
Magnetic interactions between transition
metal impurities and clusters mediated

by low-dimensional metallic hosts:
A first principles theoretical investigation

von

Lucila Maitreya Juárez Reyes

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt dem

Fachbereich Mathematik und Naturwissenschaften der

Universität Kassel

Betreuer:

Prof. Dr. Gustavo M. Pastor

Verteidigt am 5. Februar 2015





Magnetic interactions between transition
metal impurities and clusters mediated

by low-dimensional metallic hosts:
A first principles theoretical investigation

by

Lucila Maitreya Juárez Reyes

Dissertation

for the attainment of the academic grade

Doktor der Naturwissenschaften

(Dr. rer. nat.)

submitted to

Department of Mathematics and Natural Sciences

Kassel University

Supervisor:

Prof. Dr. Gustavo M. Pastor

Defended on 5. Februar 2015





“A craftsman pulled a reed from the reedbed,
cut holes in it, and called it a human being.

Since then, it’s been wailing a tender agony of parting,
never mentioning the skill that gave it life as a flute”

Rumi





Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbstständig, ohne
unerlaubte Hilfe Dritter angefertigt und andere als die in der Dissertation angegebenen
Hilfsmittel nicht benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröf-
fentlichten oder unveröffentlichten Schriften entnommen sind, habe ich als solche ken-
ntlich gemacht. Dritte waren an der inhaltlich-materiellen Erstellung der Dissertation
nicht beteiligt; insbesondere habe ich hierfür nicht die Hilfe eines Promotionsberaters
in Anspruch genommen. Kein Teil dieser Arbeit ist in einem anderen Promotions-
oder Habilitationsverfahren verwendet worden.

Kassel, Februar 2015

Lucila Juárez





Acknowledgements

I would like to acknowledge Prof. Dr. Gustavo Pastor for guiding, supervising and
correcting this work.

I sincerely thank Prof. Dr. Valeri Stepanyuk for his meaningful advices and con-
tribution to this research. For their inconditional and friendly support I thank to my
colleages in Kassel and Halle: M. Saubenère, P. Ruíz, L. Díaz and O. Brovko.

I acknowledge the ITS center and the Max Planck Institut für Nanostruktur
Physik for the computational resources and the Deutsche Akademische Austausch
Dienst (DAAD) for finantial support.

Finally, I would like to express my personal thanks to my friends Tanveer, Martin,
Liset, Christian and Joseph. My deepest gratefulness to my family, and above all, to
my parents, for whom I can not find words grand enough to say thanks.

Kassel, September 2014.





i

Abstract

The magnetic properties and interactions between transition metal (TM) impuri-
ties and clusters in low-dimensional metallic hosts are studied using a first principles
theoretical method. In the first part of this work, the effect of magnetic order in
3d-5d systems is addressed from the perspective of its influence on the enhancement
magnetic anisotropy energy (MAE). In the second part, the possibility of using exter-
nal electric fields (EFs) to control the magnetic properties and interactions between
nanoparticles deposited at noble metal surfaces is investigated.
The influence of 3d composition and magnetic order on the spin polarization of the
substrate and its consequences on the MAE are analyzed for the case of 3d impurities
in one- and two-dimensional polarizable hosts. It is shown that the MAE and easy-
axis of monoatomic free standing 3d-Pt wires is mainly determined by the atomic
spin-orbit (SO) coupling contributions. The largest MAEs are thus obtained when
the Pt and 3d contributions favor the same easy-axis, which generally corresponds to
the direction yielding to the largest local spin and orbital moments of Pt. In FePt
wires, an antiferromagnetic alignment between the Fe moments in which the Pt atoms
adopt a non magnetic state is energetically favored. The competition between ferro-
magnetic (FM) and antiferromagnetic (AF) order in FePtn wires is studied in detail
for n = 1 − 4 as a function of the relative position and magnetic coupling between
Fe atoms. For FePtn wires n ≥ 2, our results show an oscillatory behavior of the
magnetic polarization of Pt atoms as a function of their distance from the magnetic
impurities, which can be correlated to a long-ranged magnetic coupling of the Fe
atoms. Exceptionally large variations of the induced spin and orbital moments at the
Pt atoms are found as a function of concentration and magnetic order. Along with
a violation of the third Hund’s rule at the Fe sites, these variations result in a non
trivial behavior of the MAE.
In the case of TM impurities and dimers at the Cu(111), the effects of surface charging
and applied EFs on the magnetic properties and substrate-mediated magnetic inter-
actions have been investigated. The modifications of the surface electronic structure,
impurity local moments and magnetic exchange coupling as a result of the EF-induced
metallic screening and charge rearrangements are analyzed. In a first study, the prop-
erties of surface substitutional Co and Fe impurities are investigated as a function of
the external charge per surface atom q. At inter-impurity distances r > 10 Å the effec-
tive magnetic exchange coupling ∆E between impurities shows RKKY-like oscillations
as a function of the distance which are not significantly affected by the considered val-
ues of q. For distances r < 10 Å, important modifications in the magnitude of ∆E,
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involving changes from FM to AF coupling, are found depending non-monotonously
on the value and polarity of q. The interaction energies are analyzed from a local
perspective.
In a second study, the interplay between external EF effects, internal magnetic or-
der and substrate-mediated magnetic coupling has been investigated for Mn dimers
on Cu(111). Our calculations show that a fairly strong EF (∼ 1eV/Å) can induce
a switching from AF to FM ground-state magnetic order within single Mn dimers.
The relative coupling between a pair of dimers also shows RKKY-like oscillations as
a function of the inter-dimer distance. Their effective magnetic exchange interaction
is found to depend significantly on the magnetic order within the Mn dimers and on
their relative orientation on the surface. The dependence of the substrate-mediated
interaction on the magnetic state of the dimers is qualitatively explained in terms
of the differences in the scattering of surface electrons. Moreover, an outgoing (in-
coming) orientation of the applied EF with respect to the surface favors the parallel
(antiparallel) coupling between dimers. At short inter-dimer distances (r < 10 Å),
the ground-state configuration is determined by an interplay between exchange inter-
actions and EF effects. These results demonstrate that external surface charging and
applied EFs offer remarkable possibilities of manipulating the sign and strength of the
magnetic coupling of surface supported nanoparticles.
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Deutsche Übersetzung

Titel:
Magnetische Wechselwirkungen zwischen

Übergangsmetall-Verunreinigungen und -Clusters vermittelt durch
niedrig-dimensionale metallische Substrate: Eine theoretische

first-principles Untersuchung

Zusammenfassung

Die magnetischen Eigenschaften und Wechselwirkungen zwischen Übergangsmetall-
(TM) Verunreinigungen und Clustern werden in niedrigdimensionalen Wirtsmetallen
theoretisch unter Verwendung einer ’first principles’ Methode erforscht. Der erste
Teil dieser Doktorarbeit befasst sich mit der Frage nach dem temperaturinduzierten
superparamagnetischen Verhalten aus der Perspektive einer erhöhten magnetischen
Anisotropieenergie (MAE). Der zweite Teil widmet sich dem Einfluss durch externe
elektrische Felder (EFer) und der Kontrolle der magnetischen Eigenschaften und Wech-
selwirkungen zwischen Nanoteilchen deponiert auf Edelmetalloberflächen.
Analysiert wird der Einfluss von verschiedenen 3d -TM und der magnetischen Ord-
nung auf die Spinpolarisierung des Substrats und die einhergehenden Konsequenzen
für die MAE für den Fall von 3d-Verunreinigungen in besonders stark polarisierbaren
Wirtsmetallen. Nachweislich wird die MAE und die leichte Achse von monoatomaren,
freistehenden 3d-Pt Ketten hauptsächlich bestimmt durch die atomaren Spin-Bahn-
(SB) Kopplungsbeiträge. Die höchsten MAEs können erreicht werden, wenn sowohl
die Pt- als auch die 3d- Beiträge dieselbe leichte Achse bevorzugen. Im allgemeinen
entspricht diese der Richtung, die zu den stärksten lokalen Spin- und Bahnmomenten
der Pt-Atome führt. In FePt-Ketten wird eine antiferromagnetische Anordnung zwis-
chen den Fe-Momenten begünstigt, während die Pt-Atome einen nichtmagnetischen
Zustand annehmen. Sorgfältig untersucht werden die miteinander konkurrierende fer-
romagnetische (FM) und antiferromagnetische (AF) Kopplung in FePtn für n = 1− 4

als Funktion der relativen Position und der magnetischen Kopplung zwischen den
Fe-Atomen. Für FePtn-Ketten mit n ≥ 2 zeigen unsere Berechnungen ein oszilla-
torisches Verhalten der magnetischen Polarisierung der Pt-Atome als Funktion ihres
Abstands zu den magnetischen Verunreinigungen und kann mit einer langreichweitigen
magnetischen Kopplung zwischen den Fe-Atomen korreliert werden. Aussergewöhn-
lich hohe Schwankungen der induzierten Spin- und Bahnmomente an den Pt-Atomen
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konnten als Funktion der Konzentration und der magnetischen Ordnung gefunden
werden. Einhergehend mit einer Verletzung der 3. Hundschen Regel am Ort der Fe-
Verunreinigung resultieren diese Schwankungen in einem nichttrivialen Verhalten der
MAE.
Im Fall der TM-Verunreinigungen und Dimere auf Cu(111) wurde die Wirkung der
Oberflächenladung und angelegter EFer auf die magnetischen Eigenschaften und sub-
stratvermittelten magnetischen Wechselwirkungen hin untersucht. Analysiert wurden
die Modifikationen der elektronischen Struktur an Oberflächen, lokalen Verunreini-
gungsmomente und die magnetische Austauschkopplung als Folge der EF-induzierten
metallischen Abschirmung und Ladungs-Umverteilung. In einer ersten Studie werden
die Eigenschaften von Co- und Fe-Verunreinigungen als Funktion der externen Ladung
q pro Oberflächenatom untersucht. Bei einem interatomaren Abstand r > 10Å zwis-
chen zwei Verunreinigungen zeigt die effektive magnetische Austauschkopplung ∆E

zwischen den Verunreinigungen eine RKKY-ähnliche Oszillation als Funktion des Ab-
stands, der nur gering beeinflusst wird von den betrachteten Werten von q. Für Ab-
stände r < 10Å wurden bedeutende Modifikationen in der Grösse von ∆E beobachtet.
Diese führen zu einer Änderung der FM- hin zur AF-Kopplung in nichtmonotoner
Abhängigkeit von dem Wert und der Polarität von q. Die Wechselwirkungsenergien
werden aus einer lokalen Perspektive analysiert.

In einer weiteren Studie werden das Wechselspiel zwischen äusseren EF-Effekten,
der internen magnetischen Ordnung und substratvermittelten magnetischen Kopplung
für Mn-Dimere auf Cu(111) untersucht. Unsere Berechnungen zeigen, dass ausre-
ichend starke EF (∼ 1eV/Å) ein Umklappen der magnetischen Ordnung im Grundzu-
stand von AF nach FM innerhalb einzelner Mn-Dimere induzieren können. Die jew-
eilige Kopplung zwischen einem Paar von Dimeren zeigt ebenfalls RKKY-ähnliche
Oszillationen als Funktion des inter-dimeren Abstands. Es konnte festgestellt werden,
dass die effektive magnetische Austauschwechselwirkung signifikant von der magnetis-
chen Ordnung innerhalb der Mn-Dimere und von ihrer relativen Orientierung auf
der Oberfläche abhängt. Die Abhängigkeit von den substratvermittelten Wechsel-
wirkungen von dem magnetischen Zustand des Dimers wird qualitativ erklärt mit
der unterschiedlichen Streuung von Oberflächenelektronen. Darüberhinaus führt eine
unterschiedliche Orientierung des angelegten EFs, senkrecht zur Oberfläche, zu einer
parallelen oder antiparallelen Kopplung zwischen den Dimeren. Bei kurzen inter-
dimeren Abständen (r < 10Å) wird die Grundzustandskonfiguration bestimmt von
dem Wechselspiel zwischen der Austauschwechselwirkung und EF-Effekten. Diese
Studie beweist, dass externe Oberflächenladungen und angelegte EFer bemerkenswerte
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Möglichkeiten der Manipulation des Vorzeichens und der Stärke der magnetischen
Kopplung von Nanopartikeln besitzen, die auf Oberflächen angelagert sind.
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CHAPTER 1

Introduction

Magnetic interactions are responsible for the coupling between localized magnetic mo-
ments and the emergence of collective magnetic ordered states such as ferromagnetic
(FM) and antiferromagnetic (AF) phases, or even complex non-collinear arrange-
ments. These interactions can have different origins and ranges. For example, the
classical electromagnetic interaction between dipoles dominates the coupling among
particles displaying large moments µ, typically µ & 103µB. At the microscopic level,
magnetic exchange interactions are the source of coupling between spin magnetic mo-
ments. Typical examples of such interactions are:

• The direct exchange interaction between atomic moments, caused by the over-
lapping of the atomic orbitals. Having strengths in the order of tens of eVs,
direct exchange interactions dominate the magnetic coupling at very short in-
teratomic distances, as for example, between nearest neighbor (NN) atoms in a
crystal lattice.

• The super-exchange and double-exchange interactions between second NN atomic
moments, mediated by an intermediate non-magnetic atom. Potentially com-
peting with the direct exchange mechanism, these interactions usually promote
the antiparallel spin alignment between two next-NN transition metal (TM)

1



2 Introduction

atoms as a result of electron transfer via the orbital bonding with the common
nonmagnetic adjacent atom.

• The Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction between lo-
calized magnetic moments in a non-magnetic metallic host. With interaction
energies in the range of a few meVs, RKKY drives an oscillatory magnetic cou-
pling mediated by the conduction electrons of the metal up to relatively large
distances (i.e. r > 10Å).

Exchange interactions take their name from their close relation with the exchange
symmetry of indistinguishable particles, which precludes two electrons from being
found in the same quantum state. Within an atom, the resulting Pauli exclusion
principle prevents the atomic orbitals to be occupied by electrons having parallel
spins. This restriction is, in fact, the origin of the formation of atomic spin moments.

In bulk materials, magnetism is strongly dependent on the electronic band-
structure. In a mean-field approximation, the emergence of ferromagnetism in bulk
transition metals (TMs) is given by the Stoner criterion

I ·D(εF ) > 1,

where I is the so-called intra-atomic exchange integral and D(εF ) is the electronic
density of states (DOS) at the Fermi energy (εF ) [1], with the later scaling inversely
proportional to the electronic bandwidth. For nanoscaled systems, where rather than
forming bands the electronic levels are roughly discrete, the Stoner criterion can be
applied using the local instead of the total DOS [2]. In this case, the (local) DOS scales
approximately as 1/

√
Z with Z being the number of nearest neighbors. Consequently,

a high incidence of spontaneous magnetic order is observed in low-coordinated atomic
environments such as surfaces, nanoparticles, molecules and clusters. In fact, ferro-
magnetic behavior is often found in dimensionally reduced systems of paramagnetic
materials which almost satisfy the Stoner criterion in the bulk phase (e.g., Pd, Pt and
Rh). Magnetism at the nanoscale is, nevertheless, subtly dependent on the precise
local environment.

The intricate behavior of magnetism at low dimensions offers a great variety of
possibilities for technological application in nanoscaled devices. One in particular is
the development of miniaturized magnetic recording media, where transition metal
nanostructures can find application as data storage units. The largely enhanced mag-
netization values found in a wide diversity of pure as well as alloyed TM clusters
has placed them as most promising candidates for recording purposes which deserve
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special attention [2–7]. During the last decades, the fabrication and characterization
of TM nanoparticles and clusters has been subject of intensive research. Still, the
realistic realization of memory devices based on magnetic nanostructures faces im-
portant difficulties [3, 8]. A major problematic arises, for instance, in the frame of a
supporting medium for the eventual assemble of ordered arrays of magnetic units (e.g.,
atoms, molecules, clusters or nanostructures) [3]. In this context, surface supported
nanostructures, either disposed on top or embedded in the topmost surface atomic
layer of nonmagnetic substrates, are systems of special interest.

Moreover, modern experimental techniques have recently made possible the fabri-
cation and manipulation of surface nanostructures with atomic-scaled precision [9–12].
By means of a spin-resolved scanning tunneling microscope (STM) it is now possible
to measure and control the spin direction of single atoms on metallic surfaces allowing
the engineering and tailoring of nanomagnets [11, 13–16]. In fact, the possibility of
representing and performing basic logic operations based on atomic spins has been
recently demonstrated experimentally [17].

The physics of supported nanostructures can be, however, considerably influ-
enced by their interaction with the substrate. For nanoparticles at surfaces, the local
changes resulting from the binding with the substrate and the associated structural re-
laxations dominate the modification of their isolated-particle properties [3,18]. Indeed,
the contact with the substrate affects the local symmetry of the deposited particles
(adparticles). In this sense, surface deposition can give rise to strongly anisotropic
behavior even in single adsorbed atoms, or non-collinear magnetic order in larger
nanostructures [3, 19–23].

In a similar way, the presence of adparticles has an effect on the supporting sub-
strate. Adsorbates break the translational symmetry of a surface and its interaction
with it can drive a diversity of phenomena. The interplay between adparticles and
surface can give rise, for example, to surface alloying, Kondo effect, or substrate-
mediated adparticles self-assembly [8, 12, 24–28]. Among the effects involving the
surface, substrate-mediated interactions deserve special attention, not only for their
potential applications in nano-scaled technologies but also from a fundamental per-
spective. Nowadays, it is well known that electronic surface states are responsible of
mediating the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [29–31] among
deposited particles at metallic surfaces [27, 32–34]. Indirect RKKY interactions have
been reported between adsorbed atoms (adatoms) and small adparticles at relatively
large distances (r > 10 Å) on a variety of surfaces. In particular, the surface-state
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electrons at the closed-packed surfaces of noble metals (e.g., Cu, Ag, Au) behave as a
nearly-free two-dimensional (2D) electron gas [35]. In the presence of a surface defect
(e.g., an adparticle) these electrons are scattered giving rise to Friedel oscillations
of electronic density around the impurity [36]. As a result, an oscillating attractive-
repulsive potential is induced, which favors particular spacings among neighboring
defects. Diffusing atoms can, in this sense, experience the potential landscape cre-
ated by neighboring adatoms and tend to occupy positions where their interaction
energy is minimal. At low temperatures, this oscillatory interaction can drive the
self-assembly of surface adparticles and eventually lead to the formation of periodic
assemblies (superlattices), low-dimensional structures or simply affect the growth pro-
cess of supported nanostructures on metal surfaces [26,27,37–40].

Substrate mediated interactions gained a lot of attention after the discovery of
the giant magnetoresistance (GMR) effect in TM layers separated by nonmagnetic
metallic spacers to which they are closely related. Namely, both effects share the
underlying mechanism causing the oscillatory exchange coupling between magnetic
layers, which is distinctive of GMR [41, 42]. This coupling originates from the spin-
dependence on the scattering of (non-polarized) conduction electrons within the metal
spacer as a consequence of the magnetic polarization of the TM layers. More specif-
ically, the spin-polarized potential causes a difference in the scattering of electrons
of majority- and minority- spin character which affects the relative distribution of
their respective electronic densities between the two magnetic layers. As a result,
the coupling between the TM layers is determined by the distance between them.
Thus, control over the magnetic configuration can be achieved by adjusting the thick-
ness of the metallic spacer. Such exchange mechanism should be expected to hold
among other TM nanostructures inasmuch as they are coupled through a conduction
electron band [42]. Indeed, the RKKY exchange interaction is known to cause the
spatially oscillating magnetic coupling among localized spin moments in dilute alloys.
These can be, for instance, TM impurities in a nonmagnetic host or magnetic defects
deposited on metallic surfaces. Similarly to the case of GMR, this process can be
interpreted in terms of the scattering of conduction electrons, regarded as incoming
plane-waves, between two localized impurity potentials that spin-polarize the outgo-
ing partial waves [43]. More precisely, the indirect magnetic coupling arises from the
perturbative exchange between the localized d electrons of the magnetic defect and
the delocalized s-band of the metallic host.

An estimate of the RKKY interaction energy can be evaluated from the one-
electron contributions to the second-order of perturbation expansion of the impurity
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potential. For large adsorbate separations (i.e. the asymptotic region r > π/kF ) the
exchange energy between a pair of localized spin moments coupled through the 2D
surface band of a metallic surface has the general form

Jij(rij) ∝
cos(2kF rij) + δ

(2kF rij)2
,

where the proportionality constant is specific to the impurity-substrate system, rij
is the distance between impurities and kF the Fermi wavevector of the host [29, 44].
Thus, the RKKY exchange interaction is characterized by an oscillatory magnetic
coupling of period λF/2 with λF being the Fermi wavelength of the substrate. This
long-ranged coupling is particularly relevant between adatoms and small clusters. It
is expected to be largely cancelled out at relatively small particle sizes [45,46] and to
vanish for particles larger than the oscillation period (λF/2).

The standing waves of electronic density caused by the quantum interference
of surface electrons traveling towards a defect and those which are back-scattered
from it can be directly observed using STM [33,36]. Furthermore, using spin-resolved
STM, recent experiments have demonstrated the possibility of measuring exchange
interactions on single TM adatoms [47,48].

As well as self-assemble, indirect exchange interactions can influence the col-
lective magnetic behavior of ensembles of supported TM nanoparticles. Frustration
and randomness of competing microscopic interactions (e.g., dipolar, RKKY) can
give rise to complex magnetic phases, besides the paramagnetic (disordered) state,
such as low-temperature spontaneous magnetization and spin-glass behavior in dis-
ordered ensembles of magnetic nanoparticles [46,49,50]. Substrate-mediated indirect
interactions have the potential to induce collective magnetic ordered states as, for ex-
ample, the stabilization of finite temperature ferromagnetism predicted theoretically
for ensembles of Fe nanoclusters on Cu(111) [46]. In this sense, the possibility of tai-
loring indirect exchange interactions would represent an important step towards the
realization of nano-scaled technologies based on supported magnetic nanostructures.
In particular, control over these interactions would be useful for both, preventing
paramagnetic relaxation and inducing collective ordered magnetic states in supported
nanoparticle arrays.

