + b : a = 1 .(3.116)
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Dies führt insbesondere, siehe oben, zu

a : (b ∨ c) = a : b+ a : c .(3.117)

3. 4. 3 Proposition. Sei S eine ringartige komplementäre Halbgruppe.
Dann sind paarweise äquivalent:

(a) Jedes a besitzt eine Zerlegung u · v mit idempotentem u und kürz-
barem v.

(b) S ist semiprim, d.h. S erfüllt a2 = 0 =⇒ a = 0.

BEWEIS. (a)=⇒(b). Sei a = uv, u = u2 und v kürzbar. Dann folgt

an = 0 =⇒ (uv)n = 0 =⇒ uvn = 0 =⇒ u = 0 =⇒ a = 0 ,

weshalb A semiprim ist.
(b)=⇒(a) Aus der Annahme resultiert

(3.118) b · c = 0 =⇒ (bc)2 = 0 = (c ∨ b)2 =⇒ b ∨ c = 0 = b · c .

Daher erhalten wir im Falle b ̸= 0 zum einen 0 : c =: v ̸= 0 und zum
anderen 1 ̸= 0 : v =: u ≤ c was mittels

0 : (0 : (0 : u)) = 0 : u = 0 : (0 : v)) = v

und
u ∨ v = uv = 0

nach sich zieht

Es gilt

u + v = 0 : v + 0 : u = 0 : (u ∨ v) = 1

also auch

u⊥ v & u2
∣∣uv = 0 =⇒ u = u2 ≤ c .

Demzufolge muss im Falle b ̸= 0 das Element c einen eigentlichen idempo-
tenten Teiler besitzen
Insbesondere würde a2 : a einen eigentlichen idempotenten Teiler besitzen,
falls x ̸= 0 & x · (a ∗ a)2 = 0 erfüllt wäre, was wegen (3.111) nicht möglich
ist . Somit ist a2 : a kürzbar. Es ist aber

(a : (a2 : a))(a2 : a)·(a : (a2 : a))(a2 : a) = a2 = (a2 : a)(a : (a2 : a))·(a2 : a),
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woraus (a : (a2 : a))2 = (a : (a2 : a)) resultiert, also

a = (a : (a2 : a))(a2 : a) =: u · v

mit idempotenten u und kürzbarem v. 2

3. 4. 4 Proposition. Für eine ring-artige komplementäre Halbgruppe S

mit der v-Ideal-Erweiterung A sind die nachfolgenden Bedingungen paar-
weise äquivalent:

(a) A hat die Noether-Eigenschaft und jedes a : b ist eine Hauptideal.

(b) Jedes a ist Produkt von vollständig primen Hauptidealen aus S.

(c) Jedes a ist ein Hauptideal.

BEWEIS. (a)=⇒(b). Wegen der Noether-Eigenschaft zerfällt jedes a in
halbprime Hauptideale.

In einer komplementäre Halbgruppe erfüllt aber jedes Halbprimelement p
die Bedingung p ⊇ ab =⇒ (p : b) : a = 1, weshalb p sogar prim ist, and
darüber hinaus gilt

pn ⊇ ab & p ̸⊇ a =⇒ pn ⊇ pn + (a + p)nb = pn + b ⊇ b ,

weshalb p sogar vollständig prim ist.

(b)=⇒(c). Zunächst erhalten wir pk ⊇ a & pk+1 ̸⊇ a & pk+ℓ ⊇ ax =⇒ pℓ
∣∣x,

d.h. jedes a besitzt eine eindeutige unverkürzbare Primfaktorzerlegung. Sei
nun b =

∏
pi

ni diese eindeutige Darstellung von b. Dann wählen wir zu
jedem i den Exponenten ℓi im obigen Sinne und erhalten b : a =

∏
pi

ℓi.
Daher ist S komplementär. Als nächstes gilt wegen (3.116) die Gleichung

(3.119) a : (a : b) ∨ b : (b : a) = a + b ,

man beachte

a + b ⊆ a : (a : b) ∨ b : (b : a)

und

(a + b) :
(
a : (a : b) ∨ b : (b : a)

)
⊇
(
a : (a : (a : b))

)
+
(
b : (b : (b : a))

)
= a : b + b : a = 1 .

Es ist aber a : (a : b) ∨ b : (b : a) 1-erzeugt. Folglich können wir schreiben:
a + b = a ∧ b .
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Sei nun 0 = pn11 · ... · pi ni · ... · pk nk die Zerlegung der 0. Dann dürfen wir
annehmen, dass kein pi eine anderes pj ̸= pi , teilt und dass 1 ̸= a ⊃ pi ̸= pi

2

zu a = 1 führt, da aus a ̸= 1 die Implikation

p2 = p · (pa + a∗) & p2 ̸⊇ p =⇒ p ⊇ (pa+ a∗)
=⇒ a ⊇ p ⊇ pa+ a∗
=⇒ 1 ̸= a ⊇ a∗ ,

resultieren würde, mit Widerspruch.

Weiterhin haben wir au = a ⊃ p =⇒ au∗ = 0 =⇒ u ⊇ p ⊇ u∗ =⇒ u = 1
und somit ax = ay ⊃ p =⇒ a(x + y)x′ = a(x + y) =⇒ x′ = 1 , also das
Kürzungsgesetz für die Menge aller a ⊃ p.

Dies führt dann schließlich zu einer direkten Zerlegung von S durch die
idempotenten Potenzen ui := eni deren Faktoren in jedem Falle faktoriell
sind und zudem primär oder kürzbar mit 0. Das zieht dann sie aufstei-
gende Kettenbedingung für Hauptideale nach sich und damit die Noether-
Eigenschaft, zur Erinnerung

a ⊃ b ⊇ b & a \ b ⊇ a =⇒ a \ b ⊇ b ∧ a ⊃ b .

Folglich ist jedes a endlich erzeugt und wir haben schon oben gesehen, dass
jedes endlich erzeugte Ideal ein Hauptideal ist.

Schließlich folgt (c)=⇒(a) per definitionem. 2

3.5 Archimedizität und Vollständigkeit

3. 5. 1 Definition. Eine komplementäre Halbgruppe heiße vollständig,
wenn jede nach oben beschränkte Menge nach oben begrenzt ist.

Eine komplementäre Halbgruppe heiße archimedisch, wenn sie dem Gesetz
genügt:

an
∣∣ b (∀n ∈ N) =⇒ ab = b = ba

3. 5. 2 Proposition. Jede vollständige komplementäre Halbgruppe ist
archimedisch.

BEWEIS. Sei an
∣∣ b (∀n ∈ N) und sei b ∗ ba = x sowie

∨
xn = y. Dann ist

xn ∗ xn+1 = x (∀n ∈ N) und folglich y ≤ x ∗ y, also y = x ∗ y und daher
yx = y, woraus dann ba = b(b ∗ ba) = bx = b resultiert.
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Dies liefert die Behauptung aus Gründen der Dualität. 2

3. 5. 3 Proposition. Ist S eine archimedische komplementäre Halbgrup-
pe, so ist auch die Halbgruppe der v-Ideale von S archimedisch.

BEWEIS. Sei an ⊇ {b} erfüllt und gelte c
∣∣ {b} · a. Dann folgt b ∗ c

∣∣ a
und damit (b ∗ c)n

∣∣ {b} (∀n ∈ N), also b(b ∗ c) = b, was c
∣∣ b und damit

{b} · a = {b} bedeutet. 2

3. 5. 4 Proposition. Jede kommutative archimedische komplementäre
Halbgruppe lässt sich einbetten in eine vollständige komplementäre Halb-
gruppe.

Dieser Satz resultiert aus dem Divisoren-Lemma aus [39], das wir im fol-
genden kopieren:

3. 5. 5 Das Divisoren-Lemma. Sei A ein vollständiger, kommutativer,
nicht notwendig algebraischer Multiplikationsverband.

Sei weiter A ⊇ B ⊃ A(A ∗B) und S ⊇ A(A ∗B) erfüllt und sei B ∗ S ein
Divisor. Dann folgt (B ∗ S)n

∣∣B (∀n ∈ N) .

BEWEIS. Setze A ∗B := X . Dann impliziert zunächst S ⊇ AX

(3.120) Y := B ∗ S ⊇ X ∗ S ⊇ X ∗ AX ⊇ A ⊇ B ,

und damit weiter

(E(1)) Y 1
∣∣A & Y 1

∣∣B .

Sei hiernach

(E(n)) Y n
∣∣A und Y n

∣∣B
bereits bewiesen. Dann erhalten wir via

A1 := Y n ∗ A und B1 := Y n ∗B

zunächst A1 ∗B1 = (Y n ∗ A) ∗ (Y n ∗B)
= A ∗B
= X

und damit weiter B1 ⊇ A1 ·X .
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Definiere nun: S1 := Y n ∗ S .

Dann folgt S1 ⊇ Y n ∗ A ·X
⊇ (Y n ∗ A) ·X
= A1 ·X
= A1 · (A1 ∗B1)

&

B1 ∗ S1 = (Y n ∗B) ∗ (Y n ∗ S)

= B ∗ S = Y .

Folglich bleibt (3.120) sogar dann gültig, wenn wir A durch A1 und B durch
B1 ersetzen, weshalb

Y
∣∣A1 ; Y

∣∣B1

also Y
∣∣Y n ∗ A ; Y

∣∣Y n ∗B

und folglich

(E(n+ 1)) Y n+1
∣∣A & Y n+1

∣∣B
eintritt.
Damit sind wir am Ziel. 2

In [39] wird gezeigt, dass jede archimedische d-Halbgruppe also auch die
Halbgruppe der endlich erzeugten v-Ideale einer archimedischen komple-
mentären Halbgruppe, kommutativ ist. Das liefert dann als Verschärfung
von 3.5.4 das

3. 5. 6 Theorem. Jede archimedische komplementäre Halbgruppe lässt
sich einbetten in eine vollständige komplementäre Halbgruppe.

3.6 Klassische Vertreter

In diesem Abschnitt engen wir die komplementäre Halbgruppe sukzessive
ein zu den in der Einleitung erwähnten klassischen Strukturen.

3. 6. 1 Definition. S heiße eine Zerlegungshalbgruppe, wenn S ein Holoid
ist, also ein kommutatives Monoid mit a

∣∣ b & b
∣∣ a =⇒ a = b, in dem jedes

Element in Vollprimfaktoren zerfällt.
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3. 6. 2 Proposition. Eine Algebra S = (S, ·, ∗, :) ist genau dann eine
Zerlegungshalbgruppe, wenn sie den Bedingungen genügt:

(A1) a(a ∗ b) = b(b ∗ a)
(
B1
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B2
)

(A3) a(b ∗ b) = a
(
B3
)

(A4) c : ab = (c : b) : a
(
B10

)
(A5) (a : a)(b : x)c = c(c ∗ b)(a ∗ a)

(
B11

)
(Z)

∣∣S ∗ a
∣∣ = n (∃n ∈ N)

(
B14

)
BEWEIS. (a) Seien zunächst die aufgestellten Bedingungen erfüllt.
Dann lässt sich jedes nicht halbprime a zerlegen in a = bc mit b = a : c und
c = b ∗ a sowie b ̸= a ̸= c. Zerlegt man b ∗ a entsprechend und setzt man
das Verfahren fort, so gelangt man nach endlich vielen Schritten zu einer
Zerlegung a = b1 ·p1 mit b1 = a : p1 und p1 = b1 ∗a mit halbprimem p1 und
b1 < a. Entsprechend lässt sich b1 zerlegen in b1 = b2 · p2 mit b2 = b1 : p2
und p2 = b2 ∗ b1. Hierin ist aufgrund der Konstruktion p2 · p1 = b2 ∗ a, weil
b2 · p2 · p1 ≤ b2 · x zu x = p2 · y führt und damit zu b2 · p2 · p1 ≤ b2 · p2 · y ,
also zu p2 · p1 ≤ x .
Wegen b1 = a : p1 und b1 > b2 = b1 : p2 muss aber p1 · p2 > p1 gelten. Das
bedeutet, dass bei sukzessiver Anwendung des Verfahrens a schließlich in
ein Produkt von Halbprimfaktoren zerfällt.

(b) Sei hiernach S eine Zerlegungshalbgruppe. Dann ist S kommu-
tativ, da je zwei Halbprimelemente nach 3.3.9 kommutieren. Weiter gilt

(a = b) ⇐⇒
(
pn
∣∣ a⇔ pn

∣∣ b) ,
weshalb jedes a eine eindeutig bestimmte unverkürzbare Zerlegung in Voll-
primelemente besitzt. Hieraus leitet sich der Rest der Behauptung unter
Berücksichtigung von q < p & p halbprim =⇒ pq = q leicht her. 2

Wir interessieren uns als nächstes für die Klasse der komplementären Halb-
gruppen, in denen zu je zwei Elementen a ̸= 1, b ein n mit an ≥ b existiert,
auch bezeichnet als die Klasse der streng archimedischen komplementären
Halbruppen, man konsultiere [39]. Streng archimedische komplementäre
Halbgruppen sind linear geordnet, denn wegen (a ∗ b) ∗ (b ∗ a) = b ∗ a muss
nach (A2) gelten a ∗ b = 1 ∨ 1 = b ∗ a. Das bedeutet weiter nach Hölder
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und Clifford, dass sich jede streng archimedische komplementäre Halb-
gruppe entweder einbetten lässt in die additive Halbgruppe der nicht ne-
gativen reellen Zahlen – nämlich wenn S kürzbar ist – oder aber in die
Halbgruppe der reellen Zahlen x mit 0 ≤ x ≤ 1 bezüglich der Verknüpfung
a ◦ b = min(a+ b, 1).

3. 6. 3 Proposition. Eine Algebra S = (S, ·, ∗) ist genau dann eine
streng archimedische komplementäre Halbgruppe, wenn sie den Bedingun-
gen genügt:

(A1) a(a ∗ b) = b(b ∗ a) (B15)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B16

)
(A3) a(b ∗ b) = a (B17)

(AA) a ̸= 1 ̸= b⇒ ∃n ∈ N : an
∣∣ b & b

∣∣ an+1 (B10)

BEWEIS. Zunächst ist S bezüglich ≤ trivialerweise linear geordnet, da
n = 0 nach sich zieht b ≤ a, während andernfalls a ≤ b erfüllt ist. Hieraus
folgt weiter a ∗ b ≤ b, da sonst für alle n wegen a ∗ xy ≥ a ∗ x nach (A2)
an ∗ b ≥ b einträte. Somit ist jeder Rechtsteiler von c auch ein Linksteiler
von c. Weiter gilt au = a =⇒ u = 1 V a2 = a , wegen au = a =⇒ aun = a,
also im Falle u ̸= 1 dann a2 = a. Das bedeutet aber b ≤ a für alle b.
Ist hingegen ax < v, so gilt ax = a(a ∗ ax)

(
(a ∗ ax) ∗ x

)
= ax

(
(a ∗ ax) ∗ x

)
,

was a∗ax = x impliziert. Und hieraus folgt weiter ax < ay < v =⇒ x < y.
Wenden wir nun das auf Hölder zurückgehende Verfahren zum Nachweis
der Kommutativität an, so sind wir fertig.
Es sei zunächst, falls ein solches existiert, x das kleinste von 1 verschiedene
Element. Dann schöpfen die Potenzen von x das gesamte S aus, wegen

xn ≤ a < xn+1 =⇒ a = xn(xn ∗ a)
=⇒ xn ∗ a < x
=⇒ xn ∗ a = 1
=⇒ a = xn .

Gibt es aber kein kleinstes x ̸= 1, so erhalten wir für ab ∗ ba ̸= 1 ein x ̸= 1
mit x2 < ab ∗ ba, also auch mit xn ≤ a ≤ xn+1 und xm ≤ b ≤ xm+1,
was xn+m ≤ ab ≤ xn+m+2 ≤ abx2 < ba impliziert, mit Widerspruch zu
xn+m+2 ≥ ba. 2

Als nächstes studieren wir den kürzbaren Fall. Hier erhalten wir als Cha-
rakterisierung:
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3. 6. 4 Proposition. Eine Algebra S = (S, ·, ∗, :) ist genau dann eine
kürzbare komplementäre Halbgruppe, wenn sie den Bedingungen genügt:

(A1) a(a ∗ b) = b(b ∗ a)
(
B1
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B2
)

(V1) a ∗ ab = b
(
B3
)

(V2) a(a ∗ b) = (b : a)a
(
B18

)
(A5) ba : a = a ∗ ab

(
B19

)
DENN: Wegen ab = a(a ∗ ab) = (ab : a)a = (ab : b)b = b(b ∗ ab) gilt aS =
Sa, weshalb das eindeutig bestimmte c mit c · a = b ∨ a Linkskomplement
von a bezüglich b ist. 2

Hiernach kommen wir zu den booleschen Verbänden. Sie wurden in einem
besonderen Abschnitt zur Verbandstheorie vorgestellt, und der Leser ist
eingeladen, dort noch einmal hinzuschauen. Unser Interesse an dieser Stel-
le gilt der Auffassung boolescher Algebren als rechtskomplementärer Halb-
gruppen.

3. 6. 5 Proposition. Eine Algebra S = (S, ·, ∗, ◦) lässt sich genau dann
auffassen als eine boolesche Algebra , wenn sie den Bedingungen genügt:

(A1) a(a ∗ b) = b(b ∗ a)
(
B1
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B2
)

(A3) a(b ∗ b) = a
(
B3
)

(BA) b
(
(a ◦ a) ∗ c

)
= (a ∗ b)

(
(a ∗ b) ∗ ((a ∗ (a ◦ a)) ∗ b)

) (
B10

)
BEWEIS. Zunächst folgt nach (BA) für b = 1, dass (a ◦ a) ∗ c = 1, also

c

∣∣∣∣
ℓ

a ◦ a für alle c ∈ S erfüllt sein muss. Das bedeutet a ◦ a = b ◦ b, also mit

0 := a ◦ a zu a · 0 ≥ a · (a ∗ 0) = 0 und 0 ≤ 0 · x ≤ 0 führt. Setzen wir nun
a′ := a ∗ 0 , so folgt nach (BA) mit b := a′

a ∗ a′ = (a ∗ a′)
(
(a ∗ a′) ∗ (a′ ∗ a′)

)
= a′

&
a′ ∗ a = (a ∗ a)

(
(a ∗ a) ∗

(
a′ ∗ a

))
,

= a
;

aa′ = 0 = a(a ∗ a′) = a′(a′ ∗ a) = 0 = a′a .
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Gilt nun weiter a ∗ b = b und ab = 0 = ba, so folgt a′ = b wegen

ax ≥ 0 =⇒ ax ≥ b =⇒ x ≥ a ∗ b =⇒ x ≥ b ,

und dies führt zu a2 = a ,

denn es gelten: a2 ∗ a′ = a ∗ (a ∗ a′) = a ∗ a′ = a′

&
a2 · a′ = a(aa′) = a(a′a) = 0 = (aa′)a = (a′a)a = a′ · a2 .

Wegen 0 ∗ c = 1 ergibt sich hieraus Axiom (I1), und aus Axiom (BA) folgt
a ∗ b

∣∣
ℓ
b und damit nach (3.73) die ab = ba.

Zu zeigen bleibt, dass S ∧-abgeschlossen ist und a ∧ a′ = 1 erfüllt. Hier
gilt zunächst nach (BA)

c ≤ a, a′ =⇒ c = (a ∗ c)
(
(a ∗ c) ∗ (a′ ∗ c)

)
= 1(1 ∗ 1) = 1 ,

also a⊥a′, und es ist

a ∗ b ≤ a ∗ 0 = a′ und b ∗ a ≤ a

erfüllt, woraus nach (3.3.16) die ∧-Abgeschlossenheit von S resultiert.

Es sei nun umgekehrt S eine boolesche Algebra. Dann gilt a ∗ b = a′ ∧ b.
Denn es ist a ∨ (a′ ∧ b) = a ∨ b und haben wir weiter y < a′ ∧ b, so muss
auch a∨ y < a∨ b erfüllt sein – man schneide a∨ y und a∨ (a′ ∧ b) jeweils
mit a′ . Hieraus ergibt sich für a′ ∧ b =: c zum einen a ∨ c ≥ b und zum
anderen die Implikation

a ∨ x ≥ b =⇒ a ∨ b = a ∨ (x ∧ c)
=⇒ x ∧ c = c

=⇒ c = a′ ∧ b ≤ x .

Setzen wir noch a ◦ a = 0 für alle a, b, so erhalten wir

(a ∗ b) ∨ ((a ∗ (a ◦ a)) ∗ b) = (a ∗ b) ∨ (a′ ∗ b)
= (a ∧ a′) ∗ b
= 1 ∗ b = b
= b

(
(a ◦ a) ∗ c

)
,

also Axiom (BA). Damit sind wir am Ziel! 2

Aus Satz 3.6.5 folgt unmittelbar
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3. 6. 6 Proposition. Eine Algebra S = (S, ·, ∗) lässt sich genau dann
auffassen als abschnittskomplementärer distributiver Verband, wenn sie den
Bedingungen genügt:

(A1) a(a ∗ b) = b(b ∗ a)
(
B1
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B2
)

(A3) a(b ∗ b) = a
(
B3
)

(BR) (a ∗ b)
(
(a ∗ b) ∗ ((a ∗ c) ∗ b)

)
= b ∗ b

(
B10

)
BEWEIS. Setzt man c = a2 und b = a ∗ a2, so erhält man a ∗ a2 = 1, also
a2 = a(a ∗ a2) = a1 = a. Daher bilden nach 3.6.5 die Teiler eines jeden
a einen booleschen Verband bilden. Umgekehrt folgt die Bedingung (BR)
aus a ∧ (a ∗ c) = 1 aufgrund von Satz 3.3.5. 2

Im Beweis zu 3.6.5 ergab sich, dass a′ ∧ b = a ∗ b erfüllt ist, was bedeutet,
dass in booleschen Ringen die Festsetzung a+b = a∗b∨b∗a eine assoziative
Operation liefert. Wir zeigen, dass diese Eigenschaft sogar charakteristisch
ist. Genauer gilt:

3. 6. 7 Proposition. Eine Algebra S = (S, ·, ∗) lässt sich genau dann
auffassen als ein boolescher Ring, wenn sie mit a+ b := (a ∗ b) · (b ∗ a) den
Bedingungen genügt:

(A1) a(a ∗ b) = b(b ∗ a)
(
B1
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B2
)

(A3) a(b ∗ b) = a
(
B3
)

(BR’) a+ (b+ c) = (a+ b) + c
(
B10

)
BEWEIS. Zunächst gilt trivialerweise

a+ a = 1 , 1 + a = a+ 1 = a , a+ ab = ab+ a = a ∗ ab .
Das impliziert weiter:

a ∗ a2 = a ∗ ((a+ a2) + a) = a ∗
(
(a ∗ a2) ∗ a

)
≤ a ∗

(
(a ∗ a2) ∗ a2

)
= 1 ; a2 = a

also a ∗ b = a ∗ (a ∗ b) ≤ a ∗ (a ∗ b)(b ∗ a) ≤ a+ a+ b = b ,
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was ab = ba bewirkt, wegen a, b ≤ a(a ∗ b) = b(b ∗ a) ; ab = a ∨ b = ba .

Endlich gilt x ≤ a, a ∗ b =⇒ x + (a ∗ b) = x ∗ (a ∗ b) = ax ∗ b = a ∗ b , also
x+ (a ∗ b) = a ∗ b; x = 1 . 2

Wir wenden uns nun komplementären Halbgruppen zu, in denen jedes Ele-
ment in ein Produkt eines idempotenten u mit einem kürzbaren v zerfällt.
Zu ihnen gehören natürlich die direkten Produkte von brouwerschen und
kürzbaren komplementären Halbgruppen.

3. 6. 8 Proposition. Eine Algebra S = (S, ·, ∗, :) ist multiplikativ genau
dann subdirektes Produkt einer kürzbaren und einer idempotenten komple-
mentären Halbgruppe, wenn sie den Bedingungen genügt:

(A1) a(a ∗ b) = b(b ∗ a)
(
B1
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B2
)

(A3) a(b ∗ b) = a
(
B3
)

(A4) c : ab = (c : b) : a
(
B10

)
(A5) (a : a)(b : c)c = c(c ∗ b)(a ∗ a)

(
B11

)
(IR)

(
(a ∗ a2) ∗ (a ∗ a2))

(
b(a ∗ a2) : (a ∗ a2)

))
∗ b = b ∗ b

(
B23

)
BEWEIS. Axiom (IR) gewährleistet, dass jedes a∗a2 kürzbar ist, und dies
impliziert:

a2 = (a ∗ a2)
(
(a ∗ a2) ∗ a

)(
a : (a ∗ a2)

)
(a ∗ a2)

= (a ∗ a2)
(
(a ∗ a2) ∗ a

)
(a ∗ a2)

=⇒ (⋆) a = (a ∗ a2)
(
(a ∗ a2) ∗ a

)
= (a ∗ a2)

(
(a ∗ a2) ∗ a

)(
a : (a ∗ a2)

)
= a

(
a : (a ∗ a2)

)
=⇒ a ∗ a2 =

(
a : (a ∗ a2)

)
∗ (a ∗ a2)

=⇒ a =
(
a : (a ∗ a2)

)(
(a : (a ∗ a2)) ∗ (a ∗ a2)

)
= (a ∗ a2)

(
(a ∗ a2) ∗ (a : (a ∗ a2))

)
=⇒ (a ∗ a2) ∗ a = (a ∗ a2) ∗

(
a : (a ∗ a2)

)
(⋆⋆)

≤ a : (a ∗ a2)

=⇒ a
(⋆)
= (a ∗ a2)

(
(a ∗ a2) ∗ a

) (
a : (a ∗ a2)

)
(⋆⋆)
= (a ∗ a2)

(
(a ∗ a2) ∗ a

)(
(a ∗ a2) ∗ a

)
=⇒

(
(a ∗ a2) ∗ a

)2
= (a ∗ a2) ∗ a ,



3.6. KLASSISCHE VERTRETER 61

also die Idempotenz von (a ∗ a2) ∗ a .
Ist umgekehrt jedes a in der gewünschten Weise zerlegbar, so erhalten wir
uv ∗ (uv)2 = uv ∗ uv2 = v ∗ (u ∗ uv2) ≤ v2 und damit die Behauptung. 2

Da die paarweise Orthogonalität von kürzbaren und idempotenten Ele-
menten gesichert ist, wenn jedes idempotente Element nur 1 als kürzbaren
Teiler besitzt, und da diese Eigenschaft den direkten Produkten von boole-
schen Ringen mit Verbandsgruppenkegeln a fortiori zukommt, bieten sich
nach 3.6.8 die beiden Korollare an:

3. 6. 9 Korollar. Eine komplementäre Halbgruppe S ist genau dann das
direkte Produkt einer idempotenten und einer kürzbaren komplementären
Halbgruppe, wenn sie neben (IR) das nachfolgende Axiom (IV) erfüllt:

(IV)
(
(a ∗ a(ba : a)) ∗ b

)2
=
(
a ∗ a(ba : a)

)
∗ b .

DENN: Die Bedingung (IV) ist offenbar notwendig, und sie ist hinreichend
wegen:

x ≤ a = a2 =⇒ x =
(
a ∗ a(a : a)

)
∗ x =

(
a ∗ a(xa : a)

)
∗ x = x2 .

2

3. 6. 10 Korollar. Eine komplementäre Halbgruppe S ist genau dann das
direkte Produkt eines booleschen Ringes und einer kürzbaren komplementä-
ren Halbgruppe, wenn sie neben (IR) das Axiom erfüllt:

(BV) a : (b ∗ a) = (b : a) ∗ b .

BEWEIS. Die Bedingung (BV) ist notwendig, da in booleschen Ringen
die Gleichung (a∗ b)∗ b =

(
(a∧ b)∗ b

)
∗ b = a∧ b erfüllt ist und Kürzbarkeit

die Gleichung impliziert: a = (a ∧ b)(b ∗ a) = (a : b)(a ∧ b) .
Umgekehrt folgt aus (BV) für kürzbare x die Implikation

x ≤ a = a2 =⇒ x = a : (x ∗ a) = a : (x ∗ xa) = a : a = 1 ,

und weiter gilt:

a = a2 =⇒ a ∧ (a ∗ c) = (a ∗ c) :
(
a ∗ (a ∗ c)

)
= (a ∗ c) : (a ∗ c) = 1 ,

was zusammen mit 3.6.10 die Behauptung impliziert. 2

Dass das um Axiom (IV) erweiterte Axiomensystem der komplementären
Halbgruppe unabhängig ist, beweisen die Beispiele (B1), (B2), (B3), (B10),
(B11), (B23) .
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Schließlich zeigen wir noch:

3. 6. 11 Proposition. Eine komplementäre Halbgruppe ist genau dann
das direkte Produkt eines booleschen Ringes mit einer kürzbaren komple-
mentären Halbgruppe, wenn sie die Axiome (IV) und (BV) erfüllt.

BEWEIS. Offenbar sind die beiden Bedingungen notwendig. Daher bleibt
lediglich zu zeigen, dass sie die Bedingung (IR) implizieren.

Wie wir schon unter 3.6.10 sahen, gilt wegen (BV) auch x ≤ a = a2 =⇒
x = x2. Weiter ist das Element a – wie wir nun zeigen werden – genau
dann kürzbar, wenn es lediglich 1 als idempotenten Teiler besitzt.

Denn ist a kürzbar, so muss jeder idempotente Teiler gleich 1 sein. Ist
a hingegen nicht kürzbar, so gibt es ein Paar x, y mit (etwa) xa = ya
und x ∗ y ̸= 1. Dann gilt x(x ∗ y)a = (x ∨ y)a = xa, so dass entweder
(x ∨ y) ∗ (x ∨ y)a < a gilt oder aber

x ∗ xa = x ∗ (x ∨ a) = (x ∗ (x ∨ y)((x ∨ y) ∗ (x ∨ y)a) = (x ∗ y)a

und damit a ≥ x ∗ xa ≥ (x ∗ y)a ≥ a , also (x ∗ y)a = a erfüllt ist.

Hieraus resultiert weiter (x ∗ y) ∗ a < a, wegen a :
(
(x ∗ y) ∗ a

)
= x ∗ y ̸= 1

– man beachte die Voraussetzung.

Damit erhalten wir insgesamt ein z mit z ∗ za < a, also nach Bedingung
(IV) auch mit 1 ̸=

(
z ∗ z(az : z)

)
∗ a = u = u2 ≤ a. Hieraus folgt dann

Axiom (IR), da aus x = x2 ≤ a ∗ a2 die Implikation resultiert

x ≤ a, a ∗ a2 =⇒ x = (a ∗ a2) :
(
x ∗ (a ∗ a2)

)
= (a ∗ a2) : (ax ∗ a2)
= (a ∗ a2) : (a ∗ a2) = 1 .

Dies liefert aus Gründen der Dualität den Beweis nach 3.6.10. 2

Im Hinblick auf Koppelungsmöglichkeiten der Struktur der komplementä-
ren Halbgruppe mit der klassischen Struktur des Ringes sei noch erwähnt:

3. 6. 12 Zusatz. Ist R ein Ring mit aR = Ra für alle a ∈ R und S die
Halbgruppe der Hauptideale aus R , die wir bezeichnen wollen mit a, b. . .
und betrachten wollen bezüglich ab := a · b = (a) · (b) = (ab) und bezüglich
a ∨ b := (a) ∩ (b) , so gilt:

Ist S komplementär, so ist S auch normal, und es ist unter dieser Voraus-
setzung Axiom (IR) genau dann erfüllt, wenn R semiprim ist, d.h. kein
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eigentliches nilpotentes Element, also kein a ̸= 0 mit an = 0 (∃n ∈ N)
besitzt.

BEWEIS. Zunächst besitzt S eine 1 und damit auch R eine 1. Denn ist
u ein Allteiler aus R, so ist auch u2 ein Allteiler, also mit geeignetem x
dann u(ux) = u und damit (ux)(ux) = ux ein idempotenter Allteiler aus
R . Unter dieser Bedingung können wir weiter schließen

⟨b⟩ : ⟨a⟩ = ⟨c⟩ & aef = a & cef = c

=⇒ b
∣∣ a(ef − 1 + c)

=⇒ e
∣∣ c ∣∣∣∣ t(ef − 1 + c) =⇒ e

∣∣ 1 .
Damit folgt dann zum einen, dass a ∗ a2 keinen idempotenten Teiler ent-
halten kann und zum anderen, dass S normal ist, wenn S komplementär
ist.
Gelte hiernach zusätzlich (IR) und sei a = uv mit idempotentem u und
kürzbarem v. Dann folgt die Implikation:

an = 0 =⇒ (uv)n = 0 =⇒ uvn = 0 =⇒ u = 0 =⇒ a = 0 ,

d. h., so ist R frei von echten nilpotenten Elementen.
Sei nun umgekehrt R frei von echten nilpotenten Elementen. Wir werden
zeigen, dass dann jedes a∗ a2 kürzbar ist, womit Axiom (IR) nachgewiesen
wäre. Zunächst erhalten wir b∗0 = 0 : b aus Gründen der Dualität wegen:

bc = 0 =⇒ (bc)2 = 0 = (c ∨ b)2 =⇒ b ∨ c = 0 = cb .

Sei hiernach b ̸= 0 . Dann folgt mit c ∗ 0 =: v ̸= 0 und 1 ̸= v ∗ 0 =: u ≤ c
also mit u ∗ 0 = ((u ∗ 0) ∗ 0) ∗ 0 = (v ∗ 0) ∗ 0 = v die Implikation

u ∧ v = v ∗ 0 ∧ u ∗ 0 = (u ∨ v) ∗ 0 = 1
=⇒

u⊥ v & u2
∣∣ uv = 0 =⇒ u = u2 ≤ c .

Damit hätte im Falle b ̸= 0 das Element c einen von 1 verschiedenen
idempotenten Teiler.
Wäre nun a ∗ a2 ein Nullteiler, etwa x · (a ∗ a)2 = 0, so müsste a ∗ a2 einen
eigentlichen idempotenten Teiler besitzen, was, wie oben gezeigt, nicht
möglich ist. Folglich ist a ∗ a2 kürzbar, d.h. Axiom (IR) erfüllt. 2

Ist R im vorauf gegangenen Beweis kommutativ, so ergibt sich die Idem-
potenz von (a ∗ a2) ∗ a natürlich fast unmittelbar.
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Der soeben geführte Beweis ist im ersten Teil ringtheoretischer Natur, des-
halb sei als rein idealtheoretische Variante mit a, b, c, ... := ⟨a⟩, ⟨b⟩, ⟨c⟩ und
⟨u− 1⟩ := u∗ und + als Addition i.S. der Idealtheorie noch nachgeliefert:

b : a = c & au = a & cu = c

=⇒ b
∣∣ a(u∗ + c) =⇒ u

∣∣ c ∣∣∣∣ (u∗ + c) =⇒ u
∣∣u∗ =⇒ u = 1 .

3.7 Rechts-Kongruenzen

Wir stellen zunächst einige Sätze über Rechtskongruenzen rechtskomple-
mentärer Halbgruppen vor, unter denen sich als wesentlichstes Resultat der
Satz erweisen wird, dass in endlichen rechtskomplementären Halbgruppen
jede Rechts-Kongruenz auch eine Links-Kongruenz ist.

3. 7. 1 Definition. Sei S eine rechtskomplementäre Halbgruppe. Dann
nennen wir eine Teilmenge H aus S ein Rechtsideal von S, wenn H den
Bedingungen genügt:

(i) a ∈ S & b ∈ H =⇒ a ∗ b ∈ H ,

(ii) a ∈ H & b ∈ H =⇒ ab ∈ H ,

(iii) ab ∈ H =⇒ a ∈ H .

ähnlich wie in anderen Strukturen lassen sich auch in rechtskomplementären
Halbgruppen die Kongruenzen durch spezielle Untermengen erfassen.

3. 7. 2 Proposition. Sei S eine rechtskomplementäre Halbgruppe. Dann
entsprechen die Rechtskongruenzen von S umkehrbar eindeutig den Rechts-
idealen von S via

θ −→ H ⇐⇒ (a ≡ b (θ) ⇔ a ∗ b, b ∗ a ∈ H) .

BEWEIS. Sei zunächst θ eine Rechtskongruenz und 1 das Einselement aus
S . Dann erfüllt die Klasse 1 θ =: 1 die Implikationen

(i) a ∈ S & b ∈ 1 =⇒ a ∗ b ≡ a ∗ 1 ≡ 1 ∈ 1

(ii) a ∈ 1 & b ∈ 1 =⇒ ab ≡ a1 ≡ a ∈ 1
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(iii) ab ∈ 1 =⇒ a ≡ a1 ≡ a(a ∗ ab) ≡ ab ∈ 1

(iv) a ≡ b (θ) =⇒ a ∗ b ∈ 1 ∋ b ∗ a
=⇒ a ≡ a(a ∗ b) ≡ b(b ∗ a) ≡ b (θ)

Sei hiernach H ein Rechtsideal. Dann erzeugt die Festsetzung

a ≡ b (H) ⇐⇒ a ∗ b, b ∗ a ∈ H

eine Rechtskongruenz, denn die Bedingungen

R : a ≡ a (H) und S : a ≡ b⇐⇒ b ≡ a (H)

sind evident,

T : a ≡ b (H) & b ≡ c (H) =⇒ a ≡ c (H)

folgt aus a ∗ c ≤ (a ∗ b)((a ∗ b) ∗ (a ∗ c))
= (a ∗ b)(a(a ∗ b) ∗ c)
= (a ∗ b)(b(b ∗ a) ∗ c)
= (a ∗ b)((b ∗ a) ∗ (b ∗ c)) ∈ H ,

und es gilt b ≡ b ′

=⇒
ab ∗ ab ′ = b ∗ (a ∗ ab ′)

≤ b ∗ b ′ ∈ H
&

(a ∗ b) ∗ (a ∗ b ′) = a(a ∗ b) ∗ b ′
= b(b ∗ a) ∗ b ′
= (b ∗ a) ∗ (b ∗ b ′) ∈ H .

Damit ist wegen a ∈ H ⇐⇒ 1 ∗ a, a ∗ 1 ∈ H alles bewiesen. 2

3. 7. 3 Proposition. Sei S eine endliche rechtskomplementäre Halb-
gruppe. Dann entsprechen die Rechtskongruenzen umkehrbar eindeutig den
Idempotenten u mit der Eigenschaft au ∗ u = 1 (a ∈ S) vermöge der Ab-
bildung

θ −→ u ⇐⇒ (a ≡ b (θ) ⇔ au = bu).
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BEWEIS. Ist u idempotent, so ist jeder Linksteiler von u auch ein Rechts-
teiler von u wegen

xy = u =⇒ u ≤ ux ≤ uxy = u
=⇒ ux = u.

Für das weitere nehmen wir an, dass u zusätzlich au ∗ u = 1 (∀a ∈ S)
erfüllt. Dann erhalten wir

a ∗ u ≤ u ,

wegen u ∗ (a ∗ u) = au ∗ u = 1

&
au = au(au ∗ u)

= u(u ∗ au) .

Hieraus folgt, dass jeder Rechtsteiler y von u nicht nur auch ein Linksteiler
von u ist, sondern zudem yu = u erfüllt. Denn nach dem Gezeigten gilt:

xy = u
=⇒

yu = uy ′ = xuy ′ (∃y ′ ∈ S)
= xyu = uu = u.

Weiter erhalten wir unter der obigen Prämisse, dass die Menge Hu aller
h ≤ u ein Rechtsideal bildet. Denn es gelten

a ∈ S & b ≤ u =⇒ a ∗ b ≤ a ∗ u ≤ u(3.159)

a ≤ u & b ≤ u =⇒ abu = au = u =⇒ ab ≤ u(3.160)

ab ≤ u =⇒ a ≤ u(3.161)

Wir sind also am Hauptziel, wenn wir zeigen, dass jedes Rechtsideal vom
Typ Hu ist. Sei hierzu H ein beliebiges Rechtsideal. Dann gilt a, b ∈ H =⇒
a ∗ b ∈ H , weshalb mit a und b auch a ∨ b zu H gehört. Somit existiert in
H ein Maximum, nämlich u =

∨
h (h ∈ H) , das seinerseits uu = u und

a ∗ u ∈ H ; a ∗ u ≤ u; au ∗ u = 1 und daher H = Hu erfüllt.

Bleibt zu zeigen, dass die den Hu entsprechenden Rechtskongruenzen vom
Typ des Satzes sind. Dies folgt aber vermöge:

au = bu =⇒ a ∗ b ≤ a ∗ bu = a ∗ au ≤ u

& a ∗ b, b ∗ a ≤ u =⇒ au = a(a ∗ b)u = b(b ∗ a)u = bu
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Fertig. 2

Als eine überraschende Folgerung des letzten Satzes erhalten wir:

3. 7. 4 Proposition. Ist S eine endliche rechtskomplementäre Halbgrup-
pe, so ist jede Rechtskongruenz von S sogar eine Kongruenz.

BEWEIS. Es bleibt nach dem Bisherigen zu zeigen, dass für jedes idem-
potente u mit xu ∗ u = 1 aus a ≡ a ′ sowohl ab ≡ a ′b als auch a ∗ b ≡ a ′ ∗ b
folgt. Dies ergibt sich aber unter Annahme von bu = uc aufgrund von

a ≡ a ′ =⇒ au = a ′u

=⇒ auc = a ′uc
=⇒ abu = a ′bu
und

a ≡ a ′ =⇒ au = a ′u
=⇒ au ∗ b = a′u ∗ b
=⇒ u ∗ (a ∗ b) = u ∗ (a ′ ∗ b)
=⇒ u(u ∗ (a ∗ b)) = u(u ∗ (a ′ ∗ b))
=⇒ (a ∗ b)((a ∗ b) ∗ u) = (a ′ ∗ b)((a ′ ∗ b) ∗ u)
=⇒ (a ∗ b)((a ∗ b) ∗ u)u = (a ′ ∗ b)((a ′ ∗ b) ∗ u)u
=⇒ (a ∗ b)u = (a′ ∗ b)u. 2

Mit dem soeben bewiesenen Sachverhalt gelingt es, ein Beispiel für eine
rechtskomplementäre Halbgruppe zu konstruieren, deren Kongruenzklas-
sen dem Chinesischen Restsatz – (vgl. [160]) –

(CH) a θ1 ∩ b θ2 ̸= ∅ ̸= bθ2 ∩ c θ3 ̸= ∅ ̸= c θ3 ∩ a θ1
=⇒ a θ1 ∩ b θ2 ∩ c θ3 ̸= ∅

nicht genügen und deren Kongruenzen nicht vertauschbar sind. Denn man
unterwerfe die freie Halbgruppe F (1, u, v, w, x, y, z) den definierenden Re-
lationen:

1a = a = a1 ; für alle erzeugenden Elemente.
uu = u ; uv = vu ; ux = vx = wx = x ;
vv = v ; vw = wv ; uy = vy = wy = y ;
ww = w ; wu = uw ; uz = vz = wz = z ;
xx = yy = zz = xy = yx = yz = zy = zx = xz =
xxx = yyy = zzz = xuvw = yuvw = zuvw := 0

und: xvw = yvw ; yuv = zuv ; zwu = xwu .
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Dann gilt für die Klassen X von x modulo vw, Y von y modulo uv und Z
von z modulo wu : X ∩ Y = {y, yv}, Y ∩ Z = {z, zu}, Z ∩X = {x, xw},
aber X ∩ Y ∩ Z = ∅.

Und setzen wir vw = a und uv = b, so folgt xa = ya & yb = zb, doch lässt
sich kein Element s finden mit der Eigenschaft xb = sb & sa = za, da aus
xb = sb resultieren würde, dass s gleich x, xu, xv oder xuv wäre, obwohl
zvw ̸= xvw und zvw ̸= xuvw, in jedem Falle also xb = sb =⇒ sa ̸= za
erfüllt ist.

3.8 Kongruenzen

3. 8. 1 Definition. Sei S eine komplementäre Halbgruppe. Dann nen-
nen wir eine nicht leere Teilmenge I aus S ein Halbideal, wenn sie der
Bedingung genügt:

(i) ab ∈ I ⇐⇒ a, b ∈ I

Erfüllt I ⊆ S zudem die Bedingung

(ii) (a ∗ a′)(a′ ∗ a)(b ∗ b′)(b′ ∗ b) ∈ I =⇒ (a ∗ b) ∗ (a′ ∗ b′) ∈ I ,

so nennen wir I ein ∗-Ideal. Gilt über (i) hinaus die Bedingung

(iii) a ∗ b ∈ I ⇐⇒ b : a ∈ I

so nennen wir I ein Vollideal.

3. 8. 2 Lemma. Jedes ∗-Ideal ist ein Rechtsideal in Bezug auf (S, ∗).

DENN: b ∈ I =⇒ (a ∗ a)(a ∗ a)(1 ∗ b)(b ∗ 1) ∈ I
=⇒ (a ∗ 1) ∗ (a ∗ b) ∈ I

=⇒ 1 ∗ (a ∗ b) ∈ I
=⇒ a ∗ b ∈ I

und ab ∈ I =⇒ (ab ∗ 1)(1 ∗ ab)(ab ∗ a)(a ∗ ab) ∈ I
=⇒ (ab ∗ ab) ∗ (1 ∗ a) ∈ I
=⇒ 1 ∗ (1 ∗ a) ∈ I
=⇒ 1 ∗ a = a ∈ I . 2

3. 8. 3 Lemma. Eine Teilmenge A aus S ist schon dann ein ∗-Ideal, wenn
sie neben (ii) die Implikation erfüllt:

(3.163) a, b ∈ I =⇒ ab ∈ I
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DENN: ab ∈ I =⇒ (a ∗ 1)(1 ∗ a)(1 ∗ b)(b ∗ 1) ∈ I
=⇒ (a ∗ 1) ∗ (1 ∗ b) ∈ I

=⇒ 1 ∗ (1 ∗ b) ∈ I
=⇒ 1 ∗ b = b ∈ I ,

fertig. 2

3. 8. 4 Lemma. Ist ≡ eine Kongruenzrelation in S bezüglich · und ∗, so
bildet die Klasse [1] ein ∗-Ideal, und es gilt a ≡ b⇐⇒ (a ∗ b)(b ∗ a) ∈

(
1
)
.

BEWEIS. Zunächst haben wir die Implikationen

a ≡ 1 ≡ b =⇒ ab ≡ 1 · 1 ≡ 1

und

ab ≡ 1
=⇒

a ≡ 1 ∗ a ≡ ab ∗ a ≡ b ∗ (a ∗ a) ≡ b ∗ 1 ≡ 1
=⇒

b ≡ 1b ≡ ab ≡ 1 .

Hieraus folgt dann weiter:

(a ∗ a ′)(a ′ ∗ a)(b ∗ b ′)(b ′ ∗ b) ≡ 1 =⇒ a ∗ a ′ ≡ a ′ ∗ a ≡ b ∗ b ′ ≡ b ′ ∗ b ≡ 1
=⇒

a ≡ a(a ∗ a ′) ≡ a ′(a ′ ∗ a) ≡ a ′ & b ≡ b(b ∗ b ′) ≡ b ′(b ′ ∗ b) ≡ b ′

=⇒
(a ∗ b) ∗ (a ′ ∗ b ′) ≡ (a ∗ b) ∗ (a ∗ b) ≡ 1 ∗ 1 ≡ 1 .

Schließlich haben wir a ≡ b =⇒ (a ∗ b)(b ∗ a) ≡ 1
=⇒ a ∗ b ≡ 1 ≡ b ∗ a
=⇒ a ≡ a(a ∗ b) ≡ b(b ∗ a) ≡ b . 2

3. 8. 5 Lemma. Ist I ein ∗-Ideal aus S, so ist I auch ein Rechtsideal.

DENN: Man beachte die Definition. 2

3. 8. 6 Proposition. Ist I ein ∗-Ideal, so liefert die Festsetzung

a ≡ b :⇐⇒ (a ∗ b)(b ∗ a) ∈ I

eine Kongruenzrelation in S bezüglich · und ∗ mit
(
1
)

= I.
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BEWEIS. Nach 3.8.5 ist I ein Rechtsideal. Folglich ist die oben definierte
Relation eine Rechtskongruenz.
Zu zeigen bleibt, dass sie sogar eine Kongruenz ist. Dies folgt aber aus:

a ≡ a ′ & b ≡ b ′ =⇒ (a ∗ a ′)(a ′ ∗ a)(b ∗ b ′)(b ′ ∗ b) ∈ I

=⇒ (a ∗ b) ∗ (a ′ ∗ b ′) ∈ I

und a ≡ a ′

=⇒
ab ∗ a ′b ≡ b ∗ (a ∗ a ′b) ≡ b ∗ (a ′ ∗ a ′b) ≡ a ′b ∗ a ′b ≡ 1 ∈ I .

Der Rest resultiert aus 3.7.1 mittels

a ∈ I ⇐⇒ (1 ∗ a)(a ∗ 1) ∈ I
⇐⇒ a ≡ 1 . 2

Zusätzlich erhalten wir:

3. 8. 7 Lemma. Sei S komplementär. Ist dann ≡ eine Kongruenzrelation
bezüglich der Operationen · , ∗ und : , so ist die Klasse [1] sowohl ein ∗−
als auch ein : −Ideal. Darüber hinaus gilt a ∗ b ∈ [1] ⇐⇒ b : a ∈ [1] .

DENN: Der erste Teil ist klar, der zweite folgt vermöge:

a ∗ b ≡ 1 =⇒ a(a ∗ b) ≡ a
=⇒ (b : a)a ≡ a
=⇒ b : a ≡ 1 . 2

Unmittelbar klar ist nach dem bisherigen auch

3. 8. 8 Proposition. In einer komplementären Halbgruppe entsprechen
die Kongruenzen umkehrbar eindeutig den Vollidealen vermöge:

θ −→ H ⇐⇒ a ≡ b (θ) ⇔ (a ∗ b)(b ∗ a) ∈ H .

Weiter haben wir

3. 8. 9 Proposition. Eine Teilmenge I aus S ist genau dann ein Vollideal,
wenn sie den beiden Bedingungen genügt:

(i) ab ∈ I ⇐⇒ a, b ∈ I

(iii) a · I = I · a .
BEWEIS. Gelten (i) und (iii), so folgt für x ∈ I

ax = a(a ∗ ax) = (ax : a)a mit ax : a ∈ I ,
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also aI ⊆ Ia und es ergibt sich dual aI ⊇ Ia.

Sind umgekehrt (i) und (iv) erfüllt, so gilt

a ∗ b ∈ I =⇒ a(a ∗ b) = xa = (b : a)a mit x ∈ I =⇒ b : a ∈ I ,

und wir erhalten dual b : a ∈ I =⇒ a ∗ b ∈ I. 2

Neben den Kongruenzen werden im weiteren Rechtskongruenzen eine große
Rolle spielen.

3. 8. 10 Lemma. In einer rechtskomplementären Halbgruppe, die der Be-
dingung a∗(b∗a) = 1 genügt, entsprechen die Rechtskongruenzen umkehrbar
eindeutig den Halbidealen vermöge

a ≡ b (I) ⇐⇒ (a ∗ b)(b ∗ a) ∈ I ,

und es gilt auch hierbei I = [1].

BEWEIS. Man beachte 3.7.2 und

(a ∗ b) ∗ (a ∗ b ′) = (a(a ∗ b) ∗ b ′
= b(b ∗ a) ∗ b ′
= (b ∗ a) ∗ (b ∗ b ′)
≤ b ∗ b ′ ∈ I . 2

Vor dem Hauptsatz dieses Paragraphen erwähnen wir noch eine Charakte-
risierung der Kongruenzen und Rechtskongruenzen, die später von Bedeu-
tung sein wird.

3. 8. 11 Lemma. Ist S eine komplementäre Halbgruppe und ≡ von I
erzeugt,so ist a ≡ b gleichbedeutend mit a

∣∣ be1 & b
∣∣ ae2 für mindestens ein

e1, e2 aus I.

DENN: Wir haben a ≡ b =⇒ a
∣∣ b(b ∗ a) & b

∣∣ a(a ∗ b) mit a ∗ b, b ∗ a ∈ I
und a

∣∣ be =⇒ be ∗ a = e ∗ (b ∗ a) = 1 =⇒ b ∗ a ≤ e. 2

Ferner sei noch darauf hingewiesen, dass jede von einem Halbideal erzeugte
Rechtskongruenz auch treu ist bezüglich ∨, was a fortiori gilt, und gege-
benenfalls bezüglich ∧, was aus

(a ∧ b) ∗ (a ∧ b ′) = a ∗ (a ∧ b ′) ∨ b ∗ (a ∧ b ′)

resultiert. Zusammenfassend formulieren wir
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3. 8. 12 Proposition. Ist S eine rechtskomplementäre Halbgruppe, so
lassen sich die Rechts-Kongruenzen bezüglich · und ∗ umkehrbar eindeutig
den Halb-Idealen zuordnen, die jeweils der Klasse [1] entsprechen.

Analog lassen sich in komplementären Halbgruppen die Kongruenzen bezüg-
lich ·, ∗ und : umkehrbar eindeutig den Vollidealen zuordnen.

Dabei ist das erzeugende Prinzip stets a ≡ b (I) ⇐⇒ (a ∗ b)(b ∗ a) ∈ I.

Für das folgende ist noch ein Ergebnis wichtig, das wir mit Hilfe der Rees-
Ideale , kurz r-Ideale, erzielen. Diese sind definiert via SRS ⊆ R . Sie bilden
in komplementären Halbgruppen ihrerseits eine Halbgruppe bezüglich der
Komplexmultiplikation und erfüllen auch die übrigen Idealeigenschaften,
doch ist das hier nicht wesentlich. Von Bedeutung ist hingegen die so ge-
nannte Rees-Kongruenz. Ist R ein r-Ideal, so wird sie geliefert durch

a ≡ b (R) ⇐⇒ a = b V a, b ∈ R .

Das homomorphe Bild ist dabei nicht notwendig komplementär, doch gilt

3. 8. 13 Proposition. Ist S eine komplementäre Halbgruppe, I ein Halb-
ideal und R = S−I, so liefert die Rees-Kongruenz nach R einen Homomor-
phismus bezüglich der Multiplikation auf eine komplementäre Halbgruppe S,
und es gilt für die a und b außerhalb von R die Gleichung a ∗ b = a ∗ b und
ganz entsprechend a : b = a : b.

BEWEIS. Der erste Teil ist fast evident. Dass S komplementär ist, folgt
für die Restmengen von Halbidealen daraus, dass Halbideale operativ abge-
schlossen sind, so dass mit 0 := R in S die Gleichung 0 = a ∗ 0 = 0 : a = 0
erfüllt ist. 2

Ferner können wir zeigen

3. 8. 14 Proposition. Ist S eine ∧-abgeschlossene komplementäre Halb-
gruppe und u ein idempotentes Element aus S, so liefert die Äquivalenz
a ≡ b :⇐⇒ u ∧ a = u ∧ b eine ∨- und ∧-treue Kongruenzrelation bezüglich
der Multiplikation auf die komplementäre Halbgruppe der Teiler von u.

DENN: Offenbar ist ≡ eine Äquivalenzrelation. Ferner gilt nach 3.3.3

(u ∧ a)(u ∧ b) = u ∧ ub ∧ au ∧ ab
= u(1 ∧ a ∧ b) ∧ ab = u ∧ ab

und (u ∧ a) ∨ (u ∧ b) = u ∧ (a ∨ b)
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sowie a fortiori

(u ∧ a) ∧ (u ∧ b) = u ∧ (a ∧ b) . 2

Wir gehen jetzt noch ein auf einige allgemein-algebraische Aspekte.

3. 8. 15 Proposition. Komplementäre Halbgruppen bilden eine arithme-
tische Varietät.

BEWEIS. Zunächst ist der Kongruenzverband einer jeden komplementären
Halbgruppe distributiv – wegen c ≤ ab =⇒ (c : b)

(
(c : b) ∗ c

)
mit c : b ≤ a

und (c : b) ∗ c ≤ b, da dies I1 ∨ I2 = I1 · I2 bedeutet und die Implikation
liefert:

d ∈ AB ∧ AC =⇒ d ≤ ab, ac (a ∈ A, b ∈ B, c ∈ C)

=⇒ d : (a ∗ d) ∈ A & a ∗ d ∈ B ∧ C .

Gilt weiter a = x (I1) & x ≡ b (I2) ,

so existieren wegen I1 · I2 = I2 · I1 Elemente e1, f1 in I1 und e2, f2 in I2 mit

ae1e2 ≥ b & bf2f1 ≥ a ,

woraus mit y =
(
ae1(bf2 ∗ ae1)

)
∨
(
bf2 : (ae1 ∗ bf2)

)
die zweite Behauptung aus Dualitätsgründen folgt, wegen

y ≤ ae1 =⇒ a ∗ y ≤ e1

und y ∗ a ≤
(
ae1 : (bf2 ∗ ae1)

)
∗ a

≤ bf2 ∗ ae1 ≤ f2e1 .

2

3.9 Repräsentierbarkeit

Wir gehen kurz auf die Frage ein, unter welchen Bedingungen eine kom-
plementäre Halbgruppe repräsentierbar ist, also subdirekt zerfällt in linear
geordnete Komponenten. Die Antwort ist leicht gegeben. Denn ist S subdi-
rekt irreduzibel, so darf es natürlich kein Paar von 1-disjunkten Vollidealen
geben. Andererseits bilden in linear geordneten komplementären Halbgrup-
pen die Polaren U⊥ := {x

∣∣u⊥x (∀u ∈ U)} jeweils ein Vollideal. Daher
ist notwendig und hinreichend die in [15] formulierte Forderung

(0c) (c ∗ (b ∗ a)c ∨ c(b ∗ a) : c) ∗ x ∨ (a ∗ b) ∗ x = x .
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Denn: Setzt man hier c = 1, so erhalten wir nach 3.3.6 die Normalität
a ∗ b∧ b ∗ a = 1 und damit die ∧-Abgeschlossenheit, also erneut nach 3.3.6
a ∗ b⊥ c ∗ (b ∗ a)c und a ∗ b⊥ c(b ∗ a) : c und damit, da x⊥ y zu x = y ∗ x
und y = x ∗ y führt, die Gleichung c · a⊥ = a⊥ · c . Denn, man beachte

a⊥ b =⇒ bc = c(c∗bc) (a⊥ c∗bc) und a⊥ b =⇒ cb = (cb : c)c (a⊥ cb : c) .

Wir hätten also im Falle der Unvergleichbarkeit zweier Elemente a, b die
Vollideale U := (a ∗ b)⊥ und V := U⊥ mit U ̸= {1} ̸= V und U ∩V = {1} ,
ein Widerspruch zur subdirekten Irreduzibilität von S !

3.10 Polynome

Im vorangehenden Abschnitt haben wir gezeigt, dass die Kongruenzen einer
jeden komplementären Halbgruppe vertauschbar sind, einen distributiven
Verband bilden und durch ihre 1-Klassen charakterisiert werden.

Insbesondere folgt aus den beiden ersten Eigenschaften, dass die Kongruen-
zen komplementärer Halbgruppen den Chinesischen Restsatz erfüllen, der
besagt:

Der Durchschnitt endlich vieler Kongruenzklassen ist leer gdw.
es unter diesen endlich vielen Klassen zwei disjunkte gibt.

Somit müssen, man konsultiere etwa [47],

ein Malzew-Polynom p(x, y, z) mit

p(x, x, z) = z = p(z, x, x) ,

ein Pixley-Polynom q(x, y, z) mit

q(x, x, z) = q(x, z, x) = q(z, x, x) = x

und eine Wille-Kette p1(x, y), . . . , pn(x, y) , r(x, y, x1, . . . , xn) mit

pv(x, x)1 & r(x, y, 1, . . . , 1) = x
r(x, y, p1(x, y), . . . , pn(x, y)) = y

existieren. Nichts ist indessen gesagt über die Form solcher Polynome.

3. 10. 1 Proposition. Sei S eine komplementäre Halbgruppe. Definieren
wir dann h(x, y, z) := x : (z ∗ y) , so liefern uns
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p(x, y, z) = h(x, y, z) ∨ h(z, y, x) ein Malzew-Polynom,

q(x, y, z) = h(x, x, y) ∨ h(y, y, z) ∨ h(z, z, x) ein Pixley-Polynom,

und

p1(x, y) = y ∗ x, p2(x, y) = (x : (y ∗ x)) ∗ y, p3(x, y, w, z) = (x : w)z

eine Wille-Kette.

Nach dem Beispiel des letzten Paragraphen kann zu beliebigen rechtskom-
plementären Halbgruppen weder ein Malzew- noch ein Pixley-Polynom
existieren, da die Existenz des einen Polynoms äquivalent ist mit der Ver-
tauschbarkeit der Kongruenzrelationen, die Existenz des anderen äquiva-
lent ist mit dem Chinesischen Restsatz.
Es gelten jedoch zwei Abschwächungen von weittragender Konsequenz (vgl.
[160] und [108]), nämlich:

3. 10. 2 Proposition. Ist S eine rechtskomplementäre Halbgruppe, so
existiert ein Paar von Polynomen

p1(w, x, y, z) , p2(w, x, y, z)

mit
p1(x, y, y, z) = x; p1(x, x, y, y) = p2(x, x, y, y); p2(x, y, y, z) = z

sowie ein Paar von Polynomen

q1(x, y, z) , q2(x, y, z)
mit

x = q1(x, x, z); q1(x, z, z) = q2(x, z, z); q2(x, x, z) = z

und q1(x, y, x) = x = q2(x, y, x) .

DENN: Man betrachte die Paare

p1(w, x, y, z) = w(x ∗ y) , p2(w, x, y, z) = z(y ∗ x)

und
q1(x, y, z) = x(x(y ∗ z) ∗ z) , q2(x, y, z) = z(z(z ∗ y) ∗ x).

2

Dass es sich bei den aufgezeigten Gegebenheiten um Abschwächungen der
Malzew - bzw. Pixley-Bedingung handelt, folgt daraus, dass bei Exi-

stenz eines Malzew-Polynoms p(x, y, z) das Paar p(w, p(x, y, z), z), z den
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Forderungen an p1, p2 genügt, und bei Existenz eines Pixley-Polynoms
das Paar q(x, y, z), z den Forderungen an q1, q2.
Dass für beliebige rechtskomplementäre Halbgruppen eine Wille-Kette
nicht unbedingt existieren muss, hat natürlich damit zu tun, dass in ihren
Existenznachweis die Vertauschbarkeit eingeht.

Insbesondere gewährleistet das Polynompaar q1 , q2, siehe etwa [47]

Rechtskomplementäre Halbgruppen sind kongruenzdistributiv !

Folglich greift

Jónsson’s celebrated Lemma !

3.11 States

In [133] wird eine Klasse von beschränkten Rℓ-Monoiden untersucht. Leider
übersehen die Autoren dort aber, dass diese Strukturen nichts anderes sind
als beschränkte komplementäre Halbgruppen.
Der zentrale Begriff in [133] ist der eines normalen Filters, der zudem –
als Filter – maximal ist und folglich ein homomorphes Bild erzeugt, das zu
einem State führt, man konsultiere [83], [68] und [133].
In diesem Abschnitt zeigen wir, dass das von einem maximalen Filter, der
zudem normal ist, erzeugte homomorphe Bild nicht nur eine linear geordne-
te MVA-Algebra ist, sondern zudem bezüglich der Operationen max,min,
und ⊕, definiert mittels a⊕ b = min(1, a+ b) in das reelle Einheitsintervall
[0, 1] eingebettet werden kann.
Zu diesem Zweck betrachten wir eine beschränkte komplementäre Halb-
gruppe, also eine solche mit einer 0, die zudem an = 1 (∀a ̸= 0 ∃n ∈ N)
erfüllt – in anderen Zusammenhängen auch als stark archimedisch bezeich-
net. Hier folgt sofort au = a =⇒ u = 0 und folglich a ∗ b + b ∗ a = 0 ,
(a ∧ b)(a ∗ b + b ∗ a) = a ∧ b. s gilt aber x ∧ y = 1 =⇒ x = 1 V y = 1, zur
Erinnerung

(3.165) an = 1 = bm =⇒ (a ∧ b)m+n = 1 .

Folglich ist S linear geordnet, erfüllt zudem an = 1 für alle a bezüglich
einem geeigneten (privaten) n und darüber hinaus au = a =⇒ u = 0.
Dies bedeutet, dass S eine Unterstruktur von (E,⊕,min) ist, wie in [54]
gezeigt wird. Wir möchten hier aber die Chance nutzen einen alternativen
Beweis auf der Grundlage von 6.3.3 zu geben.
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Skizze: Wir weisen zunächst auf die herkömmliche Art nach, dass eine stark
archimedische komplementäre Halbgruppe kommutativ ist, und betten sie
hiernach ein in ihren v-Idealbereich – für outsider in die Habgruppe ihrer
Dedekindschnitte ein.

Auf diese Weise erhalten wir ein vollständiges total geordnetes d-Monoid, in
dem folglich jedes a > 0 eine eindeutige Quadratwurzel und demzufolge eine
Bisektion erzeugt, also jedes a eine eindeutige Binärdarstellung besitzt.

3.12 Quotienten

Die komplementäre Halbgruppe erweckt den Eindruck einer gewissen En-
ge, insofern sie a fortiori eine positive Halbverbandshalbgruppe darstellt.
Tatsächlich lässt sich aber zu jeder komplementären Halbgruppe mit nicht-
trivialem kürzbaren Anteil C eine echte partial geordnete Quotientener-
weiterung Q konstruieren, in der jedes b ∈ C und darüber hinaus jedes
kürzbare Element invertierbar ist. Genauer:

3. 12. 1 Proposition. Zu jeder komplementären Halbgruppe S existiert
eine Quotientenhülle, d.h. eine eindeutig bestimmte Oberhalbgruppe Q, in
der sich jedes α darstellen lässt als Produkt ab−1 mit a, b ∈ S und in
der jedes kürzbare Element aus S und darüber hinaus auch alle übrigen
kürzbaren Elemente aus Q invertierbar sind.

3. 12. 2 Lemma. Ist S eine komplementäre Halbgruppe, so bildet die
Menge R aller Paare mit positivem a und linkskürzbarem b bezüglich der
Operation a.b ◦ c.d := a(b ∗ c).d(c ∗ b) ein Monoid.

BEWEIS. Es ist a.b = a.1 ◦ 1.b. Hieraus folgen zunächst die beiden Glei-
chungen:

(a.b ◦ x.1) ◦ c.d = a(b ∗ x).(x ∗ b) ◦ c.d
= a(b ∗ x)((x ∗ b) ∗ c).d(c ∗ (x ∗ b))
= a(b ∗ xc).d(xc ∗ b)
= a.b ◦ xc.d
= a.b ◦ (x.1 ◦ c.d)
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und (a.b ◦ 1.y) ◦ c.d = a.yb ◦ c.d
= a(yb ∗ c).d(c ∗ yb)
= a(b ∗ (y ∗ c)).d(c ∗ y)((y ∗ c) ∗ b)
= a.b ◦ (y ∗ c).d(c ∗ y)

= a.b ◦ (1.y ◦ c.d) ,

woraus die allgemeine Assoziativität resultiert vermöge der Herleitung

(a.b ◦ x.y) ◦ c.d = (a.b ◦ (x.1 ◦ 1.y)) ◦ c.d
= ((a.b ◦ x.1) ◦ 1.y) ◦ c.d
= (a.b ◦ x.1) ◦ (1.y ◦ c.d)

= . . .

= a.b ◦ (x.y ◦ c.d) .Da,it sind wir am Ziel. 2

Man beachte an dieser Stelle, dass der voraufgegangene Beweis schon gültig
ist für rechtskomplementäre Halbgruppen. Hierauf werden wir später zurück-
kommen.

3. 12. 3 Lemma. In R liefert die Festsetzung

a.b ≡ c.d :⇐⇒ ∃x, y : ax = cy & bx = dy

eine Kongruenzrelation (bezüglich ◦).

BEWEIS. Seien x, y kürzbar. Dann liefert die Gleichungskette:

ax.bx ◦ c.d ≡ ax(bx ∗ c).d(c ∗ bx)

≡ ax(x ∗ (b ∗ c)).d(c ∗ b)((b ∗ c) ∗ x)

≡ a(b ∗ c)((b ∗ c) ∗ x).d(c ∗ b)((b ∗ c) ∗ x)

≡ a(b ∗ c).d(c ∗ b)
≡ a.b ◦ c.d
≡ a.b ◦ c.d
≡ a(b ∗ c).d(c ∗ b)
≡ a(b ∗ c)((c ∗ b) ∗ x).d(c ∗ b)((c ∗ b) ∗ x)

≡ a(b ∗ c)((c ∗ b) ∗ x).dy(x ∗ (c ∗ b))
≡ a(b ∗ cx).dy(cx ∗ b)
≡ a.b ◦ cx.dx ,
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das Gewünschte, wie der aufmerksame Leser leicht bestätigt. 2

Erneut haben wir lediglich auf die Rechtskomplementarität zurückgegrif-
fen. Ist S sogar komplementär, so gilt zusätzlich:

a.b ≡ c.d ⇐⇒ a : b = c : d & b : a = d : c

DENN: ax.by erfüllt ax : bx = (ax : x) : b und aus

a : b = c : d & b : a = d : c ,

resultiert

a.b = (a : b)(a ∧ b).(b : a)(a ∧ b) ≡ (a : b).(b : a) = (c : d).(d : c) ≡ c.d .

Es erzeugt ≡ also ein homomorphes Bild zu (R, ◦), das im weiteren mit Q

bezeichnet sei. Die Elemente von Q sind demnach die ≡ - Klassen von R,
die wir im allgemeinen mit griechischen Buchstaben benennen. Offenbar
bildet nun die Menge aller Klassen, die von Paaren der Form a.1 repräsen-
tiert werden, eine zu P isomorphe Unterhalbgruppe von Q , wegen

a.1 ◦ b.1 ≡ ab.1 und a.1 ≡ b.1 ⇐⇒ a = a : 1 = b : 1 = b .

Ebenso bildet die Menge aller Klassen, die von Paaren der Form 1.b erzeugt
werden, eine zu C ∩ P antiisomorphe Unterhalbgruppe von Q, denn:

1.b ◦ 1.d = 1.db und 1.b ≡ 1.d⇐⇒ b = b : 1 = d : 1 = d .

Schließlich folgt für kürzbare b :

1.b ◦ b.1 ≡ 1.1 ≡ b.b ≡ b.1 ◦ 1.b und 1.1 ◦ a.b ≡ a.b ≡ a.b ◦ 1.1 .

Aus diesem Grund können wir die abkürzende Bezeichnung a für die von
a.1 erzeugte Klasse und b−1 für die von 1.b erzeugte Klasse einführen, so
dass wir für die Klasse von a.b auch ab−1 und für das Produkt ab−1 ◦ cd−1

auch ab−1.cd−1 setzen können, ohne dass dies zu Komplikationen führt.

Insbesondere dürfen wir in ab−1 den Sonderfall a ∧ b = 1 annehmen, denn
es gilt ja nach (3.84) a.b ≡ (b : a).(a : b) , und es ist {a : b, b : a} ein
idempotenter Teiler von b, also gleich {1} . Denn mit b · {a : b, b : a} = b
gilt natürlich auch bx = b für alle x ≤ a : b, b : a .

Weiter ist jedes b−1a ein cb−1 – und umgekehrt, beachte – etwa – ab =
by =⇒ b−1a = yb−1. Sei von nun an S mit Q fest gewählt.
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3. 12. 4 Proposition. In Q liefert die Festsetzung α ≤ β ⇐⇒ αx =
β (∃x ∈ S) eine ∨-abgeschlossene isotone Partialordnung. Ist S gar ∧-
abgeschlossen, so ist auch Q ∧-abgeschlossen.

BEWEIS.
ab−1 · x = a · y · b−1 (y ∈ S)

= z · ab−1 (z ∈ S)

und: yab−1 = azb−1 (z ∈ S)
= w · ab−1 (w ∈ S)

Daher ist die Existenz eines x mit αx = β gleichbedeutend mit der Existenz
eines y mit yα = β. Hieraus folgt unmittelbar, dass ≤ reflexiv, transitiv
und isoton ist. , d.h., α ≤ β =⇒ αγ ≤ βγ & γβ.

Gilt weiter xyα = α, so folgt für α = ab−1 die Implikation xya = a; xa =
a, was die Antisymmetrie sicher stellt. Zu zeigen bleibt somit nur noch,
dass Q ∨-abgeschlossen ist. Hierzu seien ab−1 und cd−1 zwei Elemente mit
a∧b = 1 = c∧d und ab−1 ≤ cd−1. Dann folgt ad ≤ bc und damit a ≤ c und
d ≤ b ; b−1 ≤ d−1. Haben wir umgekehrt a ≤ c und b−1 ≤ d−1, so gilt a
fortiori ab−1 ≤ cd−1. Das bedeutet insgesamt (a∨c)(b∧d)−1 = ab−1∨cd−1 ,
da mit a ∧ b = 1 = c ∧ d auch (a ∨ c) ∧ (b ∧ d) = 1 erfüllt ist. Insbesondere
ist Q demnach ∨-treu, d. h. in S stimmen die Partialordnungen von S und
Q überein.

Analog verfährt man bezüglich ∧ . 2

Nach 3.12.4 ist (Q , ≤) ein Halbverband. Die nächste Gleichung stellt eine
Beziehung zwischen Multiplikation und Vereinigung in Q her. Es gilt:

(3.166)
α(β ∨ γ)δ = αβδ ∨ αγδ .

BEWEIS. Zur Herleitung zeigen wir schrittweise:

(i) γ ≥ ax−1 ∨ βx−1

⇐⇒ γx ≥ α ∨ β
⇐⇒ γ ≥ (α ∨ β)x−1

(ii) γ ≥ x−1α ∨ x−1β

⇐⇒ γ ≥ x−1(α ∨ β) (i)
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(iii) yab−1 ∨ ycb−1 = (ya ∨ yc)b−1

= y(a ∨ c)b−1

= y(ab−1 ∨ cb−1)

(iv) ab−1y ∨ cb−1y = a(b ∗ y)(y ∗ b)−1 ∨ c(b ∗ y)(y ∗ b)−1

=
(
a(b ∗ y) ∨ c(b ∗ y)

)
(y ∗ b)−1

= (a ∨ c)(b ∗ y)(y ∗ b)−1

= (a ∨ c)b−1y

= (ab−1 ∨ cb−1)y

(v) ab−1 = a(b ∗ d)(b ∗ d)−1b−1 (∀ d ∈ C)

= a(b ∗ d)(b ∨ d)−1.

Beachten wir nun, dass aufgrund von (v) je zwei Elemente aus Q gleichna-
mig gemacht werden können, so ist nach dem Bisherigen alles gezeigt. 2

Ohne Ausführung sei noch erwähnt, dass sich im Falle eines ∧-abgeschlos-
senen S dual die Gleichung

(3.167) α(β ∧ γ)δ = αβδ ∧ αγδ .
ergibt, wie der Leser leicht bestätigt. Darüber hinaus erhalten wir für ∧-
abgeschlossene S noch die Gleichung:

(3.168) α ∧ (β ∨ γ)δ = (α ∧ β) ∨ (α ∧ β) .

d. h. in diesem Fall ist (Q,∧,∨) distributiv.

BEWEIS. Wie schon betont, folgt die ∧-Abgeschlossenheit analog der
∨-Abgeschlossenheit, und es gilt für a ∧ b = 1 = c ∧ d die Gleichung

ab−1 ∧ cd−1 = (a ∧ c)(b ∨ d)−1 .

Hieraus ergibt sich weiter unter Berücksichtigung von a∧b = 1 = c∧d =⇒
(a ∧ c) ∧ (b ∨ d) = 1 für a ∧ b = 1 = c ∧ d = 1 = g ∧ k die Gleichungskette:

ab−1 ∧ (cd−1 ∨ gk−1) = ab−1 ∧ (c ∨ g)(d ∧ k)−1

=
(
a ∧ (c ∨ g)

)(
b ∨ (d ∧ k)

)−1

=
(
(a ∧ c) ∨ (a ∧ g)

)(
(b ∨ d) ∧ (b ∨ k)

)−1

= (a ∧ c)(b ∨ d)−1 ∨ (a ∧ g)(b ∨ k)−1

= (ab−1 ∧ cd−1) ∨ (ab−1 ∧ gk−1) .
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Damit sind wir am Ziel. 2

Wir sahen, dass die Quotientenhülle bis auf Isomorphie von S eindeutig
bestimmt ist. Der nächste Hilfssatz wird zeigen, dass dies auch für die
homomorphen Bilder gilt.

3. 12. 5 Lemma. Ist ≡ eine Kongruenzrelation in S bezüglich ·, ∗ und :,
so lässt sich ≡ eindeutig ausdehnen auf Q bezüglich ·,∨ und - gegebenenfalls
- bezüglich ∧. Entsprechendes gilt für die Rechtskongruenzen.

Ist S/I sogar linear geordnet, so gibt es keine anderen Klassen bezüglich ≡
als die von den a ∈ S und den b−1 mit b ∈ C erzeugten.

BEWEIS. Es sei I das ≡ erzeugende (Voll-) Ideal. Setzen wir dann α ≡ β
gdw. ein x, y ∈ S und ein e1, e2 ∈ I existiert mit αx = βe1 und βy = αe2, so
ist diese Relation in Q transitiv und wegen 1 ∈ I eine Äquivalenzrelation,
denn

αx = βe1 & βy = γe2
=⇒

ax(e1 ∗ y) = γe2(y ∗ e1) .

Ferner ist die erklärte Relation a fortiori rechtskongruent und, falls I ein
Vollideal ist, sogar kongruent bezüglich ·, da dann für b ∈ C aus be1 =
e2b⇐⇒ e1b

−1 = b−1e2 für alle a ∈ Q die Gleichung aI = Ia resultiert.

Weiter ist ≡ auch eine Kongruenzrelation bezüglich ∨, denn wir dürfen
analog (3.166 , v) annehmen, dass α = x−1a, β = x−1b und β ′ = x−1b ′ und
damit die Implikation β ≡ β ′ =⇒ b ≡ b ′ erfüllt ist, was nach sich zieht:

α ∨ β = x−1a ∨ x−1b

= x−1(a ∨ b)
= x−1(a ∨ b ′)
= x−1a ∨ x−1b ′

= α ∨ β′ .

Analog beweisen wir die Behauptung für ∧, falls S ∧-abgeschlossen ist.

Ist schließlich S/I linear geordnet, so folgt aus b−1a = (a ∗ b)−1(b ∗ a) =
(b ∗ a)(a ∗ b)−1, dass jedes α ein a oder ein b−1 ist. Also ist in diesem Falle
auch Q/I linear geordnet ist bezüglich(

α
)
≤
(
β
)

⇐⇒
(
β
)

=
(
ax
)
.
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Schließlich zeigt die Äquivalenz

a−1b = c−1d ⇐⇒ (a : c)−1b = (c : a)−1d
⇐⇒ (c : a)b = (a : c)d ,

schon für den Fall einer Rechtskongruenz, dass es keine weitere Ausdehnung
von ≡ auf Q gibt. 2

3.12.5 liefert für Verbandsgruppen:

3. 12. 6 Korollar. Es gibt keine anderen Rechtskongruenzen in Verbands-
gruppen bezüglich · und ∨ als die Ausdehnung der (·, ∗)-Rechtskongruenzen
ihres Kegels.

DENN: Dies folgt aus 3.12.5 und

ax ≥ b⇐⇒ x ≥ a−1b ⇐⇒ x ≥ 1 ∨ a−1b
⇐⇒ a ∗ b = 1 ∨ a−1b ,

woraus die Rechtskongruenz bezüglich ∗ in S resultiert. 2

Durch die Quotientenhülle Q ist S eingebettet in eine sehr spezielle Halb-
verbandshalbgruppe. Diese ist offenbar a fortiori kommutativ gdw. S kom-
mutativ ist, ∧-abgeschlossen gdw. S ∧-abgeschlossen ist, und keineswegs
notwendig vom Typ

∀ α, β ∈ Q ∃α ∗ β : αγ ≥ β ⇐⇒ γ ≥ α ∗ β .

Umgekehrt ist der positive Kegel der DLR-Semigruppe von Swamy, siehe
[147], [148], [149], komplementär, und es bestimmt dieser Kegel die Struk-
tur der Halbgruppe vollständig, aufgrund von α = α(α∧ 1)−1 · (α∧ 1) und
der Herleitung

α(α ∧ 1)−1 ∧ 1 = α(α ∧ 1)−1 ∧ (α ∧ 1)(α ∧ 1)−1

= (a ∧ α ∧ 1)(α ∧ 1)−1

= (α ∧ 1)(α ∧ 1)−1 = 1 ,

man beachte, dass jedes α von der Form a · b−1 ist.

3.13 Halbgruppenerweiterungen

Ist S lediglich rechtskomplementär, so können wir mit einer Quotien-
tenhülle nicht rechnen. Es zeigt sich aber verblüffenderweise, dass die links
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kürzbare, rechtskomplementäre Halbgruppe mit einer inversen Halbgruppe
korrespondiert.
Eine Halbgruppe heißt regulär, wenn zu jedem a ein a′ existiert mit a·a′·a =
a und a′ · a · a′ = a′ . In diesem Fall sind offenbar die Elemente aa′ und a′a
idempotent. Tatsächlich genügt schon die erste Forderung der Regularität,
denn aus aa′a = a folgt ja mit a∗ := a′aa′ zum einen a · a∗ · a = a und zum
anderen a∗ · a · a∗ = a∗ .
Existiert zudem zu jedem a exakt ein a′ der beschriebenen Art, so heißt S
invers, und wir bezeichnen dieses eindeutig bestimmte a′ mit a−1 . Unmit-
telbar klar ist dann (a−1)−1 = a . Insbesondere ist damit jedes idempotente
u ein Inverses seiner selbst.
Für die Inversität gilt die wichtige

3. 13. 1 Proposition. Ein Halbgruppe ist genau dann invers, wenn sie
regulär ist und je zwei Idempotente kommutieren.