Another major concern regarding the possible use of magnetic nanoparticles as
the constituent magnetic units of memory devices arises from their reduced size. In
pure TM nanostructures, the total magnetization decreases monotonously with the
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size of the particle. The choice of components developing large magnetization-volume
ratios is, however, limited by a thermal aspect. At finite temperatures, the thermal
energy can be sufficient to induce a reversal of the magnetic orientation of the adparti-
cles, which would eventually lead to paramagnetic behavior in supported nanoparticle
assemblies. At a given temperature T below the Curie temperature, the timescale of
paramagnetic relaxation of a particle of volume V follows the proportionality relation

τ ∝ exp

(
KV

kBT

)
where kB is the Boltzmann constant and K is the magnetic anisotropy constant [51–
53]. Hence, the element specific anisotropy constantK plays a key role in the magnetic
order and orientation of the ensemble.

Nanostructures consisting of pure 3d-TMs are known to develop significant mag-
netization values as a result of exceptionally large spin and orbital magnetic mo-
ments [3,54,55]. However, due to their weak anisotropy constant, the stability of the
magnetic orientation of these particles against external fields and temperature induced
fluctuations is rather low. Thus, their application for most technological purposes is
limited.

The differences in the properties of a system which depend on the orientation
of its magnetization respect to the underlying crystal structure are called magnetic
anisotropy (MA). MA has its origin in relativistic effects. The essential quantity con-
cerning the orientation and stability of the magnetization is the magnetic anisotropy
energy (MAE), which accounts for the energy required to rotate the magnetization of
the system between two nonequivalent directions: a low-energy axis (easy axis) and
a high-energy axis (hard axis). To a large extent, the MAE is the result of of the
intra-atomic spin-orbit coupling (SOC). The SOC causes the spin moment to align
along a particular direction respect to the crystal structure. The interaction energy
is reasonably well described by the expression

HSO = λL · S

where S and L stand for the spin and orbital moment operators, and λ is an ele-
ment dependent coupling constant. In a semiclassical picture, the magnitude of the
spin moments can be regarded as independent of its orientation and the MAE is,
consequently, dominated by the anisotropy of the orbital moments.

For 3d transition metals the spin-orbit coupling constant is rather small. This rel-
ativistic effect becomes significant for heavier TM atoms (e.g., 4d, 5d). However, these
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elements are generally non-magnetic in the bulk phase or display considerably small
spin magnetic moments. Nevertheless, in the presence of spin polarization, the larger
SO interaction energy promotes the development of important orbital moments and
magnetic anisotropy energies. In fact, a substantial magnetic polarization is induced
in several 4d and 5d elements due to the neighborhood of strongly ferromagnetic atoms
as Fe or Co yielding to considerably enhanced values of the magnetization. There-
upon, 3d-4d and 3d-5d alloying has been proposed several times as a promising way
to enhance the stability of the magnetic orientation of pure 3d-TM systems [3,56,57].
In this context, CoPt and FePt alloys are well known representative compounds de-
veloping remarkably large MAEs [4, 28,56,58].

Furthermore, the potential advantages of alloying can be achieved in supported
nanoparticles by taking advantage of the depositon substrate. For example, 3d ferro-
magnetic elements as Fe and Co on Pt or Pd surfaces are known to induce the spin
polarization of a large amount of neighboring substrate atoms. This effect has a strong
influence on the magnetic properties and anisotropy of these systems [19,20,28,59–61].
In fact, giant moments and anisotropies have been calculated and experimentally mea-
sured on individual Fe and Co atoms and small clusters at Pt and Pd surfaces [20,61].
For instance, a single Co atom on Pt(111) has been found to develop a MAE of about
9.3 meV [20]. In larger 3d structures, however, the competition between FM and AF
exchange couplings can cause the formation of complex magnetic phases with drastic
consequences on the behavior of the MAE as a function of the surface coverage [62].

In general, low-dimensional systems display enhanced and complex magnetic
anisotropic behavior [2, 3, 5, 7, 21, 62, 68, 69]. In this context, orbital moments can
have an important contribution to the total magnetization [3, 19, 62]. These local or-
bital moments decrease by increasing atomic coordination and are rapidly quenched
for an increasing size of the particles.

Moreover, small differences in the local environment can cause large variations
of the magnetic response [5,63]. Particularly in the case of nanostructures, symmetry
and dimensionality are determinant for the magnetic properties [64]. For instance,
in the case of one-dimensional TM structures, the interaction with the substrate,
modifications in the lattice constant, chemical order or composition can be sufficient
to change the overall magnetic state [65–69]. From this perspective, it is of great
interest to analyze the influence of the magnetic coupling between 3d elements on the
easy axis of magnetization and MAE of 3d-5d systems.
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As noticed from this overview, magnetic coupling, and hence, magnetic ex-
change interactions, are central to the problem of magnetism. Their interplay with
other physical properties is an interesting problem of fundamental perspective with
a great scope for technological applications. In particular, nanosystems composed
by exchange-coupled magnetic units have an enormous potential of applicability in
spintronics [16, 17]. A crucial step towards the realization of nano-scaled magneto-
electronic technologies would be the ability of manipulate and control relevant intrinsic
magnetic properties such as magnetization, magnetic anisotropy energy and, in par-
ticular, short and long ranged magnetic order. Exchange interactions certainly play
a fundamental role in this problem.

An insight on the details of microscopic exchange mechanisms and its relation
with other properties of interest is necessary for further understanding and for the
development of methods to achieve its manipulation. In the context of supported
nanostructure arrays, a major concern regards to the question: Can the collective
properties and magnetic behavior of nanoparticle ensembles, and in particular the
long-ranged magnetic order, be tailored by varying the composition, inter-particle
distance, surface coverage, particle distribution, orientation or size? Can this behavior
be modified and controlled by other external means?

It is the purpose of this research work to address these interrelated problems and
shed light on some of the open questions on this area which are of great importance
from a fundamental point of view. The present work aims to serve as a starting point
for the assessment of magnetic exchange mechanisms on supported nanostructures in
terms of experimentally accessible macroscopic variables as the composition, surface
coverage and external means such as applied EFs.

The first part of this work deals with the indirect magnetic coupling of 3d elements
in 5d substrates. The important questions to be addressed here are: Which factors are
responsible for the magnetic alignment between 3d components and which implications
does this coupling have? How does the spin-polarization of the host depend on and
affect the distance between 3d elements and vice-versa? What are the consequences
of the coupling-dependent host polarization on the magnetization and MAE of the
3d-5d alloyed systems? Having this in mind, Chapter 4 investigates the magnetic
exchange among 3d-impurities in a highly polarizable non-magnetic substrate. One
and two-dimensional hosts have been considered where the coupling between Fe and
Co dopants is studied as a function of 3d/5d concentration. Emphasis is given to the
interplay between the local and collective magnetic properties.
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The second part of this work focuses on the possibility of controlling the magnetic
order in surface nanostructures by means of the external manipulation of exchange
interactions. Chapters 5 and 6 investigate the effects of external electric fields (EFs)
on the substrate-mediated exchange interactions between surface impurities at noble
metal surfaces. Applied EFs are aimed to control the enhancement and modification
of the RKKY interference patterns by inducing changes in the adsorption energies
and diffusion energy barriers. This process can affect, for instance, the mechanisms
and rates of single-atom surface diffusion and thereby modify the self-organization,
growth modes and surface alloying processes at low temperatures [70, 71]. Under-
standing and controlling the RKKY exchange interactions among impurities can be
useful in order to tailor the magnetism of larger nanostructures [45]. Chapter 5 is
dedicated to investigate the modifications driven by external surface charging on the
long-ranged magnetic exchange interaction between Co and Fe substitutional impu-
rities in a Cu(111) surface. Chapter 6 focuses on the effects of an applied EF on the
magnetic coupling within and between Mn dimers deposited on Cu(111). This study
also explores the dependence of the RKKY interaction on the magnetic state and
relative orientation of the particles.

Each of the above described studies has been performed within an accurate quan-
tum ab-initio formulation. The fundamentals of this theoretical approach is presented
in Chapter 2. Intrinsic differences on the two major parts of this dissertation, where
the magnetic behavior is dominated either by the local or by the scattering properties,
require the use of particular theoretical techniques in order to provide a most accurate
description. These computational methods are introduced in Chapter 3. In addition,
a short review on the state-of-the-art research topics is provided as an introduction
in Chapters 4, 5 and 6.
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CHAPTER 2

Theoretical background

Within the non-relativistic limit of quantum mechanics, the properties of any solid-
state system can be described, in theory, avoiding the use of approximations or exter-
nal parameters. In particular, all the non-dynamical properties can be derived from
the solution of the time-independent Schrödinger equation describing the system. In
the practice, however, the computation of an exact solution is technically unfeasible
even for small sized systems. As a result of the mutual interactions among all elec-
trons and nuclei, the solution of the quantum many-body problem corresponds to a
wave-function which depends on the spatial coordinates of all the particles composing
the system and the additional electronic spin degrees of freedom. In this sense, al-
ready in the case of a simple molecule, the problem lacks of analytical solution and the
use of numerical methods soon becomes exceedingly demanding from a computational
point of view. In order to cope with these difficulties, different techniques to approx-
imate the exact solution have been developed during the last decades. Among them,
the most prominent approaches are based on the density functional theory (DFT).
This theory provides an alternative framework to access the ground-state electronic
properties of a system. Based on a first-principles or ab-initio formulation, DFT al-
lows to transform the many-body problem into an equivalent “single-particle” problem
treating the spin-dependent electronic density as the fundamental variable. In this

11
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way, the number of parameters required to describe most static many-body electronic
properties can be reduced to the calculation of a real function nσ of only three spatial
coordinates per spin direction. During the last decades, DFT has proven to be a
most valuable tool for electronic structure calculations and has become the standard
approach for the study of non-dynamical ground-state properties.

The present chapter summarizes the fundamental concepts of density functional
theory and introduces some important concepts. Following this theoretical back-
ground, Chapter 3 presents the generalities of the two DFT implementations used
along this research work.

2.1 The quantum many-particle problem

The properties of any material are driven by the mutual interactions between all the
electrons and nuclei which compose it and the influence of any associated external
potential. The non-dynamical behavior of this many-body problem is governed by
the time-independent Schrödinger equation

Ĥ Ψn(x1,x2, ...xN ,R1,R2, ...RM) = En Ψn(x1,x2, ...xN ,R1,R2, ...RM), (2.1)

where the Hamiltonian operator Ĥ describes all the energy contributions to the many-
particle system and En represents the eigen-energy of the state Ψn. For any external
potential V̂ext, Ĥ can be expressed as the sum Ĥ = T̂e+ T̂N + V̂ee+ V̂NN + V̂eN + V̂ext,
given in terms of the kinetic operators of the electrons and nuclei T̂e and T̂N , and
the Coulomb operators describing the electron-electron, electron-nucleus and nucleus-
nucleus interactions: V̂ee, V̂eN and V̂NN respectively. In a non-relativistic description,
the Hamiltonian Ĥ of a system consisting of N electrons andM nuclei, given in atomic
units, takes the form

Ĥ = −
N∑
i

1

2
∇2
i −

M∑
j

1

2mj

∇2
j +

1

2

N∑
i

N∑
i′ ̸=i

1

|ri − ri′|

+
1

2

M∑
j

M∑
j′ ̸=j

ZjZj′

|Rj − Rj′|
−

M∑
j

N∑
i

Zj
|Rj − ri|

, (2.2)

where Zj and mj are the atomic number and mass of the nucleus j. The solutions Ψn
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of Eq. (2.1) are functions of the set of spatial coordinates of all nuclei {Rj} and the
set of spatial and spin coordinates xi of all the electrons [xi ≡ (ri, σi)].

2.1.1 The Born-Oppenheimer approximation

The Born-Oppenheimer or adiabatic approximation offers a first major simplification
of the many-particle problem allowing the decoupling of the electronic and nuclear
degrees of freedom. The adiabatic approximation is based on the fact that the effective
Coulomb forces acting on electrons and nuclei are of the same order of magnitude.
Yet, the mass of the nucleus is thousands of times larger than that of the electrons.
In consequence, the electrons are expected to follow the nuclear motion much faster
than the time-scale of motion of the nuclei. Namely, the electrons can be regarded
as particles that follow the nuclear motion adiabatically [72]. One can, therefore,
assume that the nuclei are stationary and focus on the electronic motion for a fixed
configuration of nuclear positions. Splitting off the terms of the Hamiltonian which
concern the motion of the nuclei (i.e., T̂N and V̂NN), the problem is reduced to the
determination of the electronic eigenstates of a Hamiltonian with a fixed set of nuclear
coordinates. The equation determining the electronic states is then given by

Ĥe ψi(x1,x2, ...xN) = Ei ψi(x1,x2, ...xN) (2.3)

where the electronic Hamilton operator

Ĥe = −1

2

N∑
i

∇2
i +

1

2

N∑
i

N∑
i′ ̸=i

1

|ri − ri′|
−

M∑
j

N∑
i

Zj
|Rj − ri|

≡ T̂e+ V̂ee+ V̂eN({Rj}).

(2.4)

Eq. (2.3) is the time-independent Schrödinger equation for electrons under the
potential of classical and static nuclei. However, notice that the resulting eigenvalues
Ei depend on the atomic structure. Consequently, the electronic wavefunctions ψi de-
pend parametrically on the positions of the nuclei {Rj}. Even though the adiabatic
approximation reduces the problem to a purely electronic one, the description of a
system of N interacting electrons still depends on 4N degrees of freedom. This com-
plicated many-particle equation is not separable into simpler single-particle equations
because of the interaction term V̂ee. Further approximations are therefore needed,
some of which will be briefly discussed below.
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2.1.2 Hartree-Fock approximation

A basic approach to approximate the many-body wavefunction is given by the Hartree-
Fock method [72–74]. For an N-electron system the wavefunction is approximated by
a fully antisymmetric product of N single-particle orbitals. Such many-particle wave-
function fulfills the Pauli exclusion principle and can be represented by a single Slater
determinant

ψHF(x1,x2, ...xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . ψN(x1)

ψ1(x2) ψ2(x2) . . . ψN(x2)
...

... . . . ...
ψ1(xN) ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
, (2.5)

where the ψi(xi) are single-particle wavefunctions. For simplicity, the ψi are assumed
to be orthonormal. The functions ψi(xi) are generally written as a product of a space
and a spin dependent function (spinor) with the form ψi(xi) = ϕi(ri)χi(σi). In terms
of the single-particle wavefunctions, the expectation value of the energy in a Slater
determinant state |ψHF⟩ is given by

EHF = ⟨ψHF|Ĥ|ψHF⟩ =
N∑
i

∫
1

2
|∇ψi(r)|2d3r−

N∑
i

M∑
j

∫
Zj

|Rj − ri|
|ψi(r)|2d3r

+
1

2

N∑
i

N∑
i′ ̸=i

∫ ∫
|ψi(r)|2

1

|r − r’|
|ψi′(r’)|2d3rd3r′

− 1

2

N∑
i

N∑
i′ ̸=i

δσσ′

∫ ∫
ψ∗
i (r)ψ

∗
i′(r’)

1

|r − r’|
ψi′(r)ψi(r’)d3rd3r′.

(2.6)

The first three terms of Eq. (2.6) correspond, respectively, to the kinetic energy,
electron-ion attraction and the classical direct Coulomb repulsion (Hartree energy).
The last term is the exchange energy, which arises as a consequence of the antisym-
metry of the electronic wavefunction with respect to coordinate exchange.

In the Hartree-Fock approach, the ground-state many-body wavefunction is ap-
proximated by the single Slater determinant which minimizes the energy (Eq. 2.6).
The minimization of the total energy is taken with respect to all degrees of freedom in
the wavefuctions ψi, provided that their orthonormality is preserved. This procedure
leads to a set of non-linear coupled equations for the single-particle orbitals which
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must be solved self-consistently. The self-consistent Hartree-Fock equations can be
interpreted as if each particle is subjected to the mean field created by all other par-
ticles. The difference between the exact and the Hartree-Fock energies is known as
correlation energy. The results obtained by HF and other methods ignoring electronic
correlations can significantly deviate from the experimental behavior.

2.2 Density functional theory

The fundamental statement of DFT asserts that all the stationary properties of a
many-particle system can be regarded as functionals of the ground-state electronic
density n0 or the spin-resolved density n0σ in the presence of an external magnetic field
B(r). This means, n0 comprises all the information of the ground-state and excited-
states contained in the many-particle wavefunctions, solutions of the time-independent
Schrödinger equation [75]. A transformation of the many-particle problem is formally
possible by considering the electronic density as the fundamental quantity. In this
sense, once the properties of the system are regarded as functionals of the electronic
density, the many-body properties can be described by a real function of only three
spatial coordinates, eventually including the spin variables. The exact transformation,
as well as the existence of such functionals, relies on the two well known theorems
proposed and demonstrated by Hohenberg and Kohn (HK) in 1964 [76]. However,
the explicit shape of the functionals for real many-electron systems is not known, and
HK’s work does not provide any clue for its construction. The actual breakthrough
for the application of the theory was later provided by Kohn and Sham [77]. Their
approach allows to transform the remaining interacting-particle problem into an equiv-
alent problem of non-interacting electrons moving under the influence of an effective
external potential. The following sections review the main concepts concerning these
two essential works.

2.2.1 The Hohenberg-Kohn theorems

The approach of Hohenberg and Kohn was the formulation of DFT as an exact theory
of quantum many-particle systems. Essentially, the two fundamental theorems state
the possibility of an exact representation of the electronic properties of a many-particle
system in terms of the ground-state density alone. The original version of these
theorems relied on a number of restrictions such as the assumption of a non-degenerate
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ground-state. In the meantime, the rigorous foundation of DFT has been extended to
all cases of interest (e.g., degenerate ground-states, spin-polarized systems, relativistic
systems) [72,74,75].

The theorems apply to any system of interacting particles in an external potential
Vext(r) described by a Hamiltonian of the form

Ĥ = −
∑
i

1

2m
∇2
i +

∑
i

Vext(ri) +
1

2

∑
i

∑
i′ ̸=i

1

|ri − ri′|
. (2.7)

For simplicity, we assume that no external magnetic field is present. The first
theorem demonstrates that the external potential, and hence the total energy of the
system, are unique functionals of the ground-state electronic density. For a non-
degenerate ground-state, the theorem states: “For any system of interacting electrons
under an external potential Vext(r), the potential Vext(r) is uniquely determined, ex-
cept for a constant term, by the ground-state electronic density n0(r)”. In other words,
any other external potential V ′

ext(r) giving rise to the same ground-state electronic den-
sity n′

0(r) = n0(r), differs from Vext(r) by at most a constant shift. Furthermore, since
the potential Vext(r) entirely determines the Hamiltonian except for a trivial additive
constant, one concludes that all many-body eigenfunctions of Ĥ, and therefore all
the ground-state and excited-states properties, are completely determined given the
ground-state electronic density n0(r) [75, 76]. This means, the knowledge of n0(r)
should in principle allow to infer the external potential, wavefunctions, and hence, all
other observables.

In the non-degenerate case, the solution of the Schrödinger equation correspond-
ing to the Hamiltonian (2.7) can be regarded as a map between the set of external
potentials {Vext(r)} which differ by more than a constant term, and the set of result-
ing ground-state wavefunctions {|ψ0⟩}. A second map can be defined between the set
{|ψ0⟩} and the set of associated ground state densities {n0} connected to the elements
of {|ψ0⟩} by n0 = ⟨ψ0|n̂(r)|ψ0⟩ [72]. Mathematically, one may write

Vext =⇒ ψ0(r1, r2, ...rN) =⇒ ⟨ψ0|n̂(r)|ψ0⟩ = n0(r).

The validity of the first HK theorem relies on the demonstration that both maps are
injective and, therefore, can be inverted:

n0(r) =⇒ Vext =⇒ ψ0(r1, r2, ...rN)

In this way, one obtains a one-to-one correspondence between the external potential
Vext(r), the ground-state wavefunction |ψ0⟩ and the associated electronic density n0.
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The existence of the functional |ψ[n]⟩, for which |ψ0⟩ = |ψ[n0]⟩ holds, leads, in the
absence of degeneracies, to the possibility of expressing any ground-state observable
quantity in terms of n0. In particular, the total energy can be regarded as a functional
of the density defined as E[n] = ⟨ψ[n]|Ĥ|ψ[n]⟩ (still in the case of a degenerate ground
state) [72]. In addition, a minimum principle exists for the total energy functional
E[n] such that, for n0 the ground-state density, E[n0] < E[n′

0] for all n′
0 ̸= n0.

Following the previous ideas, the second theorem, which completes the basic
framework of the DFT, states: “For an N -electron system in an external poten-
tial Vext(r), a universal (system-independent) functional for the energy E[n] can
be defined in terms of the electron density n(r). For any particular Vext(r), the
exact ground-state energy corresponds to the global minimum of this functional
min {E[n]} = E[n0] ≡ E0, where the density n0, which minimizes E[n], is the exact
ground-state electronic density with energy E0”. The energy functional is expressed as

E[n] = F [n] +

∫
dr Vext(r)n(r), (2.8)

where F [n] = Te[n] + Vee[n] is a universal functional of the density. In consequence,
if the functional F [n] would be known, the exact ground-state energy and density
may, in principle, be found by the minimization of the total energy functional in (2.8)
with respect to possible variations of the electronic density function n(r) following the
variational equation

δ

δn(r)

(
E[n]− µ

[∫
d3r n(r)−N

])
= 0. (2.9)

In Eq. (2.9), the Lagrange multiplier µ ensures that the many-particle density
n(r) corresponds to a given number of particles. Yet, an exact analytical expression for
the kinetic energy Te[n] and the electronic interaction Vee[n] as functionals of the den-
sity is missing and, thus, the straightforward computation of n0(r) following Eq. (2.9)
is impossible. Furthermore, the question arises whether such minimized function ac-
tually describes a physical density (i.e., a density resulting from an antisymmetric
wavefunction and corresponding ground-state solution of the Schrödinger equation
for some external potential Vext) [72,74,75,78]. Finally, notice that the minimization
of (2.8) leads, in principle, to the exact ground-state density and energy. However,
the functional does not provide any information concerning excited states [75].
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Constrained search formulation

An important improvement on the definition of the energy functional given by Ho-
henberg and Kohn was introduced later by Levy and Lieb (LL) [79]. Their proposal
defines a two-step procedure for the minimization of the total energy. From the general
expression for the energy in terms of the many-particle wavefunction

E ≡ ⟨Ĥ⟩ = ⟨ψ|T̂e|ψ⟩+ ⟨ψ|V̂ee|ψ⟩+
∫
d3r Vext(r)n(r), (2.10)

the ground-state is found by the minimization of (2.10) with respect to all the variables
in ψ. This minimization can be carried out by considering first only the subset of
many-particle wavefunctions which yield to the same electronic density n(r). In this
way, one can define a unique lowest energy corresponding to that particular density.
The ground-state is then found by the minimization of

E[n] = min
ψ→n(r)

[
⟨ψ|T̂e|ψ⟩+ ⟨ψ|V̂ee|ψ⟩

]
+

∫
d3r Vext(r)n(r) ≡ FLL[n]+

∫
d3r Vext(r)n(r),

(2.11)
with respect to n(r) where the Levy-Lieb functional FLL[n] is an expressed functional
of the density. In fact, the functional FLL[n] corresponds to the minimum of the sum
of the kinetic and interaction energies from all possible wavefunctions giving rise to
the given density n(r). In contrast to the original Hohenberg-Kohn functional, which
is defined only for densities generated from the ground-state of an external potential
Vext whose conditions are generally unknown, the LL formulation has the advantage
of being defined for any density n(r) resulting from an N -electrons wavefunction. The
existence of such wavefunction (so-called “N-representability”) is known for any finite
non-negative differentiable function n(r) [72, 74,75,80].

2.2.2 The Kohn-Sham equations

The fundamental theorems of DFT show that the ground-state electronic properties of
a many-electron system are uniquely determined by the ground-state electronic den-
sity. Any observable quantity can be, then, regarded as a functional of the density.
However, the theorems do not provide any guide on how to compute them. In this
section we review the approach proposed by Kohn and Sham which allows to com-
pute a convenient approximation of the ground-state density [77]. The Kohn-Sham
construction relies upon the assumption that the exact ground-state density of the



2.2 Density functional theory 19

interacting electron system can be represented by the ground-state density of a ficti-
tious system of non-interacting particles. Although no rigorous proof of the validity
of this assumption for real systems exists, this formulation is unquestionably the most
successful and widespread method in which DFT has been applied.

The Kohn-Sham formalism introduces an auxiliary system of non-interacting elec-
trons moving under an effective single-particle potential veff (r), which yields the same
ground-state electronic density as the real interacting system. The exact connection
between the real and fictitious systems is obtained by rewriting Eq. (2.8) as

E[n] = Te[n] +
1

2

∫
dr
∫
dr’

n(r)n(r’)
|r − r’|

+

∫
dr Vext(r)n(r) + Exc[n] ≡

≡ T + EH + Eext + Exc. (2.12)

The so-called exchange-correlation energy Exc[n] accounts for the difference between
the exact total interacting energy and the sum of the non-interacting kinetic energy
and the Hartree energy.

For a non-interacting electron system, Eq. (2.3) becomes separable and the many-
body wavefunction is given by a Slater determinant of occupied single-particle states
(see Sec. 2.1.2) [72, 74, 75]. Moreover, the kinetic energy Te can be expressed as the
sum of the expectation values of the kinetic operator for each of the one-electron
wavefunctions ψi. The single-particle wavefunctions are connected to the electronic
density via

n(r) =
N∑
i=1

|ψi(r)|2, (2.13)

where the sum runs over all occupied states.

Recalling the Hohenberg-Kohn theorems, the ground-state energy and density
are found by minimizing the energy functional of Eq. (2.12) [see (2.9)]. The variation
(2.9) can be taken in terms of the single-particle orbitals ψi. At the minimum, it holds

δE

δψ∗
i (r)

=
δTe

δψ∗
i (r)

+

[
δEH
δn(r)

+
δEext
δn(r)

+
δExc
δn(r)

]
δn(r)
δψ∗

i (r)
= 0 (2.14)

where the minimization is to be taken under orthonormalization conditions for the
single-particle wavefunctions ψi. A set of self-consistent single-particle equations,
known as Kohn-Sham equations, is obtained from the minimization:
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{
−1

2
∇2 + veff(r)

}
ψi(r) = εiψi(r). (2.15)

The set of Schrödinger-like equations (2.15) corresponds to that of a system of
non-interacting particles moving under the influence of the effective potential

veff [r, n(r)] = Vext(r) +
∫
dr’

n(r’)
|r − r’|

+
δExc[n(r)]
δn(r)

. (2.16)

where Vext(r) is the external (e.g., ionic) potential, the second term corresponds to the
Hartree potential and the last term is defined as the exchange-correlation potential.
Furthermore, the electronic density is computed as given in (2.13) with the single-
particle states ψi solutions of Eqs. (2.15). Notice that, in Eqs. (2.15), the effective
potential veff depends likewise on the electronic density and, therefore, a self-consistent
solution is required. In practice, the problem is usually solved by using an iterative
procedure [72,74,75].

Spin-polarized systems

The Kohn-Sham formulation can be extended to systems under the effect of an ex-
ternal magnetic field Bext by generalizing the arguments of Sec. 2.2.1 to take into
account, besides the electronic density n(r) = n(r, σ =↑) + n(r, σ =↓), the spin den-
sity m(r) = n(r, σ =↑) − n(r, σ =↓) [72, 75]. One assumes the existence of a non
interacting system, with total energy

E[n,m] = T [n,m] + EH [n] +

∫
dr {Vextn+ Bext · m}+ Exc[n,m] (2.17)

and the same ground-state electronic density

n(r) =
∑
σ

∑
i

|ψi(r, σ)|2 (2.18)

and magnetization density

m(r) = µB
∑
σ,σ′

∑
i

ψ∗
i (r, σ) σσσ′ ψi(r, σ) (2.19)
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as the interacting system. In Eq. (2.19), σσ,σ′ stands for the vector of Pauli matrices
(see also Sec. 2.4.2). Minimization of E[n,m] yields the spin-dependent Kohn-Sham
equations {

−1

2
∇2 + vσs [n↑, n↓](r)

}
ψiσ(r) = εiσψiσ(r), (2.20)

where, besides the external magnetic field Bext, the exchange-correlation term involves
an additional contribution to the spin dependence of the potential. For simplicity, we
have assumed here that Bext and m(r) are collinear for all r. Notice that the Kohn-
Sham spin-dependent scheme is essential even in the absence of external magnetic
fields whenever the number of electrons of the system is odd or the ground-state ex-
hibits spontaneous nonzero magnetic moments.

2.2.3 Exchange-correlation functionals

Following the Hohenberg-Kohn theorems and the Kohn-Sham formulation, an ex-
act solution for the many-electron problem could be obtained from Eqs. (2.15) or
(2.20). However, one still has to deal with the unknown functional for the exchange-
correlation energy Exc, for which some approximation is required. In the following,
the approximations relevant for this work are briefly discussed.

Local-density Approximation

A first approximation to the exchange-correlation potential can be formulated in terms
of the local electronic density alone, i.e., the local value of n(r) at each point of the
space r disregarding a possible dependence on its derivatives and other non-local
contributions [72, 74, 75, 81]. Such an approach was first introduced by Kohn and
Sham in 1965 [77] and is known as local-density approximation (LDA) [82]. It is still
nowadays one of the most widely used methods of electronic structure calculations.
The general expression for the energy functional within the LDA has the form:

Exc =

∫
εxc[n(r)]n(r)dr, (2.21)

where the exchange-correlation energy per particle εxc is usually constructed assuming
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that the exchange-correlation energy at any point r is the same as that of a locally
uniform electron gas with the same density n(r). This condition is fairly fulfilled in
those systems where the electronic density varies slowly, as it is for instance, in the
case of simple metals. Nevertheless, LDA works remarkably well even in strongly in-
homogeneous cases such as atoms and molecules [83]. The reason of its success relies
on physically relevant conditions on the definition of εxc, which satisfies important
the sum rules for the exchange-correlation hole. This restriction is not trivially ful-
filled by an arbitrary function [74]. Another reason is that the angular average of
the exchange-correlation hole density is very well described by the LDA even if the
exchange correlation hole density distribution is highly anisotropic (e.g., in atoms or
near surfaces).

The generalization of the LDA for spin-polarized systems, known as local spin-
density approximation (LSDA) [84], is straightforward considering densities for the
two independent spin directions n↑(r) and n↓(r) with n(r) = n↑(r) + n↓(r). The
general form of the LSDA functional is simply

Exc[n↑, n↓] =

∫
εxc[n↑(r), n↓(r)]n(r)dr. (2.22)

One of the most common expressions for εxc[n↑(r), n↓(r)] in Eq. (2.22) is given by

εxc[n↑(r), n↓(r)] = −3e2

4π
(3π2)

1
3

[
n↑(r)

4
3 + n↓(r)

4
3

n(r)

]

= εPxc + (εFMxc − εPxc)

[
(n↑/n)

4
3 + (n↓/n)

4
3 − (1/2)

1
3

1− (1/2)
1
3

] (2.23)

where εPxc = εxc(n↑ = n↓ = n/2) corresponds to the non-spin-polarized value and
εFMxc = εxc(n↑ = n, n↓ = 0) to the fully polarized ferromagnetic (FM) case.

Although the electronic structure can be reasonably well described within the
LDA approximation, the predictions of equilibrium lattice parameters are frequently
smaller than in experiment and the binding energies are often overestimated.
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Generalized gradient approximation

In LDA approximation, the exchange-correlation energy of the true density is replaced
with that of a locally uniform electron gas. This approach suffers of strong limitations
for the description of situations where the density undergoes rapid changes as it often
occurs, for instance, within low-dimensional systems [72, 74, 75, 83]. An improved
description can be obtained by taking into account the dependence of the exchange-
correlation functional on the local gradient of the electron density. Such functionals
are known as generalized gradient approximations (GGA) and can be written as

Exc = Exc[n(r),∇n(r)]. (2.24)

In the GGA, the density-gradient dependence of the functional facilitates density
inhomogeneity. The GGA has demonstrated to improve the description of the binding
energies and, accordingly, provides better results of the optimized geometries [72]. In
comparison with LDA, GGA expands and soften bonds improving total energies,
energy barriers and structural energy differences.

GGA is a semi-local approximation in the sense that the exchange correlation
potential at each point r depends on the value of the density and its gradient at the
exact same point r. Specifically, the energy functional has the general form

Exc[n↑, n↓] =

∫
f [n↑(r), n↓(r),∇n↑(r),∇n↓(r)] dr. (2.25)

Several different parametrizations of the GGA have been developed [85]. The
functionals are typically constructed considering a density-gradient expansion for the
exchange-correlation hole around the electron, in a system of slowly varying density
[72,85].

2.3 Bloch’s theorem and plane waves

The present section follows the discussion of Ref. [74] on the solution of the Schrödinger
equation in a plane wave basis.

Any periodic function can be decomposed into the complete set of Fourier compo-
nents. In particular, for the eigenstates ψi of a single-electron Schrödinger equation,
for example the Kohn-Sham Eqs (2.15), an expansion can be written in terms of
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orthonormal plane waves |q ⟩ satisfying

⟨q′|q ⟩ ≡ 1

Ω

∫
Ω

dr exp(−iq′ · r) exp(iq · r) = δq,q′ (2.26)

as
ψi(r) =

∑
q

ci ,q
1√
Ω

exp(iq · r). (2.27)

In the expression (2.27) the states ψi are normalized and subject to periodic boundary
conditions in a volume Ω which is allowed to go to infinity. In a similar way, for
electrons in a periodic crystal, the ionic effective potential veff can be expressed as

veff (r) =
∑
m

veff (Gm) exp(iGm · r), (2.28)

where the Gm are the reciprocal vectors of the crystal lattice and

veff (G) =
1

Ωuc

∫
Ωuc

veff (r) exp(−iG · r)dr (2.29)

with Ωuc the volume of the primitive unit cell. According to this, the resulting matrix
elements of the corresponding Schrödinger Hamiltonian in Fourier space are

⟨q′|Ĥ|q ⟩ = ⟨q′| − ~2

2me

∇2 + veff |q ⟩ = ~2

2me

|q|2δq,q′ +
∑
m

veff (Gm)δq−q′,Gm , (2.30)

where the last terms are non-zero only if q and q′ differ by the reciprocal lattice vector
Gm. From the last expression, it is clear that plane waves are particularly appropriate
to describe electrons in periodic crystals. By defining q = k+Gm and q′ = k+G′

m,
the Schrödinger equation can be rewritten for any given k in the matrix form∑

m′

Hm,m′(k)ci,m′(k) = εi(k)ci,m(k) (2.31)

where

Hm,m′(k) = ⟨k + Gm|Ĥ|k + G′
m⟩ =

~2

2me

|k + Gm|2δm,m′ + vP (Gm − G′
m). (2.32)

From (2.27) and (2.32) it follows that the eigenfunctions of Eq. (2.31) for a given k
can be written as

ψi,k(r) =
∑
m

ci,m(k)
1√
Ω

exp(i(k + Gm) · r) =
√

Ωuc

Ω
exp(ik · r) Ui ,k(r) (2.33)
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where
Ui ,k(r) =

1√
Ωuc

∑
m

ci ,m(k) exp(iGm · r) (2.34)

is a function with the periodicity of the crystal. This result is known as Bloch theorem.
Notice that, in the limit Ω → ∞, the energies εi(k) are continuous functions of the
wave vector k and form energy bands which can labeled with the band index i. The
eigenvalues for a given i are periodic in k with the periodicity of a reciprocal lattice
vector. Therefore, only values of k within the first or reduced Brillouin zone need to
be considered.

2.4 Coupling between localized magnetic moments

A simplified picture of magnetism regards magnetic order as the result of the interac-
tion among localized microscopic magnetic moments. The magnetic behavior can be
then represented by an effective spin-spin Heisenberg Hamiltonian

H = −
∑

JmnSm · Sn (2.35)

where Sm denotes the spin vector of the mth localized moment, and Jmn is defined
as the exchange parameter. The Sm may represent, for example, the spin of single
electrons localized at magnetic impurities in a non-magnetic material, the total d -
electron spin moment of TM ions in a crystal lattice or the combined spin and orbital
moments in rare-earth materials. The exchange constants Jmn of the model account
for the energy contribution from the pair of moments at the mth and nth sites. The
sign of Jmn determines a favorable ferromagnetic (FM) or antiferromagnetic (AF)
coupling. In real materials, the legitimacy of expression (2.35) is not evident and the
rendering of the exchange parameters often fails to predict the experimental magnetic
behavior. However, in special situations, as it is the case of the RKKY interaction
discussed below, the use of this highly simplified Hamiltonian is justified.

2.4.1 The RKKY interaction

The Hamiltonian (2.35) is often used to describe lattices of magnetic atoms where only
the coupling between nearest-neighbors is relevant. Under certain circumstances, a
super-exchange magnetic coupling between next NN atomic spin moments can result
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from the indirect interaction mediated by an intermediate non-magnetic atom [86,87].
Furthermore, in some non-magnetic metals, the localized wavefunctions of an embed-
ded magnetic atom couple with the conduction electron band, inducing a spin polar-
ization of the free electron gas. In this way, an effective exchange-coupling mechanism
between embedded localized magnetic moments can be driven by the polarization of
the delocalized conduction electrons of the host.

Consider the interaction between the localized spin S of a magnetic impurity
embedded in a bulk metal and the spin s of an electron in the conduction band of the
host. An effective coupling is written in the form

Hsb = −JS · sδ(r), (2.36)

where J is a constant of dimension energy times volume [88]. The wavefunctions of
the conduction band can be represented by plane waves Ukσ = 1√

V
exp(ik · r)|σ⟩ nor-

malized within the volume V of the crystal bulk.
At the first order in the perturbation Hsb, a state Uk↑ is scattered into a state

Ũk↑ =
1√
V

exp(ik · r)| ↑⟩+ 1√
V

2mJ

~2
exp(ikr)

4πr
S · s| ↑⟩ (2.37)

giving rise to a density of spin up electrons given by

nk↑(r) = |Ũk↑|2 =
1

V
+

1

V

[
mJ

~2
Sz

exp(ikr)

4πr
exp(−ik · r) + c.c.

]
+O(J2). (2.38)

where c.c. indicates the complex conjugate [88]. Integrating Eq. (2.38) over all k vec-
tors within the Fermi sphere, one obtains

nk↑(r) = n0 +
mJ

~2
Sz

1

(2π)3

∫
Fs

[
exp(ikr)

4πr
exp(−ik · r) + c.c.

]

= n0 +
mJ

~2
Sz

1

(2π)3
1

r2

∫ kF

2 cos kr · sin kr · k dk

= n0 +
4mJ

~2
k4F

(2π)3
F (2kF r)Sz, where F (x) =

x cosx− sinx

x4

(2.39)

Similar calculations can be performed for nk↓(r). A net spin polarization, which



2.4 Coupling between localized magnetic moments 27

oscillates as a function of the distance r from the impurity site, is found from the
difference

nk↑(r)− nk↓(r) = −8mJ

~2
k4F

(2π)3
F (2kF r)Sz. (2.40)

Furthermore, for a pair of localized spins S1 and S2 located at r1 = 0 and r2 = R,
an indirect exchange coupling results from the interaction of S2 with the spin polar-
ization created by S1. The interaction energy is given by

∆E(R) =
∑
kσ

⟨Ũkσ| − JS2 · s δ(r − R)|Ũkσ⟩

= −4mJ2

~2
k4F

(2π)3
F (2kFR) S1 · S2,

(2.41)

where the last expression is obtained using the property of the scalar product:
⟨↑ |S1 · s S2 · s| ↑⟩+ ⟨↓ |S1 · s S2 · s| ↓⟩ = 1

2
S1 · S2.

This effective spin coupling, known as the Rudderman-Kittel-Kasuya-Yosida (RKKY)
interaction, oscillates from antiferromagnetic to ferromagnetic for increasing separa-
tion distances between the localized moments [29–31]. For the RKKY interaction
mechanism mediated by a metallic two-dimensional band (e.g., surface states), the
general form for the effective exchange coupling is given by

Jmn(Rmn) ∼
cos(2kF · Rmn)

R2
mn

(2.42)

where kF is the Fermi wavevector of the conducting host, Rmn is the vector of length
Rmn connecting the mth and nth localized moments and the range of the interaction
is determined by a quadratic decay exponent.

2.4.2 Noncollinear formulation

For the description of ferromagnetic (FM) and antiferromagnetic (AF) materials, it
is sufficient to consider the magnetic moment as having only two possible (collinear)
orientations: parallel and antiparallel respect to each other. Nevertheless, noncollinear
ground-state magnetic arrangements can emerge as a result of frustrated magnetic
interactions (e.g., AF order restricted by the crystal geometry in triangular lattices).
The description of such kind of system requires to specify the spatial orientation of
the spin-quantization axis and allow its variation from site to site.
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In a collinear formulation, although the relative orientation between local mo-
ments can be determined, the orientation of this magnetization with respect to some
frame of reference (e.g., with respect to the underlying crystal lattice) is not de-
fined [68, 74, 89]. In real systems, the spin-orbit interaction couples the magnetic
moments to the crystal lattice giving rise to the magnetocrystalline anisotropy and
determining the ground-state magnetic orientation (see Sec. 2.5). Therefore, the use of
a noncollinear scheme for the treatment of the SO coupling and the study of magnetic
anisotropy is compelling.

In a noncollinear formulation of spin-polarized DFT, the electronic and magne-
tization densities are expressed in terms of the 2 × 2 density matrix with elements
nαβ(r) as

n(r) = Tr[nαβ(r)] =
∑
α

nαα(r) , m(r) =
∑
αβ

nαβ(r) · σαβ (2.43)

where σαβ = (σx, σy, σz) stands for the vector of Pauli spin matrices defined as

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (2.44)

2.5 The spin-orbit coupling

Considering a bounded electron as a classical electric charge circulating around the
nucleus, a magnetic field can be associated to its motion. Equivalently, in the reference
frame of the electron, this movement can be regarded as a current loop generated by
the nucleus charge circulating around the electron [90]. In response to the magnetic
field created by its orbital motion around the nucleus, the spin associated to an
electron experiences an effective potential which tends to align its orientation with
the direction of the magnetic field, giving rise to the spin-orbit coupling (SOC) effect.
For a nuclear electrostatic potential V (r) and the electron mass me, an approximation
of the SOC interaction can be taken into account in the non-relativistic Hamiltonian
as an additional term of the form

ĤSO =
∑
i

1

2m2
ec

2

1

r

∂V (r)

∂r
Ŝi · L̂i, (2.45)

where Ŝi and L̂i are the spin and orbital moment operators of electron i. In Eq. (2.45)
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inter-atomic SOC terms are neglected since their contribution is very small in com-
parison with the intra-atomic values.