BEWEIS. Kommutieren je zwei Idempotente und erfüllen a′, a∗ beide ge-
meinsam die Bedingungen der Regularität für das Element a, so folgt, man
beachte die Dualität:

a′ = a′a(a∗a)a′ = (a∗a)(a′aa′) = a∗aa′ = a′aa∗ = a∗ .

Seien jetzt die exisitierenden a′ eindeutig bestimmt. Wir werden zeigen,
dass mit je zwei idempotenten Elementen u und v auch deren Produkt
idempotent ist. Das bedeutet dann, dass uv und vu zugleich ein Inverses
zu uv sind und damit dass uv = vu erfüllt ist.
Sei nach diesen Vorbetrachtungen w = (uv)−1. Dann folgt zunächst w =
vwu, wegen

uv · vwu · uv = uv & vwu · uv · vwu = v · wuvw · u = vwu .

Hieraus ergibt als nächstes:

w2 = vwu · uv · vwu = vwu = w

und damit weiter, aufgrund von

uv · w · uv = uv & w · w · w = w & w · uv · w = w

wegen der Eindeutigkeit der Inversen uv = w die Idempotenz von uv . 2

Wir können also festhalten:
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3. 13. 2 Korollar. In inversen Halbgruppen gelten die wichtigen Inver-
tierbarkeitsregeln:

(3.169) (a−1)−1 = a und (ab)−1 = b−1a−1

Schließlich beachten wir noch u2 = u =⇒ au = (aua−1)a mit idempoten-
tem (aua−1). Dies bedeutet

(3.170) b = au (∃u = u2) ⇐⇒ b = va (∃v = v2)

⇐⇒ b = sat (∃s = s2, t = t2)

Nach diesen Vorbereitungen lässt sich nun beweisen:

3. 13. 3 Der Homomorphiesatz. Ist S invers, dann ist jeder Halbgrup-
pen-Homomorphismus auch ein Inversen-Homomorphismus.

BEWEIS. Sei
∑

ein inverses Urbild von S unter ϕ . Natürlich ist S

dann regulär. Wir werden zeigen, dass jedes idempotente a zumindest ein
idempotentes Urbild besitzt.

Zu diesem Zweck nehmen wir an, es sei a = a2 = ϕ(α) und x = ϕ(α−1) .
Dann kommutieren ax und xa , da αα−1 und α−1α kommutieren. Also
haben wir:

x = xax = xa · ax = (xa · ax)2 = x2

;

x = xax = xa · ax = ax · xa = axa = a

und damit

a = ax = ϕ(α)ϕ(α−1) = ϕ(αα−1) .

Also ist a Bild des idempotenten Urbildes αα−1 . 2

Der Vollständigkeit halber sei noch erwähnt:

3. 13. 4 Korollar. Eine reguläre Halbgruppe ist genau dann invers, wenn
ihre Idempotenten jeweils exakt ein Inverses besitzen.

BEWEIS. Sei axa = a & xax = x & aya = a & yay = y . Dann verhalten
sich ax und ay sowie xa und ya jeweils invers zueinander. Und das bedeutet
ax = ay & xa = ya . Das aber führt dann zu x = xax = yay = y . 2

Wir kommen nun zu
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3. 13. 5 Proposition. Ist S eine inverse Halbgruppe, so erzeugt die Fest-
setzung a ≡ b :⇐⇒ au = bu (∃ : u = u2) das engste homomorphe Grup-
penbild von S .

DENN: ≡ im obigen Sinne ist offenbar eine Kongruenzrelation wegen der
beiden Implikationen:

au = bu =⇒ (sa)u = (sb)v
& au = bu =⇒ a(ss−1)u = bss−1u

=⇒
(as)(s−1u)(s−1u)−1 = (bs)(s−1u)(s−1u)−1

2

Eine inverse Halbgruppe heißt e-unitär, wenn gilt:

a2 = a & (ae)2 = ae =⇒ e2 = e
& a2 = a & (ea)2 = ea =⇒ e2 = e .

Tatsächlich genügt schon eine der beiden Forderungen, denn gilt beispiels-
weise die erste der beiden Zeilen, so folgt aus a2 = a & (ea)2 = ea die
Implikation:

eaea = ea; eae = (eae)2 ; e2 = e

Als ein wichtiger Struktursatz sei ohne Beweis erwähnt:

3. 13. 6 Proposition. e-unitäre inverse Halbgruppen sind semidirekt zer-
legbar in einen Halbverband H und seine Automorphismengruppe G , d. h.
sie sind einbettbar in das kartesische Produkt der Trägermengen von H

und G , betrachtet bezüglich (α.b) ◦ (β.b) := (α ∨ aβ.ab) .

3.14 Quotienten im links-komplementären Fall

Dieser Abschnitt bietet einen alternativen Zugang vom Verbandsgruppen-
kegel zu seiner Quotientenerweiterung, ausgehend von einer rechtskomple-
mentären Halbgruppe, fast Wort für Wort übernommen aus [43].

3. 14. 1 Proposition. Sei S rechtskomplementär. Wir bezeichnen S × S

mit Σ . Dann sind paarweise äquivalent

(LC) S erfüllt a ∗ bc = (a ∗ b)((b ∗ a) ∗ c)
(CL) S is links-kürzbar, d.h. ab = ac =⇒ b = c

(MC) Σ bildet eine Monoid unter a.b ◦ c.d = a(b ∗ c) . d(c ∗ b).
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BEWEIS. (LC)=⇒(CL) , denn

ab = ac =⇒ a ∗ ab = a ∗ ac
=⇒ (a ∗ a)((a ∗ a) ∗ b) = (a ∗ a)((a ∗ a) ∗ c)
=⇒ b = c.

(CL)=⇒(LC) , denn a(a ∗ b)((b ∗ a) ∗ c) = b(b ∗ a)((b ∗ a) ∗ c) ≥ bc and

ax ≥ bc =⇒ ax ≥ b

=⇒ x ≥ a ∗ b
=⇒ x = (a ∗ b)y
=⇒ a(a ∗ b)y ≥ bc

=⇒ b(b ∗ a)y ≥ bc
(CL)
=⇒ (b ∗ a)y ≥ c

=⇒ y ≥ (b ∗ a) ∗ c
=⇒ x ≥ (a ∗ b)((b ∗ a) ∗ c) .

(LC)=⇒(MC) , wegen

(a.b ◦ x.e) ◦ c.d = a(b ∗ x) . (x ∗ b) ◦ c.d
= a(b ∗ x)((x ∗ b) ∗ c) . d(c ∗ (x ∗ b))
= a(b ∗ xc) . d(xc ∗ b)
= a.b ◦ xc.d
= a.b ◦ (x.e ◦ c.d)

und (a.b ◦ e.y) ◦ c.d = a.yb ◦ c.d
= a(yb ∗ c) . d(c ∗ yb)
= a(b ∗ (y ∗ c)) . d(c ∗ y)((y ∗ c) ∗ b)
= a.b ◦ (y ∗ c) . d(c ∗ y)
= a.b ◦ (e.y ◦ c.d) ,

woraus die allgemeine Assoziativität folgt vermöge

(a.b ◦ x.y) ◦ c.d = (a.b ◦ (x.e ◦ e.y)) ◦ c.d
= ((a.b ◦ x.e) ◦ e.y) ◦ c.d
= (a.b ◦ x.e) ◦ (e.y ◦ c.d)
= . . .
= a.b ◦ (x.y ◦ c.d) .
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Schließlich erhalten wir a.b ◦ e.e = a.b = e.e ◦ a.b , weshalb Σ sogar ein
Monoid bezüglich ◦ bildet.

(MC)=⇒(LC) . Der Vergleich der Zeilen 2 und 3 im Beweis von

(a.b ◦ x.e) ◦ c.d = a.b ◦ (x.e ◦ c.d)

führt zu

a((b ∗ x)((x ∗ b) ∗ c) = a(b ∗ xc)

das ist Bedingung (LC) – man setze a = e. 2

3. 14. 2 Proposition. Erfüllt S eine der obigen Bedingungen (LC), (CL),
(MC), so ist

∑
:= (Σ, ◦) sogar bisimpel und invers mit Einselement e.e. =:

ε mit 1-elementigen Untergruppen. Darüber hinaus sind die Elemente vom
Typ a ◦ β worin α eine Rechts-Einsteiler und β eine Links-Einsteiler ist.

Weiterhin ist
∑

e-unitär gdw. S kürzbar ist 2), und in diesem Falle trennt
die feinste Gruppenkongruenz a.b ≡ c.d ⇐⇒ a.b ◦ u.u = c.d ◦ u.u (∃u.u)
jedes Paar a.e ̸= b.e .

Schließlich definiert in jedem Falle

(PO)
a.b ≤ c.d :⇐⇒ a ≤ c & b ≥ d

eine Partialordnung mit

(LD) a.b ≤ c.d =⇒ a.b
∣∣
ℓ
c.d

und erfüllt S darüber hinaus

(RL)
a ∗ (b ∗ a) = e ,

d.h. gilt
∣∣
ℓ
⊇
∣∣
r
, so ist die Partialordnung zusätzlich verträglich mit der

Multiplikation.

BEWEIS. Wir betrachten das Monoid
∑

:= (Σ, ◦) der Proposition 3.14.
1. Dort ist jedes a.b gleich a.e ◦ e.b, und es gilt e.a ◦ a.e = e.e. Daher ist

2) als ein Beispiel, das die Verbandsgruppenkegelbedingungen nicht erfüllt, sei Beispiel 18 erwähnt.
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jedes Element aus Σ vom Typ α ◦ β mit α
∣∣
r
ε and β

∣∣
ℓ
ε .

Als nächstes ist
∑

regulär wegen a.b ◦ b.a ◦ a.b = a.b . Darüber hinaus
erhalten wir

(a.b)2 = a.b =⇒ a = a(b ∗ a) & b = b(a ∗ b)
=⇒ b ∗ a = e = a ∗ b
=⇒ a = b .

Folglich sind die Produkte von Idempotenten offenbar idempotent. Somit
ist die betrachtete Ausdehnung nicht nur regulär, sondern sogar invers mit

(a.b)−1 = b.a .

Ferner gilt

(3.174) x.y ◦ y.x = y.x ◦ x.y =⇒ x = y .

Somit sind alle Untergruppen 1-elementig.

Endlich ist
∑

bisimpel, d.h. für jedes Paar (von Paaren) a.b , c.d existiert
ein x.y derart dass a.b und x.y einander von links teilen und derart, dass
x.y und c.d einander von rechts teilen.

Zur Erinnerung: a.x ◦ x.y = a.y, d.h. es ist a.x Linksteiler eines jeden a.y
und dual ist u.b Rechts-Teiler eines jeden v.b, weshalb a.d die Behauptung
bezüglich a.b , c.d erfüllt.

Weiterhin, ist S kürzbar, wie etwa im kommutativen Fall oder auch im
Verbandsgruppenkegel-Fall und ist zudem a.a ◦ x.y = a(a ∗ x).y(x ∗ a)
idempotent, so resultiert

(3.175) x(x ∗ a) = y(x ∗ a) ; x = y ,

also ist
∑

in diesem Fall e-unitär, und ist umgekehrt
∑

e-unitär, so resul-
tiert aus ac = bc

(3.176) ac.ac ◦ b.a = ac(ac ∗ b) . a(b ∗ ac)
= ac(bc ∗ b) . a(b ∗ bc)
= ac . ac

(3.175)
; a = b .
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Darüber hinaus erzeugt die oben definierte Relation ≡ die feinste Gruppen-
Kongruenz. Daher bleibt nur noch zu zeigen, dass im Falle eines kürzbaren
S die im Falle a ̸= b die Elemente a.e , b.e getrennt werden. Dies aber folgt
aus

(3.177) a.e◦u.u = b.e◦u.u =⇒ au.u = bu.u =⇒ au = bu =⇒ a = b .

Schließlich erhalten wir mit Blick auf Ordnungsprobleme, dass

(3.178) a.b ≤ c.d =⇒ a.b ◦ b(a ∗ c) . d = c.d =⇒ a.b
∣∣
ℓ
c.d

erfüllt ist und darüber hinaus die Bedingung (RL) die Implikation

(3.179) v ≤ w =⇒ u ∗ v ≤ u ∗ w & u ≤ v =⇒ u ∗ w ≥ v ∗ w

nach sich zieht. Das führt dann zu

(3.180) a.b ≤ c.d

=⇒
a.b ◦ x.y = a(b ∗ x) . y(x ∗ b)

≤ c(d ∗ x) . y(x ∗ d)
= c.d ◦ x.y

und zu

(3.181) a.b ≤ c.d

=⇒
x.y ◦ a.b = x(y ∗ a) . b(a ∗ y)

≤ x(y ∗ c) . d(c ∗ y)
= x.y ◦ c.d .

Wir symbolisieren nun die ≡-Klasse von a.b mittels a.b. Dann definiert

a . b ≤ c . d
:⇐⇒

a.b ◦ x.y ≤ c.d ◦ x.y (∃ x.y)
⇐⇒

a.b ◦ u.u ≤ c.d ◦ u.u (∃ u.u)

eine PO auf Σ, wie man leicht bestätigt. Und es ist PO ◦-verträglich.
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Dies ist linksseitig evident und folgt rechtsseitig via

a.b ◦ u.u ≤ c.d ◦ u.u
=⇒

(a.b ◦ x.y) ◦ (y.x ◦ u.u) ≤ (c.d ◦ x.y) ◦ (y.x ◦ u.u) 2

Hiernach wenden wir uns den Verbandsgruppenkegeln zu. Sie erfüllen

(3.182) a.b ≡ cd⇐⇒ ∃x, y : ax = cy & bx = dy

DENN: a.b ≡ c.d
=⇒ a.b ◦ u.u = c.d ◦ u.u (∃u ∈ S)
=⇒ a(b ∗ u).u(u ∗ b) = c(d ∗ u).u(u ∗ d)
=⇒ a(b ∗ u).b(b ∗ u) = c(d ∗ u).d(d ∗ u)

UND ax.bx = cy.dy
=⇒ a.b ◦ bx.bx = c.d ◦ dy.dy
=⇒ a.b ◦ bx.bx ◦ dy.dy = c.d ◦ dy.dy ◦ bx.bx
=⇒ a.b ≡ c.d .

Damit sind wir in der Lage zu zeigen:

3. 14. 3 Proposition. Sei S ein Verbandsgruppenkegel. Dann liefert der
Beweis von 3.14.2 eine alternative Methode für die Einbettung von S in
seine Quotientengruppe.

BEWEIS. Ist S eine Verbandsgruppenkegel (3.182) so folgt

(3.183) a.b = (a : b)(a ∧ b).(b : a)(a ∧ b) ≡ (a : b).(b : a)

Dies liefert weiter

(3.184) a.b ≡ c.d =⇒ a : b = c : d & b : a = d : c ,

wegen a⊥b & c⊥d & a.b ≡ c.d =⇒ e.b ◦ a.e ≡ c.e ◦ e.d
=⇒ b.b ◦ a.e ◦ d.e ≡ b.e ◦ c.e
=⇒ b.b ◦ ad.e ≡ bc.e

=⇒ ad.e ≡ bc.e
(3.107)
=⇒ a = c & b = d .

Das bedeutet aber: Jede Klasse a.b enthält ein eindeutig bestimmtes or-
thogonales Paar A.B und alle anderen Paare dieser Klasse sind vom Typ
Ax.Bx .
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Wir betrachten nun die Menge G aller orthogonalen Paare a.b. Nach den
Regeln der Arithmetik resultiert fast unmittelbar

(3.185) a⊥ b & c⊥ d =⇒ (a ∨ c)⊥ (b ∧ d) ,

weshalb G abgeschlossen ist unter

a . b∇ c . d := (a ∨ c) . (b ∧ d)(3.186)

a . b∆ c . d := (a ∧ c) . (b ∨ d) .(3.187)

Weiterhin erhalten wir nach (3.97),(3.98), (3.184) und den Kürzungsregeln,
dass G auch abgeschlossen ist bezüglich ◦ , wegen

a⊥ b & c⊥ d
=⇒

a.b ◦ c.d = a(b ∗ c) . d(c ∗ b)
≡ a(b ∗ c) : d(c ∗ b) . d(c ∗ b) : a(b ∗ c)
= (a : ((c ∗ b) : (b ∗ c)))((b ∗ c) : (c ∗ b)) : d
. (d : ((b ∗ c) : (c ∗ b)))((c ∗ b) : (b ∗ c)) : a

(3.98)
= (a : (c ∗ b))(b ∗ c) : d . (d : (b ∗ c))(c ∗ b) : a

(3.98)
= a(b ∗ c) : d . d(c ∗ b) : a

= (a : d)(b ∗ c) . (d : a)(c ∗ b) .

Folglich bildet Σ eine po-Gruppe bezüglich ◦ und ≤, und es bleibt nur noch
zu zeigen, dass ≤ einen Halbverband definiert.

Um dies zu bestätigen verifizieren wir A.B ≤ C.D =⇒ A ≤ C & B ≥ D
und beweisen so A ∨ C .B ∧D = sup(A.B , C.D) , was weiter mit E := e

zu
A.B ≤ C.D

=⇒ (∃U.U) U.U ◦ A.B ≤ U.U ◦ C.D
=⇒ U.U ◦ A.E ◦ E.B ≤ U.U ◦ C.E ◦ E.D
=⇒ U.U ◦ A.E ◦ E.B ◦D.E ≤ U.U ◦ C.E
(3.170)
=⇒ (∃V.V ) A.E ◦ E.B ◦D.E ◦ V.V ≤ C.E ◦ V.V
(3.170)
=⇒ E.B ◦ A.E ◦D.E ◦ V.V ≤ C.E ◦ V.V
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=⇒ B.B ◦ A.E ◦D.E ◦ V.V ≤ B.E ◦ C.E ◦ V.V
(3.170)
=⇒ (∃W.W )A.E ◦D.E ◦W.E ◦ E.W ≤ B.E ◦ C.E ◦W.E ◦ E.W
=⇒ ADV ≤ BCV

(RC)
=⇒ AD ≤ BC
(3.107)
=⇒ A ≤ C & D ≤ B .

führt und den Beweis abschließt. 2

Eine historische Anmerkung. Üblicherweise wählt man als Einbet-
tungsmethode Ore’s klassisches Einbettungsresultat, doch die spezielle
Verbandsgruppensituation gibt Anlass nach einer speziellen Einbettungs-
methode zu suchen, wie oben geschehen.

Eine ähnliche Methode werden wir später bei der Einbettung von Ver-
bandsloopkegeln in Verbandsloops wählen und mittels der Definition

a.b ◦ c.d := (a : d)(b ∗ c) . (d : a)(c ∗ b)(3.188)

a . b V c . d := (a ∨ c) . (b ∧ d)(3.189)

ein Problem von J. von Neumann lösen. Es ist nicht schwierig zu sehen,
dass die Menge der orthogonalen Paare A .B, C .D,...,U . V abgeschlossen
ist bezüglich ◦ und V und dass A.B ≤ C.D :⇐⇒ A ≤ C & B ≥ D
eine verträgliche PO definiert. Doch der Beweis, dass im gegebenen Fall
auch die Assoziativität mit geht, ist sehr technisch, im Gegensatz zu dem
obigen Beweis, der ganz beträchtlich von den Struktureigenschaften von∑

profitiert.

3.15 Wann ist Q invers?

Wir kehren zurück zur komplementären Halbgruppe S mit Quotientenhülle
Q . Ist S idempotent, so haben wir grob gesprochen S = Q, ist S sogar
kürzbar, so ist Q natürlich eine Verbandsgruppe. Ist S Produkt einer kürz-
baren und einer idempotenten komplementären Halbgruppe, so ist Q, wie
man leicht sieht, invers.

Frage: Sind dies schon alle komplementären Halbgruppen mit inverser Hülle
Q ? Antwort: Es gilt in der Tat:
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3. 15. 1 Proposition. Die Quotientenhülle Q einer komplementären Halb-
gruppe S ist genau dann invers, wenn S Produkt eines brouwerschen Halb-
verbandes mit einem Verbandsgruppenkegel ist.

BEWEIS. Sei Q invers und sei a⊥b sowie ab−1 idempotent. Dann folgt:

ab−1 = (ab−1)2

= a2b−1b−1

=⇒ a = a2b−1

=⇒ a2 = ab

=⇒ a2 = a (a⊥b)
=⇒ ab−1 = ab−1b−1

=⇒ a = ab−1 ∈ S . (⋆)

Sei nun x⊥ y und gelte

a = a · (x−1y) · a
&

x−1y = (x−1y) · a · (x−1y)

dann folgt weiter
x−1ya = (x−1ya)2 ∈ S (⋆)

; ya ≥ x
; x ≤ a
; a′ := ax−1 ∈ S

; ya′y = y
; y = y2 .

Wir zeigen nun, dass y = ax−1 erfüllt ist, was dann bedeutet, dass a =
(ax−1) · x mit idempotentem ax−1 ∈ S und kürzbarem x ∈ C ∩ S eine
Zerlegung der gewünschten Art darstellt. Es gilt:

a · x−1y · a = a

; a′ya = a
; ya = a
; yay = a
; y = ya′y

= yax−1y
= ya · yx−1

= a · x−1 .
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Sei hiernach umgekehrt die Bedingung des Satzes erfüllt. Dann lässt sich
a zerlegen in uv mit idempotentem u und kürzbarem v, und es gilt:

uv = (uv) · (uv−1) · (uv)
uv−1 = (uv−1) · (uv) · (uv−1)

Ferner liegen die Idempotenten von Q, wie oben gezeigt, in S, also im
Zentrum von S und damit auch im Zentrum von Q. 2

3.16 Der idempotente Fall

Grob gesprochen haben wir rechtskomplementären Halbgruppen eine spe-
zielle Halbgruppenerweiterung zugeordnet, von der aus Rückschlüsse auf
die Ausgangsstruktur möglich wurden. Abhängig war diese Erweiterung
von der Existenz kürzbarer Elemente. Wir wenden uns nun einer alterna-
tiven Erweiterung zu, die idempotente komplementäre Halbgruppen – also
browersche Halbverbände – in eine Erweiterungshalbgruppe einbettet.

3. 16. 1 Proposition. Eine rechtskomplementäre Halbgruppe S = (S, ·, ∗)
ist ein brouwerscher Halbverband, gdw. H := S × S bezüglich

(3.190) (a . b ◦ c . d := a(a ∗ b) . bd)

eine Halbgruppe bildet.

BEWEIS. Aufgrund der Definition erhalten wir:

(a . b ◦ c . d) ◦ u . v = (a(b ∗ c) . bd)
= a(b ∗ c)(bd ∗ u) . bdv

und a . b ◦ (c . d ◦ u . v) = a . b ◦ (c(d ∗ u) . dv
= a(b ∗ c(d ∗ u)) . bdv .

Ist S nun brouwersch, so folgt weiter:

a(b ∗ c(d ∗ u) = a(b ∗ c)(b ∗ (d ∗ u))
= a(b ∗ c)(bd ∗ u) .

Folglich ist ◦ in diesem Falle assoziativ, H also eine Halbgruppe.

Sei hiernach H eine Halbgruppe. Dann erhalten wir:

a(b ∗ c(d ∗ u)) = a(b ∗ c)(bd ∗ u) .
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Wir setzen zunächst a = 1 = c. Dann folgt:

b ∗ cu = (b ∗ c)(b ∗ u) .

und damit a ∗ a2 = (a ∗ a)(a ∗ a) = 1

; a = a2 .

Also ist S idempotent. Und setzen wir weiter a = 1 = c , so erhalten wir:

bd ∗ u = b ∗ (d ∗ u) ,

weshalb S auch kommutativ, insgesamt also brouwersch sein muss. 2

Erwähnt sei noch die evidente Tatsache, dass die soeben zum brouwer-
schen Halbverband konstruierte Erweiterung natürlich in der Regel nicht
kommutativ, sehr wohl aber immer idempotent ist. Dies könnte Anregung
geben zur Konstruktion von idempotenten Halbgruppen.

3.17 Beispiele

Beispiel 1: Es sei S die Halbgruppe der Elemente 1, a, b mit 1x = x = x1,
ab = aa = a und ba = bb = b, sowie x ∗ y = 1 = y : x.

Beispiel 2: Es sei S der Verband der Elemente 1, a, b, c, 0 mit 1 ≤ a ≤
b ≤ 0, 1 ≤ c ≤ 0, 1 ∗ x = x, 0 ∗ x = x ∗ x = x ∗ 1 = 1, a ∗ 0 = b ∗ 0 =
c, c ∗ 0 = a, a ∗ b = c ∗ b = b, a ∗ c = b ∗ c = c, c ∗ a = a, b ∗ a = 1 sowie
b : a = a ∗ b und a ◦ a = 0. Man betrachte S bezüglich ∨.

Beispiel 3: Es sei S eine nicht kommutative Halbgruppe mit 0 , betrachtet
bezüglich a ∗ b = b : a = 0.

Beispiel 4: Es sei S eine Menge von mindestens zwei Elementen a, b ,
betrachtet bezüglich ab = b = a ∗ b.
Beispiel 5: Es sei S eine kommutative Halbgruppe mit 1 und mindestens
zwei verschiedenen Elementen a, b , betrachtet bezüglich a ∗ b = 1, falls
a = b, und a ∗ b = b, falls a ̸= b gilt.

Beispiel 6: Es sei S ein Halbverband mit mindestens zwei verschiedenen
Elementen. Man setze a ∗ b = b .

Beispiel 7: Es sei S die Menge aus Beispiel 4, betrachtet bezüglich ab = b

und a ∗ b = const.
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Beispiel 8: Es sei S eine abelsche Gruppe mit a ∗ b = b : a = a−1 · b.

Beispiel 9: Es sei S die Halbgruppe der Zahlen 1, 2, 4, 6, . . . mit der übli-
chen Multiplikation. Man setze a∗b = b : a = b/a, falls a

∣∣ b, a∗b = b : a = 1,
falls b

∣∣ a, und a ∗ b = b : a = b im letzten Fall.

Beispiel 10: Es sei S eine Halbgruppe der Elemente 1, a, b, 0 mit der
Multiplikation 1x = x = x1, 0x = 0 = x0, ab = aa = a, ba = bb = b .
Diese Halbgruppe ist rechtskomplementär. Man erkläre a : b so, dass a :
a = 1 sowie (x : y)y = y(y ∗ x) ist und setze a ◦ a = 0.

Beispiel 11: Es sei S die Halbgruppe aus Beispiel 10 mit x : y = x.

Beispiel 12: Es sei S die Halbgruppe, die aus Beispiel 10 durch Spiege-
lung an der Diagonalen hervorgeht. Man setze x ∗ y = y : x.

Beispiel 13: Es sei S ein Halbverband mit 1 und 0. Man setze a ∗ b = 1,
falls a ≥ b , und a ∗ b = b sonst.

Beispiel 14: Es sei S eine unendliche boolesche Algebra mit ∨ als ·.

Beispiel 15: Es sei S der Bereich der reellen Zahlen des abgeschlossenen
Intervalls [ 0, 1 ] . Man setze ab = a + b, falls a + b ≤ 1 ist, und ab = ∞,
falls a+ b > 1 ist, sowie a ∗ b = 0.

Beispiel 16: Es sei S der Bereich aus Beispiel 15, diesmal mit a ∗ b = 0,
falls a = b gilt, und a ∗ b = b, falls a ̸= b ist.

Beispiel 17: Es sei S der Bereich aus Beispiel 15 mit a ∗ b = 1.

Beispiel 18: Es sei S die Halbgruppe der Paare (a
∣∣ b) nicht negativer

ganzer Zahlen bezüglich (a
∣∣ b)(c ∣∣ d) = (a + c

∣∣ 2cb + d). S ist rechtskom-
plementär. Man erkläre a : b so, dass ba : a = b ist.

Beispiel 19: Es sei S die Halbgruppe der Ordnungsisomorphismen von
R auf Enden von R mit r ≤ φ(r). Erklärt man in dieser Halbgruppe a ◦ b
als ba, so ist S bezüglich ◦ rechtskomplementär und es gilt a

∣∣∣
ℓ
b ⇐⇒ a

∣∣∣
r
b.

Man setze b : a so fest, dass (b : a) ◦ a = a ∨ b wird.

Beispiel 20: Es sei S eine Menge von mindestens zwei Elementen. Man
setze ab = a und a ∗ b = b.

Beispiel 21: Es sei S eine kommutative Halbgruppe mit 1. Man setze
a ∗ b = 1, falls a = b ist, man setze a ∗ b = b, falls a ̸= b gilt.
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Beispiel 22: Man betrachte die Elemente 1, a, b, 0 bezüglich der Verknüp-
fungen x1 = x und xy = 1, falls y ̸= 1, sowie x ∗ x = 1 und x ∗ y = 0, falls
y ̸= x.

Beispiel 23: Es sei S die Menge der reellen Zahlen aus [ 0, 1 ], betrachtet
bezüglich ab = min(a+ b, 1).



Kapitel 4

Gleichungsbasen

Vom allgemein theoretischen Standpunkt aus gesehen, mag der Leser dieses
Kapitel auslassen. Doch scheint der Inhalt von einem gewissen Reiz für
Liebhaber. Gezeigt wird im einzelnen:
1. Jede Klasse rechtskomplementärer Halbgruppen, die sich mit endlich

vielen Gleichungen beschreiben lässt, lässt sich auch mit zwei Gleichungen
beschreiben.
2. Jede Klasse komplementärer Halbgruppen, die sich mit endlich vielen

Gleichungen beschreiben lässt, lässt sich auch mit einer (einzigen) Glei-
chung beschreiben.
3. Es gibt eine

”
common structured fundamental equation“, zu deutsch

vielleicht eine
”

Muttergleichung“ für den Verbandsgruppenkegel, den Ver-
bandsloopkegel, die boolesche Algebra, die Verbandsgruppe, die Verbands-
loop – UND (!) – die abelsche Gruppe.

4.1 Zur rechtskomplementären Halbgruppe

4. 1. 1 Proposition. Eine Algebra (S, · , ∗) ist genau dann eine rechts-
komplementäre Halbgruppe, wenn sie den beiden Axiomen genügt:

(A1) a(b ∗ b) = a,

(B2) u(u ∗ (ab ∗ c)) = (b ∗ (a ∗ c))((ab ∗ c) ∗ u) .

BEWEIS. Setzen wir u = ab ∗ c , so erhalten wir

(A2) ab ∗ c = b ∗ (a ∗ c)

99
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Zu zeigen bleibt (A3), was wir über eine Kette von Zwischenschritten lei-
sten. Zunächst setzen wir hierzu b = x ∗ x und erhalten

(4.4) u(u ∗ (a ∗ c)) = (a ∗ c)((a ∗ c) ∗ u) ,

womit wir weiter zeigen können

v ∗ v = (v ∗ v)(a ∗ a)

= (v ∗ v)(a(v ∗ v) ∗ a)

(4.4)
= (a ∗ a)((a ∗ a) ∗ (v ∗ v))
= a ∗ a
:= e .

(4.5)

Hiernach folgen sukzessive:

(4.6)

(e ∗ a) ∗ e = (e ∗ a) ∗ (e ∗ e)
= e(e ∗ a) ∗ e (A2)

= (a ∗ e) ∗ e (4.4)

= (a ∗ e) ∗ (a ∗ e)
= e

(4.7) e ∗ a = (e ∗ a)((e ∗ a) ∗ e) (4.6)

= e(e ∗ (e ∗ a)) (4.4)

= e(e ∗ a)

(4.8) (e ∗ a) ∗ a = e(e ∗ a) ∗ a (4.7)

= (e ∗ a) ∗ (e ∗ a) (4.4)

= e

(4.9) e ∗ a = (e ∗ a)((e ∗ a) ∗ a) (4.8)

= a(a ∗ (e ∗ a)) (4.4)

= a(ea ∗ a)
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(4.10) e ∗ ea = (ea)(e(ea) ∗ ea)

= (ea)(ea ∗ (e ∗ ea))

= (ea)(a ∗ (e ∗ (e ∗ ea)))
= (ea)(a ∗ (e ∗ ea))

= (ea)(ea ∗ ea)

= ea

(4.11) a(a ∗ eb) = a(a ∗ (e ∗ eb)) (4.10)

= (e ∗ eb)((e ∗ eb) ∗ a)

= (eb)(eb ∗ a)

(4.12) e(bc) = (e(bc))((eb)c ∗ (eb)c)

= (e(bc))(c ∗ (eb ∗ (eb)c))

= (e(bc))(c ∗ (b ∗ (e ∗ (eb)c)))

= (e(bc))(bc ∗ (e ∗ (eb)c))

= (e(bc))(e(bc) ∗ (eb)c)

= ((eb)c)((eb)c ∗ e(bc)) (4.11)

= ((eb)c)(c ∗ (eb ∗ e(bc)))
= ((eb)c)(c ∗ (b ∗ (e ∗ e(c))))
= ((eb)c)(bc ∗ (e ∗ e(bc)))
= ((eb)c)(e(bc) ∗ e(bc))
= (eb)c

(4.13) ea = ea(ea ∗ ea)

= ea(a ∗ (e ∗ ea))

= e(a(a ∗ ea)) (4.10)

= e(ea(ea ∗ a)) (4.11)

= (ee)(a(ea ∗ a)) (4.12)

= e(e ∗ a) (4.9)

= e ∗ a (4.7)
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(4.14) ea = e ∗ a (4.13)

= a(ea ∗ a) (4.9)

= a((e ∗ a) ∗ a)

= ae = a (4.8)

(4.15) e ∗ a = a = ea
a ∗ e = (e ∗ a) ∗ e

= e . (4.4)

Damit sind wir am Ziel. 2

Als Korollar sei schließlich festgehalten:

(A3) a(a ∗ b) = a(a ∗ (e ∗ b))
= (e ∗ b)((e ∗ b) ∗ a)
= b(b ∗ a)

Aus Satz 4.1.1 ergibt sich fast unmittelbar

4. 1. 2 Proposition. Sei A Varietät, die sich mit endlich vielen Glei-
chungen vermöge der Operationen ◦ν beschreiben lässt. Lassen sich dann
die Axiome (A1), (A2), (A3) bezüglich zweier aus den ◦ν abgeleiteter Ope-
rationen verifizieren, so ist A zweibasig.

BEWEIS. Zunächst gilt ab = e =⇒ b = e und a = b⇐⇒ (a∗b)(b∗a) = 1 .
Hieraus resultiert weiter, dass jedes endliche System von Gleichungen

(4.17) fν = gν (ν = 1, . . . , n)

”
komprimiert“ werden kann zu einer einzigen Gleichung

(G) p :=
∏n

1

(
(fν ∗ gν) · (gν ∗ fν)

)
= e ,

wobei diese Identität gleichwertig ist mit x ∗ p = e. Daher können wir (B2)
durch Juxtaposition von v ∗ p spezialisieren zu

(B2’) u(u ∗ (ab ∗ c))(v ∗ p) = ((b ∗ (a ∗ c))((ab ∗ c) ∗ u)) .
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Somit sind wir am Ziel, denn wir erhalten (B2) aus 4.1.1 und (A1) durch
Ersetzung von v mittels p und die Gleichung p = e mittels u = v = a =
b = c = e . 2

Es ist klar, dass Gleichung (B2’) in Sonderfällen bezüglich seiner Länge
und der Anzahl ihrer Variablen reduziert werden kann. Von besonderem
Interesse ist diesbezüglich natürlich die kommutative komplementäre Halb-
gruppe. Hier können wir zeigen:

4. 1. 3 Proposition. Eine Algebra S(·, ∗) ist genau dann eine kommu-
tative komplementäre Halbgruppe, wenn sie den beiden Axiomen genügt:

(B1) a(b ∗ b) = a,

(BK) (ab ∗ c)((u(u ∗ v))) = (v(v ∗ u))(b ∗ (a ∗ c)) .

BEWEIS. Setzen wir b = a ∗ a und c = a, so erhalten wir

(4.22) (a ∗ a)(u(u ∗ v)) = v(v ∗ u) ,

und es folgt für u = w ∗ w = v die Gleichung:

(4.23) a ∗ a = w ∗ w = e .

Setzen wir nun in (4.22) u = v, so erhalten wir

(4.24) eu = u,

woraus mit a = b = c = e in (BK) die Gleichung

(4.25) u(u ∗ v) = v(v ∗ u)

und mit u = v = e in (BK) die Gleichung

(4.26) ab ∗ c = b ∗ (a ∗ c)

resultiert. Setzen wir schließlich in (BK) a = b = e und u = v, so ergibt
sich hieraus die Kommutativität. 2

Durch eine leichte Abänderung des Systems (A1), (BK) – nämlich bei Er-
setzung von ab ∗ c durch ab ∗ c2 – erhält man ein Axiomensystem für den
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brouwerschen Halbverband. Ein System für den abelschen Verbandsgrup-
penkegel liefert (B2) zusammen mit der Forderung a ∗ ba = b. Auf einen
Beweis sei hier verzichtet, zumal wir auf den abelschen Verbandsgruppen-
kegel und andere Strukturen mit Kürzungsregel am Ende diese Kapitels
noch zurückkommen werden.

4.2 Zur komplementären Halbgruppe

In Anlehnung an McKenzie [122] werden wir im folgenden zeigen:

4. 2. 1 Proposition. Jede Klasse A komplementärer Halbgruppen, die sich
mit endlich vielen Gleichungen beschreiben lässt, ist einbasig.

Zunächst gilt offenbar:

4. 2. 2 Lemma. Sind f und g zwei Funktionen auf M und ist f ◦ g ◦ f
eine Permutation, so sind auch f und g Permutationen.

Das liefert weiter fast unmittelbar

4. 2. 3 Lemma. Seien f1, . . . , fm Funktionen auf der Menge M mit

(4.27) f1 ◦ f2 ◦ . . . ◦ fm−1 ◦ fm ◦ fm−1 ◦ . . . ◦ f2 ◦ f1(a) = a .

Dann sind alle fi (1 ≤ i ≤ n) Permutationen, und es resultiert:

fn ◦ fn+1 ◦ . . . ◦ fm ◦ . . . ◦ fn+1 ◦ fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f1 ◦ . . . ◦ fn−1(a) = a

fn−1 ◦ . . . ◦ f1 ◦ f1 ◦ . . . ◦ fn−1 ◦ fn ◦ fn+1 ◦ . . . ◦ fm ◦ . . . ◦ fn+1 ◦ fn(a) = a.

DENN: Man beachte fg = id =⇒ gf = id . 2

Insbesondere haben wir damit:

(4.28) fν(b) = fν(c) =⇒ b = c .

Als nächstes kürzen wir ab:

a ∨ b := a(a ∗ b) ,
a ∧ b := (b : (a ∗ b))((b : (a ∗ b)) ∗ (a : (b ∗ a)))



4.2. ZUR KOMPLEMENTÄREN HALBGRUPPE 105

und bilden hiernach die Polynome:

p1 = (x1 ∧ x) ∨ (x ∧ x) ,

p2 = ((x ∨ x) ∧ x2) ∨ (x ∧ x) ,

p3 = ((x ∨ x) ∧ (x ∨ x)) ∨ (x3 ∧ x) ,

p4 = ((x ∨ x) ∧ (x ∨ x)) ∨ ((x ∨ x) ∧ x4) ,
p5 = (x5 ∨ x) ∧ (x ∨ x) ,

p6 = ((x ∧ x) ∨ x6) ∧ (x ∨ x) ,

p7 = ((x ∧ x) ∨ (x ∧ x)) ∧ (x7 ∨ x) ,

p8 = ((x ∧ x) ∨ (x ∧ x)) ∧ ((x ∧ x) ∨ x8) .
p9 = ((x9 ∧ x) ∨ (x ∧ y9)) ∨ x,
p10 = x(x10 ∗ x10) ,
p11 = (x11 ∗ x11)x,
p12 = (x((x12y12 ∗ z12) ∗ (y12 ∗ (x12 ∗ z12))))

· ((v12 ∗ (u12 ∗ w12)) ∗ (u12v12 ∗ w12)) ,

p13 = xf(w13,1 . . . w13,m mit f gleich p aus (B2’) .

Es ist klar, dass die angeführten Polynome alle als Polynome in den Ope-
rationen ∗, : und · und den Variablen

x , x1 , . . . , x12 , y12 , z12 , u12 , v12 , w13,1 . . . , w13,m

aufgefasst werden können und dass p1 bis p13 übergehen in Funktionen f1
bis f13, wenn man in pν jeweils x1 , . . . . . . , w13,m mit Konstanten uν , . . .
. . . , wmν belegt. Geht man nun weiter hin und belegt pν einmal mit uν , . . .

. . . , wmν zu fν und ein anderes Mal mit uν , . . . . . . , wmν zu f ν, so erhält
man durch Vor- und Einschachteln aus

f1 ◦ . . . ◦ f ν ◦ . . . ◦ f13 ◦ . . . ◦ fν ◦ . . . ◦ f1(a)

= a =

f1 ◦ . . . ◦ f ν ◦ . . . ◦ f13 ◦ . . . ◦ fν ◦ . . . ◦ f1(a)

die Gleichung

(4.29) f ν(a) = f ν(a) .

Dies ist der Schlüssel zum Beweis. Denn die Forderung

(A) f 1 ◦ . . . ◦ f 12 ◦ f13 ◦ f 12 ◦ . . . ◦ f 1(a) = a
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ist offenbar notwendig. Sie reicht aber auch hin:

Denn: Da (A) die Unabhängigkeit der Polynomwerte von den indizierten
Variablen impliziert, gilt zunächst

(4.31) f1(a) = f2(a) = f3(a) = f4(a) = f1(a ∨ a) ,

also nach 4.2.3

(4.32) a ∨ a = a.

Analog erhalten wir

(4.33) a ∧ a = a

und damit

(4.34) f1(a) = . . . . . . . . . . . . . . . = f9(a) = a.

Aufgrund dieses letzten Sachverhalts gewinnen wir:

(a ∨ b) ∨ (b ∨ a) = ((a ∧ (b ∨ a)) ∨ ((b ∧ a) ∧ b))
∨ (b ∨ a)
= b ∨ a

=⇒
a ∨ b = (a ∨ b) ∧ ((a ∨ b) ∨ (b ∨ a))

= b ∨ a.

Diese Kommutativität (bezüglich ∨) sichert uns als nächstes die Gleichung

(A1) a(a ∗ b) = b(b ∗ a) .

Weiter gilt wegen f 10(a) = f 10(a) die Gleichung a(b ∗ b) = a(a ∗ a), also

(A3) a(b ∗ b) = a.

Damit folgt aber wegen f 10(a) = f 10(a) und f 11(a) = f 11(a)

(4.37) a ∗ a = (a ∗ a)(b ∗ b) = (b ∗ b)(b ∗ b) = b ∗ b ,
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so dass mit a ∗ a = b ∗ b := e die Gleichung

(4.38) e · e = e = e ∗ e

erfüllt ist und damit:

a = a((xy ∗ z) ∗ (y ∗ (x ∗ z)))

&

a = a((y ∗ (x ∗ z)) ∗ (xy ∗ z)) .

DENN: Wählen wir in f12(a) zunächst u12 = v12 = w12 = x12 = y12 =
z12 = e , so erhalten wir a. Wählen wir weiter u12 = v12 = w12 = e und
x12 = x, y12 = y sowie z12 = z, so erhalten wir die erste Zeile. Und setzen
wir schließlich x12 = y12 = z12 = e und u12 = x, v12 = y sowie z12 = z, so
erhalten wir die zweite Zeile.
Damit folgt für f = xy ∗ z und g = y ∗ (x ∗ z) die Gleichung

(4.39) f = f(f ∗ g) = g(g ∗ f) = g .

Dies sichert das Axiom

(A3) ab ∗ c = b ∗ (a ∗ c)

Hieraus ergibt sich (b ∗ b)a = a und damit f10(a) = a, so dass unsere
Ausgangsgleichung zusammen schrumpft zu

(4.41) f13(a) = a .

Damit ist alles gezeigt. 2

Aus Satz 4.2.1 ergeben sich mehrere Korollare. Unter ihnen als das we-
sentlichste, das alle übrigen umfasst:

4. 2. 4 Korollar. Sei A eine Klasse von Algebren, die sich mit endlich
vielen Gleichungen beschreiben lässt. Lassen sich dann bezüglich zweier
aus den definierenden Operationen ableitbarer Operationen die Axiome der
komplementären Halbgruppe herleiten, so ist es möglich, die Klasse A mit
einer einzigen Gleichung zu charakterisieren.

Der Beweis verläuft analog zu dem soeben geführten. Insbesondere gelten
demnach:
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4. 2. 5 Korollar. Die kommutative komplementäre Halbgruppe besitzt eine
Fundamentalgleichung.

4. 2. 6 Korollar. Der boolesche Ring und der Verbandsgruppenkegel be-
sitzen jeweils eine Fundamentalgleichung.

4. 2. 7 Korollar. Der brouwersche (Halb-) Verband besitzt eine Funda-
mentalgleichung.

4. 2. 8 Korollar. Der (abelsche) Verbandsgruppenkegel besitzt eine Fun-
damentalgleichung.

4. 2. 9 Korollar. Die normale komplementäre Halbgruppe besitzt eine
Fundamentalgleichung.

Insbesondere ergibt sich aus Satz 4.1.2 noch der auf Grätzer zurückge-
hende Satz von B. H. Neumann [128]:

4. 2. 10 Korollar. Gehört eine universelle Algebra A zu einer Klasse A,
die sich mit endlich vielen Gleichungen beschreiben lässt, so lässt sich A
durch Hinzunahme zweier weiterer Operationen einengen zu einer Algebra,
deren zugehörige Klasse sich mit einer einzigen Gleichung definieren lässt.

DENN, man ordne A so an, dass ein minimales Element in A existiert.
Dann bildet A einen brouwerschen Halbverband bezüglich der gewählten
Anordnung.
Schließlich können wir Satz 4.2.1 verschärfen zu

4. 2. 11 Proposition. Eine Klasse rechtskomplementärer Halbgruppen
lässt sich immer dann mittels einer Fundamentalgleichung beschreiben,
wenn sich eine Operation ∧ angeben lässt, bezüglich der die Polynome p1
bis p8 den Wert a annehmen.

Aufgrund von Satz 4.1.2 ist die Existenz von Fundamentalgleichungen
nachgewiesen, nichts ist hingegen gesagt über ihre Länge. Dass es sehr
viel kürzere Gleichungen in weniger Variablen als die von uns konstruier-
ten geben dürfte, scheint evident. So liefert beispielsweise

(BR) ((x+ y) + z) + ((x+ z) + h(t, u, v, w)) = y

mit

h = ((tt+ t(u(vw) + w(uv))) + t) + (u(v + w) + (uv + wu))
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eine Kurzform für die boolesche Algebra, was hier nicht ausgeführt werden
soll, doch werden wir später auf Sonderfälle zurückkommen, siehe 3.6.7
und 3.6.4.

4.3 Eine
”
Muttergleichung“

Im folgenden präsentieren wir eine
”
common structured fundamental equa-

tion“ für idempotente Ringe und Verbandsgruppenkegel, die zudem auch
noch greift im Falle eines Verbandsloopkegels, der Verbandsgruppe, der
Verbandsloop, ja sogar der abelschen Gruppe.

Wir weisen vorweg hin auf an die Charakterisierung des booleschen Ringes
unter 3.6.7 und des Verbandsgruppenkegels unter 3.6.4.

Grundgedanke ist dann: Definieren wir

a∆ b :=

{
(a ∗ b)(b ∗ a) im booleschen Fall

a : b im Kegelfall

und

a ◦ b :=

{
(a ∗ b)(b ∗ a) im booleschen Fall

ab im Kegelfall ,

so können wir sowohl den idempotenten Ring als auch den Verbandsgrup-
penkegel betrachten als Algebra (S, ·, ∗, ∆ , ◦) vom Typ (2, 2, 2, 2) . Da-
mit kommt die Frage nach einer gemeinsamen Grundlegung dieser beiden
Strukturen auf. Insbesondere stellt sich die Frage nach einer Fundamental-
gleichung von gemeinsamer Struktur.

Es ist wohlbekannt nach [19] und [130], dass es Fundamentalgleichungen
gibt, doch sind die bekannten Gleichungen von

”
astronomischer“ Länge.

Dies zu überwinden ist unser nächstes Ziel.

Dabei werden wir zu einem zufrieden stellendem Ansatz gelangen, der über
den hier betrachteten Fall auch von allgemein algebraischer Bedeutung sein
dürfte. Wir beginnen mit einer Serie von Gleichungen, die in den betrach-
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teten Algebren gemeinsam gelten.

(a ∗ a) ◦ a = a(4.43)

(b ◦ (b ∗ a)) ∆ (a ∗ b) = a(4.44)

(a ◦ b) ∆ b = a(4.45)

a ◦ (a ∗ b) = (b∆ a)a(4.46)

a ◦ (b ◦ c) = (a ◦ b) ◦ c(4.47)

(b2 ∆ b) ∗ (b2 ∆ b)a = a.(4.48)

Diese Gleichungen sind leicht zu verifizieren im Kegelfall.
Wir betrachten den Fall des idempotenten Ringes. Hier gilt a2 = a und
damit unter Berücksichtigung von (a∗b)∗b = (b∗a)∗a die Gleichungskette :

(a ∗ b) ∗ a = ((a ∗ b) ∗ (a ∗ a)) ∗ ((a ∗ b) ∗ a)
= (a ∗ ((a ∗ b) ∗ a)) ∗ ((a ∗ b) ∗ a)
= ((((a ∗ b) ∗ a) ∗ a) ∗ a)
= ((a ∗ (a ∗ b)) ∗ (a ∗ b)) ∗ a
= ((a2 ∗ b) ∗ (a ∗ b)) ∗ a
= a ,

also insgesamt a ∗ (a ∗ b) = a ∗ b und (a ∗ b) ∗ a = a. Hiernach verifiziert der
Leser die notierten Gleichungen (4.43) bis (4.48) ohne Probleme.
Schließlich erwähnen wir

(4.49) Es gibt eine 0 mit 02 = 0 und 0 ∗ ((a ∗ a2) ∗ a) = 1 ,

man wähle im Kegelfall etwa die 1 als 0.
Wir starten nun von einer Algebra (S , · , ∗ , ∆ , ◦) des Typs (2, 2, 2, 2), die
den Gleichungen (4.43) bis (4.48) genügen möge – tatsächlich genügt weni-
ger – und zwei disjunkten Mengen von Variablen {x0, . . . , xn}, {y0, . . . , yn}.
Weiterhin sei f eine algebraische Funktion in n Variablen über S. Wir
bezeichnen dann mit fx den Term f(x1, . . . , xn) und mit fy den Term
f(y1, . . . , yn). Schließlich erfülle f in beiden Klassen die Bedingung f ◦ a =
a = a ◦ f .
Dann gilt, wenn ◦ stärker binden soll als ∗ und ∗ stärker als ∆ :

(F) fx ◦
{((

fy ◦ (a ◦ (a ∗ b) ∆ (b ∗ a))
)
◦ c
)

∆ c
}

= b .

wo ∆ beispielsweise agieren mag als (a ∗ b)(b ∗ a) in dem einen Fall und
als : in dem anderen Fall.
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Ist auf der anderen Seite (F) erfüllt, so lässt sich zeigen, dass ◦ rechtskürz-
bar, ∗ identitiv und f konstant ist. Darüber hinaus lässt sich aus diesen
Regeln ein zweites Kürzungsgesetz herleiten, nämlich

1 ◦ (1 ∗ a) = 1 ◦ (1 ∗ b) =⇒ a = b .

Der Rest
”
degeneriert“ dann zur Routine.

4. 3. 1 Lemma. Gilt die Gleichung (F), so erhalten wir

fx ◦
{((

fy ◦ (u ◦ c∆ c)
)
◦ w
)

∆w
}

= u.

DENN: In der Tat, setze a = b = fx ◦
(
v ◦ (v ∗ u) ∆ (u ∗ v)

)
. Dann folgt

(F 1) fx ◦
(
(u ◦ c) ∆ c

)
= fx ◦

(
v ◦ (v ∗ u) ∆ (u ∗ v)

)
und hieraus resultiert

(F 2) fy ◦
{((

fx ◦ (u ◦ c∆ c)
)
◦ w
)

∆w
}

= u.

2

Damit haben wir insbesondere:

(4.53) a ◦ c = b ◦ c (F2)
=⇒ a = b .

(4.54) a ∗ b = b ∗ a (F2,F1)
=⇒ a = b .

Sei f nun von der Form (. . . (g1 ◦ g2) ◦ . . . ◦ gm) und seien die Variablen von
gν und gµ verschieden für alle Paare ν ̸= µ sowie

g1 = x0 ∗ (x1 ∗ x1) .

Dann ist g1, wie sich durch Kürzung nach (4.53) erweist, konstant, also
(a ∗ a) ∗ (b ∗ b) = (b ∗ b) ∗ (a ∗ a), woraus

a ∗ a = b ∗ b =: 1

resultiert, und hieraus folgt unmittelbar

x0 ∗ (x1 ∗ x1) = 1 ∗ (1 ∗ 1) = 1 ∗ 1 = 1 ; a ∗ 1 = 1 .

Damit erhalten wir für a = 1 in (F) die angekündigte zweite Kürzungsregel:

(4.55) 1 ◦ (1 ∗ u) = 1 ◦ (1 ∗ v) =⇒ u = v .
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Wir definieren nun weiter:

g2 := x2 ∗ ((x2 ∗ x2) ◦ (x2 ∗ x2))
g3 := x3 ∗ ((x3 ∗ x3) · (x3 ∗ x3))
g4 := x4 ∗ ((x4 ∗ x4) ∆ (x4 ∗ x4)) .

Da g1 ◦ g2 konstant ist, erhalten wir hiermit

g1 ◦ g2 = 1 ◦ (x2 ∗ (1 ◦ 1)) = 1 ◦ (1 ∗ (1 ◦ 1))

= 1 ◦ ((1 ◦ 1) ∗ (1 ◦ 1)) = 1 ◦ (1 ∗ 1) ,

also 1 ◦ (1 ∗ (1 ◦ 1)) = 1 ◦ (1 ∗ 1) und folglich nach (4.55)

1 ◦ 1 = 1
und damit

g1 ◦ g2 = 1 ◦ 1 = 1 .

Fahren wir in dieser Weise fort, so resultiert nach ähnlichem Muster

1 ∗ 1 = 1 und 1 · 1 = 1 und 1 ∆ 1 = 1 .

Sei nun gν, gν+1 vom Typ

gν := xν ∗ (p (y1, . . . , yr) ∗ q (y1, . . . , yr))

gν+1 := xν+1 ∗ (q (z1, . . . , zr) ∗ p (z1, . . . , zr))

und außerdem (. . . (g1 ◦ g2) ◦ . . . gν−1) = 1 .

Dann erhalten wir nach der soeben vorgestellten Methode

1 = p (z1, . . . , zr) ∗ q (z1, . . . , zr)

1 = q (z1, . . . , zr) ∗ p (z1, . . . , zr)

und folglich p (z1, . . . , zr) = q (z1, . . . , zr) .

Das liefert aber

(K1) a · (a ∗ b) = b · (b ∗ a)

mittels g5 := x5 ∗ ((z5 · (z5 ∗ z51)) ∗ (z51 · (z51 ∗ z5))) ,
da wir z5 and z51 vertauschen dürfen,

(K2) ab ∗ c = b ∗ (a ∗ c)
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mittels
g6 := x6 ∗ ((z6z61 ∗ z62) ∗ (z61 ∗ (z6 ∗ z62)))
g7 := x7 ∗ ((z71 ∗ ((z7 ∗ z72)) ∗ (z7z71 ∗ z72)))

und schließlich

(K3) a(b ∗ b) = a

vermöge

(4.59) g8 := x8 ∗ x8(z81 ∗ z81) ,

da diese Definition zu

a ∗ a(b ∗ b) = 1

führt und (K2) dann weiter zu

a(b ∗ b) ∗ a = (b ∗ b) ∗ (a ∗ a) = 1 .

Sicher zu stellen bleiben hiernach noch über den vorgegebenen Mechanis-
mus die Gleichungen:

a ◦ (b ◦ c) = (a ◦ b) ◦ c
a ◦ (a ∗ b) = (b∆ a)a

(b2 ∆ b) ∗ (b2 ∆ b)a = a

(a ◦ b) ∆ b = a .

Schließlich haben wir eine Konstante 0 im Sinne von (11) einzufügen, wenn
wir den booleschen Ring erfassen wollen. Damit ist gezeigt:

4. 3. 2 Theorem. Sei (S , · , ∗ , ∆ , ◦) eine Algebra, in der die Gleichung
(F) erfüllt ist mit fx im obigen Sinne.

Dann ist (S , · , ∗ , ∆ , ◦) ein Verbandsgruppenkegel, wenn auf dem Wege
über fx a∆ b = a : b gesichert ist.

Und es ist (S, ·, ∗, ∆ , ◦) ein idempotenter Ring, wenn auf dem Wege über
fx die Gleichung a∆ b = a ◦ b = (a ∗ b)(b ∗ a) gewährleistet ist.

Natürlich lässt sich (F) im Sonderfall vereinfachen. Diesem Aspekt gilt der
nächste Abschnitt.
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4.4 Der boolesche Sonderfall

Wir erinnern zunächst an 3.6.7, d. h. daran, dass sich eine Algebra S =
(S, ·, ∗) genau dann auffassen als ein idempotenter Ring auffassen lässt,
wenn sie mit a+ b := (a ∗ b)(b ∗ a) den Bedingungen genügt:

(A1) a(a ∗ b) = b(b ∗ a)
(
B1
)

(A2) ab ∗ c = b ∗ (a ∗ c)
(
B2
)

(A3) a(b ∗ b) = a
(
B3
)

(BR’) a+ (b+ c) = (a+ b) + c
(
B10

)
Dies im Blick, zeigen wir:

4. 4. 1 Proposition. Eine Algebra B = (B, ◦, ∗) ist eine boolesche Alge-
bra gdw. sie für ein geeignetes, von a, b, c , freies fu der Gleichung genügt:

(B) ((a ◦ b) ◦ c) ◦ ((a ◦ c) ◦ fu) = b .

BEWEIS. Zunächst erhalten wir die Kürzungsregel

(4.65) x ◦ y = x ◦ z =⇒ y = z .

Wir setzen nun a = x ◦ y, b = z, c = (x ◦ y) ◦ fu . Dann folgt weiter:

z =

(
((x ◦ y) ◦ z) ◦ ((x ◦ y) ◦ fu)

)
◦
(

((x ◦ y) ◦ ((x ◦ y) ◦ fu))) ◦ fu
)

= y ◦
(

((x ◦ y) ◦ ((x ◦ y) ◦ fu)) ◦ fu
)

;

(4.66) y

∣∣∣∣
ℓ

z setze z = y · yz.

Hiernach können wir den Beweis wie folgt abschließen:

Zunächst ist yz nach (4.65) eindeutig bestimmt, also konstant. Folglich
können wir etwa von xx sprechen, und es resultiert

(4.67) aa = bb

aus aa = ((a ◦ aa) ◦ b) ◦ ((a ◦ b) ◦ fu) = (a ◦ b) ◦ ((a ◦ b) ◦ fu)
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Wir bezeichnen nun aa = bb als 1 . Dann folgt 1 ◦ 1 = 1 und damit weiter
vermöge (4.65) und (4.67):

(4.68) 1 ◦ (1 ◦ fu) = 1 =⇒ 1 ◦ fu = 1 =⇒ fu = 1

sowie vermöge (4.68) und (4.69):

(4.69) ((a ◦ b) ◦ c) ◦ (a ◦ c) = b

(4.70) a ◦ a = (a ◦ 1) ◦ (a ◦ 1) = 1

(4.71) 1 ◦ a = ((a ◦ a) ◦ a) ◦ (a ◦ a) = a

(BR’) (a ◦ b) ◦ c = (((a ◦ b) ◦ c) ◦ (a ◦ c)) ◦ (a ◦ c) = b ◦ (a ◦ c)
Weiter erhalten wir hiernach

(4.73) a ◦ b = (a ◦ b) ◦ 1 = b ◦ (a ◦ 1) = b ◦ a ,
beachte (BR’), und schließlich

(4.74) a ◦ b = 1 ⇐⇒ a = b .

Hier stoppen wir die Entwicklung und überlassen dem Leser den Abschluss
auf der Grundlage von Proposition 3.6.7 2

Wir gehen hier nicht ein auf die Erfassung des booleschen Verbandes, auch
sie darf natürlich dem Leser überlassen bleiben.

4.5 Der Kegel-Sonderfall

Wir erinnern auch hier zunächst an ein früheres Theorem, nämlich an 3.6.4.
Es besagte, dass eine Algebra S = (S, ·, ∗, :) eine kürzbare komplementäre
Halbgruppe genau dann ist, wenn sie den Bedingungen genügt:

(A1) a(a ∗ b) = b(b ∗ a)

(A2) ab ∗ c = b ∗ (a ∗ c)
(V1) a ∗ ab = b

(V2) a(a ∗ b) = (b : a)a

(A5) ba : a = a ∗ ab

4. 5. 1 Proposition. (F) ist Fundamentalgleichung des Kegels, wenn wir
◦ als · auffassen und ∆ als : sowie

fx := (. . . (g1 ◦ g2) ◦ . . . ◦ g7)
setzen mit
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g1 := x1 ∗ (x0 ∗ x0)
g2 := x2 ∗ ((x21x22 ∗ x23) ∗ (x22 ∗ (x21 ∗ x23)))
g3 := x3 ∗ ((x32 ∗ (x31 ∗ x33)) ∗ (x31 ∗ x32 ∗ x33))
g4 := x4 ∗ (x41(x41 ∗ x42) ∗ x42(x42 ∗ x41))
g5 := x5 ∗ ((x51 ∗ x51x52) ∗ x52)
g6 := x6 ∗ ((x61 : x62)x62 ∗ x62(x62 ∗ x61))
g7 := x7 ∗ (x71(x71 ∗ x72) ∗ (x71 : x72)x72) .

BEWEIS. Mittels g1 erhalten wir zunächst die beiden Gleichungen:

(4.80) a ∗ a = b ∗ b = 1

(4.81) a ∗ 1 = 1 .

Weiter folgt mittels g1, g2

(A3) ab ∗ c = b ∗ (a ∗ c) .

Als nächstes liefert g4

(A2) a(a ∗ b) = b(b ∗ a) ,

und es folgt (a ∗ ab) ∗ b = 1 vermöge g5 – und b ∗ (a ∗ ab) = ab ∗ ab = 1
vermöge (4.81). Das liefert weiter:

(V1) a ∗ ab = b

Damit haben wir auch a1 = a = 1a, man konsultiere den Abschnitt zur
Axiomatik, und wir erhalten(a : b)b ∗ a(a ∗ b) = 1 – durch Fortfahren.
Leichte Probleme bekommen wir lediglich mit g7 . Hier belegen wir x7 mit
1 : 1 und alle anderen Variablen mit 1. Dies führt zu

(b(b ∗ a) : (a ∗ b)) : 1 = a =⇒ (a : 1) : 1 = a =⇒ (1 : 1) : 1 = 1 ,

und bei Belegung aller Variablen aus g1 bis g7 mit 1 resultiert

1 · (1 ∗ (x71 ∗ x72) ∗ (x71 : x72))
= 1 · (1 ∗ (1(1 ∗ (1 : 1)) ∗ ((1 : 1) : 1)1)
= 1(1 ∗ 1)
;

g7 = x71(x71 ∗ x72) ∗ (x72 : x71)x71 = 1 .
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Dies impliziert dann weiter

(V2) a(a ∗ b) = (a : b)b ,

und damit a : 1 = (a : 1)1 = a(a ∗ 1) = a . Folglich können wir den Beweis
abschließen, indem wir in (F2) alle von u und c verschiedenen Variablen
mit 1 belegen, denn dies liefert uc : c = u und damit das Axiom

(A5) ab : b = a

Damit sind wir am Ziel. 2

Wir wenden uns nun dem abelschen Fall zu – der Vollständigkeit halber.
Wir erinnern zunächst an 3.2.4, also den Satz, dass ein Gruppoid S eine
abelsche kürzbare komplementäre Halbgruppe ist gdw. es bezüglich einer
weiteren Operation ∗ den Axiomen genügt:

(A1) a(a ∗ b) = b(b ∗ a)

(A2) ab ∗ c = b ∗ (a ∗ c)
(VA) a ∗ ba = b

Auf dieser Grundlage werden wir beweisen:

4. 5. 2 Proposition. (F) wird zur Fundamentalgleichung des abelschen
Verbandsgruppenkegels, wenn wir einerseits die Operationen a ◦ b und ab
identifizieren sowie andererseits die Operationen a∆b und b∗a und hiernach
definieren:

fx := f(x1, . . . , x6)

:= (x1x2∗x2x1)(((x3∗x4)∗(x3∗x5))∗((x4∗x3)∗(x4∗x5)))

BEWEIS. Es ist also zu zeigen, dass (A1), (A2), (AV) aus

(FA) fx ·
{
c ∗ (fy · ((a ∗ b) ∗ (b · (b ∗ a))) · c

}
= a

folgen. Wieder erhalten wir

ac = bc =⇒ a = b

und a ∗ b = b ∗ a =⇒ a = b und – da x1x2 ∗ x2x1 = x2x1 ∗ x1x2 wegen der
Kürzungsregel konstant ist

(4.91) ab = ba .
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Als nächstes folgt wegen der Kommutativität

(4.92) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c) ,

da ((x3 ∗ x4) ∗ (x3 ∗ x5)) ∗ ((x4 ∗ x3) ∗ (x4 ∗ x5)) konstant ist, man beachte
die Symmetrie in x3, x4 .

Wir schreiben nun a in der Form fx(c ∗ (fy((a ∗ b) ∗ b(b ∗ a)))c) = fx · ga
und b als fx · gb . Dann folgt aus der Kommutativität

(4.93) a ∗ a = b ∗ b =: 1 .

Dies führt zu fx = 1 · 1 =: e . Hiernach zeigen wir

(4.94) a ∗ 1 = 1 .

Dazu beachten wir in einem ersten Schritt, dass aus (F) und (V1) die
Herleitung liefern:

(4.95)
ea = e

{
e ∗ (e(ea ∗ b) ∗ b(b ∗ ea)))e

}
; a = e ∗ (e((ea ∗ b) ∗ b(b ∗ ea)))e

=: e ∗ d ,

woraus – wie gewünscht – resultiert:

a ∗ 1 = (e ∗ d) ∗ (e ∗ e) = (d ∗ e) ∗ (d ∗ e) = 1 .

Wir setzen nun in (FA) a = b = e((r ∗ s) ∗ s(s ∗ r)) . Dann folgt

e(c ∗ rc) = e((r ∗ s) ∗ s(s ∗ r)) ,

also nach Kürzung

(4.96) c ∗ rc = (r ∗ s) ∗ s(s ∗ r)
Anwendung von (4.96) auf (FA) führt als nächstes zu

(4.97) 1 ∗ a1 = 1 ∗ b1 =⇒ a = b ,

was wegen

(4.98) 1 ∗ a1 = (a ∗ 1) ∗ 1(1 ∗ a)

= 1 ∗ 1(1 ∗ a) = 1 ∗ (1 ∗ a)1
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die Gleichung

(4.99) 1 ∗ a = a .

impliziert. Im weiteren bezeichnen wir mit u das eindeutig existierende
Element x mit ex = e . Dann erhalten wir sofort mittels (4.99) und (4.96)

1u = 1 ∗ 1u = e ∗ eu = e ∗ e = 1

und hiermit unter Berücksichtigung von (4.96) zunächst

(4.100) e = 1 · 1 = 1 ,

wegen 1 · 1 = 1 ∗ 1 · 1 = u ∗ 1u = u ∗ 1 = 1

und weiter erneut wegen (4.99)

(4.101) a ∗ 1a = 1 ,

wegen
a ∗ 1a = (1 ∗ 1) ∗ 1(1 ∗ 1) = 1 ∗ 1 · 1 = 1 ∗ 1 = 1 .

Als nächstes erhalten wir mittels (4.101) die Gleichung

(4.102) a · 1 = a .

Hierzu genügt es wegen a ∗ a1 = 1 zu zeigen, dass a1 ∗ a = 1 erfüllt ist.
Dazu zeigen wir vorab mittels (4.98) und (4.99)

(4.103) 1a = 1 ∗ a1 = (a ∗ 1a) ∗ (1a)(1a ∗ a)
= 1 ∗ (1a)(1a ∗ a)
= (1a)(1a ∗ a) .

Nun sind wir in der Lage a1 ∗ a = 1 herzuleiten, vermöge:

1a ∗ 1a = 1b ∗ 1b
(4.103)
;

1a ∗ (1a ∗ a)(1a) = 1b ∗ (1b ∗ b)(1b)
(4.96)
;

1 ∗ (1a ∗ a)1 = 1 ∗ (1b ∗ b)1
(4.92,4.99)

;

1(1a ∗ a) = 1(1b ∗ b)
(4.53)
;

1a ∗ a = 1b ∗ b
(4.92)
;



120 KAPITEL 4. GLEICHUNGSBASEN

a · 1 ∗ a = 1 · 1 ∗ 1
;

a1 ∗ a = 1

Setzen wir nun in (FA) alle von aund c verschiedenen Variablen gleich 1 ,
so erhalten wir

(VA) a ∗ ba = b ,

Weiter folgt

(4.105) (a ∗ b) ∗ b = (b ∗ a) ∗ a ,

wegen

(a ∗ b) ∗ b = (a ∗ b) ∗ (a ∗ ab) = (b ∗ a) ∗ (b ∗ ab) = (b ∗ a) ∗ a .

Nun zeigen wir

(4.106) ab ∗ a = 1 .

Hierzu setzen wir vorab in (FA) alle von a, b verschiedenen Variablen gleich
1 . Dies liefert zunächst:

(4.107) (a ∗ b) ∗ b(b ∗ a) = a

und damit weiter

(ab ∗ a) ∗ ab (4.107)
= (ab ∗ a) ∗ a(a ∗ ab) = ab
;

ab ∗ a = ((ab ∗ a) ∗ ab) ∗ ((a ∗ ab) ∗ ab)
= ((ab ∗ a) ∗ ab) ∗ ((ab ∗ a) ∗ a)
= (ab ∗ (ab ∗ a)) ∗ (ab ∗ a)
= ((ab ∗ a) ∗ ab) ∗ ab
= ab ∗ ab = 1 ,

also die Gleichung (4.106).

Hiernach sind wir fast am Ziel, denn

(A2) ab ∗ c = b ∗ (a ∗ c)
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folgt aus

ab ∗ c = (ab ∗ a) ∗ (ab ∗ c)
= (a ∗ ab) ∗ (a ∗ ac)
= b ∗ (a ∗ c) ,

und es ergibt sich

(A3) a(a ∗ b) = b(b ∗ a)

via a(a ∗ b) ∗ b(b ∗ a) = (a ∗ b) ∗ (a ∗ (b(b ∗ a))
(4.92)
= (b ∗ a) ∗ (b ∗ b(b ∗ a))
= (b ∗ a) ∗ (b ∗ a) = 1 .

2

4.6 Ausblick

Die hier angebotene
”
Mechanik“ ist weit relevanter, als es auf den ersten

Blick scheinen mag. So lassen sich zum einen der Verbandsloopkegel – ver-
gleiche das Kapitel über Verbandsloops – und zum anderen

”
ℓ-group“ und

”
ℓ-loop“ erfassen.

Interessant ist vor allem, dass mit der Varietät der abelschen Gruppen
eine Varietät von unserem

”
Muster“ erfasst wird, die zwar kongruenz-

vertauschbar und kongruenz-modular, nicht aber kongruenz-distributiv ist.
Hierzu führen wir aus:

Sei G := (G, ·,−1 ) eine abelsche Gruppe. Wie setzen a ∗ b := ab2 und
a∆b := ab−1 . Dann gilt a(a ∗ b) = b(b ∗ a), also a(a ∗ b)∆(b ∗ a) = b und
a ∗ b = b ∗ a =⇒ a = b , das letzte wegen ab2 = ba2 =⇒ a = b .

Ein Problem bereitet allerdings der Umstand, dass aus a ∗ b = b ∗ a hier
nicht folgt a ∗ b = e = b ∗ a mit ae = a = ea .

Es gelingt aber die Erfassung der Varietät via aa−1 = bb−1 =: 1 und 1c =
c = c1 , was sich wie folgt ergibt:

Setze g1 := uu−1

g2 := (vw)(wv)−1

g3 := ((rp)q)((pq)r)−1

und hiernach fx :=
(
g1 ◦ g−1

2 ) ◦ g−1
3 .
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Dann resultieren bei
”
Verfremdung“ von fx und fy nacheinander: aa−1 =

bb−1 =: 1 , insbesondere also auch 1 · 1−1 = 1 , und es gilt wegen ab−1 =
1 =⇒ a = b , beachte ab−1 = bb−1 =⇒ a = b .
Weiter erhalten wir g2 = 1 , also 1 · g−1

2 = g2 · g−1
2 ; g2 = 1 und damit das

Kommutativgesetz, und es ergibt sich analog das Assoziativgesetz vermöge
g3 . Insbesondere haben wir zusätzlich – am Wege – fx = 1 erhalten. Somit
ist auch jedes u Teiler eines jeden b und demzufolge G eine Gruppe.
Dem Leser wird ohne Schwierigkeiten klar, wie sich beliebige Gleichungs-
forderungen als g4, . . . , gn einbauen lassen, man beachte 1 · 1 = 1 = 1−1 .
Allerdings: die soeben hergeleitete Charakterisierung benutzt lediglich
den Anteil a ∗ a ◦ b = b , weshalb unserer Herleitung vorrangig ein metho-
discher Wert zukommt.
Für eine kürzere Darstellung eignet sich a ∗ b = a−1b eher, und auch im
nicht kommutativen Fall gelangen wir zu einer 1-basigen Beschreibung,
etwa vermöge:

(G) f ·
(
(g1 · (g2 · g3))

)
= b

mit f := (a ∗ ab)
g1 :=

(
(xy)z)−1 · x(yz)

)−1

g2 :=
(
(u(v−1v))−1 · ((v−1v)u)

)−1

g3 := w−1w

DENN: Dann gilt sofort die Linkskürzungsregel und damit w−1w = e−1e =:
1 und g−1 = h−1 =⇒ g = h . Wegen g2·1 = 1 haben wir weiter (a1)−1·(1a) =
1 , also a1 = 1a . Fortsetzung des Verfahrens liefert dann a(bc) = (ab)c .
Damit sind wir am Ziel wegen 1 = ww−1 = w−1w , da 1 jedes Element von
rechts und damit auch von links teilt.
Die hier vorgestellte Gleichung (G) eignet sich vorzüglich für Übungen,
doch sei betont, dass die Gleichungen von Tarski bzw. von Higman &
Neumann die kürzest möglichen sind.
Und schließlich noch ein letzter wichtiger Hinweis: Wollen wir etwa die
Quasigruppe erfassen, so gelingt mit McKenzie’s Methode eine Charakte-
risierung, wie sie eleganter nicht sein kann und glänzend geeignet ist als
Übungsaufgabe – dank McKenzie. Denn hier ist ja bereits die Struktur
mittels Absorptionsgleichungen beschrieben, man erinnere sich: Eine Qua-
sigruppe ist definiert über drei Operationen ◦, \, / mittels der Gleichungen:
(Q) a ◦ a\b = b & b/a ◦ a = b
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Insgesamt böte sich demnach eine vertiefte Studie des Zusammenhangs
zwischen den Beiträgen von Tarski [151], Higman & Neumann [93],
McKenzie [122], Padmanabhan & Quackenbush [130] sowie den hier
vorgestellten Resultaten an.



124 KAPITEL 4. GLEICHUNGSBASEN



Kapitel 5

Residuationsgruppoide

5.1 Redukte

Unter dem Residuationsredukt, auch kurz unter dem Redukt einer komple-
mentären Halbgruppe S verstehen wir die Menge S , betrachtet bezüglich
der Residuation. Weiter verstehen wir unter einem Clan ein Residuations-
gruppoid, das sich einbetten lässt in ein Redukt. Genauer: Unter einem
Kegel-Clan werden wir ein Residuationsgruppoid (C, ∗ , :) verstehen, das
sich ausdehnen lässt zu dem Redukt eines ℓ-Gruppenkegels und damit,
wie wir sehen werden, eines Bricks, unter einem brouwerschen Clan ein
Residuationsgruppoid (B, ∗) , das sich ausdehnen lässt zu dem Redukt ei-
nes brouwerschen Halbverbandes, und etwa unter einem booleschen Clan
ein Residuationsgruppoid, das sich ausdehnen lässt zu dem Redukt eines
booleschen Ringes und damit, wie wir sehen werden, eines booleschen Ver-
bandes.
Ziel dieses Kapitels ist eine Klärung dieser Strukturen. Hierzu beginnen wir
mit der Analyse des Clans der rechtskomplementären Halbgruppe. Dabei
stoßen wir auf das verblüffende Ergebnis, dass diese Clans identisch sind
mit den Clans der links-kürzbaren rechts-komplementären Halbgruppe. Ge-
nauer wird sich zeigen, dass R genau dann ein solcher Clan ist, wenn gilt:

(R0) (a ∗ a) ∗ b = b

(R1) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c)
(R2) a ∗ (b ∗ b) = c ∗ c
(R3) a ∗ b = c ∗ c = b ∗ a =⇒ a = b .

125
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Da (R0), . . . ,(R3) eine Ausdehnung zu einem Residuationsgruppoid ei-
ner rechts-komplementären Halbgruppe gewährleisten, nennen wir Grup-
poide, die diesen Axiomen genügen, Rechts-Residuations-Gruppoide, kurz
RR-Gruppoide.

Unter den links-kürzbaren rechts-komplementären Halbgruppen sind vor
allem die kommutativen von Interesse. Denn sie lassen sich ja, wie wir
sahen, auffassen als Kegel einer abelschen Verbandsgruppe. Somit stellt
sich die natürliche Frage nach dem Clan eines abelschen Verbandsgruppen-
kegels. Hier wird sich das Zusatzsystem

(R2’) a ∗ (b ∗ a) = a ∗ a

(AB) (a ∗ b) ∗ b = (b ∗ a) ∗ a

als charakteristisch erweisen. RR-Gruppoide diesen Typs bezeichnen wir
als symmetrisch und deshalb kurz als SR-Gruppoide.

In einem besonderen Abschnitt werden wir die Abhängigkeiten zwischen
Ausgangs-und Ausdehnungs-struktur untersuchen. Die dabei zu Tage geför-
derten Ergebnisse werden sich vor allem als interessant im Blick auf das
spätere Kapitel über Bricks erweisen.

Die Frage stellt sich, ob Axiom (R3) durch Gleichungen ersetzt werden
könnte. Dies ist (im allgemeinen Fall) nicht möglich, da es ein Modell von
4 Elementen gibt mit einem homomorphen Bild, das nicht Axiom (R3)
erfüllt. Man definiere etwa auf {1, a, b, c} : x∗x := 1 =: a∗c =: b∗c, a∗b :=
c =: b ∗ a, c ∗ a := a, c ∗ b := b.

In Sonderfällen hingegen lässt sich (R3) sehr wohl durch Gleichungen er-
setzen, etwa im Falle der Hilbert-Algebra – wie wir noch sehen werden –
oder aber im Fall des abelschen Verbandsgruppenkegels.

5.2 Allgemeine Clans

5. 2. 1 Proposition. Sei R ein RR-Gruppoid. Dann liefert

a ≥ b :⇐⇒ a ∗ b = c ∗ c

eine Partialordnung auf R mit a ∗ a = b ∗ b =: 1 als Minimum.

Ist R sogar ein SR-Gruppoid, so ist diese Partialordnung zudem ∧-abge-
schlossen via a ∧ b := (a ∗ b) ∗ b .
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BEWEIS. a∗a = b∗b folgt aus (R2), Reflexivität und Antisymmetrie sind
evident und die Transitivität folgt aus

a ≤ b & b ≤ c
=⇒

c ∗ a = (c ∗ b) ∗ (c ∗ a)
= (b ∗ c) ∗ (b ∗ a)
= d ∗ d .

Schließlich haben wir in SR-Gruppoiden zunächst

((a ∗ b) ∗ b) ∗ b = ((b ∗ (a ∗ b)) ∗ (a ∗ b) = a ∗ b

; a ≥ (a ∗ b) ∗ b & b ≥ (a ∗ b) ∗ b

und
x ≤ a, b

=⇒
((a ∗ b) ∗ b) ∗ x = ((a ∗ b) ∗ b) ∗ ((x ∗ b) ∗ b)

= (x ∗ b) ∗ (a ∗ b)
= a ∗ ((x ∗ b) ∗ b)
= 1 . 2

Wir werden nun – ausgehend von einem beliebigen RR-Gruppoid – eine
Erweiterung konstruieren, die ihrerseits Residuationsgruppoid einer links-
kürzbaren rechts-komplementären Halbgruppe ist.

Zu diesem Zweck werden wir vorweg eine Charakterisierung dieser Halb-
gruppen in der Sprache der Residuation geben.