For electrons moving at non-relativistic velocities the SOC interaction is very
small. However, in heavy atoms this effect becomes important. In the limit v/c <<
1, expression (2.45) provides fairly good results for the spin-orbit coupling of real
systems. A rigorous derivation of this term is obtained from the Dirac equation, in
which the form of Eq. (2.45) can be regarded as the first order relativistic correction.
Besides its contribution to the total energy, to account for this term can become
essential for the description of magnetic systems. In particular, the SOC interaction is
responsible for the third Hund’s rule which determines the relative alignment between
the atomic spin and orbital magnetic moments. Namely, since ∂V (r)/∂r > 0 in the
near of the atomic nucleus, an electron spin in the ground state will tend to align
antiparallel to its angular momentum. As a result, the atomic spin magnetization
and orbital moment will be aligned parallel in the ground state of atoms with a less
than half-filled shell, while they will be found anti-parallel in atoms having a more
than half-filled shell.

Moreover, in larger systems the spin-orbit interaction splits electronic states
which are degenerated in a non-relativistic description. Due to the underlying struc-
tural dependence involved through the potential V (r), the electronic states and the
energy become dependent on the orientation of the magnetization with respect to the
crystal lattice. The resulting magnetic anisotropy (MA) is an important consequence
of relativistic effects with relevant implications for technological purposes.

2.6 The Hellmann-Feynman theorem

In the discussion of the last sections, the parametrical dependence of the interaction
between electrons and nuclei on the set of nuclear positions Rj (derived in Sec. 2.1.1)
has been ignored. However, since the functional F [n] is universal, it is clear that the
dependence of the total energy functional on Rj originates from the term Eext. The
first formulation of an expression which relates the force conjugated to any parameter
in the Hamiltonian with the expectation value of the derivative of the Hamiltonian
with respect to that parameter was introduced in the context of a variational prin-
ciple by H. Hellmann. This concept was reformulated as an electrostatic theorem by
R. Feynman, [91] when considering forces between atoms. His work emphasizes that
the force exerted on a given nucleus is simply the electrostatic force resulting from the
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charge density distribution of all other nuclei and electrons. The Hellmann-Feynman
theorem extends the classical concept of the force conjugate to the position of a nu-
cleus (Rj) as the derivative of the total energy with respect to the parameter Rj to
its corresponding expression for a quantum system. Namely, that the force can be
written as

Fj = − ∂E

∂Rj

= −∂⟨Ψ |Ĥ|Ψ⟩
∂Rj

, (2.46)

where the derivative is to be taken from the expression of the total energy as the
expectation value of the Hamiltonian operator keeping the normalization condition
⟨Ψ |Ψ⟩ = 1 for all Rj. Eq. (2.47) implies

− ∂E

∂Rj

= −⟨Ψ |∂Ĥe

Rj

|Ψ⟩ − ⟨∂Ψ
Rj

|Ĥe|Ψ⟩ − ⟨Ψ |Ĥe|
∂Ψ

Rj

⟩ − ∂ENN
∂Rj

, (2.47)

where ENN is the classical energy concerning the electrostatic interaction among the
nuclei (ENN = ⟨V̂NN⟩, see 2.3) [72,74,91]. Considering that

∂

∂Rj

⟨Ψ |Ψ⟩ = ⟨ ∂Ψ
∂Rj

|Ψ⟩+ ⟨Ψ | ∂Ψ
∂Rj

⟩ = 0, (2.48)

the derivative consists exclusively of the terms which depend explicitly on the position
of the nuclei. Since

∂Ĥe

∂Rj

=
∂Vext
∂Rj

, (2.49)

the final expression for the force Fj conjugated to the position of the ion j reads

Fj = −
∫
dr n(r)

∂Vext
∂Rj

− ∂ENN
∂Rj

(2.50)

with n(r) the electronic density. Thus, the local force depends only on the charge dis-
tribution of the electrons and the other nuclei. The Hellmann-Feynman theorem finds
application on the evaluation of interatomic forces in molecules and solids, allowing
the calculation of their equilibrium geometries.



CHAPTER 3

Computational methods

Over the last decades, DFT has grown in popularity by proving its accuracy and
remarkable efficiency in describing the ground-state properties of a large variety of
systems. Motivated by this success, an extensive work in molecular and solid state
physics has been accomplished along with the development of new computational
techniques. Diverse implementations of DFT with different specific capabilities are
available nowadays [83]. Throughout the present research work, two state-of-the-art
computational methods have been used. This chapter provides a general overview of
each of these implementations outlining their most relevant features, differences and
distinctive advantages.

3.1 The Vienna ab-initio simulation package

The Vienna ab-initio simulation package (VASP) is a very efficient and widespread
computational code which allows to perform electronic structure calculations within
a first principles formulation [92, 93]. VASP provides an implementation of density
functional theory based on the self-consistent solution of the Kohn-Sham equations. A
plane-wave basis set is used for the expansion of the one-electron wavefunctions [92,94].

31
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The composition and structure of the system are defined inside a unit cell, which is
subject to periodic boundary conditions. Thus, periodic crystal structures can be
studied involving a minimal number of atoms. However, non-periodic systems require
the construction of large supercells. In particular, isolated atomic structures can be
defined by introducing a large vacuum region, which avoids the interaction between
neighboring images [94].

The symmetry imposed by the periodic boundary conditions results in Bloch-like
electronic states which are characterized by the wave vector k (see Sec 2.3). The
evaluation of important quantities such as the charge density, the density of states
and the total energy, which involve an integration over the first Brillouin zone (BZ),
are approximated by a weighted sum over a discrete set of k-points [94]. For instance,
the calculation of the band-structure energy requires an integration over the filled
bands given by ∑

n

1

ΩBZ

∫
ΩBZ

ϵnkΘ(ϵnk − µ)dk, (3.1)

where Θ(x) is the Heaviside step function and µ is the chemical potential. The integral
over the first Brilloun zone ΩBZ can be replaced by a weighted sum over a discrete
set of k-points ∑

k

ωkϵnkΘ(ϵnk − µ). (3.2)

The accuracy of the calculation is conditioned by the number of k-points used for
the evaluation of (3.2). In metallic systems, the discontinuity of the occupancies at
the Fermi-level leads to very slow convergencies of the sum (3.2). VASP employs
the method of partial occupancies to reduce the number of k-points required for an
accurate calculation of the band-structure energy. This method consists in replacing
Θ(ϵnk) with a smoother function f({ϵnk}), which allows a faster convergence preserv-
ing at the same time a high accuracy in the evaluation of the sum. Several choices
for the function f({ϵnk}) are available within the finite temperature approaches and
smearing methods implemented in the VASP code.

In the calculations presented in this work, the orthogonality constraints between
the valence electrons and the ion cores is described by the projector-augmented wave
(PAW) method, which allows accurate frozen core-electron calculations. The PAW
method is discussed in Sec. 3.1.1.

Moreover, structural optimizations can be performed within VASP. The instanta-
neous forces and stress tensors are calculated following the Hellmann-Feynman theo-
rem. These are used to relax the atomic positions towards their lowest-energy configu-
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ration (see Sec. 2.6). Steepest-descent, conjugate-gradient and quasi-Newton-Rapson
methods are implemented in this context [74,94].

Finally, VASP has implemented a fully unconstrained approach to noncollinear
magnetism which treats the magnetization density as a continuous vector variable
of the position [68, 95]. Relativistic effects (i.e., including the spin-orbit coupling
interaction) are also treated within this framework. This is a clear improvement with
respect to other methods (e.g., those based on the atomic moment approximation)
where fixed local quantization axes are considered within each atomic volume.

3.1.1 Projector augmented waves

An accurate description of the wavefunctions in terms of plane-waves alone can result
in considerably large basis set requirements. On one side, the core electrons remain
tightly bound to the nucleus. They are strongly localized near the ions and do not
contribute substantially in the formation of chemical bonds. Being fully occupied,
they do not contribute to magnetism either. On the other side, in the case of the va-
lence electrons, the requirement of orthogonality with respect to the core states leads
to rapid oscillations of the valence wavefunctions near the ion cores. The projector-
augmented wave (PAW) method provides a computationally efficient way to take into
account these oscillations without requiring to involve prohibitively large plane wave
vectors k (i.e., very short wavelengths) [74,96–98]. The method uses a linear transfor-
mation T which maps the original valence wavefunctions |ψn⟩ onto auxiliary functions
|ψ̃n⟩ with rapid convergency in a plane waves expansion. With |ψn⟩ = T |ψ̃n⟩, the
evaluation of a physical quantity defined by the operator A can be taken in the rep-
resentation of either the true or the auxiliary wavefunctions as

⟨A⟩ =
∑
n

fn⟨ψn|A|ψn⟩ =
∑
n

fn⟨ψ̃n|T †AT |ψ̃n⟩ (3.3)

In the PAW method, the transformation is defined to be non-zero only within a
spherical augmentation region of radius R around each atom. Thus, it is expressed
in the form

T = 1 +
∑
R

SR, (3.4)

where SR accounts for the difference between the real and the pseudo wavefunction
around each atom. Starting from the expansion of the wavefunction in a convenient
set of atomic partial waves as |Ψ⟩ =

∑
i |ϕi⟩ci, one defines a similar expansion for the
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auxiliary pseudo wavefunctions |Ψ̃⟩ =
∑

i |ϕ̃i⟩ci, where the pseudo partial waves |ϕ̃i⟩
obey SR|ϕ̃i⟩ = |ϕi⟩ − |ϕ̃i⟩. Notice that outside the augmentation regions the pseudo
partial waves |ϕ̃i⟩ are identical to the all-electron partial waves |ϕi⟩.
The expansion of |Ψ̃⟩ defines the projector functions |p̃i⟩ from which the coefficients
ci are obtained as the product ⟨pi|Ψ̃⟩. In this sense, the all-electron wavefunctions are
finally expressed as

|ψn⟩ = |ψ̃n⟩+
∑
i

(|ϕi⟩ − |ϕ̃i⟩)⟨p̃i|ψ̃n⟩. (3.5)

Usually, the set of atomic partial waves |ϕi⟩ is taken from the solution of the Schrödinger
equation for the isolated atoms. In fact, in a frozen-core approximation, the density
and energy of the core electronic states is retained and the set |ϕi⟩ is composed only
by valence states orthogonal to the core wavefunctions of the atom.

3.2 Green’s function Korringa-Kohn-Rostoker method

The Green’s function (GF) Korringa-Kohn-Rostoker (KKR) method is based on the
multiple-scattering formalism [99–102]. The method deals with the scattering of par-
ticles described by a single-particle Hamiltonian with an effective potential of the
form

v(r) = vext +
∑
i

vi(r), (3.6)

where vi(r) are non-overlapping potentials representing the atoms, and vext is an
external potential which can be set arbitrarily [101,103–105].

In the KKR method, the space is divided into non-overlapping atomic regions
in which each ion is represented by a scattering potential defined within an other-
wise potential-free space. Hence, electrons propagating between scattering sites are
described by the free propagator Green’s function. The KKR formulation allows a
separation between the potential and structural attributes of the system by divid-
ing the problem into single-scattering and multiple-scattering parts. In the first part,
the potential dependent single-site scattering problem is solved inside the atomic re-
gion in terms of a local GF. In the second, the solution of the structural dependent
multiple-scattering problem is found self-consistently by requiring that the incident
wave to each atomic potential corresponds to the sum of the outgoing waves from
all other scattering centers. As a Green’s function formulation, the KKR method
has the advantage of avoiding the construction of big supercells and the computa-
tion of large wavefunctions by evaluating the electronic properties directly from the
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GF [100,103,106,107].

3.2.1 Green’s function formulation

The KKR Green’s function is defined as the resolvent of the time-independent Schrödinger
equation (2.3) with a Dirac-delta inhomogeneity term at r’:

[Ĥ − E]G(r, r’;E) = −δ(r − r’), (3.7)

which can be expressed through the operator equation

G(E) = [E − Ĥ]−1. (3.8)

For an arbitrary complex energy E (having an infinitesimal positive imaginary part),
a formal solution for Eq. (3.7) is given in terms of the complete set of eigenstates ψi
and eigenvalues ϵi of the Hamiltonian as

G(r, r’;E) =
∑
i

ψi(r)ψ∗
i (r’)

E − ϵi
. (3.9)

Thus, the stationary states of the system are given by the poles of G(E). Moreover,
Eq. (3.9) entails the relation between the imaginary part of the GF and the energy
and space resolved single particle electronic density n(r;E) where

n(r;E) = − 1

π
Im G(r, r;E). (3.10)

The electronic density can be found integrating Eq. (3.10) up to the Fermi level EF

n(r) = − 1

π
Im

∫ EF

−∞
G(r, r;E) dE = − 1

π
Im

∫ EF

−∞
Tr (r̂ G(E))dE (3.11)

with r̂ representing the position operator. In general, it follows from (3.9) that the
expectation value of any operator Â representing a physical quantity can be evaluated
directly from the GF by

⟨A⟩ = − 1

π
Im

∫ EF

−∞
Tr (Â G(E))dE. (3.12)
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Particularly, the energy-resolved density of states can be obtained straightforwardly
from (3.10) as

n(E) = − 1

π
Im

∫
G(r, r;E) dr = − 1

π
Im TrG(E). (3.13)

Thus, the single-particle GF comprises all the information concerning the physical
properties contained in the non-interacting Hamiltonian Ĥ.

3.2.2 The Dyson equation and the Lloyd’s formula

The representation of the electronic structure in terms of the GF facilitates the use of
a perturbative approach which offers great advantages for the treatment of substitu-
tional impurities, disordered systems and crystal surfaces [100,107]. Given a perturb-
ing potential V added to a Hamiltonian H0, the Dyson equation allows the efficient
computation of the GF of the perturbed system by relating it with the GF of the non-
perturbed “reference” medium. For a Hamiltonian H1, which relates to a reference
Hamiltonian H0 through the perturbation potential V as H1 = H0+V , it follows from
the definition (3.8) that their corresponding GF operator obeys G−1

0 (E) = E − H0

and G−1
1 (E) = E − (H0 + V ), which implies

G−1
1 (E) = G−1

0 (E)− V. (3.14)

After a substitution of terms in (3.14), the Dyson equation

G1(E) = G0(E) +G0(E)V G1(E) (3.15)

= G0(E) +G0(E)V G0(E) +G0(E)V G0(E)V G0(E) + .... (3.16)

is obtained. The last expression enables an interpretation ofG(E) in terms of multiple-
scattering events. Furthermore, Eq. (3.15) can be rewritten in terms of the scattering
matrix T (E) as

G1(E) = G0(E) +G0(E) T (E) G0(E), (3.17)
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where T (E) = V G1V = V + V G0(E) V + V G0(E) V G0(E) V + ....

The scattering matrix or T-matrix can be used to express the change in the total
single-particle density of states caused by the perturbation potential with respect to
the unperturbed system. Substituting Eq. (3.17) in (3.13), the density of states of the
perturbed system is given by

η1(E) = − 1

π
Im Tr (G0(E) +G0(E) T (E) G0(E))

= η0(E) + δη(E) (3.18)

where

η0(E) = − 1

π
Im Tr (G0(E)), (3.19)

and

δη(E) = − 1

π
Im Tr (G0(E) T (E) G0(E))

= − 1

π
Im Tr (G0(E)

2 T (E)) (3.20)

=
1

π
Im Tr

(
dG0(E)

dE
T (E)

)
. (3.21)

In the last step, the identity
dG0(E)

dE
= −G(E)2, which follows from (3.8), has been

used.
Moreover, from the definition of T (E), it can be shown that

dT (E)

dE
= V

dG1(E)

dE
V = −V G1(E)

2V

= −T (E) G0(E)
2 T (E) = T (E)

dG0(E)

dE
T (E) (3.22)

and thus,

T (E)−1dT (E)

dE
=
dG0(E)

dE
T (E). (3.23)
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Finally, by substitution of (3.23) into (3.21) yields

δη(E) =
1

π
Im Tr

(
T (E)−1 dT (E)

dE

)

=
d

dE

(
1

π
Im Tr {ℓn T (E)}

)
. (3.24)

The integrated density of states can be expressed as

N(E) = N0(E) + δN(E), (3.25)

where

N0(E) =

∫ E

−∞
dE ′ η0(E

′) (3.26)

and
δN(E) =

1

π
Im Tr {ℓn T (E)}. (3.27)

Equation (3.27), known as the Lloyd’s formula, provides an efficient way to compute
the number of states as a function of the energy [108].

When considering problems involving non-interacting particle Hamiltonians, a
convenient choice of G0(E) is the Green’s function of a free electron gas given by

G0(r, r’;E) = − 1

4π

exp [κ(|r − r’|)]
|r − r’|

, (3.28)

where E = (~2/2me)κ
2. In a spherical potential approximation, the scattering ampli-

tude t(E) (single site T-matrix) of an incoming electron (described by the plane wave
3.28) conserves angular momentum with respect to the potential center (i.e., t(E) is
diagonal in angular momentum representation L and the diagonal elements are inde-
pendent of m). Since the scattering is unitary, the elements tl(E) can be written in
terms of the scattering phase shifts δl(E) as

tl(E) = −1

κ
exp (iδl(E)) sin(δl(E)) (3.29)

Generally, most electronic properties can be described considering only a small number
of δl(E) shifts (usually l ≤ 3) [74,107]. The small basis required for an accurate calcu-
lation of the electronic structure constitutes an additional advantage of this method.
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In particular, the change in the density of states given by the Lloyd’s formula in
Eq. (3.27) is reduced to

δN(E) =
1

π

∑
l

(2l + 1) δl(E). (3.30)

Furthermore, the δl(E) are closely related to the Friedel oscillations around impurities,
known to result in long-ranged interactions between localized impurities in crystals
[107].Therefore, the perturbational approach the GF-KKR method (together with
Eq. 3.30) allow to provide an improved description of the interaction energies between
impurities [107,109–112].

Finally, the full multiple scattering problem of an array of scattering centers lo-
cated at positions Rn is solved using the site-centered expression for the GF
G(r + Rn, r′ + R′

n;E), which describes the propagation of a wave between the sites
Rn and R′

n assuming a constant potential in the interstitial region. The solution is
obtained by demanding that the incident wave to each scattering center is the sum of
the outgoing waves of all other centers. This matching can be achieved only for cer-
tain energies which correspond to the eigenvalues of the Hamiltonian (i.e., the allowed
electronic states of the system).
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CHAPTER 4

Transition-metal impurities in highly polarizable hosts:
magnetic order and anisotropy

The strong intra-atomic spin-orbit coupling of 5d elements and their potentially sig-
nificant magnetic polarization when combined with 3d-TMs, have consistently shown
to enhance the comparatively poor MAE of the pure TM components [62,113]. In the
search of a route to tailor the MAE, a remarkable research activity has been dedicated
to a broad variety of 3d-5d systems [19,61,62,113,114]. Still, the precise mechanisms
associated with the role of the composition and chemical order on the development
of the MAE of TM alloys remain unclear to a large extent. In fact, all the main
alloy parameters are expected to affect the magnetic behavior in a non-trivial way.
An illustrative example of the importance of chemical composition is the significant
dispersion of anisotropy constants found by Tournus et al. in dilute assemblies of
CoPt small clusters [115]. In their study, a wide distribution of MAEs is attributed
to the differences in the chemical order within the clusters. Recently, another impor-
tant question has been addressed by Brown et al. in their theoretical study of the
FePt L10 phase [116]. The study reports a competition between FM and AF ordering
between Fe planes. They conclude that the highly anisotropic FM phase observed
experimentally is due to the presence of imperfections in the long-range ordering of

41
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the crystal samples or as a result of substitutional disorder. Moreover, their work also
reveals the importance of structural distortions.

Fe is traditionally considered an ideal ferromagnet. However, its electronic con-
figuration is not so far from half-band filling, so that transitions between FM and
AF order are possible. Let us recall that γ-Fe is AF at low temperatures. Further-
more, Fe is likely to display complex non-collinear magnetic behavior driven by small
changes in the local environment [62, 69, 117]. A recent research investigation on the
magnetism of Pt-supported Fe nanostructures shows an interesting behavior of the
magnetic anisotropy as a function of surface coverage, which results from a complex
interplay of spin-orbit coupling, exchange interaction and induced Pt moments [62].
The study revealed a coordination-dependent competition of FM and AF exchange
coupling between Fe moments which causes the collapse of the average magnetization
with increasing Fe coverage in the low-concentration regime. These examples open
new important questions regarding the magnetism of 3d-5d compounds: How does
the 3d magnetic ordering affects the polarization of the 5d substrate? What are the
consequences of these modifications on the MAE? How does 3d concentration affects
the magnetic order and the average magnetization? It is the purpose of this Chapter
to investigate this interplay and shed some light on the underlying processes govern-
ing the magnetic behavior of these systems. Two particularly interesting examples of
3d-Pt systems will be addressed, for which a comprehensive analysis on the interplay
between local properties, long-ranged magnetic order and MAE has been performed.
In the first part, the effects of 3d-doping, concentration and magnetic order in a one-
dimensional Pt host are examined in some detail. The case of one-dimensional systems
is of particular interest, since small local differences are expected to induce large vari-
ations of the magnetic response. In the second part of the Chapter we consider the
magnetic ordering and MAE of Co atoms on top the Pt(111) surface as a function of
coverage and distribution. In both cases, the effects of structural relaxations effects
have been analyzed. Emphasis is given to the correlations between the long-ranged
magnetic ordering between the 3d elements and the polarization of the host and its
relevance for the magnetic anisotropy energy of the systems.