5. 2. 2 Proposition. Ein Gruppoid (R, ∗) ist das Residuationsguppoid
einer links-kürzbaren rechts-komplementären Halbgruppe gdw. es der Be-
dingung genügt:

(AC) ∀ a, b ∃x : a ∗ x = b & x ∗ a = 1 .

BEWEIS. Sei (R, ·, ∗) eine links-kürzbare rechts-komplementäre Halbgrup-
pe. Dann gilt a∗ab = b und ab∗a = b∗ (a∗a) = 1. Folglich lässt sich (AC)
erfüllen mittels ab.



128 KAPITEL 5. RESIDUATIONSGRUPPOIDE

Sind nun umgekehrt in (R, ∗) die Bedingungen (R0), . . . , (R3) erfüllt, so
resultiert:

a ∗ x = b x ∗ a = 1
& =⇒ x = y .

a ∗ y = b y ∗ a = 1

Denn die linke Seite liefert:

x ∗ y = (x ∗ a) ∗ (x ∗ y) = (a ∗ x) ∗ (a ∗ y) = b ∗ b = 1
=⇒

y ≤ x ,

also aus Gründen der Dualität x ≤ y & y ≤ x ; x = y. Somit ist x
eindeutig bestimmt.
Erfülle schließlich (R, ∗) zusätzlich bezüglich der Komponenten a, b die
Bedingung (AC). Dann folgt sukzessive mit x := ab

(i) a ∗ ab = b (per definitionem)

(ii) ab ∗ c = (ab ∗ a) ∗ (ab ∗ c) (AC)
= (a ∗ ab) ∗ (a ∗ c) (R1)
= b ∗ (a ∗ c) (R1)

(iii) a(a ∗ b) ∗ b(b ∗ a) = (a ∗ b) ∗ (a ∗ b(b ∗ a))
= (b ∗ a) ∗ (b ∗ b(b ∗ a))
= b(b ∗ a) ∗ b(b ∗ a)
= 1

=⇒
a(a ∗ b) = b(b ∗ a) .

Somit erfüllt ein RR-Gruppoid unter der Voraussetzung von (AC) die Be-
dingungen der links-kürzbaren rechts-komplementären Halbgruppe. 2

(A) Wir definieren nun eine Operation ∗1 auf R×R vermöge

[a
∣∣ b] ∗1 [c

∣∣ d] := [b ∗ (a ∗ c)
∣∣ ((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d)]

und beweisen als

5. 2. 3 Ein erstes Zwischenergebnis. (R × R) erfüllt bezüglich ∗ die
Bedingungen (R0), (R1), (R2), nicht hingegen notwendig auch Bedingung
(R3).
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(B) Wir definieren eine Relation θ auf (R×R, ∗1) vermöge

[a
∣∣ b] ≡ [c

∣∣ d](θ) :⇐⇒ [a
∣∣ b] ∗1 [c

∣∣ d] = [1
∣∣ 1]

& [c
∣∣ d] ∗1 [a

∣∣ b] = [1
∣∣ 1]

und beweisen als

5. 2. 4 Ein zweites Zwischenergebnis.

(1) θ ist eine Kongruenzrelation

(2) (R×R, ∗1)/ θ ist ein RR-Gruppoid

(3) a ̸= b =⇒ [a
∣∣ 1] θ ̸= [b

∣∣ 1] θ

(4) [a
∣∣ 1] θ ∗1θ [b

∣∣ 1] θ = [a ∗ b
∣∣ 1] θ

(5) [a
∣∣ 1] θ ∗1θ X

.
= [b

∣∣ 1] θ & X ∗1θ [a
∣∣ 1] θ

.
= [1

∣∣ 1] θ
ist für alle a, b ∈ R lösbar.

(C) Wir wenden 5.2.4 an und erhalten als

5. 2. 5 Ein drittes Zwischenergebnis. Es existiert eine Kette

(R, ∗) ⊆ (R1, ∗1) · · · (Rn, ∗n) ⊆ · · · ,

derart dass jedes Gleichungssystem (AC) mit Koeffizienten a, b aus Ri

lösbar ist in (Ri+1, ∗i+1).

Dies führt dann schließlich zu dem

5. 2. 6 Hauptsatz. Jede zugleich links-kürzbare und rechts-komplementäre
Ausdehnung S := (S, ∗, ·) von R := (R, ∗) enthält eine Produkterweiterung
P := (PS(R), ∗S) als Unterstruktur, die aus genau allen Produkten a1 ·
a2 · . . . · an (ai ∈ R) besteht, und es sind je zwei Produkterweiterungen
(PS(R) , ∗S), (PT (R) , ∗T ) isomorph.

Hiernach kommen wir zu den Beweisschritten des Hauptsatzes. Dabei wer-
den wir wie üblich auf die Operationsindizes 1 , S , θ . . . verzichten. Vorweg:

(5.8) [a
∣∣ b] ∗ [c

∣∣ d] = [b
∣∣ 1] ∗ ([a

∣∣ 1] ∗ [c
∣∣ d]) .

5. 2. 7 Proposition. Erfülle (R , ∗) die Bedingungen (R0), . . . , (R2).
Dann erfüllt auch (R×R , ∗) die Bedingungen (R0), . . . , (R2).
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BEWEIS. Wir haben unmittelbar [a
∣∣ b] ∗ [a

∣∣ b] = [1
∣∣ 1] und damit sofort:

(R0) ([a
∣∣ b] ∗ [a

∣∣ b]) ∗ [c
∣∣ d] = [1

∣∣ 1] ∗ [c
∣∣ d] = [c

∣∣ d]

(R2) [a
∣∣ b] ∗ ([c

∣∣ d] ∗ [c
∣∣ d]) = [a

∣∣ b] ∗ [1
∣∣ 1] = [1

∣∣ 1]

Die Verifikation von (R1) erfolgt in drei Schritten:

(i) ([a
∣∣ 1] ∗ [c

∣∣ 1]) ∗ ([a
∣∣ 1] ∗ [u

∣∣ v])
= [a ∗ c

∣∣ 1] ∗ [a ∗ u
∣∣ (u ∗ a) ∗ v]

= [(a ∗ c) ∗ (a ∗ u)
∣∣ ((a ∗ u) ∗ (a ∗ c)) ∗ ((u ∗ a) ∗ v)]

= [(a ∗ c) ∗ (a ∗ u)
∣∣ ((u ∗ a) ∗ (u ∗ c)) ∗ ((u ∗ a) ∗ v)]

= [(c ∗ a) ∗ (c ∗ u)
∣∣ ((u ∗ c) ∗ (u ∗ a)) ∗ ((u ∗ c) ∗ v)]

= [(c ∗ a) ∗ (c ∗ u)
∣∣ ((c ∗ u) ∗ (c ∗ a)) ∗ ((u ∗ c) ∗ v)]

= [c ∗ a
∣∣ 1] ∗ [c ∗ u

∣∣ (u ∗ c) ∗ v]
= ([c

∣∣ 1] ∗ [a
∣∣ 1]) ∗ ([c

∣∣ 1] ∗ [u
∣∣ v])

(ii) ([a
∣∣ b] ∗ [c

∣∣ 1]) ∗ ([a
∣∣ b] ∗ [u

∣∣ v])
= [b ∗ (a ∗ c)

∣∣ 1] ∗ ([b
∣∣ 1] ∗ ([a

∣∣ 1] ∗ [u
∣∣ v]))

= ([b
∣∣ 1] ∗ [a ∗ c

∣∣ 1]) ∗ ([b
∣∣ 1] ∗ ([a

∣∣ 1] ∗ [u
∣∣ v]))

= ([a ∗ c
∣∣ 1] ∗ [b

∣∣ 1]) ∗ ([a ∗ c
∣∣ 1] ∗ ([a

∣∣ 1] ∗ [u
∣∣ v]))

= [(a ∗ c) ∗ b
∣∣ 1] ∗ (([a

∣∣ 1] ∗ [c
∣∣ 1]) ∗ ([a

∣∣ 1] ∗ [u
∣∣ v]))

= [(a ∗ c) ∗ b
∣∣ 1] ∗ (([c

∣∣ 1] ∗ [a
∣∣ 1]) ∗ ([c

∣∣ 1] ∗ [u
∣∣ v]))

= [(a ∗ c) ∗ b
∣∣ 1] ∗ ([c ∗ a

∣∣ 1] ∗ ([c
∣∣ 1] ∗ [u

∣∣ v]))
= [c ∗ a

∣∣ (a ∗ c) ∗ b] ∗ ([c
∣∣ 1] ∗ [u

∣∣ v])
= ([c

∣∣ 1] ∗ [a
∣∣ b]) ∗ ([c

∣∣ 1] ∗ [u
∣∣ v])

(iii) ([a
∣∣ b] ∗ [c

∣∣ d]) ∗ ([a
∣∣ b] ∗ [u

∣∣ v])

= ([b
∣∣ 1] ∗ ([a

∣∣ 1] ∗ [c
∣∣ d])) ∗ ([b

∣∣ 1] ∗ ([a
∣∣ 1] ∗ [u

∣∣ v]))

= (([a
∣∣ 1] ∗ [c

∣∣ d]) ∗ [b
∣∣ 1]) ∗ (([a

∣∣ 1] ∗ [c
∣∣ d]) ∗ ([a

∣∣ 1] ∗ [u
∣∣ v])) (ii)

= ([a ∗ c
∣∣ (a ∗ a) ∗ d] ∗ [b

∣∣ 1]) ∗ (([c
∣∣ d] ∗ [a

∣∣ 1]) ∗ ([c
∣∣ d] ∗ [u

∣∣ v]))

= ([a ∗ c
∣∣ (c ∗ a) ∗ d] ∗ [b

∣∣ 1]) ∗ ([d ∗ (c ∗ a)
∣∣ 1] ∗ ([c

∣∣ d] ∗ [u
∣∣ v]))

= [((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b)
∣∣ 1] ∗ ([d ∗ (c ∗ a)

∣∣ 1] ∗ ([c
∣∣ d] ∗ [u

∣∣ v]))

= [d ∗ (c ∗ a)
∣∣ ((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b)] ∗ ([c

∣∣ d] ∗ [u
∣∣ v]))

= ([c
∣∣ d] ∗ [a

∣∣ b]) ∗ ([c
∣∣ d] ∗ [u

∣∣ v]) . 2

Aufgrund von 5.2.3 ist (R × R , ∗) ein schon fast RR-Gruppoid, es fehlt
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noch Axiom (R3) . Wir gehen deshalb mittels der unter (B) definierten
Relation über zu R/θ .

5. 2. 8 Lemma. θ ist eine Kongruenz-Relation.

BEWEIS. (a) θ ist ein Äquivalenz-Relation, denn:

(i) [a
∣∣ b] ∗ [a

∣∣ b] = [1
∣∣ 1]

(ii) [a
∣∣ b] ≡ [c

∣∣ d] ⇒ [c
∣∣ d] ≡ [a

∣∣ b] (per definitionem)

(iii) [a
∣∣ b] ≡ [c

∣∣ d] & [c
∣∣ d] ≡ [u

∣∣ v]

=⇒
[a
∣∣ b] ∗ [u

∣∣ v] = ([a
∣∣ b] ∗ [c

∣∣ d]) ∗ ([a
∣∣ b] ∗ [u

∣∣ v])
= ([c

∣∣ d] ∗ [a
∣∣ b]) ∗ ([c

∣∣ d] ∗ [u
∣∣ v])

= [1
∣∣ 1] ∗ [1

∣∣ 1] = [1
∣∣ 1]

=⇒
[a
∣∣ b] ≡ [u

∣∣ v] (beachte die Dualität.)

(b) θ ist verträglich mit ∗, denn:

[x
∣∣ y] ≡ [u

∣∣ v] ⇒ [x
∣∣ y] ∗ [u

∣∣ v] = [1
∣∣ 1]

& [u
∣∣ v] ∗ [x

∣∣ y] = [1
∣∣ 1]

=⇒
[x
∣∣ y] ∗ [a

∣∣ b]
= ([x

∣∣ y] ∗ [u
∣∣ v]) ∗ ([x

∣∣ y] ∗ [a
∣∣ b])

= ([u
∣∣ v] ∗ [x

∣∣ y]) ∗ ([u
∣∣ v] ∗ [a

∣∣ b])
= [u

∣∣ v] ∗ [a
∣∣ b] .

& ([a
∣∣ b] ∗ [x

∣∣ y]) ∗ ([a
∣∣ b] ∗ [u

∣∣ v])
= ([x

∣∣ y] ∗ [a
∣∣ b]) ∗ ([x

∣∣ y] ∗ [u
∣∣ v])

= ([x
∣∣ y] ∗ [a

∣∣ b]) ∗ [1
∣∣ 1] = [1

∣∣ 1] .

Damit haben wir zusammenfassend:

[x
∣∣ y] ∗ [a

∣∣ b] ≡ [u
∣∣ v] ∗ [a

∣∣ b] (θ) .

& [a
∣∣ b] ∗ [x

∣∣ y] ≡ [a
∣∣ b] ∗ [u

∣∣ v] (θ) . 2

5. 2. 9 Lemma. (R×R, ∗)/ θ Ist ein RR-Gruppoid.

BEWEIS. Wir haben:

[a
∣∣ b] ≡ [1

∣∣ 1] =⇒ [a
∣∣ b] = [1

∣∣ 1]

und



132 KAPITEL 5. RESIDUATIONSGRUPPOIDE

[a
∣∣ b] θ ∗ [c

∣∣ d] θ = [1
∣∣ 1] θ = [c

∣∣ d] θ ∗ [a
∣∣ b] θ

=⇒ ([a
∣∣ b] ∗ [c

∣∣ d]) θ = [1
∣∣ 1] θ = ([c

∣∣ d] ∗ [a
∣∣ b]) θ

=⇒ [a
∣∣ b] ∗ [c

∣∣ d] = [1
∣∣ 1] = [c

∣∣ d] ∗ [a
∣∣ b]

ALSO

[a
∣∣ b] ≡ [c

∣∣ d] =⇒ [a
∣∣ b] θ = [c

∣∣ d] θ . 2

(5.11) a ̸= b =⇒ [a
∣∣ 1] ∗ [b

∣∣ 1] = [a ∗ b
∣∣ 1] ̸= [1

∣∣ 1]

V [b
∣∣ 1] ∗ [a

∣∣ 1] = [b ∗ a
∣∣ 1] ̸= [1

∣∣ 1] .

=⇒
a ̸= b =⇒ [a

∣∣ 1] θ ̸= [b
∣∣ 1] θ

(5.12) [a
∣∣ 1] θ ∗ [b

∣∣ 1] θ = [a ∗ b
∣∣ 1] θ

DENN: Dies folgt fast per definitionem 2

5. 2. 10 Lemma. In (R × R, ∗)/ θ existieren Lösungen zu jedem Forde-
rungssystem

[a
∣∣ 1] θ ∗X .

= [b
∣∣ 1] θ

&
X ∗ [a

∣∣ 1]
.
= [1

∣∣ 1] θ

DENN: [a
∣∣ 1] ∗ [a

∣∣ b] = [1
∣∣ b] ≡ [b

∣∣ 1]

& [a
∣∣ b] ∗ [a

∣∣ 1] = [1
∣∣ 1] ≡ [1

∣∣ 1] . 2

Hiernach können wir zeigen:

5. 2. 11 Proposition. Es existiert eine Kette

(R, ∗) ⊆ (R1, ∗1) ⊆ · · · ⊆ (Rn, ∗n) · · ·

derart, dass jedes Gleichungssystem (AC) mit a, b ∈ Ri lösbar ist in Ri+1.

BEWEIS. Wir bezeichnen mit R := (R, ∗) die Algebra (R × R, ∗)/ θ.
Dann erhalten wir vermöge (5.12) eine Algebra (R1, ∗1), die isomorph ist
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zu (R , ∗), indem wir alle Klassen von (R × R, ∗)/ θ zu dem Gruppoid
(R, ∗) adjungieren, die sich nicht durch ein Paar der Form [a

∣∣ 1] repräsen-
tieren lassen. Auf diese Weise entsteht eine Kette (R, ∗) ⊆ (R1, ∗) , und wir
können entlang der Reihe der natürlichen Zahlen fortfahren. 2

Damit gilt bei Kombination der soeben bewiesenen Sätze

5. 2. 12 Das allgemeine Clan-Theorem. Sei (R, ∗) ein beliebiges RR-
Gruppoid. Dann kann (R, ∗) ausgedehnt werden zu einem Residuations-
gruppoid einer links-kürzbaren rechts-komplementären Halbgruppe.

BEWEIS. Wir betrachten die Kette aus 5.2.11 und S :=
∪
Rn (n ∈

N). Dann gibt es ein kleinstes m mit a, b ∈ Rm und c = a ∗ b in Rm.
Hiernach definieren wir a ∗ b := c. Dann ist (S, ∗) Residuationsgruppoid
einer links-kürzbaren rechts-komplementären Halbgruppe, und es ist (R, ∗)
eingebettet in (S, ∗) , . 2

Wir beenden diesen Abschnitt mit

5. 2. 13 Proposition. Sei (S, ∗, ·) eine links-kürzbare rechts-komplemen-
täre Halbgruppe und sei (R , ∗) eingebettet in (S , ∗). Dann ist die Menge S1

aller ab in (S, ∗, ·) mit a, b ∈ R abgeschlossen unter ∗, und es ist (S1, ∗) iso-
morph zu dem Gruppoid (R×R, ∗)/ θ. Somit erhalten wir auf dem Wege der
Induktion, dass die Menge aller Produkte mit Faktoren aus R abgeschlossen
ist unter ∗ und isomorph ist zu der oben konstruierten Ausdehnung.

BEWEIS. (i) R1 ist abgeschlossen unter ∗ aufgrund der Definition von
ab ∗ cd.

(ii) Φ : [a
∣∣ b] θ −→ ab ist eine bijektive Funktion, denn:

[a
∣∣ b] θ ≥ [c

∣∣ d] θ

⇐⇒ [a
∣∣ b] ∗ [c

∣∣ d] = [1
∣∣ 1]

⇐⇒ [b ∗ (a ∗ c)
∣∣ ((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d) = (1

∣∣ 1]

⇐⇒ b ∗ (a ∗ c) = 1 = ((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d)

⇐⇒ (b ∗ (a ∗ c))((a ∗ c) ∗ b)((c ∗ a) ∗ d) = 1

⇐⇒ ab ∗ cd = 1

⇐⇒ ab ≥ cd
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(iii) Schließlich ist Φ verträglich wegen

Φ ([a
∣∣ b] θ ∗ [c

∣∣ d] θ)
= [b ∗ (a ∗ c)

∣∣ ((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d] θ

= (b ∗ (a ∗ c))(((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d))

= ab ∗ cd
= Φ([a

∣∣ b] θ) ∗ Φ([c
∣∣ d] θ) .

Wiederholung der Methode führt dann auf dem Wege der Induktion zum
Ziel. 2

Ein Hinweis: Mit dem Hauptsatz ist u. a. gewährleistet, dass das Wort-
problem für RR-Gruppoide gleichwertig ist mit dem Wortproblem für links-
kürzbare rechtskomplementäre Halbgruppen. Eine Lösung dieses Problems
gab G. Heinemann in [92].

5.3 Symmetrische ℓ-Gruppenclans

Grundlage des nachfolgenden Abschnitts ist

5. 3. 1 Das abelsche Kegel-Clan-Theorem. Ein RR-Gruppoid R :=
(R, ∗) lässt eine abelsche ℓ-Gruppenkegel-Erweiterung zu gdw. es die Axio-
me erfüllt:

(R2’) a ∗ (b ∗ a) = a ∗ a
(AB) (a ∗ b) ∗ b = (b ∗ a) ∗ a .

BEWEIS. Offenbar sind die geforderten Bedingungen notwendig.
Seien in R die Bedingungen (R2’) and (AB) erfüllt. Dann gilt in R auch:

(RS) a ∗ (b ∗ c) = (a ∗ (b ∗ a)) ∗ (a ∗ (b ∗ c))
= ((b ∗ a) ∗ a) ∗ ((b ∗ a) ∗ (b ∗ c))
= ((a ∗ b) ∗ b) ∗ ((a ∗ b) ∗ (a ∗ c))
= b ∗ (a ∗ c) ,

und es resultiert problemlos

(ES) [a
∣∣ b] ≡ [c

∣∣ d]
⇐⇒

a ∗ c = d ∗ b & c ∗ a = b ∗ d
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Unmittelbar klar ist hiernach

(5.17) [a
∣∣ b] ≡ [b

∣∣ a] .

Wir haben zu zeigen, dass (R2’) und (AB) übertragen werden auf die
Erweiterung R1 := (R×R, ∗)/ ≡.

Dies ergibt sich fast unmittelbar für (R2’), man nutze (RS).

Auch haben wir unmittelbar Erfolg im Falle der speziellen Formel:

([a
∣∣ b] ∗ [c

∣∣ 1]) ∗ [c
∣∣ 1] ≡ ([c

∣∣ 1] ∗ [a
∣∣ b]) ∗ [a

∣∣ b]
Komplizierter hingegen ist der allgemeine Fall. Hier erhalten wir zunächst:

(i) ([a
∣∣ b] ∗ [c

∣∣ d]) ∗ [c
∣∣ d]

= [b ∗ (a ∗ c)
∣∣ ((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d)] ∗ [c

∣∣ d]

= [((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d)
∣∣ 1] ∗ ([b ∗ (a ∗ c)

∣∣ 1] ∗ [c
∣∣ d])

= [((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d)
∣∣ 1] ∗ [(b ∗ (a ∗ c)) ∗ c

∣∣ d]

= [((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d)
∣∣ 1] ∗ [d

∣∣ (b ∗ (a ∗ c)) ∗ c]
≡ [(((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d)) ∗ d

∣∣ (b ∗ (a ∗ c)) ∗ c]
=: [P

∣∣Q]

; [R
∣∣S]

:= [(((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b)) ∗ b
∣∣ (d ∗ (c ∗ a)) ∗ a]

≡ ([c
∣∣ d] ∗ [a

∣∣ b]) ∗ [a
∣∣ b]

Demzufolge sind wir am Ziel, sobald wir bewiesen haben:

P ∗R = S ∗Q & R ∗ P = Q ∗ S .

Aufgrund der Dualität genügt es aber, die erste dieser Gleichungen zu
beweisen. Und hierzu genügt der Nachweis von

[P ∗R
∣∣ 1] ≡ [S ∗Q

∣∣ 1] ,
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der sich wie folgt ergibt:

[P ∗R
∣∣ 1]

= [((((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d)) ∗ d) ∗ ((((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b))) ∗ b
∣∣ 1]

= (([c ∗ a
∣∣ (a ∗ c) ∗ b] ∗ [d

∣∣ 1]) ∗ [d
∣∣ 1]) ∗ [(((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b)) ∗ b

∣∣ 1]

≡ (([d
∣∣ 1] ∗ [c ∗ a

∣∣ (a ∗ c) ∗ b]) ∗ ([c ∗ a
∣∣ (a ∗ c) ∗ b])

∗ [(((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b)) ∗ b
∣∣ 1] (i)

≡ [(((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b)) ∗ ((a ∗ c) ∗ b)
∣∣ (d ∗ (c ∗ a)) ∗ (c ∗ a)]

∗ [(((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b)) ∗ b
∣∣ 1]

≡ [(d ∗ (c ∗ a)) ∗ (c ∗ a)
∣∣ 1] ∗ [((a ∗ c) ∗ b) ∗ b

∣∣ 1] (R1, R2’)
≡ [((d ∗ (c ∗ a)) ∗ (c ∗ a)) ∗ ((b ∗ (a ∗ c)) ∗ (((a ∗ c) ∗ c) ∗ c))

∣∣ 1] (AB, R2)

≡ [((d ∗ (c ∗ a)) ∗ (c ∗ a)) ∗ ((b ∗ (a ∗ c)) ∗ (((c ∗ a) ∗ a) ∗ c))
∣∣ 1]

≡ [((c ∗ a) ∗ a) ∗ (((d ∗ (c ∗ a)) ∗ (c ∗ a)) ∗ ((b ∗ (a ∗ c)) ∗ c))
∣∣ 1] (RS)

≡ ([d ∗ (c ∗ a)
∣∣ 1] ∗ [c ∗ a

∣∣ (c ∗ a) ∗ a]) ∗ [(b ∗ (a ∗ c)) ∗ c
∣∣ 1]

≡ ([d ∗ (c ∗ a)
∣∣ 1] ∗ [a

∣∣ 1]) ∗ [(b ∗ (a ∗ c)) ∗ c
∣∣ 1] (ES)

≡ [(d ∗ (c ∗ a)) ∗ a
∣∣ 1] ∗ [(b ∗ (a ∗ c)) ∗ c

∣∣ 1] (ES)

≡ [((d ∗ (c ∗ a)) ∗ a) ∗ ((b ∗ (a ∗ c)) ∗ c)
∣∣ 1]

= [S ∗Q
∣∣ 1] .

Damit sind wir am Ziel 2

5.4 Zur Struktur der Produkterweiterungen

Gemäß dem Einbettungssatz besitzen RR-Gruppoide eine links-kürzbare
rechts-komplementäre Halbgruppenerweiterung, die im symmetrischen Fall
eine abelsche ℓ-Gruppenkegelerweiterung darstellt. Nichts aber kann bis-
lang über die Qualität dieser Erweiterunge(en) gesagt werden.
So wissen wir beispielsweise nicht, ob – endliche – Suprema mitgehen,
ob Vollständigkeit erhalten bleibt, ob Maße mitgehen usw. Dergleichen
zu klären ist unser nächstes Ziel.
Allerdings wissen wir nach dem vorhergehenden Paragraphen schon, dass
die von uns betrachtete Erweiterung als Produkterweiterung i. w. eindeu-
tig bestimmt ist. Deshalb können wir von dem Produktkegel P des RR-
Gruppoids (R, ∗) =: R sprechen. Seine Elemente lassen sich als Produkte
der Form a1 · a2 · . . . · an (ai ∈ R) darstellen.
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Im folgenden werden wir weitere Abhängigkeiten herleiten.

5. 4. 1 Proposition. Sei R ein RR-Gruppoid und erfülle c das Bedin-
gungssystem:

a ∗ c = a ∗ b & c ∗ a = 1 .

Dann ist c Supremum zu a und b in R.

BEWEIS. Wir haben c ∗ b = (c ∗ a) ∗ (c ∗ b)
= (a ∗ c) ∗ (a ∗ b)
= (a ∗ b) ∗ (a ∗ b)
= 1
= c ∗ a .

Also gilt a, b ≤ c. Sei nun a, b ≤ v für v ∈ P . Dann folgt:

v ∗ c = (v ∗ a) ∗ (v ∗ c)
= (a ∗ v) ∗ (a ∗ c)
= (a ∗ v) ∗ (a ∗ b)
= (v ∗ a) ∗ (v ∗ b) = 1 . 2

Weiter erhalten wir mittels 5.4.1

5. 4. 2 Proposition. Sei R ein SR-Gruppoid und c die obere Grenze zu
a und b. Dann ist c auch obere Grenze zu a und b in P.

BEWEIS. Es gilt c = ((a ∗ b) ∗ (a ∗ c)) ∗ c =: s

wegen s ∗ a = (((a ∗ b) ∗ (a ∗ c)) ∗ c) ∗ a
= (((a ∗ b) ∗ (a ∗ c)) ∗ c) ∗ ((a ∗ c) ∗ c)
= (a ∗ c) ∗ ((a ∗ b) ∗ (a ∗ c))
= 1 = s ∗ b .

Und dies liefert a ∗ c = a ∗ (((a ∗ b) ∗ (a ∗ c)) ∗ c)
= ((a ∗ b) ∗ (a ∗ c)) ∗ (a ∗ c)
= ((a ∗ c) ∗ (a ∗ b)) ∗ (a ∗ b)
= ((c ∗ a) ∗ (c ∗ b)) ∗ (a ∗ b)
= a ∗ b .

Damit sind wir am Ziel, aufgrund von 5.4.1 2

Hiernach beweisen wir als ein erstes Hauptergebnis dieses Paragraphen:
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5. 4. 3 Proposition. Nenne R-Kongruenz jede Kongruenz von R mit der
Eigenschaft a ∗ b ≡ c ∗ c ≡ b ∗ a =⇒ a ≡ b . Dann sind die Kongruenzen
von P eindeutige Fortsetzungen der R-Kongruenzen von R und jede R-
Kongruenz von R kann auf P ausgedehnt werden.

BEWEIS. Sei ≡ eine Kongruenz auf P. Dann erhalten wir für a, b, c, d ∈ R1

die Äquivalenz:
ab ≡ cd ⇐⇒ ab ∗ cd ≡ 1 ≡ cd ∗ ab

⇐⇒ b ∗ (a ∗ c) ≡ 1 ≡ d ∗ (c ∗ a)

& (a ∗ c) ∗ b ≡ (c ∗ a) ∗ d
Folglich gibt es zu jeder R-Kongruenz von R höchstens eine Ausdehnung.
Sei nun ≡ eine R-Kongruenz von R und (R1, ∗1) die Ausdehnung von
(R, ∗)/ ≡ im obigen Sinne. Dann definiert

Φ : ab 7−→ ab

einen Homomorphismus von (R1 , ∗1) auf (R1 , ∗1), wie der Leser leicht
bestätigt. Weiter haben wir die Äquivalenz

Φ (ab) = Φ (cd)
⇐⇒

b ∗ (a ∗ c) ≡ 1 ≡ d ∗ (c ∗ a)

& (a ∗ c) ∗ b ≡ (c ∗ a) ∗ d .
Damit ist alles gezeigt. 2

Als nächstes geben wir ein Ergebnis über Maße auf R.

5. 4. 4 Definition. µ : a −→ | a | ∈ R heiße ein Maß auf R, wenn gilt:

(M1) | a | + | a ∗ b | = | b | + | b ∗ a |

(M2) | 1 | = 0 .

Wie üblich nennen wir ein Maß auch eine Maßfunktion. Offenbar stimmt
diese Definition im booleschen Fall überein mit der üblichen Definition,
denn der Leser beachte: | a | = | a | + | a ∗ (a ∧ b) |

= | a ∧ b | + | b ∗ a |
=⇒

| a ∧ b | + | a ∨ b | = | a ∧ b | + | b ∗ a | + | b |
= | a | + | b | .
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5. 4. 5 Proposition. Sei µ eine Maßfunktion auf R. Dann ist

µ1 : | ab | −→ | a | + | b |

eine Maßfunktion auf R1. Folglich kann jede Maßfunktion auf R ausgedehnt
werden zu einer Maßfunktion auf P, die zusätzlich | ab | = | a |+ | b | erfüllt.

BEWEIS. µ1 ist eine Funktion, denn

ab = cd
⇐⇒

b ∗ (a ∗ c) = 1 = d ∗ (c ∗ a)
&

(a ∗ c) ∗ b = (c ∗ a) ∗ d

Weiter gilt: | a | + | b | = | a | + | b | + 0

= | a | + | b | + | b ∗ (a ∗ c) |
= | a | + | a ∗ c | + | (a ∗ c) ∗ b |
= | c | + | c ∗ a | + | (c ∗ a) ∗ d |
= | c | + | d | + | d ∗ (c ∗ a) |
= | c | + | d | + 0

= | c | + | d | .

Es ist µ1 aber nicht nur eine Funktion, sondern (sogar) eine Maßfunktion.
Denn µ1(1) = 0 ist evident, und es gilt:

| ab | + | ab ∗ cd |
= | a | + | b | + | b ∗ (a ∗ c) | + | ((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d) |
= | a | + | a ∗ c | + | (a ∗ c) ∗ b | + | ((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d) |
= | c | + | c ∗ a | + | (c ∗ a) ∗ d | + | ((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b) |
= | c | + | d | + | d ∗ (c ∗ a) | + | ((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b) |
= | cd | + | cd ∗ ab |. 2

Als nächstes halten wir fest:

5. 4. 6 Proposition. Ist R linear geordnet vermöge a ≥ b :⇐⇒ b∗a = 1,
so ist P linear geordnet vermöge [ a

∣∣ b ] ≥ [ c
∣∣ d ] ⇐⇒ [ a

∣∣ b ] ∗ [ c
∣∣ d ] =

[ 1
∣∣ 1 ] .

BEWEIS. Da P vermöge ≤ partialgeordnet ist, genügt es zu zeigen, dass je
zwei Elemente vergleichbar sind. Hier dürfen wir uns aber aus methodischen
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Gründen beschränken auf R1. Zu diesem Zweck seien a, b, c, d aus R und
es gelte a ∗ c = 1. Dann folgt:

ab ∗ cd = b ∗ (a ∗ c)((c ∗ a) ∗ d)
= b ∗ ((c ∗ a) ∗ d) .

Ist nun b∗((c∗a)∗d) = 1, so erhalten wir ab ≥ cd. Andernfalls muss (c∗a)∗d
verschieden sein von 1, was bedeutet, dass d ∗ (c ∗ a) = 1 = ((c ∗ a) ∗ d) ∗ b
erfüllt ist, also :

cd ∗ ab = d ∗ (c ∗ a)((a ∗ c) ∗ b)
= d ∗ (c ∗ a)b
= (d ∗ (c ∗ a))(((c ∗ a) ∗ d) ∗ b)
= 1 · 1 = 1

cd ≥ ab .
2

Im Rest dieses Abschnitts befassen wir uns mit dem symmetrischen Fall.
Wir ergänzen als erstes 5.4.5 durch

5. 4. 7 Proposition. Sei R symmetrisch. Dann erfüllt P Axiom (R2′)
und gibt es kürzbare Elemente, so existiert eine Quotientenhülle Q, die
ihrerseits genau dann a/b = c/d erfüllt, wenn es in P kürzbare Elemente
x, y gibt, derart dass ax = cy und bx = dy erfüllt ist, und es lässt sich
jede Maßfunktion µ auf R fortsetzen zu einer additiven Funktion µ1 auf Q
vermöge:

µ1 : a/b −→ | a | − | b | .

BEWEIS. Nach 5.3.1 können wir zu einem Verbandsgruppenkegel über-
gehen und hier definieren

a/b θ c/d ⇐⇒ ∃ x, y : ax = cy & bx = dy .

Dann erhalten wir eine Erweiterung des gesuchten Typs.

Als nächstes erkennen wir unmittelbar, dass µ1 eine Funktion ist, wegen:

a/b = c/d =⇒ ax = cy & bx = dy

=⇒ | a | + |x | = | c | + | y |
& | b | + |x | = | d | + | y |

=⇒ | a | − | b | = | c | − | d | .
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Schließlich gelten | a/a | = | a | − | a | = 0

&

| (a/b) · (c/d) | = | a(b ∗ c)/d(c ∗ b) |
= | a | + | b ∗ c | − | d | − | c ∗ b |
= | a | − | b | + | c | − | d |
= | a/b | + | c/d | .

Damit sind wir am Ziel 2



142 KAPITEL 5. RESIDUATIONSGRUPPOIDE



Kapitel 6

ℓ-Gruppen-Redukte

6.1 Vorbemerkungen

Schon oben wurde erklärt, was wir unter einem Kegel-Clan verstehen wol-
len. Ihn zu charakterisieren, ist das Ziel dieses Kapitels.
Sei (C, ·,∧) ein Verbandsgruppenkegel. Dann wird C via a ∗ b := 1 ∨ a−1b
und a : b := 1 ∨ ab−1 C bezüglich ∗ und : zu einer Algebra mit

(R1∗) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c)

(R1:) (c : b) : (a : b) = (c : a) : (c : b)

(R2∗) (a ∗ a) ∗ b = b

(R2:) b = b : (a : a)

(R3) a ∗ (b : c) = (a ∗ b) : c

(R4) a : (b ∗ a) = (b : a) ∗ b .

Tatsächlich wird sich diese Algebra als Kegel-Clan erweisen, doch solange
dies nicht verifiziert ist, haben wir natürlich eine neutrale Benennung zu
wählen. Aus diesem Grunde sei vorab die oben definierte Algebra als Kegel-
Algebra bezeichnet.
Offenbar werden die Axiome der Kegel-Algebra auch vom RR-Redukt der
booleschen Algebra erfüllt, das in [1] intensiv von J. C. Abbot studiert
wurde.
Ein erstes Hauptergebnis dieses Kapitels wird sein, dass die oben gesam-
melte

”
Liste‘“ von Bedingungen charakteristisch ist für den Kegel-Clan.

143
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Als ein zweites Hauptergebnis werden wir einen kanonischen Nullabschluss
für y Kegelredukte vorstellen.

Grob gesprochen wird damit gezeigt, dass es eine zweite Erweiterungstheo-
rie für Verbandsgruppenkegel gibt:

Indem wir Inverse adjungieren, werden wir zur Quotientenhülle und damit
zur Struktur der Verbandsgruppe geführt.

Indem wir Komplemente adjungieren, werden wir zur Komplementenhülle
und damit zur Struktur des Brick geführt.

Aus diesem Grunde können wir konstatieren, dass Theoreme der ℓ-Grup-
pen-Theorie auch Theoreme der Brick-Theorie sind, also auch eine Brick-
Version haben, und vice versa, dass Theoreme der Brick-Therorie auch
Theoreme der ℓ-Gruppen-Theorie sind, also auch eine ℓ-Gruppen-Version
haben.

Wie stark die Struktur der assoziierten Verbandsgruppe eines Kegel-Clans
(R ∗, :) von diesem Kegel-Clan bestimmt wird, dürfte sich an dieser Stelle
am deutlichsten dadurch beschreiben lassen, dass alle Propositionen, die im
letzten Kapitel für RR-Gruppoide und SR-Gruppoide formuliert wurden,
auch für Kegel-Clans gültig bleiben.

Schließlich untersuchen wir ℓ-Gruppen-Clans, das sind partielle Verbands-
halbgruppen mit Kürzungsregel. Sie lassen sich einbetten in Verbandsgrup-
pen.

Gezielte Beiträge zur Theorie der Bricks werden wir in einem späteren
Kapitel vorstellen.

6.2 Arithmetik

Grundgegebenheit sei im folgenden stets eine Kegel-Algebra. Wir stellen
zunächst die Regeln der Arithmetik zusammen, soweit sie in diesem Kapitel
eine Rolle spielen werden. Dabei ist zu beachten, dass die Kegel-Algebra
rechts-links-dual erklärt ist, weshalb stets auch die dualen Aussagen mit
bewiesen sind. Dennoch werden wir gelegentlich aus Gründen der Betonung

”
doppeln“.

(6.7) a ∗ a = 1 = b : b .
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DENN: a ∗ a = ((a ∗ a) : (b : b)) ∗ (a ∗ a)

= (b : b) : ((a ∗ a) ∗ (b : b))

= b : b ,

fertig! 2

Natürlich ist aufgrund von (6.7) auch a ∗ a = b ∗ b und a : a = b : b erfüllt.
Deshalb können wir a∗a := 1 =: b : b setzen. Damit folgt dann unmittelbar
aus (R2∗), (R2:)

1 ∗ a = a = a : 1 ,(6.8)

a ∗ 1 = 1 = 1 : a .(6.9)

DENN:

a ∗ 1 = a ∗ ((a : 1) ∗ a) = a ∗ (1 : (a ∗ 1)) = (a ∗ 1) : (a ∗ 1) = 1.

2

(6.10) c ∗ (b ∗ a) = 1 ⇐⇒ (a : c) : b = 1 .

BEWEIS. Es genügt zu zeigen, dass a ∗ b = 1 =⇒ b : a = 1 erfüllt ist, da
sich hieraus c∗ (b∗a) = 1 =⇒ (b∗a) : c = b∗ (a : c) = (a : c) : b = 1 ergibt.
Es gilt aber

a ∗ b = 1
=⇒

b : a = (b : (a ∗ b)) : a
= ((a : b) ∗ a) : a
= (a : b) ∗ (a : a) = 1

2

(6.11) a ∗ (b ∗ a) = 1 = (a : b) : a .

DENN: (b ∗ a) : a = b ∗ (a : a) = 1 . 2

Das nächste Lemma sichert, dass (C, ∗ ) ein RR-Gruppoid ist.

(6.12) a ∗ b = 1 = b ∗ a
=⇒

a = a : (b ∗ a) = (b : a) ∗ b = b .
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6. 2. 1 Proposition. a ∗ b = 1 ⇐⇒: a ≥ b erzeugt eine Partialordnung
auf R, die zudem den Implikationen genügt:

a ≥ b =⇒ a ∗ c ≤ b ∗ c .(6.13)

b ≥ c =⇒ a ∗ b ≥ a ∗ c .(6.14)

DENN: Der erste Teil der Behauptung folgt aus 5.2.1, und es gilt:

a ∗ b = 1 =⇒ a ∗ (b : (c ∗ b)) = 1

=⇒ (a ∗ b) : (c ∗ b) = 1
&

(a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c) . 2

(6.15) a : (b ∗ a) = inf (a, b) =: a ∧ b .

DENN: a ∗ (a : (b ∗ a)) = (a ∗ a) : (b ∗ a) = 1

& b ∗ (a : (b ∗ a)) = (b ∗ a) : (b ∗ a) = 1
und

x ≤ a, b
=⇒

(a : (b ∗ a)) ∗ x = (a : (b ∗ a)) ∗ (a : (x ∗ a))

= 1 (6.13, 6.14) 2

a : (b ∗ a) = (b : a) ∗ b = a∧ b = (a : b) ∗ a = b : (a ∗ b) .(6.16)

(a ∧ b) ∗ b = a ∗ b .(6.17)

DENN: b ∗ (a ∗ b) = 1 ; a ∗ b ≤ b; (a∧ b) ∗ b = (b : (a ∗ b) ∗ b = a ∗ b . 2

a ∧ b = 1 =⇒ a ∗ b = b & b : a = b .(6.18)

a ∗ b ∧ b ∗ a = 1 = b : a ∧ a : b .(6.19)

DENN: (a ∗ b) ∧ (b ∗ a) = ((a ∗ b) : (b ∗ a)) ∗ (a ∗ b)
= (a ∗ (b : (b ∗ a))) ∗ (a ∗ b)
= ((b : (b ∗ a)) ∗ a) ∗ ((b : (b ∗ a)) ∗ b)
= 1 . (6.13, 6.14)

Damit ist aus Gründen der Dualität alles gezeigt. 2
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(6.20) a ∗ (b ∧ c) = (a ∗ b) ∧ (a ∗ c) .

DENN: Sei zunächst a ≤ b ∧ c erfüllt. Dann folgt

a ∗ (b ∧ c) = a ∗ (b : (c ∗ b)
= (a ∗ b) : (c ∗ b)
= (a ∗ b) : ((c ∗ a) ∗ (c ∗ b))
= (a ∗ b) : ((a ∗ c) ∗ (a ∗ b))
= a ∗ b ∧ a ∗ c .

Das liefert weiter
(
a ∗ (b ∧ c)

)
∗
(
a ∗ b ∧ a ∗ c)

=
(
(a ∗ (b ∧ c)) ∗ (a ∗ b)

)
∧
(
(a ∗ (b ∧ c)) ∗ (a ∗ c)

)
=
(
(b ∧ c) ∗ a) ∗ ((b ∧ c) ∗ b)

)
∧
(
(b ∧ c) ∗ a) ∗ ((b ∧ c) ∗ c)

)
≤ (b ∧ c) ∗ b ∧ (b ∧ c) ∗ c
= c ∗ b ∧ b ∗ c = 1 . 2

(6.21) a ∧ b = 1 =⇒ c ∗ b = (a ∗ c) ∗ b = (c : a) ∗ b
& b : c = b : (c : a) = b : (a ∗ c) .

DENN: a ∧ b = 1

=⇒
(a ∗ c) ∗ b = ((c : (a ∗ c)) ∗ c)

∗ ((c : (a ∗ c)) ∗ b) (6.16, 6.18)
= c ∗ b (R1∗, 6.11)

= ((c : a) ∗ c) ∗ ((c : a) ∗ b) (R1∗, 6.11)

= (c : a) ∗ b (6.16, 6.18)

Hieraus folgt der Rest aus Gründen der Dualität. 2

(6.22) a ∧ b = 1 =⇒ (c ∗ d) ∗ b = ((c : a) ∗ d) ∗ b
& b : (d : c) = b : (d : (a ∗ c)) .

DENN: a ∧ b = 1

=⇒
((c : a) ∗ d) ∗ b = (((c : a) ∗ c) ∗ ((c : a) ∗ d)) ∗ b (6.21)

= (c ∗ d) ∗ b 2
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(6.23) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c)
= (((a : (b ∗ a)) ∗ a)

∗ (((b : a) ∗ b) ∗ ((b : a) ∗ c)))
= a ∗ ((b : a) ∗ c)

(6.24) x ∧ z = 1 = y ∧ z
=⇒

(((b : x) : y) ∗ b) : z = ((b : x) : y) ∗ b .

BEWEIS. Zweimalige Anwendung von (6.23) liefert zunächst die Gleich-
heit x ∗ (y ∗ (((b : x) : y) ∗ b)) = 1. Wir definieren (((b : x) : y) ∗ b)∧ z =: d.
Dann erhalten wir x ∗ (y ∗ d) = 1 , und hieraus folgt y ∗ d ≤ x ∧ z. Somit
führt x ∧ z = 1 = y ∧ z zu d = 1. 2

(6.25) (a : b) ∗ c = (c : ((a : b) ∗ c)) ∗ c (6.16)

= ((a : b) : (c ∗ (a : b))) ∗ c (6.16)

= ((a : b) : ((c ∗ a) : b)) ∗ c (R3)

= ((a : (c ∗ a)) : (b : (c ∗ a))) ∗ c (R1:)

(6.26) (u : x) : (v : y)

=
(
(u : (y ∗ x)) : (x : (y ∗ x))

)
:
(
(v : (x ∗ y)) : (y : (x ∗ y))

)
=
(
(u : (y ∗ x)) : ((v : (x ∗ y))

)
:
(
(y : (x ∗ y)) : (v : (x ∗ y))

)
=
(
(u : (y ∗ x)) : ((v : (x ∗ y))

)
:
(
(y : v) : ((x ∗ y) : v)

)
.

6. 2. 2 Proposition. Sei R eine Algebra, die den Axiomen (R1∗) bis (R3)
genügt. Dann ist R genau dann eine Kegel-Algebra, wenn R zusätzlich
erfüllt:

a ∗ a = b : b := 1 & a ∗ b = 1 ⇐⇒ b : a = 1

(a : b) ∗ a = (b : a) ∗ b & a : (b ∗ a) = b : (a ∗ b) .
DENN: Man beachte, dass der Beweis zu (6.15) lediglich auf (R4:) zurück
greift. 2

Schließlich gilt:
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(6.27) a : (b ∗ (c ∗ a)) = ((a : b) : c) ∗ a .

DENN: Wir erhalten die Implikationskette:

(a : (b ∗ (c ∗ a))) ∗ (((a : b) : c) ∗ a)

= (a : (b ∗ (c ∗ a))) ∗ ((a : (((a : b) : c) ∗ a)) ∗ a)

= (a : (b ∗ (c ∗ a))) ∗ (a : ((((a : b) : c) ∗ a) ∗ a))

= ((a : (b ∗ (c ∗ a))) ∗ a) : ((((a : b) : c) ∗ a) ∗ a)

= (b ∗ (c ∗ a)) : ((((a : b) : c) ∗ a) ∗ a))

= b ∗ ((c ∗ a) : (((a : b) : c) ∗ a) ∗ a)

= b ∗ (c ∗ (a : (((a : b) : c) ∗ a) ∗ a))

= b ∗ (c ∗ (((a : b) : c) ∗ a)) ,

beachte (6.10) und

(((a : b) : c) ∗ a) : b) : c = ((a : b) : c) ∗ (a : b)) : c

= ((a : b) : c) ∗ ((a : b) : c) = 1 . 2

6.3 Vom Kegel-Clan zum Kegel

Haben wir in einer Kegel-Algebra

(AC∗) ∀ a, b ∃x : a ∗ x = b & x ∗ a = 1 ,

so gilt auch x : b = x : (a ∗ x) = (a : x) ∗ a = a und b : x = (a ∗ x) : x =
a ∗ (x : x) = 1 , also mit (AC∗) auch

(AC:) ∀ a, b ∃x : x : b = a & b : x = 1 .

Hieraus resultiert

6. 3. 1 Proposition. Eine Kegel-Algebra ist ein Kegelredukt genau dann,
wenn sie der Bedingung genügt:

(AC∗) ∀ a, b ∃x : a ∗ x = b & x ∗ a = 1 .

Nach den Axiomen der Kegel-Algebra und aufgrund von (6.9), 6.2.1 ist
jede Kegel-Algebra ein RR-Gruppoid bezüglich ∗ und ebenso bezüglich
:. Somit gelten die Theoreme des letzten Kapitels sowohl für (R , ∗) als
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auch für (R , :). Aber die Frage bleibt offen, ob diese beiden Erweiterungen
übereinstimmen. Klar ist in dieser Hinsicht unmittelbar, dass (R×R , ∗ , :)
die Axiome (R1∗, R1:, R2∗, R2:) erfüllt bezüglich

(6.31) [a
∣∣ b] ∗ [c

∣∣ d] := [b ∗ (a ∗ c)
∣∣∣∣ ((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d)]

[d
∣∣ c] : [b

∣∣ a] := [(d : (a : c)) : (b : (c : a)

∣∣∣∣ (c : a) : b ]

6. 3. 2 Proposition. Sei R eine Kegel-Algebra. Dann erfüllt R × R im
Blick auf (6.31) Axiom (R3).

BEWEIS. ([ a
∣∣ 1 ] ∗ [u

∣∣ v ]) : [ c
∣∣ 1 ]

= [ a ∗ u
∣∣ (u ∗ a) ∗ v ] : [ c

∣∣ 1 ]

= [ (a ∗ u) : (c : ((u ∗ a) ∗ v))
∣∣ ((u ∗ a) ∗ v) : c ]

= [ (a ∗ u) : (c : v)
∣∣ (u ∗ a) ∗ (v : c) ] (6.22)

= [ a ∗ (u : (c : v))
∣∣ ((u : (c : v)) ∗ a) ∗ (v : c) ] (6.22)

= [ a
∣∣ 1 ] ∗ [u : (c : v)

∣∣ v : c ]

= [ a
∣∣ 1 ] ∗ ([u

∣∣ v ] : [ c
∣∣ 1 ])

führt zu ([ a
∣∣ b ] ∗ [u

∣∣ v ]) : [ c
∣∣ d ]

= (([ b
∣∣ 1 ] ∗ ([ a

∣∣ 1 ] ∗ [u
∣∣ v ])) : [ d

∣∣ 1 ]) : [ c
∣∣ 1 ]

= ([ b
∣∣ 1 ] ∗ (([ a

∣∣ 1 ] ∗ [u
∣∣ v ]) : [ d

∣∣ 1 ])) : [ c
∣∣ 1 ]

= ([ b
∣∣ 1 ] ∗ ([ a

∣∣ 1 ] ∗ ([u
∣∣ v ] : [ d

∣∣ 1 ]))) : [ c
∣∣ 1 ]

= [ b
∣∣ 1 ] ∗ (([ a

∣∣ 1 ] ∗ ([u
∣∣ v ] : [ d

∣∣ 1 ])) : [ c
∣∣ 1 ])

= [ b
∣∣ 1 ] ∗ ([ a

∣∣ 1 ] ∗ (([u
∣∣ v ] : [ d

∣∣ 1 ]) : [ c
∣∣ 1 ]))

= [ b
∣∣ 1 ] ∗ ([ a

∣∣ 1 ] ∗ ([u
∣∣ v ] : [ c

∣∣ d ]))

= ([ a
∣∣ b ] ∗ ([u

∣∣ v ] : [ c
∣∣ d ]))

2

Als nächstes erhalten wir

(6.32) [ a
∣∣ b ] ∗ [ c

∣∣ d ] = [ 1
∣∣ 1 ] =⇒ [ c

∣∣ d ] : [ a
∣∣ b ] = [ 1

∣∣ 1 ]

BEWEIS. Wir zeigen, dass [ a
∣∣ b ] ∗ [ c

∣∣ d ] = [ 1
∣∣ 1 ] äquivalent ist zu

(KV) a ∗ c ≤ b : d & c ∗ a ≥ d : b .
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Zunächst gilt die Äquivalenz von [ a
∣∣ b ] ∗ [ c

∣∣ d ] = [ 1
∣∣ 1 ] mit:

(E) b ∗ (a ∗ c) = 1 & (a ∗ c) ∗ b ≥ (c ∗ a) ∗ d .

Diese ist evident in einer Richtung und ergibt sich auch in der anderen
Richtung problemlos. Also ist [ a

∣∣ b ] ∗ [ c
∣∣ d ] = [ 1

∣∣ 1 ] äquivalent zu (E) ,
und wir sind am Ziel, sobald wir (KV)⇐⇒(E) bewiesen haben.

Sei also (E) erfüllt. Dann erhalten wir nach (6.16, 6.18) und (6.19):

a ∗ c = (a ∗ c) : ((d : b) ∗ (d : ((c ∗ a) ∗ d)))

= (a ∗ c) : (((d : b) ∗ d) : ((c ∗ a) ∗ d)) (R3)

≤ (a ∗ c) : (((b : d) ∗ b) : ((a ∗ c) ∗ b)) (E)

= (a ∗ c) : ((b : d) ∗ (b : ((a ∗ c) ∗ b))) (R3)

= (a ∗ c) : ((b : d) ∗ (a ∗ c)) (E)

≤ b : d

also mittels (E) (c ∗ a) ∗ (d : b) = ((c ∗ a) ∗ d) : b = 1
;

c ∗ a ≥ d : b .

Sei hiernach (KV) erfüllt. Dann ergibt sich (E) vermöge:

b ∗ (a ∗ c) ≤ b ∗ (b : d) = 1
&

(a ∗ c) ∗ b ≥ (b : d) ∗ b = (d : b) ∗ d ≥ (c ∗ a) ∗ d . 2

Insbesondere erhalten wir nach (6.32) :
(6.35)

[ a
∣∣ b ] ≡ [ c

∣∣ d ] (θ)

:⇐⇒
[ a
∣∣ b ] ∗ [ c

∣∣ d ] = [ 1
∣∣ 1 ] = [ c

∣∣ d ] ∗ [ a
∣∣ b ] .

Das liefert eine Kongruenzrelation vermöge

(6.36) [ a
∣∣ b ] θ [ c

∣∣ d ] ⇐⇒ a ∗ c = b : d & c ∗ a = d : b .

Im Rest dieses Paragraphen wenden wir uns dem Residuationsgruppoid
R1 := (R × R , ∗ , :)/θ zu. Offenbar ist der erste Einbettungssatz wegen
(6.25), 6.2.2 bewiesen, sobald wir gezeigt haben, dass [ a

∣∣ b ] : ([ c
∣∣ d ] ∗
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[ a
∣∣ b ]) modulo θ kongruent ist zu [ c

∣∣ d ] : ([ a
∣∣ b ] ∗ [ c

∣∣ d ]). Hierzu zeigen
wir zunächst :

(6.37) [a
∣∣ b] :

(
[c
∣∣ d] ∗ [a

∣∣ b]) =: [A
∣∣B]

= [a : (d ∗ (c ∗ a))
∣∣ b : (((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b))] .

BEWEIS. Anwendung von (6.31) liefert unter Berücksichtigung von (6.11)

A = a :
((
d ∗ (c ∗ a)

)
:
(
b : (((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b))

))
&

B =
(
b : (((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b))

)
:
(
d ∗ (c ∗ a)

)
.

Und das impliziert:

A = a : ((d ∗ (c ∗ a)) : (b : ((a ∗ c) ∗ b))) (6.22)

= a : (d ∗ (c ∗ a)) (6.19, 6.18)

&
B = b : (((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b)) (6.24),

was zu beweisen war. 2

Weiter haben wir:

(6.38) [ a
∣∣ b ] : ([ c

∣∣ d ] ∗ [ a
∣∣ b ]) θ [ c

∣∣ d ] : ([ a
∣∣ b ] ∗ [ c

∣∣ d ]) .

BEWEIS. Durch Reduktion gemäß (6.37), aus Gründen der Dualität und
aufgrund von (6.32) genügt es zu zeigen:

(a : (d ∗ (c ∗ a))) ∗ (c : (b ∗ (a ∗ c)))
= (((c : (a ∗ c)) ∗ c) : (b ∗ (a ∗ c))) (R3), (6.25)

= (a ∗ c) : (b ∗ (a ∗ c)) (6.16, 6.19, 6.18)

= b : ((a ∗ c) ∗ b)
= (b : ((a ∗ c) ∗ b)) : (d : ((c ∗ a) ∗ d))

= (b : (((c ∗ a) ∗ d) ∗ ((a ∗ c) ∗ b))) : (d : (((a ∗ c) ∗ b) ∗ ((c ∗ a) ∗ d))) ,

worin die letzte Zeile aus (6.25) resultiert, wenn wir b für u, (a ∗ c) ∗ b für
x, d für v und (c∗a)∗d für y setzen, da in diesem Falle y : v gleich 1 erfüllt
ist. 2

Damit gilt aufgrund des allgemeinen Clan-Theorems

6. 3. 3 Das Kegel-Clan-Theorem. Ein Residuationsgruppoid (R, ∗ , :)
ist genau dann ein Kegel-Clan, wenn es eine Kegel-Algebra ist.
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6.4 Weiteres zur Produktalgebra

In diesem Abschnitt setzen wir die Untersuchungen über die korrespondie-
rende Produktakgebra, wie wir sie oben für RR-Gruppoide schon eingelei-
tet hatten, für den Sonderfall des Clans fort.

Wir ergänzen als erstes 5.4.5 durch

6. 4. 1 Proposition. Sei R ein Clan. Dann erfüllt P Axiom (R2′) und
gibt es kürzbare Elemente, so existiert eine Quotientenhülle Q, die ihrer-
seits genau dann a/b = c/d erfüllt, wenn es in P kürzbare Elemente x, y
gibt, derart dass ax = cy und bx = dy erfüllt ist, und es lässt sich je-
de Maßfunktion µ auf R fortsetzen zu einer additiven Funktion µ1 auf Q
vermöge:

µ1 : a/b −→ | a | − | b | .

BEWEIS. Existiert ein Maß, so gilt in dem korrespondierenden Verbands-
gruppenkegel zunächst

a ≤ b =⇒ ∃n ∈ N : an ̸≤ b

also an ≤ b (∀n ∈ N) =⇒ a = 1 .

Somit ist P in diesem Falle kommutativ, weshalb wir ausgehen können von
einem SR-Gruppoid.

Nach 5.3.1 können wir zu einem Verbandsgruppenkegel übergehen und hier
definieren

a/b θ c/d ⇐⇒ ∃ x, y : ax = cy & bx = dy .

Dann erhalten wir eine Erweiterung des gesuchten Typs.

Als nächstes erkennen wir unmittelbar, dass µ1 eine Funktion ist, wegen:

a/b = c/d =⇒ ax = cy & bx = dy

=⇒ |a| + |x| = |c| + |y|
& |b| + |x| = |d| + |y|

=⇒ |a| − |b| = |c| − |d| .
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Schließlich gilt |a/a| = |a| − |a| = 0

&

|(a/b) · (c/d)| = |a(b ∗ c)/d(c ∗ b)|
= |a| + |b ∗ c| − |d| − |c ∗ b|
= |a| + |b ∧ c| + |b ∗ c|

−|d| − |b ∧ c| − |c ∗ b|
= |a| − |b| + |c| − |d|
= |a/b| + |c/d| .

Damit sind wir am Ziel 2

6. 4. 2 Proposition. Sei R ein
∧

-abgeschlossener Clan. Dann ist P

ebenfalls
∧

-abgeschlossen.

BEWEIS. Zunächst gilt ab ≤ c ∈ R =⇒ ab ∧ c = (b ∗ (a ∗ c)) ∗ c. Folglich
kommen zu den Teilern von c ∈ R aus R in P keine weiteren Teiler hinzu.
Wir betrachten nun ein S := {si

∣∣ si = aibi (i ∈ I, ai, bi ∈ R)} und gehen
zunächst aus von a1 · b1 ∈ S ∩R1 und setzen:

a0 :=
∧

(a1 ∧ ai · bi) & b0 :=
∧

(b1 ∧ (a1 ∗ ai · bi)) .

Dann folgt per definitionem a0·b0 ≤ ai bi (i ∈ I) , und es lässt sich beweisen:

a0 · b0 =
∧
ai · bi .

Hierzu haben wir zu zeigen, dass die Elemente xy ∈ R1 , die einerseits alle
Elemente si teilen, andererseits auch a0 · b0 teilen. Gelte also R1 ∋ xy ≤
si (i ∈ I) . Es folgt unmittelbar a1∧xy ≤ a0 und a1 ∗xy ≤ a1 ∗aibi (i ∈ I)
sowie b1 ∗ (a1 ∗ xy) = a1b1 ∗ xy = 1 , also xy ∈ R1 . Somit gilt α

∣∣ si (i ∈
I) =⇒ α ∈ R1 und folglich α

∣∣ si (i ∈ I) =⇒ α
∣∣ a0 · b0 , woraus dann die

Behauptung a0 · b0 =
∧

i∈Isi resultiert.
Damit erhalten wir induktiv, dass P

∧
-vollständig ist. 2

Später werden wir uns ausführlich mit ganz-abgeschlossenen SR-Gruppo-
iden befassen, die ihrerseits aufs engste mit klassischen Unterstrukturen
des Würfels Rω zusammenhängen.

6. 4. 3 Definition. Ein Clan heiße vollständig ganz abgeschlossen, wenn
er der Bedingung genügt:

(VGA) ∀ t ̸= 1, a ∈ S+ ∃ n ∈ N : tn ∗ a ̸≥ t ̸≤ a : tn .
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6. 4. 4 Proposition. Sei R ein ganz-abgeschlossener Clan. Dann ist P

ebenfalls ganz-abgeschlossen.

BEWEIS. Erneut genügt es zu zeigen, dass die betrachtete Eigenschaft
sich überträgt von R auf R1. Seien deshalb a, b, c, d Elemente aus R und
gelte in der Produktalgebra P die Relation (ab)n ≤ cd (∀n ∈ N). Dann
folgt in P weiter an ≤ cd (∀ n ∈ N) und somit (an)n ≤ cd (∀ n ∈ N) .
Das bedeutet aber jeweils für alle n ∈ N

(c ∧ an)(c ∗ an)an−1 ≤ (c ∧ an)(an ∗ c)d
⇒

(c ∗ an)an−1 ≤ (an ∗ c)d
⇒

(c ∗ a)n ≤ d
⇒

c ≥ a
⇒

c ≥ an .

Folglich erhalten wir aus Gründen der Dualität a = 1 = b, also ab = 1. 2

Als eine unmittelbare Folgerung aus 6.4.4 stellen wir noch ausdrücklich
heraus:

6. 4. 5 Proposition. Sei R ganz-abgeschlossen, so ist die assoziierte Ver-
bandsgruppe archimedisch.

Nach 6.4.2 wissen wir, dass P
∧

-abgeschlossen ist, wenn R die absteigende
Kettenbedingung erfüllt. Unter Anwendung von ab ≤ cd =⇒ ab = uv mit
u ≤ c und v ≤ d, erhalten wir hierüber hinaus sogar:

6. 4. 6 Proposition. Sei R ein Clan, der die absteigende Kettenbedingung
erfüllt. Dann erfüllt auch P die absteigende Kettenbedingung.

Als einen weiteren Satz beweisen wir:

6. 4. 7 Proposition. Sei R ein vollständig verbandsdistributiver Clan,
vergleiche 2.3.2 Dann ist P ebenfalls vollständig verbandsdistributiv.

BEWEIS. Ähnlich wie in [79] kann man zeigen, dass Weinbergs Kriteri-
um auch in SR-Gruppoiden greift. Deshalb beschränken wir uns darauf zu
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zeigen, dass sich diese Bedingung fortpflanzt, d. h. darauf, zu verifizieren:

(W) ∀ a ∃ a⋆ : a =
∨
ai =⇒ a⋆ ≤ ai (∃ ai) .

Wir zeigen, dass (W) sich fort pflanzt von R auf R1 . Nehmen wir also an,
es sei ab =

∨
xi · yi (xi, yi ∈ R). Dann folgt

a ∧ xiyi ≤ a a ∧ xi · yi =: ui ∈ R
=⇒

a ∗ xiyi ≤ b a ∗ xi · yi =: vi ∈ R ,

und wir erhalten nach den Regeln der Verbandsgruppenarithmetik

a = a ∧ ab =
∨

i∈Ixi · yi
b = a ∗ ab =

∨
i∈Ixi · yi ,

man vergleiche etwa das Kapitel über Bricks.
Somit ist jedes mit a assoziierte a⋆ ̸= 1 auch assoziiert mit ab. 2

Schließlich ist es eine Sache der Routine durch Anwendung der
∧

- und∨
-Formeln, wie sie unter 6.4.2 und 6.4.7 gegeben wurden, zu zeigen, dass

Obergrenzen bei Maßen mitgehen, vgl. etwa [109], kurz zu zeigen:

6. 4. 8 Proposition. Stetige Maße auf einem Clan haben stetige Fort-
setzungen auf Q.

6.5 Vom Kegel zum Brick

Sei R eine Kegel-Algebra, also wie wir sahen, sogar ein Kegel-Clan. Dann
bildet jedes Intervall [ 1, s ] bezüglich ∗ und : eine beschränkte (Unter-)
Kegel-Algebra. Auf der anderen Seite werden wir sehen, dass sich jede be-
liebige Kegel-Algebra ausdehnen lässt zu einer 0-beschränkten Kegelage-
bra. Somit sind Kegelalgebren mit 0

”
nicht weniger allgemein” als beliebige

Kegelalgebren. Kegelalgebren mit 0 sollen im weiteren als Brick bezeichnet
werden, da sie im Sonderfall des Rn einen Quader (im Englischen brick)
bilden. Als eine erste Beschreibung , der wir später weitere Beschreibungen
an die Seite stellen werden, geben wir:

6. 5. 1 Proposition. Eine Algebra B := (B , ∗, :, 0) ist ein Brick, wenn
sie die Gleichungen erfüllt:

(BR1) (a ∗ a) ∗ b = b
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(BR2) b = b : (a : a)

(BR3) a ∗ (b : c) = (a ∗ b) : c

(BR4) a : (b ∗ a) = (b : a) ∗ b

(BR0) 0 : (a ∗ 0) = a .

BEWEIS. Zunächst gilt sukzessive:

(i) a ∗ a = ((a ∗ a) : (b : b)) ∗ (a ∗ a)
= (b : b) : ((a ∗ a) ∗ (b : b))
= b : b =: 1 .(ii)

a ∗ 1 = a ∗ (a : (1 ∗ a))
= (a ∗ a) : (1 ∗ a)
= 1 : a

(iii) a ∗ 1 = a ∗ ((a : 1) ∗ a)
= a ∗ (1 : (a ∗ 1))
= (a ∗ 1) : (a ∗ 1)
= 1 .

(iv) 0 ∗ a = 0 ∗ (0 : (a ∗ 0))
= (0 ∗ 0) : (a ∗ 0)
= 1

(v) a : 0 = ((a : 0) ∗ a) : 0
= (a : 0) ∗ (0 : a)
= 1 ,

(vi) (0 : a) ∗ 0 = a : (0 ∗ a)

(vii) a ∗ b = 1
=⇒

b : a = (b : (a ∗ b)) : a
= ((a : b) ∗ a) : a
= (a : b) ∗ (a : a)
= 1
;

a ∗ b = 1 =⇒ b : a = 1 .
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Somit definiert a ≥ b⇐⇒ a ∗ b = 1 eine Partialordnung. Denn:

a ∗ a = 1
&

a ∗ b = 1 = b ∗ a =⇒ a = a : (b ∗ a) = (b : a) ∗ b = b ,

und

a ∗ b = 1 = b ∗ c
=⇒

a ∗ c = a ∗ ((c : b) ∗ c)
= a ∗ (b : (c ∗ b))
= (a ∗ b) : (c ∗ b) = 1 .

Das führt uns dann zu

(6.53) a : (b ∗ a) = b : (a ∗ b) = a ∧ b = (a : b) ∗ a = (b : a) ∗ b ,

was sich nach dem Beweis zu (6.15) aus den beiden Implikationen

a ≥ b

=⇒
(b : c) ∗ (b : a) = 1

= ((b : c) ∗ b) : a
= a ∗ (c : (b ∗ c))
= (a ∗ c) : (b ∗ c) = 1

und b ≥ c
=⇒

(a ∗ b) ∗ (a ∗ c) = (a ∗ b) ∗ (a ∗ (b : (c ∗ b)))
= (a ∗ b) ∗ ((a ∗ b) : (c ∗ b)) = 1

ergibt. Endlich folgt hiernach:

(a ∗ b) ∗ (a ∗ c) = ((a ∗ 0) : (b ∗ 0)) ∗ ((a ∗ 0) : (c ∗ 0))

= (((a ∗ 0) : (b ∗ 0)) ∗ (a ∗ 0)) : (c ∗ 0)

= (b ∗ a) ∗ (b ∗ c) . 2

Nach diesem axiomatischen Diskurs liefern wir als ein zweites Einbettungs-
ergebnis:
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6. 5. 2 Das Brick-Theorem. Jeder Kegel-Clan, also auch jede Kegel-
Algebra, lässt sich einbetten in einen Brick, aufgefasst als ∗, :-Gruppoid.

BEWEIS. In einem ersten Schritt können wir R kanonisch einbetten in
einen geeignet gewählten Verbandsgruppenkegel. Daher dürfen wir anneh-
men, dass R schon ein Verbandsgruppenkegel ist. Wir betrachten die Men-
gen R und R′ := R × {1} und symbolisieren (a, 1) durch a′. Dann bildet,
man rechne nach, R ∪R′ =: B einen Brick bezüglich:

a ⃝∗ b := a ∗ b b ⃝: a := b : a

a⃝∗ b′ := (b · a)′ b′ ⃝: a := (a · b)′

a′⃝∗ b := 1 b ⃝: a′ := 1

a′⃝∗ b′ := b ∗ a b′ ⃝: a′ := b ∗ a

wobei 1′ die Rolle der 0 übernimmt. 2

Wir haben den Brick erklärt als eine 0-abgeschlossene Kegel-Algebra. Nicht
gefordert wurde a∗0 = 0 : a , doch in der soeben konstruierten Erweiterung
ist dieses Gesetz zusätzlich erfüllt.

6.6 Repräsentierbarkeit

Wir wollen hier nicht allzu detailliert auf Kongruenzen eingehen, da durch
den Ausdehnungssatz ein enger Zusammenhang hergestellt ist zwischen
den Kongruenzen einer Kegel-Algebra und den Kongruenzen des asso-
ziierten Kegels und da Bricks ja zur Klasse der komplementären Halb-
gruppen gehören. Allerdings soll nicht unerwähnt bleiben, dass Kegel-
Clans natürlich kongruenz-distributiv sind, nicht hingegen kongruenzver-
tauschbar, man betrachte etwa die um 1 erweiterte Menge derPrimzahlen
bezüglich a ∗ a := 1 und a ∗ b := b im Falle a ̸= b .
Doch soll die Standardfrage nicht ausgeklammert werden, unter welchen
Bedingungen eine Kegel-Algebra repräsentierbar ist, d. h. subdirekt in li-
near geordnete Komponenten zerfällt. Hier gilt:

6. 6. 1 Proposition. Eine Kegel-Algebra ist repräsentierbar genau dann,
wenn sie die Bedingung erfüllt:

(C0) a ∗ b ∧ a : b = 1 .
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BEWEIS. Wir zeigen zunächst, dass unter der formulierten Bedingung aus
a⊥b die Orthogonalität a⊥c : (c : b) resultiert, was sich wie folgt herleitet:

a⊥b =⇒ (c : (c : a)) ∗ (a ∧ c : (c : b))
≤ (a ∧ c) ∧ ((c : (c : a)) ∗ (c : (c : b)))
= ((c : a) ∗ c ∧ (c : a) : (c : b)))
= (c : a) ∗ (c : b) ∧ (c : a) : (c : b) = 1 ,
;

a ∧ c : (c : b) = a ∧ c : (c : b) ∧ c : (c : a)
≤ c : (c : (b ∧ a)) = 1 .

Sei hiernach C subdirekt irreduzibel. Wären dann a und b unvergleichbar,
so enthielten die Mengen U := a⊥ aller zu a orthogonalen Elemente und
V := U⊥ aller zu jedem u ∈ U orthogonalen Elemente mit jedem x∗y auch
y : (y : (x∗y)) = y : x , und das lieferte uns zwei id-disjunkte Kongruenzen,
ein Widerspruch!

Denn setzen wir a ≡U b :⇐⇒ a ∗ b, b ∗ a ∈ U , so folgen

b ≡U c =⇒ (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c) ∈ U
=⇒ a ∗ b ≡U a ∗ c

und a ≡U b =⇒ (a ∗ c) : (b ∗ c) = a ∗ ((c : (b ∗ c)) ∈ U

=⇒ (a ∗ c) ∗ (b ∗ c) ∈ U
=⇒ a ∗ c ≡U b ∗ c .

Damit ist aus Gründen der Dualität alles gezeigt. 2

Der Leser beachte noch, dass (C0) in Verbandsgruppenkegeln gleichbedeu-
tend ist mit (a ∧ b)2 = a2 ∧ b2 ,

WEGEN: x ∗ y ⊥ x : y
⇐⇒

(b ∗ a)(a : b) ⊥ (a ∗ b)(b : a)
⇐⇒

(a ∧ b)2 = a2 ∧ b2

und auch mit (a ∨ b)2 = a2 ∨ b2 ,
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Wegen: a ∗ b⊥a : b =⇒ (b ∗ a)(a : b)⊥(a ∗ b)(b : a)
&

a⊥b⇐⇒ a ∗ b = b ⇐⇒ a(a ∗ b) = a ∨ b = a · b

⇓

a ∗ b ⊥ a : b
=⇒

(b ∗ a)(a ∗ b)(a : b)(b : a) = (b ∗ a)(a : b) ∨ (a ∗ b)(b : a)
⇐⇒

(a ∨ b)2 = a2 ∨ b2

&

(a ∨ b)2 = a2 ∨ b2
=⇒

(b ∗ a)(a ∗ b)(a : b)(b : a) = (b ∗ a)(a : b)(b : a)
∨ (b ∗ a)(a ∗ b)(b : a)

=⇒
(a ∗ b)(a : b) = (a : b) ∨ (a ∗ b)

=⇒
a ∗ b ⊥ a : b . 2

6.7 Schwache Kegelalgebren

In diesem Abschnitt wollen wir ein wenig Axiomatik betreiben.

6. 7. 1 Definition. Unter einer schwachen Kegelalgebra verstehen wir eine
Algebra C := (C, ∗, :) vom Typ (2, 2), die den Bedingungen genügt:

(E∗) (a ∗ a) ∗ b = b

(E:) b = b : (a : a)

(R3) a ∗ (b : c) = (a ∗ b) : c

(R4) a : (b ∗ a) = (b : a) ∗ b .

Aus (E∗),(E:) und (R4) folgt sofort a ∗ a = b ∗ b & a : a = b : b, was nach
sich zieht

a ∗ a = b ∗ b =: 0 = a : a = b : b(6.59)

b ∗ a = 0 ⇔ a : b = 0 ,(6.60)
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die letzte Gleichung, da aus a ∗ b = 1 resultiert:

a = (b : (a ∗ b)) : a = ((a : b) ∗ a) : a = (a : b) ∗ (a : a) = 1 .

Hiernach folgt dann weiter, dass a ≥ b⇐⇒ a∗b = 0 eine inf -abgeschlossene
Partialordnung mit Minimum 0 liefert, man beachte a∗0 = a∗(0 : (a∗0)) =
(a∗0) : (a∗0) = 0. Somit kann die schwache Kegelalgebra betrachtet werden
als Verallgemeinerung vom Typ (2, 2) der kommutativen BCK-Algebra, die
definiert ist vermöge:

(BCK1) 0 ∗ x = x

(BCK2) x ∗ 0 = 0

(BCK3) a ∗ (b ∗ c) = b ∗ (a ∗ c)

(BCK4) (a ∗ b) ∗ b = (b ∗ a) ∗ a .

In [67] wird eine relative Kürzungseigenschaft (RCP) für kommutative
BCK-Algebren vorgestellt und auf dem Wege über mehrere äquivalente
Eigenschaften diskutiert. Allerdings haben die Autoren die Gleichung

(W∗) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c)

ausgespart. Aus diesem Grund sei in diesem Abschnitt das Versäumnis
ausgeglichen. Genauer zeigen wir:

6. 7. 2 Proposition. Sei C eine schwache Kegelalgebra dann sind die
folgenden Aussagen, jeweils erweitert durch ihre Dualen, paarweise äqui-
valent:

(RCP) a ≤ b, c & a ∗ b = a ∗ c =⇒ b = c

(NOR) (a ∗ b) ∧ (b ∗ a) = 1

(RCO) (a ∗ b) ∗ (b ∗ a) = b ∗ a

(D I S) a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c

(RES) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c) .

BEWEIS. (RCP)=⇒ (NOR). Nach (RCP) ist a ∗ d = b im Falle a ≤ d

eindeutig bestimmt. Daher dürfen wir die Bezeichnung ab := d wählen –
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ohne hiermit ein Produkt im Sinn zu haben. Dies vor Augen erhalten wir
zunächst:

(6.71) a ≤ d & ab = d

=⇒ a ∗ (d : (c ∗ b)) = (a ∗ d) : (c ∗ b)) = b : (c ∗ b) = b ∧ c

was bedeutet, dass mit ab auch a(b ∧ c) existiert. Hieraus resultiert dann
weiter:

(6.72) a ∗ (ab ∧ ac) ≤ a ∗ ab ∧ a ∗ ac
= b ∧ c
= a ∗ a(b ∧ c)
≤ a ∗ (ab ∧ ac)

=⇒
a ∗ a(b ∧ c) = a ∗ (ab ∧ ac)

=⇒
a(b ∧ c) = ab ∧ ac

und damit

(6.73) a ≤ b, c =⇒ a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c ,

also

(NOR) a ∗ b ∧ b ∗ a = (a ∧ b) ∗ (a ∧ b) = 1 .

(NOR)⇐⇒(RCO), man beachte

(a ∗ b) ∗ (b ∗ a) = ((a ∗ b) ∧ (b ∗ a)) ∗ (b ∗ a)

und x ∧ y = (x : y) ∗ x .
(NOR)=⇒(DIS), da aus b ∧ c = c : (b ∗ c) resultiert:

(a ∗ (b ∧ c)) ∗ (a ∗ b ∧ a ∗ c)
≤ ((a ∗ (b ∧ c)) ∗ (a ∗ b)) ∧ ((a ∗ (b ∧ c)) ∗ (a ∗ c))
= ((a ∗ (b : (c ∗ b)) ∗ (a ∗ b)) ∧ ((a ∗ (c : (b ∗ c)) ∗ (a ∗ c))
= (((a ∗ b) : (c ∗ b)) ∗ (a ∗ b)) ∧ (((a ∗ c) : (b ∗ c)) ∗ (a ∗ c))
≤ (c ∗ b) ∧ (b ∗ c)
= 1

=⇒ a ∗ (b ∧ c) ≥ (a ∗ b ∧ a ∗ c) (≥ a ∗ (b ∧ c))
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(DIS)=⇒(RES). Sei zunächst C beschränkt mit Spitze 0. Dann folgt:

(a ∗ b) ∗ (a ∗ c) = ((a ∗ 0) : (b ∗ 0)) ∗ ((a ∗ 0) : (c ∗ 0))
= (((a ∗ 0) : (b ∗ 0)) ∗ ((a ∗ 0)) : (c ∗ 0))
=: f(a, b, c) = f(b, a, c)
= (b ∗ a) ∗ (b ∗ c) .

Hieraus folgt dann allgemein

(6.75) (a ∗ b) ∗ (a ∗ c) = ((a ∗ b) ∧ (a ∗ c)) ∗ (a ∗ c)
= (a ∗ (b ∧ c)) ∗ (a ∗ c)
= ((a ∧ c) ∗ (b ∧ c)) ∗ ((a ∧ c) ∗ c)
=: g(a, b, c) = g(b, a, c)
= (b ∗ a) ∗ (b ∗ c)

(RES)=⇒(RCP). Wir gehen aus von a ≤ b, c und a ∗ b = a ∗ c . Dann
folgt b ∗ c = (b ∗ a) ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) = (a ∗ b) ∗ (a ∗ b) = 1 , also
b ≥ c, und – aufgrund der Dualität – c ≥ b. 2

ZUSAMMENFASSEND erhalten wir damit aufgrund der Symmetrie, dass
schwache Kegelalgebren genau dann Kegelalgebren sind, wenn sie eine der
Bedingungen (RCP),...,(RES) zusammen mit deren Dualem erfüllen.

6.8 ℓ-Gruppen-Clans

Betrachten wir (Z,+,min) , so bildet etwa {0, 1, 2} einen ℓ-Gruppen-Clan,
doch auch {−1, 0, 1, 2} ist in kanonischer Weise eingebettet in (Z,+,min) .
Es sind diese Strukturen, die wir nun genauer anschauen wollen. Man be-
achte, im alltäglichen Rechnen bewegen wir uns in Clans. Spätestens nach
Beendigung einer Kalkulation wird dies ja deutlich. Der Vorrat an Zahlen
reicht für jede Rechnung, dennoch, im Konkreten waren am Ende stets nur
endlich viele im Spiel.