4.1 Magnetic order and anisotropy of 3d-Ptn wires

One-dimensional (1D) systems are expected to display extraordinary large MAEs.
The very low atomic coordination allows the development of large spin and orbital
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magnetic moments and the high symmetry renders the magnetization to be sensi-
tively dependent on its orientation. The relevance of these systems is backed up
by the modern experimental techniques for synthesizing 1D materials. Indeed, 1D
structures can be nowadays assembled on surfaces, for example, by direct atomic
manipulation using a scanning tunneling microscope (STM) or via self-assembly pro-
cesses [18, 118, 119]. The singularity of one-dimensionality has been demonstrated in
previous theoretical studies. For example, Dorantes-Dávila and Pastor have shown
that the enhanced MAE of TM monoatomic chains is largely reduced already for the
thinnest ladder structures. In fact, their study shows that the easy axis of magneti-
zation of Fe chains alternates with the transversal size N of the ladder: lying on the
axis chain for N = 1, changing to the perpendicular plane and back to the chain axis
for N = 2 and N = 3 [64]. Another exceptional example of the determinant effect
of low-dimensionality is the colossal MAE reported in Pt monoatomic wires, which
results from the intrinsic impossibility of the magnetization to rotate out of the wire
axis [120]. In this context, only few theoretical investigations of magnetic anisotropy
of one-dimensional alloys are available at present. For example, the study of Wang
et al. [121] reports very large MAEs in free-standing monoatomic wires, which are
significantly reduced upon encapsulation in carbon nanotubes.

In order to shed light on the mechanisms responsible for the magnetic anisotropy
of 1D alloys, this study considers ordered 3d-Pt alloy monoatomic wires in a free-
standing geometry. Pt is a particularly relevant example of 5d metal due to its high
magnetic polarizability and strong intra-atomic SO coupling, while the free-standing
geometry is expected to display the largest low-dimensional effects. The present study
concentrates on the interplay and influence of the internal 3d magnetic ordering on the
local magnetic properties and the development of the overall MAE. In the first part,
the role of the 3d band filling is investigated by varying systematically the alloying
element across the 3d series. Considering the possible magnetic arrangements between
the 3d components within the system, we analyze the role of the local properties on
the anisotropic behavior of equiatomic 3d-Pt wires. In the second part, we focus on
the particular case of ordered FePtn wires and concentrate on the relative magnetic
order between Fe dopants as a function of the chemical composition and its influence
on the long-range magnetic behavior.
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4.1.1 Computational details

Following the previous perspective, self-consistent electronic calculations have been
performed using the Vienna ab initio simulation package (VASP) described in Chap-
ter 3.1. Exchange and correlation effects were treated within the Perdew-Wang
generalized-gradient approximation (GGA) [85].

The infinite wires are constructed in a rectangular supercell of length a = 12 Å in
the directions perpendicular to the wire. This size ensures that the interaction of the
wire with its neighboring images is negligible. Moreover, both ferromagnetic (FM)
and antiferromagnetic (AF) alignments of the magnetic moments of the 3d atoms
within the supercell have been considered. This prescription, together with the free-
dom for the alignment of the 5d moments, allows to account for FM and AF super-
exchange-like couplings between the 3d moments mediated by the the intermediate
5d atoms and vice versa. To explore the effects of structural relaxation on the inves-
tigated properties, we performed self-consistent optimizations of the atomic positions
using the conjugate gradient and quasi-Newtonian methods [94]. The optimized struc-
ture is found by requiring that the calculated force acting on each atom is less than
0.001 eV/Å. The k-point meshes nk = 1×1×91 and nk = 1×1×41 have been used to
evaluate all integral quantities within the Brillouin zone, together with the Gaussian
smearing method with a small final standard deviation σ = 0.02 eV applied for the
determination of the partial occupancies.

The calculation of the MAE, which involves very small energy differences (of the
order of a few meVs/atom) requires the use of large plane-wave basis and accurate
numerical convergence in order to be reliable. Accordingly, an energy cut-off of 450 eV
for the plane-wave basis set has been used. The criterion of total energy convergence
was assumed when the difference between two self-consistent cycles was smaller than
10−7 eV. The MAE is calculated as the difference in the total energy corresponding
to independent self-consistent calculations where the magnetization of the system lies
along and perpendicular to the wire axis. A pre-converged scalar relativistic solution,
being rotationally invariant, was used to initialize both calculations. Notice that the
self-consistently determined magnetization direction is, in principle, allowed to relax
and rotate to its minimum energy axis. However, due to the symmetry of the wires,
the total energy is stationary at the considered directions. While solutions involving
non-collinear magnetic arrangements might exist, they are avoided by this prescription
of initialization and by the finite size of the supercell.
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4.1.2 Magnetic order and MAE in 3d-Pt wires

In the following, we consider the case of binary ordered 3d-Pt alloy wires having
50% concentration of each component. Such composition, which maximizes the 3d-5d
hybridization, will provide us with a local perspective to the 3d-5d proximity effects.

The magnetic anisotropy energy ∆E = Ex − Ez, where Eδ refers to the total
energy per atom when the magnetization lies along the axis δ, has been calculated for
3d-Pt wires varying the 3d component. The cartesian z axis is taken along the axis of
the wires. Results for ∆E corresponding to a FM and an AF ordering between the mo-
ments of the 3d atoms are shown in Fig. 4.1 for wires at their equilibrium interatomic
distances. The ground-state (GS) magnetic order (i.e., FM or AF) is identified with
solid symbols. Here, one observes strong even-odd oscillations of ∆E as a function
of the 3d dopant. Significantly large values of the MAE (∆E ≃ 20meV) are obtained
in the case of NiPt and VPt wires, while relatively small values are found, for in-
stance, in CrPt and MnPt. Furthermore, one observes that, in general, the values
of ∆E are larger for a FM ordering between the 3d elements. In this sense, the de-
pendence of the MAE on the 3d doping element is not easily generalizable. However,
it is interesting to notice that the calculated MAE of CoPt wires is quantitatively
comparable to available experimental results of Co monoatomic chains deposited on
a Pt substrate [118]. This indicates that the MAE obtained for free-standing wires
can provide useful insights on more complex situations, provided that the local envi-
ronments are comparable, for instance, similar low coordination numbers and type of
neighbors.

In order to provide a local perspective to the MAE Table 4.I shows the local spin
moments µδ and orbital moments Lδ calculated inside the Wigner-Seitz spheres at the
3d and 5d sites of the wires. For TiPt, VPt and CrPt in the FM configuration, we
find that the 3d and Pt moments are antiparallel to each other, while they are parallel
in the case of ferromagnetic CoPt and NiPt [57]. As indicated by the full symbols
in Fig. 4.1, the later configurations correspond to the ground-state magnetic order of
these wires. It is important to notice that in the case of an AF alignment between the
3d elements, the magnetic moment at the intermediate Pt sites is precluded by the
antisymmetry of the potential. Interestingly, such AF configuration is found as the
ground-state of FePt and MnPt wires. In the case of FePt wires, the large reduction of
charge at the 3d orbitals, caused by a significant charge transfer of about 0.5 electrons
to the Pt 5d orbitals, brings Fe closer to half d-band filling and possibly favors the
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Figure 4.1: Calculated MAE ∆E = Ex−Ez of 3d-Pt wires at their equilibrium interatomic
distance. Positive (negative) values of ∆E correspond to an easy axis along (perpendicular
to) the wire axis. Results are given in meV/atom for FM (circles) and AF (triangles)
ordering between the 3d moments. Full symbols indicate the ground-state magnetic order
(See Ref. [57]).

observed AF order. This GS magnetic order is, moreover, not affected by moderate
variations of the interatomic distances around the equilibrium values.

From a local perspective, the main contribution to the MAE is expected to arise
from the change in the intra-atomic SO energies (∆ESO) which, in the limit of sat-
urated spin moments, is proportional to the anisotropy of the local orbital moments
∆L = Lx − Lz. A simple approximation of ∆ESO for alloys is given by

∆ESO =
1

N

∑
α

∆Eα ≃
∑
α

(
±ξα

2

)
∆Lα, (4.1)

where ξα and ∆Lα refer to the SO coupling constant and anisotropy of the local or-
bital moments ∆L at the atom α. This definition extends the relation derived by
Bruno for homogeneous systems. The positive (negative) sign applies to Ti-Mn (Fe-
Ni and Pt) [57]. Notice that Eq. (4.1) neglects the spin-flip off-diagonal terms of the
SO coupling, as well as the energy contributions arising from the anisotropy of the
kinetic and Coulomb energies. The later terms are not negligible if important redis-
tributions of spin-polarized density occur upon a rotation of the magnetization. Such
redistributions are found in strongly hybridized systems which exhibit an anisotropy
of the spin moments [57]. According to Eq. (4.1), one can qualitatively understand
the behavior of ∆E by looking at the changes in the local spin and orbital moments
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Table 4.I: Local spin and orbital moments in 3d-Pt wires at their equilibrium interatomic
distances: µz and Lz correspond to an in-line orientation of the magnetization, while µx

and Lx correspond to a perpendicular direction. Results are given in µB for a ferromag-
netic (FM) and an antiferromagnetic (AF) arrangement between the 3d moments. The
corresponding values of the MAE ∆E = Ex − Ez are given in meV/atom (See Ref. [57]).

FM Ti V Cr Mn Fe Co Ni

Pt µz/µx -0.15/-0.14 -0.24/-0.22 -0.18/-0.20 0.32/0.23 0.66/0.64 0.64/0.66 0.60/0.47
Pt Lz/Lx -0.11/-0.08 -0.21/-0.12 -0.06/-0.20 0.01/-0.12 0.28/0.23 0.25/0.28 0.38/0.16
3d µz/µx 1.51/1.51 2.62/2.61 3.63/3.63 4.27/4.26 3.45/3.45 2.27/2.32 1.00/0.96
3d Lz/Lx -0.30/0.06 -0.63/0.08 -0.04/0.14 -0.10/0.16 -0.16/0.21 0.47/0.15 0.44/0.04

∆E 3.1 16.1 -2.3 4.8 -6.5 6.2 26.4

AF

3d µz/µx 0.95/0.94 2.06/2.05 3.36/3.38 4.02/4.02 3.26/3.26 2.10/2.09 0.47/0.00
3d Lz/Lx -0.20/0.04 -0.49/0.17 -0.23/0.50 -0.07/0.13 0.12/0.20 0.74/-0.16 0.30/0.00

∆E 0.8 5.7 0.5 -0.2 -4.8 7.9 3.1

for the different orientations of the magnetization. For instance, relatively large spin
and orbital moments µ ≃ 0.6µB and L ≃ 0.25µB are induced at the Pt atoms in FePt
and CoPt FM wires. However, these values are almost independent of the orientation
of the magnetization and, therefore, the MAE remains relatively small (See Table 4.I).

Consistent with that, the large MAE found in the FM arrangement of NiPt is in
agreement with the strong dependence of the local moments of both Ni and Pt on the
directions of the magnetization. In addition, the local contributions to ∆ESO of Ni
and Pt have the same sign and therefore favor the same easy axis. As a consequence,
an exceptionally large value of ∆E is found for this composition. In contrast with
this result is the example of CoPt wires, where ∆ECo and ∆EPt are competing and
the resulting MAE is rather low. It is interesting to analyze the role of the magnetic
polarization of the Pt atoms in this context. For example, in the case of NiPt, one
observes a remarkable difference in the values of ∆E corresponding to a FM and an
AF ordering between the 3d moments. The strong enhancement of ∆E for the FM
case can be interpreted straightforwardly in terms of the additional ESO contribution
of the Pt atoms, since they are magnetically polarized only in the FM configuration.

One observes that the spin moments of Pt are systematically larger for alloy-
ing elements at the end of the 3d series. Similar is the case of the induced orbital
moments, which provide an important contribution to the total magnetization and be-
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come determinant for the MAE. Indeed, the easy-axis of magnetization corresponds
in general to the direction yielding the maximum total orbital moment. In the case of
FePt and MnPt wires the spin and orbital moments of Pt vanish and the anisotropy
is determined only by the 3d component. In this context, it seems questionable to
consider that the MAE originates essentially at the 5d atoms. This analysis shows
that none of the local contributions ∆Eα alone accounts for a complete description of
the MAE of the alloyed wires.

Furthermore, the coupling between the local spin and orbital moments follows
the 3rd Hund’s rule in all ground-state configurations. This means, that the spin and
orbital moments are antiparallel (parallel) for 3d elements below (above) the half-band
filling. However, notice that the orbital moment of the 3d atoms aligns antiparallel
to the spin moment for an in-line magnetization of the FM FePt wire and for a
perpendicular magnetization in AF CoPt wires. This feature indicates that, in these
3d atoms, more complex hybridization effects dominate over the spin SO interactions
alone, which would favor a parallel alignment in accordance with Hund’s third rule.

From these observations, one concludes that not only the 5d element is responsible
of the anisotropic behavior of the alloyed wires, but also, a strong contribution of the
3d element to the development of the MAE is involved. Moreover, the local properties
and consequently the MAE suffer strong changes as a consequence of the different
internal magnetic order between the 3d elements (i.e., FM or AF). From this local
perspective, it would be desirable to investigate the interplay between chemical order,
magnetic ordering and MAE.

4.1.3 Magnetic order and anisotropy of FePtn wires:
3d-concentration dependence

In the context of Sec. 4.1.2, it is worthwhile to investigate the effect of the concentra-
tion of the 3d element on the magnetic behavior of the Pt alloyed wires. In particular,
it would be interesting to analyze how the concentration of 3d-dopants and its mag-
netic order affects, for example, the magnetic polarization of the Pt wire and the
resulting consequences on the development of the MAE. Besides the fundamental dif-
ferences in the electronic structure related to the chemical composition, strong modifi-
cations should also be expected in the equilibrium atomic positions when varying the
concentration of the 3d element. The bond length between 3d neighboring atoms is
in general shorter than that of alloyed 3d-5d bonds, while it is larger for 5d-5d bonds.
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Thus, the resulting structural relaxations can lead to a reduction of the translational
symmetry of the wires (e.g., dimerization) which could have important consequences
on the electronic and magnetic properties (e.g., magnetic order and MAE). In this
context, a systematic study of the magnetic properties as a function of the 3d/5d com-
position which accounts for the diversity of possible internal magnetic orders seems
essential. The case of FePt alloys is of special interest. In the previous section, an
antiparallel arrangement between Fe magnetic moments is found as the ground-state
of ordered FePt wires. Such configuration precludes the magnetic polarization of the
Pt atoms. As a consequence, the Pt atoms do not contribute to the resulting MAE
which is, hence, rather low. The AF order in the FePt wires is surprising since Fe
is a well known ferromagnetic material. Nevertheless, the AF coupling between Fe
moments in ordered FePt wires is consistent with the AF ordering between Fe planes
of the ordered L10 phase of FePt reported by Brown et al. [116]. In the later case, the
AF phase has been found to be extremely sensitive to imperfections in the long-range
chemical order and substitutional disorder. Structural modifications have been also
addressed in this context. These results suggest the existence of a super-exchange-
like interaction between Fe components, mediated by the intermediate Pt atoms. This
could open the possibility of tuning the internal magnetic order and the MAE of the
system by varying the chemical composition. Furthermore, one also expects that FePt
wires could present modifications of the Fe coupling as a function of the chemical or-
der. These observations motivate the present study of FePt nanowires in the low
Fe-concentration regime, in which we specifically analyze the interplay between the
composition, magnetic order and magnetic anisotropy. For this purpose, we consider
ordered FePtn free-standing wires (1 ≤ n ≤ 4) having a fixed interatomic distance of
2.4 Å, which corresponds roughly to the equilibrium value of the pure Pt monoatomic
wire [120]. Self-consistent calculations are performed in the scalar and fully relativis-
tic approximation schemes implemented in the Vienna ab initio simulation package
(See Sec. 3.1). The comparison between both results allows us to quantify the effects
of the SO interaction on the electronic and magnetic properties. As in the case of the
3d-Pt wires studied in the Sec. 4.1.2, the FM and AF coupling between FePtn unit
cells has been considered. To be conclusive it is essential that the orientation and
strength of the spin and orbital moments of the Pt atoms are not restricted by any
prescription in the input of the calculations. Therefore, we do not assume any a priori
magnetization of the Pt atoms. Only the spin moments of the Fe atoms are assumed
to be align in a parallel or antiparallel configuration.
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Structure µFe µPt µT Exc

3.38 0.0 0.0
34.17

3.51 0.69 2.1

3.46 0.39 0.0
40.11

3.47 0.57 1.54

3.36 0.35 0.0

0.0
-12.16

3.38 0.13 0.83
-0.33

3.37 0.40 0.0

0.14
-40.88

3.39 0.01 0.40
-0.72

Table 4.II: Calculated total magnetic moment per atom µT and local spin moments µFe

and µPt in ordered FePtn wires having a fixed interatomic distance of 2.4 Å. Results are
given in µB for AF and FM ordering between Fe moments as illustrated in the figures.
Values for the central Pt sites are displayed in a second line. Energy differences between
the AF and FM configurations Exc = EFM − EAF are given in meV/atom. A negative
(positive) value of Exc implies a FM (AF) ground state.

Magnetic coupling and local properties

We begin the discussion with an analysis of the local properties. In Table 4.II, the
results of scalar-relativistic calculations for FePtn wires (1 ≤ n ≤ 4) are shown.
The figures illustrate the chemical and magnetic order within the wires with arrows
representing the calculated local spin moments µFe and µPt given in the table. The
total magnetization per atom µT and the total energy difference Exc between FM and
AF alignments between FePtn units are also shown.

As discussed in the previous section, a favorable AF coupling between the Fe
moments is found for the FePt wire. The FM arrangement is about 35 meV/atom
above the AF solution. For the AF configuration, the magnetic polarization of Pt is
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quenched by the antisymmetry of the potential at these sites. In contrast, for a FM
arrangement, the Pt atoms develop important magnetic moments of nearly 0.7µB.
In addition, µFe is about 0.13µB larger in the FM case than in the AF one. One
can thus conclude that the energy gained due to magnetic polarization in the FM
configuration (µT ≃ 2.0µB/at) is in competition with an energetically favorable AF
coupling between Fe second nearest neighbors (NNs). In a similar way, for the case
of ordered FePt2 wires, the AF order between the Fe atoms in nearby cells is about
40meV/atom more stable than the FM order. For this composition the Fe atoms
occupy third NNs positions which allows the magnetic polarization of the intermediate
Pt atoms in both FM and AF configurations. The value of µPt ≃ 0.4µB found for the
AF arrangement can be compared with µPt ≃ 0.6µB found for the FM case. These spin
moments are parallel to those of the corresponding Fe NN. Notice, however, that this
Fe-Pt coupling results in an antiparallel alignment between NN Pt atoms in the AF
arrangement of FePt2. As it will be discussed below, this antiferromagnetic coupling
of Pt NNs is likely responsible for the small values of µPt found in this configuration.
Moreover, it is interesting to notice that, already for this chemical composition, the
difference in the local spin moments of the Fe atoms for the FM and AF configurations
is negligible. One can say that the two intermediate Pt atoms are sufficient to avoid
a direct electronic coupling between the Fe atoms.

For the ordered FePt3 wire, the FM coupling between Fe moments at adjacent
cells is 12 meV/atom more stable than the AF arrangement. At this concentration
three Pt atoms separate the Fe atoms. As in the case of the FePt wire, the symmetry
of an AF coupling leads to the suppression of µPt at the central Pt site. Nevertheless,
spin moments µPt = 0.35µB parallel to their NN Fe are induced at the adjacent Pt
atoms. Smaller values (µPt = 0.13µB) are found at these positions for a FM alignment
of FePt3. However, a fairly large spin moment µPt = −0.33µB is found at the central
Pt atom. Notice that this Pt moment is aligned antiparallel to the adjacent Pt and to
the Fe moments. Consequently, the resulting magnetic configuration involves two AF
couplings between Pt NNs per FePt3 unit. Once again, the smaller value of µPt found
at the Pt sites in contact with Fe is probably related to this antiparallel alignment. It
is interesting to notice that the lowest energy configuration (i.e., FM coupling between
FePt3 units) corresponds also to an AF arrangement between second NN Fe and Pt.
Thus, despite the FM coupling between Fe moments, this configuration still shows a
strong tendency to the AF short-range order. Thus, at low Fe concentration, the FM
coupling of Fe enables not only the magnetic polarization but also the antiparallel
alignment of the magnetic moment of the central Pt atom. Moreover, notice that
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the magnetic moments of the adjacent Pt atoms are still parallel to those of Fe, but
its strength is strongly decreased (µPt = 0.13µB) compared to the case of FM FePt
(µPt = 0.69µB) and FePt2 (µPt = 0.57µB). A similar arrangement is found for ordered
FePt4 wires. The FM coupling between Fe moments is established as the ground-state
with 41 meV/atom lower energy than the AF order. The two central Pt atoms couple
ferromagnetically to each other and develop large magnetic moments µPt ≃ −0.7µB.
The magnetization of the adjacent Pt atoms, being aligned to the NN Fe moments, is
quenched to only 0.01µB. Thus, the total magnetization per atom is reduced to only
µT = 0.4µB.

As a general observation, one can conclude that a purely FM configuration, which
would maximize the total magnetization µT , is not favorable in FePt alloy wires at
the studied limit of low Fe concentration. The maximum total magnetic moment per
Fe atom is found for the FM configuration of FePt2. However, this configuration does
not correspond to the ground-state of the wire. In the cases of FePt3 and FePt4, where
the ferromagnetic coupling between Fe dopants is favored, the large antiferromagnetic
moments of the central Pt atoms strongly reduce the total magnetization.Our results
are in good agreement with those obtained by Bezerra-Neto et al. for deposited FePtn
chains on Pt(111) [66].