6. 8. 1 Proposition. Sei C := (C, ∗, :) ein ℓ-Gruppen-Kegel-Clan. Dann
gilt in C bezüglich der Festsetzung:

x = ab :⇐⇒ a ∗ x = b & x : b = a

das System der Axiome:

(C1) a ≤ b =⇒ ∃x, y : b = ax & b = ya
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(C2) ax, ay ∈ C & ax = ay =⇒ x = y
xa, ya ∈ C & xa = ya =⇒ x = y

(C3) ax, ay ∈ C =⇒ ax ∧ ay = a(x ∧ y)
xa, ya ∈ C =⇒ xa ∧ ya = (x ∧ y)a

(C4) ab ∈ C & (ab)c ∈ C =⇒ bc ∈ C & a(bc) = a(bc)

(C5) (a ∧ b)c = c & a ∨ b ∈ C =⇒ ab = a ∨ b = ba .

BEWEIS. (C1), (C2), (C3), (C5) folgen aus der Einbettung des Kegel-
Clans in den Kegel und aus der Arithmetik der ℓ-Gruppe. Folglich bleibt
zu zeigen, dass die oben definierte partielle Multiplikation auch Axiom (C4)
erfüllt. Hier erhalten wir vorab y = uv & w ≤ v =⇒ uw ∈ C & uw ≤ uv ,
wegen:

x ∗ (y : (w ∗ v)) = (u ∗ y) : (w ∗ v) = v : (w ∗ v) = w
& (y : (w ∗ v)) : w = (y : (w ∗ v)) : (v : (w ∗ v)) = y : v = u

Nun ist aber ab eine obere Schranke zu a, und es bedingt die Existenz von
(ab)c die Existenz von bc . Ferner haben wir (ab)c = u(bc) (∃u ∈ C) . Das
führt dann wegen x : bc = (x : bc) : (b ∗ (bc : bc))

= (x : bc) : ((b ∗ bc) : bc)
= (x : bc) : (c : bc)
= (x : c) : (bc : c)
= (x : c) : b

weiter zu
u = u(bc) : bc = (ab)c : bc = ((ab)c) : c) : b = ab : a = a .

Damit ist aus Gründen der Dualität alles gezeigt. 2

Den letzten Satz nehmen wir zum Anlass einer Abschwächung des ℓ-Grup-
pen-Kegel-Clans. In [29] wurde diese Abschwächung als Semiclan eingeführt
und studiert, doch scheint das Bezeichnungspaar ℓ-Gruppen-Clan, ℓ-Grup-
pen-Kegel-Clan, angemessener als das Paar ℓ-Gruppen-Clan, Semiclan, da
es das Fehlen der Positivität nicht negativ herausstellt, sondern die Anwe-
senheit von Positivität positiv betont.

6. 8. 2 Definition. Sei C := (C,∧, ·) ein Halbverband bezüglich ∧ und
ein partielles Gruppoid bezüglich ·. Dann heiße C ein ℓ-Gruppen-Clan 1),
falls C die Axiome (C1) bis (C5) erfüllt.

1) In [29] bezeichnet als Semiclan
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Durch Axiom (C2) sind Links- und Rechtsquotienten eindeutig bestimmt.
Somit macht es Sinn zu definieren:

(6.81) a = c/b :⇐⇒ ab = c⇐⇒: a\c = b .

Als unmittelbare Folgerungen erhalten wir dann:

(6.82) a/a = b/b = a\a = b\b

BEWEIS. a\a und b\b sind definiert, da a ≤ a und b ≤ b erfüllt sind.
Bezeichne nun mit 1 das eindeutig bestimmte Element (a ∧ b)\(a ∧ b) .
Dann sind a(a/(a ∧ b))(a ∧ b) und (a ∧ b)1 definiert, so dass wir schließen
können:

a(a\a) = (a/(a ∧ b))((a ∧ b)1) = ((a/(a ∧ b))(a ∧ b))1 = a1 .

Dies liefert dann eine eindeutig bestimmte Rechtseins und dual eine ein-
deutig bestimmte Linkseins, also eine eindeutig bestimmte Eins. 2

Als eine unmittelbare Folgerung erhalten wir nach Axiom (C4), dass sich
die Elemente der Form 1 ∧ a mit allen Elementen multiplizieren lassen
wegen der Implikation x(1 ∧ a) = 1 =⇒ x(1 ∧ a) · y = x · (1 ∧ a) = y ∈ C .
Da der ℓ-Gruppen-Clan offenbar rechts-/links-dual erklärt ist, gelten die
nachfolgenden Sätze jeweils zusammen mit ihren dualen Versionen.

6. 8. 3 Lemma. Ist ay erklärt und gilt x ≤ y, so ist auch ax erklärt.

DENN: Es ist ay erklärt, und es gilt y = xz (∃z ∈ C) . Also ist nach (C4)
auch ax erklärt. 2

Ist ax definiert, so folgt

(6.83) a ≤ ax ⇐⇒ 1 ≤ x .

DENN: a ≤ ax ⇐⇒ a = a1 ∧ ax = a(1 ∧ x)
⇐⇒ 1 = 1 ∧ x
⇐⇒ 1 ≤ x . 2

Sind ax und ay erklärt, so haben wir:

(6.84) a ≤ ax ⇐⇒ ax ≤ ay

DENN: Gilt die linke Seite, so resultiert:

x ≤ y =⇒ ax = a(x ∧ y) = ax ∧ ay
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und weiter folgt: ax ≤ ay =⇒ ay = (ax)z = a(xz) (z ≥ 1)
⇐⇒ xz = y
=⇒ x ≤ y 2

Mit (a/x) und (a/x)/y ist auch yx erklärt, und wir erhalten:

(6.85) (a/x)/y = a/(yx)

DENN: (a/x)/y = b ⇐⇒ a/x = by
⇐⇒ a = (by)x
⇐⇒ a = b(yx)
⇐⇒ b = a/(yx) . 2

Ist a/b erklärt, so gilt offenbar:

(6.86) (a/b)\a = b .

Sind a/x und a/y erklärt, so gilt:

(6.87) a/x ≥ a/y ⇐⇒ x ≤ y .

DENN: a/x ≥ a/y =⇒ (a/y)z = a/x (∃z ≥ 1)
=⇒ a/y = (a/x)z
=⇒ (a/y)\a = (a/(zx))\a
=⇒ y = zx (z ≥ 1)
=⇒ y ≥ z
=⇒ (a/y)y = ((a/y)z)x
=⇒ a/x = (a/y)z (z ≥ 1)
=⇒ a/x ≥ a/y . 2

Weiter können wir zeigen:

(6.88) c ≥ a, b =⇒ ((c/a) ∧ (c/b))\c = a ∨ b .

DENN:

c ≥ z & z ≥ a & z ≥ b =⇒ c/z ≤ c/a & c/z ≤ c/b
=⇒ c/z ≤ (c/a) ∧ (c/b)
=⇒ z ≥ ((c ∧ a) ∧ (c/b))\c ,

man beachte (6.87). 2

(6.89) c/((c ∧ x) ∨ (c ∧ y)) = c/(c ∧ x) ∧ c/(c ∧ y) .
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DENN: (6.88) impliziert:

c/((c ∧ x) ∨ (c ∧ y) = c/((c/(c ∧ x) ∧ (c/(c ∧ y))\c)
= c/((c ∧ x) ∧ c/(c ∧ y)) . 2

(6.90) c ≥ a, b & a ∧ b = 1 =⇒ ab, ba ∈ C & ab = ba .

DENN: nach (2.57) und (C5) sind ab und ba gleich a ∨ b . 2

Im folgenden setzen wir a− := 1 ∧ a , a+ = 1 ∨ a und a∗ := a−\1 . Als
spezielle Resultate erhalten wir dann für diese Elemente:

(6.91) a∗(1 ∧ a) = 1 & a+(1 ∧ a) = a .

DENN: a∗ = a∗(1 ∧ a)a∗ =⇒ a∗(1 ∧ a) = a,

& a+(1 ∧ a)a∗ = (1 ∧ a)a∗a+ = (1 ∧ a)a+a∗ 2

So wie oben erhalten wir hiernach, dass die Elemente vom Typ a∗ mit allen
Elementen multiplizierbar sind und damit insbesondere, dass alle a∗ ∨ b∗

existieren. Das liefert dann weiter die Formel

(6.92) a∗ ∨ b∗ = (a ∧ b)∗ .

DENN: Nach (C3) ist (a ∧ b)(a∗ ∨ b∗) ≥ 1 , also (a∗ ∨ b∗) ≥ (a ∧ b)∗ und
nach (2.54) haben wir a∗, b∗ ≤ (a ∧ b)∗ 2

Insbesondere erhalten wir hiernach:

(6.93) a+ ∧ a∗ = 1 .

DENN: a+(1 ∧ a) = 1 & a∗(1 ∧ a) = 1 =⇒ (a+ ∧ a∗)(1 ∧ a) = 1 ∧ a . 2

Weiter resultiert:

(6.94) a+/a∗ = a = a∗\a+ .

Sei ab erklärt, dann ist auch ab+ erklärt, und es gilt

(6.95) ab+ = (ab)b∗ .

DENN: nach Voraussetzung gilt: ab = a(b+(1 ∧ b)) = (ab+)(1 ∧ b) 2

Als nächstes erhalten wir:

(6.96) a/(a ∧ b) ∧ b/(a ∧ b) = 1
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DENN: a ∧ b = (a/(a ∧ b))(a ∧ b) ∧ (b/(a ∧ b))(a ∧ b)
= (a/(a ∧ b)) ∧ b/(a ∧ b))(a ∧ b) . 2

Im weiteren betrachten wir den Positivbereich C+ := {x
∣∣ x ≥ 1} . Wir

werden zeigen, dass dieser Anteil bezüglich a ∗ b := (a ∧ b)\b und b : a :=
b/(a∧b) einen ℓ-Gruppen-Kegel bildet. Das Hauptproblem wird dabei sein,
die Bedingungen (C11) und (C3) nachzuweisen, wohingegen die übrigen
Axiome fast evident sind.
Sei bc definiert. Dann gilt

(6.97) a ∧ bc = a ∧ (a ∧ b)c

BEWEIS. Im Sonderfall a ∧ b = 1 erhalten wir zunächst:

a ∧ bc = y =⇒ b ∧ y = 1 & y ≤ bc

=⇒ b ∨ y = by ≤ bc
=⇒ y ≤ c .

also a ∧ bc ≤ a ∧ c ≤ a ∧ bc

Sei hiernach a ∧ b beliebig gewählt. Dann folgt:

a ∧ bc = (a ∧ b)((a ∧ b)\a) ∧ (a ∧ b(((a ∧ b)\b)c)
= (a ∧ b)(((a ∧ b)\a) ∧ ((a ∧ b)\b)c))
= (a ∧ b)((a ∧ b)\a) ∧ c) (s. o.)

= a ∧ ((a ∧ b)c) .

Damit sind wir am Ziel 2

Insbesondere haben wir damit

(6.98) a ∧ bc ≤ (a ∧ b)c

(6.99) a ≤ bc & a ∧ b = 1 =⇒ a ≤ c .

Weiter liefert Anwendung von (6.97)

(6.100) x/(x ∧ y) ≥ (x ∧ z)/(x ∧ y ∧ z)

DENN: s(x ∧ y) = x =⇒ s(x ∧ y ∧ z) ≥ x ∧ z ((6.101))

=⇒ s = x/(x ∧ y) ≥ (x ∧ z)x/(x ∧ y ∧ z) 2

Damit gilt als nächstes:

(6.101) c/(a ∧ b) ∧ b/(∧b) = (b ∧ c)(a ∧ b ∧ c)
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DENN: die linke Seite enthält die rechte nach (6.100) und die rechte Seite
enthält die linke wegen:

(c/(a ∧ c) ∧ b/(a ∧ b))·(a ∧ b ∧ c) ≤ b ∧ ec . 2

Schließlich erhalten wir:

(6.102) c = a ∨ b =⇒ c = a((a ∧ b)\b) .

DENN: x ≥ a & x ≥ b

⇒
x = ay ≥ b (∃y ≥ 1)

⇒
(a ∧ b)((a ∧ b)\a)y ≥ (a ∧ b)((a ∧ b)\b)

⇒
((a ∧ b)\a)y ≥ (a ∧ b)\b

⇒
y ≥ (a ∧ b)\b ((6.91), (6.94))

⇒
x = ay ≥ a((a ∧ b)\b) . 2

Nun sind wir in Lage zu zeigen:

6. 8. 4 Proposition. Ist C ein ℓ-Gruppen-Clan, so bildet C+ einen Kegel
bezüglich

(6.103) a ∗ b := (a ∧ b)\b und b : a := b/(a ∧ b)

BEWEIS. Axiom (C21) gilt, denn nach (6.95), (6.96) und (2.56) folgt

(b ∧ c) ∨ (a ∧ c) = (a ∧ c)((a ∧ b)\b ∧ (a ∧ c)\c)
⇒

((b ∧ c) ∨ (a ∧ c))\c = ((a ∧ c)((a ∧ b)\b ∧ (a ∧ c)\c))\c
⇒

((b ∧ c) ∨ (a ∧ c))\c = ((a ∧ b\b) ∧ (a ∧ c)\c))\((a ∧ c)\c)
= (a ∗ b ∧ a ∗ c)\(a ∗ c)
= (a ∗ b) ∗ (a ∗ c)
= (b ∗ a) ∗ (b ∗ c) ,

da die linke Seite a, b-symmetrisch ist.
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Analog erhalten wir Axiom (C11) . Weiterhin sind (C12) und (C22) evident,
und es ist (C4) eine unmittelbare Konsequenz aus (6.91). Damit bleibt nur
noch (C3) zu verifizieren. Hier gilt zunächst unmittelbar:

a ∗ (b : c) = (a ∧ (b : c)) ∗ (b : c)
= ((a ∧ b) ∧ (b : c)) ∗ (b : c)
= (a ∧ b) ∗ (b : (b ∧ c)) .

Daher dürfen wir ausgehen von a, c ≤ b . Dann ist a(a ∗ b) und damit auch
a((a ∗ b) : c) definiert. Deshalb können wir schließen:

a((a ∗ b) : c)((a ∗ b) ∧ c = a ∨ b ≥ (b : c)((a ∗ b) ∧ c)
⇒

a((a ∗ b) : c) ≥ b : c
⇒

a((a ∗ b) : c) ≥ a ∧ (b : c)
= a(a ∗ (b : c))
⇒

(a ∗ b) : c) ≥ (a ∗ b) : c .

Damit sind wir aus Gründen der Dualität am Ziel. 2

Hiernach kommen wir zum Hauptergebnis dieses Kapitels.

6. 8. 5 Theorem. Sei C ein ℓ-Gruppen-Clan und sei ϕ+ eine Funktion, die
(C+, ∗, :) - betrachtet als Kegel - einbettet in einen Verbandsgruppenkegel.
Dann lässt sich ϕ+ ausdehnen zu einer Funktion ϕ , die C - als ℓ-Gruppen-
Clan - supremumtreu einbettet in die korrespondierende ℓ-Gruppe G .

BEWEIS. Wir schreiben in diesem Beweis die existierenden Produkte von
C als Summen a+ b etc. und die Suprema und Infima aus G als a∪ b bzw.
a ∩ b und definieren:

ϕ(a) := ϕ+(a+) · (ϕ+(a∗))−1 .

Dann folgt: a+ ∧ a∗ = 0

⇒
ϕ(a+) ∩ ϕ(a∗) = 1

⇒
ϕ(a+) · (ϕ(a∗))−1 ∩ 1 = (ϕ(a∗))−1
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ϕ(a+) · (ϕ(a∗))−1 ∩ 1 = (ϕ(a∗))−1

; (ϕ(a∗))−1 = ϕ(a) ∩ 1

⇒
ϕ(a∗) = (ϕ(a))∗ ,

und damit weiter: ϕ(a+) = ϕ(a+)(ϕ(a∗))−1ϕ(a∗)

= ϕ(a) · ϕ(a∗)

= ϕ(a) · (ϕ(a))∗

= (ϕ(a))+

(i) Anwendung dieser beiden letzten Formeln führt uns dann weiter zu:

ϕ(a) ∩ ϕ(b) = ϕ(a+)(ϕ(a∗))−1 ∩ ϕ(b+)(ϕ(b∗))−1

= ((ϕ(a+) ∩ (ϕ(b))+) · ((ϕ(a))∗ ∪ (ϕ(b))∗)−1

= (ϕ(a+) ∩ (ϕ(b))+) · (ϕ(a∗) ∪ (ϕ(b∗))−1

= (ϕ(a+ ∧ b+)) · (ϕ(a∗ ∨ b∗))−1,

= (ϕ((a ∧ b)+)) · (ϕ(a ∧ b)∗)−1 ((6.92))

= ϕ(a ∧ b) .

(ii) Sei nun a+ b+ = x in C . Dann folgt:

a+ b+ = x+/x∗ =⇒ a∗\a+ + b+ = x+/x∗

=⇒ a+ + b+ = a∗ + x+/x∗

=⇒ a+ + b+ + x∗ = a∗ + x+

=⇒ (ϕ(a)) · (ϕ(b+)) = ϕ(x) ,

woraus sich weiter ergibt:

a+ b = c =⇒ (a+ b+)/b∗ = c ((6.91))
=⇒ ϕ(a) · ϕ(b+) = ϕ(c) · ϕ(b∗)
=⇒ ϕ(a) · ϕ(b+) · ((ϕ(b∗))−1 = ϕ(c)
=⇒ ϕ(a) · ϕ(b) = ϕ(c)

(iii) Schließlich gilt für existierende a ∪ b :

ϕ(a) ∪ ϕ(b) = ϕ(a ∨ b) ,

denn diese Gleichung folgt unmittelbar aus (i), (ii) und (6.102). 2



Kapitel 7

Sup-Clans

7.1 Vorbemerkungen

Wie schon im Kapitel über Residuationsgruppoide angekündigt, werden
wir uns nun den brouwerschen und den booleschen Clans zuwenden. Die
Vorgehensweise ist ähnlich der oben praktizierten.

Um von einer möglichst allgemeinen Basis zu starten, werden wir aus-
gehen von dualen Residuationsgruppoiden, kurz DR-Gruppoiden. Sie sind
als Residuationsstruktur abgehoben von der Struktur der komplementären
Halbgruppe. Allerdings wird es uns nicht gelingen, den Clan der komple-
mentären Halbgruppe zu charakterisieren. Während dies im rechtskomple-
mentären Fall in überraschend erfreulicher Weise gelang, stellen sich hier
ganz wesentliche Hindernisse in den Weg. Zwar erhalten wir natürlich ei-
ne ∗ - Erweiterung im Sinne des allgemeinen Clan-Theorems 5.2.12 und
ebenso eine :-Erweiterung, es ist aber nicht zu erkennen, wie diese beiden
Ausdehnungen in eins geführt werden könnten. Ein Hauptproblem: es gibt
keinen Hinweis auf eine Formel der Art a ∗ bc = f · g mit ∗ , : -Polynomen
f, g . Andererseits ist natürlich nicht auszuschließen, dass sich eine Lösung
auf dem Wege einer geschickten

”
Verschmelzung“ der beiden genannten

einseitigen Erweiterungen anbietet.

So bleibt uns zunächst nur eine Untersuchung der Residuationsarithmetik
in DR-Gruppoiden, um auf ihrer Grundlage in einem ersten Schritt, ausge-
hend von einem R zu einem ∨-abgeschlossenen S zu gelangen. Dies wird
möglich sein über die Formel

(V) (a ∨ b) ∗ (c ∨ d) = ((a ∗ b) ∗ (a ∗ c)) ∨ ((a ∗ b) ∗ (a ∗ d))

Doch obwohl diese Formel auf den ersten Blick sehr
”
griffig“ erscheint,

173
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erweist sich schon das allgemeine Problem der Einbettung eines DR-Grup-
poids R in ein ∨-abgeschlossenes S als sehr technisch, und dies gilt erst
recht für Fragen der Vererbung gewisser algebraischer Merkmale.

Nach diesem Schritt wenden wir uns den so genannten normalen DR-Grup-
poiden zu, also den DR-Gruppoiden mit a ∗ b⊥ b ∗ a . Nicht ganz überra-
schend stellt sich hier als erstes ein, dass diese Bedingung die duale Bedin-
gung b : a⊥ a : b nach sich zieht. Dies führt natürlich zu technischen Er-
leichterungen in späteren Beweisführungen. Dass wir in diesem Abschnitt
zu vielen Formeln der bereits bekannten Arithmetik komplementärer Halb-
gruppen gelangen, versteht sich von selbst, und natürlich hätten wir Teile
jenes Kapitels durch dieses Kapitel ersetzen können. Es schien aber, als sei
diese Überlappung von der Organisation des Stoffes her vertretbar.

Wie sich herausstellt, besitzen normale DR-Gruppoide sogar einen norma-
len ∨-Abschluss, und dies wird der Ausgangspunkt beim Studium boole-
scher Clans sein.

Engen wir DR-Gruppoide ein vermöge der Forderung

(B) a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) ,

so gelangen wir zum Clan des brouwerschen Halbverbandes.

Dies führt uns zum Clan des booleschen Ringes, der als weiteres Gesetz die
Gleichung respektiert;

(S) (a ∗ b) ∗ b = (b ∗ a) ∗ a ,

Abschließend zeigen wir, wie sich ein boolescher Ring konstruktiv in einen
booleschen Verband einbetten lässt. Dabei gehen wir ähnlich vor, wie bei
der Konstruktion der Brick-Erweiterung für Verbandsgruppenkegel.

7.2 Arithmetik der DR-Gruppoide

Wie in der Einleitung angekündigt, starten wir in diesem Kapitel so all-
gemein wie möglich, ausgehend von evidenten Residuationsgesetzen der
komplementären Halbgruppe. Dabei streben wir weniger Unabhängigkeit
der Beschreibung als evidente Selbstdualität an.

Um es zu betonen: Wir legen in 7.2.1 vorrangig Wert auf Evidenz und
Transparenz.
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7. 2. 1 Definition. Eine Algebra R = (R, ∗ , :) vom Typ (2,2) heiße ein
Residuations-gruppoid, kurz ein DR-Gruppoid, wenn es den Bedingungen

(R01) (a ∗ a) ∗ b = b

(R11) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c)

(R21) a ∗ (b ∗ a) = c ∗ c

(R31) (a ∗ b) ∗ (a ∗ c) = a ∗ ((b : a) ∗ c)

(R14) a ∗ b = c ∗ c = b ∗ a⇒ a = b

(R5) a ∗ (b : c) = (a ∗ b) : c

sowie den hierzu :, ∗ - dualen Bedingungen genügt.

Der Leser beachte, dass (R5) selbstdual ist.
Aufgrund der Rechts-Links-Symmetrie ist ein DR-Gruppoid sowohl ein
Rechts- als auch ein Links-Residuationsgruppoid.

(7.10) a ∗ b = 1 ⇐⇒ b : a = 1

DENN: a ∗ b = 1 =⇒ b : a = b : ((a ∗ b) ∗ a) = (b : a) : (b : a) . 2

Damit ist eine ganz wesentliche Verwebung von ∗ - und : - Struktur gesi-
chert. Wir können also einheitlich ≤ für die zunächst formal verschiedenen
Partialordnungen der beiden Gruppoide schreiben. Klar sind nach (R21)
und seinem Dualen zunächst:

(7.11) a ≥ b ∗ a & a ≥ a : b .

(7.12) a ≥ b
=⇒

a ∗ c ≤ b ∗ c & d ∗ a ≥ d ∗ b

Dies liefert x ≥ x : (y ∗ x) ≤ y vermöge (R5) und damit

(7.13) a ∗ b = (b : (a ∗ b)) ∗ b .
Wir setzen:

t := ((b : (a ∗ b)) ∗ (a : (b ∗ a))) ∗ ((b : (a ∗ b)) ∗ b)
= ((b : (a ∗ b)) ∗ (a : (b ∗ a))) ∗ (a ∗ b) ,



176 KAPITEL 7. SUP-CLANS

und erhalten t ≤ a ∗ b . (7.13)

Es ist aber auch t ≥ a ∗ b , Denn es gilt allgemein die Implikation

A ≤ X & B ≤ X

=⇒
(A ∗B) ∗ (A ∗ C) ≥ (A ∗X) ∗ (A ∗ C) (7.12)

= (X ∗ A) ∗ (X ∗ C) (R11)
= X ∗ C ,

also mit A = b : (a ∗ b) und B = a : (b ∗ a) dann unter Berücksichtigung
von (7.13)

(7.14) a ∗ b = ((b : (a ∗ b)) ∗ (a : (b ∗ a))) ∗ ((b : (a ∗ b)) ∗ b) .
Weiter haben wir:

(7.15) (a ∗ b) ∗ (b ∗ a) = b ∗ a

(7.16) (a : b) ∗ (b : a) = b : a .

DENN: (a ∗ b) ∗ (b ∗ a)

= ((b : (a ∗ b)) ∗ (a : (b ∗ a))) ∗ ((b : (a ∗ b)) ∗ b)
∗ ((a : (b ∗ a)) ∗ (b : (a ∗ b))) ∗ ((a : (b ∗ a)) ∗ a)

= ((b : (a ∗ b)) ∗ (a : (b ∗ a))) ∗ ((b : (a ∗ b)) ∗ b)
= ((b : (a ∗ b)) ∗ (a : (b ∗ a))) ∗ ((b : (a ∗ b)) ∗ a)

= ((b : (a ∗ b)) ∗ b) ∗ ((b : (a ∗ b)) ∗ a) (R11)

= b ∗ a , (R11)

UND: (a : ((a : b) ∗ b)) ∗ b ≤ (a : b) ∗ b
=⇒ ((a : ((a : b) ∗ b)) ∗ b) : ((a : b) ∗ b) = 1

=⇒ (a : ((a : b) ∗ b)) ∗ (b : ((a : b) ∗ b)) = 1

=⇒ (b : ((a : b) ∗ b)) : (a : ((a : b) ∗ b)) = (7.10)

=⇒ (b : a) : (((a : b) ∗ b) : a) = 1 (R12)

=⇒ (b : a) : ((a : b) ∗ (b : a)) = 1

=⇒ (a : b) ∗ (b : a) ≥ b : a . 2

Ein DR-Gruppoid muss nicht ∨-abgeschlossen sein. Existiert aber zu den
Elementen a, b in R das Supremum a∨ b , so ist es eindeutig ausgezeichnet
als Lösung eines Forderungssystems. Genauer:
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7. 2. 2 Proposition. Sei R ein RR-Gruppoid. Dann hat das System

(F)
a ∗ x .

= a ∗ b
x ∗ a .

= 1

höchstens eine Lösung und diese ist dann notwendig gleich sup(a, b).

BEWEIS. Seien c und auch d Lösungen zu (F). Dann folgt zunächst:

c ∗ d = (c ∗ a) ∗ (c ∗ d)
= (a ∗ c) ∗ (a ∗ d) = 1

=⇒
c ≥ d .

Weiter haben wir c ∗ b = (c ∗ a) ∗ (c ∗ b)
= (a ∗ c) ∗ (a ∗ b)
= 1 .

Also gilt c ≥ a nach Annahme und c ≥ b , wie soeben gezeigt. Sei hiernach

v ≥ a & v ≥ b .

erfüllt. Dann folgt: v ∗ c = (v ∗ a) ∗ (v ∗ c)
= (a ∗ v) ∗ (a ∗ c)
= (a ∗ v) ∗ (a ∗ b)
= (v ∗ a) ∗ (v ∗ b)
= (v ∗ a) ∗ 1 = 1

=⇒
v ≥ c . 2

7. 2. 3 Definition. Unter einem sup-abgeschlossenen RR-Gruppoid ver-
stehen wir ein RR-Gruppoid, in dem alle a ∨ b existieren, derart dass
a ∗ (a ∨ b) = (a ∗ b) erfüllt ist.
Als erstes erhalten wir

(7.18) a ∗ (a ∨ b) = a ∗ b ⇐⇒ (a ∨ b) : a = b : a .

DENN: Nach (7.12) folgt (a ∨ b) : a ≥ a und a ∗ (a ∨ b) = a ∗ b impliziert

((a ∨ b) : a) : (b : a) = ((a ∨ b) : (a ∗ b)) : a (R32)

= ((a ∨ b) : (a ∗ (a ∨ b))) : a (NV)

= ((a ∨ b) : a) : ((a ∨ b) : a) (R32).
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Damit sind wir am Ziel. 2

Insbesondere ist also auch das ∨-abgeschlossene DR-Gruppoid selbstdual.
Sei für den Rest dieses Abschnitts R ein sup-abgeschlossenes DR-Gruppoid.
Dann folgt:
7. 2. 4 Lemma. In R gilt die Äquivalenz:

(7.19) a ∧ b = 1 ⇐⇒ ((a ∗ x) ∗ (b ∗ x)) ∗ ((a ∗ x) ∗ y) = x ∗ y .

DENN: a ∧ b = 1 =⇒ ((a ∗ x) ∗ (b ∗ x)) ∗ ((a ∗ x) ∗ y)
= ((a ∗ x) ∨ (b ∗ x)) ∗ y
= ((a ∧ b) ∗ x) ∗ y
= x ∗ y 2

(7.20) (a ∨ b) ∗ c = (a ∗ b) ∗ (a ∗ c) ,

DENN: (a ∨ b) ∗ c = ((a ∨ b) ∗ a) ∗ ((a ∨ b) ∗ c)
= (a ∗ (a ∨ b)) ∗ (a ∗ c)
= (a ∗ b) ∗ (a ∗ c) . 2

(7.21) a ∗ (b ∨ c) = a ∗ b ∨ a ∗ c

DENN: (a ∗ b) ∗ (a ∗ (b ∨ c)) = (b ∗ a) ∗ (b ∗ (b ∨ c))
= (b ∗ a) ∗ (b ∗ c)
= (a ∗ b) ∗ (a ∗ c) ,

womit nach (7.12) alles gezeigt ist 2

7.3 Normalität

Im Abschnitt über die Arithmetik komplementärer Halbgruppen haben wir
den Sonderfall der normalen komplementären Halbgruppe studiert. Hier
werden die dortigen Ergebnisse los gelöst von der Multiplikation hergeleitet.

7. 3. 1 Definition. Ein DR-Gruppoid heiße normal im Falle

(N∗) x ≤ a ∗ b & x ≤ b ∗ a =⇒ x = 1 .

Sei in diesem Abschnitt R stets ein DR-Gruppoid. Dann folgt:
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7. 3. 2 Lemma. R ist genau dann normal, wenn gilt:

a ∗ c = 1 = b ∗ c
=⇒

((b : (a ∗ b)) ∗ (a : (b ∗ a)))∗((b : (a ∗ b)) ∗ c) = 1 .

BEWEIS. (a) Sei (N∗) erfüllt. Dann erhalten wir nach 7.14

((b : (a ∗ b)) ∗ (a : (b ∗ a))) ∗ ((b : (a ∗ b)) ∗ c)
≤ (b : (a ∗ b)) ∗ c
≤ (b : (a ∗ b)) ∗ b
= a ∗ b

und wegen (R11) gilt

((b : (a ∗ b)) ∗ (a : (b ∗ a))) ∗ ((b : (a ∗ b)) ∗ c) ≤ (a : (b ∗ a)) ∗ c
≤ (a : (b ∗ a)) ∗ a
= b ∗ a .

(b) Sei nun die aufgestellte Implikation erfüllt und gelte x ≤ a : b, b : a .
Setzen wir dann x für c, a : b für a und b : a für b , so folgt x = 1 . Somit
gilt das Duale unserer Implikation und folglich resultiert (N∗) , da wir aus
dem Dualen das Duale des Dualen, nämlich (N∗) herleiten können. 2

Als ein weiteres Resultat hat uns der Beweis von 7.3.2 geliefert:

7. 3. 3 Proposition. Ein DR-Gruppoid ist genau dann normal, wenn es
die beiden dualen Gleichungen (N∗) und (N:) erfüllt.

Obwohl nicht dual erklärt, ist also das normale DR-Gruppoid selbstdu-
al. Sei von nun an bis zum Ende R ein ∨-geschlossenes normales DR-
Gruppoid. Dann gelten

7. 3. 4 Proposition. R ist nicht nur ∨- sondern auch ∧-abgeschlossen,
genauer gilt:

(7.23) a : (b ∗ a) ∨ b : (a ∗ b) = a ∧ b .

BEWEIS. a ∗ (a : (b ∗ a)) = 1

& a ∗ (b : (a ∗ b)) = (a ∗ b) : (a ∗ b) = 1

impliziert a, b ≥ (a : (b ∗ a)) ∨ (b : (a ∗ b))
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aufgrund der Symmetrie, und wir erhalten nach (7.20) und 7.3.2

a, b ≥ x =⇒ ((a : (b ∗ a)) ∨ (b : (a ∗ b))) ∗ x = 1 ,

fertig! 2

(7.24) (a ∧ b) ∗ b = a ∗ b ,

DENN: Nach (7.12) gelten

(a ∧ b) ∗ b ≥ a ∗ b ,
&

(a ∧ b) ∗ b ≤ (b : (a ∗ b)) ∗ b
= a ∗ b . 2

(7.25) (a ∗ (b ∧ c)) ∗ (a ∗ c) = (a ∗ b) ∧ (a ∗ c) .

DENN: (a ∗ (b ∧ c)) ∗ (a ∗ c) ≥ (a ∗ b) ∗ (a ∗ c) (7.12)

& (a ∗ (b ∧ c)) ∗ (a ∗ c) = ((b ∧ c) ∗ a) ∗ ((b ∧ c) ∗ c)
= ((b ∧ c) ∗ a) ∗ (b ∗ c) (7.24)
≤ (b ∗ a) ∗ (b ∗ c) (7.12)
= (a ∗ b) ∗ (a ∗ c) . 2

Hiernach kommen wir zu den Hauptregeln:

(7.26) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

BEWEIS. Aus Gründen der Symmetrie reicht es zu zeigen:

(a ∨ (b ∧ c)) ∗ ((a ∨ b) : ((a ∨ c) ∗ (a ∨ b)))
= ((a ∨ (b ∧ c)) ∗ (a ∨ b)) : ((a ∨ c) ∗ (a ∨ b))
= ((a ∗ (b ∧ c)) ∗ (a ∗ (a ∨ b))) : ((a ∗ c) ∗ (a ∗ (a ∨ b))) (7.21)

= ((a ∗ (b ∧ c)) ∗ (a ∗ b)) : ((a ∗ c) ∗ (a ∗ b)) (7.21)

= ((a ∗ c) ∗ (a ∗ b)) : ((a ∗ c) ∗ (a ∗ b)) = 1 . (7.25)

2

(7.27) a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c .
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DENN: Dies folgt aus der Abschätzung:

(a ∗ (b ∧ c)) ∗ ((a ∗ b) : ((a ∗ c) ∗ (a ∗ b))) ∨ ((a ∗ c) : ((a ∗ b) ∗ (a ∗ c)))
= (a ∗ (b ∧ c)) ∗ ((a ∗ b) : ((a ∗ c) ∗ (a ∗ b)))
∨ (a ∗ (b ∧ c)) ∗ ((a ∗ c) : ((a ∗ b) ∗ (a ∗ c))) (7.20)
= ((a ∗ (b ∧ c)) ∗ (a ∗ b)) : ((a ∗ c) ∗ (a ∗ b))
∨ ((a ∗ (b ∧ c)) ∗ (a ∗ c)) : ((a ∗ b) ∗ (a ∗ c))
= ((a ∗ c) ∗ (a ∗ b)) : ((a ∗ c) ∗ (a ∗ b)) (7.25)

∨ ((a ∗ b) ∗ (a ∗ c)) : ((a ∗ b) ∗ (a ∗ c)) (7.25)

= 1 ∨ 1 = 1 , 2

(7.28) (a ∧ b) ∗ c = a ∗ c ∨ b ∗ c

BEWEIS. Seien x, y zunächst orthogonal. Dann erhalten wir

x ∗ (c : (y ∗ c)) = (x ∧ (c : (y ∗ c))) ∗ (c : (y ∗ c))
= c : (y ∗ c) (7.24)

=⇒
(c : (y ∗ c)) ∗ (x ∗ (c : (y ∗ c))) = 1

=⇒
(c : (y ∗ c)) : ((x ∗ c) : (y ∗ c)) = 1

=⇒
c : ((x ∗ c) ∨ (y ∗ c)) = 1 (7.20)

=⇒ (x ∗ c) ∨ (y ∗ c) = c .

Hiernach gelingt der allgemeine Beweis vermöge

(a ∧ b) ∗ c = (a ∗ b ∧ b ∗ a) ∗ ((a ∧ b) ∗ c)
= ((a ∗ b) ∗ ((a ∧ b) ∗ c))
∨ ((b ∗ a) ∗ ((a ∧ b) ∗ c))
= (((a ∧ b) ∗ b) ∗ ((a ∧ b) ∗ c))
∨ ((a ∧ b) ∗ a) ∗ ((a ∧ b) ∗ c)
= b ∗ c ∨ a ∗ c . (R11)

Damit sind wir am Ziel. 2

(7.29) (a ∨ b) ∗ c = a ∗ c ∧ b ∗ c
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BEWEIS. a ∨ b ≤ c =⇒ ((a ∨ b) ∗ c) ∗ ((a ∗ (a ∨ b)) ∗ d)
= ((a ∗ b) ∗ (a ∗ c)) ∗ ((a ∗ b) ∗ d)
= ((a ∗ c) ∗ (a ∗ b)) ∗ ((a ∗ c) ∗ d)
= (a ∗ c) ∗ d , beachte b ≤ c ,

und dies bedeutet (a∨b)∗c = a∗c∧b∗c , wegen x∗d = y∗d (∀ d) ⇐⇒ x = y .
Weiter haben wir für alle d

((a ∨ b) ∗ c) ∗ d
= ((a ∨ b) ∗ c) ∗ (((a ∗ b) ∧ (b ∗ a)) ∗ d)

= ((a ∨ b) ∗ c) ∗ (((a ∗ (a ∨ b)) ∧ (b ∗ (a ∨ b))) ∗ d)

= (((a ∨ b) ∗ c) ∗ ((a ∗ (a ∨ b)) ∗ d))
∨ (((a ∨ b) ∗ c) ∗ ((b ∗ (a ∨ b)) ∗ d))

= ((a ∗ c) ∗ d) ∨ ((b ∗ c) ∗ d) (siehe oben)

= ((a ∗ c) ∧ (b ∗ c)) ∗ d ,

und hieraus folgt

(a ∨ b) ∗ c = ((a ∨ b) ∧ c) ∗ c
= ((a ∧ c) ∨ (b ∧ c)) ∗ c
= ((a ∧ c) ∗ c) ∧ ((b ∧ c) ∗ c)
= (a ∗ c) ∧ (b ∗ c) .

Damit sind wir am Ziel. 2

Als Hauptsatz dieses Abschnitts können wir also festhalten:

7. 3. 5 Proposition. Ein normales DR-Gruppoid R erfüllt – zusammen
mit den korrespondierenden Dualen – die Gleichungen:

(N11) a ∗ (b ∨ c) = a ∗ b ∨ a ∗ c
(N12) a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c
(N13) (a ∧ b) ∗ c = a ∗ c ∨ b ∗ c
(N14) (a ∨ b) ∗ c = a ∗ c ∧ b ∗ c

Im weiteren lenken wir unsere Aufmerksamkeit auf verbandsori-
entierte Clans bzw. auf die Klasse der
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7.4 Sup-Clans

In diesem Abschnitt stellen wir zwei Sup-Einbettungssätze vor. Sei R

zunächst ein RR-Gruppoid. Wir erklären

(7.34) [a
∣∣ b] ∗ [c

∣∣ d] :=
[
(a ∗ b) ∗ (a ∗ c)

∣∣ (a ∗ b) ∗ (a ∗ d)
]
,

und es sei im Falle eines DR-Gruppoides die Operation : dual erklärt.

7. 4. 1 Proposition. In (R×R, ∗) gelten

(7.35) ([a
∣∣ b] ∗ [a

∣∣ b]) ∗ [c
∣∣ d] = [c

∣∣ d] .

(7.36) [a
∣∣ b] ∗ ([c

∣∣ d] ∗ [c
∣∣ d]) = [1

∣∣ 1] .

(7.37) ([a
∣∣ b] ∗ [c

∣∣ d]) ∗ ([a
∣∣ b] ∗ [u

∣∣ v])
=
([c
∣∣ d] ∗ [a

∣∣ b]) ∗ ([c
∣∣ d] ∗ [u

∣∣ v]) .

BEWEIS. (7.35) und (7.36) folgen geradeaus, und (7.37) ergibt sich via:[
(a ∗ b) ∗ (a ∗ c)

∣∣ (a ∗ b) ∗ (a ∗ d)
]

∗
[
(a ∗ b) ∗ (a ∗ u)

∣∣ (a ∗ b) ∗ (a ∗ v)
]

=
[

(((a ∗ b) ∗ (a ∗ c)) ∗ ((a ∗ b) ∗ (a ∗ d)))

∗ (((a ∗ b) ∗ (a ∗ c)) ∗ ((a ∗ b) ∗ (a ∗ u)))
∣∣ . . .

=
[

(((a ∗ c) ∗ (a ∗ b)) ∗ ((a ∗ c) ∗ (a ∗ d)))

∗ (((a ∗ c) ∗ (a ∗ b)) ∗ ((a ∗ c) ∗ (a ∗ u)))
∣∣ . . .

=
[

(((c ∗ a) ∗ (c ∗ b)) ∗ ((c ∗ a) ∗ (c ∗ d)))

∗ ∗ (((c ∗ a) ∗ (c ∗ b)) ∗ ((c ∗ a) ∗ (c ∗ u)))
∣∣ . . .

=
[

(((c ∗ a) ∗ (c ∗ d)) ∗ ((c ∗ a) ∗ (c ∗ b)))
∗ (((c ∗ a) ∗ (c ∗ d)) ∗ ((c ∗ a) ∗ (c ∗ u)))

∣∣ . . .
Q =

[
(((c ∗ d) ∗ (c ∗ a)) ∗ ((c ∗ d) ∗ (c ∗ b)))

∗ (((c ∗ d) ∗ (c ∗ a)) ∗ ((c ∗ d) ∗ (c ∗ u)))
∣∣ . . .

=
(
[c
∣∣ d] ∗ [a

∣∣ b]) ∗ ([c ∣∣ d] ∗ [u
∣∣ v]
)
.
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Damit sind wir am Ziel 2

Der Leser beachte, dass wir Axiom (R5) nicht herangezogen haben.

7. 4. 2 Lemma. Sei R ein DR-Gruppoid. Dann gilt in (R×R, ∗ , :)

(7.38) ([a
∣∣ b] ∗ [c

∣∣ d]) : [u
∣∣ v] := [a

∣∣ b] ∗ ([c
∣∣ d]) : [u

∣∣ v]) .

DENN: ([a ∣∣ b] ∗ [c
∣∣ d]
)

: [u
∣∣ v]

=
[
(a ∗ b) ∗ (a ∗ c)

∣∣ (a ∗ b) ∗ (a ∗ d)
]

: [u
∣∣ v]

=
[

(((a ∗ b) ∗ (a ∗ c)) : v) : (u : v)
∣∣∣ (((a ∗ b) ∗ (a ∗ d)) : v) : (u : v)

]
(R4)

=
[

((a ∗ b) ∗ ((a ∗ c) : v)) : (u : v)
∣∣∣ ((a ∗ b) ∗ ((a ∗ d) : v)) : (u : v)

]
(R4)

=
[
(a ∗ b) ∗ (((a ∗ c) : v) : (u : v))

∣∣∣ (a ∗ b) ∗ (((a ∗ d) : v) : (u : v))
]

(R4)
=

[
(a ∗ b) ∗ ((a ∗ (c : v)) : (u : v))

∣∣∣ (a ∗ b) ∗ ((a ∗ (d : v)) : (u : v))
]

(R4)
= [a

∣∣ b] ∗ [(c : v) : (u : v)
∣∣∣ (d : v) : (u : v)

]
= [a

∣∣ b] ∗ ([c ∣∣ d] : [u
∣∣ v]
)
. 2

Der Leser beachte, dass wir dieses Mal (R31) (und (R32)) nicht eingesetzt
haben.

7. 4. 3 Lemma. Sei R ein DR-Gruppoid. Dann gilt in der Erweiterung
(R×R, ∗ , :) die Gleichung:
(7.39)

([u
∣∣ v] : [a

∣∣ b]) : ([c
∣∣ d] : [a

∣∣ b]) = ([u
∣∣ v] : ([a

∣∣ b] ∗ [c
∣∣ d]) : [a

∣∣ b] .
BEWEIS. Zunächst gilt

[a
∣∣ 1] ∗ [b

∣∣ 1] = [a ∗ b
∣∣ 1] & [a

∣∣ 1] : [b
∣∣ 1] = [a : b

∣∣ 1] .

Das bedeutet weiter: (
[a
∣∣ 1] ∗ [b

∣∣ 1]
)
∗
(
[a
∣∣ 1] ∗ [c

∣∣ d]
)

=
[
a ∗ ((b : a) ∗ c)

∣∣∣ a ∗ ((b : a) ∗ d)
]

= [a
∣∣ 1] ∗

((
[b
∣∣ 1] : [a

∣∣ 1]
)
∗ [c

∣∣ d]
)
,
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Und dies liefert uns

; [u : a
∣∣ v : a] : [b : a

∣∣ c : a]

=
[

((u : a) : (c : a)) : ((b : a) : (c : a))
∣∣∣ ((v : a) . . .

=
[

((u : a) : ((c : a) ∗ (b : a))) : (c : a)
∣∣∣ ((v : a) : . . .

=
[

((u : a) : (((c : a) ∗ b) : a)) : (c : a)
∣∣∣ ((v : a) : . . . (R4)

=
[

(((u : (a ∗ ((c : a) ∗ b))) : a)) : (c : a)
∣∣∣ ((v : a) . . . (R32)

=
[

((u : (a ∗ ((c : a) ∗ b))) : (a ∗ c)) : a
∣∣∣ ((v : (. . . (R32)

=
(
[u
∣∣ v] : [a ∗ b

∣∣ a ∗ c]) : [a
∣∣ 1]

=
(
[u
∣∣ v] :

(
[a
∣∣ 1] ∗ [b

∣∣ c])) : [a
∣∣ 1]

;
(
[u
∣∣ v] : [a

∣∣ b]) :
(
[c
∣∣ d] : [a

∣∣ b])
=
(
[u : b

∣∣ v : b] : [a : b
∣∣ 1]
)

:
((

[c
∣∣ d] : [b

∣∣ 1]
)

: [a : b|1]
)

=
(
[u : b

∣∣ v : b] :
(
[a : b

∣∣ 1] ∗
(
[c
∣∣ d] : [b

∣∣ 1]
)))

: [a : b
∣∣ 1]

=
((

[u
∣∣ v] : [b

∣∣ 1]
)

:
((

[a : b
∣∣ 1] ∗ [c

∣∣ d]
)

: [b
∣∣ 1]
))

: [a : b
∣∣ 1]

=
((

[u
∣∣ v] :

(
[b
∣∣ 1] ∗ ([a : b

∣∣ 1] ∗ [c
∣∣ d])

))
: [b
∣∣ 1]
)

: [a : b
∣∣ 1]

=
((

[u
∣∣ v] :

(
[b
∣∣ 1] ∗

(
([a
∣∣ 1] : [b

∣∣ 1]) ∗ [c
∣∣ d]
)))

: [b
∣∣ 1]
)

: [a : b
∣∣ 1]

=
(
[u
∣∣ v] :

((
[b
∣∣ 1] ∗ [a

∣∣ 1]
)
∗
(
[b
∣∣ 1] ∗ [c

∣∣ d]
)))

: [a
∣∣ b]

=
(
[u
∣∣ v] :

((
[a
∣∣ 1] ∗ [b

∣∣ 1]
)
∗
(
[a
∣∣ 1] ∗ [c

∣∣ d]
)))

: [a
∣∣ b] (R11)

=
(
[u
∣∣ v] : [(a ∗ b) ∗ (a ∗ c)

∣∣ (a ∗ b) ∗ (a ∗ d)]
)

: [a
∣∣ b]

=
(
[u
∣∣ v] :

(
[a
∣∣ b] ∗ [c

∣∣ d]
))

: [a
∣∣ b] .

2

Hiernach gehen wir über zu einem homomorphen Bild. Wir setzen in An-
lehnung an

”
bewährte” Methoden:

(7.40) [a
∣∣ b] ≡ [c

∣∣ d]
:⇐⇒

[a
∣∣ b] ∗ [c

∣∣ d] = [1
∣∣ 1] = [c

∣∣ d] ∗ [a
∣∣ b]

7. 4. 4 Proposition. Die Relation ≡ =: θ ist eine Kongruenzrelation.
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BEWEIS. Zunächst folgt fast unmittelbar die Äquivalenz

(7.41) [a
∣∣ b] ∗ [c

∣∣ d] = [1
∣∣ 1] ⇐⇒ [c

∣∣ d] : [a
∣∣ b] = [1

∣∣ 1],

Denn: [a
∣∣ b] ∗ [c

∣∣ d] = [1
∣∣ 1]

=⇒
[c
∣∣ d] : [a

∣∣ b] =
(
[c
∣∣ d] : ([a

∣∣ b] ∗ [c
∣∣ d])

)
: [a
∣∣ b]

=
(
[c
∣∣ d] : [a

∣∣ b]) :
(
[c
∣∣ d] : [a

∣∣ b])
= [1

∣∣ 1] .

Weiter gelten – im Blick auf die Verträglichkeit:

(7.42) [a
∣∣ b] ≡ [c

∣∣ d] & [c
∣∣ d] ≡ [u

∣∣ v]
=⇒

[a
∣∣ b] ≡ [u

∣∣ v]

WEGEN: [a
∣∣ b] ≡ [c

∣∣ d] & [c
∣∣ d] ≡ [u

∣∣ v]

=⇒
[a
∣∣ b] ∗ [u

∣∣ v] =
(
[a
∣∣ b] ∗ [c

∣∣ d]
)
∗
(
[a
∣∣ b] ∗ [u

∣∣ v]
)

=
(
[c
∣∣ d] ∗ [a

∣∣ b]) ∗ ([c ∣∣ d] ∗ [u
∣∣ v]
)

= [1
∣∣ 1] ∗ [1

∣∣ 1] = [1
∣∣ 1]

SOWIE: [x
∣∣ y] ≡ [u

∣∣ v]

=⇒
[x
∣∣ y] ∗ [a

∣∣ b] =
(
[x
∣∣ y] ∗ [u

∣∣ v]
)
∗
(
[x
∣∣ y] ∗ [a

∣∣ b])
=

(
[u
∣∣ v] ∗ [x

∣∣ y]
)
∗
(
[u
∣∣ v] ∗ [a

∣∣ b])
= [u

∣∣ v] ∗ [a
∣∣ b]

&(
[a
∣∣ b] ∗ [x

∣∣ y]
)
∗
(
[a
∣∣ b] ∗ [u

∣∣ v]
)

=
(
[x
∣∣ y] ∗ [a

∣∣ b]) ∗ ([x ∣∣ y] ∗ [u
∣∣ v]
)

= [1
∣∣ 1]

=⇒
[a
∣∣ b] ∗ [x

∣∣ y] ≡ [a
∣∣ b] ∗ [u

∣∣ v] .

Der Rest ergibt sich aus Gründen der Dualität. 2

Nun können wir zeigen
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7. 4. 5 Proposition. Mit R ist auch (R×R, ∗ , :)/ θ ein DR-Gruppoid.

DENN: [a
∣∣ b] ≡ [1

∣∣ 1] ⇒ [a
∣∣ b] = [1

∣∣ 1]
=⇒

[a
∣∣ b] ∗ [c

∣∣ d] ≡ [1
∣∣ 1] ≡ [c

∣∣ d] ∗ [a
∣∣ b]

=⇒
[a
∣∣ b] ∗ [c

∣∣ d] = [1
∣∣ 1] = [c

∣∣ d] ∗ [a
∣∣ b]

=⇒
[a
∣∣ b] θ = [c

∣∣ d] θ .
2

Als eine erste Anwendung erhalten wir

7. 4. 6 Proposition. Jedes DR-Gruppoid besitzt eine Erweiterung, in der
das oben formulierte Gleichungssystem (F) für alle a, b ∈ R lösbar ist.

BEWEIS. Wir betrachten die Erweiterung (R × R , ∗ , :)/ θ =: R1 . Hier
können wir die Elemente [x

∣∣ 1] jeweils ersetzen durch x und danach die
Behauptung routinemäßig her rechnen. 2

Proposition 7.4.6 liefert die Basis für

7. 4. 7 Das Sup-Clan-Theorem. Jedes DR-Gruppoid besitzt eine kano-
nische engste sup-abgeschlossene Erweiterung.

BEWEIS. Wir konstruieren – im Sinne von 7.4.6 – eine Ausdehnungsfolge

R =: R0 ⊆ R1 ⊆ R2 ⊆ R3 ⊆ . . . . . . ⊆ Rn ⊆ . . . . . .

und definieren S =
∪
Rn (n ∈ N). Hiernach setzen wir a ∗ b = c gdw. im

ersten Ri mit a, b ∈ Bi a ∗ b = c erfüllt ist. Dual verfahren wir im Blick
auf : . Dann ist (S = (S, ∗, :) eine sup-abgeschlossene Erweiterung, in der
jedes Paar a, b eine Lösung bezüglich (F) besitzt.

Ist nun auch T eine solche Erweiterung, so können wir zeigen, dass die
Menge aller Suprema aus S abgeschlossen ist bezüglich ∗ und : und mit
Blick auf diese Operationen isomorph ist zu S.

(i) Offenbar ist T1 := {a ∨ b ∈ S
∣∣ a, b ∈ R} ∗- und :-abgeschlossen.
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(ii) Φ : [a
∣∣ b] θ 7−→ a ∨ b bildet R1 bijektiv ab auf T1 . Denn es gilt:

[a
∣∣ b] θ ≥ [c

∣∣ d] θ

⇐⇒ [a
∣∣ b] ∗ [c

∣∣ d] = [1
∣∣ 1]

⇐⇒ [(a ∗ b) ∗ (a ∗ c)
∣∣ (a ∗ b) ∗ (a ∗ d)] = [1

∣∣ 1]

⇐⇒ (a ∗ b) ∗ (a ∗ c) = 1 = (a ∗ b) ∗ (a ∗ d)

⇐⇒ (a ∗ b) ∗ (a ∗ c) ∨ (a ∗ b) ∗ (a ∗ d) = 1

⇐⇒ (a ∨ b) ∗ (c ∨ d) = 1

⇐⇒ (a ∨ b) ≥ (c ∨ d) .

(iii) Φ ist ein Homomorphismus. Denn es gilt:

Φ
(
[a
∣∣ b] θ ∗ [c

∣∣ d] θ
)

= Φ
(
[(a ∗ b) ∗ (a ∗ c)

∣∣ (a ∗ b) ∗ (a ∗ d)] θ
)

= ((a ∗ b) ∗ (a ∗ c)) ∨ ((a ∗ b) ∗ (a ∗ d))

= (a ∨ b) ∗ (c ∨ d)

= Φ
(
[a
∣∣ b] θ) ∗ Φ

(
[c
∣∣ d] θ

)
.

Damit gelangen wir induktiv ans Ziel. 2

Schließlich ein Hinweis auf die Kongruenzen in S .

7. 4. 8 Proposition. Seien R und S erklärt wie oben. Dann lässt sich
jede Kongruenz ≡ aus R mit a ∗ b ≡ 1 ⇐⇒ a ∗ b = 1 eindeutig ausdehnen
zu einer Kongruenz auf S .

DENN: Ist ≡ eine Kongruenz auf R mit a ∗ b ≡ 1 & b ∗ a ≡ 1 =⇒ a = b ,
so liefert

(a ∨ b) θ(c ∨ d) :⇐⇒ (a ∗ b) ∗ (a ∗ c) ≡ 1 ≡ (a ∗ b) ∗ (a ∗ d)

& (c ∗ d) ∗ (c ∗ a) ≡ 1 ≡ (c ∗ d) ∗ (c ∗ b)

eine Kongruenz mit Restriktion ≡, was man leicht nachrechnet, und es
kann wie unter 5.4.3 leicht eingesehen werden, dass es keine anderen Fort-
setzungen gibt. Schließlich ist die erklärte Relation in S auch eine Kon-
gruenz bezüglich ∨. 2

Wir zeigen nun, dass bei der vorgestellten Einbettung die Eigenschaft der
Normalität mitgeht.
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7. 4. 9 Der Haupteinbettungssatz. Ist R ein normales DR-Gruppoid,
so ist auch die Erweiterung S ein normales DR-Gruppoid.

BEWEIS. (i) Wir beweisen zunächst den Sonderfall(
[a
∣∣ 1] ∗ [c

∣∣ d]
)
∗ [u

∣∣ 1] ≡ [1
∣∣ 1]

&
(
[c
∣∣ d] ∗ [a

∣∣ 1]
)
∗ [u

∣∣ 1] ≡ [1
∣∣ 1]

=⇒
[a ∗ c

∣∣ a ∗ d] ∗ [u
∣∣ 1] = [1

∣∣ 1]
&
[
(c ∗ d) ∗ (c ∗ a)

∣∣ 1] ∗ [u
∣∣ 1] = [1

∣∣ 1]

=⇒
((a ∗ c) ∗ (a ∗ d)) ∗ ((a ∗ c) ∗ u) = 1

& ((c ∗ d) ∗ (c ∗ a)) ∗ u = 1

=⇒
((a ∗ c) ∗ (a ∗ d)) ∗ ((a ∗ c) ∗ u) = 1

& ((c ∗ d) ∗ (c ∗ a)) ∗ ((c ∗ d) ∗ u) = 1 . (7.12)

Hier führt die letzte Zeile nach (7.12) zu

(7.43) (c ∗ a) ∗ ((c ∗ d) ∗ u) = 1 ,

und es liefern die beiden letzten Zeilen zusammen mit (R11) und (7.12)

((c ∗ a) ∗ (c ∗ d)) ∗ ((a ∗ c) ∗ ((c ∗ d) ∗ u)) = 1

& ((c ∗ d) ∗ (c ∗ a)) ∗ ((a ∗ c) ∗ ((c ∗ d) ∗ u)) = 1 ,

woraus dann wegen (N∗)

(7.44) (a ∗ c) ∗ ((c ∗ d) ∗ u) = 1

resultiert.
(7.43) und (7.44) liefern aber weiter die beiden Gleichungen

(c ∗ d) ∗ u = 1(7.45)

(d ∗ c) ∗ u = 1 ; u = 1 ,(7.46)

(ii) Gelte nun (
[a
∣∣ b] ∗ [c

∣∣ d]
)
∗ [u

∣∣ 1] ≡ [1
∣∣ 1](

[c
∣∣ d] ∗ [a

∣∣ b]) ∗ [u
∣∣ 1] ≡ [1

∣∣ 1] .
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Wir dürfen = statt ≡ lesen und haben außerdem(
[a
∣∣ 1] ∗ [c

∣∣ d]
)
∗ [u

∣∣ 1] = [1
∣∣ 1] .

Daher ist nur noch die Gleichung(
[c
∣∣ d] ∗ [a

∣∣ 1]
)
∗ [u

∣∣ 1] = [1
∣∣ 1]

nachzuweisen. Hier gelangen wir wie folgt zum Ziel:(
[a
∣∣ b] ∗ [c

∣∣ d]
)
∗ [u

∣∣ 1] = [1
∣∣ 1]

&
(
[c
∣∣ d] ∗ [a

∣∣ b]) ∗ [u
∣∣ 1] = [1

∣∣ 1]

impliziert:

(((a ∗ b) ∗ (a ∗ c)) ∗ ((a ∗ b) ∗ (a ∗ d))) ∗ (((a ∗ b) ∗ (a ∗ c)) ∗ u)

= (((a ∗ c) ∗ (a ∗ b)) ∗ ((a ∗ c) ∗ (a ∗ d))) ∗ (((a ∗ b) ∗ (a ∗ c)) ∗ u)

=: (P ∗Q) ∗ (R ∗ u) = 1

& (((c ∗ d) ∗ (c ∗ a)) ∗ ((c ∗ d) ∗ (c ∗ b))) ∗ (((c ∗ d) ∗ (c ∗ a)) ∗ u)

= (((c ∗ a) ∗ (c ∗ d)) ∗ ((c ∗ a) ∗ (c ∗ b))) ∗ (((c ∗ d) ∗ (c ∗ a)) ∗ u)

= (((a ∗ c) ∗ (a ∗ d)) ∗ ((a ∗ c) ∗ (a ∗ b))) ∗ (((c ∗ d) ∗ (c ∗ a)) ∗ u)

=: (Q ∗ P ) ∗ (S ∗ u) = 1

=⇒ (P ∗Q) ∗ (R ∗ (S ∗ u)) = 1 (7.12)

& (Q ∗ P ) ∗ (R ∗ (S ∗ u)) = 1 . (7.12)

Auf diese Weise erhalten wir

R ∗ (S ∗ u) = 1
& P ∗ (S ∗ u) = 1 ,

und wegen P = (a ∗ c) ∗ (a ∗ b) & R = (a ∗ b) ∗ (a ∗ c) folgt hieraus(
[c
∣∣ d] ∗ [a

∣∣ 1] ∗ [u
∣∣ 1]
)

=
[

((c ∗ d) ∗ (c ∗ a)) ∗ u
∣∣ 1]

= [S ∗ u
∣∣ 1] = [1

∣∣ 1] .

(iii) Hieraus folgt dann der allgemeine Fall mit [u
∣∣ v] an der Stelle von

[u
∣∣ 1] mittels (i) und (ii), da [a

∣∣ b] ∗ [u
∣∣ v] = [1

∣∣ 1] zu [a
∣∣ b] ∗ [u

∣∣ 1] =
[1
∣∣ 1] & [a

∣∣ b] ∗ [v
∣∣ 1] = [1

∣∣ 1] führt. 2
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7.5 Der brouwersche und der boolesche Clan

7. 5. 1 Proposition. Ein RR-Gruppoid ist ein brouwerscher Halbverband
gdw. R der Gleichung genügt:

(B) a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)
und zudem jedes Gleichungssystem (F) lösbar ist.

DENN: Setzen wir die eindeutige Lösung von (F) gleich ab, so folgt

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) = (a ∗ ab) ∗ (a ∗ c) = (ab ∗ a) ∗ (ab ∗ c) = ab ∗ c ,

also insbesondere a ∗ (b ∗ c) = b ∗ (a ∗ c)

und hiermit dann weiter (A1), (A2), (A3) vermöge

a ∗ a(b ∗ b) = a ∗ (b ∗ b)
= 1
= a(b ∗ b) ∗ a ,

ab ∗ c = (ab ∗ a) ∗ (ab ∗ c)
= (a ∗ b) ∗ (a ∗ c)
= a ∗ (b ∗ c)
= b ∗ (a ∗ c)

(a ∗ b) ∗ b(b ∗ a) = (a ∗ b) ∗ (a ∗ b(b ∗ a)
= (b ∗ a) ∗ (b ∗ b(b ∗ a)
= (b ∗ a) ∗ (b ∗ a)
= 1 .

Damit sind wir am Ziel. 2

Da sich die Bedingung (B), wie man leicht nachrechnet, bei unserem Ein-
bettungsverfahren fortpflanzt, erhalten wir als weiteren Sonderfall

7. 5. 2 Das brouwersche Clan-Theorem. Ein RR-Gruppoid ist Clan
eines brouwerschen Halbverbandes, gdw. es zusätzlich der Bedingung (B)
genügt.

Browersche Clans sind gleichungsdefiniert, denn es gilt, siehe [31]:

7. 5. 3 Proposition. R ist ein brouwerscher Clan gdw. R eine Hilbert-
Algebra ist, d. h. – siehe [61] – den Gleichungen genügt:

(H1) (a ∗ a) ∗ b = b
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(H2) a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)

(H3) (a ∗ b) ∗ ((b ∗ a) ∗ b) = (b ∗ a) ∗ ((a ∗ b) ∗ a) .

BEWEIS. Die Bedingung ist notwendig, denn ist R ein brouwerscher Clan,
so folgt, wenn wir die linke Seite von (H3) mit ℓ , die rechte mit r abkürzen:

ℓ ∗ r = ((b ∗ a) ∗ ((a ∗ b) ∗ b))
∗ ((b ∗ a) ∗ ((a ∗ b) ∗ a))
= (b ∗ a) ∗ (((a ∗ b) ∗ b) ∗ ((a ∗ b) ∗ a))
= (b ∗ a) ∗ ((a ∗ b) ∗ (b ∗ a))
= (b ∗ a) ∗ (b ∗ a)
= 1 .

Und ist R eine Hilbert-Algebra, so folgt zunächst aus (H1) und (H3) fast
unmittelbar das Axiom (R3) , und es gilt a ∗ (b ∗ a) = (a ∗ b) ∗ (a ∗ a) = 1 .
Und das führt zu a ∗ (b ∗ c) = ((a ∗ b) ∗ (a ∗ a)) ∗ (a ∗ (b ∗ c)

= (a ∗ (b ∗ a)) ∗ (a ∗ (b ∗ c))
= a ∗ (b ∗ (a ∗ c)) .
;

(a ∗ (b ∗ c)) ∗ (b ∗ (a ∗ c)) = 1 (= (b ∗ (a ∗ c)) ∗ (a ∗ (b ∗ c))
;

(a ∗ b) ∗ (a ∗ c) = a ∗ (b ∗ c) = b ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c) ,

was zu beweisen war. 2

Ist R Clan eines ℓ-Gruppenkegels, so gilt zudem die Gleichung

(C) a : (b ∗ a) = (b : a) ∗ b ,

und es ist R normal, wie wir im Kapitel über Kegelalgebren sahen. Wir
zeigen nun, dass sich (C) fortpflanzt. Dies ist natürlich indirekt schon über
die Kegeleinbettung gezeigt, soll hier aber mit Blick auf boolesche Algebren
noch einmal direkt nachgewiesen werden.

7. 5. 4 Proposition. Mit R erfüllt auch R1 Bedingung (C).

BEWEIS. Wir beweisen zunächst den Sonderfall

(i) a ∧ (c ∨ d) = (c ∨ d) : (a ∗ (c ∨ d))
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der aus dem Nachweis von

(ii) ((c ∨ d) : (a ∗ (c ∨ d))) ∗ (a ∧ (c ∨ d)) = 1

resultiert, bei dem wir uns auf die Normalität von R1 stützen. Sie gewähr-
leistet:

(a : (b ∗ a)) ∗ a = b ∗ a
& (a : (b ∗ a)) ∗ b = a ∗ b

;

((c ∨ d) : (a ∗ (c ∨ d))) ∗ (a ∧ (c ∨ d)) = 1 .

Hieraus ergibt sich dann der allgemeine Fall vermöge:

(a ∨ b) : ((c ∨ d) ∗ (a ∨ b))
= (a ∨ b) : ((c ∗ (a ∨ b)) ∧ (d ∗ (a ∨ b)))
= ((a ∨ b) : (c ∗ (a ∨ b))) ∨ ((a ∨ b) : (d ∗ (a ∨ b)))
= ((a ∨ b) ∧ c) ∨ ((a ∨ b) ∧ d)

= (a ∨ b) ∧ (c ∨ d) .

Fertig! 2

7. 5. 5 Das boolesche Clan-Theorem. Ein RR-Gruppoid ist genau dann
Clan eines booleschen Ringes, wenn es zusätzlich den Bedingungen (B) und
(C) genügt.

Hinweis. Sei (P,≤) eine po-set mit Minimum 0. Dann liefert die Festset-
zung a ∗ b = 0 im Falle a ≥ b und a ∗ b = b sonst, eine Hilbert-Algebra.
Demzufolge lassen sich die po-sets als Hilbert-Algebren algebraisieren.

Ferner: Da die Kongruenzen umkehrbar eindeutig den Ordnungsfiltern
(a ≥ b ∈ F =⇒ a ∈ F ) vermöge

a ≡ b :⇐⇒ a ∗ b, b ∗ a ∈ F

entsprechen, ist der zugehörige Kongruenzverband ein ∩-distributiver al-
gebraischer Verband, d.ḣ. ein algebraischer Verband mit

a ∩
∑

bi =
∑

(a ∩ bi) (i ∈ I) .

Ist umgekehrt V := (V,Σ,∩) ein ∩-distributivery algebraischer Verband,
so hat jedes Element eine eindeutige Zerlegung a =

∩
pi mit vollständig
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-primen Elementen pi . Das bedeutet, dass die Menge der vollständig

∩
-

primen Element bezüglich ∗ ein Gruppoid bildet, dessen Kongruenzverband
isomorph ist zu V .
Damit gilt nach dem Bisherigen:

7. 5. 6 Theorem. Jeder vollständig ∩-distributive algebraische Verband
ist Kongruenzverband eines brouwerschen Halbverbandes.

7.6 Der boolesche 0-Abschluss

Ist R ein boolescher Ring, so können wir über jede subdirekte Zerlegung
von R in subdirekt irreduzible Faktoren zu einer Einbettung von R – be-
trachtet als Residuationsgruppoid – in einen booleschen Verband – be-
trachtet als Residuationsgruppoid – gelangen. Dabei geht allerdings das
Zorn’sche Lemma wesentlich ein. Wir wählen hier die unter 6.5.2 prakti-
zierte Methode.

7. 6. 1 Das BV-Theorem. Jeder boolesche Clan lässt sich einbetten in
einen booleschen Verband, aufgefasst als RR-Gruppoid.

BEWEIS. In einem ersten Schritt können wir R kanonisch einbetten in ein
∨-abgeschlossenes boolesches Residuationsgruppoid, also einen booleschen
Ring, betrachtet als Residuationsgruppoid. Daher dürfen wir annehmen,
dass R schon ein boolescher Ring ist. Wir betrachten die Mengen R und
R′ := R × {1} und symbolisieren (a, 0) durch a′. Dann bildet die Menge
R∪R′ =: B einen booleschen Verband bezüglich mit 1 als Null und (1

∣∣ 0)
als Eins.
Denn, dies bestätigt der Leser durch Nachrechnen, was exemplarisch für
die Formel A ∗ (B ∗ C) = B ∗ (A ∗ C) gezeigt sei. Hier sind die Tripel
(i) a, b, c′ , (ii) a, b′, c , (iii) a, b′, c′ , (iv) a′, b′, c und (v) a′, b′, c′ zu berück-
sichtigen.

(i) a ∗ (b ∗ c′) = (a ∨ b ∨ c)′
= b ∗ (a ∗ c′ .

(ii) a ∗ (b′ ∗ c) = a ∗ ((b ∗ c) ∗ c)
= (a ∗ (b ∗ c)) ∗ (a ∗ c)
= (b ∗ (a ∗ c)) ∗ (a ∗ c)
= b′ ∗ (a ∗ c) .
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(iii) a ∗ (b′ ∗ c′) = a ∗ (c ∗ b)
= (a ∨ c) ∗ b
= b′ ∗ (a ∨ c)′
= b′ ∗ (a ∗ c′)

(iv) a′ ∗ (b′ ∗ c) = a′ ∗ ((b ∗ c) ∗ c)
= (a ∗ ((b ∗ c) ∗ c)) ∗ ((b ∗ c) ∗ c)
= ((b ∗ c) ∗ (a ∗ c)) ∗ ((b ∗ c) ∗ c)
= (b ∗ c) ∗ ((a ∗ c) ∗ c)
= b′ ∗ (a′ ∗ c) .

(v) a′ ∗ (b′ ∗ c′) = a′ ∗ (c ∗ b)
= ((a ∗ (c ∗ b)) ∗ (c ∗ b)
= (c ∗ (a ∗ b)) ∗ (c ∗ b)
= c ∗ ((a ∗ b) ∗ b)
= b′ ∗ (a′ ∗ c′) .

2
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Kapitel 8

Verbandsgruppen-Verbände

In diesem Abschnitt möchten wir die Verbände beschreiben, die als Träger
einer Verbandsgruppe infrage kommen. Zu diesem Zweck vertiefe sich der
Leser vorweg noch einmal in die Arithmetik der ℓ-Gruppen, wie sie im
Kapitel über Verbände entwickelt wurde. Aus dieser Arithmetik resultiert
zunächst:

8. 0. 2 Lemma. Sei P ein beliebiger ℓ-Gruppen-Kegel. Dann liefert Φs :
x→ x ∗ s einen y Antiautomorphismus von I(s) := {x |x ≤ s}.
BEWEIS. Seien a, b beliebig. Dann gibt es ein s mit aΦs = b , nämlich
s := ab , und es gilt die Implikation:

(8.1) aΦs = b & aΦt = b & a ≤ s ∧ t⇒ s = t,

man beachte:

a ≤ s ∧ t⇒ s = a(a ∗ s) = a(aΦs) & t = a(a ∗ t) = a(aΦt) .

Also liefert a ≤ s ∧ t die Implikation aΦs = aΦt =⇒ s = t. 2

Diese beiden letzten Ergebnisse liefern uns zusammen mit (A3), (A4), (A5)
die beiden folgenden Eigenschaften für (abelsche) ℓ-Gruppen-Kegel:

8. 0. 3 Lemma. P ×P ist Vereinigung paarweise fremder involutorischer
Antiautomorphismen Φs : (I(s),≤) → (I(s),≤).

8. 0. 4 Lemma. Definieren wir Φs vermöge aΦs = aΦa∨s , so folgt die
Gleichung aΦbΦaΦc

= (a ∨ b)Φc .

Damit haben wir als notwendige Verbands-Bedingungen die Aussagen der
Lemmata 8.0.3 und 8.0.4 gewonnen. Betrachten wir hiernach den Verband
L einer ℓ-Gruppe G := (G,∧,∨, ·,−1 ). Hier gilt unmittelbar:
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(L0) L ist distributiv.

(L1) Jedes F (x) := {x | x ≥ s ∈ L} erfüllt 8.0.3 und 8.0.4,

Denn: Φ : x → ax ist ein Isomorphismus von (P,∨,∧) auf
(aP,∨,∧) ist, vgl. (2.52), (2.53).

(L2) Es existiert ein ausgezeichnetes Element 1 und hierzu ein Anti-
isomorphismus Φ von I(1) = {x | x ≤ 1} auf F (1) = {x | x ≥ 1}
mit (1 ∨ a) ∧ (1 ∧ a)Φ = 1.

Denn: Beispielsweise ist a→ a−1 ein solcher Antiisomorphismus,
mit (1 ∨ a) ∧ (1 ∧ a)−1 = 1, vgl. (2.56), (2.57) und (2.58), (2.59).

(L3) Das Gleichungssystem

1 ∨ x := a(8.2)

1 ∧ x := b(8.3)

ist lösbar für alle a ≥ 1 ≥ b, die a ∧ bΦ = 1, erfüllen,

Denn: a ∧ bΦ = a ∧ b−1 = 1 ⇒ 1 ∨ ab = a & 1 ∧ ab = b, vgl.
(2.58).

Somit sind die Bedingungen (L0), (L1), (L2), (L3) in jeder ℓ-Gruppe erfüllt.

Im folgenden werden wir zeigen, dass die herausgestellten notwendigen Be-
dingungen auch hinreichend sind. Das bedeutet dann einen Beitrag zu Pro-
blem 7 of Fuchs [2].

8.1 Verbände von ℓ-Gruppen-Kegeln

8. 1. 1 Theorem. Sei (L,∨) ein Halbverband. Dann ist (L,∨) der Halb-
verband eines (abelschen) ℓ-Gruppen-Kegels gdw. die beiden nachfolgenden
Bedingungen erfüllt sind:

(P1) L×L ist Vereinigung von paarweise disjunkten (involutorischen)
Anti-Ordnungsautomorphismen

Φs : (I(s),≤) → (I(s),≤) ,

aufgefasst als Mengen von Paaren.
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(P2) Definieren wir xΦs := xΦx∨s, so folgt: aΦb ΦaΦc
= (a ∨ b) Φc.

BEWEIS. Es folgt fast unmittelbar aus (P1), dass (L,∨) sogar ein Verband
ist – und zwar mit Minimum 0. Wir bezeichnen nun mit Φs den eindeutig
bestimmten Antiautomorphismus, der 1 auf s abbildet. Auf diese Weise ist
dann auch Φs eindeutig bestimmt. Wir beachten als nächstes, dass (P1) zu
jedem a, b ein x mit aΦx = b gewährleistet – und definieren:

x = ab :⇔ aΦx = b
a ∗ b := aΦa∨b
b : a := aΦ−1

a∨b.

Dann gelten für diese Festsetzungen zunächst a, b ≤ ab und (b : a)Φa∨b = a
und somit weiter:

(A1) a ∗ ab = b,

(A2) ab : b = bΦ−1
ab = a,

(A31) a(a ∗ b) = a ∨ b = b(b ∗ a)

(A32) (b : a)a = a ∨ b = (a : b)b,

Anwendung von (A2) führt wegen der Symmetrie in a, b weiter zu:

(a ∗ b) ∗ (a ∗ c) = aΦbΦaΦc

= (a ∨ b)Φc

= (b ∗ a) ∗ (b ∗ c)

Und das liefert: ab ∗ c = 1 ∗ (ab ∗ c)
= (ab ∗ a) ∗ (ab ∗ c)
= (a ∗ ab) ∗ (a ∗ c)
= b ∗ (a ∗ c).

Auf diese Weise folgt, dass (L,∨) der Halbverband eines geeigneten ℓ-
Gruppen-Kegels ist.
Bleibt der abelsche Fall zu klären. Hierzu fordern wir, dass alle Φs involu-
torisch seine. Dann erhalten wir:

a ∗ ba = (b ∗ ba) ∗ ba
= bΦbaΦba

= b
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und damit ab = a(a ∗ ba)
= ba(ba ∗ a)
= ba,

wegen ab ∗ a = abΦab∨a = abΦab = 1 und sΦs = 1, also s · 1 = s

Da die Notwendigkeit der Bedingungen (P1), (P2) schon gezeigt wurde
sind wir hiermit am Ziel. 2

8.2 ℓ-Gruppen-Verbände

Ist (V,∨,∧) ein ℓ-Gruppen-Verband, so lässt sich mittels der ℓ-Gruppen-
Operationen nach (2.54) und (2.59) jedes Element auffassen als ein Produkt
(1 ∨ a) · (1 ∧ a) mit 1 ∨ a) ∧ (1 ∧ b)−1 = 1 und es gelten nach (2.58) die
Gleichungen

(1 ∨ a) · (1 ∧ a) ∨ (1 ∨ b) · (1 ∧ b)
= (1 ∨ a) ∨ (1 ∨ b)) · ((1 ∧ a) ∨ (1 ∧ b))

UND (1 ∨ a) · (1 ∧ a) ∧ (1 ∨ b) · (1 ∧ b)
= (1 ∨ a) ∧ (1 ∨ b)) · ((1 ∧ a) ∧ (1 ∧ b)) ,

denn die linken Seiten sind gleich a ∨ b bzw. gleich a ∧ b .

Dies vor Augen gelingt uns eine Charakterisierung der ℓ-Gruppen-Verbände.

8. 2. 1 Theorem. (L,∨,∧) ist ein ℓ-Gruppen-Verband gdw. er die Be-
dingungen (L0), (L1), (L2), (L3) erfüllt, was insbesondere einschließt, dass
({x | x ≥ 1},∨,∧) isomorph sei zu einem ℓ-Gruppen-Kegel-Verband.

BEWEIS. Alles, was wir zu zeigen haben, ist die Hinlänglichkeit. Sei also
(L,∨,∧) ein Verband, der die Bedingungen (L0), (L1), (L2), (L3) erfüllt
mit dem ausgezeichneten Element 1 und ∗ als fixiertem Antiisomorphismus
von N := {x | x ≤ 1} auf P := {x | 1 ≤ x} . Dann betrachten wir

L∗ := {(a | b)
∣∣∣∣ a ≥ 1 ≥ b & a ∧ b∗ = 1}

unter (a | b) ∨ (c | d) := (a ∨ c | b ∨ d)

(a | b) ∧ (c | d) := (a ∧ c | b ∧ d).
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(L∗,∨,∧) ist abgeschlossen bezüglich ∨ und ∧, wegen:

a ∧ b∗ = 1 = c ∧ d∗ ⇒ (a ∨ c) ∧ (b ∨ d)∗

= (a ∨ c) ∧ (b∗ ∧ d∗)
= (a ∧ b∗ ∧ d∗) ∨ (c ∧ b∗ ∧ d∗)
= 1.

und a ∧ b∗ = 1 = c ∧ d∗ ⇒ (a ∧ c) ∧ (b ∧ d)∗

= (a ∧ c) ∧ (b∗ ∨ d∗)
= (a ∧ c ∧ b∗) ∨ (a ∧ c ∧ d∗)
= 1.

Als nächstes gilt:
(i) (L,∨,∧) ist isomorph zu (L∗,∨,∧).

(ii) (L∗,∨) ist isomorph zu dem Verband einer jeden ℓ-Gruppe deren
Kegel verbandsisomorph ist zu ({x | x ≥ 1},∨,∧).

Ad (i) : (L∗,∨,∧) ist distributiv wegen (L0). Wir definieren ψ : L → L∗

mittels ψ(x) := (1∨ x | 1∧ x) . Dann liegt nach (L2) ψ(x) in L∗. Weiterhin
ist ψ nach (L3) surjektiv, und wegen der Verbands-Distributivität ist ψ
auch injektiv, wegen 1 ∨ x = 1 ∨ y & 1 ∧ x = 1 ∧ y =⇒ x = y .
Schließlich folgt:

ψ(x ∨ y) =

(
1 ∨ (x ∨ y)

∣∣∣∣ 1 ∧ (x ∨ y)

)
=

(
(1 ∨ x) ∨ (1 ∨ y)

∣∣∣∣ (1 ∧ x) ∨ (1 ∧ y)

)
= (1 ∨ x | 1 ∧ x) ∨ (1 ∨ y | 1 ∧ y)
= ψ(x) ∨ ψ(y),

und es ergibt sich analog

ψ(x ∧ y) = ψ(x) ∧ ψ(y),

Ad (ii) : Wir erinnern zunächst daran, dass in (L,∨,∧) der Unterverband
({x | x ≥ 1},∨,∧) isomorph angenommen ist zu einem ℓ-Gruppen-Kegel-
Verband.
Sei hiernach (G,∨,∧) ein solcher ℓ-Gruppen-Kegel-Verband der ℓ-Gruppe
(G, ·,−1 ,∨,∧, e) . Dann erfüllt (G, ·,−1 ,∨,∧, e) die aufgestellten Bedingun-
gen bezüglich −1 für Φ mit e als 1.
Weiter ist jedes x ∈ L aufgespalten in (1 ∨ x | 1 ∧ x) so wie jedes a ∈ G

aufgespalten ist in (1 ∨ a) · (1 ∧ a) .
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Wir stiften nun in G die Zuordnung

ϕ : a = (1 ∨ a) · (1 ∧ a) 7→ (1 ∨ a | 1 ∧ a).

Diese Zuordnung ist bijektiv, wie wir oben sahen, und es gelten:

ϕ(a ∨ b) = (1 ∨ a ∨ b | 1 ∧ (a ∨ b))
= ((1 ∨ a) ∨ (1 ∨ b) | (1 ∨ a) ∧ (1 ∨ b))
= ((1 ∨ a) | (1 ∧ a)) ∨ ((1 ∨ b)(1 ∧ b))
= ϕ(a) ∨ ϕ(b)

und analog

ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b)

Damit sind wir am Ziel. 2



Kapitel 9

Kommutative Bricks

9.1 Vorbemerkungen

Schon im Kapitel über Kegelalgebren haben wir den Brick eingeführt und
gesehen, dass sich jeder Verbandsgruppenkegel, aufgefasst als Kegelalge-
bra, in einen Brick einbetten lässt. Somit sind Bricks aufs engste gekoppelt
mit der Verbandsgruppe und andererseits aufs engste assoziiert mit der
booleschen Algebra. Genauer: Theorie der Bricks ist zum einen in einer
gewissen Weise nichts anderes als Theorie der Verbandsgruppen, und sie
ist zum anderen nichts anderes als eine abgeschwächte Theorie der boole-
schen Algebra. Denn, es lässt sich jeder Brick auffassen als eine selbstduale
Algebra B := (B,▽,△, ∗ , ⋆) vom Typ (2, 2, 1, 1) , deren Gesetze bei ent-
sprechender Deutung der Operationen ausnahmslos auch erfüllt werden
von der booleschen Algebra.

So gesehen scheint eine Theorie der Bricks cum grano salis längst ge-
schrieben, doch ist zu beachten, dass beim Übergang vom Kegel zu seiner
Brickerweiterung ganz wesentliche algebraische und ordnungstheoretische
Eigenschaften verloren gehen. So werden beispielsweise Archimedizität und
Vollständigkeit zwangsläufig

”
zerstört“, wie man sofort sieht! Es ist ja jedes

a ′ obere Grenze zu allen a des Kegels. Andererseits pflanzen sich Kongru-
enzen des Kegels eindeutig auf den Brick fort.

Denn: a ≡ b ′ führt zu 0 = b ·b ′ ≡ b ·a = 0 . Es ist aber das Bild eines Kegels
stets wieder ein Kegel, also multiplikativ kürzbar, und folglich dann für
alle Elemente der Brickerweiterung eines Kegels 0 ≡ x erfüllt. Somit bleibt
nur der Fall, in dem kein Kegelelement a zu einem hinzu genommenen b ′

kongruent ist, also a ′ ≡ b ′ genau dann gilt, wenn a ≡ b erfüllt ist.

Auch ist zu bedenken, dass sich der Brick noch dort als Hilfsstruktur
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bewährt, wo eine Verbandsgruppe nicht unmittelbar auszumachen ist, man
denke etwa an den Kommutativitätsbeweis fürarchimedische d-Halbgruppen.
Andererseits: Die Nähe des Brick zur Verbandsgruppe und zur booleschen
Algebra ist deutlich, so dass sich Fragen nach Gemeinsamkeiten dieser
Strukturen als Fragen der Bricktheorie geradezu aufdrängen.

Unser Anliegen kann es an dieser Stelle natürlich höchstens sein, durch
einige Proben zu vermitteln, wie Brick-Theorie arbeitet, um auf diese Wei-
se exemplarisch zu unterlegen, wie sich Verbandsgruppen und boolesche
Algebren ineins führen lassen.

Hierzu gehen wir von vorne herein aus von symmetrischen Bricks.

Brick bedeute also in diesem Kapitel stets: Symmetrischer Brick.
Wir haben uns für die Bezeichnung symmetrischer Brick entschieden, ob-
wohl viele äquivalente Beschreibungen im Umlauf sind und die Wahl MV-
Algebra zu Ehren von Chang eine Alternative ist. Tatsächlich betont aber
MV den logischen Aspekt, wohingegen Brick neutralisiert.1)

Imd en Voirdergrund rücken wir zunächst einige

9.2 Axiomatische Aspekte

Unser erstes Ziel ist die Untersuchung einiger Gleichungssysteme, die Bricks
unter verschiedenen Sichtweisen beschreiben, so wie wir es bei Booleschen
Algebren schon kennen gelernt haben.

9. 2. 1 Proposition. Sei B ein Brick. Definiere a ◦ b := (b ∗ (a ∗ 0)) ∗ 0
und a ′ := a ∗ 0. Dann erfüllt B die Gleichungen:

(CS1) a ◦ (b ◦ c) = b ◦ (a ◦ c)
(CS2) a ◦ 0 = 0
(CS3) a ◦ 0 ′ = a
(CS4) a ◦ (a ◦ b ′)′ = b ◦ (b ◦ a ′) ′.

DENN: Es gelten nacheinander:

a ◦ b = b ◦ a(9.5)

1) Der interessierte Leser sei hingewiesen auf [126], wo eine Theorie der Bricks gegeben
wird, allerdings unter weitgehender Außerachtlassung der nachfolgenden Herleitungen, die
so gesehen als eine Ergänzung des wissenschaftsdidaktischen hochkarätigen Beitrages von
Cignoli, D’Ottaviano, Mundici angesehen werden dürfen.
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(9.6) a ◦ (b ◦ c) = ((b ◦ c) ∗ (a ∗ 0)) ∗ 0
= (((c ∗ (b ∗ 0)) ∗ 0) ∗ (a ∗ 0)) ∗ 0
= (a ∗ (c ∗ (b ∗ 0))) ∗ 0
= (b ∗ (c ∗ (a ∗ 0))) ∗ 0
= c ◦ (b ◦ a)
= a ◦ (b ◦ c) .

(9.7) a ◦ 0 = (0 ∗ (a ∗ 0)) ∗ 0
= (a ∗ (0 ∗ 0)) ∗ 0
= 0 .

(9.8) a ◦ 0 ′ = (0 ′ ∗ (a ∗ 0)) ∗ 0
= (1 ∗ (a ∗ 0)) ∗ 0
= (a ∗ 0) ∗ 0
= a .

(9.9) a ◦ (a ◦ b ′)′ = a ◦ (((b ′ ∗ (a ∗ 0)) ∗ 0) ∗ 0)
= a ◦ ((a ∗ (b ′ ∗ 0))
= a ◦ (a ∗ b)
= ((a ∗ b) ∗ (a ∗ 0)) ∗ 0
= ((b ∗ a) ∗ (b ∗ 0)) ∗ 0
= b ◦ (b ◦ a ′)′. 2

Mit anderen Worten: ein Brick lässt sich auch auffassen als ein kommuta-
tives Monoid mit involutorischem Operator ′. Nun zeigen wir

9. 2. 2 Proposition. Sei S := (S, ◦, ′, 0) eine Algebra vom Typ (2, 1, 0),
die den Gleichungen (CS1) bis (CS4) genügt. Dann bildet S einen Brick
bezüglich 0 und der Operation a ∗ b := (a ◦ b ′)′.
BEWEIS. Nach (CS1) und (CS3) gilt a ◦ b = b ◦ a. Weiter haben wir mit
1 := 0 ′ zunächst nach (CS4) auch 1 ′ = 0 und damit:

(9.10) 0 ′′ = 1 ◦ 1 ′ = 0 .
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(9.11) a ′′ = 1 ◦ (1 ◦ a ′)′

= a ◦ (a ◦ 1 ′)′

= a ◦ (a ◦ 0)′

= a ◦ 0 ′

= a.
Hieraus folgt weiter

(9.12) a ◦ a ′ = a ◦ (a ◦ 0 ′)′ = 0 ◦ (0 ◦ a ′)′ = 0 .

(9.13) (a ∗ a) ∗ b = ((a ◦ a ′)′ ◦ b ′)′
= (0 ′ ◦ b ′)′
= b ′′ = b

und damit

(9.14) a ∗ (b ∗ c) = (a ◦ (b ∗ c)′)′
= (a ◦ ((b ◦ c ′)′)′)′
= (a ◦ (b ◦ c ′))′
= ((a ◦ b) ◦ c ′))′
= (a ◦ b) ∗ c) ,
= b ∗ (a ∗ c) .

Tatsächlich gilt also etwas mehr, nämlich

(9.15) (a ◦ b) ∗ c = b ∗ (a ∗ c)) .
Somit ist (S, ◦, ∗) eine komplementäre Halbgruppe, und es gilt offenbar
a ∗ b = (b ∗ 0) ∗ (a ∗ 0) . Das sichert als nächstes

(9.16) (a ∗ b) ∗ b =
(
(b ∗ 0) ∗ (a ∗ 0))

)
∗
(
(b ∗ 0) ∗ 0

)
= (b ∗ a) ∗ a

Zu zeigen bleibt:

(9.17) 0 ∗ a = (0 ◦ a ′)′

= 0 ′

= (a ◦ a ′)′

= a ∗ a . 2

9. 2. 3 Definition. Unter einer kommutativen Halbgruppe mit Komple-
menten verstehen wir eine Algebra (S, ◦, ′ , 0), die den Axiomen (CS1) bis
(CS4) genügt.
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9. 2. 4 Proposition. Sei B ein Brick. Definiere a ∗ b und a ′ wie oben.
Dann bildet B bezüglich ◦ und ′ eine Halbgruppe mit Komplementen C(B).
Sei C eine kommutative Halbgruppe mit Komplementen. Definiere ∗ und
0 wie oben. Dann bildet C bezüglich 0 und ∗ einen Brick B(C). Darüber
hinaus gelten die Operatorgleichungen:

(9.18) B ∼= B(C(B)) und C ∼= C(B(C)) .

BEWEIS. Es ist nur noch die Gültigkeit der behaupteten Gleichungen zu
zeigen.

(a) Wir gehen aus von einem Brick B. Bezeichnen wir die Operationen
von B(C(B)) mit ∗̄ und 0̄, so erhalten wir:

(9.19) a∗̄b = (a ◦ b ′)′
= ((b ′ ∗ (a ∗ 0)) ∗ 0)′

= (((b ∗ 0) ∗ (a ∗ 0)) ∗ 0)′

= (b ∗ 0) ∗ (a ∗ 0)
= a ∗ ((b ∗ 0) ∗ 0)
= a ∗ b

(9.20) 0̄ = a ◦ a ′ = ( a ′ ∗ a′ ) ′ = 0 .

(b) Hiernach gehen wir aus von einer kommutativen Halbgruppe mit
Komplementen C und bezeichnen die Operationen von C(B(C)) mit ◦̄ und
+. Dann resultiert die Behauptung aus den beiden Gleichungen:

(9.21) a◦̄b = (a ∗ (b ∗ 0)) ∗ 0
= ((a ◦ (b ∗ 0)′)′)′

= a ◦ (b ∗ 0)′

= a ◦ ((b ◦ 0 ′)′)′

= a ◦ b

(9.22) a+ = a ∗ 0 = (a ◦ 0 ′)′ = a′ . 2

Wie schon erwähnt, ist die Theorie der Bricks eng verbunden mit der Theo-
rie der Verbandsgruppen, da jeder Brick kanonisch in einen Verbandsgrup-
penkegel und jeder Verbandsgruppenkegel kanonisch in einen Brick einge-
bettet werden kann.
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Auf der anderen Seite stellt sich heraus, dass ′ ein involutorischer Operator
ist, weshalb mit a▽ b := a ◦ b und a△ b := (a ′ ◦ b ′)′ jeder Brick zu einer
selbstdualen Algebra (B,▽,△, ′ ) wird.

Folglich kann der Brick als eine nicht idempotente boolesche Algebra auf-
gefasst werden, die per definitionem die de Morganschen Gesetze erfüllt.

Der Vollständigkeit halber scheint es wünschenswert, hierfür einen geson-
derten Begriff und eine typische selbstduale Menge von Axiomen zu haben.
Wir schlagen den Namen dualer Brick vor und erklären:

9. 2. 5 Definition. Sei B := (B,▽,△, ′ ) eine Algebra vom Typ (2, 2, 1).
Dann heiße B ein dualer Brick, wenn B die Gleichungen des Brick sowohl
bezüglich △ und ′ als auch bezüglich ▽ und ′ erfüllt und zudem bezüglich ▽
und △ mindestens eine und damit beide de Morganschen Regeln gelten.

Offensichtlich folgt aus dieser Definition, dass a △ a ′ bezüglich ▽ und
a ▽ a ′ bezüglich △ die Rolle einer Eins übernehmen, denn aus den de
Morganschen Regeln resultiert a▽ (b△ b ′) = a▽ ((b△ b ′)′)′ = a▽ (b ′▽
b)′ = a und analog die duale Gleichung.

Schließlich kommen wir zu einer Verallgemeinerung eines Satzes von Gli-

venko, nach dem die abgeschlossenen Elemente eines brouwerschen Halb-
verbandes mit 0 einen booleschen Verband bilden:

9. 2. 6 Proposition. Sei (S, ·, ∗) eine kommutative komplementäre Halb-
gruppe und sei c beliebig aus S. Dann bilden die Elemente ac := a∗ c einen
Brick bezüglich ∗.

BEWEIS. Wir haben zu zeigen, dass die Menge aller ac abgeschlossen ist
unter ∗ und dass diese Menge die Gleichung (ac ∗ bc) ∗ bc = (bc ∗ ac) ∗ ac
erfüllt. Es ist aber ac ∗ bc = (a ∗ c) ∗ (b ∗ c) = b(a ∗ c) ∗ c, und es gilt:

(9.23) (ac ∗ bc) ∗ bc
= ((a ∗ c) ∗ (b ∗ c)) ∗ (b ∗ c)
= ((a ∗ c) ∗ (((b ∗ c) ∗ c) ∗ c)) ∗ (((b ∗ c) ∗ c) ∗ c)
= (((b ∗ c) ∗ c) ∗ ((a ∗ c) ∗ c)) ∗ (((b ∗ c) ∗ c) ∗ c)
= (bc ∗ ac) ∗ ac,

da die vorletzteTermfunktion symmetrisch ist in a und b. 2
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9.3 Darstellungen

In diesem Abschnitt geben wir zwei Darstellungssätze für beliebige Bricks,
die im klassischen Fall boolescher Algebren mit dem Stoneschen Darstel-
lungssatz zusammenfallen und die an wohlbekannte Sätze von Jaffard
und Keimel angelehnt sind.

Wie üblich verstehen wir unter einem Bézout-Ring einen kommutativen
Ring R mit Eins, dessen endlich erzeugten Ideale Hauptideale sind, und wir
bezeichnen die Halbgruppe D aller Hauptideale von R als die Teilbarkeits-
halbgruppe von R. In Übereinstimmung hiermit sprechen wir von einem
Bézout-Bereich, wenn der unterliegende Ring sogar ein Integritätsbereich
ist.

9. 3. 1 Lemma. In einem Bézout-Bereich ist jedes Quotientenideal (a) :
(b) ein Hauptideal.

DENN: (a, b) = (d) impliziert b
∣∣ ax =⇒ b

∣∣ (a, b)x =⇒ b
∣∣ dx =⇒ (b/d)

∣∣ x
und damit (b) : (a) = (b/d). 2

Als nächstes erhalten wir:

9. 3. 2 Proposition. Sei R ein Bézout-Bereich und c verschieden von 0.
Dann bilden die Hauptideale von R/(c) := Rc einen Brick bezüglich

(a) · (b) = (a · b) und (a)′ = (c) : (a, c)

BEWEIS. Zunächst gilt die Implikation

(a, c) = (t) =⇒ t = ax+ cy

=⇒ t = a · x
=⇒ t

∣∣ a & a
∣∣ t

=⇒ (a) = (t) ,

also ist jedes Ideal aus Rc ein Hauptideal (t) mit t
∣∣ c .

Weiter gilt im Falle b
∣∣ c die Implikation

b
∣∣ a · x =⇒ by = ax

=⇒ c
∣∣ ax− by

=⇒ cu+ by = ax
=⇒ b

∣∣ ax
=⇒ b

∣∣ a · x
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und damit

b
∣∣ a · x ⇐⇒ b

∣∣ ax ,
woraus wegen der Bézout-Eigenschaft von R die Behauptung resultiert. 2

Sei hiernach B ein Brick und C(B) der zu B gehörige Verbandsgruppenke-
gel. Es ist nach einem Satz von Jaffard wohlbekannt, dass C(B) darstell-
bar ist als Teilbarkeitshalbgruppe eines Integritätsbereiches ([101]). Hier
soll nun unter Anwendung einer Methode aus [79] ein kommutativer Ring
konstruiert werden, dessen Teilbarkeitshalbgruppe isomorph ist zu B.

9. 3. 3 Proposition. Sei B ein Brick. Dann gibt es einen Bézout-Ring
R, derart, dass (B, · ) eine Unterhalbgruppe von (R, · ) und B isomorph zur
Teilbarkeitshalbgruppe D von R ist.

BEWEIS. Wir gehen aus von Summen α = a1+a2+· · ·+an (ai ∈ C), auf-
gefasst als Elemente des Gruppenrings von G(C(B)) über dem zweielemen-
tigen Körper Z2 . Die Elemente sind kanonisch von der Form a1 + . . .+ an,
und definieren wir d(α) := a1 ∧ a2 ∧ . . . ∧ an , so erhalten wir nach [79]
d(α)d(β) = d(αβ).
Es ist nun ein spezieller Bézout-Ring zu konstruieren. Dazu beachten wir,
dass die Menge E der Elemente

a1 + · · · + an (a1 ∧ · · · ∧ an = 1)

multiplikativ abgeschlossen ist. Folglich können wir nach dieser Menge lo-
kalisieren. Auf diese Weise gelangen wir zu einem Ring, dessen Elemente
sich in der Form

α · (a1 + · · · + an) (a1 ∧ · · · ∧ an = 1) ,

schreiben lassen, worin α und die ai (1 ≤ i ≤ n) Produkte aus B sind.
Vorweg bezeichnen wir als ein ε jedes Element aus E . Gilt dann a, b ∈ C ,
so sind die Hauptideale (aεa) und (bεb) genau dann gleich, wenn a = b
erfüllt ist. Denn wegen der Eindeutigkeit der Summendarstellungen teilen
die beiden Elemente a, b in C(B) einander, wenn aεa und bεb in C(B)
einander teilen. Dies bedeutet natürlich im Sonderfall a, b ∈ B , dass a und
b schon im Ausgangsbrick einander teilen.
Also ist ϕ : a −→ (a) ein Isomorphismus von C(B) auf die Teilbarkeits-
halbgruppe von I. Zusätzlich dürfen wir annehmen, dass B eine Teilmenge
von I ist.
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Es ist zu zeigen, dass I ein Bézout-Ring ist. Dies resultiert aber aus
(aεa, bεb) = (a, b) = (a ∧ b) · (a ∗ b, b ∗ a) = (a ∧ b)(1) nach unserer Kon-
struktion.

Hiernach gelangen wir wie folgt ans Ziel: Sei c die 0 von B . Wir betrachten
Dc . Dann induziert ϕ einen Isomorphismus zwischen der Teilbarkeitshalb-
gruppe Dc von I/(c) und B. Denn man beachte:

(i) ϕ : a −→ (a) ist eine Funktion.

(ii) Es gilt (a) = (a ∧ c) für alle a ∈ C(B), denn (a ∧ c) besitzt
einen Erzeuger der Form a ·x + y · c , woraus die Existenz ei-
nes Erzeugers der Form a·x resultiert und damit die Gleichung
(a) = (a ∧ c), wie behauptet.

(iii) ϕ ist ein Homomorphismus, denn wegen (ii) erhalten wir (a) (b) =
(ab) = (c ∧ ab) = (a ◦ b).

(iv) ϕ ist bijektiv, denn haben wir (a) = (b) mit a, b
∣∣ c, so folgt vorweg

für geeignete x, y die Beziehung c
∣∣ (ax− b) & c

∣∣ (by− a), woraus
weiter a

∣∣ b & b
∣∣ a und somit a = b resultiert.

2

Als Sonderfall liefert 9.3.3:

9. 3. 4 Proposition. Sei B eine boolesche Algebra und sei weiter I0 der
im Sinne von 9.3.3 zu B gehörige Ring. Dann ist B als Verband isomorph
zu D0 und D0 seinerseits isomorph zum Verband der Idempotenten von I0.
Folglich lässt sich auf D0 eine Addition definieren, so dass D0 zu einem
booleschen Ring wird, derart dass diese Addition überein stimmt mit (a ′ ∨
b) ∧ (b ′ ∨ a).

BEWEIS. Es ist zu zeigen, dass sich + als boolesche Operation darstellen
lässt, wie im Satz behauptet. Offenbar gilt aber für idempotente Elemente
aus I0

xa = 0 ⇐⇒ x(a+ 1) = x⇒ x ≥ a+ 1 ,

und damit a∗0 = a+ 1 , und wir haben a∧ b = a+ab+ b sowie ab = a∨ b .
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und hieraus resultiert

a+ b = (a+ ab+ b) + ab

= (a ∧ b) + (a ∨ b)
= (a ∧ b)(1 + ((b ∗ a) ∨ (a ∗ b)))
= (a ∧ b)(1 + ((b ′ ∧ a) ∨ (a ′ ∧ b))
= (a ∧ b)((a ′ ∨ b) ∧ (b ′ ∨ a))
= (a ′ ∨ b) ∧ (b ′ ∨ a).

Also ist gezeigt, dass wir den Ring von Stone erhalten, wenn wir auf (B, · )
die von (R,+, · ) induzierte Addition definieren. 2

Im zweiten Teil dieses Abschnitts diskutieren wir topologische Darstel-
lungen. Im klassischen Fall boolescher Algebren besagt ein Theorem von
M. H. Stone, dass jeder booleschen Algebra umkehrbar eindeutig ein boo-
lescher Raum zugeordnet ist, also ein total unzusammenhängender kompak-
ter Hausdorff-Raum. Dieser Raum wird mit Hilfe der irreduziblen Ideale
von B auf wohlbekannte Weise konstruiert. Des weiteren ist gut bekannt,
dass die lange Reihe von Beiträgen zu topologischen Darstellungen algebrai-
scher Strukturen initiiert wurde von Stone [146] und schließlich zu einer
erweiterten Theorie der Garbendarstellungen führte – siehe [114],[115]. Da-
her sind wir in der erfreulichen Situation, auf Keimel [114] 2) verweisen
zu können, und es ist leicht zu sehen, dass diese Resultate bereits aus viel
schwächeren Bedingungen als denen der abelschen Verbandsgruppe folgen.
Deshalb beschränken wir uns an dieser Stelle darauf, ein Ergebnis aus [114]
wie folgt zu übernehmen:
Studiere die Abschnitte 2 und 3 aus [114]. Dann folgt:

9. 3. 5 Proposition. Sei B ein Brick. Dann ist B isomorph zum Brick al-
ler Schnitte der Garbe F (B, SpecB) über SpecB, (wobei die Halme dieser
Garbe linear geordnete Bricks sind).

BEWEIS. Man konsultiere Keimel, [114]. 2

Ist B sogar boolesch, so ist klar, dass diese Darstellung aus 9.3.5 überein
stimmt mit der Stoneschen Darstellung boolescher Algebren als boole-
sche Räume, denn in diesem Fall sind die Halme zweielementige Algebren,
weshalb die Schnitte mit ihrem (clopen) Träger identifiziert werden können.

2) Man beachte, dass die dort eingehenden Begriffe, wie c-Ideal, primes c-Ideal, direkter Faktor, Polare,
die boolesche Algebra der direkten Faktoren bzw. der Polaren, Projizierbarkeit und Repräsentierbarkeit
untersucht und damit bereit gestellt werden, so dass eine Übertragung der zentralen Ergebnisse aus [115]
auf Bricks zur Sache der Routine wird.
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9.4 Vollständige Bricks

Vollständige Bricks waren bereits Gegenstand unserer Untersuchungen in
[25]. Dort spielten sie eine entscheidende Rolle beim Beweis des Satzes

Archimedische d-Halbgruppen sind kommutativ.

Insbesondere sahen wir in diesem Zusammenhang, dass sich ein Brick
genau dann in einen vollständigen Brick einbetten lässt, wenn er ganz-
abgeschlossen ist, d. h., wenn er die Bedingung erfüllt:

(G) ∀t ̸= 1, a ∈ Q ∃ n ∈ N : tn ∗ a ̸≥ t ̸≤ a : t .

Ferner sahen wir, dass vollständige Bricks eine optimale Grenz-Arithmetik
besitzen, die sich ausdrückt in

(D1
∧

) x
(∧

ai
)

=
∧

(xaiy) (D1
∨

) x
(∨

ai
)
y =

∨
(xaiy)

(D2
∧

) x ∨
∧
ai =

∧
(x ∨ ai) (D2

∨
) x ∧

∨
ai =

∨
(x ∧ ai)

(D3
∧

) x ∗ (
∧
ai) =

∧
(x ∗ ai) (D3

∨
) x ∗ (

∨
ai) =

∨
(x ∗ ai)

(D4
∧

) (
∧
ai) ∗ x =

∨
(ai ∗ x) (D4

∨
) (
∨
ai) ∗ x =

∧
(ai ∗ x)

Vollständige Bricks sind vollständige d-Halbgruppen und damit kommuta-
tiv. Da ihre spezielle Grenz-Arithmetik bereits in [25] geklärt wurde, wollen
wir uns hier auf Darstellungsmöglichkeiten konzentrieren.

9. 4. 1 Lemma. Sei B ein Brick. Dann bilden die Idempotenten von B

eine boolesche Unteralgebra von B bezüglich der Operationen ·,∧ und ′ .

BEWEIS. Dies wurde bereits allgemein unter 3.3.13 gezeigt. 2

Schon beim Studium vollständiger d-Halbgruppen sind wir auf subdirek-
te Zerlegungen nach Idempotenten gestoßen. Zu beachten bleibt jedoch,
dass die Operation ∗ dort im Hintergrund stand. Auch ist klar, dass ein
vollständiger Brick wegen seiner starken Arithmetik sehr viel stärkere Re-
sultate erwarten lässt als d-Halbgruppen.

9. 4. 2 Proposition. Sei B ein vollständiger Brick und sei a ̸≤ b & b ̸≤ a
erfüllt. Dann gibt es eine direkte Zerlegung U × V von B, so dass die
Komponenten von a und b paarweise vergleichbar sind.
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BEWEIS. Definiere

U := {x
∣∣ a ∗ b ∧ x = 1} und V := {y

∣∣∀x ∈ U : x ∧ y = 1} .

Dann erfüllt u :=
∨
x (x ∈ U) nach den Regeln der Arithmetik vollständi-

ger Bricks,

(a ∗ b) ∗ u =
∨

(a ∗ b) ∗ x =
∨
x (x ∈ U) = u .

Also gilt (a ∗ b) ∧ u = 1 und damit

u :=
∨

x∈Ux ∈ U und v :=
∨

y∈V y ∈ V .

Wir betrachten u2 und v2. Hier folgt u2∧v2 = (u∧v)2 = 1 und somit u2 ∈ U
und v2 ∈ V . Also sind u und v orthogonale Idempotente. Andererseits
haben wir uv = 0, denn aus u∗u ′ = u∗ (u∗0) = u∗0 = u ′ folgt u∧u ′ = 1
und damit u ′ ≤ v , also uv ≥ uu ′ = 0.
Hiernach konstruieren wir einen Isomorphismus zwischen B und (U, ∗, u)×
(V, ∗, v). Wir erklären:

ϕ : c −→ (u ∧ c, v ∧ c) .
Offensichtlich ist ϕ eine Funktion. Weiter ist ϕ injektiv, denn

u ∧ c = u ∧ d & v ∧ c = v ∧ d
=⇒

c = (u ∧ v ∧ c)c ∧ 0
= (u ∧ c)(v ∧ c)
= (u ∧ d)(v ∧ d) = d .

Ferner ist ϕ surjektiv, denn im Fall x ≤ u & y ≤ v erhalten wir

xy ∧ u = (x ∨ y) ∧ u = (x ∧ u) ∨ (y ∧ u) = x

und xy ∧ v = . . . = y.

Zu zeigen bleibt ϕ (c) ∗ ϕ (d) = ϕ (c ∗ d) , d.h.

u ∧ (c ∗ d) = (u ∗ (c ∗ d)) ∗ (c ∗ d)

= ((u ∗ c) ∗ (u ∗ d)) ∗ (c ∗ d)

= ((c ∗ u) ∗ (c ∗ d)) ∗ (c ∗ d)
(6.20)
= c ∗ ((d ∗ u) ∗ u)

= (d ∗ u) ∗ (c ∗ u)

= ((c ∗ u) ∗ u) ∗ ((d ∗ u) ∗ u)

= (u ∧ c) ∗ (u ∧ d) .
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Damit sind wir am Ziel. 2

9. 4. 3 Definition. Sei B ein Brick. Dann bezeichnen wir mit B(I) die
boolesche Unteralgebra der Idempotenten aus B.

9. 4. 4 Definition. Im weiteren bezeichne E das reelle Einheitsintervall
E, betrachtet als Brick bezüglich der Operation a ∗ b := max (0, b− a) .
Ferner bezeichne Sn die Menge {1, . . . , n} ⊆ N , betrachtet als Brick
bezüglich a ∗ b := max(n, b− a) .
Schließlich bedeute Würfel im weiteren ein direktes Produkt, dessen Fakto-
ren ausnahmslos isomorph sind zu E und Gitterwürfel ein direktes Produkt,
dessen Faktoren ausnahmslos isomorph sind zu einem Sn .

Dann folgt als ein erster Struktursatz:

9. 4. 5 Proposition. Sei B ein vollständiger Brick und p ein Atom von
B(I) d. h. es gebe kein Idempotent u mit 1 < u < p. Dann ist das Intervall
[1, p] isomorph zu E oder zu einem Sn .

BEWEIS. Aus dem Beweis von 9.4.2 wissen wir, dass [1, p] betrachtet
als vollständiger Brick direkt zerlegbar ist, sofern es zwei unvergleichbare
Elemente in [1, p] gibt. Folglich sind je zwei Elemente a, b vergleichbar,
weshalb [1, p] nach Hölder-Clifford vom Typ E oder Sn ist. Siehe
etwa [30]. 2

Offenbar ist das Komplement p ′ eines Atoms p von B(I) ein Hyperatom von
B(I) und der letzte Satz besagt, dass das von p ′ erzeugte Ideal maximal
ist. Umgekehrt sei nun angenommen, dass M ein maximales Ideal von B

ist. Dann ist B/M einfach und daher isomorph zu einer Unterstruktur
von E. Also stellt sich die natürliche Frage, ob sich jeder vollständige Brick
subdirekt oder sogar direkt zerlegen lässt in Komponenten des angegebenen
Typs. Im folgenden entwickeln wir einige Ergebnisse in dieser Richtung. Als
erstes erhalten wir:

9. 4. 6 Proposition. Jeder vollständige Brick besitzt eine subdirekte Zer-
legung, deren Komponenten ausnahmslos isomorph zu E oder zu Sn sind.

BEWEIS. Es genügt zu zeigen, dass der Durchschnitt D der Familie aller
maximalen Ideale gleich {1} ist. Angenommen also, es wäre c ̸= 1 und
c ∈ D. Wir bezeichnen mit u das Element

∨
cn (n ∈ N) und wählen ein

maximales Ideal I, das u ′ enthält. Es folgt c ∈ I, aber u /∈ I.
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Wir betrachten nun u. Es gilt c ∗ (ck ∗u) ≤ u , und wegen u2 = u und nach
Definition und den Regeln der ∗-Arithmetik bildet das Intervall [1, u] einen
vollständigen Brick bezüglich ∗, u. Weiter erhalten wir für ein geeignetes ℓ
die Formeln c ∗ (cℓ ∗ u) ̸= 1, und (cℓ ∗ u) ∗ c ̸= 1, die erste, da anderenfalls
u = cm ∈ D erfüllt wäre – trotz u /∈ I ; u /∈ D, und die zweite, da B

nach Annahme vollständig ganz-abgeschlossen ist.
Also gibt es nach 9.4.5 Idempotente v, w mit

vw = u & v ∧ w = 1 & v ≥ c ∗ (cℓ ∗ u) ̸= 1 & w ≥ (cℓ ∗ u) ∗ c ̸= 1 .

Hiermit erhielten wir u ′vw = 0 mit w ̸= 0 und w ∧ u ′v = 1 für ein w,
woraus sich die Existenz eines maximalen Ideals J mit u ′v ∈ J , also auch
mit u ′ ∈ J ergäbe mit Widerspruch zu

c ∈ J & c ∗ (cℓ ∗ u) ∈ J =⇒ c(c ∗ (cℓ ∗ u)) ∈ J
=⇒ c ∨ (cℓ ∗ u) ∈ J
=⇒ cℓ ∈ J & cℓ ∗ u ∈ J

=⇒ cℓ(cℓ ∗ u) = u ∈ J .
Fertig! 2

Wir erinnern: Eine boolesche Algebra heißt atomar, wenn jedes Element
zumindest ein Atom übertrifft.

9. 4. 7 Proposition. Sei B ein vollständiger Brick mit atomarer boole-
scher Unteralgebra B(I) . Dann ist B ein direktes Produkt vom Typ Eω.

BEWEIS. Seien pi (i ∈ I) die Atome von B(I). Dann gelten:

∀ a : a = a ∧ 0 =
∨

(a ∧ pi) (i ∈ I)(9.29)

a ̸= b =⇒ ∃ j ∈ I : a ∧ pj ̸= b ∧ pj(9.30)

xi ≤ pi =⇒
∨
xi =

∨
((
∨
xi) ∧ pi) (i ∈ I) .(9.31)

Also gibt es eine Bijektion ϕ zwischen B und dem Produkt
∏
Pi, aller Pi

definiert via Pi := {x
∣∣x ≤ pi} (i ∈ I), vermöge

ϕ (a) := {(pi ∧ a)
∣∣ i ∈ I} ,

und es gilt ganz allgemein im Fall p = p2 wie im Beweis zu 9.4.2 gezeigt:

ϕ (a ∗ b) = u ∧ (a ∗ b)
= (u ∧ a) ∗ (u ∧ b)
= ϕ (a) ∗ ϕ (b)
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Fertig! 2

Als Sonderfall von 9.4.7 und als Verallgemeinerung eines Satzes von Tarski

[151] erhalten wir:

9. 4. 8 Proposition. Ein Brick ist ein Würfel, wenn er vollständig, atom-
los und vollständig distributiv ist.

BEWEIS. Nach der schon in der Theorie der d-Halbgruppen eingesetzten
Methode von Alfred Tarski bilden wir alle Durchschnitte

∧
ui (i ∈ I)

mit idempotenten ui , die aus jedem Paar ui, ui
′ genau ein Element berück-

sichtigen. Dann ist 0 die Vereinigung all dieser Durchschnitte und diese
Durchschnitte sind entweder gleich 1 oder ein Atom in B(I). Nach 9.4.7
folgt die Behauptung, da B atomlos und die Notwendigkeit der Bedingung
offenbar ist. 2

Ersetzen wir atomlos durch atomar, so erhalten wir aus 9.4.5

9. 4. 9 Proposition. Ein Brick ist ein Gitterwürfel, wenn er vollständig,
atomar und vollständig distributiv und.

Für den Rest dieses Abschnitts betrachten wir die speziellen Würfel En aus
topologischer Sicht.

9. 4. 10 Proposition. Ein Brick B ist ein Würfel vom Typ En, wenn
(B, y) bezüglich der Intervall-Toplogie kompakt, jedes maximale Ideal ab-
geschlossen und jedes minimale Ideal zusammenhängend ist.

BEWEIS. Offenbar sind die aufgestellten Bedingungen notwendig. Erfülle
also B die angegebenen Bedingungen.
Nach einem Satz von O.Frink [76], siehe auch [10], ist (B,≤) kompakt
bezüglich der Intervalltopologie genau dann, wenn (B,≤) einen vollständi-
gen Verband bildet. Daher ist B vollständig. Sei nun I ein maximales Ideal.
Da I abgeschlossen ist, besitzt es ein Maximum oder kann durch endlich
viele Mengen der Art B \ [x, 0] mit x ∈ I überdeckt werden. Also hat I ein
Maximum, da es andernfalls ein Element x1 ∨ x2 ∨ . . . ∨ xn ∈ I gäbe, das
nicht überdeckt würde.
Wir betrachten nun das Maximum u. Dieses u ist idempotent und hat
ein (idempotentes) Komplement, das ein Atom in B(I) ist. Umgekehrt ist
jedes Hyperatom Maximum eines maximalen Ideals aus B.
Es kann aber B(I) nur endlich viele Atome besitzen, da anderenfalls die
Menge aller Elemente aus B, die höchstens endlich viele Atome übertreffen,
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Teilmenge eines Maximalideals [1, u] wäre. Deshalb müsste u ′ ein Teiler von
u sein, mit Widerspruch zu u ′ ̸≤ u.

Hiernach bilden wir
∨
pi. Es folgt

∨
pi = 0, da es sonst ein maximales

u ∈ B(I) gäbe, dessen Komplement ein Atom wäre, das
∨
pi nicht teilt.

Damit folgt die Behauptung aus der dritten Voraussetzung in Verbindung
mit 9.4.5 2

Analog zur obigen Situation erhalten wir als
”
Gegentheorem“

9. 4. 11 Proposition. Ein Brick B ist ein endlicher Gitterwürfel, wenn
(B,≤) bezüglich der Intervall-Toplogie kompakt ist, jedes maximale Ideal
abgeschlossen ist und jedes minimale Ideal unzusammenhängend ist.

9.5 Würfelalgebren

9. 5. 1 Definition. Ein Brick heiße Würfelalgebra, wenn er Unterbrick
eines Eω ist.Natürlich ist damit jeder Würfel und auch jeder Gitterwürfel eine Würfel-
algebra. Ferner ist, wie wir oben sahen, insbesondere jeder vollständige
Brick eine Würfelalgebra, aber es ist natürlich nicht jede Würfelalgebra
vollständig. Im folgenden gehen wir allgemeiner der Frage nach, durch wel-
che Eigenschaften sich Würfelalgebren auszeichnen. Zunächst haben wir
hier als einen grundlegenden Satz ein Ergebnis, das sich implizit in der
Theorie der d-Halbgruppen einstellte:

9. 5. 2 Proposition. Ein Brick ist ein Würfel gdw. er ganz-abgeschlossen
ist.

Wenden wir dieses Resultat auf spezielle Strukturen an, so erhalten wir den
Satz von Dedekind, dass die angeordnete Gruppe der rationalen Zahlen
durch Schnitte vervollständigt werden kann zu der vollständig angeordneten
Gruppe der reellen Zahlen, und den Satz von Glivenko-Stone, dass die
Schnittvervollständigung einer booleschen Algebra wieder eine boolesche
Algebra liefert (s. [1]).

Betrachten wir als nächstes Würfelalgebren aus topologischer Sicht. Nach
Methoden, eingeführt von M. H. Stone ist es heutzutage eine Sache der
Routine, einen gegebenen Brick in eine Algebra stetiger Funktionen von
einem kompakten Hausdorffraum in das Einheitsintervall einzubetten, so-
bald dieser Brick subdirekt zerlegt ist in Faktoren, die sich einbetten lassen
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in E . Doch aus Gründen der Vollständigkeit seien die wesentlichen Ideen
hier noch einmal aufgeführt.
Zunächst versehen wir EB mit der Produkttopologie und erhalten auf diese
Weise einen kompakten Hausdorffraum H.
Hiernach betrachten wir die Menge aller Homomorphismen von B nach E.
Diese Menge ist eine abgeschlossene Teilmenge von EB und somit ein kom-
pakter Hausdorffraum bezüglich der Relativtopologie, was aus den Eigen-
schaften der Produkttopologie folgt. Wir bezeichnen diesen Raum mit D.
Offensichtlich bildet die Menge aller stetigen Funktionen ϕ : D 7−→ E , ver-
sehen mit seiner natürlichen Topologie, einen ganz-abgeschlossenen Brick
bezüglich der punktweise definierten Operationen. Wir erklären nun

â : D 7−→ E vermöge â(ϕ) := ϕ (a).

Dann ist a −→ â ein Monomorphismus von B in den Brick aller stetigen
Funktionen von D nach E, denn a ̸= b impliziert â ̸= b̂, wegen 9.4.5, sowie
die Gleichunĝ(a ∗ b)(ϕ) = ϕ (a ∗ b) = ϕ (a) ∗ ϕ (b) = â(ϕ) ∗ b̂(ϕ) .

Also erhalten wir auf der Basis von Tychonoffs fundamentaler Pionierar-
beit über Produkträume in Anlehnung an Darstellungsideen von M. H. Stone
den Satz:

9. 5. 3 Proposition. Ein Brick ist eine Würfelalgebra gdw. er ein Un-
terbrick des Bricks aller stetigen Funktionen von einem geeignet gewählten
Hausdorff-Raum in den Raum des Einheitsintervalls – betrachtet als Brick
– ist.

Dieser Satz ist offenbar eng verwandt mit Fans Theorem über die Darstell-
barkeit Archimedischer Vektorverbände [73]. Siehe auch Fleischer [75].
Wie wir gesehen haben, hat jeder Brick eine Garbendarstellung, deren Hal-
me subdirekt irreduzible und damit linear geordnete Bricks sind. Für den
speziellen Fall des Würfels bedeutet dies

9. 5. 4 Proposition. Ein Brick B ist eine Würfelalgebra genau dann,
wenn er eine Garbendarstellung über der Menge aller maximalen Ideale
von B besitzt, deren Halme sich einbetten lassen in E.

Hiernach befassen wir uns mit Maßfunktionen auf Bricks, vgl. 5.4.4. Als
Notation vereinbaren wir, dass B im folgenden stets ein beliebiger Brick, P
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seine Produkterweiterung und G die verbandsgeordnete Quotientengruppe
von P sei.

Offenbar haben wir in einem Brick im Falle µ : a −→ | a | die Gleichungen

| a ∧ b | + | a ∗ b | = | b |
| a | + | a ∗ b) | = | a ∨ b |

und daher für den Verband (B,∧,∨) die Gleichung

| a ∧ b | + | a ∨ b | = | a | + | b | .

Spezielle Maße auf B sind die Homomorphismen von B nach E. Dies führt
uns zu einer ersten Charakterisierung der Würfelalgebren mittels Maßfunk-
tionen.

9. 5. 5 Proposition. Ein Brick B ist eine Würfelalgebra genau dann,
wenn zu jedem 1 ̸= a ∈ B ein Maß µ existiert mit µ(a) = 1 .

BEWEIS. Gibt es zu jedem a ̸= 1 ein Maß µ mit µ(a) = 1, so muss B

ganz-abgeschlossen sein, da andernfalls 0 keinen reellen Wert annehmen
könnte.

Existiere nun für jedes a ̸= 1 aus B ein Homomorphismus h von B nach
E, so dass h(a) ̸= 0 ∈ R. Dann erhalten wir ein Maß µ mit µ(a) = 1 via
Multiplikation aller h(b) (b ∈ B) mit dem Faktor 1/h(a). 2

9. 5. 6 Definition. Sei A eine Teilmenge der Trägermenge P von P und sei
f eine Funktion von A nach R≥0. Dann heiße f eine partielle Bewertung
von B, wenn die kanonische Erweiterung von f auf die von A erzeugte
Unterhalbgruppe A von P der Gleichung f(ab) = f(a) + f(b) genügt.

Offenbar haben wir f(1) = f(1) + f(1) ; f(1) = 0 und wir wissen nach
5.4.1, dass jede Maßfunktion auf einem Brick eine eindeutige Erweiterung
auf die korrespondierende abelsche Verbandsgruppe besitzt.

Weiterhin ist die Menge der partiellen Bewertungen einer Verbandsgruppe
nicht leer und erfüllt die Voraussetzungen des Zorn schen Lemmas. Folg-
lich lässt sich jede partielle Bewertung einbetten in eine maximale partielle
Bewertung.

9. 5. 7 Proposition. Sei f eine maximale partielle Bewertung auf dem
abelschen Verbandsgruppenkegel P. Dann ist der Definitionsbereich D(f)
von f multiplikativ abgeschlossen und konvex bezüglich ≤.
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BEWEIS. D(f) ist per definitionem multiplikativ abgeschlossen.

Weiter gilt 1 ∈ D(f), denn sonst lieferte f(1) := 0 eine Erweiterung.

Sei hiernach 1 ≤ a ≤ b ∈ D & a /∈ D. Dann besteht die von D und a
erzeugte Unterhalbgruppe aus allen Produkten der Form an · d mit einem
d ∈ D . Zu zeigen ist offenbar, dass sich unter dieser Annahme ein | a |
finden lässt, das für alle c, d, u, v ∈ D den Implikationen genügt:

c ≤ apd =⇒ f(c) − f(d)

p
≤ | a |

und aqu ≤ v =⇒ | a | ≤ f(v) − f(u)

q
.

Denn dann lässt sich f ausdehnen, wie wir sehen werden.

Hierzu beachten wir zunächst, dass aus c, d, u, v ∈ D(f) die Implikation
resultiert:

c ≤ apd & aqu ≤ v =⇒ (cd−1)q ≤ apq ≤ (vu−1)p

=⇒ cqd−q ≤ vpu−p

=⇒ cqup ≤ vpdq

=⇒ q · f(c) − q · f(d) ≤ p · f(v) − p · f(u)

=⇒ f(c) − f(d)

p
≤ f(v) − f(u)

q
.

Sie sichert, dass die Menge S(a) der nicht negativen reellen Zahlen s mit

c, d ∈ D(f) & c ≤ apd

=⇒
f(c) − f(d)

p
≤ s

und

u, v ∈ D(f) & aqu ≤ v

=⇒
s ≤ f(v) − f(u)

q
nicht leer ist.
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Also können wir ein Element aus S(a) als | a | wählen und eine Funktion
| | definieren vermöge

| x | :=

{
f(x) falls x ∈ D

| a | falls x = a .

Dies liefert eine Erweiterung von f , wie die noch zu beweisende Implikation

(9.32)
amc ≤ and

=⇒
m · | a | + f(c) ≤ n · | a | + f(d)

zeigen wird. Denn (9.32) sichert zum einen, dass die Festsetzung | aqc | :=
q | a | + f(c) eindeutig und damit auch multiplikativ ist, und zum anderen,
dass sie isoton ist. Wir führen den Beweis durch Fallunterscheidung:

Sei m = n. In diesem Fall ist die angegebene Implikation evident.

Sei hiernach m < n. In diesem Falle erhalten wir mit p := n − m die
Implikation

amc ≤ and =⇒ f(c) − f(d)

p
≤ | a |

=⇒ f(c) ≤ p · | a | + f(d)

=⇒ m · | a | + f(c) ≤ n · | a | + f(d) .

Sei endlich m > n. Dann können wir ähnlich schließen wie im Falle m < n.

Also könnte f erweitert werden, wenn es ein a mit 1 ≤ a ≤ b ∈ D & a /∈ D
gäbe – mit Widerspruch zur angenommenen Maximalität!

Damit ist die Behauptung bewiesen. 2

Als unmittelbare Folge von 9.5.7 erhalten wir

9. 5. 8 Proposition. Ein Brick B ist eine Würfelalgebra genau dann,
wenn sich jedes D = {a(̸= 1), 0} derart positiv bewerten lässt, dass die
kanonische Fortsetzung auf das von {a, b} in P erzeugte Untermonoid eine
partielle Bewertung liefert.

DENN: Die Bedingung ist notwendig, soll B eine Würfelalgebra sein.

Sie ist aber nach 9.5.7 auch hinreichend, da die korrespondierende partielle
Bewertung von G zu einer maximalen Bewertung ausgedehnt werden kann,
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deren Definitionsbereich zum einen die Elemente 0 und 1 enthält und sich
zum anderen als konvex erweist. 2

Als eine mittelbare Folge erhalten wir weiter eine Brickversion eines Sat-
zes von Horn und Tarski über die Ausdehnbarkeit partieller Maße auf
booleschen Algebren.

9. 5. 9 Proposition. Sei B ein Brick und U ein Unterbrick von B. Dann
kann jede Maßfunktion auf U zu einer Maßfunktion auf B erweitert werden.

BEWEIS. Da 0 ein Element aus U ist, kann eine Maßfunktion auf U zu
einer Maßfunktion auf B erweitert werden gdw. P die Implikation erfüllt:

(PS)
∏n

1 aν ≤
∏n

1 bν =⇒
∑n

1 | aν | ≤
∑n

1 | bν | .

Dies resultiert aber aus 5.4.5 2

Wir merken noch an, dass (PS)
”
schon” in B formuliert werden kann,

mittels: a = b ⇐⇒ (a ∗ b)(b ∗ a) = 1

ab ∗ c = b ∗ (a ∗ c)
und a ∗ bc = (a ∗ b)((b ∗ a) ∗ c) .

Horn & Tarski haben in [96] für boolesche Algebren die Beschreibung

(TH) σi(a) ≤ σi(b) =⇒
∑
f(ai) ≤

∑
f(bi) (1 ≤ i ≤ n)

gegeben. Hier steht σk(a1, . . . , an) für den Durchschnitt aller k-stelligen
(Verbands-) Schnitte von Elementen aus {a1, . . . , an} . Wir streben eine
direkte Herleitung von (HT) aus (PS) im allgemeinen Fall und von (PS)
aus (HT) im booleschen Falle an. Zu diesem Zweck starten wir mit:

9. 5. 10 Lemma. Sei B ein Brick und n eine natürliche Zahl. Dann gilt

(9.35)
∏n

1 aν =
∏n

1 σk(a1, . . . , an) ,

wobei σk die obere Grenze aller Durchschnitte von genau k Faktoren aus
a1 · a2 · . . . · an symbolisiere.

BEWEIS. Man beachte, dass man zwischen ai und aj für i ̸= j auch dann
zu unterscheiden hat, wenn ai = aj .

Offenbar gilt (9.35) für n = 1 und weiterhin für n = 2 wegen der Gleichung
ab = (a ∨ b)(a ∧ b). Sei hiernach n = 3. Dann ist der folgende Induktions-
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schritt symptomatisch:

a1a2a3
= (a1 ∨ a2)(a1 ∧ a2)a3
= (a1 ∨ a2 ∨ a3)((a1 ∨ a2) ∧ a3)(a1 ∧ a2)
= (a1 ∨ a2 ∨ a3)((a1 ∧ a3) ∨ (a2 ∧ a3))(a1 ∧ a2)
= (a1 ∨ a2 ∨ a3)((a1 ∧ a2) ∨ (a2 ∧ a3) ∨ (a3 ∧ a1))(a1 ∧ a2 ∧ a3)
= σ1(a1, a2, a3) · σ2(a1, a2, a3) · σ3(a1, a2, a3) . 2

9.5.10 gilt – natürlich – sowohl für boolesche Algebren als auch für abel-
sche Verbandsgruppenkegel, da diese symmetrische Brickerweiterungen be-
sitzen.

Als Folgerung erhalten wir, dass
∏n

1 aν immer dann kleiner oder gleich∏n
1 bν ist, wenn nach Auffüllen mit Faktoren 1 auf gleiche Länge ℓ alle

σk (1 ≤ k ≤ ℓ) bezüglich (a1, . . . , aℓ) kleiner oder gleich den entsprechen-
den σk bezüglich (b1, . . . , bℓ) sind.

Sei B hiernach eine boolesche Algebra. Dann folgt auch die Umkehrung:

9. 5. 11 Proposition. Sei B ein boolescher Brick. Gilt dann für die Ele-
mente a1, . . . , am, b1, . . . , bm aus B in P die Abschätzung a1 ·a2 · · · · ·am ≤
b1 · b2 · · · · · bm , so resultiert für alle k ≤ m:

(9.36) σk(a1, . . . , am) ≤ σk(b1, . . . , bm)

BEWEIS. Zunächst erhalten wir aus a1 ≤ b1 · . . . · bm

(9.37) a1 ≤ b1 ∨ . . . ∨ bm ,

denn wir haben a1 ≤ b1 · b2 · . . . · bm in P und

a1 ≤ c1c2 =⇒ (c1 ∧ a1) ≤ c1 & (c1 ∗ a1) ≤ c2

und folglich wegen c1 ∧ c1 ∗ a1 = 1

a1 ≤ c1c2 =⇒ a1 = (c1 ∧ a1)(c1 ∗ a1)
= (c1 ∧ a1) ∨ (c1 ∗ a1)
≤ c1 ∨ c2 .

Hieraus erhalten wir (9.37) durch Induktion, wenn wir n-stellige Produkte
schreiben als (b1 · b2 · . . . · bn−1) · bn.

DENN: Die Behauptung für k = 1.
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Angenommen nun, die Aussage gilt – schon – für alle i mit 1 ≤ i ≤ k

bezüglich aller ℓ ≥ k.

Wir betrachten zunächst den Sonderfall

c1 · . . . · ck · ck+1 ≤ d1 · · · · · dkdk+1

und bezeichnen mit σi(c) das Element σi(c1, . . . , ck+1) und mit σi(d) das
Element σi(d1, . . . , dk+1). Es folgt σk+1(c) ≤ σk+1(d), d. h.

c1 ∧ . . . ∧ ck+1 ≤ d1 ∧ . . . ∧ dk+1 .

Denn nach Voraussetzung gilt, dass σi(c) ≤ σi(d) für alle i mit 1 ≤ i ≤ k
und damit (∏k

1 σi(c)
)
σk+1(c)

≤
(∏k

1 σi(d)
)
σk+1(d)

=
(∏k

1 σi(c)
)(∏k

1(σi(c) ∗ σi(d))
)
σk+1(d)

=⇒

σk+1(c) ≤
(∏k

1(σi(c) ∗ σi(d))
)
σk+1(d)

erfüllt ist und zudem – erneut aus booleschen Gründen – dass

σk+1(c) ≤ σi(c) (1 ≤ i ≤ k) =⇒ σk+1(c) ∧ (σi(c) ∗ σi(d)) = 1

gesichert ist, was die Induktion abschließt.

Endlich erhalten wir σk+1(a) ≤ σk+1(b) aus (9.37) und x∧yz ≤ (x∧y)(x∧z)
und kommen so ans Ziel vermöge der Implikation

ai,1 ∧ . . . ∧ ai,k+1 ≤ b1 ∧ b2 ∧ . . . ∧ (bk+1bk+2 . . . bm)

≤
∏m−k

ν=1 ((b1 ∧ . . . ∧ bk) ∧ bk+ν)

=⇒
ai,1 ∧ . . . ∧ ai,k+1 ≤

∨m−k
ν=1 ((b1 ∧ . . . ∧ bk) ∧ bk+ν)

≤ σk+1(b) . 2

Hiernach können wir reformulieren:

9. 5. 12 Das Theorem von Horn und Tarski. Sei B eine boolesche
Algebra und sei A eine Teilmenge von B mit 0 ∈ A. Dann lässt sich eine
reellwertige Funktion f auf A genau dann zu einer Maßfunktion auf B
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ausdehnen, wenn für alle Paare von n-Tupeln (a1, . . . , an) , (b1, . . . , bn) die
Implikation erfüllt ist:

(TH) σi(a) ≤ σi(b) (1 ≤ i ≤ n) =⇒
∑
f(ai) ≤

∑
f(bi)

BEWEIS. Gilt die Bedingung (TH), so folgt nach 9.5.11∏
ai ≤

∏
bi =⇒ σi(a) ≤ σ(b)

=⇒
∑
f(ai) ≤

∑
f(bi) ,

also Bedingung (PS), und gilt (PS), so hat f eine solche Ausdehnung, und
es folgt nach (9.35)

σi(a) ≤ σi(b) =⇒
∏
σi(a) ≤

∏
σi(b)

=⇒
∏
ai ≤

∏
(bi)

=⇒
∑
f(ai) ≤

∑
f(bi) , (i ∈ I)

also die Abschätzung (TH). 2



Kapitel 10

Allgemeine Bricks

10.1 GMV-Algebren

Zur Erinnerung: Im vorauf gegangenen Kapitel wurde der kommutative
Brick charakterisiert als Halbgruppe mit Komplementen, die den Bedin-
gungen genügt:

(CS1) a ◦ (b ◦ c) = b ◦ (a ◦ c)

(CS2) a ◦ 0 = 0

(CS3) a ◦ 0 ′ = a

(CS4) a ◦ (a ◦ b ′)′ = b ◦ (b ◦ a ′) ′.

Dies regt als Übertragung auf den nicht kommutativen Fall an zu der

10. 1. 1 Definition. Eine Algebra A = (A,⊕,− ,◦ , 1, 0) vom Typ (2, 1,
1, 0, 0) heißt eine GMV-Algebra 1) wenn sie bezüglich y ⊙ x := (x− ⊕ y−)◦

– den Bedingungen genügt:

(MV1) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z

(MV2) x⊕ 1 = x = 1 ⊕ x

(MV3) x⊕ 0 = 0 = 0 ⊕ x

(MV4) 0◦ = 1 = 0−

1) Generalized Multi Valued Algebra

227
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(MV5) (x− ⊕ y−)◦ = (x◦ ⊕ y◦)−

(MV6) x⊕ x◦ ⊙ y = y ⊕ y◦ ⊙ x
= x⊙ y− ⊕ y
= y ⊙ x− ⊕ x

(MV7) x⊙ (x− ⊕ y) = (x⊕ y◦) ⊙ y

(MV8) (x−)◦ = x = (x◦)− .

10. 1. 2 Proposition. Jeder Brick B bildet eine GMV-Algebra G(B)
bezüglich

x− := 0 : x, x◦ := x ∗ 0, x⊕ y := ax .

BEWEIS. Die Gleichungen (MV1) bis (MV4) und auch (MV8) sind evi-
dent.

(MV5) (0 : x)(0 : y) ∗ 0 = (0 : y) ∗ ((0 : x) ∗ 0)
= ((0 : y) ∗ 0) : (x ∗ 0))
= (0 : (y ∗ 0)) : (x ∗ 0))
= 0 : (x ∗ 0)(y ∗ 0) .

(MV6) x⊕ x◦ ⊙ y = x⊕ (x ∗ 0) ⊙ y
= x⊕ ((0 : y) ⊕ x) ∗ 0)
= x · ((0 : y) · x) ∗ 0)
= x · (x ∗ ((0 : y) ∗ 0)
= x · (x ∗ y)
= y · (y ∗ x)
= y ⊕ y◦ ⊙ x

= (x : y) · y
= ((0 : x) ∗ (0 : y)) · y
= ((0 : (0 : y)) · ((0 : x) ∗ 0) · y
= x⊙ y− ⊕ y
= y ⊙ x− ⊕ x .

(MV7) x⊙ (x− ⊕ y) = (((0 : y) : (0 : x)) · (0 : x)) ◦

= ((0 : y) · ((0 : y) ∗ (0 : x))) ◦

= (x⊕ y◦) ⊙ y .
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Damit sind wir am Ziel 2

Umgekehrt gilt

10. 1. 3 Proposition. Jede GMV-Algebra G bildet einen Brick B(G)
bezüglich der Operationen: a ∗ b := a◦ ⊙ b and b : a := b⊙ c−.

BEWEIS. (BR1) ,(BR2), und (BR0) folgen unmittelbar, und es folgen

(BR3) a ∗ (b : c) = a◦ ⊙ (b⊙ c−)

= (a◦ ⊙ b) ⊙ c−

= (a ∗ b) : c
sowie

(10.14) a⊙ (b⊙ c) = a⊙ (c− ⊕ b−)◦

= ((c− ⊕ b−)◦− ⊕ a−)◦

= ((c− ⊕ b−) ⊕ a−)◦

= (c− ⊕ (b− ⊕ a−))◦

= (b− ⊕ a−)◦ ⊙ c
= (a⊙ b) ⊙ c

und damit

(BR4) a : (b ∗ a) = a⊙ (b ∗ a)−

= a⊙ (b◦ ⊙ a)−

= a⊙ (a− ⊕ b)

= (a⊕ b◦) ⊙ b

= (b⊙ a−)◦ ⊙ b

= (b : a) ∗ b . 2

Schließlich sei die Galoisverbindung herausgestellt.:

(GAL) B(G(B)) = B und G(B(G)) = G .

10.2 Die Relative Kürzungseigenschaft

10. 2. 1 Definition. Unter einer schwachen Kegelalgebra verstehen wir
eine Algebra C := (C, ∗, :) des Typs (2, 2), die den Gesetzen genügt:

(R2∗) (a ∗ a) ∗ b = b
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(R2:) b = b : (a : a)

(R3) a ∗ (b : c) = (a ∗ b) : c

(R4) a : (b ∗ a) = (b : a) ∗ b .

Aus (R2∗),(R2:) und (R4) folgt zunächst a ∗ a = b ∗ b and a : a = b : b und
damit weiter

b ∗ a = e ⇐⇒ a : b = e,(10.21)

wegen

a ∗ b = e =⇒ b : a = (b : (a ∗ b)) : a = ((a : b) ∗ a) : a = (a : b) ∗ (a : a) = e .

Es liefert aber b ∗ a = e & a : b = e via a ≥ b :⇐⇒ a ∗ b = e eine
inf-abgschlossene Partialordnung mit Minimum e. Denn, man beachte

a ∗ e = a ∗ (e : (a ∗ e)) = (a ∗ e) : (a ∗ e) = e.

Somit können schwache Kegelalgebren betrachtet werden als eine Typ-
(2, 0) Verallgemeinerung der kommutativen BCK-Algebra, die definiert ist
vermöge

(BCK1) e ∗ x = x

(BCK2) x ∗ e = 0

(BCK3) a ∗ (b ∗ c) = b ∗ (a ∗ c)

(BCK4) (a ∗ b) ∗ b = (b ∗ a) ∗ a .

Man kann heutzutage geradezu von einer BCK-Industrie sprechen. Des-
halb beziehen wir und auf [67] anstatt auf Originalpapiere 2). Dort wird
u.a. eine relative Kürzungsbedingung (RCP) formuliert, und es wird eine
Theorie der kommutativen BCK-Algebren entwickelt, die dieser Bedingung
genügen. In dem korrespondieren Kontext werden dann mehrere äquiva-
lente Bedinungen vorgestellt, jedoch: die zentral-fundamentale Bedingung
dieser Lecture Note, die auch in Traczyk’s Beitrag [153] eine wesentliche
Rolle spielt, nämlich

(W) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c) ,
2) allerdings nicht ohne zu erwähnen, dass die Theorie der BCK-Algebren initiiert wurde von Kiyoshi

Iséki.
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bleibt unerwähnt. Hinzu kommen die Studien von W. Rump rund um die
Yang-Baxter-Identität – um nur drei seiner Artikel zu nennen, vgl. [139],
[140], und [141]. Dies als Vorbemerkung zu den nachfolgenden Ausführun-
gen:

10. 2. 2 Proposition. Sei B eine schwache Kegelalgebra. Dann sind
paarweise äquivalent:

(RCP) a ≤ b, c & a ∗ b = a ∗ c =⇒ b = c

(NOR) (a ∗ b) ∧ (b ∗ a) = 1

(RCO) (a ∗ b) ∗ (b ∗ a) = b ∗ a

(D I S) a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c

(RES) (a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c) .

BEWEIS. : (RCP) =⇒ (NOR). Wegen (RCP) ist im Falle a ≤ d & a∗d = b
das Element b eindeutig bestimmt. Daher können wir im Falle a∗d = b als
alternative Notation einführen: a ◦ b = d – ohne eine Produkt Definition
oder Ähnliches im Hinterkopf. In diesem Sinne erhalten wir in jedem Falle

a ≤ c, d & a ◦ b = d
⇒

a = (d : a) ∗ d = b ∗ d
⇒

a ≤ d : (c ∗ b)
⇒

a ∗ (d : (c ∗ b)) = (a ∗ d) : (c ∗ b)
= b : (c ∗ b)
= b ∧ c ,

was bedeutet, dass mit der Existenz von a◦b auch die Existenz von a◦(b∧c)
gesichert ist, was mittels (RCP), siehe unten, zu der Kette führt:

(10.32) a ∗ (a ◦ b ∧ a ◦ c) ≤ a ∗ a ◦ b ∧ a ∗ a ◦ c
= b ∧ c
= a ∗ a ◦ (b ∧ c)
≤ a ∗ (a ◦ b ∧ a ◦ c)
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⇒
a ∗ a ◦ (b ∧ c) = a ∗ (a ◦ b ∧ a ◦ c)

(RCP)
=⇒

a ◦ (b ∧ c) = a ◦ b ∧ a ◦ c .

Insbesondere hat sich damit ergeben

(10.33) a ≤ b, c =⇒ a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c ,

also die Bedingung

(NOR) a ∗ b ∧ b ∗ a = (a ∧ b) ∗ (a ∧ b) = 1 .

(NOR) ⇐⇒ (RCO), man beachte (a∗ b)∗ (b∗a) = ((a∗ b)∧ (b∗a))∗ (b∗a)
and x ∧ y = x : (y ∗ x) .

(NOR) =⇒ (DIS), da b ∧ c = c : (b ∗ c) zu der Herleitung führt:

(a ∗ (b ∧ c)) ∗ (a ∗ b ∧ a ∗ c)
≤ ((a ∗ (b ∧ c)) ∗ (a ∗ b)) ∧ ((a ∗ (b ∧ c)) ∗ (a ∗ c))
= ((a ∗ (b : (c ∗ b))) ∗ (a ∗ b)) ∧ ((a ∗ (c : (b ∗ c))) ∗ (a ∗ c))
= (((a ∗ b) : (c ∗ b)) ∗ (a ∗ b)) ∧ (((a ∗ c) : (b ∗ c)) ∗ (a ∗ c))
≤ (c ∗ b) ∧ (b ∗ c) = 1

und damit zu

(10.35) a ∗ (b ∧ c) ≥ a ∗ b ∧ a ∗ c (≥ a ∗ (b ∧ c)) ,

also zu der Bedingung (DIS).

(DIS) =⇒ (RES). Sei zunächst C durch 1 beschränkt. Dann folgt:

(a ∗ b) ∗ (a ∗ c) = ((a ∗ 1) : (b ∗ 1)) ∗ ((a ∗ 1) : (c ∗ 1))

= (((a ∗ 1) : (b ∗ 1)) ∗ (a ∗ 1)) : (c ∗ 1)

=: f(a, b, c)

= f(b, a, c)

= (b ∗ a) ∗ (b ∗ c) .
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Beachte hiernach, dass jedes Intervall [e, c] von jedem allgemeinen C eine
beschränkte schwache Kegelalgebra mit Maximum c bildet. Dann ergibt
sich der allgemeine Fall vermöge:

(10.36) (a ∗ b) ∗ (a ∗ c) = ((a ∗ b) ∧ (a ∗ c)) ∗ (a ∗ c)
(DIS)

= (a ∗ (b ∧ c)) ∗ (a ∗ c)
= ((a ∧ c) ∗ (b ∧ c)) ∗ ((a ∧ c) ∗ c)
=: g(a, b, c) = g(b, a, c)
= (b ∗ a) ∗ (b ∗ c) .

(RES) =⇒ (RCP). Sei a ≤ b, c und sei a ∗ b = a ∗ c . Dann folgt

b ∗ c = (b ∗ a) ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) = (a ∗ b) ∗ (a ∗ b) = 1 ,

also b ≥ c, und – dual – c ≥ b. 2

10.3 Vom Brick zum Kegel – auf neuen Wegen

10. 3. 1 Proposition. Jeder Brick B bildet eine normale komplementäre
Halbgruppe H := H(B) unter

(10.37) ab := 0 : ((b ∗ (a ∗ 0)) ,

weshalb darüber hinaus jeder Brick einen Verband bildet unter

a · (a ∗ b) = a ∨ b = (b : a) · a(10.38)

a : (b ∗ a) = a ∧ b = (b : a) ∗ b .(10.39)

Darüber hinaus erfüllt H(B) die Gleichungen (3.97) bis (3.107) .

BEWEIS. Zunächst erhalten wir (A3), also

ab ∗ c = 1 = b ∗ (a ∗ c)
via

(10.40) ab ∗ c = (0 : (b ∗ (a ∗ 0))) ∗ (0 : (c ∗ 0))
= (b ∗ (a ∗ 0)) : (c ∗ 0)
= b ∗ ((a ∗ 0) : (c ∗ 0))
= b ∗ (a ∗ c)

und damit
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(10.41) (a : b)b ∗ a = b ∗ ((a : b) ∗ a) = 1 .

Folglich gilt

ab ∗ (((0 : b) : a)) ∗ 0) = b ∗ (((0 : b) : a)a ∗ 0)
(10.41)

≤ b ∗ ((0 : b) ∗ 0) = 1 .

Hieraus resultieren dann aus Gründen der Dualität zunächst (10.37) und
damit weiter (A1), (A2) und ihre rechts/links dualen Versionen.

Der Rest darf dem Leser überlassen bleiben. 2

Als nächstes studieren wir den Term a ∗ ab und erhalten als ein erstes
Ergebnis

(10.42) a ∗ ab = ((0 : (a ∗ 0)) ∗ (0 : (b ∗ (a ∗ 0))
= ((0 : (a ∗ 0)) ∗ 0) : (b ∗ (a ∗ 0))
= (a ∗ 0) : (b ∗ (a ∗ 0))
= (a ∗ 0) ∧ b .

Insbesondere erhalten wir damit

(10.43) b ≤ a ∗ 0 =⇒ a ∗ ab = b .

Wir sind interessiert an einer Verallgemeinerung. Aus diesem Grunde be-
weisen wir als nächstes

(10.44) x ≤ ay & y ≤ a ∗ 0 =⇒ x ∗ ay = (x ∗ a)((a ∗ x) ∗ y) .

Vermöge (10.40) und (10.43) erhalten wir vorab

(10.45) x ∗ ay = (a ∧ x)(a ∗ x) ∗ (a ∧ x) · (x ∗ a)y
= (a ∗ x) ∗ (x ∗ a)y .

mit a ∗ x⊥x ∗ a. Folglich genügt es

a
∣∣ b · c & a⊥ b & c ≤ b ∗ 0 =⇒ a ∗ b · c = b · (a ∗ c)

nachzuweisen. Im Falle von a
∣∣ bc & a⊥ b und c ≤ b∗0 erhalten wir zunächst

a ∗ c ≤ ab ∗ 0 und damit weiter

as ≥ bc
(3.107)
=⇒ s = b(b ∗ s) & c = a(a ∗ c)
=⇒ ab((a ∗ c) ∧ (b ∗ s)) = ab(a ∗ c) ,
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also a ∗ c ≤ b ∗ s und damit b(a ∗ c) ≤ s , was den Beweis von (10.44)
abschließt. Hiernach erhalten wir endlich

(10.46) y ≤ a ∗ 0
=⇒

x ∗ ay = ((x ∧ ay)) ∗ a)((a ∗ (x ∧ ay) ∗ y)
= (x ∗ a)((a ∗ x ∧ y) ∗ y)
= (x ∗ a)((a ∗ x) ∗ y)

und selbstverständlich die duale Version, wegen

(10.47) b ≤ a ∗ 0 =⇒ 0 : b ≥ 0 : (a ∗ 0) = a ( =⇒ ∀c c ∗ a ≤ 0 : b ).

Nun können wir zeigen

10. 3. 2 Lemma.

xy = uv & y ≤ x ∗ 0 , v ≤ u ∗ 0 =⇒ (u ∗ x)(y : v) = (x ∗ u)(v : y)

BEWEIS. xy = uv =⇒ (x ∧ u)(u ∗ x) · y = (x ∧ u)(x ∗ u) · u ,
und es gilt

(u ∧ x) ∗ 0 = ((u ∧ x) ∗ x)(x ∗ 0) = ((u ∧ x) ∗ u)(u ∗ 0)

also

((u ∧ x) ∗ x) · y ≤ (u ∧ x) ∗ 0 & ((u ∧ x) ∗ u) · u ≤ (u ∧ x) ∗ 0 .

Daher erhalten wir zunächst

(10.48) xy = uv =⇒ (u ∗ x) · y = (x ∗ u) · v

und hiernach analog – mittels (10.47) –

(10.49) xy = uv =⇒ (u ∗ x) · (y : v) = (x ∗ u) · (v : y) .

Damit sind wir am Ziel. 2

10. 3. 3 Proposition. In jedem Brick sind die nachfolgenden Bedingun-
gen (LE 1) und (LE 2) äquivalent

(LE1) a ∗ c = b : d & c ∗ a = d : b .

(LE2) ab = cd & (a ∗ 0) ∗ b = (c ∗ 0) ∗ d .
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Insbesondere definieren diese Bedingungen mittels (LE2) eine Äquivalenz-
relation ≡ auf der Menge aller Paare a . b via

(E) a . b ≡ c . d

:⇐⇒
(G) a ∗ c = b : d & c ∗ a = d : b .

BEWEIS. Bedingung (LE1) impliziert:

c ∗ a = d : b & a ∗ c = b : d
=⇒

ab = cd

&
(a ∗ 0) ∗ b = ((a ∗ 0) ∗ (a ∗ c)) ∗ ((a ∗ 0) ∗ b)

= ((a ∗ c) ∗ (a ∗ 0)) ∗ ((a ∗ c) ∗ b)
= ((a ∗ c) ∗ (a ∗ 0)) ∗ ((b : d) ∗ b)
= ((c ∗ a) ∗ (c ∗ 0)) ∗ ((d : b) ∗ d)
= ((c ∗ 0) ∗ (c ∗ a)) ∗ ((c ∗ 0) ∗ d)
= (c ∗ 0) ∗ d ,

das ist Bedingung (LE2).

Sei nun (LE2) erfüllt. Dann erhalten wir nach Voraussetzung

a(b : ((a ∗ 0) ∗ b)) = c(d : ((c ∗ 0) ∗ d)(10.52)

(b : ((a ∗ 0) ∗ b)) : (d : ((c ∗ 0) ∗ d) = b : d(10.53)

was mittels (10.49) zu

(c ∗ a) · (b : d) = (a ∗ c) · (d : b)

führt, also zu Bedingung (L1). 2

10. 3. 4 Korollar. Aufgrund der Rechts/Links-Dualität schließt das vor-
auf gegangene Lemma die Äquivalenz ein:

(10.54) (a ∗ 0) ∗ b = (c ∗ 0) ∗ d⇐⇒ a : (0 : b) = c : (0 : d)
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10.4 Zur Einbettung von Semiclans

y Wie oben gezeigt, erfüllt jeder Brick die Bedingungen

(a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c)(10.55)

(c : a) : (b : a) = (c : b) : (a : b) .(10.56)

Dies ermöglicht eine Abkürzung der Einbettungsprozedur des Kegel-Clan-
Theorems 6.3.3 für diesen Sonderfall. Zur Erinnerung:
Sei C := (C,∧, ·) ein Halbverband mit partieller Multiplikation. Dann hat-
ten wir C einen Semiclan genannt, wenn die nachfolgenden Regeln galten:

(C1) a ≤ b =⇒ ∃x, y : b = ax & b = ya

(C2) ax, ay ∈ C & ax = ay =⇒ x = y
xa, ya ∈ C & xa = ya =⇒ x = y

(C3) ax, ay ∈ C =⇒ ax ∧ ay = a(x ∧ y)
xa, ya ∈ C =⇒ xa ∧ ya = (x ∧ y)a

(C4) ab ∈ C & (ab)c ∈ C ⇐⇒ bc ∈ C & a(bc) = a(bc)

(C5) (a ∧ b)c = c & a ∨ b ∈ C =⇒ ab = a ∨ b = ba .

Wir nennen nun C positiv, wenn zusätzlich a ≤ xa, ax ∈ C erfüllt ist. Des
weiteren nennen wir C beschränkt, falls C ein Topelement 0 enthält.
Das Ziel dieses Abschnitts ist die Einbettung des positiven beschränkten
Semiclans, kurz pb-Semiclans, in einen Verbandsgruppenkegel, betrachtet
als positiver Semiclan, auf dem Wege einer direkten Konstruktion.

10. 4. 1 Proposition. Jeder pb-Semiclan lässt sich auffassen als Brick,
jeder Brick last sich auffassen als pb-Semiclan.

BEWEIS. Sei C ein pb-Semiclan. Wir definieren

a ∗ b := x :⇐⇒ (a ∧ b) · x = b(10.62)

b : a := y :⇐⇒ y · (a ∧ b) = b .(10.63)

Dies führt zu

(10.64) ax ∈ C & ax ≥ b =⇒ (a ∧ b)x ≥ b =⇒ x ≥ a ∗ b
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(10.65) b ≥ c =⇒ a ∗ c = (a ∧ c) ∗ c = (a ∧ b ∧ c) ∗ c
und damit zu

a ∗ (b : c) = (a ∧ b) ∗ (b : (b ∧ c))(10.66)

(a ∗ b) : c = ((a ∧ b) ∗ b) : (b ∧ c) .(10.67)

Zu verifizieren bleibt das Axiom

(BR3) a ∗ (b : c) = (a ∗ b) : c .

Sei zu diesem Zweck a, c ≤ b. Dann ist a(a ∗ b) definiert und damit auch

a((a ∗ b) : c)((a ∗ b) ∧ c) .
Folglich gilt

a((a ∗ b) : c)((a ∗ b) ∧ c) = a(a ∗ b) = b

≥ (b : c)((a ∗ b) ∧ c)
⇒

a((a ∗ b) : c)
(10.64)

≥ b : c
⇒

(a ∗ b) : c
(10.64)

≥ a ∗ (b : c) ,

so dass sich aus Gründen der Dualität

(a ∗ b) : c = a ∗ (b : c)

ergibt, das ist Axiom (B3).

Sei nun B ein Brick. Dann liefert die Definition ab := 0 : (b ∗ (a ∗ 0)) ei-
ne Multiplikation bezüglich der (B, ∗, :, ·) eine komplementäre Halbgruppe
bildet, vgl. 10.3.1. Folglich bildet B einen a pb-Semiclan unter ◦, definiert
mittels

a ◦ b := ab :⇐⇒ b ≤ a ∗ 0 ( & a ≤ 0 : b) ,

man beachte, dass (ab)c genau im Falle a ∗ ab = b & ab ∗ abc = c erklärt
ist , dass darüber hinaus (a ∗ ab)(ab ∗ (ab)c) = a ∗ a(bc) erfüllt ist und dass
der Rest sich dualitätsbedingt ergibt. 2

FAZIT: Bricks lassen sich als pb-Semiclans auffassen und und pb-Semiclans
als Bricks.

SEI VON NUN AN C ein Brick, betrachtet als pb-Semiclan. Wir werden
auf der Menge der Paare a.b eine Operation derart erklären, dass C × C
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sich als Clan-Ausdehnung von C erweist. Der Rest ergibt sich dann auf
ausgetretenen Bahnen.
Der Leser erinnere sich zunächst an 10.3.3, also an

a . b ≡ c . d :⇐⇒ a ∗ c = b : d & c ∗ a = d : b .

⇐⇒ ab = cd & (a ∗ 0) ∗ b = (c ∗ 0) ∗ d .
Insbesondere daran, das ≡ eine Äquivalenzrelation definiert. Wir bezeich-
nen die ≡-Klassen mittels [ a . b ] , ... , [ x . y ] und erhalten:

[ a . b ] = [ ab . (a ∗ 0) ∗ b ](10.69)

[ a . b ] = [ a : (0 : b) . ab ](10.70)

sowie ihre dualen Versionen auf Grund von

ab ∗ a = 1 = ((a ∗ 0) ∗ b) : b(10.71)

a ∗ ab (10.42)
= b : ((a ∗ 0) ∗ b) .(10.72)

Damit enthält jede Klasse [ x . y ] ein eindeutig bestimmtes Paar X.Y mit
X = uv, Y = (u ∗ 0) ∗ v für alle u.v ≡ x.y . Im Rest dieses Abschnitts
werden wir stillschweigend

[A .B] := [ ab . (a ∗ 0) ∗ b ]

annehmen. Das bedeutet insbesondere

[ a . b ] = [ c . d ] ⇐⇒ A = C & B = D .

Natürlich gilt auch dual

(10.73) [A .B ] := [ a : (0 : b) . ab ] = [ a . b ] .

Folglich erhalten wir

(10.74) [A .B] = [AB .B ] = [A .AB ] = [A .B ] .

10. 4. 2 Definition. Wir setzen

[ a . b ] ◦ [ c . d ] := [AC .BD ]

gdw.