The local properties and the differences regarding the magnetic order can be
analyzed from the point of view of the local density of states (LDOS). In Fig. 4.2 the
LDOS at the Fe and Pt sites of the FePt and FePt2 wires is shown. Both FM and AF
arrangements between FePtn units are considered. One observes strongly localized
Fe states in both configurations of the FePt wire. In the FM case, the magnetic
moment is completely saturated with the LDOS showing a single peak of majority-
spin states at about 3.7 eV below the Fermi energy εF . A similar peak is found for
the AF arrangement, presenting two additional peaks at slightly higher energies and
a minority-spin orbital lying at εF . The LDOS at the Pt site corresponds, for the
AF configuration, to a non spin-polarized Pt having broader bands between 0.5 eV
and 2.0 eV below εF . At similar energies, the Pt atoms in the FM configuration show
majority-spin and minority-spin orbitals with a relatively large exchange splitting of
about 0.5 eV. The splitting is in accordance with the large values of µPt found for this
arrangement. In the case of FePt2, the LDOS at the Fe sites is almost identical for
both configurations. A single peak is found, as in the case of FePt, at about 3.5 eV
below εF while the minority-states orbitals lie well above εF . This features agree with
the saturated and similar values of the magnetic moments found in both configurations
of this composition. The LDOS of Pt atoms is, in this case, spin-polarized for both



4.1 Magnetic order and anisotropy of 3d-Ptn wires 53

Figure 4.2: Local density of d-states (d-LDOS) at the Fe and Pt sites of FePt and FePt2
wires. Curves are shown for the AF and FM ordering between Fe moments.
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Figure 4.3: Local density of d-states (d-LDOS) at the Fe and Pt sites of a FePt3 wire.
Curves are shown for the AF and FM ordering between Fe moments.

FM and AF arrangements. The exchange splitting is, however, insignificant in the
AF configuration. In fact, the magnetic moment of Pt is mainly a result of the spin
asymmetry of the majority and minority bands. Notice that, in addition, a second
peak emerges in the LDOS of Pt for FePt2 which is absent in the FePt wire. For
the sake of comparison, Fig. 4.3 shows the LDOS of the FePt3 wire. At the Fe sites,
the LDOS remains essentially the same as in FePt2, while for the adjacent Pt atoms
a third peak appears. The exchange splitting is also reduced, as compared the one
found in in FePt2. This is consistent with the observed reduction of µPt. Finally, the
LDOS at the central Pt atom is, as in the case of FePt, non-spin polarized for the AF
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Figure 4.4: Illustration of the internal magnetic order and local spin moments in µB of
ordered FePt16, FePt14 and FePt12 wires.

configuration, while for the FM case it displays a shifting of the majority and minority
spin bands which is opposite to that of Fe. This is correlated with the antiparallel
alignment of the respective local moments.

In order to analyze in further detail the overall magnetic behavior of FePtn wires,
Fig. 4.4 illustrates the internal magnetic order in FePt12, FePt14 and FePt16 wires hav-
ing a FM alignment between Fe impurities. Here, one observes that the alignment of
the Pt moments with respect to the Fe moments switches periodically from FM to
AF as a function of the distance to the Fe atom. The oscillation period is about five
interatomic distances (λ ≈ 12Å). Still, important differences in the local moments
µPt are observed for different numbers of Pt atoms n. In particular, the values of
µPt for Pt atoms located at the same distance respect to the Fe impurity differ for
each composition (see Fig. 4.4). For instance, the Pt atom located at the second NN
position of Fe couples antiferromagnetically with the impurity in all cases. However,
its magnetic moment varies from 0.05µB in FePt14 up to 0.47µB in FePt16. There-
fore, despite the similarity of the systems and the general magnetic arrangement, the
total magnetization per atom µT is largely affected by the composition. Additionally,
the same trend of internal magnetic couplings has been observed in finite systems.
This behavior suggests the presence of Friedel-like oscillations caused by the quantum
confinement of electrons which are scattered by the Fe impurities. The electronic
charge inside the Wigner-Seitz (WS) spheres of the different atoms show oscillations
of the local charge density along the Pt sites. In fact, about 0.2 additional electrons
are found inside the WS volume of a Pt site within FePtn wires as compared to the
case of a pure Pt wire. This difference can be associated with a greater localization
of the electrons near the nuclei. Furthermore, the density oscillations are caused by
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the scattering of delocalized electrons at the impurity potentials. In this sense, the
spin-polarization of the impurity, showing saturated values of the magnetic moment
in the present case of Fe, causes a strong spin dependence on the electron scattering
which results in oscillations of the magnetization density.

Moreover, the perturbation caused by the Fe defects is not restricted to energies
close to the Fermi level. The electronic localization and the hybridizations between
atomic orbitals are expected to modify the energy levels well below εF . Fig. 4.5 shows
the local density of d-states at the different Pt sites of an FePt16 wire (see Fig. 4.4 top).
The corresponding LDOS of a Pt atom within a pure Pt wire is shown for comparison.
At all Pt sites, one observes important changes in the LDOS at energies far below
the Fermi level. Such modifications do not weaken at the most distant sites from the
impurity. Although the band width is not significantly changed, the majority- and
minority-spin bands are affected in different ways resulting in the formation of local
magnetic moments. Furthermore, a relatively low density of states of Pt is found at
about 3.6eV below εF , which corresponds to the energy of the majority-spin band of
the Fe impurity. This feature is an indicative of the strong localization of the Fe d-
states which show only a small hybridization with the neighboring Pt atoms. Instead,
the largest hybridization takes place between the delocalized s and p orbitals near the
Fermi level.

The internal magnetic order of the wires as well as the variations in the values
of µPt can also be described from a local point of view as a competition between
ferromagnetic NN and antiferromagnetic second-NN interactions. Such a situation
can be phenomenologically characterized within a classical Heisenberg Hamiltonian
of the form

H =
∑
i

Hi =
∑
i

[−J0Si · Si+1 + J1Si · Si+2] (4.2)

where Si represents the local magnetic moment of the atom i. In general, the lowest
energy configuration of Eq. (4.2) corresponds to a non-collinear (spin-wave-like) mag-
netic arrangement of the local moments Si in which the magnetization rotates along
the wire axis. However, this behavior is not expected in the case of free-standing Pt
wires given its extraordinarily large magnetic anisotropy and strong tendency to the
non-magnetic state [120]. Instead, one could interpret the variations of the internal
vector product of Eq. (4.2) as a variation on the magnitude of Si. In this sense, the
energy is reduced by the decrease of the local moments rather than by the rotation of
the magnetization.
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Figure 4.5: Local density of d-states (d-LDOS) at the Pt sites of an FePt16 wire (see
Fig. 4.4 top). Subfigures (a)-(h) correspond to Pt positions ordered by increasing distance
with respect to the Fe atom. The dashed vertical line indicates the location of the majority-
spin band of the Fe impurity. The d-LDOS of a Pt atom within a pure Pt wire (full lines)
is shown for comparison.

From the previous observations and analysis, the magnetic arrangement between
Fe impurities is also expected to oscillate as a function of the distance. In this sense,
the coupling would depend on the concentration as well as on the chemical order.
Particularly, at the limit of low Fe concentration, the magnetic coupling between the
dopants is expected to follow the oscillating polarization of the Pt wire.

Magnetic anisotropy

In order to investigate the anisotropic properties and orbital magnetism of the wires
calculations which take into account the spin-orbit coupling (SOC) contribution to
the energy have been performed. The results for MAE ∆E and local orbital moments
Lα of FePtn (1 ≤ n ≤ 4) wires are presented in Table 4.III. Values are shown for
a parallel and a perpendicular orientation of the magnetization with respect to the
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Table 4.III: Calculated local spin and orbital moments µα and Lα (α = Fe,Pt) and total
magnetic moment per atom µT in ordered FePtn wires having a fixed interatomic distance
of 2.4 Å. Values for the central Pt sites are displayed in a second row. Results are given in
µB for an AF and a FM ordering between Fe moments when the magnetization is oriented
along and perpendicular to the wire axis as illustrated in the inset figures. The anisotropy
energy ∆E = Ex − Ez is also given in meV/atom. Negative (positive) values of ∆E

correspond to an in-line (perpendicular) easy-axis of magnetization.

Structure µFe µPt LFe LPt µT ∆E

3.37 0.0 0.21 0.0 0.0
7.34

3.36 0.0 0.07 0.0 0.0

3.48 0.63 0.24 0.27 2.31
7.09

3.48 0.65 -0.20 0.33 2.13

3.42 0.33 0.21 0.17 0.0
-3.64

3.40 0.32 -0.43 0.15 0.0

3.40 0.40 0.25 0.12 1.56
-15.75

3.45 0.53 -0.46 0.25 1.52

3.36 0.33 0.24 0.12 0.0
0.0 0.0 -3.87

3.39 0.44 -0.39 0.24 0.0
0.0 0.0

3.34 0.12 0.24 -0.07 0.87
-0.20 -0.01 -8.95

3.41 0.42 -0.48 0.18 1.11
0.26 0.06

3.40 0.37 0.27 0.12 0.0
0.12 0.08 5.81

3.40 0.41 -0.34 0.18 0.0
0.12 0.02

3.36 0.03 0.22 -0.02 0.40
-0.57 -0.24 21.07

3.39 0.11 -0.35 0.06 0.39
-0.47 -0.25
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wire axis. The MAE is computed as the difference in the total energy of the system
corresponding to these two orientations of the magnetization. Negative (positive)
values of ∆E correspond to an in-line (perpendicular) easy magnetization axis.

In Table 4.III, one observes that the behavior of the internal magnetic order and
local spin moments found in Sec. 4.1.3 is preserved after considering the relativistic ef-
fects. This result is, in fact, not evident. As we will see, the energy differences between
the FM and AF arrangements are comparable with those between the easy and hard
axes of magnetization of a system with the same internal magnetic order. The values
of µFe and µPt are, nevertheless, not significantly modified by the SOC contribution.
The FM configuration of the equiatomic FePt wire lies about 30 meV/atom higher
in energy than the AF ground state. For both magnetic configurations (i.e., FM and
AF) a perpendicular magnetic orientation is energetically favored with a similar value
of ∆E ≃ 7 meV/atom. In addition, large orbital moments are induced at all atomic
sites which are strongly directional dependent. Notice, in particular, the negative
value of LFe for an in-axis magnetic orientation of the FM configuration. In this case,
LFe is in fact antiparallel to the local spin moment µFe. This feature, which represents
a violation of the atomic third Hund’s rule, appears in all considered compositions of
the FePtn (1 ≤ n ≤ 4) wires and will be discussed later in the text.

The AF configuration of FePt2 is nearly 20 meV/atom lower in energy than the
FM state, with both configurations having an in-line easy axis of magnetization. The
MAE of the FM state is, however, about four times larger than that of the AF config-
uration. This difference can be understood in terms of Eq. (4.1) from the variations in
the local spin and orbital moments of the Pt atoms. Notice that the violation of the
third Hund’s rule at the Fe atoms appears for the easy axis magnetization of FePt2.
In fact, the local orbital moment LFe ≈ −0.45µB is antiparallel to the spin moment
µFe for an in-line magnetization of both FM and AF configurations, and thus, in the
magnetic ground state of the wire.

Large differences in µPt and LPt are also present in FePt3. However, the MAE
remains relatively small (∆E < 10 meV/atom) for both FM and AF configurations.
In the FM case, an in-line orientation of the magnetization leads to a ferromagnetic
coupling between all the local moments, including the central Pt site (see inset in
Table. 4.III). This contrasts with the AF coupling found in the absence of SO interac-
tions, which is conserved only for the perpendicular orientation of the magnetization
(see illustrations in Table. 4.II). As a consequence of this ferromagnetic coupling, the
in-line orientation of magnetization allows an enhancement of µPt at the adjacent Pt
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sites which reach µPt = 0.42µB, in contrast to µPt = 0.12µB found for a perpendicular
magnetization. In addition, a slight increase of µFe is also observed. Once again, the
in-line easy axis corresponds to the direction acquiring the largest magnetic moments
in both FM and AF configurations. Furthermore, the parallel coupling of the central
Pt atom found for the in-line magnetization of the FM arrangement significantly re-
duces the energy difference between the FM and AF configurations of FePt3 to only
2.6 meV/atom.

A perpendicular easy axis is found for FePt4 wires. The FM configuration shows
the largest MAE among the considered wires with ∆E ≃ 20 meV/atom. The local
magnetic moments are, nonetheless, comparable with those of the in-line magnetiza-
tion. Similar small differences lead to a MAE of less than 6 meV/atom for the AF
configuration, which is 34 meV/atom less stable than the FM ground-state.

From these observations one concludes that, at the studied low Fe concentration
regime, the composition is not decisive for the MAE of the FePtn wires. Moreover, the
internal magnetic order between the 3d components affects the MAE to a large extent.
Still, a general trend of the behavior of ∆E can not be derived straightforwardly. Fur-
thermore, the results show that relativistic effects do not lead to strong modifications
of the local spin moments and internal magnetic order. However, large local orbital
moments are induced which are strongly directional dependent. In particular, a vio-
lation of the third Hund’s rule at the Fe sites occurs in most configurations whenever
the magnetization is oriented along the axis of the wire. Such atypical behavior has
been previously reported in the literature for VAu4, MnAu4 and VPt3 ordered alloys.
In these cases, the effect has been attributed to spin interactions with the orbits of
neighboring atoms and the interplay between interatomic and intra-atomic interac-
tions. Namely, the SO coupling of the 5d atoms influences, via hybridization of the d
orbitals, the orbital moment of the 3d element causing its reversal [122,123].

The fact that the violation occurs only for an in-line orientation of the magne-
tization is likely associated with hybridizations among orbitals of different symmetry
for the parallel and perpendicular orientations of the magnetization. The anisotropic
behavior of the orbital bonding determines to a large extent the resulting magnetic
anisotropy.
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Table 4.IV: Calculated local spin and orbital moments µα and Lα (α = Fe,Pt) and total
magnetic moment per atom µT in ordered FePtn wires at the equilibrium interatomic
positions. Results are given in µB for an AF and a FM ordering between Fe moments
when the magnetization is oriented along and perpendicular to the wire axis as illustrated
in the inset figures. The equilibrium interatomic distances dFe−Pt and dPt−Pt are given in
Å. Values for the central Pt sites are displayed in a second row. The anisotropy energy
∆E = Ex − Ez given in meV/atom is also shown. Negative (positive) values of ∆E

correspond to an in-line (perpendicular) easy-axis of magnetization.

Structure µFe µPt LFe LPt µT dFe−Pt dPt−Pt ∆E

3.41 0.45 0.24 0.15 0.0 2.30 2.60
-0.52

3.40 0.47 -0.38 0.24 0.0 2.30 2.60

3.36 0.43 0.27 0.07 1.53 2.29 2.63
-15.14

3.41 0.56 -0.42 0.24 1.54 2.29 2.62

3.31 0.36 0.23 0.10 0.0 2.32 2.48
0.0 0.0 -11.63

3.35 0.47 -0.40 0.23 0.0 2.31 2.49
0.0 0.0

3.26 0.18 0.22 -0.01 0.62 2.29 2.50
-0.39 -0.26 -4.75

3.32 0.23 -0.45 -0.00 0.79 2.29 2.51
-0.38 -0.45

3.35 0.38 0.26 0.08 0.0 2.30 2.49
0.08 0.07 2.41 2.38

3.36 0.47 -0.37 0.20 0.0 2.30 2.49
0.11 0.03 2.42

3.30 0.14 0.24 -0.00 0.31 2.30 2.50
-0.65 -0.30 2.40 20.84

3.32 0.21 -0.39 0.06 0.38 2.30 2.49
-0.57 -0.39 2.41
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Effects of structural optimization

To conclude this analysis, Table 4.IV presents the results of electronic calculations ob-
tained performing a self-consistent optimization of the atomic positions. As a general
feature, one observes the expected reduction of about 0.1 Å in the Fe-Pt bond length,
and the enlargement of the Pt-Pt bonds. As a result of the increased Fe-Pt hybridiza-
tion, the values of µPt are enhanced while µFe is slightly reduced. In FePt3 and FePt4,
an increase in the bond distance between the antiferromagnetically coupled central
and adjacent Pt atoms allows the development of larger moments.

The effects of the structure relaxation have an important influence on the energy
relation which concerns the internal magnetic order. After structure optimization,
the AF state of FePt2 is only about 3.5meV/atom lower in energy than the FM
configuration. Similarly, the FM ground-state of FePt3 differs about 4meV/atom from
the AF state. The magnetic properties of the chains do not present strong changes
in FePt2 and FePt4. The differences observed in FePt3 are related with the change
coupling at the central Pt atom.

4.2 Co adatoms on Pt(111): surface coverage, magnetic order
and anisotropy

One of the main challenges to achieve the ultimate high-density limit of magnetic
recording is the realization of nanostructures which are sufficiently stable against ther-
mally activated magnetic fluctuations. In this context, the MAE is the main factor
determining the stability of a magnetic structure. At the nanoscale, the magnetiza-
tion and MAE are not only strongly sensitive to the size, structure and symmetry of
the particle but are also significantly influenced by its coupling with the environment.
For instance, the MAE of a supported nanoparticle can be significantly enhanced as
a result of the electronic hybridization with the substrate of deposition. This kind of
behavior, greatly desirable for magnetic storage applications, is found in a variety of
3d-TM particles deposited at polarizable 5d metal surfaces [19,20,61,66,114,124–126].
A remarkable example is the case of a single Co atom deposited at the Pt(111) surface.
The Co adatom displays an exceptionally enhanced spin magnetization, which is in-
creased beyond its atomic value as a consequence of electronic charge transfer with the
Pt substrate. At the same time, the low atomic coordination allows it to preserve most
of its free-atom orbital moment and develop a perpendicular MAE (i.e., an easy axis
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perpendicular to the surface plane) of about 9.3 meV [20]. Under this perspective,
the use of the particle-substrate interaction as instrument for the further enhance-
ment of the MAE of TM nanoparticles appears as a promising strategy. Moreover,
the substrate can also play an important role on the collective behavior of ensembles
of magnetic nanostructures, e.g., by mediating an indirect exchange interaction be-
tween them. An example of this effect is the RKKY exchange observed among diluted
magnetic particles in nonmagnetic host metals. Indeed, such interaction has been re-
cently studied and experimentally measured for Co adatoms on a Pt(111) [47,48]. It
has been shown that Co adatoms occupy both the fcc and hcp hollow sites of the
Pt(111) surface [47]. An RKKY exchange interaction, which causes the oscillatory
magnetic coupling between adparticles as a function of the distance, is mediated by
an unoccupied Pt surface band [47,48,127]. Furthermore, a single Co atom induces a
large polarization of the surrounding Pt substrate giving rise to an effective magnetic
moment of about 5 µB. This polarization cloud can play an important role on the
magnetic coupling of particles at short distances [60]. In particular, the polarization of
the substrate can introduce an additional exchange between the nanoparticles which
may become essential at higher surface coverages. RKKY interactions and spin-orbit
coupling effects can compete with direct exchange interactions and play an important
role in determining the MAE. The realization of magnetic devices based on supported
TM nanoparticles requires a good understanding of their magnetic interactions in
terms of their basic parameters such as adsorption site and density of particles. From
this perspective, a detailed study which accounts for all particle-substrate interac-
tions becomes essential. The study of ensembles of deposited atoms organized into
regular patterns offers the possibility to investigate the effects of surface coverage and
eventually identify trends which can be extrapolated to more complex systems. Here,
we consider different two-dimensional arrays of Co adatoms and dimers deposited at
a Pt(111) surface and study their fundamental magnetic properties. By varying the
Co adsorption position, local arrangement and surface coverage, the role of substrate-
particle interactions on the exchange-coupling strength, spin and orbital moments and
MAE can be explored and qualitatively estimated.

4.2.1 Computational details

Self consistent electronic calculations have been performed using the VASP computa-
tional code (see Chapt. 3.1). Exchange and correlation effects were treated within the
GGA approximation [85]. In a supercell approach, surfaces are modeled by a crystal
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Figure 4.6: Illustration of the considered adatom positions corresponding to the hcp and
fcc adsorption sites of a Pt(111) surface.

slab defined within a sufficiently large vacuum region which ensures a negligible inter-
action between neighboring cells. The study of isolated deposited particles is restricted
by the periodicity of the cell. However, ordered arrays of adparticles corresponding to
different arrangements and surface coverages can be studied by varying the size and
shape of the supercell. In the present study, a five-layer thick slab was constructed
based on a previously calculated equilibrium lattice constant of bulk Pt a = 3.989 Å,
and vacuum space of 14 Å has been included in the supercell. Co adatoms deposited
on top of the Pt(111) slab surface have been studied. Both fcc and hcp hollows of the
surface are considered as adsorption positions (see Fig. 4.6). In order to avoid a spu-
rious additional polarization of the slab, the adparticles were located only on one side
of the slab. Dipolar corrections have not been included in the calculations. Moreover,
the evaluation of all the integrals within the Brillouin zone have been performed using
a k-point mesh of nk = 5×5×1. An energy cut-off of 450 eV for the plane-wave basis
set has been used. The criterion of total energy convergence was assumed when the
difference between two self-consistent cycles was smaller than 10−6 eV. Furthermore,
the effects of structural relaxation are taken into account by optimizing the atomic
positions of the adsorbed atoms and the two topmost layers of the Pt surface. The
equilibrium positions are found when the calculated force at each atom is less than
0.001 eV/Å. Finally, the MAE of the system has been evaluated in the frame of the
magnetic force theorem [128] as the difference in the total energy corresponding to two
independent non self-consistent calculations corresponding to different orientations of
the magnetization.
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4.2.2 Local properties

We begin this section by discussing the results obtained for Co adatoms at the low-
est considered surface coverages of 1/30 and 1/16. This concentrations correspond
roughly to the experimental situations studied in Refs. [20, 47,48].

For a surface coverage of 1/30, similar values of the calculated local moments are
found for Co adatoms at the fcc and hcp perfect lattice positions of the Pt(111) surface
(µfcc

Co = 2.26 µB and µhcp
Co = 2.25 µB). The hcp site is energetically favorable by an

energy difference Es = Efcc − Ehcp = 23.0 meV. Slightly different values are obtained
for the 1/16 concentration: µfcc

Co = 2.20µB, µhcp
Co = 2.24µB and Es = 15.5 meV. This

difference results from the variation on the substrate polarization due to periodic
boundary conditions imposed on supercells of different sizes. In other words, energy
changes arise as a consequence of the differences in the total magnetization of the
supercell (µT).