A ∗ 0 ≥ C & B ≤ 0 : D

und [ a . b ] ≤ [ c . d ] :⇐⇒ A ≤ C & B ≤ D .
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◦ und ≤ sind nach Konstruktion wohl definiert. Wir werden nun zeigen,
das ([C × C], ◦ ,≤) eine pb-Semiclan-Erweiterung von C bezüglich ◦ und
≤ bildet.

Zur Assoziativität

Wir beginnen mit dem Nachweis von Axiom (C4) im Sonderfall

([ a . b ] ◦ [ e . c ]) ◦ [ e . d ] .

Als ERSTES zeigen wir:

[ a . b ]◦[ c . d ] ist definiert gdw. ([ a . b ]◦[ e . c ])◦[ e . d ] definiert ist .

Zu diesem Zweck haben wir zu verifizieren, dass die nachfolgenden Bedin-
gungen (1) & (2) in Kombination mit (A)

(1) c : (0 : d) ≤ b ∗ (a ∗ 0)

(2) (a ∗ 0) ∗ b ≤ (0 : d) : c

äquivalent sind zu den Bedingungen nachfolgenden Bedingungen (a) & (b),
in Kombination mit (B)

(a) (a ∗ 0) ∗ b ≤ 0 : c

(b) (ab ∗ 0) ∗ ((a ∗ 0) ∗ b)c ≤ 0 : d .

(A)=⇒(B). (a) resultiert unmittelbar aus (2), und mittels (1) und (2) er-
halten wir

(ab ∗ 0) ∗ ((a ∗ 0) ∗ b)c (10.46)
= ((a ∗ 0) ∗ b)((ab ∗ 0) ∗ c)
≤ ((0 : d) : c)((c : (0 : d)) ∗ c)
= ((0 : d) : c) · ((0 : d) : c) ∗ (0 : d))

= (0 : d) : c ∨ 0 : d

= 0 : d .

Als nächstes beweisen wir (b)=⇒(A), was a fortiori (B)=⇒(A) erzwingt.
(b)=⇒(A). Bedingung (1) folgt aus Bedingung (b) vermöge

c : (0 : d) ≤ c : ((a ∗ 0) ∗ b)((ab ∗ 0) ∗ c)
= (c : ((b ∗ (a ∗ 0)) ∗ c)) : ((a ∗ 0) ∗ b)
≤ b ∗ (a ∗ 0) ,
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und Bedingung (2) resultiert aus Bedingung (b) vermöge

(ab ∗ 0) ∗ ((a ∗ 0) ∗ b)c ≤ 0 : d

=⇒ ((ab ∗ 0) ∗ ((a ∗ 0) ∗ b)c) : c ≤ (0 : d) : c

=⇒ (ab ∗ 0) ∗ (((a ∗ 0) ∗ b)c : c) ≤ (0 : d) : c

=⇒ ((b ∗ (a ∗ 0)) ∗ ((a ∗ 0) ∗ b) ≤ (0 : d) : c

=⇒ (a ∗ 0) ∗ b ≤ (0 : d) : c .

HIERNACH verifizieren wie die Gleichheit unter der Bedingung, dass Be-
dingung (A) (äquivalent (B)) erfüllt ist, d.h. wie zeigen

L1 ∗ L2 = R1 : R2 und L2 ∗ L1 = R2 : R1

für den Fall unserer obigen Ausgangslage. Zu diesem Zweck betrachte man

([A .B ] ◦ [ e . c ]) ◦ [ e . d ] = [Ac . ((A ∗ 0) ∗Bc)d ] =: [L0 . R1 ](10.75)

[A .B ] ◦ [ c . d ] = [A(c : (0 : d)) . Bcd ] =: [L2 . R2 ] .(10.76)

Zunächst folgt fast unmittelbar

L1 ∗ L2 = 1 = R1 : R2 ,

und es ergibt sich weiter

L2 ∗ L1 = A(c : (0 : d)) ∗ Ac
(10.42)

= (c : (0 : d)) ∗ (A ∗ 0 ∧ c)
(3.98)
= (c : (0 : d)) ∗ ((B : ((0 : d) : c)) ∗ (A ∗ 0 ∧ c))

(recall B⊥A ∗ 0)

= ((B : ((0 : d) : c))(c : (0 : d)) ∗ (A ∗ 0 ∧ c)
(10.42)

= (Bc : (0 : d)) ∗ (A ∗ 0 ∧ c)
(3.106)

= (Bc : (0 : d)) ∗ (A ∗ 0 ∧Bc)
= ((Bc : (0 : d)) ∗ (Bc : ((A ∗ 0) ∗Bc))
= (((Bc : (0 : d)) ∗Bc) : ((A ∗ 0) ∗Bc))
= (Bc ∧ (0 : d)) : ((A ∗ 0) ∗Bc)

(10.46)
= (Bcd : d) : ((A ∗ 0) ∗Bc)
= Bcd : ((A ∗ 1) ∗Bc)d = R2 : R1 ,
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also

(10.77) ([ a . b ] ◦ [ e . c ]) ◦ [ e . d ] = ([ a . b ] ◦ ([ e . c ]) ◦ [ e . d ]) .

Dies impliziert dann – fast unmittelbar:

(10.78) ([ a . e ] ◦ [u . v ]) ◦ [ e . d ] = [ au . vd ]
= [ a . e ] ◦ (([u . v ] ◦ [ e . d ]) .

Hieraus folgt dann die allgemeine Assoziativität geradeaus mittels (10.77)
und (10.78) , auf Grund der Rechts-/Links-Dualität.

SCHLIESSLICH betonen wir

a ∗ 0 ≥ b =⇒ [ a . e ] ◦ [ b . e ] = [ ab . e ] ,

das ist die Einbettungseigenschaft bezüglich der partiellen Operation ◦ .

Zu den Kürzungsregeln

(LCR) [ a . b ] ◦ [ x . y ] = [ a . b ] ◦ [u . v ] =⇒ [x . y ] = [u . v ]

(RCR) [ x . y ] ◦ [ a . b ] = [u . v ] ◦ [ a . b ] =⇒ [ x . y ] = [u . v ] .

BEWEIS. Nach Definition und auf Grund der Rechts-/Links-Dualität
können wir uns darauf beschränken die Implikation (LCR) zu verifizie-
ren und hier auf Grund der Assoziativität auf den Sonderfall b = 1 , also
auf:

[ a . 1 ] ◦ [ x . y ] = [ a . 1 ] ◦ [u . v ]
⇒

[ ax . y ] = [ au . v ]
⇒

ax ∗ au = x ∗ (a ∗ au) = y : v
⇒

x ∗ u = y : v (wegen u ≤ a ∗ 0)
⇒

[ x . y ] = [u . v ]

die letzte Zeile aus Gründen der Dualität. 2

Ordnungsprobleme
Die verbleibenden Axiome (C1), (C3), (C5) betreffen Ordnungsprobleme.
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Als erstes erhalten wir, dass C × C/ ≡ bezüglich ≤ einen Verband mit
[ 1 . 1 ] als Minimum und [ 0 . 0 ] als Maximum bildet.
Als nächstes erhalten wir die Divisoreneigenschaft, d.h.

(10.81) [A .B ] ≤ [C .D ]
=⇒

[C .D ] = [A .B ] ◦ [X . Y ]
= [U . V ] ◦ [A .B ]

(∃ [U . V ] , [X . Y ]) .

BEWEIS. Auch hier dürfen wir uns per definitionem und auf Grund der
Dualität auf eine Seite beschränken, z.B. auf die Links-Teilereigenschaft.
Dann folgt unter Annahme von D = BY mit B ∗ 0 ≥ Y und E := 1

[A .D ] = [A .BY ]

= [A .E ] ◦ ([B .E ] ◦ [E . Y ])

= ([A .E ] ◦ [E .B ]) ◦ [E . Y ]

= [A .B ] ◦ [E . Y ] .

Folglich sind wir am Ziel, sobald wir das Problem für B = D gelöst haben.
Betrachten wir also den Fall [AX .B ] mit X ≤ A ∗ 0. Hier erhalten wir:

[AX .D ] = [AX .B ]

= [A .E ] ◦ [X .B ]

= [A .E ] ◦ [XB . (X ∗ 0) ∗B ]

= [A .XB ] ◦ [E . (X ∗ 0) ∗B ]

= [A .B(B ∗XB) ] ◦ [E . (X ∗ 0) ∗B ]

= [A .B ] ◦ ([E .B ∗XB ] ◦ E . (X ∗ 0) ∗B ] . 2

SCHLIESSLICH erhalten wir durch Kombination der Verbandseigenschaft
mit der Kürzungseigenschaft Axiom (C3), während Axiom (C5) nach De-
finition fast evident ist, man beachte a ∧ b = 0 ⇐⇒ a ∗ b = b .

DAMIT IST
nach abzählbarer Wiederholung entlang wohlbekannter Linien

DIE EINBETTUNG ABGESCHLOSSEN.

Ein Hinweis: Die obige Methode wirkt schon in nach oben gerichteten Se-
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miclans, da unter dieser Bedingung jeder Schritt unterhalb einer geeigneten
oberen Schranke realisiert werden kann.

Folglich bedeutet die Erweiterung einen Semiclans zu einem sup-abgeschlos-
senen Semiclan und anschließende Anwendung der obigen Methoden eine
alternative Einbettung für Semiclans.

Jedoch erfordert die Konstruktion einer solchen Erweiterung einige An-
strengung, man vergleiche [24], wo eine eindeutig bestimmte Ausdehnung
dieses Typs in einem allgemeineren Kontext konstruiert wird.

10.5 Zur Einbettung kommutativer Bricks

In diesem Abschnitt betrachten wir kommutative Bricks, um eine Abkür-
zung des allgemeinen Einbettungsbeweises vorzustellen, die vom didakti-
schen Standpunkt aus von Wert sein könnte.

10. 5. 1 Proposition. Erfülle (G∗, 0) die Bedingungen

a ∗ (b ∗ c) = b ∗ (a ∗ c)(10.82)

a ∗ (b ∗ b) = c ∗ c(10.83)

(a ∗ 0) ∗ 0 = a .(10.84)

Dann sind die Gleichungen

(a ∗ b) ∗ (a ∗ c) = (b ∗ a) ∗ (b ∗ c)(10.85)

(a ∗ b) ∗ b = (b ∗ a) ∗ a(10.86)

unter Voraussetzung von (10.82) bis (10.84) äquivalent zueinander.

BEWEIS. Nach (10.84) ist jedes a vom Typ x ∗ 0 und nach (10.82) bis
(10.85) folgt

((a ∗ 0) ∗ (b ∗ 0)) ∗ (b ∗ 0) = (b ∗ a) ∗ (b ∗ 0) = ((b ∗ 0) ∗ (a ∗ 0)) ∗ (a ∗ 0) ,

d.h. Gleichung (10.86).

Auf der anderen Seite ziehen (10.82), (10.83), (10.84), (10.86)

(a ∗ b) ∗ (a ∗ c) = ((b ∗ 0) ∗ (a ∗ 0)) ∗ ((c ∗ 0) ∗ (a ∗ 0))
= (c ∗ 0) ∗ (((b ∗ 0) ∗ (a ∗ 0)) ∗ (a ∗ 0))
= (b ∗ a) ∗ (b ∗ c)
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nach sich, das ist Gleichung (10.85). 2

Sei nun B = (B, ∗, 0) ein kommutativer Brick, definiert mittels (10.82) bis
(10.85). Im Einbettungssatz haben wir B ×B bezüglich

(M) a . b ⋆ c . d := b ∗ (a ∗ c) . ((a ∗ c) ∗ b) ∗ (((c ∗ a) ∗ b) ∗ d)

und

(C) a . b ≡ c . d :⇐⇒ a . b ⋆ c . d = 1 . 1 = c . d ⋆ a . b

betrachtet.

Da (10.85) sich von (B, ∗) nach (B ×B, ⋆) fortpflanzt, folgt leicht, dass ≡
eine Kongruenzrelation ist. Des weiteren erhalten wir geradeaus

a . b ⋆ 1 . 1 = 1 . 1(10.89)

a . b ≡ b . a(10.90)

a . b ⋆ c . d = b . 1 ⋆ (a . 1 ⋆ c . d) .(10.91)

Das liefert – ohne Probleme – dass (C) eine Kongruenzrelation ist, so
dass uns nur zu zeigen bleibt, dass die ≡-Klassen [ x . y ] den Bedingun-
gen genügen

(S) ([ a . b ] ⋆ ([ c . d ]) ⋆ [u . v ] = ([ c . d ] ⋆ ([ a . b ]) ⋆ [u . v ]

(T) ([ a . b ] ⋆ [ 0 . 0 ]) ⋆ [ 0 . 0 ] = [ a . b ] .

Hier folgt zunächst (S) durch wiederholte Anwendung von (10.91) . Und
weiter erhalten wir

(10.94) a . b ⋆ c . d = c ∗ a . b ⋆ a ∗ c . d ≡ c ∗ a . d ∗ b ⋆ a ∗ c . b ∗ d ,

was zu

(10.95) a . b ≡ c . d =⇒ (d ∗ b) ∗ (a ∗ c) = 0 = (a ∗ c) ∗ (d ∗ b)

führt und folglich auf Grund von Dualität und Symmetrie zu

(10.96) a . c ≡ c . d⇐⇒ a ∗ c = d ∗ b & c ∗ a = b ∗ d .
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Das zieht dann weiter nach sich

(10.97) ([ a . b ] ⋆ [ 0 . 0 ]) ⋆ [ 0 . 0 ]
= [ b ∗ (a ∗ 0) . ((a ∗ 0) ∗ b) ∗ 0 ] ⋆ [ 0 . 0 ]

= [ (((a ∗ 0) ∗ b) ∗ 0) ∗ ((b ∗ (a ∗ 0)) ∗ 0)

. (((b ∗ (a ∗ 0)) ∗ 0) ∗ ((a ∗ 0) ∗ b) ∗ 0)) ∗ 0 ]

= [ ((a ∗ 0) ∗ b) . ((b ∗ (a ∗ 0)) ∗ 0) ] =: [L .R ]

= [ ab . (a ∗ 0) ∗ b ]

= [ a . b ]

Die vorauf gegangene Herleitung beruht auf dem vorhergehenden Abschnitt.
Deshalb bieten wir zusätzlich noch als einen direkten Beweis von [L .R ] =
[ a . b ] die beiden nachfolgenden Gleichungen an:

(10.98) a∗ ((a∗0)∗ b) = (a∗0)∗ (a∗ b) = 1 = ((b∗ (a∗0))∗0)∗ ((b∗0)∗0)

(10.99) ((a∗0)∗b)∗((a∗0)∗0) = (b∗(a∗0))∗(b∗0) = b∗((b∗(a∗0))∗0) .

10.6 Abschließende Bemerkungen

In Sonderfällen wirken – was nicht überrascht – schon höchst vertraute
Einbettungs-Methoden. Unter diesen seien nur zwei hervorgehoben, näm-
lich der endliche Fall  Ln und der indexsemiclan!divisibler divisible kommu-
tative Fall.

10. 6. 1 Beispiel. Betrachte  Lg := {0, 1, ..., g} bezüglich ⊕, definiert
vermöge a⊕ b := a+ b gdw. a+ b ≤ g.

Hier können wir uns zum einen an Peano orientieren, während wir auf
der anderen Seite auch über die g-al-Darsellung zusammen mit der g-al-
Addition zum Ziel gelangen.
In jedem dieser beiden Fälle ist der korrespondierende Verbandsgruppenke-
gel isomorph zu (N0,+), insbesondere ist damit das Ergebnis unabhängig
von der gewählten Basis g.
In anderen Worten: Die erzeugte Verbandsgruppe ist in jedem Falle iso-
morph zu der additiven Gruppe Z.

10. 6. 2 Beispiel. Betrachten wir nun das reelle Einheitsintervall bezüglich
der partiellen Operation ⊕, definiert vermöge a⊕ b := a+ b gdw. a+ b ≤ 1
– uns bezeichnen wir diese Algebra mit E.
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Dann folgt E 1
2

:= ([0, 1/2],⊕ 1
2
) mit a ⊕ 1

2
b := a + b gdw. a + b ≤ 1/2

isomorph ist zu E. Das bedeutet, dass E die erste Erweiterung zu E 1
2

ist.
Erneut in anderen Worten: der Brick E 1

2
ist isomorph zu E, und man kann

E als Erweiterung von E 1
2

betrachten, womit der erste und grundlegende
Einbettungsschritt getan ist.
Es bleibe an dieser Stelle dem Leser überlassen, weitere geeignete Intervalle
zu finden.

10. 6. 3 Beispiel. Sei hiernach C eine divisibler kommutativer pb-Semi-
clan, also ein pb-Semiclan, dessen Elemente a eine Zerlegung a = a

2 ⊕
a
2

zulassen.
Dann ist a

2 eindeutig bestimmt, da x⊕x = a =⇒ x⊕x = xx und 2a∧2b =
2(a ∧ b) im Falle von 2a = 2b ≤ 0 zu a ∗ b = 1 = b ∗ a und somit zu a = b
führt, man beachte die Kürzungsregeln (RCR) und (LCR) .
Folglich können wir operieren wie im vorauf gegangenen Beispiel.

Obacht! Jede Kegel-Algebra lässt sich wegen

ab ≤ c ∈ B =⇒ ab = ab ∧ c = (c : ab) ∗ c = ((c : b) : a) ∗ c ∈ B

sogar als Ordnungsideal in einen Verbandsgruppenkegel einbetten. Das
kann sich sehr viel anders verhalten, haben wir es lediglich mit einem RR-
Gruppoid zu tun. Hierzu betrachten wir eine Menge {1, p ̸= q, 0} mit pri-
men p, q bezüglich ∗, definiert vermöge x∗y = 1 :⇐⇒ y

∣∣ x, und x∗y = y im
anderen Fall. Dies liefert uns ein RR-Gruppoid, was zu einer links-kürzba-
ren, rechts-komplementären Halbgruppe (S, ·, ⋆) führt mit p · q < 0 wegen
0 ⋆ pq = (0 ⋆ p)((p ⋆ 0) ⋆ q) = (0 ∗ p)((p ∗ 0) ∗ q) = 1 und pq /∈ {0, p, q, 1} ,
wegen pq ⋆ 0 = q ⋆ (p ⋆ 0) = q ∗ (p ∗ 0) = 0 ; pq ̸= 0 , pq = p =⇒ q = 1 ,
pq = q =⇒ 1 = q ⋆ pq = (q ⋆ p)((p ⋆ q) ⋆ q) = (q ∗ p)((p ∗ q) ∗ q) = p sowie
pq = 1 =⇒ p = 1 = q .
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Kapitel 11

Teilbarkeits-Semiloops

11.1 Einführung

Wir führen den Leser an dieser Stelle breit ein, um ihm eine Basis für das
abschließende Kapitel – zum Darstellungsproblem – zu bieten.
Unter einem Gruppoid verstehen wir eine Algebra (G, ·) =: G des Typs (2).
Unter einem binären System verstehen wir ein Gruppoid, das schwächer
ist als die Gruppe. Spezielle binäre Systeme sind also u. a. Halbgruppen,
Quasigruppen und Loops . Die Bezeichnung binäres System geht zurück
auf R. H. Bruck, vgl. [46].
Ein binäres System G heißt partial bzw. verbands- geordnet, wenn G partial
bzw. verbandsgeordnet ist und zudem der Bedingung genügt:

(0) a ≤ b =⇒ xa ≤ xb & ax ≤ bx .

Ist (G, ·,≤) verbandsgeordnet, so nennen wir (G, ·,≤) kurz ein Verbands-
gruppoid .
Als Verbandshalbgruppe bezeichnen wir demzufolge jedes assoziative Ver-
bandsgruppoid. Analog sprechen wir von einer Verbandsquasigruppe , wenn
alle Gleichungen ax = b und ya = b eindeutige Lösungen a/b im ersten
und b\a im zweiten Fall besitzen. Demzufolge verstehen wir unter einer
Vrbands-Loop eine Verbandsquasigruppe mit 1. Existiert in einer Ver-
bandsloop L zu jedem x ein x−1 mit x−1(xa) = a und a = (ax)x−1, so
sagt man, L habe die Inverseneigenschaft. Ist dies der Fall, so gilt zudem
(x−1)−1 = x und (xy)−1 = y−1x−1, wie der Leser leicht bestätigt.
Es gibt keinen Mangel an Verbandsquasigruppen. Um dies einzusehen, be-
trachten wir (Rn,≤) bezüglich a ◦ b := a + nb (n ∈ N) mit fixem n.
Weiterhin gibt es einen Überfluss an Verbandsloops, da wir ausgehend von

249
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einer Verbandsquasigruppe (Q, ◦,∧,∨) eine Verbandsloop erhalten, wenn
wir für ein vorgegebenes x, y definieren: a · b := (a/x) ◦ (y\b) . In diesem
Falle fungiert x◦y als 1 als Eins. Und schließlich sollte betont werden, dass
die freie Loop nicht nur eine Verbandsordnung, sondern sogar eine lineare
Ordnung zulässt, [89], [90].

Verbandsgeordnete binäre Systeme sind kongruenz-distributiv in jedem Fal-
le und kongruenz-vertauschbar in vielen Fällen. Demzufolge ist die Theo-
rie der verbandsgeordneten binären Systeme reich vom rein algebraischen
Standpunkt aus gesehen. Auf der anderen Seite aber gibt es noch nicht
viele Ergebnisse über Verbandsgruppoide basierend auf ornungstheoreti-
schen oder kombinierten Aspekten, obwohl bereits G. Birkhoff in [10]
und ebenso L. Fuchs in [79] Probleme dieser Art formulieren. Dennoch,
zumindest eine fruchtbare Theorie der Verbandsloops scheint möglich, was
sich schon in [10] andeutet und geradezu suggeriert wird durch Ergebnisse
von Evans und Hartman, [71], die als erste einen Durchbruch schafften,
nach mehreren Beiträgen verschiedener Autoren wie Zelinsky [162], [163],
Kaplansky sowie Ingraham & Birkhoff (s. [10]) und Aczél [2].

Die zentrale Struktur dieses Kapitels ist die des Teilbarkeitssemiloop, kurz,
die d-semiloop, definiert als sup-halbverbandsgeordnetes Kürzungsgruppoid
mit 1, derart dass gilt

ax ≤ b =⇒ ∃u : au = b & ya ≤ b =⇒ ∃v : va = b .

Somit ist die d-semiloop eine gemeinsame Verallgemeinerung der Verbands-
Loop und des Verbandsloop-Kegels.

Jede Verbandsgruppe ist, wie wir oben sahen, Quotientenerweiterung ihres
Kegels in solcher Weise, dass die Struktur des Ganzen völlig bestimmt
wird durch die Struktur des Kegels. Dies ist ganz anders im Falle einer
Verbandsloop, wo nicht einmal eine lineare oder eine vollständige Ordnung
des positiven Kegels Einfluss auf den negativen Kegel nehmen. Um dies
einzusehen betrachte der Leser die reelle Achse bezüglich

a ◦ b :=

{
a+ b falls eine Komponente negativ ist

a− ab+ b im anderen Fall .

Von daher scheint die Situation hoffnungslos. Dennoch gilt ein Ergebnis,
das einiges Licht wirft für den Fall, dass man den Kegel isoliert betrachtet,
denn wir werden zeigen:
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Verbandsloop-Kegel sind identisch mit den positiven d-semiloops,
und jeder Verbandsloop-Kegel ist sogar Kegel einer Verbandsloop
mit Inverseneigenschaft.

Dies vertieft ein Theorem von J. v. Neumann und beantwortet zugleich
eine von ihm gestellte Frage, (s. [10]), vor allem aber vermittelt dieses Re-
sultat Hoffnung auf eine Möglichkeit, allgemeine Verbandsloop-Probleme
erfolgreich auf dem Wege über inverse Verbandsloops angehen zu können.
Ist ein geordnetes binäres System gegeben, stellt sich als erstes Ordnungs-
problem die Frage, was die absteigende Kettenbedingung für abgeschlossene
Intervalle vom rein algebraischen Standpunkt aus bedeutet. So ist denn
diese Frage wiederholt für die verschiedensten algebraischen Systeme be-
handelt worden, insbesondere für Halbgruppen von Arnold [3], Clifford
[52], [53], Lorenzen [119] und anderen, (s. [80]), und für Verbandsgrup-
pen von Birkhoff und Ward, siehe etwa [10]. Doch für Verbandsloops
blieb die Frage offen bis Evans [70] zeigte, dass Verbandsloops, die dieser
Bedingung genügen, übereinstimmen mit den abelschen Verbandsgruppen
mit eindeutiger Primelementzerlegung. Das liefert als Korollar, dass jede
Verbandsquasigruppe mit D. C. C. das Isotop einer freien abelschen Gruppe
ist. Siehe hierzu auch Testov.
Dies regt an zu einer ähnlichen Untersuchung von d-semiloops, und es ist in
keiner Weise überraschend, dass ein Analogon zu Evans’ Theorem gültig
bleibt. Aber es sind – in den Augen des Verfassers – weniger die Resultate
als die Methoden, die diesen Abschnitt rechtfertigen.
Zwei natürliche Verallgemeinerungen der Kettenbedingung bzw. der Prim-
elementzerlegungseigenschaft bieten sich an, zum einen die Vollständigkeit
(für abgeschlossene Intervalle) und zum anderen die Repräsentierbarkeit,
d.h. die Eigenschaft, eine subdirekte Zerlegung in linear geordnete Faktoren
zu besitzen.
Soweit Vollständigkeit betrachtet wird, werden wir beweisen, dass potenz-
assoziative d-semiloops sogar assoziativ und kommutativ sind, womit Iwa-
sawas Theorem [100] über die Kommutativität vollständiger Verbands-
gruppen auf d-semiloops übertragen wird. Weiter werden wir in einem vier-
ten Abschnitt zeigen, dass Vollständigkeit, lediglich kombiniert mit Monas-
soziativität eine zu schwache Forderung darstellt, um Assoziativität oder
Kommutativität zu erzwingen.
Als ein weiteres Problem im Kontext der Vollständigkeit greifen wir die Fra-
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ge nach d-semiloops auf, die eine vollständige Erweiterung zulassen. Dies
ist im Blick auf verbandsgruppenähnliche Strukturen wiederholt zum Ge-
genstand vom Untersuchungen gemacht worden. Hier waren dem Anschein
nach wohl Arnold [3] und van der Waerden [155] die ersten, die ein
Einbettungsproblem im allgemeinen behandelt haben, vor anderen, wie Lo-

renzen [119], Clifford [52], [53], und später Everett & Ulam [72],
die als erste einen nicht kommutativen Fall behandelten. Doch eine Analyse
nicht assoziativer Verhältnisse gab niemand vor 1972, als P. A. Hartman

[89], [90] das Problem der vollständigen Einbettung für partial geordne-
te Quasigruppen und Loops erledigte. Natürlich gibt es noch weitere Re-
sultate, man konsultiere etwa [10] und [32], vor allem selbstverständlich
Richard Dedekinds Initialbeitrag (s. [60]). Somit bedeutet die Cha-
rakterisierung von d-semiloops mit vollständiger Erweiterung einen höchst
natürlichen weiteren Schritt im Blick auf eine lang anhaltende Entwicklung.
Schließlich wenden wir uns repräsentierbaren d-semiloops zu und werden
dabei einen Schlüssel vorstellen, der im letzten Kapitel ganz allgemein das
Problem der Repräsentierbarkeit erschließen wird.

Ein Hinweis: Es werden sich duale Sachverhalte verschiedenster Art ein-
stellen, z. B. rechts- links Dualitäten oder ≥/≤ Dualitäten. Folglich wird es
Aussagen geben, die zwangsläufig zusammen mit der zu ihnen dualen Aus-
sage gelten. Deshalb sollte der Leser einen solchen Sachverhalt realisieren,
wo immer er sich einstellt. Dennoch wird er von Zeit zu Zeit ausdrücklich
aufgefordert werden, dieser Tatsache Rechnung zu tragen.

11.2 d-Semiloops

11. 2. 1 Definition. Eine Algebra Algebra G := (G, ·,∧, 1) vom Typ
(2,2,0) heiße eine Teilbarkeits-Semiloop, wenn sie den Gesetzen genügt:

(DSL 1) (G, ·) ist ein Kürzungsgruppoid.

(DSL 2) 1 · a = a = a · 1

(DSL 3) (G,∧) ist ein Halbverband.

(DSL 4) x(a ∧ b) · y = xa · y ∧ xb · y

(DSL 5) ax ≤ b =⇒ ∃u : au = b

ya ≤ b =⇒ ∃v : va = b .
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Ist G eine Teilbarkeits-Semiloop, so nennen wir G auch kurz eine d-semiloop
– in Abkürzung von divisibility semiloop.

Man beachte, dass (DSL 4) aufgrund von (DSL 2) Rechts- und Links-
Distributivität fordert und man beachte ferner, dass der negative Kegel
einer jeden d-semiloop auch aufgefasst werden kann als positive d-semiloop
bezüglich ∨ , wegen der Implikation a, b ≤ 1 =⇒ ab ≤ b .
Klassische Beispiele der d-semiloop sind die Verbandsloop und ihr Kegel.
Demzufolge ist die d-semiloop eine gemeinsame Verallgemeinerung dieser
beiden Strukturen. Sei fortan eine d-semiloop G fest gewählt. Dann gelten:

(11.7) a ≤ b

=⇒
ax ≤ bx & ya ≤ yb

=⇒
a ≤ b .

DENN: Offenbar können wir uns auf die linksseitigen Fälle beschränken.
Diese folgen aber vermöge a ≤ b =⇒ ya∧ yb = y(a∧ b) = ya für die Links-
Rechts-Richtung und vermöge ya = ya∧yb =⇒ ya = y(a∧b) =⇒ a = a∧b
für die Rückrichtung. 2

(11.8) b ≥ 1 & a′′(a ∧ c) = a

=⇒
a ∧ bc = (a′′ ∧ b)(a ∧ c) .

DENN: b ≥ 1 =⇒ a ∧ bc = a′′(a ∧ c) ∧ ba ∧ bc = (a′′ ∧ b)(a ∧ c) . 2

Aus (11.8) resultiert fast unmittelbar für geeignete xb ≤ b , xc ≤ c

(11.9) x ≤ bc & b ≥ 1
=⇒

x = xb · xc
(11.10) (a ∧ b)a′ = a

=⇒
ba′ = sup (a, b) := a ∨ b .

BEWEIS. Sei (a∧b)a′ = a. Dann folgt a′ ≥ 1 und damit ba′ ≥ a & ba′ ≥ b.
Auf der anderen Seite erfüllt jedes c mit c ≥ a, b für ein geeignetes x die
Implikation: c = bx & a = (a ∧ b)(a′ ∧ x) =⇒ a′ = x ∧ a′ =⇒ a′ ≤ x =⇒
ba′ ≤ bx = c .
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Ganz ähnlich zeigt man, dass (a ∨ b)a′ = a & (a ∨ b)b′ = b zu ab′ = a ∧ b
führt. Dies wird gewährleistet durch (DSL 5). 2

(11.11) x(a ∨ b) · y = xa · y ∨ xb · y

DENN: Sei xa ∨ xb = (xa)c. Dann existiert nach (DSL 5) ein Element
u mit xu = xa∨ xb, woraus u ≥ a∨ b resultiert und demzufolge x(a∨ b) =
xa ∨ xb. Der Rest ergibt sich dual. 2

(11.12) (a ∧ b)a′ = a & (a ∧ b)b′ = b
=⇒

(a ∧ b)a′ · b = ab′

= a ∨ b
= (a ∧ b)(a′ ∨ b′) .

(11.13) b ∧ c = 1 V b ∨ c = 1 =⇒ ab.c = ac.b .

DENN: Es gilt b ∧ c = 1 =⇒ ab ∧ ac = a und b ∨ c = 1 =⇒ ab ∨ ac = a ,
weshalb wir in diesem Falle dual schließen können – man pole um! 2

(11.14) a ∧ b = 1 =⇒ ab = a ∨ b = ba .

(11.15) ab = cd
=⇒

ab = (a ∧ b)(b ∨ d) = (a ∨ c)(b ∧ d) .

DENN: ab = cd
=⇒

ab ≥ (a ∧ c)b ∨ (a ∧ c)d = (a ∧ c)(b ∨ d)
&

ab ≤ a(b ∨ d) ∧ c(b ∨ d) = (a ∧ c)(b ∨ d). 2

(11.16) a = (1 ∧ a)(1 ∨ a) = (1 ∨ a)(1 ∧ a) .

11. 2. 2 Definition. Unter dem positiven Anteil von a verstehen wir das
Element 1∨a =: a+, unter seinem negativen Anteil das Element 1∧a =: a−.
Weiter bezeichnen wir mit a∗ das Element xmit a−x = 1, und wir definieren
dual das Element a:, das also a:a− = 1 erfüllt.
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Schließlich verstehen wir unter dem Kegel die Menge aller a+ , also die
Menge aller a mit a ≥ 1 .

Im Blick auf (11.2.2) erhalten wir fast unmittelbar nach (11.16):

(11.17) a ≤ b ⇐⇒ 1 ∧ a ≤ 1 ∧ b & 1 ∨ a ≤ 1 ∨ b
⇐⇒ a∗ ≥ b∗ & a+ ≤ b+ .

und damit

11. 2. 3 Proposition. In einer d-semiloop charakterisiert der Kegel die
Ordnung.

Wie wir als nächstes sehen werden, interagieren die oben ausgezeichneten
Elemente über diverse

”
Koppelungen”, die jetzt vorgestellt werden sollen.

(11.18) ab = ab+ · b− = ab− · b+

DENN: Man schreibe ab = a1 · b = ab · 1 und beachte (11.15) 2

(11.19) a+ ∧ a∗ = 1 ,

DENN: (11.18) liefert a+ = aa∗ & aa∗ ∧ a∗ = (a ∧ 1)a∗ = 1 . 2

(11.20) c ≤ 1 & b ∧ c∗ = 1 =⇒ a · bc = ab · c = ac · b .

DENN: Es gilt b ∧ c∗ = 1 =⇒ 1 ∧ cb = (1 ∧ c)(c∗ ∧ b) = 1 ∧ c nach dem
Rechts-Dual zu (11.8). Folglich dürfen wir bei negativem c ausgehen von
c = (cb)− und damit von cb = c(1 ∨ cb) , also b = (cb)+ , was dann nach
(11.18) zu a · bc = ab · c = ac · b , also unserer Behauptung führt. 2

Als nächstes haben wir

(11.21) u ∧ a∗ = 1 =⇒ a−u ∧ 1 = a−

=⇒ 1 ∨ a−u = u

=⇒ u ∧ a∗ = 1 ,

und hieraus folgt fast unmittelbar:

(11.22) y ≤ 1 ≤ x & x ∧ y∗ = 1 & xy = a

=⇒
x = a+ & y = a− .

Als nächstes erhalten wir
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(11.23) (ab)+ = (1 ∨ a+b−)(1 ∨ a−b+)

& (ab)− = (1 ∧ a+b−)(1 ∧ a−b+) .

BEWEIS. Unter Berücksichtigung von (11.20) folgt zunächst

ab = a+a− · b+b−

= (a+ · a−b+)b−

= (a+(1 ∨ a−b+))
· ((1 ∧ a−b+)b−)

= ((1 ∧ a−b+) · a+b−)
· (1 ∨ a−b+)

und damit weiter

(11.24) ab = ((1 ∧ a−b+) · (1 ∧ a+b−)) · ((1 ∨ a+b−) · (1 ∨ a−b+) .

Es gilt nun

(11.25) (1 ∨ a+b−)∧(1 ∧ a−b+)∗ = 1 = (1 ∨ a+b−))∧(1 ∧ a+b−)∗ ,

und es genügt nach (11.22) zu zeigen, dass

1 ∨ a+b− ⊥ ( (1 ∧ a−b+) · (1 ∧ a+b−) )∗

erfüllt ist. Dies folgt aber nach (11.21) vermöge

u ∧ a+ = 1 = u ∧ b∗
=⇒

1 ∨ b−u = u = 1 ∨ a−u
=⇒

b− ∨ b− · a−u = b−u

=⇒
1 ∨ b− ∨ b−a− · u = 1 ∨ b−u = u

=⇒
u ∧ (a−b−)∗ = 1

Damit sind wir am Ziel. 2

Schließlich erhalten wir

(11.26) a ∧ b: = 1 ⇐⇒ a ∧ b∗ = 1 .
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DENN: a ∧ b: = 1 =⇒ ab− ∧ 1 = b− =⇒ a(b−b∗) ∧ b∗ = 1 =⇒ a ∧ b∗ = 1 .
2

Hiernach führen wir zwei Zusatz-Operationen ein.

11. 2. 4 Definition. x heiße Rechtskomplement von a in b, symboli-
siert mittels a ∗ b , wenn (a ∧ b)x = b erfüllt ist. . Dual definieren wir das
Linkskomplement b : a von a in b.

Wegen (a ∧ b)(a ∗ b ∧ b ∗ a) = a ∧ b resultiert fast definitionsgemäß

(11.27) a ∗ b ∧ b ∗ a = 1 ,

und es resultieren weiter:

(11.28) a ∧ b = a/(b ∗ a) = (b : a)\b
& a ∨ b = a(a ∗ b) = (a : b)b

(11.29) a ≤ b =⇒ x ∗ a ≤ x ∗ b
& a ∗ x ≥ b ∗ x .

Darüber hinaus gelten

(11.30) a ∗ (b ∨ c) = a ∗ b ∨ a ∗ c

DENN: a(a ∗ b∨ a ∗ c) = a(a ∗ b)∨ a(a ∗ c) = a∨ b∨ a∨ c = a∨ (b∨ c). 2

(11.31) (a ∧ b) ∗ c = a ∗ c ∨ b ∗ c

DENN: (a ∧ b) ∗ c ≥ a ∗ c ∨ b ∗ c & (a ∧ b)(a ∗ c ∨ b ∗ c) ≥ (a ∧ b) ∨ c. 2

(11.32) a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c

DENN: a ∗ (b ∧ c) ≤ a ∗ b ∧ a ∗ c
&

(a ∧ b ∧ c)(a ∗ b ∧ a ∗ c) ≤ (a ∧ b)(a ∗ b) ∧ (a ∧ c)(a ∗ c)
= b ∧ c
;

a ∗ b ∧ a ∗ c ≤ a ∗ (b ∧ c) 2
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(11.33) (a ∨ b) ∗ c = a ∗ c ∧ b ∗ c

DENN: (a ∨ b) ∗ c ≤ a ∗ c ∧ b ∗ c
&

(a ∨ b)(a ∗ c ∧ b ∗ c) ≤ a(a ∗ c) ∨ b(b ∗ c)
= a ∨ b ∨ c
;

a ∗ c ∧ b ∗ c ≤ (a ∨ b) ∗ c .
2

Der Leser sollte beachten, dass (11.30) bis (11.33) gültig bleiben, wenn wir
∗ ersetzen durch \ und : durch /, vorausgesetzt die eingehenden Operati-
onsergebnisse existieren.

Anwendung von Lemma (11.32) liefert uns hiernach:

11. 2. 5 Proposition. (G,∧,∨) ist distributiv.

BEWEIS. Es ist a ∨ (b ∧ c) = a(a ∗ (b ∧ c)) = a(a ∗ b) ∧ a(a ∗ c) =
(a ∨ b) ∧ (a ∨ c) erfüllt, (auch gilt bei Anwendung von (11.33) alternativ:
a ∧ (b ∨ c) = a/((b ∨ c) ∗ a) = a/(b ∗ a) ∨ a/(c ∗ a) = (a ∧ b) ∨ (a ∧ c)). 2

Hiernach ergeben sich fast per definitionem

(11.34) (a ∧ b)+ = a+ ∧ b+
& (a ∧ b)− = a− ∧ b−

& (a ∨ b)+ = a+ ∨ b+
& (a ∨ b)− = a− ∨ b−

Schließlich sei zur Ergänzung1) erwähnt:

11. 2. 6 Lemma. Ist L eine kommutative d-semiloop, so gelten die Glei-
chungen:

(a ∧ b)(a ∨ b) = ab(11.35)

(a ∧ b)2 = a2 ∧ b2(11.36)

(a ∨ b)2 = a2 ∨ b2(11.37)

1) Hinweis: Das Lemma 11.2.6 wurde in [35] nicht formuliert
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DENN: (11.35) ergibt sich via :

(a ∧ b)(a ∨ b) = (a ∧ b)a ∨ (a ∧ b)b
≤ ab

≤ a(a ∨ b) ∧ b(a ∨ b)
= (a ∧ b)(a ∨ b)

(11.36) ergibt sich via :

ab ∧ (a2 ∧ b2) = (ab ∧ a2)ab ∧ b2

= a(b ∧ a) ∧ b(b ∧ a)

= (a ∨ b)(a ∧ b)
= ab

;

(a ∧ b)2 = a2 ∧ ab ∧ b2

= a2 ∧ b2 .

Und (11.37) ergibt sich dual zu (11.36). 2

Im Rest dieses Paragraphen betrachten wir spezielle Sachverhalte mit Blick
auf spätere Paragraphen.

11. 2. 7 Definition. Wir sagen a bedecke b , wenn a > b erfüllt ist und
kein Element von G streng zwischen a und b liegt. Bedeckt p das Element
1 , so heißt p ein Atom.

11. 2. 8 Lemma. Jedes Atom ist prim, d. h. jedes Atom erfüllt die Im-
plikation p ≤ a+b+ =⇒ p ≤ a+ V p ≤ b+.

DENN: p ≤ a+b+ & p ̸≤ b+ =⇒ p ≤ (p ∧ a+)(p ∧ b+) = p ∧ a+ . 2

11. 2. 9 Lemma. Jedes Atom p erfüllt ap · pn = a · ppn , wenn man als
Standardklammerung die Klammerung von links vereinbart.

DENN: ap · pn = a · qpn & p ̸= q impliziert ap · pn = aq · pn, wegen (11.13),
man beachte ap.pn bedeckt apn, weshalb q ein Atom ist. 2

11. 2. 10 Korollar. Die natürlichen Potenzen eines jeden Atoms p bilden
eine Unterhalbgruppe.
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DENN: Dies folgt nach 11.2.9 via Induktion. 2

11. 2. 11 Lemma. Jedes Atom erfüllt px = 1 ⇐⇒ xp = 1.

DENN: Wir führen den Beweis für =⇒: Zunächst gilt 1 bedeckt x , und
wir haben darüber hinaus x ≤ 1 ≤ p & x ≤ xp ≤ p . Folglich können wir
schließen:

1 ∧ xp = 1 =⇒ xp = 1 wegen xp < p

V 1 ∧ xp = x =⇒ 1 ∨ xp = p =⇒ xp = px = 1 .

Damit sind wir am Ziel. 2

Endlich wenden wir uns Regeln zu, die vor allem im Abschnitt über vollständi-
ge d-semiloops von Bedeutung sein werden.

11. 2. 12 Lemma. Existieren die Rechts-Inversen ar und br , so existieren
auch die Rechts-Inversen zu a ∧ b und a ∨ b , und es gelten die Formeln

(a ∧ b)r = ar ∨ br und (a ∨ b)r = ar ∧ br .

DENN: aar = 1 = bbr =⇒ (a ∧ b)(ar ∨ br) = 1 = (a ∨ b)(ar ∧ br) . 2

Weiter benötigen wir einige Implikationen fürorthogonale Paare, d. h. Paare
a, b mit a ∧ b = 1 , i. Z. a⊥ b. Hier erhalten wir

11. 2. 13 Lemma. Ist G positiv, d. h., erfüllen alle a die Bedingung
a ≥ 1 , so gilt:

a ⊥ b =⇒ a ∗ bc = b(a ∗ c)
& cb : a = (c : a)b

DENN: a ⊥ b =⇒ (a ∧ bc)(b(a ∗ c))
= (a ∧ c)(b(a ∗ c)) (11.8)
= b · (a ∧ c)(a ∗ c)
= bc . (11.13)

Der Rest folgt dual. 2

11. 2. 14 Lemma. Ist G positiv, so gilt die Implikation

a ⊥ c =⇒ ab ∗ c = b ∗ c = ba ∗ c
& c : ab = c : b = c : ba .

DENN: a ⊥ c impliziert nach (11.8) (ab ∧ c)x = c =⇒ (b ∧ c)x = c .
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Der Rest folgt dual. 2

11. 2. 15 Lemma. Ist G positiv, so gilt die Implikation

a ⊥ b =⇒ xa ∗ xb = b
& bx : ax = b .

DENN: a ⊥ b impliziert (xa ∧ xb)y = xb =⇒ x(a ∧ b) · y = xb =⇒ y = b.
Der Rest folgt dual. 2

11. 2. 16 Lemma. Ist G positiv und assoziativ, also eine kürzbare kom-
plementäre Halbgruppe, so gelten die schon oben bewiesenen Regeln:

(i) ab ∗ c = b ∗ (a ∗ c)

(ii) a ∗ (b : c) = (a ∗ b) : c

(iii) a ∗ bc = (a ∗ b)((b ∗ a) ∗ c) .

Wir kommen nun zu (bedingt) vollständigen d-semiloops. Analog zum end-
lichen Fall erhalten wir hier:

11. 2. 17 Lemma. Ist G vollständig, so erfüllt G:

(i) x(
∨
ai)y =

∨
(xaiy) & x(

∧
ai)y =

∧
(xaiy),

und dual (ii) x\(
∨
ai) =

∨
(x\ai) & x\(

∧
ai) =

∧
(x\ai)

sowie (iii) (
∨
ai)\x =

∧
(ai\x) & (

∧
ai)\x =

∨
(ai\x)

und dual (iv) a ∧
∨
bi =

∨
(a ∧ bi) & a ∨

∧
bi =

∧
(a ∨ bi).

BEWEIS. Der Beweis darf dem Leser überlassen bleiben, da er analog
verläuft wie für endliche Suprema bzw. Infima. 2

Schließlich sei bemerkt:

11. 2. 18 Lemma. G ist schon dann vollständig, wenn der Positivbereich
von G vollständig ist. Genauer : s ≤ ai =⇒

∧
(1∨ ai) · bigwedge(1 ∧ ai) =∧

ai.

DENN: Dies folgt aus der Äquivalenz

x ≤ ai =⇒ 1 ∨ x ≤ 1 ∨ ai
& (1 ∧ x)∗ ≥ (1 ∧ ai)∗ ,

man betrachte nach unten beschränkte Mengen {ai
∣∣ (i ∈ I)} . 2
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11.3 Der Verbandsloop-Kegel

Die Struktur einer Verbandsgruppe ist bis auf Isomorphie vollständig fest-
gelegt durch ihren Kegel. So stellt sich die Frage, ob das Gleiche gilt für
Verbandsloops. Die Antwort ist nach 11.2.12 evidenterweise positiv für
den zugrunde liegenden Verband. Aber es wurde schon in der Einleitung
gezeigt, dass nicht isomorphe Verbandsloops sehr wohl isomorphe Kegel
haben können. Daher reduziert sich die Frage auf das Problem, ob es
möglich ist, jene d-semiloops zu charakterisieren, die eine Verbandsloop-
Erweiterung zulassen. Zu diesem Zweck wählen wir in diesem Abschnitt C
durchgehend als eine positive d-semiloop.

11. 3. 1 Definition. Mit L sei die Menge aller orthogonalen positiven
Paare [ a

∣∣ b ] bezeichnet. Weiter bezeichne L die Struktur (L, ◦,∧) , deren
Operationen definiert seien vermöge:

[ a
∣∣ b ] ◦ [ c

∣∣ d ] := [ (a : d)(b ∗ c)
∣∣ (d : a)(c ∗ b) ]

und [ a
∣∣ b ] ∩ [ c

∣∣ d ] := [ a ∧ c
∣∣ b ∨ d ] .

Offenbar ist ◦ rechts-links-dual erklärt. Das bedeutet: Ein Satz und sein
Beweis bleiben richtig, wenn wir [x

∣∣ y] durch [y
∣∣ x] sowie a ∗ b durch b : a

und c : d durch d ∗ c ersetzen. Weiterhin ist ◦ nach (11.8) eine Funktion,
also auch eine Operation. Hiernach erhalten wir sukzessive:

(11.41) a ⊥ b & c ⊥ d =⇒ (a ∧ c) ⊥ (b ∨ d) ,

DENN: (a ∧ c) ∧ (b ∨ d) = (a ∧ c ∧ b) ∨ (a ∧ c ∧ d) . 2

Nach (11.41) ist (L,∧) also ein Halbverband.

(11.42) [ a
∣∣ b ] ≤ [ c

∣∣ d ] =⇒ [ a
∣∣ b ] ◦ [ x

∣∣ y ] ≤ [ c
∣∣ d ] ◦ [ x

∣∣ y ]

& [x
∣∣ y ] ◦ [ a

∣∣ b ] ≤ [x
∣∣ y ] ◦ [ a

∣∣ b ].

DENN: Dies folgt unmittelbar aus (11.29). 2

(11.43) [ a
∣∣ b ] ◦ [ c

∣∣ d ] =
(

[ a
∣∣ b ] ◦ [ c

∣∣ 1 ]
)
◦ [ 1

∣∣ d ]

= [ a
∣∣ 1 ] ◦

(
[ 1
∣∣ b ] ◦ [ c

∣∣ d ]
)
.
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DENN: Dies folgt aus Dualitätsgründen vermöge

[ (a : d)(b ∗ c)
∣∣ (d : a)(c ∗ b) ]

= [ a(b ∗ c) : d
∣∣ (d : a)(c ∗ b) ] (11.2.13)

= [ a(b ∗ c) : d
∣∣ (d : a(b ∗ c))(c ∗ b) ] (11.2.14)

= [ a(b ∗ c)
∣∣ c ∗ b ] ◦ [ 1

∣∣ d ]

=
(

[ (a
∣∣ b ] ◦ [ c

∣∣ 1) ]
)
◦ [ 1

∣∣ d ] . 2

(11.44) [ (a
∣∣ b ] =

(
[ a
∣∣ b ] ◦ [1

∣∣x ]
)
◦ [x

∣∣ 1 ]

= [ 1
∣∣x ] ◦

(
[ x
∣∣ 1 ] ◦ [ a

∣∣ b ]
)
.

DENN: Dies folgt aus Dualitätsgründen vermöge

[ (a : x)
∣∣ (x : a)b ] ◦ [x

∣∣ 1 ]
= [ (a : x)((x : a)b ∗ x)

∣∣x ∗ (x : a)b ]

= ( [ (a : x)((x : a)b ∗ (x : a)(a ∧ x))∣∣ (x : a)(a ∧ x) ∗ (x : a)b ]

= [ (a : x)(x ∧ a)
∣∣ b ]

= [ a
∣∣ b ] . (11.2.15)

2

(11.45) [ a
∣∣ b ] = ( [ a

∣∣ b ] ◦ [x
∣∣ 1 ] ) ◦ (1

∣∣ x)

= [ x
∣∣ 1 ] ◦ ( [ 1

∣∣x ] ◦ [ a
∣∣ b ] ) .

DENN: Dies folgt aus Dualitätsgründen via

[ a(b ∗ x)
∣∣ (x ∗ b) ] ◦ [ 1

∣∣x ]

= [ a(b ∗ x) : x
∣∣ (x : a(b ∗ x))(x ∗ b) ]

= [ a(b ∗ x) : (b ∧ x)(b ∗ x)∣∣ ((x : (b ∗ x)) : a)(x ∗ b) ]

= [ a
∣∣ (x ∧ b)(x ∗ b) ] (11.2.15)

= [ a
∣∣ b ] . 2

(11.46) [ a
∣∣ b ] = ( [ a

∣∣ b ] ◦ [x
∣∣ y ] ) ◦ [ y

∣∣ x ]

= [ x
∣∣ y ] ◦ ( [ y

∣∣ x ] ◦ [ a
∣∣ b ] .
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DENN: Dies folgt aus Dualitätsgründen via(
[ a
∣∣ b ] ◦ [x

∣∣ y ]
)
◦ [ y

∣∣ x ]

=
(

( ( [ a
∣∣ b ] ◦ [x

∣∣ 1 ] ) ◦ [ 1
∣∣ y ] ) ◦ [ y

∣∣ 1 ]
)
◦ [ 1

∣∣x ]

=
(

[ a
∣∣ b ] ◦ [x

∣∣ 1 ]
)
◦ [ 1

∣∣ x ]

= [ a
∣∣ b ] . 2

11. 3. 2 Lemma. Das System der Forderungsgleichungen

(G)
[ c
∣∣ d ]

.
= [ a

∣∣ b ] ◦ [ x
∣∣ y ]

[ c
∣∣ d ]

.
= [u

∣∣ v ] ◦ [ a
∣∣ b ]

hat eindeutig bestimmte Lösungen.

DENN: Nach (11.46) ist

[x
∣∣ y ] = [ b

∣∣ a ] ◦ [ c
∣∣ d ]

im ersten und [u
∣∣ v ] = [ c

∣∣ d ] ◦ [ b
∣∣ a ]

im zweiten Fall die einzige Lösung. 2

(11.48) [ a
∣∣ b ] = [ 1

∣∣ 1 ] ◦ [ a
∣∣ b ]

= [ a
∣∣ b ] ◦ [ 1

∣∣ 1 ] .

DENN: [ a : 1
∣∣ 1 ∗ b ] = [ a

∣∣ b ] = [ 1 ∗ a
∣∣ b : 1 ] . 2

(11.49)
[ ab
∣∣ 1 ] = [ a

∣∣ 1 ] ◦ [ b
∣∣ 1 ]

&
[ a ∧ b

∣∣ 1 ] = [ a
∣∣ 1 ] ∩ [ b

∣∣ 1 ] .

DENN: dies ist offenbar. 2

Damit haben wir bislang bewiesen:

11. 3. 3 Proposition. Ein partial geordnetes Gruppoid ist Verbandsloop-
Kegel genau dann, wenn es eine positive d-semiloop ist.

11. 3. 4 Definition. Als invers bezeichnet man Loops mit der Inversen-
eigenschaft, englisch: inverse property, das sind Loops mit

∀ a ∃ a−1 : a−1(ab) = b = (ba)a−1 .
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Inverse Loops erfüllen offenbar aa−1 = 1 = a−1a und weiterhin können wir
schließen (xy)−1 = y−1x−1, wegen (xy)y−1 = x =⇒ y−1 = (xy)−1x =⇒
y−1x−1 = (xy)−1 .

Im allgemeinen sind Loops bei weitem nicht invers. Es lässt sich aber ver-
blüffenderweise zeigen:

11. 3. 5 Proposition. Zu jedem Verbandsloop-Kegel existiert nicht nur
eine allgemeine sondern sogar eine inverse Verbandsloop-Erweiterung.

DENN: Mit [x
∣∣ y]−1 := [y

∣∣ x] folgt die Behauptung aus (11.46). 2

Wir betrachten nun die Ausdehnung L des Kegels C. Wir werden zeigen,
dass L bis auf Isomorphie eindeutig bestimmt ist, sofern wir inverse Ver-
bandsloops betrachten. Weiterhin wollen wir auf das Kongruenz- und Ord-
nungsverhalten der Ausdehnung eingehen.

11. 3. 6 Proposition. L ist im wesentlichen die einzig mögliche inverse
Ausdehnung von C.

BEWEIS. Sei I eine inverse Verbandsloop-Erweiterung von C. Dann er-
halten wir nach den Regeln der Verbandsloop-Arithmetik:

1 ∨ a−1b = a ∗ b (a(1 ∨ a−1b) = a ∨ b)
1 ∨ ba−1 = b : a (via Dualität)

1 ∧ a−1b = (1 ∨ b−1a)−1 = (b ∗ a)−1

und 1 ∧ ba−1 = (a : b)−1 (via Dualität)

Weiter sind die beiden Erweiterungen nach 11.2.3 als Ordnungsstrukturen
isomorph, sofern sie algebraisch isomorph sind. Deshalb können wir uns
auf die multiplikativen Aspekte beschränken. Als erstes halten wir fest:

(11.50) ab−1 = (1 ∨ ab−1)(1 ∧ ab−1)

= (a : b)(b : a)−1 .

In Worten: jedes Element aus G besitzt eine Darstellung x · y−1 mit ortho-
gonalen Elementen x, y . Das liefert aber im Falle α = ab−1 und γ = cd−1
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mit a⊥b und c⊥d :

ab−1 · cd−1 = (ab−1 · c) · d−1

= (a · (b−1c)) · d−1

= (a((1 ∨ b−1c) · (1 ∧ b−1c)) · d−1

= a(1 ∨ b−1c) · (1 ∧ b−1c)d−1

= a(b ∗ c) · (c ∗ b)−1d−1

= (c ∗ b)−1 · (a(b ∗ c) · d−1)

= (c ∗ b)−1 · (ad−1 · (b ∗ c))
= (c ∗ b)−1 · ((a : d)(d : a)−1 · (b ∗ c))
= (a : d)(b ∗ c) · (c ∗ b)−1(d : a)−1

= (a : d)(b ∗ c) · ((d : a)(c ∗ b))−1 .

Somit sichert die Funktion [a
∣∣ b] 7−→ ab−1 einen Isomorphismus von L und

I, wenn der Kegel C isomorph ist zum Kegel von I. 2

Hiernach wenden wir uns den elementaren algebraischen Eigenschaften zu.

11. 3. 7 Lemma. Ist C kommutativ, so ist auch L kommutativ.

DENN: Ist C kommutativ, so gilt x : y = y ∗ x, und dies liefert:

[ a
∣∣ b ] ◦ [ c

∣∣ d ] = [ ((a : d)(b ∗ c)
∣∣ (d : a)(c ∗ b) ]

= [ (b ∗ c)(d ∗ a)
∣∣ (c ∗ b)(a ∗ d) ]

= [ c
∣∣ d ] ◦ [ a

∣∣ b ] .

2

Eine Loop L heißt monassoziativ, wenn jedes a ∈ L eine Unterhalbgruppe
von (L, ·) erzeugt. Eine Loop heißt potenz-assoziativ, wenn jedes a ∈ L
eine Untergruppe von (L, ·, \, /) erzeugt.

11. 3. 8 Lemma. Ist C monassoziativ, so ist L potenz-assoziativ.

DENN: Nach (11.8) erhalten wir [ a
∣∣ b ]n = [ an

∣∣ bn ] (n ∈ N) und aufgrund
der Inverseneigenschaft [ a

∣∣ b ]−n = ([ a
∣∣ b ]−1)n . 2

Analog, aber nicht ganz so unmittelbar, folgt :

11. 3. 9 Lemma. Ist C assoziativ, so ist L ebenfalls assoziativ.

BEWEIS. Wir zeigen
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[ a
∣∣ 1 ] ◦ [ c

∣∣ d ]
)
) ◦ [ 1

∣∣ v ] = [ a
∣∣ 1 ] ◦

(
[ c
∣∣ d ] ◦ [ 1

∣∣ v ]
)
)(

[ 1
∣∣ b ] ◦ [ c

∣∣ d ]
)
) ◦ [ 1

∣∣ v ] = [ 1
∣∣ b ] ◦

(
[ c
∣∣ d ] ◦ [ 1

∣∣ v ]
)
)(

[ (1
∣∣ b ] ◦ [ c

∣∣ d ]
)
) ◦ [u

∣∣ 1 ] = [ 1
∣∣ b ] ◦

(
[ c
∣∣ d ] ◦ [u

∣∣ 1 ]
)
.

Zeile 3 ist das Duale zu Zeile 1, denn setzen wir a · b := ba, so erhalten wir
eine duale d-semiloop mit [a

∣∣ b] · [c
∣∣ d] = [c

∣∣ d] ◦ [a
∣∣ b]. Daher folgt Zeile 3

aus der Zeile 1 für die duale Struktur. Folglich bleiben zu verifizieren

[(a : d)c : v
∣∣ (v : (a : d)c)(d : a)]

= [(a : (v : c)d)(c : v)
∣∣ (v : c)d : a]

und [(b ∗ c) : v
∣∣ (v : (b ∗ c))d(c ∗ b)]

= [(b ∗ (c : v)
∣∣ (v : c)d((c : v) ∗ b)] .

Es resultiert aber die Zeile 1 aus 11.2.16 und die linken Komponenten der
zweiten Zeile sind gleich nach 11.2.16. Bleibt zu zeigen:

(v : (b ∗ c))d(c ∗ b) ∗ (v : c)d((c : v) ∗ b) = 1

(v : (b ∗ c))d(c ∗ b) : (v : c)d((c : v) ∗ b) = 1 .

Nun ist aber die zweite Gleichung rechts-links-dual zur ersten. Somit ge-
nügt es, den ersten Fall zu sichern. Wir erhalten :

(v : (b ∗ c))d(c ∗ b) ∗ (v : c)d((c : v) ∗ b)
= d(c ∗ b) ∗ (((v : c) ∗ (v : (b ∗ c))) ∗ d((c : v) ∗ b))
= d(c ∗ b) ∗ (((c : v) ∗ (c : (b ∗ c))) ∗ d((c : v) ∗ b)) (11.2.16, ii)

= d(c ∗ b) ∗ d(((c : v) ∗ (c : (b ∗ c))) ∗ ((c : v) ∗ b)) (11.2.13)

= (c ∗ b) ∗ (((c ∧ b) ∗ (c : v)) ∗ ((c ∧ b) ∗ b)) (11.28, 11.2.16)

= (c ∗ b) ∗ (((c ∧ b) ∗ (c : v)) ∗ (c ∗ b)) = 1 .

Schließlich folgt:(
[ a
∣∣ b ] ◦ [ c

∣∣ d ]
)
◦ [u

∣∣ v ]

=
(

( [ a
∣∣ 1 ] ◦ ( [ 1

∣∣ b ] ◦ [ c
∣∣ d ] ) ) ◦ [u

∣∣ 1 ]
)
◦ [ 1

∣∣ v ]

=
(

[ a
∣∣ 1 ] ◦ ( ( [ 1

∣∣ b ] ◦ [ c
∣∣ d ]) ) ◦ [u

∣∣ 1 ] )
)
◦ [ 1

∣∣ v ]

= [ a
∣∣ 1 ] ◦

(
( ( [ 1

∣∣ b ] ◦ [ c
∣∣ d ] ) ) ◦ [u

∣∣ 1 ] ) ) ◦ [ 1
∣∣ v ]

)
= [ a

∣∣ 1 ] ◦
(

( [ 1
∣∣ b ] ◦ ( [ c

∣∣ d ] ◦ [u
∣∣ 1 ] ) ) ◦ [ 1

∣∣ v ]
)

= [ a
∣∣ 1 ] ◦

(
[ 1
∣∣ b ] ◦ ( ( [ c

∣∣ d) ◦ [u
∣∣ 1 ] ) ◦ [ 1

∣∣ v ] )
)

= [ a
∣∣ b ] ◦

(
[ c
∣∣ d ] ◦ [u

∣∣ v ]
)
.
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Damit sind wir am Ziel. 2

Wir geben noch zwei ordnungstheoretische Ergebnisse:

11. 3. 10 Lemma. Ist C linear geordnet, so ist auch L linear geordnet.

DENN: Es gelten a ≤ b =⇒ [ a
∣∣ b ] = [ 1

∣∣ b ] und a ≥ b =⇒ [ a
∣∣ b ] = [ a

∣∣ 1 ].
Und weiter haben wir [ a

∣∣ 1 ] ≥ [ 1
∣∣ b ] für alle a, b ∈ C. 2

11. 3. 11 Lemma. Ist C vollständig, so ist auch L vollständig.

DENN: Man beachte 11.2.18 2

Schließlich betrachten wir Kongruenzen.

11. 3. 12 Proposition. Die Kongruenzen von (C, ·, ∗, :) setzen sich ein-
deutig fort nach L.

BEWEIS. Sei ≡ eine Kongruenz auf (C, ·, ∗, :). Wir definieren als Ausdeh-
nung [ a

∣∣ b ] ≡ [ c
∣∣ d ] :⇐⇒ a ≡ c & b ≡ d. Dies liefert eine Kongruenz auf

L wie der Leser leicht bestätigt.
Auf der anderen Seite erhalten wir für jede Ausdehnung ρ von ≡ von
(C, ·, ∗, :) nach L die Implikation [ a

∣∣ b ] ρ [ c
∣∣ d ] ⇐⇒ ad ≡ bc , woraus

a ≡ c & b ≡ d resultiert, man beachte (11.8). 2

11.4 Die Kettenbedingung

Offenbar erfüllt eine d-semiloop die absteigende Kettenbedingung für je-
des beliebige [a, b), wenn es die aufsteigende Kettenbedingung für jedes
beliebige (c, d] erfüllt. Wir können deshalb kurz von Modellen mit Ketten-
bedingung – C.C. – als Kürzel für chain condition – sprechen.
Sei in diesem Abschnitt G eine d-semiloop mit C.C. Dann ist jedes posi-
tive Element a ein Produkt von Atomen, da andernfalls unter den nicht
zerlegbaren ein minimales existieren würde, mit Widerspruch. Weiter exi-
stiert zu jedem a > 1 und beliebigem Atom p ein maximales p(a) ∈ N
unter den m ∈ N mit pm ≤ a. Schließlich erfüllt jedes Paar verschiedener
Atome p, q die Beziehung pm ⊥ qn (∀m,n ∈ N), wegen (11.8), und daher
auch pm · qn = pm ∨ qn. Dies liefert für jedes positive a ∈ G eine eindeutig
bestimmte Primfaktorzerlegung, siehe auch [70].
Ziel dieses Paragraphen ist der Nachweis, dass C.C. Assoziativität und
Kommutativität impliziert. Dies ist fast offenbar für C+ , also dual auch
für C−, doch fordert die allgemeine Aussage noch eine Kalkulation.
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11. 4. 1 Lemma. Sei q das Rechts-Inverse zu q und seien p, q zwei Atome.
Dann kommutiert pm mit jedem qn.

DENN: Es genügt pp = 1 =⇒ pm · pm = 1 zu verifizieren, man beachte
(11.20) und 11.2.11. Dies folgt aber durch Induktion, denn 11.2.9 impliziert
pmp · ppm = pm(pp · pm) . 2

11. 4. 2 Lemma. Erfülle G die Kettenbedingung. Dann ist G assoziativ
und kommutativ.

BEWEIS. Nach 11.4.1 erhalten wir mittels Distributivität a+ ·b− = b−·a+ ,
also a+ · b = a+b+ · b− = b− · b+a+ = b · a+ und dual a · b− = b− · a. Somit
gelangen wir zu

a · b = a− · a+b = ba+ · a− = b · a .

Weiterhin haben wir ab− · c− = a · b−c−. Folglich gilt

ab · c = (a+b+ · a−b− · c−)c+

= c+(a+b+ · a−b−c−)
= c+a+b+ · a−b−c− = a · bc ,

das Letzte wegen der Assoziativität in G+ . 2

Zusammenfassend erhalten wir damit:

11. 4. 3 Proposition. Eine d-semiloop erfüllt die Kettenbedingung für
abgeschlossene Intervalle [ a , b ] genau dann, wenn sie sich als direkte Sum-
me von Kopien der Algebren (Z,+,min) und (N0,+,min) auffassen lässt.

11.5 Vollständige d-semiloops

Wir werden beweisen, dass potenz-assoziative (bedingt) vollständige d-
semiloops sogar assoziativ und kommutativ sind. Dies wurde für loops auf
der reellen Achse zuerst von Aczél [2] gezeigt und für linear geordnete
loops im allgemeinen von Hartman [90].

11. 5. 1 Definition. G heißt potenz-assoziativ, wenn jedes a eine Un-
terhalbgruppe und jedes Paar a−, a∗ eine Untergruppe von (G, ·) erzeugt.
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11. 5. 2 Definition. In Ausdehnung der Relation ⊥ werden wir von nun
an unter u⊥x die Beziehung u+u∗ ∧ x+x∗ = 1 verstehen. Weiter soll die
Polare U ⊥ die Menge aller x bezeichnen, die in diesem Sinne u⊥x für alle
u ∈ U erfüllen.

Man zeigt leicht via (11.23) und Lemma 11.2.12, dass U ⊥ einen multipli-
kativ abgeschlossenen Unterverband von G bildet.

11. 5. 3 Lemma. Sei C := (C+, ·,∧,∨) und sei C1 × C2 eine direkte
Zerlegung von C . Dann ist C⊥

1 × C⊥
2 eine direkte Zerlegung von G.

BEWEIS. Wir bezeichnen C ⊥
1 mit G2 und C ⊥

2 mit G1. Dann ist jedes
Element ein Produkt vom Typ a1a2 , wobei die Indizes für die Komponen-
ten G1, G2 stehen. Um dies einzusehen, betrachten wir a−. Es gibt eine
Zerlegung a∗ = a∗1a

∗
2 und wir haben a−a∗1 ≤ 1 und a−a∗2 ≤ 1 , also auch

Elemente a∗ℓ1 und a∗ℓ2 mit (a∗ℓ1 · a∗ℓ2 ) · (a∗1 · a∗2) = 1. Folglich ist a∗ℓ1 a
∗ℓ
2 gleich

a− , und es gehören nach Definition a∗ℓ1 bzw. a∗ℓ2 zu G1 bzw. G2. Dies liefert
dann weiter

a+a− = a+1 a
+
2 · a∗ℓ1 a∗ℓ2 = a+1 (a+2 · a∗ℓ1 a∗ℓ2 )

= a+1 (a∗ℓ1 · a+2 a∗ℓ2 ) = a+1 a
∗ℓ
1 · a+2 a∗ℓ2

aufgrund von (11.20), (11.26), (11.8) . Des weiteren erhalten wir bei An-
wendung von (11.20), (11.8)

a1a2 = b1b2 =⇒ a+1 a
+
2 · a−1 a−2 = b+1 b

+
2 · b−1 b−2

=⇒ a+1 a
+
2 = b+1 b

+
2 &a−1 a

−
2 = b−1 b

−
2

=⇒ a+1 = b+1 . . . a
−
2 = b−2 ,

wegen a−1 a
−
2 · a∗1a∗2 = 1. Somit gilt a+1 a

+
2 ⊥ (a−1 a

−
2 )∗ .

Folglich können wir G als kartesisches Produkt von G1 und G2 betrach-
ten. Wir zeigen nun, dass die Operationen · und ∧ punktweise festgelegt
sind. Zu diesem Zweck sei zunächst an a1a2 = a+1 a

+
2 · a−1 a−2 erinnert, was

unter Hinweis auf (11.20) schon oben erwähnt wurde. Dies impliziert dann
geradeaus a.b1b2 = (a · b+1 b+2 ) · b−1 b−2

= (a · b+2 b+1 ) · b−2 b−1
= (ab+1 · b+2 )b−1 · b−2 (11.13)
= (ab+1 · b−1 )b+2 · b−2
= ab1 · b2
= ab2 · b1 ,
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und damit:

a1a2 · b1b2 = (a1a2 · b1)b2 = (a1b1 · a2)b2 = a1b1 · a2b2 .

Man beachte als nächstes

a+1 a
+
2 = a+1 ∨ a+2 und a−1 a

−
2 = a−1 ∧ a−2 (11.14)

und erinnere sich an (a∧ b)+ = a+∧ b+ und (a∧ b)− = a−∧ b− . Dann folgt:

a1a2 ∧ b1b2 = (a+1 a
+
2 ∧ b+1 b+2 ) · (a−1 a

−
2 ∧ b−1 b−2 )

= (a+1 ∧ b+1 )(a+2 ∧ b+2 ) · (a−1 ∧ b−1 )(a−2 ∧ b−2 )

= (a+1 ∧ b+1 )(a−1 ∧ b−1 ) · (a+2 ∧ b+2 )(a−2 ∧ b−2 )

= (a1 ∧ b1) · (a2 ∧ b2) .

Damit sind wir am Ziel 2

11. 5. 4 Lemma. Sei G vollständig und gelte a ̸≤ b & b ̸≤ a. Dann gibt
es eine direkte Zerlegung G = G1 ×G2 mit a1 ≤ b1 & a2 ≤ b2.

BEWEIS. Nach Lemma 11.5.2 genügt es, die Behauptung für positive
d-semiloops zu verifizieren. In diesem Falle definieren wir C1 := (a ∗ b)⊥
und C2 := C ⊥

1 . Dann sind C1 und C2 1-disjunkt und jedes c hat eine
Zerlegung c1c2 mit c1⊥ c2 und c1 = sup(x) (x ≤ c & x ∈ C1)

2), man
beachte: y ∈ C1 =⇒ c1 · (c2 ∧ y) = c1 · 1 =⇒ c2 ∧ y = 1. Weiterhin ist diese
Zerlegung eindeutig und die Operationen dürfen stellenweise ausgeführt
werden – wegen a ∧ b = 1 =⇒ a · b = a ∨ b. 2

Nun sind wir in der Lage zu zeigen:

11. 5. 5 Proposition. Eine potenz-assoziative vollständige d-semiloop
L ist assoziativ und kommutativ. Hingegen muss eine monassoziative d-
semiloop G weder assoziativ noch kommutativ sein, selbst dann nicht, wenn
G linear geordnet ist.

BEWEIS. Wir werden die Behauptung beweisen, indem wir eine Serie von
Modellen konstruieren und auf diesem Wege die Situation immer weiter
einengen, bis endlich ab · c ̸= a · bc zu einem Widerspruch führt.

Nach Lemma 11.5.3 können wir ausgehen von einem Modell G1 mit ab ·c <
a · bc für ein Tripel a, b, c. Weiterhin dürfen wir nach demselben Lemma

2) Diese Idee scheint zurückzugehen auf Riesz [137]. Siehe auch Birkhoff [10].
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annehmen, dass a, b and c streng positiv oder streng negativ sind und dass
{a, b, c} linear geordnet ist.

Wir betrachten 1 < t ≤ d := ab · c ∗ a · bc und ein x > 1. Es gibt ein n ∈ N
derart, dass tn ≤ x & tn+1 ̸≤ x erfüllt ist, da andernfalls Sup(tn) := Ω
existieren und Ω · t = Ω erfüllen würde, mit Widerspruch. Folglich würde
in jedem Fall ein Modell G1 existieren mit t

n ≤ x < t
n+1

, das ab · c < a · bc
erfüllt, wegen 1 < x ∗ tn+1 ≤ ab · c ∗ a · bc.
Also dürfen wir ausgehen von einem Modell G2 , das ein Tripel u, v, w
enthält mit uv · w < u · vw und 1 < s ≤ uv · w ∗ u · vw , derart dass
{sn
∣∣n ∈ Z ∪ {u, v, w} linear geordnet ist, denn man wende die obige Ein-

schachtelungsmethode sukzessive an auf a∨ a∗ , b∨ b∗ , c∨ c∗. Keins dieser
Elemente ist gleich 1 und ist beispielsweise a streng negativ, so ist r := t∧a∗
wegen der Potenzassoziativität nach (DSL 5) invertierbar, weshalb wir un-
ser Verfahren fortsetzen können mit diesem r , das 1 < r ≤ d erfüllt.

Damit haben wir in G2 etwa 1 < s ≤ uv · w ∗ u · vw < s3. Somit genügt
es, für ein geeignetes Tripel x, y, z die Beziehung 1 < g4 ≤ xy · z ∗ x · yz in
irgendeinem Modell H nachzuweisen.

Zu diesem Zweck gehen wir o. B. d. A. aus von sn < u ∨ u∗ =: ũ < sn+1.
Dies führt zu 1 < u ∗ sn+1 =: f < s und weiter zu f(f ∗ s) = s , weshalb
sich mindestens einer der drei Fälle 1 < f 2 ≤ s oder 1 < (f ∧ (f ∗ s))2 ≤ s

oder f 2 ̸≤ s & f ⊥ f ∗ s einstellt.

Offenbar gibt es in den beiden ersten Fällen dann auch ein f1 in G2 , das
der Abschätzung 1 < f 21 ≤ s in G2 genügt. Wir zeigen nun, dass auch
der dritte Fall ein Modell des gewünschten Typs sichert, was sich wie folgt
ergibt:

f ⊥ f ∗s impliziert s ̸≤ f 2 , da f(f ∗s) ≤ ff zu 1 < f ∗s < f führen würde.

Also haben wir f 2 ̸≤ s ̸≤ f 2 und damit eine direkte Zerlegung G2 = G2×G2

mit f
2 ≥ s in G2 und

=

f
2

≤=
s in G2.

Wir nehmen nun an, es sei
=

f gleich
=
1. Dann ist f verschieden von 1 und

deshalb G2 ein Modell mit f ∗ s = f ∗ s∧ f 2 = 1 , woraus f = s und damit
−
ũ= sn resultiert.

Somit gelangen wir bei Fortsetzung der Methode mit v oder w in der
Rolle von u (s. o.) in jedem Fall zu einem direkten Faktor G′ von G mit
1′ < f ′2 ≤ s′ ≤ u′v′ · w′ ∗ u′ · v′w′.

Daher erhalten wir, ausgehend von der neuen Situation mit f ′ in der Rolle
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von s tatsächlich am Ende ein Modell H mit einem Tripel x, y, z , das der
Abschätzung 1 < g4 ≤ xy · z ∗ x · yz genügt, ein Widerspruch!
Somit ist G assoziativ, und man verifiziert analog, dass G auch kommutativ
ist.
Wir zeigen nun, dass linear geordnete vollständige Loops existieren, die
weder assoziativ noch kommutativ sind. Zu diesem Zweck betrachten wir
die reelle Achse.

(i) Wir definieren a ◦ b := a + b außer wenn a ≤ 0 ≤ b erfüllt ist. In
diesem Falle setzen wir a ◦ b := a+ b/2 , wenn a+ b/2 ≤ 0 erfüllt ist, und
a ◦ b := 2a+ b sonst.
Dies liefert eine monassoziative linear geordnete Loop, die weder assoziativ
noch kommutativ ist, denn man beachte:

((−1) ◦ 2) ◦ (−1) = −1 ̸= −1/2 = (−1) ◦ (2 ◦ (−1)) .

(ii) Wir definieren a ◦ b := a + b, außer im Falle a, b ≤ 0, in dem wir
a ◦ b := a− ab+ b festsetzen, vgl. [90].
Dies liefert eine linear geordnete vollständige kommutative monassoziative
Loop, die aber nicht assoziativ ist, denn man beachte:

(1 ◦ (−1)) ◦ (−1) = −1 ̸= −2 = 1 ◦ ((−1) ◦ (−1)) .
2

11.6 Vervollständigung

Das Ziel dieses Abschnittes ist eine Charakterisierung derjenigen d-semi-
loops , die eine Vervollständigung zulassen.
Hierzu betrachten wir nach unten abgeschlossene Teilmengen A . Sie müs-
sen offensichtlich den nachfolgenden Gesetzen genügen:

(i) x, y
∣∣
ℓ
A & x\A ↓ y\A =⇒ x = y

(ii) x, y
∣∣
r
A & A/x ↓ A/y =⇒ x = y

(iii) A
∣∣
ℓ
x, y & A\x ↑ A\y =⇒ x = y

(iv) A
∣∣
r
x, y & x/A ↑ y/A =⇒ x = y

worin
∣∣∣
ℓ

und
∣∣∣
r

für teilt links bzw. teilt rechts steht und ↓ bzw. ↑ für

koinitial bzw. kofinal .
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Um ein Beispiel zu geben: Es folgt etwa (i) vermöge

a\A ↓ y\A =⇒ x\
∧

A =
∧

(x\A) =
∧

(y\A) = y\
∧

A .

Es ist also eine Charakterisierung gewonnen, sobald wir zeigen können,
dass (i) bis (iv) eine solche Erweiterung garantieren.
Im weiteren bezeichne (A) die Menge aller oberen Schranken von A und
dual [A] die Menge aller unteren Schranken von A.
Weiterhin stehe p für ein Multiplikations-Polynom in einer Variablen, d. h.
für ein Polynom des Typs . . . a4((a2(xa1))a3) , man beachte, dass G eine 1
besitzt. Demzufolge wird p(A) dann die Menge aller p(a) (a ∈ A) bezeich-
nen.
Als eine Folgerung aus (DSL 5) notieren wir, dass p−1(v) genau dann exi-
stiert, wenn es ein a gibt mit v ≥ p(a). Man beachte, dass sich die einzelnen
Komponenten sukzessive von v abspalten lassen.

11. 6. 1 Definition. Eine Teilmenge A von G heiße ein u-Ideal, wenn A
alle Elemente c enthält, die der Bedingung v ≥ p(A) =⇒ v ≥ p(c) genügen.
Es ist leicht zu zeigen, dass u-Ideale Verbandsideale sind, und der Leser
bestätigt ebenfalls leicht, dass G ein u-Ideal ist und dass der Durchschnitt
aller u-Ideale, die A ̸= ∅ enthalten, wieder ein u-Ideal ist. Hieraus folgt, dass
es jeweils ein engstes A ̸= ∅ umfassendes u-Ideal A gibt, und dass darüber
hinaus die Definition A ·B = AB eine eindeutig bestimmte Multiplikation
liefert wegen

A = C & B = D =⇒ v ≥ p(AB) ⇔ v ≥ p(CD) .

Alternativ werden wir das Ideal A im weiteren auch durch A symbolisieren.
Sei nun X die Menge der Elemente x, für die Ax ⊆ B nicht leer ist. Dann
ist X =: A ∗ B ein u-Ideal, was aus der Implikation

v ≥ p(X) ⇒ v ≥ p(c)
=⇒

w ≥ q(B) ⇒ w ≥ q(AX) ⇒ w ≥ q(Ac)
=⇒

Ac ⊆ B

resultiert, die ihrerseits impliziert:

(11.55) A =: A = [(A)] .
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DENN: Offenbar ist A enthalten in [(A)]. Weiterhin erfüllt jedes c ∈ [(A)]
die Implikation:

v ≥ p(A) =⇒ p−1(v) ≥ A =⇒ p−1(v) ≥ c =⇒ v ≥ p(c) .