Moreover, relaxation of the atomic positions decreases the Co local moments by
about µCo ≈ 0.1 − 0.15µB while it enhances the polarization of the Pt neighboring
surface atoms. Furthermore, structural optimization favors the fcc adsorption site
by Es = Efcc − Ehcp = 2.1 meV. Furthermore, calculated values of the MAE ∆E =

−0.2 meV and ∆E = 4.3 meV for fcc and hcp adatoms respectively show dissimilar
easy-axes.

Similar trends are found for higher Co concentrations. Let us consider Co adatom
configurations corresponding to surface coverages of 1/8, 1/6 and 1/4. Results for
the calculated magnetic moments, MAE ∆E and site adsorption energy differences
Es = Efcc − Ehcp are summarized in Tables 4.V, 4.VI, and 4.VII respectively.

First of all, one observes that the local moment of the Co adatoms remains
essentially unmodified by increasing surface coverage. An enhancement of the spin
moment µCo beyond its free atomic value is found as a result of adatom-substrate
charge transfer. Slightly larger values of µCo are found for adatoms adsorbed at hcp
hollow positions. At the same time, the total magnetization of the systems is enhanced
by increasing surface coverage due to a larger polarization induced at the Pt surface.
Once more, the total moment µT is larger in the case of hcp adatoms.

Furthermore, the values of µCo are reduced when spin-orbit interactions are taken
into account, while large orbital moments LCo ≈ 0.5µB are induced. Magnetic mo-
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Table 4.V: Local (total) spin and orbital moments µCo and LCo (µT and LT) in Co/Pt(111)
for a surface Cage 1/8. Results are given for non-relaxed (upper box) and relaxed (lower
box) structures, with the magnetization lying on (X) and perpendicular to the surface (Z).
Values of the MAE ∆E = EX−EZ and site adsorption energy difference Es = Efcc−Ehcp

are also shown.

fcc X / Z hcp X / Z

µCo = 2.18 µB µCo = 1.77/1.81 µB µCo = 2.19 µB µCo = 1.85/1.86 µB

µT = 2.52 µB µT = 1.86/2.15 µB µT = 2.49 µB µT = 1.96/2.16 µB

LCo = 0.33/0.45 µB LCo = 0.35/0.46 µB

LT = 0.47/0.55 µB LT = 0.50/0.48 µB

Es = −13.2 meV ∆E = −15.5 meV ESOC
s = −9.0 meV ∆E = −20.4 meV

µCo = 2.16 µB µCo = 1.88/1.85 µB µCo = 2.20 µB µCo = 1.92/1.88 µB

µT = 2.85 µB µT = 2.56/2.74 µB µT = 11.58 µB µT = 9.26/9.22 µB

LCo = 0.12/0.23 µB LCo = 0.17/0.28 µB

LT = 0.51/0.40 µB LT = 2.25/1.92 µB

Es = 38.7 meV ∆E = −36.8 meV ESOC
s = −100.2 meV ∆E = −12.1 meV

Table 4.VI: Local (total) spin and orbital moments µCo and LCo (µT and LT) in Co/Pt(111)
for a surface coverage 1/6. Results are given for non-relaxed (upper box) and relaxed (lower
box) structures, with the magnetization lying on (X) and perpendicular to the surface (Z).
Values of the MAE ∆E = EX−EZ and site adsorption energy difference Es = Efcc−Ehcp

are also shown.

fcc X / Z hcp X / Z

µCo = 2.20 µB µCo = 1.86/1.87 µB µCo = 2.24 µB µCo = 2.15/2.15 µB

µT = 2.92 µB µT = 2.56/2.64 µB µT = 3.55 µB µT = 3.47/3.56 µB

LCo = 0.33/0.49 µB LCo = 0.25/0.37 µB

LT = 0.54/0.67 µB LT = 0.66/0.69 µB

Es = 76.8 meV ∆E = 6.3 meV ESOC
s = 52.7 meV ∆E = 14.4 meV

µCo = 2.18 µB µCo = 1.83/1.78 µB µCo = 2.20 µB µCo = 1.96/1.94 µB

µT = 8.98 µB µT = 7.43/7.40 µB µT = 9.30 µB µT = 7.79/7.89 µB

LCo = 0.14/0.28 µB LCo = 0.16/0.19 µB

LT = 1.68/1.56 µB LT = 1.74/1.53 µB

Es = 11.7 meV ∆E = −1.0 meV ESOC
s = −26.1 meV ∆E = 8.1 meV
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Table 4.VII: Local (total) spin and orbital moments µCo and LCo (µT and LT) in
Co/Pt(111) for a surface coverage 1/4. Results are given for non-relaxed (upper box)
and relaxed (lower box) structures, with the magnetization lying on (X) and perpendicular
to the surface (Z). Values of the MAE ∆E = EX−EZ and site adsorption energy difference
Es = Efcc − Ehcp are also shown.

fcc X / Z hcp X / Z

µCo = 2.18 µB µCo = 1.77/1.80 µB µCo = 2.23 µB µCo = 2.09/2.09 µB

µT = 4.69 µB µT = 3.73/3.93 µB µT = 5.05 µB µT = 4.31/4.43 µB

LCo = 0.33/0.45 µB LCo = 0.23/0.35 µB

LT = 0.95/0.91 µB LT = 0.94/0.87 µB

Es = 80.2 meV ∆E = −8.4 meV ESOC
s = 52.0 meV ∆E = −11.5 meV

µCo = 2.16 µB µCo = 1.84/1.83 µB µCo = 2.19 µB µCo = 1.92/1.85 µB

µT = 5.64 µB µT = 1.04/0.86 µB µT = 7.22 µB µT = 6.0/5.94 µB

LCo = 0.10/0.20 µB LCo = 0.19/0.25 µB

LT = 1.04/0.86 µB LT = 1.43/1.18 µB

Es = −3.9 meV ∆E = −16.1 meV ESOC
s = −50.5 meV ∆E = −15.0 meV

ments are, in general, slightly larger for a perpendicular (Z) orientation of the mag-
netization.

Moreover, an enhancement of the total orbital moment µT is observed for in-
creasing surface coverage. The increment is, however, lessen after the relaxation of
the structure, which causes a strong overall enhancement of the induced Pt polar-
ization and therefore of the total magnetization µT and LT. This effect is the result
of a larger Co-Pt hybridization, since the Co adatom is found closer to the surface
after structural optimization. In contrast to this, the local orbital moment of the Co
adatoms are reduced.

Finally, one observes strong fluctuations of the calculated values of ∆E and
Es, in particular, when comparing results for different sizes of the supercell. These
variations are mostly a result of large differences in the total magnetization µT, which
are consistently overestimated for high surface coverages due to the finite thickness
of the slab used to model the surface. These deviations represent an indication of the
critical dependence of the magnetic properties on the atomic environment. Although
this inconsistency prevents us to provide a quantitative picture of the effects of surface
coverage on the MAE, one can generalize a qualitative trend. In particular, the strong
tendency towards ferromagnetism at all surface coverages, displaying enhanced spin
and orbital moments for Co as well as for Pt.
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CHAPTER 5

Tuning substrate-mediated exchange interactions
between TM impurities in Cu(111) by means of

external surface charging

One of the main interests concerning modern device engineering is the development
of methods to control the magnetic state of nanoscaled materials. The use of external
electric fields (EFs) for the reversible tuning of the intrinsic magnetic properties is
currently a most active research area in this context. [129–137] Important advances
have been recently achieved in this field. A noteworthy example is, for instance, the
electrical manipulation of ferromagnetism in a Mn semiconductor alloy demonstrated
by Ohno et al. [133] In this system, valence-band holes are responsible of mediating a
ferromagnetic exchange interaction between the localized moments of the Mn atoms.
The electric field modifies the concentration of charge carriers inside the semiconduc-
tor, thereby allowing the tuning of the ferromagnetic-state transition temperature. In
a similar way, Chiba et al. succeeded to control the magnetization vector (i.e the mag-
nitude as well as the orientation of magnetization) of a metal-insulator-semiconductor
structure [131].

69
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Recently, the effects of EFs on metallic systems have been explored. It is well
known that EFs are effectively screened, within an atomic length scale, by the con-
duction electrons at the surface of a metal. Despite the minimal screening length, the
charge density redistribution induced by an external field can significantly influence
the surface electronic structure [138–141].

In the case of magnetic transition metals (TMs), the charge redistribution caused
by the EF is likely to affect the unpaired d-electron states close to the Fermi energy
which are responsible of itinerant-electron magnetism. As a consequence, the spin-
dependent screening of the EF can induce substantial modifications of the magnetiza-
tion and magnetic anisotropy energy [141]. Outstanding examples of this effect have
been reported, for instance, in ultra-thin ferromagnetic films [135,142–144].

In this context, similar manipulations have been achieved experimentally by ap-
plying a voltage through a liquid-electrolyte in contact with the metal surface. The
formation of an electrolytic-charge double layer above the metallic surface allows to
exert rather high EFs by applying relatively low voltages. Using this method, Shi-
mamura et al. [137] attained a modification of up to 100K in the Curie temperature
of Co ultra-thin films using gate voltages in the range of ±2V . By similar means,
the reversible tuning of the MAE of FePt and FePd thin-films has been successfully
achieved [136]. From a theoretical perspective, calculations performed by Ruiz-Díaz
et al. show that the MAE and even the easy-axis of magnetization of Fe-Pt multilay-
ers can be tuned by surface charging [145]. Similarly, a study of Gong et al. reveals
a large reduction of the magnetic moments and MAE of an Fe monolayer caused by
its deposition on graphene, which is lifted by introducing an excess of charge in the
system [147].

In supported nanoparticles the EF can lead to modifications of the electronic
coupling between the particles and the substrate, which further influence their mag-
netic properties. A notable theoretical study performed by Hu et al. revealed that the
substrate induced spin reorientation of a Fe-phthalocyanine molecule on O-Cu(110)
can be controlled by means of an applied EF [148]. The importance of the substrate
has been also pointed out for Ag and Ni supported manganese dimers, [23] and in
gold atoms and NO2 molecules on graphene [149]. In this context, the EF control of
the structure and deposition patterning of ad-particles on graphene and MgO films
has been theoretically addressed [149,150].

Besides the modification of the intrinsic magnetic properties, another promising
application of EFs has been illustrated by Fechner et al. [151]. Their theoretical study
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shows the possibility of switching the relative orientation of magnetization of two
Fe layers in a Fe/Au/Fe trilayer, which is the result of a Ruderman-Kittel-Kasuya-
Yosida-like (RKKY) interactions between them. An external EF is used to induce the
polarization of a ferroelectric material in contact with one of the external Fe layers,
which causes a spin-dependent screening of charge at the interface. The resulting spin
asymmetry modifies the phase and amplitude of the Au mediated RKKY interactions
controlling the exchange coupling between the Fe layers. This opens new exciting pos-
sibilities of EF controlled magnetic coupling, since the RKKY interactions are found
in a variety of layered systems [42, 152, 153] as well as between magnetic particles
deposited at metal surfaces [17,25,32–34,42,47,48,152–156]. In the later case, an in-
terparticle magnetic exchange coupling is mediated by surface-state electrons, which
are located precisely in the surface region, where significant charge redistributions are
expected to be induced by external EFs. Although the strength of these interactions
is rather weak, of the order of few meVs, they have a strong influence on the growth
and relative magnetic ordering of nanostructures at low temperatures [26, 27, 33, 46].
Furthermore, interesting modifications in the dispersion relation of the surface states,
which involve modifications of the effective electron mass and Fermi wavevector, have
been revealed by theoretical investigations on the effect of EFs on the Cu(111) sur-
face [138–140]. Such changes are expected to have consequences on the scattering of
these surface electrons, which can affect the RKKY interactions between deposited
particles [33]. It is therefore of considerable interest, to investigate the possibility
of manipulating interparticle magnetic interactions by tuning the surface electronic
density of a noble metal surface.

In the present study, we consider the case of substitutional Co and Fe atomic
impurities at the Cu(111) surface and investigate the modifications of the substrate-
mediated magnetic interaction as a result of an external-charge gathering at the in-
terface. This study intends to simulate the behavior of the system when immersed
in a liquid electrolyte, used as an insulating ionic layer, where an electrolytic-charge
accumulation at the surface can be induced and controlled by applying an external
voltage. In the present work, such situation is modeled by introducing an overlayer
of point charges q on top of a Cu(111) surface.

The difficulties of modeling real metal/electrolyte systems by first principles tech-
niques have been discussed in the literature. A recent survey on this matter can be
found, for instance, in Ref. [158]. It is true that the present model overlooks the
possible effects associated to the binding and adsorption energies of the electrolyte
ions accumulated on the surface. Nevertheless, for the purpose of this study, the sim-
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plification of the electrolyte ions as a sheet of fixed point charges of varying value q
can be justified by the fact that the adsorption energy and position of the ions are
approximately independent of the strength of the applied electrode potential [158].
Notice that an influence of the charge and adsorption energy of the ions on the surface
reconstruction has been reported for some metal-electrolyte interfaces [159–162]. Still,
the possible structural changes of the surface caused by ion adsorption are beyond
the scope of the present investigations.

In a real metal-electrolyte system, the accumulated external charge depends on
the ion coverage of the metal surface, which is distributed over several layers above the
surface. In our model we assume for simplicity that the surface charges are located at
a single layer just above the surface. This is not expected to be a serious limitation as
long as the distribution of charge is uniform within the surface, since the electric field
generated by a uniform planar density is independent of the distance to the plane.
Moreover, the Coulomb forces exerted by a large electrolytic-charge accumulation
adsorbed at the surface cause the formation of a diffuse additional layer of opposite-
charge electrolyte-ions, which constitutes the so called electrical double layer. In
order to evaluate the possible effects of this phenomenon, we have performed test
calculations considering a second charge overlayer consisting of point charges of value
−q located at the atomic layer above the surface. The results show that the electronic
structure of the surface is not significantly affected by the presence of the additional
overlayer. Therefore, in the present investigation, we have considered the effect of
a single overlayer of external charges on the modification of the substrate-mediated
interactions as a result of the metallic screening and charge rearrangements at the
surface and impurity sites.

5.1 Computational details

Density-functional calculations of the magnetic exchange couplings between Co and
Fe atomic surface impurities have been performed using the Green function (GF)
Korringa-Kohn-Rostoker (KKR) method described in Sec. 3.2. Exchange and correla-
tion effects are treated in the local spin-density approximation (LSDA) [84]. In all cal-
culations, the atomic positions remain fixed to the bulk Cu crystal structure having the
experimental lattice constant a = 3.615 Å. The surface has been modeled by replacing
the ion potentials of a six-layer-thick Cu(111) slab with vacuum spheres. The sepa-
ration distance between the resulting two half-crystals is thus large enough to avoid
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Figure 5.1: Schematic diagram of the surface model. Impurities (dark spheres) and external
overlayer charges (plus signs) are also depicted.

any significant electronic interaction between them. Impurities occupy atomic sites
in the top-most layer of the Cu(111) surface [164]. The overlayer of external charges
simulating the effect of the electrolyte is modeled by point charges q located at the
perfect lattice positions of a crystal layer just above the Cu(111) surface [see Fig. 5.1].
In other words, the external charges are located at the atomic positions of an idealized
Cu-crystal layer above the surface. Values of q in the range −0.5 ≤ q/e ≤ 0.5 have
been considered for the calculations. Moreover, notice that these overlayer-charges
are treated as external potentials and are therefore not involved in the self-consistent
redistribution of electronic density [42,101,138,152,153,165].

Self-consistent calculations have been performed for ferromagnetic (FM) and an-
tiferromagnetic (AF) alignments between two impurities, for inter-impurity distances
r corresponding to all lattice positions up to eleventh nearest neighbors (NNs) on the
Cu(111) surface. The exchange interaction energy is then obtained from the difference
∆E = EFM − EAF between the corresponding total energies.

5.2 Results

5.2.1 Clean surface

Before discussing the effect of external surface charges on the magnetic behavior of
the impurities, it is interesting to analyze the changes taking place in the electronic
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structure of the clean surface. For a clean Cu(111) in the absence of external charges,
a spill-off of electronic density of about 0.2 electrons per atom is found in the vacuum
region above the surface. A charged overlayer having q < 0 causes the depletion
of up to 75% of this interface charge density, which is pushed into the bulk crystal.
The topmost layer of Cu(111) is also affected by the EF generated by the external
charge, which shifts part of the electron density towards deeper layers. A reduction of
charge of 0.3 electrons, is observed at the Cu surface atoms for the largest considered
q = −0.5. On the contrary, external charges q > 0 shift about 0.4 electrons per surface
atom towards the vacuum (for q = 0.5). In this case, the amount of charge at top
most layer of Cu(111) is almost unaffected.

Important changes are also found in the electronic structure. Fig. 5.2 shows
the local density of s and p states at the top-most layer of the Cu(111) surface.
The black line corresponds to the LDOS in the absence of external charges. A step
feature is observed at about 0.5 eV below the Fermi energy εF , which is consistent
with the onset of the surface-state band. As shown in Fig. 5.2, strong modifications
of this characteristic profile are induced by the presence of external surface charge.
The dotted (dashed) curves demonstrate the modification of the LDOS caused by
increasing negative (positive) values of the overlayer external charge for |q| ≤ 0.5.
One observes that negative surface charges enhance the step feature, progressively
shifting it towards higher energies as |q| increases. In fact, for the smallest considered
value of q = −0.1, the step is near the Fermi level, while it is shifted well beyond
εF already for q < −0.2. Additionally, a peak in the local density of s states arises
at about 1.5 meV below εF . This peak is also observed in the absence of charge and
softened for q > 0. Thus, it should not be related to the formation of a new localized
electronic band.

In general, positive surface charges affect the LDOS to a much lower extent.
However, notice that any trace of the surface band vanishes for all considered values
of q > 0. Furthermore, one observes that the density of s (p) states below εF is
reduced in the presence of positive (negative) external charge. These results indicate
that surface charging should dramatically affect the substrate-mediated interaction
between impurities.

Finally, in order to assess the possibility of structural modifications induced by
such accumulation of external charge density at the surface, we have performed a
few test calculations on a five-layer Cu(111) slab using VASP (see Sec. 3.1). Self-
consistent structural optimizations of the two topmost layers of the surface have been
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Figure 5.2: Local density of s and p states at the topmost layer of the Cu(111) surface.
Dotted (dashed) lines correspond to increasing negative (positive) values of the overlayer
external charge |q| = 0.1, 0.2, 0.3, 0.4 and 0.5.

performed for a neutral system and in the presence of a negative (positive) charge
unbalance of q ± 0.3 electrons per surface atom. In this case, the charge doping
is controlled by adding (removing) valence electrons to the neutral system (see for
instance Refs. [145,163]). After self-consistency is achieved, the additional or missing
charge remains essentially near the Cu surface. The resulting structural relaxations
are found to be small and nearly identical for the three considered systems. Therefore,
we do not expect important external-charge induced changes in the surface structure
for the values of overlayer charges q considered in this study.

5.2.2 Single impurity

It is instructive to begin our analysis discussing the magnetic behavior of a single
impurity. In the absence of overlayer charge, the calculated magnetic moment of
a surface substitutional Co impurity in Cu(111) is µCo = 1.35µB, while for an Fe
impurity it is µFe = 2.80µB. These magnetic moments are largely affected by the EF
generated by overlayer charges. Fig. 5.3 shows the values µCo and µFe as a function of
the overlayer charge q. As in the case of the clean surface, for an overlayer of negative
charges q < 0, the repulsive electrostatic potential displaces the electronic charge away
from the surface into the Cu bulk, causing a reduction of the number electrons at the
Co or Fe atom. The redistribution of charge density at the impurity sites concerns
mainly the higher energy minority-spin states. It therefore leads to an enhancement of
the impurity magnetic moments [146]. As |q| increases (q < 0) a monotonous increase
of µCo and µFe is observed reaching µCo = 1.95µB and µFe = 3.24µB for q = −0.5 [see
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Figure 5.3: Calculated local magnetic moments at a single substitutional impurity as a
function of overlayer charge q [146]. The left (right) scale corresponds to Co (Fe).

Fig. 5.3]. For this value of q, the number of electrons at the impurity site is reduced
by about 0.3 to 0.4 electrons which causes an enhancement of 0.6µB and 0.4µB in
the magnetic moment of Co and Fe respectively. It should be however noted that the
decrease of electronic density and magnetic moments does not follow a linear behavior
as a function of q. For instance, an overlayer charge q = −0.1 displaces only about
0.03 electrons from the Co impurity, enhancing µCo by less than 0.01µB with respect
to the neutral system. In contrast, increasing |q| from q = −0.2 to q = −0.3 implies
that the number of electrons inside the Co atomic sphere is reduced by nearly 0.1 and
that µCo increases by about 0.17µB. A similar behavior is observed for Fe impurities.

The reason for the generally weak effect of small values of |q| on the surface
atoms, is probably related to the natural spill out of the surface electron density into
the vacuum. As discussed in Sec. 5.2.1 for the neutral system, about 0.2 electrons per
atom are found in the volume outside the atomic spheres of the surface. These are
basically the electrons that are first displaced in order to screen the EF. Consequently,
the orbital occupations at the impurity sites are not much affected for small q. It is
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Figure 5.4: Local density of d-states at a surface substitutional Co impurity in Cu(111)
[146]. The left (right) subfigure corresponds to negative (positive) surface charge per atom
q, as indicated in the insets.

only for larger values of |q| that a significant electron-density depletion at the impurity
and surface atoms occurs.

For positive overlayer charge q > 0, one observes a slight reduction of the impurity
magnetic moment. The effect is, however, far less important than for q < 0. For
instance, µCo = 1.25µB and µFe = 2.74µB for the largest considered overlayer charge
q = 0.5. In fact, the attractive potential corresponding to q > 0 shifts the electronic
density outside the surface by keeping the uppermost metal layer, where the magnetic
impurities are located, essentially neutral.