Deshalb ist auch jedes c aus [(A)] in A enthalten. 2

11. 6. 2 Lemma. a := a ist gleich der Menge aller x unterhalb von a.
Daher ist G im Blick auf · und ⊇ eingebettet in die Struktur der u-Ideale.

BEWEIS. Geradeaus. 2

Sei von nun an bis zum Ende dieses Abschnitts G stets eine d-semiloop,
die den Bedingungen (i) bis (iv) genügt. Dann folgt:

(11.56) A · X ⊆ b =⇒ A · (A ∗ b) = b .

BEWEIS. Zunächst existiert aufgrund unserer Voraussetzung A ∗ b . Sei
hiermit nun A · (A ∗ b) ≤ c ≤ b. Dann existiert ein v mit A · v ≤ c ≤ b,
weshalb auch ein u mit A ≤ u & us = b existiert. Für ein jedes solche u
erhalten wir aber

us = b =⇒ As ≤ b =⇒ As ≤ c =⇒ A ≤ c/s = uc
∣∣
ℓ
b .

Somit finden wir zu jedem u ≥ A ein uc ≥ A mit us = b =⇒ ucs = c. Das

aber bedeutet, dass die Menge U aller u mit A ≤ u & u
∣∣∣
ℓ
b die Beziehung

U\b ↑ U\c erfüllt, woraus dann c = b aufgrund von (iii) resultiert. 2

(11.57) A ⊆ B =⇒ A · (A ∗ B) = B .

BEWEIS. Wir betrachten ein beliebiges b ∈ B. Dann erfüllt das u-Ideal
Ab, das erzeugt wird von allen a ∧ b (a ∈ A) , die Gleichung

(11.58) Ab · Xb = b mit Xb = Ab ∗ b .

Wir studieren nun das u-Ideal X , das erzeugt wird von allen Xb. Dann
gilt offenbar A · X ⊇ B und wir können darüber hinaus für jedes Paar
a, x (a ∈ A, x ∈ Xb) schließen:

(a ∧ b)x ≤ b =⇒ x ≤ a ∗ b
=⇒ ax ≤ a(a ∗ b) = a ∨ b ∈ B ,
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weshalb auch A · X ⊆ B erfüllt ist. 2

(11.59) a · X ⊆ B =⇒ ∃Z : a · Z = B .

BEWEIS. Nach (11.57) existiert ein u-Ideal Y mit (a · X ) · Y = B, und es
existiert wegen ax∨ay = (ax)(1∨y) ∈ B zu jedem Paar x, y (x ∈ X , y ∈ Y)
ein Element z mit (ax)y ≤ az = b ∈ B . Daher erfüllt das von diesen z

erzeugte u-Ideal Z die Gleichheit a · Z = B. 2

(11.60) s ≥ A & A · X = A · Y =⇒ X = Y .

BEWEIS. Sei v ≥ X . Dann folgt A · v ≥ A · y (∀y ∈ Y) und damit

A · (v ∨ y) = A · v =: B . (11.55)

Das aber erzwingt (B)/v = (B)/(y ∨ v) , so dass wir nach (ii) v = y ∨ v
erhalten. Es folgt v ≥ Y und damit X ⊇ Y , also aus Gründen der Dualität
sogar X = Y . 2

(11.61) a ·
∧
Xi =

∧
(a · Xi) .

BEWEIS. Zunächst existiert aufgrund der Implikation (11.59) ein u-Ideal
Z , mit a · Z =

∧
(a · Xi) (i ∈ I). Weiter gilt nach (11.55) die Gleichung

{a ∨ b
∣∣ a ∈ A, b ∈ B} = {A,B}. Folglich gilt für alle nach oben beschränk-

ten u-Ideale A die Implikation: A · X ⊆ A · Y =⇒ X ⊆ Y . Somit ist Z
enthalten in jedem Xi . Das liefert unsere Behauptung. 2

Wir erinnern erneut an unsere Praxis, mit einer Aussage stets auch die zu
ihr duale Aussage als bewiesen zu erachten, was logisch natürlich keiner
Begründung bedarf.
Bislang waren wir mit u-Idealen befasst. Dual zum u-Ideal entsteht das
v-Ideal formal dadurch, dass wir (in 11.6.1) ≤ umpolen zu ≥ . Die Beweise
jedoch, die wir bislang gegeben haben, übertragen sich nicht ohne weiteres
in jedem Falle, da die von uns betrachtete Struktur nicht ≥ / ≤ - dual ist.
Dennoch wird der Leser leicht verifizieren, dass der Weg bis hin zu inklusive
11.6.1 geradeaus dualisiert werden kann. Auf diese Weise gewinnen wir mit
X als Symbol für das von X erzeugte v-Ideal dann ein Produkt A◦B = AB

und einen Rechts-Quotienten A ∗ B := {x
∣∣Ax ⊆ B} (bzw. einen Links-

Quotienten B : A := {x
∣∣ xA ⊆ B}).
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Wir kehren zurück zur u-Idealerweiterung von G. Wir wollen zeigen, dass
(DSL 5) erfüllt ist. Zu diesem Zweck notieren wir Haupt-u-Ideale a auch
mit a und u-Ideale im allgemeinen mit kleinen griechischen Buchstaben.
Weiterhin werden wir die Menge {v

∣∣ v ∈ G & v ≥ α} mit (α) bezeichnen
und dual die Menge [α] erklären.
Auf diese Weise betrachten wir also eine nach oben stetige Schnitterwei-
terung Σ von G mit:

xα ≤ β =⇒ β = xκ & αx ≤ β =⇒ β = λx
&

a
∧
βi =

∧
(aβi) .

11. 6. 3 Lemma. Es gibt keine anderen nach unten beschränkten v-Ideale
von G als die Teilmengen (α) von Σ, was insbesondere A = ([A]) bedeutet.

BEWEIS. Sei A nach unten beschränkt und sei
∧
A =: α. Dann gilt

A ⊆ (α), da Σ eine Schnitterweiterung ist, und es resultiert (α) ⊆ A aus

t ≤ p(A) =⇒ t ≤ p(α)
(11.61)
=⇒ t ≤ p(c) (c ≥ α). 2

(11.62) A ⊇ B =⇒ A
∣∣∣
ℓ
B & A

∣∣∣
r
B .

BEWEIS. Man betrachte ein festes b ∈ B. Dann ist A gleich a ∧ b. Sei nun
Xb die Menge aller x mit Ax ≥ b und sei b ≤ c ≤ AXb. Wir bezeichnen
Inf(A) mit α. Dann folgt Ax ≥ b =⇒ αx ≥ b =⇒ αx ≥ c. Im Blick auf
unsere vorhergehende Bemerkung gibt es aber Elemente β, γ derart, dass
αβ = b & αγ = c erfüllt ist, was x ≥ β =⇒ αx ≥ b =⇒ αx ≥ c =⇒ x ≥ γ
liefert. Dies führt dann weiter zu β = γ, woraus sich b = c ergibt. Daher
erfüllt jedwedes d mit d ≤ AXb die Gleichheit d ∨ b = b. Folglich erfüllt
das von allen Xb erzeugte Ideal X die Gleichheit A ◦X = B. 2

Bis hierher haben wir gezeigt, dass die v-Ideale eine nach unten stetige
Erweiterung zu G gewährleisten in Bezug auf ≤ := ⊇. Wir werden nun
zeigen, dass Σ und die v-Idealerweiterung isomorph sind. Damit verifizieren
wir implizit zusätzlich die Existenz einer vollständigen Erweiterung die
zudem Axiom (DSL 5) erfüllt, was aufgrund der Stetigkeit nach unten aus
A · B ⊆ C =⇒ A · B ⊆ c (c ≥ C) (s. 11.56) resultiert.

(11.63)
∧

(α) ◦
∧

(β) =
∧

(αβ) .
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BEWEIS. Man definiere α ◦ β = γ, falls (α) ◦ (β) = (γ). Dann sind α ◦ d
und αd gleich aufgrund von (11.61). Sei nun αβ ≤ c und s ≤ ab für alle
a ∈ (α), b ∈ (β) und c = α ◦ γ. Dann folgt für alle ci ≥ γ die Abschätzung
α ◦ ci = αci ≥ αβ =⇒ ci ≥ β, weshalb wir nach Voraussetzung s ≤ α ◦ ci
und damit weiter s ≤ α ◦ γ = c erhalten.

Damit sind wir am Ziel. 2

11. 6. 4 Proposition. G besitzt eine Schnitterweiterung, die ihrerseits
isomorph ist zu der Struktur der nach unten beschränkten v-Ideale bezüglich
≤ := ⊇, und ebenso zu der Struktur der nach oben beschränkten u-Ideale
bezüglich ≤ := ⊆ .

BEWEIS. Nach (11.63) liefert [(A)] 7−→ (A) einen Homomorphismus, und
es ist diese Abbildun per definitionem bijektiv. 2

Zusammenfassend halten wir fest:

11. 6. 5 Theorem. Eine d-semiloop besitzt eine vollständige Schnitter-
weiterung genau dann, wenn sie die Bedingungen (i) bis (iv) erfüllt.

Sei hiernach G erklärt wie oben und Σ die i. w. eindeutig bestimmte Schnit-
terweiterung. Dann können wir zusätzlich zeigen:

11. 6. 6 Korollar. Ist G potenz-assoziativ, so ist auch Σ potenz-assoziativ.

BEWEIS. Ist c gleich einem Produkt, gebildet aus Faktoren ai ≤ α (1 ≤
i ≤ n), das unterhalb eines Produktes aus lauter α′s liegt, so gilt a1 ∨ . . .∨
an ≤ α und damit (a1 ∨ . . . ∨ an)n ≤ π für jedes weitere Produkt π aus
lauter α′s. 2

11. 6. 7 Korollar. Ist G eine Verbandsloop, so ist auch Σ eine Verbands-
loop. Ist G zudem invers, so ist auch Σ invers.

BEWEIS. Zunächst haben wir α ≤ a & b ≤ β =⇒ α(a\b) ≤ β.

Sei nun zusätzlich G invers und α =
∨
ai (i ∈ I, ai ∈ G) . Dann folgt:

(bai)a
−1
i = b =⇒

∨
bai
∧
a−1
i = (bα)α−1 = b ,

also auch die allgemeine Inversität aufgrund der Stetigkeit nach oben. 2

11. 6. 8 Korollar. Eine Verbandsgruppe besitzt eine vollständige Erwei-
terung genau dann, wenn sie archimedisch ist.
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BEWEIS. Offenbar ist die aufgestellte Bedingung notwendig. Auf der an-
deren Seite gilt:
Ist G eine Verbandsgruppe, so sind die Bedingungen (i) bis (iv) schon
erfüllt, wenn Ax ↓ A =⇒ x = 1 und sein Dual erfüllt sind. Das aber ist
eine Konsequenz der Archimedizität wegen

Ax ↓ A ≥ s =⇒ Ax−n ↓ A ↓ Axn

=⇒ x−n ≤ s−1a ≥ xn(a ∈ A, n ∈ N)
=⇒ (x∗)n ≤ s−1a & (x+)n ≤ s−1a ,

man beachte (11.8). Daher ist Σ eine vollständige Verbandsgruppe, da die
Assoziativität aus A ◦B = AB resultiert. 2

11.7 Kongruenzen

Im weiteren interessieren wir uns für kürzbare Kongruenzen eines unterlie-
genden d-semiloops G. Der Leser erinnere sich in diesem Zusammenhang
an das Theorem über direkte Zerlegungen. Das Hauptanliegen wird sein
zu klären, unter welchen Bedingungen G repräsentierbar ist.

11. 7. 1 Lemma. Sei U der positive Anteil der 1-Klasse einer kürzbaren
Kongruenz ≡ (man beachte, dass kürzbare Kongruenzen zugleich Kongru-
enzen im Blick auf ∗ und : sind ) . Dann ist U eine multiplikativ abge-
schlossene konvexe Teilmenge mit:

(ii) ab · U = a · bU
(iii) U · ab = Ua · b .

DENN: u ∈ U impliziert:

(i) a ≡ au = va =⇒ v ≡ 1

(ii) ab ≡ ab · u = a · bv =⇒ bv ≡ b1 =⇒ v ≡ 1

(iii) ab ≡ a · bu = ab · v =⇒ . . . =⇒ v ≡ 1 ,

weshalb (i) bis (iii) erfüllt sind. Der Rest ist dann evident. 2

11. 7. 2 Definition. Als Kern bezeichnen wir im folgenden jede multi-
plikativ abgeschlossene konvexe positive Teilmenge aus G die zum einen 1
enthält und zum anderen die Bedingungen (i) bis (iii) erfüllt.
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11. 7. 3 Lemma. Ist U ein Kern, so definiert

x ≡ y (U) :⇐⇒ x ≤ yu & y ≤ xv (∃u, v ∈ U)

eine kürzbare Kongruenz derart, dass der positive Anteil der 1-Klasse zu-
sammenfällt mit U .

BEWEIS. Geradeaus per definitionem . 2

Damit gilt als ein erstes Resultat:

11. 7. 4 Proposition. In jeder d-semiloop G werden die kürzbaren Kon-
gruenzen ≡ repräsentiert durch die Kerne U via

(C) a ≡ b (U) ⇐⇒ a ≤ bu & b ≤ au .

DENN: Es gilt a ≡ b =⇒ a ≤ b(a ∗ b ∨ b ∗ a) & b ≤ a(a ∗ b ∨ b ∗ a) mit
(a ∗ b, b ∗ a ≡ 1). 2

In [71] geben Evans & Hartman eine Charakterisierung der repräsentier-
baren Verbandsloops. Diese Charakterisierung greift auch bei d-semiloops.
Zu diesem Zweck betrachten wir zwei orthogonale Elemente a, b. Offenbar
erfüllen sie die Äquivalenz

a ∧ (bx · y)/xy = 1

⇐⇒ a · xy ∧ bx · y = xy

⇐⇒ ((a · xy)/y)/x ∧ b = 1 (DSL 5) .

Damit liefert die erste Zeile, dass im Falle u⊥ v auch u und (vx · y)/xy
orthogonal sind. Und die Gültigkeit der dritten Zeile bedeutet: Sind u, v

orthogonal so sind auch u und ((v · xy)/y)/x orthogonal.
Das aber bedeutet, dass wir aus jeder dieser Zeilen im Falle u∧ v = 1 und
U = (u⊥ )+ herleiten können:

(Ux · y)/xy ⊆ U ; Ux · y ⊆ U · xy
& (((U · xy)/y)/x ⊆ U ; U · xy ⊆ Ux · y .

Entsprechend resultiert aus u ∧ v = 1 =⇒ u ∧ (xv)/x = 1 die Gleichheit
Ux = xU .
Hiernach kommen wir zu der angekündigten Charakterisierung.

11. 7. 5 Proposition. Eine d-semiloop G ist genau dann repräsentierbar,
wenn sie die Bedingungen erfüllt:

(i) (a ∗ b) · xy ∧ (b ∗ a)x · y = xy
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(ii) xy · (a ∗ b) ∧ x · y(b ∗ a) = xy

(iii) x · (a ∗ b) ∧ (b ∗ a) · x = x .

BEWEIS. Wie der Leser leicht sieht, sind die aufgestellten Bedingungen
notwendig. Sie sind aber auch hinreichend.
Denn: Offenbar sind a und b orthogonal, wenn a∗ b = b & b∗a = a erfüllt
ist. Daher fordern die aufgestellten Bedingungen, dass der positive Anteil
eines jeden U ⊥ einen Kern bildet. Sei nun U maximal in der Menge der
Kerne M , die c nicht enthalten. Dann ist G/U =: G linear geordnet, da G

andernfalls ein Paar p, q mit p ∗ q ̸= 1 ̸= q ∗ p enthalten würde. Dann aber
wären U1 := ((p ∗ q)⊥ )+ und U 2 := (U ⊥

1 )+ zwei Kerne mit U 1 ∩U 2 = {1},
obwohl U 1 und U 2 sich nach Konstruktion von {1} unterscheiden, ihre
Urbilder also beide c enthalten müssten, ein Widerspruch zu c ̸= 1 ! 2

11.7.5 charakterisiert repräsentierbare d-semiloops auf klassische Weise,
und es ist augenscheinlich, dass diese Methode sich außerordentlich stützt
auf die Relation der Orthogonalität. Diesen Sachverhalt überwindet

11. 7. 6 Proposition. Eine d-semiloop G ist genau dann repräsentierbar,
wenn jedes Paar von Multiplikationspolynomen der Bedingung genügt:

(0) p(a) ∧ q(b) ≤ p(b) ∨ q(a) .

BEWEIS. Offenbar ist die Bedingung (0) notwendig. Sei hiernach (0)
erfüllt. Setzen wir dann für positive Elemente, also Elemente vom Typ c+,
zur Abkürzung

(c+x · y)/xy := c+ θ ,

so können wir für orthogonale Elemente a, b schließen:

a ∧ b θ ≤ b ∨ a θ
=⇒

a ∧ b θ = (a ∧ b θ) ∧ (b ∨ a θ)
= (a ∧ b θ ∧ b) ∨ (a ∧ b θ ∧ a θ)
= (1 ∧ b θ) ∨ (a ∧ 1)
= 1 ∧ (a ∨ b θ) ,

weshalb (i) erfüllt ist, und es folgen ganz analog die Bedingungen (ii) und
(iii). 2
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Kapitel 12

Repräsentierbarkeit

Eine fundamentale Methode der Verortung algebraischer Strukturen ist
die Koordinatisierung. Sie greift bei abstrakten geordneten Strukturen vor
allem dann, wenn es genug

”
Ketten” als Faktoren – einer subdirekten Zer-

legung – gibt. Sind diese Ketten sogar innere direkte Faktoren so sind sie
natürlich maximal und damit konvex bzw. konvex und unbeschränkt. In
dieser Lecture Note bietet sich zumindest eine gemeinsame Untersuchung
von Residuationsstrukturen an, etwa der normalen komplementären Halb-
gruppe und der Verbandsloop.
In beiden Fällen haben wir die Grundgegebenheit eines rechts-normalen
Verbandsgruppoids. Wie wir schon gesehen haben, geht bei der Untersu-
chung von Verbandsloops mit der Assoziativität vieles verloren, doch eine
enge Verwobenheit mit einer starken Verbandsstruktur vermag andererseits
auch manches auszugleichen.
In diesem Kapitel befassen wir uns mit übergreifenden Sätzen, die Gültig-
keit über mehrere klassische Strukturen hinweg besitzen. Sie sind ihrerseits
anzusehen als Beiträge zur allgemeinen Teilbarkeitstheorie. Betrachten wir
zunächst Q+. Hier gelten die beiden Klassiker:

12. 0. 7 Proposition. Q+ ist repräsentierbar, d. h. zerfällt subdirekt in
angeordnete Komponenten

und

12. 0. 8 Proposition. Die maximalen konvexen Ketten von Q+ sind
direkte Faktoren von Q . Man beachte: die maximalen konvexen Ketten
sind exakt die Mengen pn (n ∈ Z) .

Damit sind aus dem Satz von Euklid zwei Folgerungen gewonnen, die
sich allgemein algebraisch formulieren lassen.

283
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12.1 Zur Repräsentierbarkeit

Hatten wir im letzten Abschnitt des letzten Kapitels repräsentierbare d-
semiloops untersucht, so wenden wir uns in diesem Kapitel ganz allgemein
repräsentierbaren geordneten Strukturen zu.

Hier gibt es natürlich eine Fülle von Ergebnissen, bezogen auf spezielle ver-
bandsgeordnete Strukturen, das absolut historische Resultat unter ihnen
das Stonesche Theorem für boolesche Algebren, später ausgedehnt von
Birkhoff auf distributive Verbände [10]. Erwähnt seien etwa die Arbei-
ten von: Lorenzen [118], Clifford [53], Ribenboim [138] über abelsche
Verbands-Gruppen; Lorenzen [119], Šik [142], Banaschewski [5] über
beliebige Verbands-Gruppen; von Swamy [147] über abelsche residuierte
Verbands-Halbgruppen; Bosbach [15], [32] über komplementäre Halbgrup-
pen; Thérèse Merlier [123] über abelsche Verbands-Monoide; Fuchs
[78] über partial geordnete Algebren; Fuchs [81] über positive abelsche
Verbands-Monoide; von Birkhoff & Pierce [11] über Verbands-Ringe
sowie – last but not least – Evans & Hartman [71] über Verbands-Loops.

Doch eine allgemeine Lösung stand aus und auch spezielle Probleme waren
ungelöst, obwohl sie mehrfach formuliert worden waren, so beispielsweise
das Verbandshalbgruppenproblem [79], [81], das Verbandsgruppoid- und
das Verbandsquasigruppenproblem [71], bevor in [37] das schon oben im
Sonderfall vorgestellte Kriterium (0) formuliert und eingesetzt wurde.

Hinweis: In zwei anderen Lecture Notes – [30], [38] – stellt der Autor
Teilbarkeits-Halbgruppen bzw. Ideal-Halbgruppen vor, in denen natürlich
das hier besprochene Darstellungsproblem eine zentrale Rolle spielt. Son-
derfälle mit Blick auf diese beiden Strukturen sind hier weitgehend über-
gangen. Sie sind eingebettet in die entsprechenden Theorien.

12.2 Ein allgemeiner Darstellungssatz

Wir starten ganz allgemein.

12. 2. 1 Definition. Sei A := (A,∧,∨, fi) eine Algebra, derart dass
(A,∧,∨) einen Verband bildet mit Operationen fi von der Stellenzahl ni .
Dann heiße A eine Verbands-Algebra , wenn jede Operation an jeder Stelle
isoton ist.
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Verteilt sich zudem jedes fi über ∧ und auch über ∨, so nennen wir A eine
verbandsgeordnete Algebra.

Verbands-Algebra ist demnach etwa das Verbands-Gruppoid. Allerdings,
die Verbands-Gruppe, die Verbands-Quasigruppe, die Verbands-Loop sind
natürlich nur dann erfasst, wenn man sie – lediglich – als Verbands-Gruppoid
betrachtet, also die Inversen-Operationen ignoriert. Auf der anderen Seite
erfüllen Verbands-Quasigruppen

x\(a ∧ b) = x\a ∧ x\b & (a ∧ b)/x = a/x ∧ b/x

und x\(a ∨ b) = x\a ∨ x\b & (a ∨ b)/x = a/x ∨ b/x .

Daher können wir Verbands-Quasigruppen, Verbands-Loops und Verbands-
Gruppen auch betrachten als verbandsgeordnete Algebren

(Gℓx, rx,∧,∨) (x ∈ G) mit ℓx(a) := x\a und rx(a) := a/x ,

wir unterscheiden also

zwischen

Verbands-Strukturen und verbandsgeordneten Strukturen.

Sprechen wir von einer Verbandsgruppe, so wollen wir eine Gruppe mit
Verband mit isotoner Multiplikation meinen, die natürlich bei Homomor-
phismen und direkten Produktbildungen in eine Gruppenmultiplikation
übergeht, nicht aber notwendig beim Übergang zu Unterstrukturen, die
ja möglicher weise nur Halbgruppen sind. Hingegen bedeute verbandsge-
ordnete Gruppe stets eine Struktur (G, ℓx, rx,∧,∨) im obigen Sinne. Ganz
analog seien die Verbandsquasigruppe, der Verbandsring etc. erklärt.

Verbandsgeordnet schließt also immer ein, dass – erforderlichenfalls – zuvor
der Typ in einer solchen Weise abgewandelt wurde, dass sich alle Opera-
tionen über ∧ und ∨ verteilen.

12. 2. 2 Definition. Sei A eine verbandsgeordnete Algebra. Ein Term
heiße linear komponiert, wenn er eine Variable ist oder von dem besonderen
Typ

f(x1, . . . , q(x, y1, . . . , ym), . . . , xn)

worin f eine fundamentale Operation und q(x, y1, . . . , ym) (schon) linear
komponiert ist.
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12.2.2 liefert eine Menge von Termen mit einer Initialvariablen x derart,
dass im Falle der distributiven verbandsgeordneten Algebra die aufkom-
menden Polynomfunktionen p(x) des Typs

p(x, c1, . . . , cn) (ci ∈ A)

die Gesetze p(a ∧ b) = p(a) ∧ p(b) und p(a ∨ b) = p(a) ∨ p(b) erfüllen. Um
zu betonen, dass der Term p(x) ohne ∧ und ∨ aufgebaut wurde , schreiben
wir auch p̃(x). Hiernach stellen wir vor :

12. 2. 3 Das Darstellungslemma. Eine verbandsgeordnete Algebra A

ist repräsentierbar, wenn sie distributiv ist und die Bedingung erfüllt:

(0̃) p̃(a) ∧ q̃(b) ≤ p̃(b) ∨ q̃(a) .

Dies kann vereinheitlicht werden zu

(0) p(a) ∧ q(b) ≤ p(b) ∨ q(a) .

BEWEIS. Offenbar ist (0) notwendig und es impliziert (0) a fortiori (0̃).
Darüber hinaus erzwingt (0) die Abschätzung

f(..a ∧ a..) ∧ f(..b ∧ b..) ≤ f(..a ∧ b..) ∨ f(..b ∧ a..) ,

weshalb f sich über ∧ verteilt. Analog zeigt man, dass sich auch jedes f
über ∨ verteilt. Der Leser beachte, dass (0) fast unmittelbar aus (0̃) folgt,
wenn A distributiv ist. Hinweis: man schreibe p und q als Durchschnitt von
Vereinigungen von q∼ - Funktionen.

Wir zeigen nun, dass Distributivität zusammen mit (0̃) Repräsentierbarkeit
gewährleistet. Zu diesem Zweck starten wir von r < s mit dem Ziel, ein
linear geordnetes homomorphes A zu konstruieren, das r < s erfüllt. Dann
lassen sich je zwei Elemente x ̸= y trennen, wegen x ̸= y ⇐⇒ x∧y ̸= x∨y .
Nach dem Zornschen Lemma existiert ein maximales Verbandsideal M ,
unter denjenigen Idealen, die r enthalten, s hingegen nicht. Dieses erfüllt
weiter die Implikation

(P) a ∧ b ∈M =⇒ a ∈M V b ∈M ,

da andernfalls wegen der Distributivität die beiden Mengen

U := {u
∣∣ a ∧ u ∈M} und V := {v

∣∣ v ∧ u ∈M (∀u ∈ U)}
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Verbandsideale wären, die wegen a, b /∈ M beide das Element c enthalten
müssten, was dann c ∧ c = c ∈ U ∩ V und damit c ∈ M implizierte, ein
Widerspruch! Wir definieren nun

a ≡ b :⇐⇒ p̃(a) ∈M ⇔ p̃(b) ∈M (∀ p̃) .

Dies liefert eine Kongruenz schon dann, wenn M nur irgendeine Menge
ist, wie man im Gruppoidfall leicht zeigt und was sich im allgemeinen Fall
analog herleitet. Weiterhin erhalten wir in A := A/≡

u ≤ v

⇐⇒
p̃(v) ∈M ⇒ p̃(u) ∈M

wegen u ≤ v
=⇒

u = u ∧ v
=⇒

p̃(v) ∈M ⇒ p̃(u) ∈M

und p̃(v) ∈M ⇒ p̃(u) ∈M
=⇒

p̃(u ∧ v) ∈M ⇒ p̃(u) ∈M V p̃(v) ∈M
=⇒

p̃(u ∧ v) ∈M ⇒ p̃(u) ∈M
=⇒

u ≤ v .

Somit sind a und b genau dann unvergleichbar, wenn es linear komponierte
Polynomfunktionen p̃(x), q̃(x) gibt, die der Bedingung

p̃(a) /∈M & p̃(b) ∈M

q̃(a) ∈M & q̃(b) /∈M

genügen. Doch das ist nicht möglich, wegen (0̃), da wir schließen könnten:

p̃(a) ∧ q̃(b) /∈M

& p̃(b) ∨ q̃(a) ∈M ,

mit Widerspruch zu p̃(a) ∧ q̃(b) ≤ p̃(b) ∨ q̃(a).
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Folglich ist A linear geordnet. 2

Das Darstellungslemma liefert eine Serie spezieller Resultate, u. a. als al-
lererstes:

12. 2. 4 Ein Satz von Birkhoff. Jeder distributive Verband zerfällt sub-
direkt in 2-elementige Ketten, ist also ein Verband von Mengen.

12. 2. 5 Korollar. Ein abelsches verbandsgeordnetes Monoid M ist genau
dann repräsentierbar, wenn es verbandsdistributiv ist und sich die Multi-
plikation verteilt über Schnitt und Vereinigung. [123].

BEWEIS. Da M ein abelsches Monoid ist, können wir uns beschränken
auf den Beweis von xa ∧ yb ≤ xb ∨ ya . Hier gilt aber:

(xa ∧ yb) ∧ (xb ∨ ya) = (xa ∧ yb ∧ xb) ∨ (xa ∧ yb ∧ ya)
= (xa ∧ (y ∧ x)b) ∨ ((x ∧ y)a ∧ yb)
= (xa ∧ (xa ∨ yb)) ∧ (x ∧ y)(a ∨ b) ∧ yb
= xa ∧ yb . 2

Der Leser beachte, dass es schon genügt, zu je zwei Elementen über eine
gemeinsame Einheit zu verfügen.

12. 2. 6 Korollar. Sei S := (S, ·,∧,∨) eine verbandsgeordnete Halbgrup-
pe. Dann ist S genau dann repräsentierbar, wenn ihr Verband (S,∧,∨)
distributiv ist und sich die Multiplikation über Schnitt und Vereinigung ver-
teilt sowie S zusätzlich für jedes (x, y, u, v) aus S1 der Abschätzung genügt:

(S0) xay ∧ ubv ≤ xby ∨ uav .

BEWEIS. Die Forderungen garantieren p̃(a)∧ q̃(b) ≤ p̃(b)∨ q̃(a) , wie man
ganz leicht sieht. 2

12. 2. 7 Korollar. Eine verbandsgeordnete Loop (L, ·,∧,∨) ist repräsen-
tierbar genau dann, wenn L den Gleichungen aus [70] genügt:

(EH)
x · (a ∗ b) ∧ (b ∗ a) · x = x

(a ∗ b) · xy ∧ (b ∗ a)x · y = xy
xy · (a ∗ b) ∧ x · y(a ∗ b) = xy .

BEWEIS. Wir sahen schon oben, dass alle zu fordernden Distributivge-
setze erfüllt sind. Weiterhin sehen wir, dass die aufgestellten Bedingungen
notwendig sind.



12.2. EIN ALLGEMEINER DARSTELLUNGSSATZ 289

Daher bleibt nur zu zeigen, dass sie auch hinreichen. Dies haben wir schon
oben unter 11.7.5 geleistet, aber wir möchten einen direkten Beweis zu
(EH) =⇒ (0̃) anbieten. Zu diesem Zweck betrachten wir L als verbands-
geordnete Algebra (L, ·,∧,∨, ℓs, rs) (s ∈ L). Dann ist zu zeigen, dass die
Bedingung

p̃(a) ∧ q̃(b) ≤ p̃(b) ∨ q̃(a)

erfüllt ist. Dabei dürfen wir nach den Regeln der Arithmetik p̃ als die
identische Abbildung annehmen, und wir können weiter den allgemeinen
Beweis zu

(a : b)u ∧ (b : a) θ ≤ (b : a)u ∨ (a : b) θ

transformieren, worin θ eine innere Abbildung, d. h. eine via der definieren-
den Operationen erzeugte Abbildung, ist. Somit dürfen wir ausgehen von
a⊥ b, p̃(x) = x · z und q̃(y) = y θ , was zu

au ∧ b θ = xaxy (xa ≤ a & xu ≤ u)
=⇒

au ∧ b θ = (xa ∧ xaxu)(xu ∨ 1) (11.15)
≤ 1 ∨ u (a⊥ b θ)
≤ a θ ∨ bu (a θ⊥ b)

führt. Zur Erinnerung: Gilt a⊥ b =⇒ a⊥ b θ für die erzeugenden inneren
Abbildungen θ , so impliziert a⊥ b auch a⊥ b θ für alle inneren Abbildun-
gen θ). 2

Aufgrund des letzten Theorems kann man also ausgehen von (EH) und
zeigen, dass sich L unter dieser Bedingung subdirekt zerlegen lässt in an-
geordnete Komponenten, indem man (0̃) herleitet und dann 12.2.3 anwen-
det. Man hat aber zu beachten, dass der oben gegebene Beweis das inner
mapping theorem heranzieht, das besagt, dass die Gruppe der inneren Ab-
bildungen erzeugt wird von ((#.xy)/y)/x, xy\(x ·y#) und (x ·#)/x, siehe
etwa [46].
Weiter erhalten wir bei Anwendung von 11.5.3 (und 11.2.10) insbesondere :

12. 2. 8 Korollar. Eine vollständige d-semiloop (L, ·,≤, 1) ist repräsen-
tierbar und erfüllt zusätzlich jedes abgeschlossene Intervall die Kettenbedin-
gung, so ist (L,≤, 1) direkte Summe von atomischen Ketten, siehe hierzu
auch noch einmal 11.4.3.
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Verbandsquasigruppen sind – wie schon erwähnt – keine verbandsgeordne-
ten Algebren im Sinne unserer Definition 12.2.1 Doch wie wir sahen, lassen
sich diese Strukturen

”
umetikettieren” zu verbandsgeordneten Strukturen,

indem man unverträgliche Operationen splittet.
Betrachten wir als Beispiel etwa eine verbandsgeordnete Halbgruppe S.
Indem wir die Multiplikation in Operatoren mx mit mx(a) := xa splitten,
geht jede Links-Kongruenz von S über in eine Kongruenz von (S,∧,∨,mx)
(x ∈ S), und es lässt sich offenbar auch umgekehrt jede Kongruenz von
(S,∧,∨,mx) (x ∈ S) auffassen als Links-Kongruenz von S. Damit erhal-
ten wir für volldistributive Verbandsmonoide, d. s. distributive Verbands-
monoide, in denen sich die Multiplikation über ∧ und ∨ verteilt:

12. 2. 9 Korollar. Jedes volldistributive Verbandsmonoid S ist ein Ver-
bandsmonoid von Ketten-Endomorphismen [24].

BEWEIS. Wir betrachten S als verbandsgeordnete Algebra (S,∧,∨,mx).
Diese erfüllt (0̃) , man kopiere den Beweis von 12.2.5. Daher

”
gibt es genug”

linear geordnete Restklassensysteme, die sich zu einer Kette C von Links-
Klassen von S zusammenlegen lassen, auf der die Elemente aus S von links
operieren. Auf diese Weise kann S eingebettet werden in die Halbgruppe
aller Ordnungsendomorphismen von C. 2

Damit ist insbesondere bewiesen:

12. 2. 10 Holland’s celebrated Theorem. Jede Verbandsgruppe ist eine
Gruppe von Ketten-Automorphismen [95]).

Wir wenden uns nun Verbandsringen zu. Ein Ring heißt partial geordnet
im Blick auf ≤ , wenn er den Bedingungen genügt:

(+) a ≤ b =⇒ x+ a ≤ x+ b

(·) 0 ≤ a, b =⇒ 0 ≤ ab

Ein partial geordneter Ring heißt ein Verbandsring, wenn ≤ eine Ver-
bandsordnung definiert. Offenbar ist die Multiplikation nicht isoton. Auf
der anderen Seite ist die Multiplikation vollständig bestimmt, sobald sie
auf dem positiven Kegel festgelegt ist. Folglich ist jedes homomorphe Bild
schon festgelegt durch das Bild des Kegels. Daher macht es Sinn, den Ver-
bandsring R zu betrachten als (R,+,∧,∨, rx, ℓx) , mit rx(a) := ax+ und
ℓx(a) := x+a. Auf diese Weise wird R zu einer verbandsgeordneten Alge-
bra, doch muss diese Algebra nicht distributiv sein, da ℓx und rx sich nicht
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verteilen müssen über ∧ und ∨ , man betrachte etwa den Ring der reellen
2 × 2-Matrizen bezüglich A ≤ B gdw. aik ≤ bik (1 ≤ i ≤ 2, 1 ≤ k ≤ 2) .

Daher müssen wir nach weiteren Bedingungen schauen, wollen wir Dis-
tributivität erzwingen. Hilfe bringt hier der positive Kegel von R. Um
deutlich zu machen, dass wir bezüglich der Residuation die Addition im
Blick haben, setzen wir a− (a ∧ b) := a÷ b .

12. 2. 11 Lemma. Sei R := (R,+,∧,∨, ℓx, rx) ein Verbandsring. Dann
ist R eine distributive verbandsgeordnete Algebra im obigen Sinne genau
dann, wenn R die Bedingung erfüllt:

(L) c+(a÷ b) ∧ c+(b÷ a) = 0 .

BEWEIS. Sei (L) erfüllt und c positiv. Dann gilt:

ca ∧ cb = c((a ∧ b) + a÷ b) ∧ c((a ∧ b) + b÷ a)
= (c(a ∧ b) + c(a÷ b)) ∧ (c(a ∧ b) + c(b÷ a))
= c(a ∧ b) + (c(a÷ b) ∧ c(b÷ a))
= c(a ∧ b)
;

ca ∨ cb = (ca+ cb) − (ca ∧ cb)
= c(a+ b) − c(a ∧ b)
= c((a+ b) − (a ∧ b))
= c(a ∨ b) .

Damit sind wir i. w. am Ziel. 2

Der letzte Satz liefert bei Anwendung von 12.2.3:

12. 2. 12 Korollar. Ein Verbandsring ist repräsentierbar (ein Funktio-
nenring) genau dann, wenn er die Bedingung (L) und (0̃), kurz (L,0̃) erfüllt.

Das letzte Korollar charakterisiert den Funktionenring entlang der Linie
dieses Abschnitts. Auf andere Weise haben Birkhoff & Pierce in ihrer
grundlegenden Arbeit [11] und durch wiederum eine andere Bedingung hat
Fuchs in [79] eine Charakterisierung geleistet und auch die Äquivalenz
der aufgestellten Bedingungen nachgewiesen. Diesem Äquivalenznachweis
fügen wir einen weiteren hinzu, im Blick auf Birkhoff/Pierce

(BP) a⊥ b =⇒ c+a⊥ b & ac+⊥ b (=⇒ c+a d+⊥x+b y+) .
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12. 2. 13 Hinweis. Es gibt eine kurze direkte Herleitung der Äquivalenz
(BP) ⇐⇒ (L,0̃) .

BEWEIS. Wir beschränken uns auf den assoziativen Fall, doch ist dies
keineswegs wesentlich, sondern nur angenehm für die Herleitung.

Erfülle R also (BP). Dann ist (L) evident. Weiterhin ist leicht zu sehen,
dass die Polynome in (0̃) vom Typ c+1 xc

+
2 + s sind. Folglich reduziert sich

(0̃) nach einigen einfachen Kalkulationen auf

(c1(a÷ b)c2 + u) ∧ d1(b÷ a)d2 ≤ (c1(b÷ a)c2 + u) ∨ d1(a÷ b)d2 .

mit positiven Elementen c1, c2, d1, d2.Wegen (BP) dürfen wir aber c1(a÷b)c2
auf der linken Seite

”
unterdrücken”, also von

u ∧ d1b∗d2 ≤ (c1b
∗c2 + u) ∨ d1a∗d2

mit orthogonalenElementen a∗, b∗ ausgehen, denn (11.8) impliziert

x⊥ y & z ≥ 0 =⇒ x ∧ (y + z) = x+ z.

Somit ist wegen u ∧ d1b∗d2 ≤ u+ c1b
∗c2 + u auch (0̃) erfüllt.

Gelte hiernach in R die Bedingung (L, 0̃). Dann folgt (BP) vermöge:

a ⊥ b

=⇒
c+a ∧ b ≤ c+b ∨ a

⇒
c+a ∧ b = (c+a ∧ b ∧ c+b) ∨ (c+a ∧ b ∧ a)

= (c+(a ∧ b) ∧ b) ∨ (c+a ∧ 0)
= 0 .

2

Nach den Regeln der Arithmetik kann jede komplementäre Halbgruppe im
Blick auf die Operatoren c∗x und c:x mit c∗x(a) = x ∗ a und c:x(a) = a : x
betrachtet werden als eine distributive ∨-halbverbandsgeordnete Algebra
(S, ·, c∗x, c:x,∨). Allerdings : wir haben zu zeigen, dass die Kongruenzen von
(S, ·, c∗x, c:x) übereinstimmen mit den Kongruenzen von (S, ·, ∗, :) . Dies ge-
lingt über die Formel a ∗ (b : c) = (a ∗ b) : c. Denn, ist ≡c eine Kongruenz
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von (S, ·, c∗x, c:x) , so erhalten wir

a ≡c b =⇒ a ∗ b ≡c a ∗ a = 1 & 1 = b ∗ b ≡c b ∗ a
( ⇐⇒ b : a ≡c a : a = 1 & 1 = b : b ≡c a : b )

=⇒ a ≡c a(a ∗ b) = b(b ∗ a) ≡c b ,
⇓

a ≡c b =⇒ a ∗ b ≡c 1
=⇒ (a ∗ c) : (b ∗ c) = a ∗ (c : (b ∗ c)) ≡c 1 ,

man beachte in der letzten Zeile, dass ≡c (auch) Halbverbandskongruenz
ist, also x ≤ y & y ≡c 1 zu x ≡c 1 führt.
Somit ergibt sich dual (b ∗ c) : (a ∗ c) ≡c 1 , woraus a ∗ c ≡c b ∗ c resultiert.
Komplementäre Halbgruppen sind nicht notwendig ∧-abgeschlossen, doch
erfüllen subdirekte Produkte von linear geordneten komplementären Halb-
gruppen zwangsläufig die Gleichung a ∗ b⊥ b ∗ a , die äquivalent ist zu der
Gleichung a : b⊥ b : a und auch zu a : (b∗a)∨b : (a∗b) = a∧b , wie wir sa-
hen. Darüber hinaus gelten in diesem Falle die weiteren Distributivgesetze:

(D·∧) x(a ∧ b)y = xay ∧ xby

(D∗∧) a ∗ (b ∧ c) = a ∗ b ∧ a ∗ c
(a ∧ b) : c = a : c ∧ b : c

(D) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) .

Infolgedessen mag man repräsentierbare komplementäre Halbgruppen auf-
fassen als distributive verbandsgeordnete Algebren des Typs (S, ·, c∗x, c:x),
und wir erhalten unmittelbar:

12. 2. 14 Korollar. Eine komplementäre Halbgruppe ist repräsentierbar
gdw. sie der Implikation genügt:

(0∨) x ≤ p̃(a), q̃(b) =⇒ x ≤ p̃(b) ∨ q̃(a) .

DENN: Aus (0∨) folgt die Abgeschlossenheit nach unten vermöge der
Implikation x ≤ a ∗ b, b ∗ a =⇒ x ≤ a ∗ a ∨ b ∗ b = 1 . 2

Dies liefert als eine weitere Charakterisierung

12. 2. 15 Korollar. Eine komplementäre Halbgruppe ist repräsentierbar
gdw. sie die Gleichung erfüllt – (vgl. [15]) :

(0c) (c ∗ (b ∗ a)c ∨ c(b ∗ a) : c) ∗ x ∨ (a ∗ b) ∗ x = x .
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BEWEIS. Gelte zunächst Axiom (0∨) . Dann folgt fast unmittelbar

(0⊥) a ∗ b⊥ c ∗ (b ∗ a)c , c(b ∗ a) : c ,

man definiere p̃(a) := c ∗ (b ∗ a)c und q̃(b) := a ∗ b. Insbesondere haben wir
damit auch a ∗ b∧ b ∗ a = 1 und erhalten folglich nach (N∗

∨) aus 3.3.17 die
Gleichung (0c) .

Gelte hiernach Axiom (0c) . Dann folgt zunächst a ∗ b⊥ b ∗ a , man setze
c = 1 . Daher ist (S,≤) ∧-abgeschlossen, und es gilt in jedem Falle

(i) x ∗ yz ≤ (x ∗ y)z ( & zy : x ≤ z(y : x))

und wegen (0c) ; (0⊥) auch

(ii) ca⊥ = a⊥ c .

Schließlich lässt sich jedes p̃(a)via Erweiterung durch Einsen ausdehnen zu

. . . x5((x3 ∗ (x1a)x2)) : x4) . . . .

Daher dürfen wir ausgehen von einem Paar p̃(a), q̃(b) mit a⊥ b. Und dies
führt bei wiederholter Anwendung von (i) und (ii) zu

p̃(a) ∧ q̃(b) ≤ a∗p̃(1) ∧ b∗q̃(1) (a∗⊥ b∗)

= xaxp = xbxq (xa ≤ a∗ , xp ≤ p̃(1)

(xb ≤ b∗ , xq ≤ q̃(1))

= (xa ∧ xb)(xp ∨ xq) (wegen a∗⊥b∗)
≤ p̃(1) ∨ q̃(1)

≤ p̃(b) ∨ q̃(a) .

Also folgt auch umgekehrt (0∨) aus (0c) . Damit sind wir am Ziel. 2

Der Leser beachte noch, dass die Beweismethode gezeigt hat, dass eine Ver-
bandsgruppe schon dann repräsentierbar ist, wenn sie a⊥ c ⊆ ca⊥ erfüllt.

Unmittelbar klar ist nach 12.2.15

12. 2. 16 Korollar. Eine abelsche komplementärte Halbgruppe ist re-
präsentierbar genau dann, wenn sie a ∗ b⊥ b ∗ a erfüllt.
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Als nächstes wenden wir 12.2.14 an auf boolesche Algebren (B,∨, ∗) (mit
a ∗ b := a′ ∧ b) . Dann folgt

12. 2. 17 Satz von Stone. Jede boolesche Algebra zerfällt subdirekt in 2-
elementige Komponenten und ist demzufolge ein Mengenkörper, (s. [144]).

In ähnlicher Weise lässt sich zeigen, dass normal residuierte Verbände, siehe
[14], distributive verbandsgeordnete Algebren sind, weshalb 12.2.3 auch in
diesen Strukturen greift.

Und weiterhin sieht man leicht, dass dual residuierte Halbgruppen – sie-
he [147, 148, 149] – als komplementäre Halbgruppen betrachtet werden
können, wenn man a ∗ b := 0 ∨ b− a hinzunimmt. Somit erhalten wir:

12. 2. 18 Korollar. Eine dual residuierte (kommutative) Halbgruppe ist
repräsentierbar genau dann, wenn sie der Bedingung a − b ∧ b − a ≤ 0
genügt (s. [149]).

Endlich kommen wir zur Kegelalgeba (C, ∗, :). Sie ist zunächst zu par-
tial geordneten Algebren umzuetikettieren vermöge c∗x(a) := x ∗ a und
c:x(a) := a : x , und wir haben zu zeigen, dass diese Umetikettierung kon-
gruenzinvariant ist. Sei also ≡c eine Kongruenz von (C, c∗x, c

:
x) (x ∈ C).

Dann folgt

a ≡c b =⇒ a ∗ b ≡c a ∗ a = 1 & 1 = b ∗ b ≡c b ∗ a
( ⇐⇒ b : a ≡c a : a = 1 & 1 = b : b ≡c a : b )

=⇒ a ≡c a : (b ∗ a) = b : (a ∗ b) ≡c b ,
⇓

a ≡c b =⇒ a ∗ b ≡c 1
=⇒ (a ∗ c) : (b ∗ c) = a ∗ (c : (b ∗ c)) ≡c 1 ,

also wie oben, dass ≡c eine Kongruenz liefert.

Kegelalgebren sind ∧-abgeschlossen, aber eine Kegel-Algebra muss nicht
∨-abgeschlossen sein, man betrachte etwa die um 1 erweiterte Menge der
Primzahlen bezüglich a ∗ a := 1 und a ∗ b := b im Falle a ̸= b . Allerdings:
Ist {a, b} nach oben beschränkt, so existiert auch sup(a, b) in C , da jedes
[1, a] bezüglich der Ausgangsoperationen ∗ und : einen Brick mit a als Null
bildet. Folglich können wir die Bedingung (0) umformulieren zu:

(0′) p̃(a) ∧ q̃(b) =
(
(p̃(a) ∧ q̃(b)) ∧ p̃(b)

)
∨
(
(p̃(a) ∧ q̃(b)) ∧ q̃(a)

)
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Tatsächlich wird (0) auch hier zum Ziel führen, obwohl wir nicht über
Verbandsideale verfügen. Dies ergibt sich zum einen mittels 12.2.18 – man
setze p̃(x) = x : b und q̃(y) = a ∗ y . Doch auch auf dem Wege des Dar-
stellungslemmas gelangen wir zum Ziel. Dies hat wesentlich damit zu tun,
dass in den Beweis des Darstellungslemmas die Operation ∨ nicht einging
und damit, dass wir lediglich

”
genug”

”
ideale Mengen” M – welcher Art

auch immer – benötigen, die der Bedingung genügen:

(C0) p̃(b) ∈M & q̃(a) ∈M =⇒ p̃(a) ∈M V q̃(b) ∈M .

Nun hätten wir aber statt mit maximalen c meidenden Verbandsidealen
auch mit maximalen c meidenden Filtern arbeiten können, und man sieht
sofort, dass das mengentheoretische Komplement dieser Filter jeweils ein
Primideal ist.
Dies regt an, in Kegelalgebren mit den Komplementen F von maximalen
Filtern zu arbeiten. Deren gibt es genug, und es gilt natürlich die Implikati-
on a∧ b ∈ F =⇒ a ∈ F V b ∈ F . Daher bleibt nur zu zeigen, dass sie (C0)
erfüllen. Lägen nun aber p̃(b) und q̃(a) in F , so lägen auch p̃(a)∧ q̃(b)∧ p̃(b)
und p̃(a)∧q̃(b)∧q̃(a) in F . Daher sind wir am Ziel, wenn wir zeigen können,
dass im Falle der Existenz von x ∨ y aus x, y ∈ F folgt x ∨ y ∈ F .
Es sollte F aber maximal sein in der Menge der c meidenden Filter. Das
bedeutet dann die Existenz eines u ∈ F mit x∧u ≤ c und eines v ∈ F mit
y ∧ v ≤ c , also mittels w := u ∧ v die Herleitung

x ∧ w ≤ c & y ∧ w ≤ c; (x ∨ y) ∧ w ≤ c .

Läge nun x ∨ y in F , so läge auch c in F . Also liegt x ∨ y nicht in F und
somit in F . Damit haben wir:

12. 2. 19 Korollar. Eine Kegel-Algebra ist repräsentierbar genau dann,
wenn sie die Bedingung (0′) erfüllt.

Einen alternativen Beweis für das letzte Korollar liefert uns natürlich der
Satz 6.6.1, denn gilt (0′) , so erst recht a ∗ b⊥ a : b .

12.3 Ein perspektivischer Hinweis

Wie wir schon im letzten Beweis sahen, wirkt das Prinzip aus 12.2.3 immer
dann, wenn eine partial geordnete Algebra – und dies mag eine beliebige Al-
gebra A, bezogen auf die Gleichheitsrelation, sein – genug

”
ideale Mengen”
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besitzt, die der Bedingung genügen:

(P) p̃(b) ∈M & q̃(a) ∈M =⇒ p̃(a) ∈M V q̃(b) ∈M

Dies führt zu weiteren Resultaten.

12. 3. 1 Korollar. Jede beliebige partial geordnete Menge (M,≤) =: M
ist subdirekt zerlegbar in höchstens 2-elementige Ketten.

DENN: Wir betrachten M bezüglich des identischen Operators. Dann ist
die Familie aller (a] (a ∈M) eine geeignete Familie idealer Mengen. 2

Natürlich subsumiert der letzte Satz die Trivialität, dass jede Menge zerlegt
werden kann in singletons. Denn man betrachte eine Menge als partial
geordnete Algebra mit dem identischen Operator als Operation und der
Gleichheitsrelation als Partialordnung.

12. 3. 2 Korollar. Jeder beliebige ∨-Halbverband ist subdirektes Produkt
2-elementiger Ketten.

DENN: Wir betrachten erneut die Familie aller (a] . 2

12. 3. 3 Korollar. Eine partial geordnete abelsche Gruppe G ist repräsen-
tierbar gdw. sie halb abgeschlossen ist, d. h., gdw. sie für jedes n ∈ N die
Implikation erfüllt: 1)

(SC) an ≥ 1 =⇒ a ≥ 1 .

BEWEIS. Offenbar ist (SC) notwendig.

Sei nun (SC) erfüllt und a verschieden von b. Dann ist die Menge N strikt
negativer Elemente multiplikativ abgeschlossen und es können im Falle a ̸=
1 nicht a,N und a−1, N beide ein Untermonoid erzeugen, da andernfalls
ap · n = 1 , also ap ≥ 1 und damit wegen (SC) a ≥ 1 und analog a−1 ≥ 1
einträte, also a = 1 – mit Widerspruch. Deshalb gibt es eine maximale
Unterhalbgruppe M , die N enthält und o. B. d. A. das Element ab−1 , nicht
aber 1. Wir zeigen, dass M ein Primideal ist im Sinne von (P).

(i) M ist ein o-Ideal, da u < v ∈ M zu uv−1 < 1 & v ∈ M führt,
was (uv−1)v = u ∈M impliziert.

1) Es scheint, als habe Clifford 1940 als erster die Repräsentierbarkeit partial geordneter Gruppen
geklärt, siehe [53].
Ein weiterer Beweis findet sich bei Dieudonné 1941, siehe [63].
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(ii) M ist prim, da ax, by ∈M & ay, bx /∈M wegen der Maximalität
von M für geeignete m, k aus N zu akyk · m = 1 und damit weiter zu
a−ky−k = m ∈ Mund analog zu b−kx−k ∈ M führen würde. Das lieferte
aber wegen akxk, bkyk ∈M den Widerspruch a−kbk, akb−k ∈M . 2

Als Korollar des letzten Satzes erhalten wir

12. 3. 4 Korollar. Eine abelsche Gruppe lässt genau dann eine Anordnung
zu, wenn sie torsionsfrei ist.

DENN: Lässt G eine Anordnung zu, so ist G natürlich torsionsfrei, und
umgekehrt bedeutet Torsionsfreiheit nichts anderes als die Bedingung der
Halbabgeschlossenheit im Blick auf die Gleichheitsrelation als Partialord-
nungsrelation. Deshalb führt Torsionsfreiheit zunächst zu einem subdirek-
ten Produkt angeordneter Gruppen, das sich dann in einem zweiten Schritt
lexikographisch ordnen lässt. 2



Kapitel 13

Jakub́ık-Ketten in lo-Gruppoiden

Ein mathematisches Resultat mag einfallsreich sein oder fundamental, mög-
licherweise auch

”
nur” schön, oder aber gar schön und fundamental zu-

gleich. Ein Resultat der letzten Art ist Jakub́ık’s Chain Theorem, zumin-
dest in den Augen des Verfassers. Es besagt:

13. 0. 5 Jakub́ık’s Ketten Theorem. Jede unbeschränkte konvexe Ket-
te einer ℓ-Gruppe G, die das neutrale Element 1 enthält, ist ein direkter
Faktor dieser Verbandsgruppe G.

Beachte, jede unbeschränkte konvexe Kette ist eine maximale Kette, aber es
können maximale unbeschränkte Ketten existieren, die nicht konvex sind.
Man betrachte etwa in (N, I) die Kette

1, 2 , 2 · 3 , 2 · 3 · 5 , 2 · 3 · 5 · 7 , ...

Jakub́ık’s Theorem wird vorgestellt in [102], und es wird dieser Gegen-
stand erneut aufgegriffen in [106]. Dort wird ein entsprechendes Theorem
für MV-Algebren gegeben. Doch tatsächlich enthält jenes Papier mehr, wie
im folgenden gezeigt werden soll.

13. 0. 6 Definition. Unter einem Links-Divisor-Gruppoid, kurz einem
LD-Gruppoid, verstehen wir ein inf-abgeschlossenes p.o.-Gruppoid G =
(G,∧, · , 1) mit Einheitselement 1, das also a · 1 = a = 1 · a , erfüllt und in
dem zusätzlich gilt:

(LD) a ≤ b ⇒ ∃ x : a · x = b

(DSM) a · (b ∧ c) = ab ∧ ac
(a ∧ b) · c = ac ∧ bc .

299
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Ist G in diesem Sinne darüber hinaus ein Rechts-Divisor-Gruppoid, d.h.
erfüllt G zusätzlich

(RD) b⇒ ∃ y : y · a = b

so nennen wir G ein Divisor-Gruppoid, kurz ein D-Gruppoid.
Ist schließlich G ein LD-Gruppoid mit

(RN) ∀ a, b ∃ a◦⊥ b◦ :(a ∧ b)a◦ = a & (a ∧ b)b◦ = b ,

so nennen wir G ein rechtsnormales LD-Gruppoid, kurz ein RN-LD-Grup-
poid, und folglich ein RN-D-Gruppoid, wenn G sogar ein rechtsnormales
D-Gruppoid ist.

Natürlich resultiert (LD) aus (RN), daher könnten wir das Axiom (LD)
aus logischer Sicht

”
fallen lassen”. Dennoch sei es hier zum Zwecke einer

Akzentuierung als beschreibendes Axiom hinzugenommen. Man beachte

Bis hierher haben wir ∨-frei gearbeitet !

Als klassische Beispiele seien an dieser Stelle erwähnt ℓ-Loops und Hoops,
das sind komplementäre Halbgruppen mit (N) x ≤ a ∗ b, b ∗ a =⇒ x = 1.
Daher sind auch partial geordnete Mengen, betrachtet bezüglich a ∗ b = 1
für a ≥ b und a ∗ b = b für a ̸≥ b einbezogen, insofern sich brouwersche
Halbverbände mit (N) subdirekt in Ketten zerlegen lassen.
Sei von nun an a◦ , b◦ stets ein Paar von Elementen, das bezüglich a, b die
Bedingung (RN) erfüllt. Unter dieser Voraussetzung sind dann mit x, y
stets auch x◦ , y◦ unvergleichbare Elemente.
Und sei ferner im folgenden G, auch dort, wo dies nicht ausdrücklich
erwähnt wird, ein positives RN-LD-Gruppoid, d.h. erfülle G zusätzlich
1 ≤ g (∀g ∈ G) .

13. 0. 7 Lemma. Sei G eine positives RN-LD-Gruppoid und seien [1, a]
und [1, b] Ketten mit unvergleichbaren Elementen a, b . Dann folgt a⊥ b .

BEWEIS. Da a, b unvergleichbar sind, sind auch a◦ und b◦ unvergleichbar.
Es gehören aber a∧ b und a◦ zu [1, a] und a∧ b und b◦ zu [1, b]. Daher muss
gelten a ∧ b ≤ a◦, b◦, also a ∧ b ≤ a◦ ∧ b◦ = 1 . 2

Als Nächstes beweisen wir:

13. 0. 8 Ein Splitting Lemma.

(SP) y ≤ ab & (a∧y)y◦ = y =⇒ y = (y∧a)y◦∧yb∧ab = (y∧a)(y◦∧b) .
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13. 0. 9 Lemma. Sei G ein positives RN-LD-Gruppoid und [1, a] eine
Kette aus G. Dann ist auch [1, a2] eine Kette.

BEWEIS. Seien x, y ∈ [ 1, a2 ] unvergleichbar. Dann sind auch x◦ und y◦

unvergleichbar, was x◦ ̸= 1 ̸= y◦ bedingt. Es gilt aber (a∧x◦)∧(a∧y◦) = 1
was a ∧ x◦ = 1 V a ∧ y◦ = 1 bedeutet, etwa a ∧ x◦ = 1 , und damit den
Widerspruch x◦ ≤ (x◦)2 ∧ x◦a ∧ ax◦ ∧ a2 = (x◦ ∧ a)(x◦ ∧ a) = 1 ; x◦ = 1
impliziert. 2

Aus Lemma 13.0.9 folgt unmittelbar:

13. 0. 10 Lemma. In einem positiven RN-LD-Gruppoid ist jede konvexe
maximale Kette multiplikativ abgeschlossen.

Schließlich stellen wir noch heraus:

13. 0. 11 Lemma. In einem positiven RN-LD-Gruppoid gelten

a ∧ bc = a ∧ ac ∧ bc = a ∧ (a ∧ b)c(13.6)

a ∧ bc = a ∧ ba ∧ bc = a ∧ b(a ∧ c) .(13.7)

Hiernach lässt sich beweisen:

13. 0. 12 Ein 1. Faktor-Theorem. Sei G ein positives RN-LD-Gruppoid
und C eine unbeschränkte Kette aus G . Dann ist G = C · C⊥ und es ist
G = C · C⊥ direkte Zerlegungen von (G,∧) .

BEWEIS. Da C unbeschränkt ist. existiert zu jedem a ∈ G ein x in C mit
x ̸≤ a , also mit a ∧ x < x . Seien nun (a ∧ x) · x◦ = x und (a ∧ x) · a◦ = a
erfüllt.
Dann führt a ∧ x < x zu x◦ ̸= 1, weshalb x ∧ x◦ ∧ a◦ = 1 ; a◦ ∧ x = 1 .
Als Nächstes betrachten wir ein c ∈ C oberhalb von x. Dann gehört a◦ ∧ c
zu C und muss a◦ ∧ c ≤ x erfüllen, also a◦ ∧ c = 1 .
Folglich ist a◦ orthogonal zu allen Elementen aus C, d. h. a◦ gehört zu C⊥ .
Dies impliziert a = (a∧x) · a◦ ∈ C ·C⊥ für alle Elemente a ∈ G und damit
G = C · C⊥.
Zu zeigen bleibt: Aus a = u.v = x.y ∈ C · C⊥ folgt u = x and v = y.
Hier führt das Splitting-Lemma zum Ziel, denn es gilt

x = (x ∧ u)(x◦ ∧ v) = x ∧ u; x ≤ u; x = u ,

die letzte Folgerung aus Gründen der Dualität, und es gilt

y = (y ∧ u)(y ∧ v) = y ∧ v ; y ≤ v ; y = v .
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Schließlich erhalten wie im Falle a⊥b, d & c⊥b, d nmittels (13.6) und (13.7) :

ab ∧ cd = a(b ∧ cd) ∧ cd
= (a ∧ cd)(b ∧ cd) ∧ cd
= (a ∧ c)(b ∧ d) ∧ cd
= (a ∧ c)(b ∧ d) ,

d. h. ∧ respektiert die Zerlegungseigenschaft. 2

Soweit gelten alle Ergebnisse in jedwedem positiven RN-LD-Gruppoid G,
und wir haben gezeigt, dass sich die Menge G als Cartesisches Produkt
G = C · C⊥ schreiben lässt.

Damit können wir herleiten:

13. 0. 13 Ein 2. Faktor-Theorem. Sei G ein positives LD-Gruppoid mit

(DSJ) a · (b ∨ c) = ab ∨ ac
(a ∨ b) · c = ac ∨ bc

und sei G = C × C⊥. Dann respektiert · die Operation × .

BEWEIS. In jedem LD-Gruppoid gilt:

u⊥v & u, v ≤ w & w = ux =⇒ v = (u ∧ v) · (v ∧ x) = v ∧ x =⇒ uv ≤ w ,

also

(13.9) u⊥ v =⇒ uv = u ∨ v = vu .

Ist nun a, c ∈ C & b, d ∈ C⊥, so ist wegen u ∧ vw ≤ (u ∧ v)(u ∧ w)
ac ∈ C & bd ∈ C⊥ erfüllt, und wir erhalten weiter

(13.10) ab · cd (13.9)
= (a ∨ b) · (c ∨ d)
= ac ∨ ad ∨ bc ∨ bd
= ac ∨ (a ∨ d) ∨ (b ∨ c) ∨ bd
= ac ∨ bd = ac · bd ,

was zu beweisen war. 2

Schließlich erhalten wir

13. 0. 14 Ein 3. Faktor-Theorem. Sei S ein RN-LD-Monoid und S =
C × C⊥. Dann respektiert die Multiplikation die Operation × .
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BEWEIS. Ist S positiv, erhalten wir a⊥b =⇒ ab = a ∨ b so wie oben.
Folglich führt in diesem Fall sie Annahme a, c ∈ C & b, d ∈ C⊥ zur Asso-
ziativität vermöge:

ab · cd = a(bc)d = a(cb)d = (ac)(bd) .

Sei hiernach S ein beliebiges RN-DL-Monoid und

a(1 ∧ a)−1 = u · v, (1 ∧ a)−1 = x · y (x, u ∈ C, y, v ∈ C⊥) .

Dann folgt

a = a(1∧a)−1 ·(1∧a) = uv ·x−1y−1 = ux−1 ·vy−1 (u, x−1 ∈ C, v, y−1 ∈ C⊥) .

Sei hiernach u1, v1, u2, v2 ∈ C & x1, y1, x2, y2 ∈ C⊥ und

a = u1x
−1
1 · v1y−1

1 = u2x
−1
2 · v2y−1

2 .

erfüllt. Dann folgt

u1v1 · (y1x1)
−1 = u2v2 · (y2x2)

−1

;

(y1x1)
−1 · u1v1 = u2v2 · (y2x2)

−1

;

u1v1 · y2x2 = y1x1 · u2v2
mit

u1v1⊥y1x1 und u2v2⊥ y2x2 ,

was zu y1x1 = y2x2 führt und damit nach Kürzung auch zu u1v1 = u2v2.
Das bedeutet aber

S = (C ∪ C−1) × (C⊥ ∪ (C⊥)−1) .

Zu zeigen bleibt, dass C ∪ C−1 mit C−1 := {c−1
∣∣ c invertierbar & c ∈ C}

eine multiplikativ abgeschlossene Kette bildet.
Natürlich ist C ∪C−1 eine Kette. Um zu beweisen, dass C ∪C−1 multipli-
kativ abgeschlossen ist, unterscheiden wir:
FALL 1. Ist 1 ≤ a ≤ b und existiert a−1, so erhalten wir 1 ≤ a−1b, ba−1 ≤ b
weshalb dann die Produkte ab−1 und ba−1 zu C gehören.
FALL 2. Ist 1 ≤ b ≤ a und existiert a−1, so existiert auch b−1 und es
gehören b−1a und ab−1 zu C. Das aber bedeutet, dass a−1b und ba−1 zu
C−1 gehören. 2
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Eine Anwendung auf ℓ-Loops

Das 2. Faktor-Theorem greift insbesondere bei ℓ-Loops. Um aber dieses
Ergebnis in das Kapitel über d-Semi-Loops zu integrieren, sei noch ein
spezieller Hinweis gegeben: Zur Erinnerung: In ℓ-Loops gelten

(13.11) x⊥y =⇒ ax ◦ y = a ◦ xy = a ◦ yx = ay ◦ x

und das Linksduale hierzu. Das bedeutet insbesondere x⊥y =⇒ xy = x∨y
und damit

ax ◦ by = ax ◦ (b ∨ y)
= ax ◦ b ∨ ax ◦ y
= a ◦ xb ∨ a ◦ xy
= a ◦ bx ∨ a ◦ xy
= a ◦ (bx ∨ xy)
= a ◦ (bx ∨ ((yx) : x)x)
= a ◦ ((b ∨ (xy : x)) ◦ x)
= a ◦ ((b ◦ (xy : x)) ◦ x)
= a ◦ (b ◦ ((xy : x))x)
= ab ◦ ((xy : x))x)
= ab ◦ xy .

Weiterhin überträgt sich diese Direkt-Zerlegung vom Kegel auf die Ganze
ℓ-Loop, wie wir ober gezeigt haben.

Als Nächstes erhalten wir:

13. 0. 15 Proposition. In ℓ-Loop-Kegeln erzeugen Atome total geordnete
Unterhalbgruppen.

BEWEIS. Sei p > 1 ein Atom: Dann ist [1, p] eine Kette. Sei nun für alle
Produkte f(p) der Länge |f(p)| ≤ n, also für alle Produkte mit höchstens
n Komponenten p, das Intervall [1, f(p)] eine Kette. Dann ist jedes g(p)
mit |g(p)| = n+1 vom Typ h(p)◦k(p) , mit |h(p)|, |k(p)| ≤ n , und o.B.d.A.
|h(p)| ≤ |k(p)| .
Nun ist aber nach 13.0.9 das Intervall [1, k(p)2] wieder eine Kette, weshalb
[1, h(p) ◦ k(p)] ebenfalls eine Kette ist.
Folglich bildet (auch) die Menge P aller Produkte m(p) eine Kette, man
beachte, dass jedes [1, f(g(p))] eine Kette bildet.
Weiterhin erfüllt P nach dem Splitting-Lemma die Kettenbedingung, da
anderenfalls pn\f(p) eine unendliche Kette wäre. Somit wird jedes f(p)
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übertroffen von mindestens einem pn,

Als nächstes beachten wir, dass ap.b das Element ab bedeckt. Das bedeutet:

(1) ap = xa =⇒ x = p d.h. p
”
kommutiert” mit jedem a, insbesondere gilt

damit p · q = 1 ⇐⇒ q · p = 1.

(2) Das Intervall [1, pn] wird ausgeschöpft von {1, p, p2, p3 = (p2)p, ..., pn} .
(3) Es ist pkp ◦ pm = pk ◦ ppm, da pnp ◦ pm = pk ◦ xpm (∃x) erfüllt ist mit
x = pm (∃m ∈ N), was x = p impliziert.

Aus diesem Grunde erhalten wir fast unmittelbar pm ◦ pn = pm+n, also die
Assoziativität für (P, ◦) und somit – insgesamt – die Behauptung. 2

13. 0. 16 Proposition. In ℓ-Loops erzeugen die Atome p ≥ 1 total ge-
ordnete Untergruppen.

BEWEIS. Nach (1) ist jedes Atom invertierbar. Folglich ist auf Grund
der ≤,≥-Dualität auch bewiesen, das die Menge N aller (p−1)n einen ℓ-
Gruppen-Kegel bildet.

Zu zeigen bleibt, dass P ∪N multiplikativ abgeschlossen und assoziativ ist.

Das aber ergibt sich entlang der obigen Linien und mag deshalb dem Leser
überlassen bleiben. 2

Schließlich erhalten wir einen neuen Zugang zu 11.4.3.

13. 0. 17 Korollar. Sei L eine d-Semi-Loop, deren Kegel die absteigende
Kettenbedingung erfüllt. Dann ist L eine direkte Summe von Kopien von
(N,+,min) und (Z,+,min).

Ketten in Clans

13. 0. 18 Lemma. Sei G ein Clan und C eine konvexe Kette in S . Dann
ist auch C ∗ a eine konvexe Kette. Insbesondere bildet die Menge aller
c ∧ a (c ∈ C) eine konvexe Kette.

BEWEIS. Betrachte x ∗ a, z ∗ a (x ≤ z ∈ C). Dann gilt x ∗ a ≥ z ∗ a,
weshalb C ∗ a total geordnet ist.

Sei hiernach z ∗ a ≤ y ≤ x ∗ a mit x, z ∈ C. Dann liefert y ≤ x ∗ a ≤ a die
Gleichheit y = (a : y) ∗ a und damit

z ≥ (a : z) ∗ a ≥ a : y ≥ (a : x) ∗ a ≥ x; a : y ∈ C .
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Als ein Beispiel betrachten wir (N, ∗) wie oben und wählen ein n ∈ N . Hier
sind alle maximalen und konvexen Ketten vom Typ p 0, p 1, p 2, . . . p k . . .
und es sind die Elemente des Typs n ∧ pn die Primpotenzteiler von n .

13. 0. 19 Ein 4. Faktor-Theorem. Sei G = (G, ∗, :,∧,∨) ein Clan und
sei C eine unbeschränkte Kette in G . Dann folgt G = C× C⊥ .

BEWEIS. Zur Erinnerung: in G ist eine partielle Multiplikation ◦ erklärt
für alle nach oben beschränkten Paare a, b. Dies bedeutet, dass der Beweis
des 1. Faktor-Theorems auch in der vorliegenden Situation greift, d. h. eine
Zerlegung a = (a ∧ x) ◦ a◦ mit a◦⊥C gewährleistet.
Wegen der Verbandsdistributivität folgt weiter fast direkt, dass (C,∧,∨)
ein direkter Faktor von (G,∧,∨) ist.
Zu zeigen bleibt, dass wir im Falle a, b ∈ C & x, y ∈ C⊥ die Gleichheit
(a ∨ x) ∗ (b ∨ y) = (a ∗ b) ∨ (x ∗ y) erhalten, woraus der Rest aus Gründen
der Dualität folgt. Wir erinnern an

u⊥ v ⇒ u ∗ v = v(13.12)

u ∗ (v ∨ w) = u ∗ v ∨ u ∗ w(13.13)

(u ∨ v) ∗ w = u ∗ w ∧ v ∗ w ,(13.14)

und kalkulieren:

(a ∨ x) ∗ (b ∨ y)) = ((a ∨ x) ∗ b) ∨ ((a ∨ x) ∗ y)
= ((a ∗ b) ∧ (x ∗ b)) ∨ ((a ∗ y) ∧ (x ∗ y))
= ((a ∗ b) ∧ b) ∨ ((a ∗ y) ∧ y))
= (a ∗ b) ∨ (x ∗ y) .

Damit sind wir am Ziel. 2

Im Falle, dass die betrachtete Kette C beschränkt ist, kann C ein direkter
Faktor sein, muss aber nicht! Man betrachte hierzu den booleschen Verband
auf der einen Seite und auf der anderen Seite das d-Monoid (N◦, · ,∧).

Als ein weiteres Beispiel sei der Brick erwähnt. Hier ist eine Kette genau
dann ein direkter Faktor, wenn sie ein idempotentes Maximum u enthält,
da jedes idempotente Element eine direkte Zerlegung erzeugt. Dies wurde
oben für den kommutativen Fall bewiesen, überträgt sich aber leicht auch
auf den nicht kommutativen Fall, da alle Idempotenten im Zentrum liegen.

Schließlich erwähnen wir das klassischste aller Beispiele:
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13. 0. 20 Beispiel. Man betrachte den Rn. Hier sind die Geraden durch
den Ursprung exakt alle maximalen konvexen Ketten durch O, das Ein-
element von (Rn,+,∨,∧), und es ist der Rn das direkte Produkt je dreier

”
unabhängiger” dieser Geraden.
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Kapitel 14

Ideale – Linearität – Orthogonalität

Wir betrachten eine normale komplementäre Halbgruppe, wir betrachten
eine positiv d-semiloop. In beiden Fällen haben wir es mit einer Verbands-
struktur zu tun, die den Bedingungen genügt:

(VGG) (S, ·) ist ein Gruppoid mit 1.

(VGD) (S,∧,∨) ist ein distributiver Verband.
(VG∧) ∀ x, a, b, y : x(a ∧ b)y = xay ∧ xby .
(VG∨) ∀ x, a, b, y : x(a ∨ b)y = xay ∨ xby .
(RN) ∀(a ∧ b) ∃ a◦⊥b◦ : (a ∧ b) · a◦ = a & (a ∧ b) · b◦ = b .

Man beachte, dass (VG∧) und (VG∨) wegen 1 ∈ S auch einseitig gilt.
Ferner sei betont, dass aus a · (b ∧ c) = ab ∧ ac und (RN) das Splitting-
Lemma resultiert, also:

(14.6) a ∧ bc = (a ∧ b)(a◦ ∧ c) .

Wir wollen Strukturen dieses Typs als RNDV-Gruppoide – rechtsnormale
Divisoren-Verbandsgruppoide bezeichnen und vereinbaren:

Grundgegebenheit sei in diesem Kapitel stets

ein RNDV-Gruppoid S = (S, ·,∨,∧).

Wir werden also Formulierungen wie
”
Sei S ein RNDV-Gruppoid, dann....”

oder ähnlich in den Definitionen und Propositionen unterdrücken.
Unsere Untersuchungen wurden angeregt durch die höchst verdienstvolle
Lecture Note [7] von Übersichts- und Integrations-Charakter, die ihrerseits
wiederum evoziert wurde durch Paul Conrad’s

”
Introduction...” [57],

und wir werden entlang Bigard -Keimel -Wolfenstein bewegen.

309
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Es muss und soll aber betont werden, dass alle Ergebnisse, wenngleich
hier auf Gruppoide bezogen, ihrem Wesen nach der tschechoslowakischen
Schule, angeführt von Jan Jakub́ık, [103, 104, 105] und Ference Šik,
[142], sowie den Beiträgen von Paul Conrad, [56, 57, 58], zuzuschreiben
sind. Der Grund für die Übertragungsmöglichkeit der klassischen Theorie

auf das RNDV-Gruppoid ist der stark distributive Charakter des RNDV-
Gruppoids. Weder die Assoziativität noch die Kürzungsregeln sind für die
Herleitungen diese Kapitels relevant, das scheint natürlich auch in [7] schon
auf, wenn man sich auf den Kern der dortigen Herleitungen konzentriert.

Zur Erleichterung des Verständnisses empfehlen wir an dieser Stelle
dem Leser, wo immer in diesem Kapitel die Rede von S ist, sich an der
Algebra (N0, ·, GGT,KGV) zu orientieren, bzw. in dieser Algebra die 0
durch eine endliche boolesche Algebra B zu ersetzen und für a ∈ N, b ∈ B

ab = ba = b zu definieren.

Schließlich zur Notation: Weiterhin unterscheiden wir zwischen Träger-
mengen und den Strukturen, die sie tragen. So werden wir z.B. Ideale
mit großen lateinischen Buchstaben, etwa I, L,K... notieren, die Struktu-
ren, die sie tragen hingegen mit großen gotischen Buchstaben, also mit
I := (I, ·,∧,∨), ...,L,K.

Endlich seien ein für alle Mal zu jedem Paar a, b Elemente a◦, b◦ im Sinne
von (RN) fest gewählt.

14.1 Ideale

14. 1. 1 Definition. Unter einem Ideal aus S verstehen wir jedes multi-
plikativ abgeschlossene Verbandsideal.

Mit jeder Familie {Iλ} von Idealen ist auch deren Durchschnitt ein Ideal,
beachte 1 ∈ Iλ.

Folglich erzeugt jede Untermenge A ein engstes A enthaltendes Ideal Ac , da
S ein Ideal bildet. Ist Ainsingleton{a} so notieren wir kürzer ac. Offenbar
gilt ∅ c = {1} . Damit folgt

14. 1. 2 Proposition. Die Menge C(S) aller Ideale aus S bildet einen
vollständigen Verband bezüglich ⊇.

14. 1. 3 Proposition. Sei M eine nicht leere Teilmenge von S . Dann ist
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M c gleich der Menge aller endlichen Vereinigungen von Produkten, gebildet
aus Elementen aus M .

Demzufolge ist der Verband aller Ideale algebraisch bezüglich der Summen-
bildung

∑
.

DENN: Der Beweis folgt fast per definitionem, man beachte (VG∨) und
das erweiterte Splitting-Lemma. 2

Insbesondere ist demnach die
”
Summe” A ∨ B zweier Ideale – äquivalent

auch bezeichnet mit A+B – gleich dem Erzeugnis der Vereinigungsmenge,
da nach Konstruktion A und B in dieser Menge enthalten sind, während
diese Menge ein Unter-RNDV-Gruppoid eines jeden gemeinsamen Ober-
Ideals von A und B bildet.

Dies liefert uns fast unmittelbar weiter

14. 1. 4 Proposition. C(S) bildet sogar einen distributiven Verband be-
züglich ∩ und ∨ (+) .

BEWEIS. Zur Erinnerung: Verbandsdistributivität ist u.a. äquivalent zu
der Implikation a ≤ b ∨ c =⇒ a = (a ∧ b) ∨ (a ∧ c).
Mittels dieser Bedingung und des erweiterten Splitting-Lemmas gelangen
wir dann garadeaus zu A ∩ (B ∨ C) ⊇ (A ∩B) ∨ (A ∩ C) . 2

14.2 Prime Ideale

Ein Ideal P aus S heißt prim, wenn es verschieden ist von {1} und die
Implikation ab ∈ P =⇒ a ∈ P V b ∈ P erfüllt. Ein Ideal M heiße mini-
mal prim, wenn es minimal ist in der Menge aller von {1} verschiedenen
Primideale. Offenbar ist S selbst ein primes Ideal und zusammen mit einer
Kette {Pi} (i ∈ I) von primen Idealen ist auch ihr Durchschnitt D ein
primes Ideal wegen

a ∧ b ∈ D & a /∈ D =⇒ ∃Pj : a /∈ Pj =⇒ b ∈ D ,

D muss kein Primideal enthalten. Man denke an die zwei-elementige boole-
sche Algebra.

Existiert aber wenigstens ein Primideal P , so existiert – nach Zorn – auch
ein minimal primes Ideal M , das sogar in P enthalten ist.
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Denn, es ist mit jeder Kette von Primidealen auch ihr Durchschnitt D
ein Primideal. Folglich umfasst jedes Primideal P nach Zorn ein minimal
primes Ideal M .

Weiter ist mit jeder Kette von Idealen auch ihre Vereinigung ein Ideal. Folg-
lich existieren, da {1} ein Ideal ist, nach Zorn zu jedem a ̸= 1 maximale
Ketten von Idealen, die a nicht enthalten und damit Ideale M , maximal
bezüglich der Eigenschaft, a zu meiden.

Solche maximalen Ideale werden als Werte von a bezeichnet. Diese Werte
sind notwendig prim, was sich wie folgt einstellt:

Sei W ein Wert von a und x ∧ y ∈ W , aber x, y /∈ W . Dann führt
R(x, y, x◦, y◦) zu x◦, y◦ /∈ W . Es gilt aber x◦ ∧ y◦ = 1 ∈ W . Betrachte nun
die Menge U := {u

∣∣x◦ ∧ u ∈ W} . Diese Menge bildet ein Ideal, wie man
leicht sieht, und wegen y◦ ∈ U aber y /∈ W erhalten wir a ∈ W ⊂ U . Defi-
niere nun V = {v

∣∣u∧v (∀u ∈ U)} . Dann erhalten wir analog a ∈ W ⊂ V .
Das aber bedeutet den Widerspruch a ∧ a = a ∈ W . Somit ist jeder Wert
ein primes Ideal .

14. 2. 1 Definition. Zur Erinnerung: Ist L ein Verband, so versteht man
unter einem Filter jede Untermenge F mit a, b ∈ F ⇐⇒ a ∧ b ∈ F .
Insbesondere gehört also mit jedem a auch jedes b ≥ a zu F . Ein Filter
heißt prim, wenn er a ∨ b ∈ F =⇒ a ∈ F V b ∈ F erfüllt.

Ein Filter U heißt ein Ultrafilter, wenn er maximal ist unter allen Filtern,
die 1 nicht enthalten.

14. 2. 2 Proposition. Das mengentheoretische Komplement eines Prim-
ideals aus S ist ein Primfilter – und umgekehrt.

Und es ist das mengentheoretische Komplement eines Ultrafilters ein mi-
nimal primes Ideal – und umgekehrt das mengentheoretische Komplement
eines minimal primen Ideals ein Ultrafilter.

BEWEIS. Die erste Behauptung ist fast evident.

Sei hiernach U an Ultrafilter und x ≤ y /∈ U, also x /∈ U . Dann folgt

a, b /∈ U =⇒ a ∧ x = 1 = b ∧ y (∃ x, y ∈ U)
=⇒ ab ∧ (ay ∧ xb ∧ xy) = 1
=⇒ ab /∈ U .

Folglich ist das Komplement eines Ultrafilters ein primes Ideal P . Ange-
nommen nun, P würde noch ein weiteres primes Ideal M echt umfassen,
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dann wäre das Komplement von M ein Primfilter, der U echt enthalten
würde, mit Widerspruch!
Sei schließlich M ein minimal primes Ideal. Dann ist das Komplement F
von M ein Filter, nach Zorn eingebettet in einen Ultrafilter U , und es ist
S\U ein primes Ideal, enthalten in M , also gleich M . Das bedeutet F = U ,
weshalb F ein Ultrafilter ist. 2

Unter den primen Idealen ist eine Klasse spezieller primer Ideale von be-
sonderem Interesse, nämlich die Klasse der

∩
-primen Ideale.

14. 2. 3 Definition. Wir nennen R ∈ C (S) regulär, auch
∩

-prim, wenn
R nicht Durchschnitt echter Ober-Ideale ist.

14. 2. 4 Proposition. Das Ideal R ist regulär gdw. ein c /∈ R existiert,
das zu allen Idealen Ai (i ∈ I) gehört, die R echt enthalten .

BEWEIS. Sei R regulär. Wir bilden den Durchschnitt D aller Ai ∈ C (S) ,
die R echt enthalten und wählen ein c ∈ D\R.
Dann gehört c zu allen Idealen von S, die R echt enthalten, also auch zu
ihrem Durchschnitt. 2

Weiter gilt

14. 2. 5 Proposition. Jedes Ideal C ist Durchschnitt von regulären Idea-
len.

BEWEIS. Wir bilden den Durchschnitt D aller regulären Ideale, die C
enthalten und nehmen an, es gäbe ein d ∈ C\D . Dann könnten wir C
ausdehnen zu einem (regulären) Wert von d, mit Widerspruch. 2

14. 2. 6 Definition. Sei C ein Ideal aus S. Dann verstehen wir unter der
Polaren von A ⊆ S in C, kurz der C-Polaren of A, die Menge

A⊥C := {x
∣∣ a ∧ x ∈ C (∀a ∈ A)} .

Insbesondere nennen wir A⊥{1} die Polare von A, in Zeichen A⊥ . Weiter
schreiben wir zur Vereinfachung A⊥⊥ statt (A⊥)⊥ und nennen A⊥⊥ die
Bipolare von A .

14. 2. 7 Proposition. Sei P ein Ideal aus S. Dann sind paarweise äqui-
valent:
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(i) P ist prim.

(ii) a ∧ b ∈ P =⇒ a ∈ P V b ∈ P .

(iii) a ∧ b = 1 =⇒ a ∈ P V b ∈ P .

(iv) {A
∣∣P ⊆ A ∈ C(S)} ist linear geordnet.

BEWEIS. (i) =⇒ (ii) , wegen

a ∧ b ∈ P =⇒ a⊥P ∩ b⊥P ⊆ P

=⇒ a⊥P ⊆ P V b⊥P ⊆ P

=⇒ a ∈ P V b ∈ P .

(ii) =⇒ (iii) ist evident.

(iii) =⇒ (iv) . Seien A und B zwei Ideale und sei a ∈ A , b ∈ B beliebig
gewählt. Dann folgt a ∧ b ∈ A ∩B und R(a, b, a◦, b◦) (a◦ ∈ A & b◦ ∈ B).
Seien hiernach A , B unvergleichbar mit a◦ ∈ A\B und b◦ ∈ B\A . Dann
folgt a◦ ∧ b◦ = 1 =⇒ a◦ = 1 V b◦ = 1 , mit Widerspruch!

(iv) =⇒ (i) folgt erneut fast unmittelbar. 2

14. 2. 8 Definition. Sei R ein reguläres Ideal und c in Element im Sinne
von 14.2.4. Dann bezeichnet man R als einen Wert von c und symbolisiert
die Menge aller Werte von c mittels val(c) .

14. 2. 9 Das Projektions -Theorem. Sei C ein Ideal aus S. Dann liefert
A 7−→ C ∩ A offenbar eine surjektive Abbildung von C(S) auf C(C) .
Ist dann M ein Wert von c ∈ C in S , so ist M ∩ C ein Wert von c in C

und jeder Wert von c in C ist von dieser Art.
Darüber hinaus ist die Restriktion dieser Funktion auf Ideale von S , die
C nicht enthalten, sogar eine Bijektion.

BEWEIS. Sei M ein Wert von c ∈ C und gehöre d zu C\M . Dann gehört
c zu dem Erzeugnis von M und d in S und damit nach 14.2.7 auch zu dem
Erzeugnis aller m∧ d (m ∈M) und folglich zu c ∈ ((C ∩M), d)c . Also ist
M ∩ C eine Wert von d in C .
Sei nun D ein Wert von c ∈ C in C . Dann lässt D eine Ausdehnung zu
einem Wert M von c in S zu, und dieser Wert erfüllt D = M ∩C . Folglich
ist die definierte Abbildung surjektiv.
Seien schließlich A , B zwei verschiedene reguläre Ideale von S , die C

nicht enthalten . Dann sind auch A ∩ C und B ∩ C verschieden. Denn, sei
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A ∩ C = B ∩ C und A ein Wert von a , B eine Wert von b. Gehörte dann
d zu C\(C ∩ A ∩ B) , so wäre A ∩ C = B ∩ C ein Wert von c = a ∧ b ∧ d
in C , woraus der Widerspruch resultieren würde:

c ̸∈ C ∩A∩B & c ∈ C ∩ (A∨B) = (C ∩A) ∨ (C ∩B) = C ∩A∩B . 2

14.3 Polaren

Zur Erinnerung: Zwei Elemente a, b heißen orthogonal, wenn sie a∧ b = 1 ,
auch symbolisiert durch a⊥ b erfüllen.

14. 3. 1 Proposition. Zwei Elemente a ̸= 1 ̸= b sind orthogonal, gdw.
ihre Werte paarweise unvergleichbar sind.

BEWEIS. Gilt a ⊥̸ b , so lässt jeder Wert von a ∧ b eine Ausdehnung
zu einem Wert A von a und zu einem Wert B von b zu. Diese aber sind
unvergleichbar.

Und gilt a ⊥ b, so kann kein Paar A,B vergleichbarer Werte von a und
b existieren, da aus A ⊆ B , z.B., folgen würde a ̸∈ A & b ̸∈ A , mit
Widerspruch zu a ∧ b = 1 . 2

Hiernach wenden wir uns einem detaillierten Studium der Polaren zu.
Zunächst haben wir offenbar

(14.7) A ⊇ B =⇒ B⊥ ⊇ A⊥ .

und damit

(14.8) a ∈ A =⇒ a⊥ ⊇ A⊥ =⇒ a⊥⊥ ⊆ A⊥⊥ ⊆ A .

Weiter gilt per definitionem für jeden Homomorphismus h von (S,∧)

(14.9) h(A⊥) ⊆ h(A)⊥ .

Sodann erhalten wir

(14.10) A ⊆ A⊥⊥ und A⊥ = A⊥⊥⊥ .

BEWEIS. A ⊆ A⊥⊥ impliziert A⊥ ⊆ A⊥⊥⊥, und A⊥ ⊇ A⊥⊥⊥ resultiert
aus (14.7). 2

14. 3. 2 Korollar. A ist Polare gdw. A = A⊥⊥ erfüllt ist.
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Die Orthogonalität von Elementen aus S ist aufs Engste verknüpft mit
der Orthogonalität der Ideale aus S . Zunächst erhalten wir mittels der
Polaren-Arithmetik:

14. 3. 3 Proposition. Jede Polare A ist ein Ideal .

Dies führt zu

(14.11) x⊥A ⇐⇒ xc ∩ Ac = {1} .

BEWEIS. x⊥A =⇒ xc ⊆ A⊥ =⇒ A ⊆ xc⊥ =⇒ Ac ⊆ xc⊥ =⇒ xc∩Ac = {1}
und xc ∩ Ac = {1} =⇒ y ∧ z = 1 (∀ y ∈ xc, z ∈ Ac) . 2

Zusätzlich hat sich ergeben:

(14.12) A⊥ = (Ac)⊥.

Im weiteren werden wir die Menge der Polaren von S mit P (S) bezeichnen.
Offenbar ist P (S) partial geordnet. Tatsächlich gilt aber sehr viel mehr.
Doch bevor wir fortfahren betonen wir, dass man zu unterscheiden hat
zwischen der (Ideal-)Hülle zweier Polaren und ihrer P -(olaren-)Hülle. Um
deutlich zu machen, welche Hülle jeweils gemeint ist, werden wir den Index
p einsetzen. ∨p bezieht sich dann auf die Bildung der Polaren-Summe, ∨
auf die Bildung der Ideal-Summe.

(14.13) (
∨
Ai)

⊥ =
∩

(Ai
⊥) (i ∈ I) .

BEWEIS. Nach (14.7) ist die linke Seite in der rechten Seite enthalten.
Und gehört vice versa x zu der rechten Seite, so ist x orthogonal zu allen
Ai, und damit auch zu

∨
Ai, weshalb auch die rechte Seite in der linken

enthalten ist. 2

Insbesondere ist nach (14.13) der Durchschnitt von Polaren wieder eine
Polare. Als unmittelbare Konsequenz erhalten wir damit:

14. 3. 4 Korollar. P (S) ist eine Moore’sche Familie.

14. 3. 5 Korollar. Die Menge der Polaren bildet einen vollständigen Ver-
band. P(S) bezüglich

(14.14)
∧
Ai :=

∩
Ai and

∨
pAi := (

∩
Ai

⊥)⊥ (i ∈ I) .
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BEWEIS. Nach (14.13) ist mit jeder Familie von Polaren auch deren
Durchschnitt eine Polare und die zweite Behauptung folgt aus

P ⊇
∨
Ai ⇐⇒ P⊥ ⊆

∩
Ai

⊥

⇐⇒ P ⊇ (
∩
Ai

⊥)⊥ (i ∈ I) ,

fertig! 2

Als nächstes zeigen wir, dass die Polaren nicht nur einen vollständigen
Verband bilden, sondern sogar eine vollständige boolesche Algebra. Wir
beginnen mit

14. 3. 6 Proposition. Die Abbildung A 7−→ A⊥⊥ respektiert obere und
untere Grenzen und liefert einen Homomorphismus des Verbandes der Idea-
le aus S auf den Verband P(S) der Polaren. Somit ist der Verband der
Polaren distributiv.

BEWEIS. Seien A,B zwei Ideale. Dann folgt

(14.15) (A ∨B)⊥⊥ ⊇ A⊥⊥ ∨p B
⊥⊥ ⊇ A,B

und damit, man beachte, dass A⊥⊥ eine Polare bildet,

(14.16) (A ∨B)⊥⊥ = A⊥⊥ ∨p B
⊥⊥ .

Als Nächstes erhalten wir

(14.17) (A ∩B)⊥⊥ = A⊥⊥ ∩B⊥⊥ .

DENN, sei x ∈ A⊥⊥ ∩ B⊥⊥ und y ∈ (A ∩ B)⊥ . Dann folgt a ∈ A ,
b ∈ B =⇒ a ∧ b ∈ A ∩B und

a ∧ b ∧ x ∧ y = 1 ; b ∧ x ∧ y ∈ A⊥ ∩ A⊥⊥ = {1} .

Und das führt zu x ∧ y ∈ B⊥⊥ ∩B⊥ = {1} ,

also zu x ∈ (A ∩B)⊥⊥ – da y beliebig gewählt wurde. 2

Aus der vorhergehenden Proposition folgt fast unmittelbar

(14.18) a⊥⊥ ∩ b⊥⊥ = (a ∧ b)⊥⊥ ,

DENN: a⊥⊥ ∩ b⊥⊥ = ac⊥⊥ ∩ bc⊥⊥ = (ac ∩ bc)⊥⊥ = (ac ∩ bc)⊥⊥ . 2

Darüber hinaus erfüllt jede Polare A nach 14.3.5

(14.19) A ∩ A⊥ = {1} and A ∨p A
⊥ = S .
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Damit können wir als Hauptergebnis dieses Abschnitts formulieren:

14. 3. 7 Proposition. P (S) bildet einen booleschen Verband. Das bedeu-
tet insbesondere, dass P (S) die Gleichungen erfüllt:

A∨p

∧
Bi =

∧
(A ∨p Bi) .(14.20)

A ∩
∨

pBi =
∨

p(A ∩Bi) .(14.21)

BEWEIS. Die genannten Gesetze gelten in jeder vollständigen booleschen
Algebra, zur Erinnerung: es gilt u ∨ v = u ∨ (u ∧ v) , also

u ∨ v ≤ u ∨ w ⇐⇒ u ∧ v ≤ u ∧ w ,

woraus die Implikation resultiert:∧
(a ∨ bi) = a ∨ (a ∧ x) =⇒ a ∧ x ≤ a ∧ bi (i ∈ I)

=⇒
∧

(a ∨ bi) ≤ a ∨
∧
bi (i ∈ I) .

Damit sind wir aus Gründen der Dualität am Ziel. 2

14.4 Filets und z-Ideale

14. 4. 1 Definition. Sei a ∈ S . Dann nennt man die Bipolare a⊥⊥ auch
die von a erzeugte Hauptpolare. Wir notieren die Menge aller Hauptpolaren
aus S mittels PP (S) .

Unmittelbar aus 14.3.6 resultiert:

14. 4. 2 Proposition. PP(S) bildet einen Unterverband des Verbandes
aller Polaren.

Sei f : V 7−→ V ′ eine Verbandshomomorphismus und habe V ′ ein Mini-
mum z ′ . Dann nennen wir die Menge {x

∣∣ f(x) = z ′} =: ker(f) den Kern
von f .

14. 4. 3 Proposition. Die Abbildung ϕ : a 7−→ a⊥⊥ definiert einen Ho-
momorphismus von (S,∧,∨) auf PP(S) , und die assoziierte Verbandskon-
gruenz ∼f ist die gröbste Kongruenz von S mit Kern {1} .

BEWEIS. Offenbar ist ϕ eine Verbandskongruenz mit Kern {1} . Sei nun
ρ ebenfalls eine Kongruenz mit Kern {1} . Dann folgt aus x ρ y zunächst
x ∧ a = 1 =⇒ (y ∧ a) ρ 1 =⇒ y ∧ a = 1 und damit weiter x⊥⊥ = y⊥⊥ . 2

14. 4. 4 Definition. Wir bezeichnen die Kongruenz ∼f als die Filet-
Kongruenz von S und deren Klassen F (a) als die Filets von S .
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Man halte fest: a ∼f b ist gleichbedeutend mit a⊥⊥ = b⊥⊥ .

14. 4. 5 Proposition. Die Filets aus S sind konvex und abgeschlossen
bezüglich der Multiplikation sowie bezüglich der beiden Verbandsoperatio-
nen.

BEWEIS. Aus (14.10) folgt

a⊥⊥ = b⊥⊥ =⇒ a⊥ = b⊥ =⇒ (ab)⊥⊥ = (aa)⊥⊥ = a⊥⊥ .

Der Rest ergibt sich aus (14.15) and (14.16). 2

14. 4. 6 Proposition. Sei F das Filet von a , dann ist F c gleich a⊥⊥ .

BEWEIS. Zunächst haben wir x ∈ F =⇒ x⊥⊥ = a⊥⊥ =⇒ x ∈ a⊥⊥ , also
F ⊆ a⊥⊥ , und damit F c ⊆ a⊥⊥ .

Sei nun x ∈ a⊥⊥ . Dann folgt (x∨a)⊥⊥ = x⊥⊥∨a⊥⊥ = a⊥⊥ , also x∨a ∈ F

und folglich x ∈ F c , und damit a⊥⊥ ⊆ F c . 2

14. 4. 7 Definition. Als z-Ideal bezeichnen wir jedes Ideal, das abge-
schlossen ist bezüglich ∼f .

14. 4. 8 Proposition. Sei A ⊆ S, Dann sind paarweise äquivalent:

(i) A ist ein z-Ideal.

(ii) A ist Vereinigung einer nach oben gerichteten Menge von Bipo-
laren.

(iii) A ist Vereinigung aller Elemente eines PP(S) .

(iv) A ist Vereinigung aller Elemente eines Unterverbandes von P(S) .

(v) A ist Vereinigung einer nach oben gerichteten Menge von Polaren.

BEWEIS. (i) =⇒ (ii) . Zunächst erhalten wir nach Voraussetzung von (i)
die Implikation x ∈ A =⇒ F (x) ⊆ A =⇒ C(F (x)) ⊆ A =⇒ x⊥⊥ ⊆ A , also
A =

∪
x⊥⊥ (x ∈ A) . Weiterhin folgt x, y ∈ A =⇒ x ∨ y ∈ x⊥⊥ ∨ y⊥⊥ =

(x ∨ y)⊥⊥ ⊆ A .

(ii) =⇒ (iii) . Sei A =
∪
xi

⊥⊥ (i ∈ I) für ein nach oben gerichtetes System
xi

⊥⊥ . Dann erfüllt für das System aller x⊥⊥ ⊆ xj
⊥⊥ (∃ j ∈ I) unsere

Behauptung.

(iii) =⇒ (iv) =⇒ (v) gilt a fortiori.
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(v) =⇒ (i) . Wir betrachten A =
∪
Ai

⊥ (i ∈ I) mit einem nach oben
gerichteten System von Polaren Ai

⊥ . Dann erhalten wir

y ∼f x ∈ Aj
⊥ (∃ j ∈ I) =⇒ y ∈ y⊥⊥ ⊆ Aj

⊥⊥ ⊆ A . 2

Als nächstes stellen wir eine Charakterisierung von Filet respektierenden
Kongruenzen vor.

14. 4. 9 Proposition. Sei h ein Homomorphismus S auf T . Dann sind
die beiden Aussagen äquivalent:

(i) a⊥ = b⊥ =⇒ h(a)⊥ = h(b)⊥

(ii) H := ker (h) ist ein z-Ideal .

BEWEIS. (i) =⇒ (ii) . Sei (i) erfüllt und h(a) = e . Dann folgt

b⊥ = a⊥ & a ∈ H =⇒ h(b)⊥⊥ = h(a)⊥⊥ = {e}
=⇒ h(b) = e

=⇒ b ∈ H .

(ii) =⇒ (i) . Wir zeigen zunächst h(a)⊥ ⊇ h(a⊥⊥)⊥ und damit

(⋆) h(a)⊥ = h(a⊥⊥)⊥ .

WEGEN: h(x) ∈ h(a)⊥ =⇒ h(x) ∧ h(a) = h(1)
=⇒ h(x ∧ a) = h(1)
=⇒ x ∧ a ∈ ker(h))
=⇒ (x ∧ a)⊥⊥ ⊆ ker(h)
=⇒ x⊥⊥ ∩ a⊥⊥ ⊆ ker(h)
=⇒ x ∧ y ∈ ker(h) (∀y ∈ a⊥⊥)
=⇒ h(x) ∧ h(y) = h(1) (∀y ∈ a⊥⊥)
=⇒ h(x) ∈ h(a⊥⊥)⊥ .

Hiernach erhalten wir mittels (⋆)

a⊥ = b⊥

=⇒
h(a)⊥ = h(a⊥⊥)⊥ = h(b⊥⊥)⊥ = h(b)⊥ ,

was zu beweisen war 2

Schließlich gilt:

14. 4. 10 Proposition. Es sind paarweise äquivalent
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(i) Jedes Ideal C ist ein z-Ideal .

(ii) Jedes a ∈ S erfüllt ac = a⊥⊥ .

(iii) a⊥⊥ = b⊥⊥ ist äquivalent zu ac = b c .

BEWEIS. (i) =⇒ (ii) , denn ac ⊆ a⊥⊥ ist stets erfüllt, und Bedingung (i)
impliziert, dass jedes z-Ideal vom Typ ac per definitionem a⊥⊥ ⊆ ac erfüllt.
(ii) =⇒ (iii) ist evident.

(iii) =⇒ (i) , denn Bedingung (iii) zieht nach sich

b ∼f a ∈ C =⇒ a⊥⊥ = b⊥⊥ =⇒ bc = ac ⊆ C =⇒ b ∈ C . 2

14.5 Minimal prime Ideale

Minimal prime Ideale auf der einen Seite und Polaren auf der anderen
Seite sind eng miteinander verwoben. Es zeigt sich nämlich dass jedes prime
Ideal ein z-Ideal ist, also eine Vereinigung von Polaren, während auf der
anderen Seite jede Polare Durchschnitt von minimal primen Idealen ist.
Wir beginnen mit der zweiten Behauptung.

14. 5. 1 Proposition. Jedes A⊥ ̸= S eines RNDV-Gruppoids S ist Durch-
schnitt aller minimal primen Ideale, die A nicht enthalten.

BEWEIS. Wir zeigen, dass A⊥ der Durchschnitt aller Werte von Elemen-
ten aus A ist und hiernach, dass alle minimal primen Ideale, die C nicht
enthalten, zu diesem Durchschnitt beitragen.
Da A⊥ ein Ideal ist, kann A⊥ bezüglich eines jeden a ∈ A ausgedehnt
werden zu einem Wert von a . Wir betrachten nun den Durchschnitt D aller
Werte dieses Typs. Dann folgt D = A⊥ , da anderenfalls ein x ∈ D\A⊥

und ein a ∈ A existieren würden mit x ∧ a ∈ D\A⊥ , ein Widerspruch!
Schließlich trägt jedes minimal prime Ideal P ̸⊇ A zu dem Durchschnitt
bei wegen a ̸∈ P =⇒ P ⊇ a⊥ =⇒ P ⊇ A⊥ . 2

Wie oben gezeigt liefert die AbbildungM −→ S\M eine Bijektion zwischen
der Menge aller minimal primen Ideale und der Menge aller Ultrafilter von
S, und diese Abbildung liefert weiter auf kanonische Weise eine Bijektion
zwischen der Menge aller minimal primen Ideale aus S und der Menge
aller Ultrafilter des Verbandes PP(S), da die Abbildung a 7−→ a⊥⊥ einen
surjektiven Verbandshomomorphismus von (S,∧,∨) auf PP(S) liefert mit
1 ̸= a 7−→ a⊥⊥ ̸= {1} .
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14. 5. 2 Proposition. Sei P ein eigentlich primes Ideal aus S . Dann
sind paarweise äquivalent:

(i) P ist ein minimal primes Ideal .

(ii) P =
∪
x⊥ (x ̸∈ P ) .

(iii) y ∈ P =⇒ y⊥ ̸⊆ P .

BEWEIS. (i) =⇒ (ii) . Sei P prim. Dann erhalten wir x ̸∈ P =⇒ x⊥ ⊆ P .
Sei hiernach P sogar minimal prim. Dann bildet S\P einen Ultrafilter,
weshalb zu jedem x ∈ P ein y ∈ S\P existiert mit x⊥ y. Folglich wird
ganz P ausgeschöpft von

∪
x⊥ (x ̸∈ P ) .

(ii) =⇒ (iii) . Im Falle (ii) ist jedes y ∈ P orthogonal zu mindestens einem
x /∈ P .

(iii) =⇒ (i) . Im Falle (iii) ist die Menge S\P ein Ultrafilter. 2

Aus dem soeben bewiesenen Ergebnis folgt noch stärker:

14. 5. 3 Proposition. Sei C ein Ideal aus S und U ein Ultrafilter aus
C . Dann bildet die Menge

∪
x⊥ (x ∈ U) ein minimal primes Ideal P in

S , und jedes minimal prime M ̸⊇ C ist von dieser Art.

BEWEIS. Sei U ein Ultrafilter aus C. Wir zeigen zunächst, dass die Teil-
menge V := {x

∣∣∃ u ∈ U : x ≥ u} ein Ultrafilter aus S ist. Das beweist
dann den ersten Teil
Zu diesem Zweck seien x ∈ S\V und u beliebig aus U gewählt und damit
auch Element aus V . Dann folgt x ∧ u ∈ C\U , da sonst x zu V gehören
müsste. Folglich existiert ein y ∈ U mit x ∧ u ∧ y = 1 und damit auch ein
u ∧ y ∈ V mit x ∧ (u ∧ y) = 1.
Sei nun M ein minimal primes Ideal aus S, das C nicht enthält. Wir
definieren V := S\M und U = V ∩C. So erhalten wir U als einen Ultrafilter
aus C, und es bilden die Elemente x ≥ u ∈ U einen Ultrafilter in S, der
den Ultrafilter V wegen v ≥ u ∧ v ∈ U enthält. Folglich muss nach dem
ersten Teil dieser Ultrafilter gleich V sein. Es gilt aber die Implikation
u ≤ v =⇒ v⊥ ⊆ u⊥ und damit M =

∪
v⊥ (v ∈ V ) =

∪
u⊥ (u ∈ U). 2

Schließlich erwähnen wir noch als eine gewisse Anwendung von 14.5.1 und
als Verallgemeinerung von Proposition 14.5.2.

14. 5. 4 Korollar. Sei P ein primes Ideal aus S . Dann ist der Durch-
schnitt D aller minimal primen Ideale, die in P enthalten sind, gleich
N :=

∪
x⊥ (x ̸∈ P ) .
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BEWEIS. Offenbar gilt N ⊆ D .

Sei nun a ∈ D\N . Dann folgt a ∧ x ̸= 1 (∀x ̸∈ P ). Folglich ist in diesem
Falle die Menge aller x mit a ∧ x ̸= 1 (x ∈ S\P ) ein Filter F , der S\P
enthält und eingebettet ist in einen Ultrafilter U , der a enthält. Also wäre
S\U ein minimal primes Ideal, enthalten in P , aber ohne a , ein Wider-
spruch! 2

14.6 Direkte Faktoren

In diesem Abschnitt werden wir Ideale als Unterstrukturen betrachten. Des-
halb werden wir hier Ideale auch als RNDV-Gruppoide aus S bezeichnen.

14. 6. 1 Proposition. Sei S ein RNDV-Gruppoid und seien A,B RNDV-
Gruppoide aus S . Dann gilt S = A ⊗ B gdw. S = A · B , A = B⊥ und
B = A⊥.

BEWEIS. a ∧ b ̸= 1 würde bedeuten, dass a ∧ b verschiedene Zerlegungen
hat. Also ist die Bedingung notwendig.

Doch nach den Regeln der Arithmetik ist sie auch hinreichend. 2

Als nächstes erhalten wir

14. 6. 2 Proposition. Ein RNDV-Gruppoid A aus S ist ein direkter Fak-
tor von S, wenn sie A · A⊥ = S erfüllt, und in diesem Falle erfüllt sie
darüber hinaus A = A⊥⊥ .

BEWEIS. A · A⊥ = S impliziert A⊥⊥ · A⊥ = S mit A = A⊥⊥ , der Rest
ist klar. 2

14. 6. 3 Korollar. Sei C ein RNDV-Gruppoid aus S . Dann ist A⊥ in
direkter Faktor von C gdw. A⊥ ⊆ C ⊆ A⊥A⊥⊥ . erfüllt ist.

Hiernach sind wir in der Lage zu zeigen:

14. 6. 4 Proposition. Seien A , B direkte Faktoren von S . Dann gilt

(A ∩B)⊥ = A⊥ ∨B⊥ = A⊥ ·B⊥ .

BEWEIS. Sind A, B direkte Faktoren, so erhalten wir zunächst

AA⊥ = S = BB⊥ =⇒ (A ∩B)(A⊥ ∨B⊥) = S
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mit (A∩B)∩ (A⊥ ∨B⊥) = {1} . Deshalb gilt (A∩B)⊥ = A⊥ ∨pB
⊥ , also

A⊥ ∨p B
⊥ = A⊥ ·B⊥

aufgrund der Gleichungen (A ∩ B) · (A⊥B⊥) = S und A⊥B⊥ ⊆ A⊥ ∨p B
⊥

sowie der Eindeutigkeit der Komplemente in distributiven Verbänden. 2

14. 6. 5 Korollar. Die direkten Faktoren eines RNDV-Gruppoids bilden
eine boolesche Unteralgebra des Verbandes der Polaren.

Selbstverständlich sind linear geordnete RNDV-Gruppoide direkt unzerleg-
bar. Ein weniger triviales Beispiel ist das der Verbandsgruppe aller stetigen
Funktionen f : R −→ R . Hier hat z. B. die Funktion f : x 7−→ 1 kei-
ne Zerlegung in orthogonale Komponenten, was sich unmittelbar aus der
Stetigkeit ergibt.

Hiernach wenden wir uns unendlichen direkten Produkten zu.

14. 6. 6 Definition. Sei Ai (i ∈ I) eine Familie von RNDV-Gruppoiden
aus S und Bj für jedes j ∈ I das RNDV-Gruppoid, das in S von der
Vereinigung aller Ai (i ̸= j) erzeugt wird. Ist dann S für jedes i ∈ I
das direkte Produkt von Ai und Bi, so nennen wir S ein inneres direktes
Produkt der Faktoren Ai und schreiben P =

⊗
Ai (i ∈ I) .

Als Folge von 14.6.5 führt diese Definition nacheinander zu

14. 6. 7 Proposition. Sei Ai (i ∈ I) eine Familie von RNDV-Gruppoiden
aus S . Dann ist S gleich

⊗
Ai (i ∈ I) gdw. S erzeugt wird von den {Ai}

und zudem jedes i ̸= j =⇒ Ai ⊆ Aj
⊥ erfüllt ist.

14. 6. 8 Proposition. S =
⊗

Ai (i ∈ I) impliziert, dass jedes RNDV-
Gruppoid C aus S direkt zerlegt wird via C =

⊗
(Ai ∩ C) (i ∈ I) .

14. 6. 9 Proposition. Sind S =
⊗

Ai (i ∈ I) und S =
⊗

Bj (j ∈ J)
zwei innere direkte Zerlegungen von S , so ist auch

⊗
(Ai ∩ Bj) (i, j ∈

I × J) eine innere direkte Zerlegung von S.

14. 6. 10 Korollar. Besitzt S eine innere direkte Zerlegung in direkt un-
zerlegbare Komponenten, so ist diese Zerlegung eindeutig bestimmt.
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14.7 Lexikographische Erweiterungen

Ein Beispiel: Sei A eine linear geordnete Gruppe und B eine beliebige
Verbandsgruppe. Wir setzen (a1, b1) < (a2, b2) gdw. a1 < a2 oder a1 = a2
und b1 < b2. Auf diese Weise entsteht eine neue Verbandsgruppe A ◦ B.
genannt das lexikographische Produkt von B über A. Offenbar bildet dann
A eine primes Ideal, das von jedem Element aus S\A majorisiert wird.

Analoges gilt für RNDV-Gruppoide. Man wähle etwa (N , · ,GGT,KGV)
als A und eine boolesche Algebra als B.

Das motiviert die Definition:

14. 7. 1 Definition. Sei C eine Primideal aus S. Dann nennen wir S

lexikographische Extension, kurz Lextension von C, wenn jedes s ∈ S\C
jedes c ∈ C majorisiert.

Lextensionen spielen eine bedeutende Rolle in der Verbandsgruppenstruk-
turtheorie. Wir werden sehen, dass die Ergebnisse, wie sie formuliert sind
in Bigard-Keimel-Wolfenstein, [7], mit schwachen Ausnahmen auch
im Falle eines RNDV-Gruppoids gelten

Wir beginnen mit

14. 7. 2 Proposition. Sei C ein Ideal aus S. Dann sind paarweise äqui-
valent

(i) S ist eine Lextension von C .

(ii) C ist prim und vergleichbar mit allen Idealen L aus S .

(iii) C enthält alle von S verschiedenen Polaren aus S.

(iv) C enthält alle minimal primen Ideale aus S .

(v) Jedes a ∈ S außerhalb von C besitzt exakt einen Wert .

(vi) Jedes a ∈ S außerhalb von C erfüllt a⊥ = {1}.

BEWEIS. (i) =⇒ (ii). (i) impliziert per definitionem, dass C prim ist. Sei
nun L eine weiteres Ideal mit L ̸⊆ C. Dann majorisieren die Element aus
L\C die Menge C . Daher erfüllt C ⊆ L.

(ii) =⇒ (iii). Gilt (ii), so is das Ideal C prim und vergleichbar mit allen
Polaren. Somit folgt aus A⊥ ̸⊆ C zunächst A⊥⊥ ⊆ C, also A⊥⊥ ⊆ A⊥, und
damit als nächstes A ⊆ A⊥⊥ = {1}, was A⊥ = S bedeutet.

(iii) =⇒ (iv). Zu Erinnerung: jedes minimal prime Ideal is ist Vereinigung
von Polaren.
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(iv) =⇒ (v). Gelte a ̸∈ C und seien V und W Werte von a. Dann enthalten
V und W minimal prime Ideale, die ihrerseits enthalten sind in C. Daher
ist C vergleichbar mit V und auch mit W , und also enthalten in V und in
W . Das bedeutet, dass V uns W eine gemeinsames primes Ideal enthalten.
Also sind V und W vergleichbar.

(v) =⇒ (vi). Sei 1 ̸= a⊥ b ̸= 1 und a ̸∈ C. Dann ist a assoziiert mit
einem Wert W (b) und b mit einem Wert W (a). Aber sowohl W (a) als auch
W (b) lassen ein Erweiterung zu dem eindeutig bestimmten W (a ∨ b) zu.
So erhalten wir W (a) = W (a ∨ b) = W (b), mit Widerspruch!

(vi) =⇒ (i). Nach (vi) ist das Ideal C prim, gemäß 14.2.7 (vi), und im
Falle x ∈ S\C , y ∈ C existieren Elemente x◦, y◦ mit x◦ ̸∈ C derart dass
(x ∧ y)x◦ = x und (x ∧ y)y◦ = y erfüllt sind. Das aber impliziert y◦ = 1
nach Annahme, und also y ≤ x, weshalb C eine Lextension von C ist. 2

Hiernach folgt fast unmittelbar

14. 7. 3 Lemma. Sei C ⊆ H ⊆ S (C,H ∈ C(S)). Dann ist S eine
Lextension von C gdw. S eine Lextension von H und H eine Lextension
von C ist.

BEWEIS. Man beachte 14.7.2 2

14. 7. 4 Definition. Unter dem Lexkern eines RNDV-Gruppoids S, no-
tiert mittels Lex (S), verstehen wir die Hülle aller eigentlichen Polaren P
aus S in C(S), also, vergleiche 14.7.2 – die Hülle aller minimal primen
Ideale.

Gilt Lex (S) = S, so nennen wir S lex-einfach.
Gilt hingegen Lex (S) ̸= S, so nennen wir S ein Lex-RNDV-Gruppoid

Nach dieser Definition ergeben sich fast unmittelbar:

14. 7. 5 Lemma. A ⊇ B =⇒ Lex (A) ⊇ Lex (B) .

14. 7. 6 Lemma. S ist Lextension von C gdw. Lex (S) in C enthalten ist.

14. 7. 7 Lemma. Jedes linear geordnete konvexe Unter-RNDV-Gruppoid
von S einer Kardinalität ≥ 2 ist ein Lex-RNDV-Gruppoid.

Ferner ist S offenbar linear geordnet gdw. Lex (S) = {1} ist.

14. 7. 8 Proposition. Lex (S) ist das größte lex-einfache konvexe RNDV-
Gruppoid aus S.
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BEWEIS. Ist Lex (S) eine Lextension von C, dann ist gemäß den voran
gegebenen Bemerkungen auch S eine Lextension von C, was C = Lex (S)
bedeutet.

Sei nun L mit L ∈ C(S) lex-einfach. Dann gilt – man beachte 14.7.2 (ii)
– Lex (S) ⊇ L oder Lex (S) ⊆ L. Es kann aber nicht gelten Lex (S) ⊂ L
da L lex-einfach ist. 2

Als nächstes zeigen wir

14. 7. 9 Proposition. Sei ac das von a erzeugte RNDV-Gruppoid. Dann
ist ac ein Lex-RNDV-Gruppoid gdw. a genau einen Wert besitzt.

BEWEIS. Sei ac ein Lex-RNDV-Gruppoid. Dann gehört a zu ac\Lex (ac)
und hat folglich genau einen Wert in ac. Daher hat in diesem Falle a auch
nur einen Wert in S , man beachte 14.2.9.

Habe nun umgekehrt a nur einen Wert in S. Dann hat a auch in ac nur
einen Wert W . Dann aber ist W Wert auch aller anderen Elemente aus
ac\W . Folglich besitzt in ac jedes V ∈ val(k) (k ̸∈ W ) eine Ausdehnung zu
W . Damit hat dann auch jedes k ̸∈ W exakt einen Wert, weshalb ac nach
14.7.2 (v) ein Lex-RNDV-Gruppoid ist. 2

14. 7. 10 Proposition. Jedes Paar von Lex-RNDV-Gruppoiden A , B aus
S ist orthogonal oder vergleichbar.

BEWEIS. Angenommen, es wären A und B weder vergleichbar noch or-
thogonal. Dann existierten zwei Elemente a ∈ A\B und b ∈ B\A mit
a ∧ b > 1. Wir zeigen, dass dies zu ac ⊆ bc oder aber zu bc ⊆ ac führt.

Nach 14.7.9 sind sowohl ac als auch bc Lex-RNDV-Gruppoide. Daher gäbe
es zu a bzw. b in S Werte C bzw. D mit b ∈ B ⊆ C ∈ val(a) bzw.
a ∈ A ⊆ D ∈ val(b), und darüber hinaus enthielten diese Werte ein ge-
meinsames primes Ideal M , z. B. einen Wert zu a∧ b. Daraus würde dann
C ⊆ D V D ⊆ C resultieren, trotz C ̸⊇ {a, b} ̸⊆ D . 2

Man beachte, nach 14.7.10 vermag man von der lokalen Struktur eines
sc auf die globale Struktur von S zu schließen und umgekehrt von der
globalen Struktur von S auf die lokale Struktur dieses sc .

14. 7. 11 Proposition. Sei A ein Lex-RNDV-Gruppoid aus S. Dann gilt

s /∈ A× A⊥ =⇒ s > a (∀ a ∈ A) .
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BEWEIS. Sei L der Lex-Kern von A, s /∈ A × A⊥ sowie t ∈ A\L und
sei R(s, t, s◦, t◦). Dann folgt wegen t = (s ∧ t)t◦ /∈ L und der Annahme
s ∧ t ∈ L zunächst t◦ ∈ A\L und hiernach weiter:

t◦ ∧ (s◦ ∧ a) = 1 (∀ a ∈ A)
=⇒ s◦ ∧ a = 1 (∀ a ∈ A)
=⇒ s◦ ∈ A⊥

=⇒ s ∈ A× A⊥ ,

mit Widerspruch. Folglich gilt s ≥ s∧t > L, also s > L für alle s ̸∈ A×A⊥.

Bleibt zu zeigen s ≥ t ∈ A\L. Hierzu betrachten wir s◦. Da t und damit
auch s∧ t zu A gehören, zur Erinnerung s /∈ A×A⊥, kann das Element s◦

nicht zu A×A⊥ gehören. Folglich muss t◦ zu L gehören, da sonst t◦∧s◦ ̸= 1
folgen würde. Auf diese Weise erhalten wir s◦ ≥ t◦ ; t◦ = 1, also s ≥ t

und damit s > A. 2

14. 7. 12 Korollar. Jedes Lex-RNDV-Gruppoid A, das nach oben durch
kein s /∈ A beschränkt ist, ist ein direkter Faktor des RNDV-Gruppoids S.

14. 7. 13 Proposition. Seien A und B zwei Ideale aus S und sei A echt
enthalten in B. Dann sind paarweise äquivalent:

(i) B ist eine Lextension von A .

(ii) B⊥⊥ ist eine Lextension von A .

(iii) Für alle b aus B\A gilt bc⊥ = b⊥ = B⊥ .

BEWEIS. (i) =⇒ (ii). Gilt B⊥⊥ = B, so ist nichts zu zeigen. Anderenfalls,
sei 1 < x ∈ B⊥⊥\B erfüllt. Dann kann x nicht zu B×B⊥ gehören, beachte
B ×B⊥ = B ∨B⊥ und

(B ∨B⊥) ∩B⊥⊥ = (B ∩B⊥⊥) ∨ (B⊥ ∩B⊥⊥) = B ∩B⊥⊥.

Folglich gilt x > B, also ist B⊥⊥ eine Lextension von B und damit auch
von A .

(ii) =⇒ (iii). Sei B⊥⊥ eine Lextension von A. Dann ist auch B eine Lex-
tension von A. Denn gilt x ∈ B\A und x ∈ b⊥, so erfüllt jedes y ∈ B die
Implikation b⊥x =⇒ b⊥y ∧ x =⇒ y ∧ x = 1 und damit x ∈ B⊥. Somit ist
B nach 14.7.2 (vi), Lextension von A .
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(iii) =⇒ (i). Sei b ∈ B\A , x ∈ B und b ∧ x = 1 . Dann folgt nach (iii)
x ∈ B ∩ b⊥ = B ∩B⊥ = {1}. Somit gilt (i) nach 14.7.2 (vi). 2

14. 7. 14 Korollar. Ist B eine Lextension von A in S dann ist B eine
maximale Lextension von A in S .

BEWEIS. Nach 14.7.10 bilden die Lextensionen C von A mit B ⊆ C eine
Kette. Daher existiert höchstens eine maximale Lextension des betrachte-
ten Typs. Sei nun B⊥⊥ ⊆ C erfüllt und C eine Lextension von A. Dann
erhalten wir nach 14.7.13 (iii) zunächst B⊥ = C⊥ und damit dann weiter
die Inklusion B⊥⊥ ⊆ C ⊆ C⊥⊥ = B⊥⊥ . 2

14. 7. 15 Proposition. Sei B eine Lextension von A ̸= {1} in S. Dann
folgt A⊥ = B⊥.

BEWEIS. B⊥ ⊆ A⊥ gilt a fortiori.

Sei nun x ∈ A⊥ & b ∈ B . Dann erhalten wir b∧x ∈ B und a∧x∧b = 1 für
alle a aus A, also b∧x ∈ A⊥∩B. Es gehört aber b∧x zu A, da b∧x ∈ B\A
nach sich zöge b ∧ x ≥ a ∈ A und damit A = {1}, mit Widerspruch!

Daher erhalten wir b ∧ x ∈ A und somit b ∧ x ∈ A ∩ A⊥, also b ∧ x = 1,
was x ∈ B⊥ bedeutet, woraus schließlich A⊥ ⊆ B⊥ resultiert. 2

Erneut sei betont:

14. 7. 16 Korollar. Im Falle {1} ̸= A ∈ C(S) bilden die Lextensionen
von A eine Kette mit Maximum A⊥⊥ .

Im weiteren studieren wir die Relationen zwischen den linear geordneten
Idealen aus S auf der einen Seite und den Polaren und minimal primen
Idealen aus S auf der anderen Seite. Hier erhalten wir vorweg:

14. 7. 17 Proposition. Sei P eine eigentliche Polare aus S. Dann sind
paarweise äquivalent

(i) P ist linear geordnet.

(ii) P ist maximal in der Menge der linear geordneten Ideale.

(iii) P⊥ ist prim.

(iv) P⊥ ist minimal prim.

(v) P⊥ ist eine maximale Polare.

(vi) P is a minimale Polare.
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BEWEIS. (i) =⇒ (ii). Sei (i) erfüllt und C ein linear geordnetes Ober-

Ideal von P . Dann ist C nach 14.7.7 eine Lextension von P mit C ⊇ P ,

und es ist gemäß 14.7.13 zusammen mit C auch C eine Lextension von P

und gemäß 14.7.16 die Bipolare P eine maximale Lextension von P in S .
Das liefert dann C⊥⊥ ⊇ P⊥⊥ = P ; C = P .

(ii) =⇒ (iii). Sei R(x, y, x◦, y◦) und x ∧ y ∈ P⊥ , aber x◦ , y◦ /∈ P⊥. Dann
existieren Elemente a, b ∈ P mit 1 ̸= x◦ ∧ a ∈ P & 1 ̸= y◦ ∧ b ∈ P . Da P
linear geordnet ist, folgt hieraus weiter x◦∧y◦ > 1 , mit Widerspruch! Also
ist P⊥ prim.

(iii) =⇒ (iv), da – gemäß 14.5.1 – jede Polare Durchschnitt von minimal
primen Idealen ist.

(iv) =⇒ (v). Sei P⊥ minimal prim und P⊥ ⊆ Q⊥ ⊆M mit einem minimal
primen Ideal M erfüllt. Dann folgt P⊥ = Q⊥.

(v) =⇒ (vi). Beachte die Antitonie von A 7−→ A⊥ in der booleschen Alge-
bra der Polaren.

(vi) =⇒ (i). Sei x , y ∈ P erfüllt und gelte R(x, y, x◦, y◦). Dann impliziert
x◦ ̸= 1 zunächst P = x◦⊥⊥, da P minimal ist. Und das führt weiter zu
y◦ ∈ x◦⊥ ∩ x◦⊥⊥, also zu y◦ = 1 und damit zu y ≤ x. 2

Als nächstes stellen wir vor:

14. 7. 18 Proposition. Sei C eine konvexe Menge aus S mit 1 ∈ C.
Dann sind paarweise äquivalent:

(i) C ist linear geordnet.

(ii) C⊥⊥ ist linear geordnet.

(iii) Cc ist linear geordnet.

BEWEIS. (i) =⇒ (ii). Im Falle C⊥⊥ = {1} sind wir am Ziel. Anderenfalls
sei 1 ̸= x ∈ C⊥⊥ erfüllt. Dann kann x nicht zu C⊥ gehören. Folglich existiert
bezüglich x zumindest ein cx ∈ C mit x ∧ cx ̸= 1 . Daher ist kein Paar von
Elementen aus C⊥⊥ orthogonal, da C linear geordnet ist. Folglich führt
R(a, b, a◦, b◦) zu a◦ = 1 V b◦ = 1. Es sind aber je zwei Elemente aus C⊥⊥

vergleichbar.

(ii) =⇒ (iii) =⇒ (i) ist evident. 2

14. 7. 19 Korollar. Die linear geordneten Polaren aus S sind exakt die
maximalen konvexen Ketten.



14.8. RNDV-GRUPPOIDE MIT EINER BASIS 331

BEWEIS. Sei P eine linear geordnete Polare und C ⊇ P eine maximale
konvexe Kette. Dann erhalten wir C = C⊥⊥ nach 14.7.18 und C = P nach
14.7.17, da P eine Polare und C = C⊥⊥ ⊇ P eine minimale Polare ist. 2

Damit können wir formulieren:

14. 7. 20 Korollar. Sei C eine maximale und konvexe Kette aus S ohne
obere Schranke außerhalb von C. Dann ist C ein direkter Faktor von S.

BEWEIS. Man beachte 14.7.12 2

Als ein Beispiel geben wir {pn} (n ∈ N0) mit primem p als eine maximale
konvexe Kette von (N, ·,GGT,KGV).

14. 7. 21 Korollar. Für Elemente a ̸= 1 sind paarweise äquivalent

(i) Das Intervall [ 1, a ] ist linear geordnet.

(ii) a⊥⊥ ist linear geordnet.

(iii) ac ist linear geordnet.

Dies suggeriert zu erklären:

14. 7. 22 Definition. Wir nennen a ∈ S basisch in S, wenn [ 1, a ] linear
geordnet ist.

Offenbar ist jedes Paar basischer Elemente orthogonal oder vergleichbar.
Ferner hat jedes basische Element nach 14.7.9 und 14.7.2 exakt einen Wert.

Offenbar sind in (N, ·,GGT,KGV) exakt die Primzahlpotenzen basisch.

14.8 RNDV-Gruppoide mit einer Basis

In diesem Abschnitt studieren wir (N, ·,GGT,KGV)
”
in Verallgemeine-

rungen”.

14. 8. 1 Definition. Sei B eine Teilmenge von S. Dann nennen wir B
orthogonal, wenn B den Bedingungen genügt:

(i) 1 /∈ B .

(ii) Je zwei Elemente aus B sind orthogonal.

Offenbar gilt nach Zorn:

14. 8. 2 Lemma. Jede orthogonale Untermenge von S besitzt eine Aus-
dehnung zu einer maximalen orthogonalen Untermenge.

Weiter erhalten wir ohne Schwierigkeiten:
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14. 8. 3 Lemma. Eine orthogonale Untermenge U ist genau dann maxi-
mal, wenn U⊥ = {e} bzw. äquivalent hierzu U⊥⊥ = S erfüllt ist.

14. 8. 4 Definition. Unter einer Basis verstehen wir eine maximale or-
thogonale Untermenge B, bestehend aus lauter basischen Elementen von
S. Weiterhin nennen wir S basisch, wenn S eine Basis besitzt.

Als Beispiel betrachte man (N0, ·, GGT ). Eine Basis bilden hier alle Men-
gen {pn}(p prim, 1≤n∈N) .

Die Menge aller Basen ist aufs engste verknüpft mit der Menge aller Pola-
ren aus S.

14. 8. 5 Proposition. Es sind paarweise äquivalent

(i) S besitzt eine Basis.

(ii) Jedes a > 1 majorisiert mindestens ein basisches Element.

(iii) Die Algebra der Polaren ist atomar.

(iv) Jede Polare ̸= S ist Durchschnitt maximaler Polaren.

(v) {1} ist Durchschnitt maximaler Polaren.

BEWEIS. (i) =⇒ (ii). Sei B eine Basis und a nicht aus B. Dann gilt
für mindestens ein b ∈ B die Beziehung a ⊥̸b, also ist 1 ̸= a ∧ b < b und
deshalb (a ∧ b)⊥⊥ ⊆ b⊥⊥ erfüllt. Folglich ist (a ∧ b)⊥⊥ linear geordnet und
a ∧ b somit basisch.

(ii) =⇒ (iii). Sei A eine Polare und b ein basisches Element aus A. Dann
gilt b⊥⊥ ⊆ A , und es ist b⊥⊥ eine minimale Polare, wegen 14.7.17.

(iii) =⇒ (iv). Sei B ein beliebige boolesche Algebra. Dann liefert die Be-
ziehung

0 ̸= a <
∧
mi mit mi = pi und pi

ein Atom p ≤
∧

(mi ∧ a) mit dem Co-Atom p ≥ a & p ̸≥
∧
mi. Und das

liefert a =
∧
mi.

(iv) =⇒ (v) a fortiori.

(v) =⇒ (i). Sei Pi (i ∈ I) die Familie aller maximalen Polaren. Dann ist

jedes Pi
⊥ ein linear geordnetes bi

⊥⊥. Folglich ist jedes bi basisch und es sind
je zwei verschiedene Elemente bi , bj orthogonal.

Bleibt zu zeigen, dass die Menge dieser Elemente {bi} eine Basis bildet,
also dass {bi}⊥ = {1} erfüllt ist.
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Zu diesem Zweck sei x ∈ bi
⊥ (∀i ∈ I) angenommen. Dann folgt bi

⊥ = Pi,
wegen bi

⊥ ⊇ Pi
⊥⊥ = Pi, und somit x ∈

∩
bi
⊥ =

∩
Pi = {1}. 2

14.8.5 (ii) liefert sofort:

14. 8. 6 Korollar. Ein RNDV-Gruppoid S ist basisch gdw. seine konvexen
RNDV-Unter-Gruppoide basisch sind.

Maximale Polaren sind minimal prime Ideale. Somit sagt uns 14.8.5, dass
in einem jeden RNDV-Gruppoid mit Basis eine Familie von primen Idealen
mit Durchschnitt {1} existiert. Dieses Ergebnis wird verschärft durch

14. 8. 7 Proposition. Ein RNDV-Gruppoid S ist basisch gdw. eine mi-
nimale Familie von primen Idealen Pi (i ∈ I) existiert mit∩

Pi (i ∈ I) = {1} und
∩
Pi (i ̸= j ∈ I) ̸= {1} .

BEWEIS. (a) Sei die Bedingung erfüllt.

Prime Ideale P erfüllen P⊥⊥ = P oder P⊥⊥ = S. Denn wegen P ⊆ P⊥⊥

ist die Bipolare P⊥⊥ prim, beachte 14.2.7. Daher ist P⊥⊥ gleich S oder s
ist – nach 14.7.17 – P⊥⊥ eine maximale Polare und deshalb ein minimal
primes Ideal aus S.

Sei hiernach F eine minimale Familie im Sinne des Satzes mit P ∈ F , und
sei D der Durchschnitt aller Q ̸= P aus F . Dann folgt wegen

D∩P = {1} zunächst P⊥ ⊇ D ̸= 1, also P = P⊥⊥ ̸= S, woraus sich weiter
gemäß 14.7.17 ergibt, dass P eine maximale Polare ist. Folglich ist F eine
Unterfamilie aus der Familie aller maximalen Polaren aus S.

Sei auf der anderen Seite C eine maximal Polare und damit zugleich ein
minimal primes Ideal. Dann existiert ein Element a mit C = a⊥ und ein
P ∈ F mit a /∈ P . Das aber impliziert C = a⊥ ⊆ P , also C = P , da C
maximal gewählt ist. Somit ist P eine Polare und folglich hat S eine Basis.

(b) Habe hiernach S eine Basis. Dann ist nach 14.8.5 (v) die Menge {1}
gleich dem Durchschnitt aller maximalen Polaren, weshalb nur zu zeigen
bleibt, dass die Familie aller maximalen Polaren minimal ist im Sinne des
Satzes. Das aber folgt da die bi aus 14.8.5 (v) =⇒ (i) eine Basis bilden,
also der Bedingung bi ∈ bj

⊥ (j ̸= i ∈ I) genügen und somit bi ∈ Pj
⊥⊥ = Pj

(j ̸= i ∈ I) erfüllen. 2
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14.9 Ortho-finite RNDV-Gruppoide

14. 9. 1 Definition. Sei S ein RNDV-Gruppoid. Wir sagen, das Element
a habe die Höhe n, wenn es unterhalb von a⊥⊥ eine maximale Kette von
Polaren der Länge n gibt.

Nach den Regeln der Modularität haben alle maximalen Ketten die Länge
n, falls nur eine dieser Ketten diese Bedingung erfüllt. .

14. 9. 2 Proposition. Für die Elemente aus S sind paarweise äquivalent:

(i) a hat die Höhe n .

(ii) Es existiert eine maximale Kette
{1} ⊂ P1 ⊂ P2 . . . ⊂ Pn = a⊥⊥ von Polaren Pi unterhalb a⊥⊥ .

(iii) a⊥⊥ hat eine Basis der Länge n .

(iv) a liegt in allen minimal primen Idealen bis auf höchstens n viele.

(v) Ist M eine orthogonale Menge unterhalb von a , so enthält M
höchstens n Elemente.

BEWEIS. (i) =⇒ (ii) gilt nach Definition.

(ii) =⇒ (iii). Gelte (ii) und sei {1} ⊂ P1 ⊂ · · · ⊂ Pn = a⊥⊥ eine Kette im
Sinne des Satzes. Dann sind die Mengen Pi+1 ∩ Pi

⊥ paarweise 1-disjunkt
und daher linear geordnet. Denn wären die Elemente x , y ∈ Pi+1 ∩ Pi

⊥

unvergleichbar, so lägen x◦ und y◦ in Pi+1∩Pi
⊥, und es läge die von Pi

⊥ und
x◦ erzeugte Polare wegen Pi ⊂ (Pi ∪ {x})⊥⊥ ⊆ Pi+1\{y} , streng zwischen
Pi und Pi+1, man beachte dass y ̸= 1 zu Pi

⊥ gehört und deshalb nicht zu
Pi

⊥⊥.

(iii) =⇒ (iv). Wir zeigen ein wenig mehr, nämlich: Sei {a1, . . . , an} eine
Basis von a⊥⊥. Dann gehört a exakt nicht zu den maximalen Polaren, also
minimal primen Idealen ai

⊥ (1 ≤ i ≤ n).

Sei hiernach {a1, . . . , an} eine Basis von a⊥⊥. Dann ist z. B. der Träger des
von {a2, . . . , an} erzeugten Unter-RNDV-Gruppoids gleich a⊥1 , also eine
Polare, weshalb im Falle a ∈ a⊥1 folgen muss a⊥⊥ ⊆ a⊥1 , mit Widerspruch !
Somit kann a zu keinem der a⊥i gehören, die ja maximale Polaren, also
minimal prime Ideale sind.

Ist aber M minimal prim und a ̸∈ M , so folgt a⊥ ⊆ M , und es kann kein
ai zu M gehören, da ai ∈M =⇒ a⊥⊥

i = M zu a ∈ a⊥⊥ ⊆ a⊥i führen würde.
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(iv) =⇒ (v). Seien a1, . . . , am ≤ a paarweise orthogonal. Wir bilden die
Kette

a1
⊥, (a1 ∨ a2)⊥, . . . , (a1 ∨ a2 ∨ . . . ∨ am)⊥ .

Diese Kette liefert – analog zum Procedere unter (ii) =⇒ (iii) – m paar-
weise orthogonale Basiselemente mit einer oberen Schranke, etwa b. Dann
können wir aber wie unter (iii) =⇒ (iv) schließen, dass b und folglich auch
a nicht exakt zu m minimal primen Idealen gehört, was m ≤ n bedeutet.

(v) =⇒ (i), da eine Kette im Sinne des Satzes von größerer Länge als n
zu mehr als n vielen paarweise orthogonalen Elementen unterhalb von a
führen würde, man konsultiere den Beweis von (ii) =⇒ (iii). 2

Die nächste Proposition betrifft den Fall eines globalen n.

14. 9. 3 Proposition. In S sind paarweise äquivalent:

(i) a ist von endlicher Höhe.

(ii) Jedes z-Ideal Z erfüllt a ∈ Z⊥⊥ =⇒ a ∈ Z .

(iii) Jede nach oben beschränkte orthogonale Menge ist endlich.

(iv) Die Menge der speziellen Polaren P ⊇ a⊥⊥ erfüllt die Maximal-
bedingung.

(v) Die Menge der in a⊥⊥ enthaltenen Polaren, ist endlich.

BEWEIS. (i) =⇒ (ii). Gehöre a zu Z⊥⊥ und sei {a1, . . . , an} eine Basis
zu a⊥⊥. Dann gilt ai ∈ Z⊥⊥ (1 ≤ i ≤ n) und damit ai ̸∈ Z⊥. Folglich
existiert zu jedem 1 ≤ i ≤ n ein zi ∈ Z mit 1 < ai ∧ zi. Es ist B aber
basisch und damit ai

⊥⊥ eine minimale Polare. Dies führt als nächstes zu
ai ∈ ai

⊥⊥ = (ai ∧ zi)
⊥⊥ ⊆ zi

⊥⊥ ⊆ Z. Auf diese Weise erhalten wir a ∈
a⊥⊥ = (a1 ∨ . . . ∨ an)⊥⊥ ⊆ Z.

(ii) =⇒ (iii). Sei {ai} (i ∈ I) maximal in der Menge aller orthogonalen
Mengen unterhalb von a. Wir betrachten die Vereinigung Z aller b⊥⊥ mit
b ∈

∨
ai

c. Dann ist Z ein z-Ideal, erzeugt von den Elementen ai, und aus
a⊥⊥ ⊇ (

∨
ai

c)⊥⊥ folgt a⊥⊥ = (
∨
ai

c)⊥⊥ , da die Polaren eine boolesche
Algebra bilden. Das führt dann zu a ∈ a⊥⊥ = (

∨
ai

c)⊥⊥ = Z⊥⊥ =⇒ a ∈ Z.
Somit existiert ein Element b ∈

∨
ai

c mit a ∈ b⊥⊥. Andererseits existiert
eine finite Untermenge J in I mit b ∈

∨
aj

c (j ∈ J). Das aber impliziert
I = J . Denn, wäre ak ein ai mit k ̸∈ J , so würde auf der einen Seite folgen
b ∈ ak

⊥ und damit auf der anderen Seite a ∈ b⊥⊥ ⊆ ak
⊥, also ak ∈ a⊥∩a⊥⊥.
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(iii) =⇒ (iv). Wie oben gezeigt, liefert jede Kette von eigentlichen Polaren
eine orthogonale Menge von der Anzahl der Glieder dieser Kette.

(iv) =⇒ (v). Die Menge der Polaren eines RNDV-Gruppoids, also auch
von a⊥⊥ , bildet eine boolesche Algebra, und das Komplement einer ma-
ximalen Polare ist eine minimale Polare. Das bedeutet: gäbe es unendlich
viele minimale und damit atomare Polaren, so existierte auch eine unend-
liche aufsteigende Kette von Polaren – mit Widerspruch!

(v) =⇒ (i) ist evident. 2

14. 9. 4 Korollar. Für S sind paarweise äquivalent:

(i) Jedes a ist von endlicher Höhe.

(ii) Jede nach oben beschränkte orthogonale Menge ist endlich.

(iii) Jedes z-Ideal ist in Polare.

Angeregt durch 14.9.3 erklären wir als nächstes:

14. 9. 5 Definition. S heiße orthofinit, wenn jede nach oben beschränkte
orthogonale Menge endlich ist.

14. 9. 6 Proposition. Für S sind paarweise äquivalent:

(i) S besitzt eine endliche Basis.

(ii) S ist gleich einem a⊥⊥ mit einem a von endlicher Höhe.

(iii) S hat nur endlich viele minimal prime Ideale.

(iv) S hat nur endlich viele Polaren.

(v) Jede orthogonale Menge aus S ist endlich.

BEWEIS. (i) =⇒ (ii). Man konsultiere die vorauf gegangenen Entwick-
lungen und 14.9.2.

(ii) =⇒ (iii) resultiert ebenfalls aus 14.9.2.

(iii) =⇒ (iv) folgt daraus, dass jede Polare Durchschnitt von minimal
primen Idealen ist.

(iv) =⇒ (v) , da zusammen mit den Elementen ai auch die Bipolaren ai
⊥⊥

paarweise orthogonal sind.

(v) =⇒ (i) . Man wähle eine maximale orthogonale Menge {ai} (1 ≤ i ≤ n)
und setze a1 ∨ . . . ∨ an =: a. Dann gilt S = a⊥⊥ – nach 14.9.2. 2
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14.10 Projizierbare RNDV-Gruppoide

14. 10. 1 Definition. S heiße projizierbar, wenn S der Gleichung genügt:

(PR) a⊥ × a⊥⊥ = S (∀a ∈ S) ,

also, wenn S auf jedes a⊥⊥ projiziert werden kann.
Weiterhin nennen wir S semi-projizierbar, wenn S der Gleichung genügt:

(SP) (a ∧ b)⊥ = a⊥ ∨ b⊥ .

14. 10. 2 Proposition. Ist S projizierbar, so ist S auch semiprojizierbar.

BEWEIS. Wähle Elemente a , b ∈ S. Dann gilt a⊥ × a⊥⊥ = S = b⊥ × b⊥⊥

und damit a⊥ ∨ a⊥⊥ = S = b⊥ ∨ b⊥⊥. Das liefert

(a⊥ ∨ b⊥) ∨ (a⊥⊥ ∩ b⊥⊥) = S = (a⊥ ∨ b⊥) ∨ (a ∧ b)⊥⊥

mit 1-disjunkten Komponenten, also S = (a⊥ ∨ b⊥) · (a ∧ b)⊥⊥ und damit
a⊥ ∨ b⊥ = (a ∧ b)⊥⊥⊥ = (a ∧ b)⊥. 2

14. 10. 3 Proposition. Ist S assoziativ und projizierbar, so ist S auch
repräsentierbar.

BEWEIS. Nach Definition gilt s · a⊥ = a⊥ · s . Wir betrachten nun

xay ∧ ubv = x(a ∧ b)a◦y ∧ u(a ∧ b)b◦v mit a◦ ∈ b⊥, b◦ ∈ a⊥ .

Dann gibt es Elemente a∗ ∈ b⊥, b∗ ∈ a⊥ mit

xay ∧ ubv = x(a ∧ b)ya∗ ∧ u(a ∧ b)vb∗
≤ (x(a ∧ b)y ∨ u(a ∧ b)v)(a∗ ∧ b∗)
≤ xby ∨ uav .

.
Damit sind wir nach 12.2.6 am Ziel. 2

Semiprojizierbare RNDV-Gruppoide sind definiert über Polarenbegriffe.
Entsprechend erhalten wir mittels primer Ideale

14. 10. 4 Proposition. Ein RNDV-Gruppoid S ist semiprojizierbar gdw.
jedes eigentliche prime Ideal P genau ein minimal primes Ideal enthält,
nämlich

∪
x⊥ (x ̸∈ P ) =: N .

BEWEIS. Sei S semiprojizierbar und enthalte das eigentlich prime Ide-
al P etwa die beiden verschiedenen minimal primen Ideale A , B. Dann
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existieren Elemente a, b mit a ∈ A\B, b ∈ B\A, weshalb sogar ein ortho-
gonales Paar a◦ ∈ A\B, b◦ ∈ B\A existiert mit a◦⊥ ⊆ B und b◦⊥ ⊆ A.
Das aber führt zu

S = (a◦ ∧ b◦)⊥ = a◦⊥ ∨ b◦⊥ = P ,

mit Widerspruch ! Damit ist die Bedingung notwendig.

Hiernach zeigen wir, dass die Bedingung auch hinreicht. Hierzu beachten
wir, dass stets a⊥ ∨ b⊥ ⊆ (a ∧ b)⊥ erfüllt ist.

Sei nun x ̸∈ a⊥ ∨ b⊥ und sei P ein Wert von x mit P ⊇ a⊥ ∨ b⊥. Dann ist
nach 14.5.2 die Vereinigung N =

∪
x⊥ (x ̸∈ P ) das eindeutig bestimmte in

P enthaltene minimal prime Ideal. Da weiterhin a⊥ und b⊥ in P enthalten
sind, folgt ferner a , b ̸∈ N , also a ∧ b ̸∈ N und damit (a ∧ b)⊥ ⊆ N ⊆ P .
Folglich führt uns x ̸∈ a⊥∨ b⊥ zu x ̸∈ (a∧ b)⊥. Damit sind wir am Ziel. 2

Es ist unser nächstes Ziel, die Klasse der projizierbaren RNDV-Gruppoide
zu charakterisieren, so wie wir die Klasse der semiprojizierbaren RNDV-
Gruppoide charakterisiert haben.

14. 10. 5 Proposition. Sei P ein eigentliches primes Ideal. Dann ist
die Vereinigung aller primen z-Ideale, die enthalten sind in P , gleich der
Menge aller p ∈ P mit p⊥⊥ ⊆ P .

BEWEIS. Liege p in einem z-Ideal, das enthalten ist in P . Dann folgt per
definitionem p⊥⊥ ⊆ P . Bleibt zu zeigen, dass für jedes p ∈ P mit p⊥⊥ ⊆ P
ein primes z-Ideal Z ⊆ P existiert mit p ∈ Z.

Zu diesem Zweck definieren wir F := {x⊥⊥
∣∣x ̸∈ P} . Dann bildet F einen

Filter im Verband aller Bipolaren aus S, die p⊥⊥ nicht enthalten. Folg-
lich können wir F zu einem maximalen Filter H dieses Typs ausdehnen.
Wir definieren nun Z := {z

∣∣ z⊥⊥ ̸∈ H} und werden zeigen, dass dieses Z

”
passt”.

Hierzu verifizieren wir zunächst, dass Z operativ abgeschlossen ist. Dies ist
evident mit Blick auf die Verbandsoperationen. Bleibt die Multiplikation.

Wir wählen a , b ∈ Z. Dann folgt bezüglich der Multiplikation:

a, b ∈ Z ; a⊥⊥ , b⊥⊥ ̸∈ H
=⇒

∃x⊥⊥, y⊥⊥ ∈ H : a⊥⊥ ∩ x⊥⊥ ⊆ p⊥⊥ ⊇ b⊥⊥ ∩ y⊥⊥ ,

was zu (ab)⊥⊥ ∩ (x ∧ y)⊥⊥ = (a⊥⊥ ∨ b⊥⊥) ∩ (x⊥⊥ ∩ y⊥⊥) ⊆ p⊥⊥
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führt und folglich (ab)⊥⊥ ̸∈ H, also ab ∈ Z impliziert. Es ist Z aber auch
eine Untermenge von P , wegen

z ∈ Z =⇒ z⊥⊥ ̸∈ H =⇒ z⊥⊥ ̸∈ F =⇒ z ∈ P .

Somit ist Z ein primes z-Ideal mit p ∈ Z ⊆ P . 2

Hiernach sind wir in der Lage als ein Analogon von 14.10.4 zu beweisen:

14. 10. 6 Proposition. S is projizierbar gdw. jedes eigentliche Primideal
P genau ein primes z-Ideal enthält, nämlich N :=

∪
x⊥ (x ̸∈ P ).

BEWEIS. Sei S projizierbar und sei Z ein primes, in P enthaltenes z-Ideal.
Dann gilt a ̸∈ P =⇒ a⊥ ⊆ Z und damit weiter N ⊆ Z. Wir betrachten
nun ein z ∈ Z und ein s ̸∈ P . Dann gilt s = u · v für in geeignetes
u ∈ z⊥, v ∈ z⊥⊥ ⊆ Z ⊆ P und daher mit u ̸∈ P . Das führt weiter zu
z ∈ u⊥ ⊆ N . Demzufolge gilt Z = N . Es ist die aufgestellte Bedingung
also notwendig.
Die aufgestellte Bedingung ist aber auch hinreichend. Denn im Falle von
a⊥ × a⊥⊥ ̸= S würde ein eigentliches a⊥ × a⊥⊥ existieren und damit ein
a⊥ × a⊥⊥ umfassendes eigentliches primes Ideal P . Das aber bedeutet: ist
Z das eindeutig bestimmte prime z-Ideal in P , so folgt a ∈ a⊥⊥ ⊆ Z ⊆ P ,
und es müsste nach Voraussetzung ein b ̸∈ P existieren mit a ∈ b⊥, woraus
sich b ̸∈ P & b ∈ a⊥ ⊆ P ergäbe, mit Widerspruch ! 2
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1990.
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et des Lettres de Varsovie, Classe III, 23 (1930), 30 - 50.

[118] Lorenzen, P.: Abstrakte Begründung der multiplikativen Idealtheo-
rie. Math. Z. 45 (1939), 533 - 553.
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total, 304

verbands -, 249, 250

geschnitten, 9

Gesetz

Distributiv -, 13

Grenze

obere, 14

untere, 14

group

lattice -, 20

Gruppe, 218, 249

ℓ -, 20, 197

abelsche, 99

angeordnete

vollständig, 218

freie

abelsche, 251

geordnete, 218

linear geordnete, 325

Quasi -, 249

partial geordnete, 252

Verbands -, 249, 251

Verbands -, 20, 86, 99, 250, 284

abelsche, 284

kegel, 86

Kegel einer, 24

Kegel einer mit 0, 24

Quasi -, 285

Gruppoid, 25, 249, 252

Divisor, 300

Doppel -, 25

Kürzungs -, 250, 252

LD -, 299

Links-Divisor -, 299

LRR -, 247

po -, 299

positives RN-LD -, 300

Rechts-Divisor, 300

rechtsnormales LD -, 300

Residuations -

duales, 173

RN-D -, 300

RN-LD -, 300

Verbands -, 249, 250, 285

rechtsnormales, 283

Halbgruppe, 23, 25, 28, 249, 251

archimedische d -, 204

bisimple, 88

Ideal -, 284

idempotente, 23

inverse, 84, 88

kürzbare, 23

komplementäre, 57, 115

rechts -, 23

komplementäre, 23, 34, 284, 293

archimedische, 24

brouwersche, 60

kürzbare, 60

links -, 23

normale, 233

rechts -, 23, 25, 28, 99
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linear geordnete, 55

mit Komplementen, 206

rechts-kürzbare, 23

reguläre, 84

residuierte

abelsche, 284

RNDV -

repräsentierbare, 337

streng archimedische, 55

Teilbarkeits -, 209, 284

Verbands -, 249

verbandsgeordnete, 288

Zerlegungs -, 24, 54, 55

Halbverband, 24, 297

∨ -, 297

brouwerscher, 24, 25, 300

Halm, 212

Höhe

eines Elementes, 334

Hülle, 144

Ideal -, 316

Komplementen -, 144

Polaren -, 316

Quotienten -, 144

Holoid, 24, 54

vollkanonisches, 24

Homomorphismus

Halbgruppen -, 85

Inversen -, 85

Hoop, 300

Ideal, 64, 68, 274, 276

∗-Ideal, 68∩
-prim, 313

o-Ideal, 297

t-Ideal, 48

u-Ideal, 274

v-Ideal, 38, 276

z-Ideal, 319

endliches, 38

Halb -, 68

Haupt -, 13, 209

Ideal∩
-primes, 313

minimal primes, 313, 321

primes, 325

idempotentes, 41

maximales, 216

minimales, 217

Ordnungs -, 45, 247

primes

eigentlich, 322

Quotienten -, 209

Rechts -, 64

Rees -, 72

reguläres, 313

Verbands -, 274

Voll -, 68

Idempotent, 38, 84, 85, 211, 213–216,
306

idempotent, 60

identitiv, 111

injektiv, 201

Intervall, 215

abgeschlossenes, 251, 289

Einheits -, 218

reelles Einheits -, 215

Inverseneigenschaft, 249, 264

Inverses, 260

Rechts -, 260, 269

involutorisch, 199

irreduzibel

subdirekt, 194
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isomorph, 79

anti -, 79

verbands -, 201

isoton, 80, 284, 285

Isotonie, 11

Isotop, 251

Kegel, 250

- Algebra, 143

- Clan, 143

einer ℓ-Gruppe, 21

negativer, 250, 253

positiver, 250

Verbandsgruppen -, 247

Kegel-Algebra

0-abgeschlossene, 159

Kern, 279, 318

einer Kongruenz, 318

Kette, 9, 14, 268

2-elementige, 296

Jakub́ık -, 299

maximale, 299

Kettenbedingung, 251

absteigende, 251, 268

aufsteigende, 268

Körper

Mengen -, 294

kofinal, 273

koinitial, 273

kommutativ, 251

kompakt, 212

Komplement, 28, 144

Links -, 23, 57, 257

Rechts -, 23, 28, 257

komplementär

abschnitts -, 13

rechts -, 64

Komponente, 73

Kongruenz, 64, 268

- klasse, 74

Filet -, 318

Filet respektierende, 320

kürzbare, 279

Links -, 64

R -, 138

Rechts -, 64

Rees - , 72

Kongruenzen, 74

vertauschbare, 74

konvex, 220, 223

kürzbar, 29, 60

links -, 23, 29, 77

Kürzung

relative, 161

Länge, 108

einer Kette, 334

Lemma

Divisor, 53

Splitting, 300

lexikographisch, 298

Lextension, 325

linear komponiert, 285

Loop, 93, 249

d-semi -, 250, 253

partial geordnete, 252

positive d-semi -, 262

Teilbarkeits-semi, 252

Verbands -, 93, 99, 249, 250, 253,
262, 284, 300

- Kegel, 121, 250, 253

mit Inverseneigenschaft, 251

repräsentierbare, 280

verbandsgeordnete, 288
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Mächtigkeit, 24

Maß, 223

partielles, 223

stetiges, 156

Matrix, 2 × 2, 291

Maximum, 217

Menge, 279

geordnete

partial, 9, 296, 300

konvexe, 279

orthogonale, 331

Potenz -, 24

modular

kongruenz -, 121

Modularität, 334

Monoid, 54, 288

EN-DL -, 303

Unter -, 297

Verbands -, 284

abelsches, 284

verbandsgeordnetes, 288

Monomorphismus, 219

Multiplikation

partielle, 306

MV -

Algebra, 299

Null, 295

Nullabschluss, 144

Operation, 284

assoziative, 23

binäre, 23

Operator, 205

involutorischer, 205

Ordnung, 250

lineare, 250

Partial -, 88

vollständige, 250

Ordnungsautomorphismus, 24

Ordnungsproblem, 251

orthogonal, 36, 214, 260, 280, 301

Paar

orthogonales, 262

Partialordnung

isotone, 80

Peano, 246

Polar

Bi -, 313

Polare, 73, 270, 313

C-Polare zu A, 313

Bi-Polare, 336

Haupt -, 318

maximale, 329

minimale, 329

Polynom, 74, 274

- funktion, 286

- kette

Wille -, 74

Malzew -, 74

Pixley -, 74

Multiplikations -, 274

positiv, 260

Positivbereich, 261

Potenz, 259

prim, 37, 259

halb -, 37, 55

minimal, 311, 329

voll -, 37

vollständig∩
-, 194

Problem

Darstellungs -, 284
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Produkt, 86

direktes, 24, 60, 215

kartesisches, 86, 270, 302

lexikographisches, 325

punktweise, 219

Quader, 156

Quotient, 276

Rechts -, 276

Raum

boolescher, 212

Hausdorff -, 218

Redukt, 125

Kegel -, 144

Residuations -, 125

reelle Achse, 250

Regeln

de Morgan’sche, 208

Relation

2-stellig, 9

repräsentierbar, 73, 251, 279

residuiert, 294

dual, 295

normal, 294

Restklassensystem, 290

Ring, 62, 284

boolescher, 24, 59

Funktionen -, 291

idempotenter, 114

ohne 1, 19

Verbands -, 284, 285, 290, 291

RNDV-Gruppoid, 309

direkter Faktor eines, 328

konvexes Unter -, 326

Lex -, 326

lex-einfaches, 326

Lex-Kern eines, 326

Lextension eines, 325

ortho-finites, 334, 336

projizierbares, 337

semiprojizierbares, 337

zerlegbares, 324

Schnitt, 218

-vervollständigung, 218

Schranke, 14, 274

obere, 14, 274

untere, 274

selbstdual, 11

semiclan

pb -, 237

semiloop

d-semiloop

repräsentierbare, 252, 284

Teilbarkeits -, 250

vollständige, 289

state, 76

Stelle, 284

Stellenzahl, 284

Struktur

geordnete

repräsentierbare , 284

Verbands -, 285

verbandsgeordnete, 285

subdirekt, 24, 294

surjektiv, 201

teilen, 273

links -, 273

rechts -, 273

Teiler, 23, 28

All -, 63

Links -, 23, 28, 56
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Primpotenz -, 306

Rechts -, 23, 56

Term, 285

Theorem

1. Faktor -, 301

2. Faktor -, 302

3. Faktor -, 302

Jakub́ık-Ketten -, 299

Topologie

Intervall -, 217

natürliche, 219

Produkt -, 219

Relativ -, 219

torsionsfrei, 297, 298

Träger, 212

Typ, 249

überdecken, 217

Variable, 110, 274

Initial -, 286

Varietät, 102

Verband, 10

abschnittskomplementärer, 59

algebraischer, 193

boolescher, 24, 57

distributiver, 12, 59, 284, 309

Halb -, 199, 252

brouwerscher, 33

komplementärer, 13

Kongruenz - , 194

Multiplikations -, 53

sup-Halb -, 9

Vektor -, 219

verbandsdistributiv, 288

Verbandsgruppe

abelsche, 251

Kegel einer, 25, 99

Verbandsideal

maximales, 286

Verbandsordnung, 250

verbunden, 9

vergleichbar, 9, 213, 215

paarweise, 213

un -, 215

vertauschbar, 159

kongruenz -, 121, 159, 250

verträglich, 131

Vervollständigung, 273

vollständig, 14, 260, 268

bedingt, 14, 269

Vollständigkeit, 203, 251

Wert, 314

Würfel, 215

- algebra, 218

Gitter -, 215

Wurzel

Quadrat -, 77

Zahl, 24, 159, 218

natürliche, 24

Ordinal -, 24

Prim -, 159, 295

rationale, 24, 218

Zentrum, 38, 306

zerlegbar, 61, 215

direkt, 215

Zerlegung

direkte, 213, 301, 306

Primelement -, 251

subdirekte, 213, 218, 251, 300

zusammenhängend, 212, 217

un -, 212
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total, 212, 218
zweibasig, 102