The previous results can be understood by analysing the effects of the charge
overlayer on the local DOS at the impurity site. Fig. 5.4 shows the local density of
d-states at a surface substitutional Co impurity for different values of q. For q < 0

(Fig. 5.4 left) a shift is observed in both majority-spin and minority-spin bands. Near
the Fermi level, the minority-spin band is progressively shifted towards higher energies
for increasing values of |q|. The electronic occupation of this band is thereby reduced,
resulting in the observed enhancement of the local magnetic moment. For a small
value of overlayer charge (q = −0.1) the majority-spin band is, as in the case of
the minority-spin band, slightly shifted towards higher energies. On the contrary,
stronger EFs q < −0.1 displace this band towards lower energies. This difference
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is probably related to the non-linear behavior observed in the enhancement of the
magnetic moments, which is lower for small values of q. The opposite displacement
of the majority and minority spin bands for q < −0.1 results in a larger exchange
splitting which further increases the local moment. The behavior observed for q > 0

(Fig. 5.4 right) is remarkably different. Even for the largest considered value of q = 0.5,
both majority-spin and minority-spin bands remain almost unmodified. The slight
reduction of the local magnetic moments is probably related to the small decrease of
the density of states.

As we shall see later, the changes in the magnetic moments are very important
for the magnetic coupling between impurities. On one side, for large inter-impurity
distances, the changes in the magnetic moment of the impurities modify the spin-
dependent scattering potential of the surface electrons, which mediate the interactions
among the magnetic 3d atoms. One the other side, at short inter-impurity distances,
the depletion of charge density induced by the EF can lead to significant modifications
of the direct hybridizations, for example, between NN impurities [146]. At such short
distances, the direct electronic hybridizations generally results in further modifications
on the local magnetic moments. In contrast, at larger impurity separations, beyond
second NNs, the local magnetic moments have essentially the single-impurity values
(see Fig. 5.3).

5.2.3 Magnetic exchange interactions

In order to investigate the effect of overlayer charges on the relative magnetic coupling
between impurities, Fig. 5.5 shows the calculated effective exchange interaction energy
∆E = EFM−EAF between two Co impurities as a function of their separation distance
r, for different values of overlayer charge q per surface atom. Negative (positive) values
of ∆E imply that a FM (AF) alignment of the impurity moments is favored. The
results for Fe impurities are shown in Fig. 5.6. Notice that the values of r correspond
to the different substitutional impurity positions at the Cu(111) surface. They are
the same in Figs. 5.5 and 5.6, whereas the ranges of ∆E differ.

Let us first discuss the behavior of ∆E in the absence of external charge, which
corresponds to the dotted lines in Figs. 5.5 and 5.6. Although the strength of the in-
teraction |∆E| differ, the results for Co and Fe impurities display the same oscillatory
form, which is characteristic of RKKY-like interactions due to conduction electrons.
The similarity of the oscillations for both TMs indicates the common substrate-
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Figure 5.5: Exchange interaction energy ∆E = EFM − EAF between two Co impurities
at the Cu(111) surface as a function of the Co-Co distance r [146]. The upper (lower)
subfigure corresponds to negative (positive) surface charges per atom q. The considered
absolute values of q are indicated in the inset. Note that the values of ∆E for NNs
(r = 2.55) have been multiplied by a factor 0.2. The lines connecting the points are a
guide to the eye.

mediated interaction mechanism [146]. In the present case, where the TM atoms
occupy sites within the topmost layer of Cu(111), both surface and bulk electrons me-
diate the interaction between the impurities [32,33,155–157]. Therefore, the observed
oscillation wavelength (≃ 2.5Å) lies in-between the values 1.7 Å and 14.5 Å expected
for bulk impurities and surface adatoms respectively [44]. In the former case, bulk
electrons are responsible for the exchange interactions, while in the latter case only
surface electrons mediate the long-range magnetic coupling. Notice that the actual
decay of the interaction amplitude differs from the 1/r2 and 1/r5 behaviors, which are
typical of surface adatoms and bulk impurities [44]. In this sense, one can expect that
at short inter-impurity distances r the contribution of the bulk-electrons dominates
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Figure 5.6: Exchange interaction energy ∆E = EFM−EAF between two Fe impurities at the
Cu(111) surface as a function of the Fe-Fe distance r [146]. The upper (lower) subfigure
corresponds to negative (positive) surface charges per atom q. The considered absolute
values of q are indicated in the inset. Note that the values of ∆E for NNs (r = 2.55) have
been multiplied by a factor 0.2. The lines connecting the points are a guide to the eye.

the magnetic exchange, while at larger distances the behavior will be predominantly
determined by the scattering of the surface electrons. In any case, it should be re-
called that the wavelength and decay law of the interactions should be evaluated in
the asymptotic large distance regime, at much larger inter-impurity distances than
those considered in this study.

In order to analyze the effects of the external charge overlayer on ∆E it is mean-
ingful to distinguish two ranges of inter-impurity distance r: large separations, beyond
fourth NNs (r & 7 Å) where the magnetic exchange couplings are mediated by delocal-
ized electrons, and short separations, where direct hybridizations involving localized
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orbitals also play an important role. The calculated values of ∆E for large (short)
inter-impurity distances are shown in Figs. 5.5 and 5.6 on the right (left) subfigures.

Independently of the value and polarity of the overlayer charge q, the RKKY-like
oscillations of ∆E are still present at large distances. While the oscillation wavelength
remains essentially as in the neutral surface, the strength of ∆E is significantly mod-
ified in various ways depending on the polarity of the external charge and on the
impurity atom (Co or Fe). For instance, positive q causes an enhancement of |∆E|
with respect to the neutral surface, particularly in the case of Fe. For q < 0, |∆E|
is in general reduced for Co impurities, while it is enhanced in the case of Fe (See
Figs. 5.5 and 5.6). A detailed observation of the behavior of |∆E| as a function of
|q| (Fig. 5.6) reveals that for small values of |q| < 0.3 the strength of the interaction
is, in fact, reduced. It is only for q ≤ −0.3 that |∆E| increases. Moreover, notice
that negative (positive) external surface charges enhance the magnetic interaction at
short (large) inter-impurity distances. For large r, the modifications of ∆E can be of
the order of 10 meV. Furthermore, one observes that external surface charges q > 0

enhance FM as well as AF couplings for both TM impurities, while charges q < 0 do
not significantly enhance FM interactions for any of them.

The effects of overlayer charging on the magnetic interactions become clearly
stronger as the distance r is reduced. For example, if the impurities occupy any of the
first four nearest neighbor (NN) positions, positive q can enhance |∆E| by more than
10 meV in the case of Co impurities, and even by 40 meV in the case of Fe third NN
pairs (r = 5.11Å). The largest changes in |∆E| are generally found already for q = 0.3

in Co and for q = 0.4 in Fe. For certain distances, varying the external charge q can
result in a change of sign of ∆E which enables the tuning of the magnetic coupling
from FM to AF or vice versa. One example of this switching is found for third NN
impurities (r = 5.11 Å) where q < 0 favors a FM alignment for both TMs (see Figs.
5.5 and 5.6). A similar switching of the magnetic coupling is obtained at other inter-
impurity distances r by changing the sign of q. See for example, for Co impurities
at distances r ≃ 6.8 Å and r ≃ 11.1 Å in Fig. 5.5. In these cases, the coupling
is FM (AF) for q ≥ 0 while it is weakly AF (FM) for q < −0.1. Additionally, a
remarkable non-monotonous dependence of ∆E on q is observed at several distances.
For instance, the third NN Fe coupling in Fig. 5.6, which is weakly AF for q = 0,
changes first to strongly ferromagnetic for small q < 0 (∆E ≃ −12 meV for q = −0.2)
and finally returns to strongly AF for q = −0.5 (∆E ≃ 18 meV). These results
are quite remarkable. They demonstrate the possibilities of tuning the magnetic
interaction between surface impurities by means of external electric fields.
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Figure 5.7: Exchange interaction energy ∆E = EFM − EAF of Co and Fe substitutional
impurities at the Cu(111) surface as a function of the surface charge per atom q [146]. The
subfigures (a)-(e) correspond to different impurity positions ordered by increasing distance
as illustrated in the insets. Notice that the left (right) energy scale correspond to Co (Fe).

In Fig. 5.7 the exchange interaction energies ∆E between two Co impurities
and between two Fe impurities are given as a function of q for impurity pairs at the
different positions illustrated in the insets.

The calculated values of |∆E| are generally greater for Fe due to its larger mag-
netic moment. Similarly, the modifications induced by the overlayer charges are also
stronger in the case of Fe. Yet, the general behavior of ∆E as a function of q is com-
parable for both transition metals (TMs), in particular at the shortest inter-impurity
distances. The results corresponding to impurities at NN positions are shown in
Fig. 5.7(a). At this distance (r ≃ 2.55 Å) the direct electronic hybridization between
the impurities is very strong and dominates their interaction. The absolute values
of ∆E are, therefore, about one order of magnitude larger than for any impurity
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pair at larger distances [146]. The overlayer charge affects significantly the magnetic
exchange, since it controls the displacement of electronic density around the impuri-
ties. As a consequence, the orbital occupations near the Fermi energy are modified,
thereby changing the spin-polarized density distribution and the TM hybridizations,
which ultimately determine the coupling.

Modifications to ∆E of the order of 1 eV are indeed achieved for NN impurities
when surface charging is in the range −0.3 < q < 0.3. As in the case of a single
impurity, the most important possibilities of tuning the magnetic interactions are
obtained by negative values of q. An illustrative way to analyze the behavior of ∆E
for NN impurities is to consider their interaction energy Eint for different magnetic
orders, which is defined as the total energy difference between a substitutional dimer
and two isolated surface impurities: Eint = Ed − 2Es, where Ed is the total energy
of the dimer-at-surface complex and Es the total energy of a single substitutional
impurity. According to this, values of Eint < 0 indicate that the dimer formation is
energetically favorable. In Fig. 5.8 Eint is shown for the FM and AF arrangement of a
NN Co dimer as a function of q. For q = 0, both magnetic configurations of the dimer
are stable. The binding energy is, however, about one order of magnitude larger for the
FM state. The calculated local magnetic moment of the Co atoms in a ferromagnetic
NN dimer is µCo = 1.45µB (q = 0). This value is enhanced up to µCo > 1.7µB for a
negative overlayer charge q ≤ −0.3. Accordingly, an increase of about 80 meV in |Eint|
is observed for the FM dimer (see Fig. 5.8). A contrasting behavior is found in the
case of antiferromagnetic order. For the AF state the local moments are much smaller:
µCo = 1.24µB for q = 0. Here, already the smallest considered value of q < 0, causes an
enhancement of the local spin moments which destabilizes the AF dimer significantly
(Eint ≈ 0.0). On the contrary, positive values of q induce a slight reduction of the local
magnetic moments at the Co atoms irrespectively of the magnetic order. The change
is in fact more pronounced in the AF configuration. Although the effect is far less
important than for q < 0, the binding energy is slightly enhanced for both magnetic
configurations (see Fig. 5.8). From this perspective, one conclude that the results for
∆E [Fig. 5.7(a)] are essentially dominated by the large change in the binding energy
of the FM configuration. The ferromagnetic coupling between NNs is, thus, strongly
stabilized for q < 0, being maximal at q = −0.3, while it is only slightly strengthened
for q > 0.The behavior observed in Fig. 5.7(a) for Fe can be explained in a similar
way by the changes of µFe and Eint.

The enhancement of the local spin moments for negative q can be understood
as in the single impurity case. Beyond a certain threshold (typically |q| ≥ 0.3) the
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Figure 5.8: Interaction energy Eint between Co NN impurities as a function of overlayer
charge q [146].

EF generated by the q < 0 overlayer charges causes a significant depletion of the
electronic density at the surface layer. Thus, there are states near the Fermi energy
which become unoccupied. At the impurity sites, these states involve local minority-
spin orbitals. Therefore, an enhancement of the impurity spin moments follows in
both the FM and AF configurations. The local DOS of d-electrons at a Co atom in a
ferromagnetic NN dimer is shown in Fig. 5.9. Here, one observes that for q < 0 the
majority-spin states are shifted towards lower energies, as compared to the neutral
case (dotted line). At the same time, the minority-spin band becomes narrower and
is shifted towards higher energies. In particular, one observes a splitting into bonding
and anti-bonding orbitals [166], for which the level rearrangements occur in a different
way. The bonding orbitals located at lower energies suffer a stronger shift of about
0.6 eV, while the antibonding states shift by about 0.3 eV. The latter smaller change
in the position of the antibonding subband suffices for it to cross the Fermi energy and
become unoccupied. Moreover, the opposite shifts of the majority- and minority-spin
bands increase the magnetic exchange splitting, thus explaining the enhancement of
the local magnetic moment. For q > 0, the majority- and minority-spin bands show a
slight displacement towards lower energies and a decrease of intensity. These changes
in the DOS are related to the enhancement of |Eint| found for q > 0. Notice that the
FM bonding and antibonding orbitals are similarly affected. Here, the local magnetic
moments are not significantly modified. Similar changes in the local DOS at the
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Figure 5.9: Local Co d-electron DOS of a FM dimer [see inset of Fig. 5.7(a)]. Results are
given for overlayer charges (a) q = −0.3 and (b) q = 0.3. The corresponding DOS at the
neutral surface (q = 0) is also shown (dashed curves) [146].

corresponding Co sites of the AF dimer explain the enhancement of the local moment
and the destabilization of this configuration.

In summary, the depletion of electronic density induced by the overlayer charge
at the impurity sites strongly affects the spin polarized density distribution and the
TM hybridizations, which determine the exchange coupling between magnetic impu-
rities at NN positions (dimers). At larger inter-impurity distances r (e.g., beyond
second NNs) the direct electronic hybridizations between the impurities are no longer
relevant. The local DOS at the impurity sites is not significantly affected by the rel-
ative magnetic coupling between the impurity moments. Hence, the local magnetic
moments at the TM atoms are close to the single-impurity values (see Fig. 5.3). A
different microscopic mechanism is found to control the exchange energy ∆E between
second and third NN atomic impurities. At these intermediate distances, the surface
Cu atoms located between the impurities play the central role. In fact, the overlayer
charge modifies the local electronic structure of these Cu atoms, which result in most
remarkable changes in ∆E including the switching from FM to AF alignment of the
impurities and vice versa.
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In Fig. 5.7(b), results are given for ∆E between second NN impurities as a
function of the overlayer charge q. For q < 0 one observes that the FM coupling
is preserved and even slightly enhanced by small values of |q|. See for example the
results for q = −0.1 and −0.2 for Co pairs and q = −0.1 for Fe pairs. However, a
remarkable non-monotonous dependence of ∆E on q is observed for larger |q|. The
initial decrease of ∆E is followed by a rapid increase for stronger surface charges
q < 0, which implies a strong destabilization of the FM state. The changes in ∆E are
of the order of 20 meV (30 meV) for Co (Fe) impurities. Positive overlayer charges
q > 0.2 also tend to reduce the strength of the FM coupling. In sum, for the second
NN dimer geometry, both overlayer-charge polarities preserve the FM alignment of the
impurities (∆E < 0), although the strength of the effective exchange coupling |∆E|
is drastically reduced for |q| ≥ 0.3. In contrast, for impurities at third NN positions
[Fig. 5.7(c)] negative overlayer charges destabilize the AF alignment and lead to a
switching of the magnetic coupling. On the other side, for q > 0 the AF coupling is
enhanced by about 10 meV for Co and by 40 meV for Fe.

At the second and third NN distances, the change in the total energy is dominated
by the single-particle (SP) contribution

ESP =

∫ εF

−∞
η(ε)(ε− εF )dε = −

∫ εF

−∞
N(ε) dε (5.1)

where η(ε) is the electronic DOS and N(ε) =
∫ ε
−∞ η(ε′) dε′ is the integrated electronic

DOS [111]. Therefore, the magnetic exchange energy ∆E is mainly determined by the
differences between the DOS of the FM and AF configurations. However, already at
second NNs distance, the local DOS at the impurity sites is not significantly affected
by their relative alignment. Consequently, the change in the local DOS at the Cu
atoms located between the impurities plays the major role. Appreciable changes in the
electronic structure of these atoms are in fact induced by the proximity with the TM
impurities, which depend sensitively on the relative orientation of the TM moments.
Fig. 5.10 shows the local density of s and p states at the Cu atom located between two
Co impurities at third NN positions [see the inset of Fig. 5.7(c)]. Results are given for
FM and AF alignments between the impurities for q = −0.3 and q = 0.3. One observes
that for q = 0.3 the main peak in the DOS of the Cu atom between AF impurities
lies at lower energies than in the case of a FM alignment [see Fig. 5.10(b)]. Therefore,
according to the single-particle picture [Eq. (5.1)], an AF coupling is stabilized. This
result is in agreement with the AF coupling found for q ≥ 0. For q = −0.3 the peak
is shifted towards higher energies with a substantial reduction of its intensity [see
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Figure 5.10: Local s- and p-electron density of states at the Cu atom located between two
Co impurities at third NN positions [146]. See the inset of Fig. 5.7(c). Results are given
for overlayer charges (a) q = −0.3 and (b) q = 0.3.

Fig. 5.10(a)]. As a consequence, the AF alignment is destabilized and the magnetic
coupling between impurities switches to FM (q ≤ 0).

While the q dependence of ∆E for Fe and Co are quite distinctive at first, sec-
ond and third NN distances, the behaviors found at larger distances show qualitative
similarities [see Figs. 5.7(c)–(e)]. This suggests that for large r the changes of ∆E
induced by q are the result of the same microscopic mechanism, namely, the modifi-
cations of the delocalized electronic density at the Cu surface and the changes in the
scattering properties at the impurities [146]. In order to estimate the contribution of
the impurity scattering potentials on ∆E, we have considered an artificial test system:
A neutral Cu(111) system (q = 0) where the Co surface impurities are represented
(i.e., replaced) by the self-consistent local potential of substitutional Co atoms cor-
responding to systems with overlayer charges q = ±0.3. In this way we intend to
isolate the effects due to the scattering at the impurity potential from the changes in
the electronic structure of the substrate, which result from the electric field. For this
fictitious arrangement, an approximate value of ∆E for large r can be calculated (non
self-consistently) in terms of the change in the single-particle energies for the FM and
AF alignment of the impurities [111]. The results show that only slight modifications
of ∆E are caused by the change in the impurity potentials alone. In particular, the
change of sign of ∆E for q < 0 is not observed for the test system. Therefore, one
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concludes that the changes in the electronic density of the surface is crucial for the
distinctive q dependence of ∆E at larger distances. As discussed in Sec. 5.2.1, for neg-
ative values of q, the electronic density at the topmost atoms of Cu(111) is reduced
up to 0.3 electrons for q < 0. For q > 0, a large accumulation of electronic density
is induced in the vacuum region above the surface. As a result, AF (FM) couplings
between impurities is generally favored for q > 0 (q < 0).

5.3 Conclusions

The magnetic interaction between pairs of substitutional Co and Fe impurities at a
Cu(111) surface in the presence of external electric charges has been studied as a
function of the inter-impurity distance r. Density-functional calculations show that
the EF produced by an accumulation of external charge at the surface can modify
the local magnetic properties and interactions of TM impurities. Similar responses to
the charging are found for Co and Fe impurities. At the impurity sites, the electric
field generated by a charge overlayer induces a displacement of electronic density of
minority-spin character. The resulting charge redistribution modifies the local mag-
netic moments. In particular, the repulsive potential of a negative charge accumula-
tion causes a displacement of electronic density from the surface into the bulk. The
consequent reduction of electronic charge at the impurity site leads to a monotonous
enhancement of the local magnetic moment as a function of external charge per sur-
face atom q. In contrast, the attraction of surface electronic density caused by an
accumulation of positive charge, screens to a large extent its EF keeping the topmost
metal layer essentially unmodified. In this case, only a slight reduction of the impurity
magnetic moment is induced.

Furthermore, changes in the magnetic exchange energy ∆E between atomic im-
purities can be induced by an EF through three different microscopic mechanisms.
For impurities at nearest neighbors distance, where the exchange interaction is mainly
determined by direct electronic hybridization, the magnetic exchange coupling is mod-
ified through the reduction of electronic density induced by the EF at the impurity
sites. In contrast, the relative magnetic coupling between impurities at second and
third NN distances is rather driven by the changes in the local electronic density at
the Cu atoms located between them. The EF induced modifications can cause impor-
tant variations of ∆E including the switching between a FM and an AF alignment
of the impurities. At larger distances, the RKKY exchange interaction mediated by
the substrate determines the coupling between impurities. The external EF can cause
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changes in the delocalized electronic density of the Cu surface which modify the scat-
tering of the surface states and induce variations of ∆E in the order of 10 meVs.
Notably, a contrasting behavior of the metallic screening is observed depending on
the polarity of the overlayer charge, together with a non-monotonous behavior as a
function of q.

This results open a new perspective in the development of methods to control
the internal and collective magnetic properties of surface nanostructures.
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CHAPTER 6

Electric-field modulated exchange coupling within and
between magnetic clusters on metal surfaces: Mn

dimers on Cu(111)

The potential use of external electric fields (EFs) to control the magnetic order of
nanostructures is particularly important for applications in high-density storage de-
vices [129, 133]. A recent achievement towards this aim is the switching between
the ferromagnetic (FM) and antiferromagnetic (AF) phases of ultrathin Fe layers
demonstrated by Gerhard et al. [117] using the electric field of a scanning tunneling
microscope. This effect is achieved by taking advantage of the structural instability
between the AF face-centered cubic and the FM body-centered cubic phases of Fe
thin films. This study constitutes a promising example of magnetoelectric effects in
metals. In general, an EF is screened by the conduction electrons at the topmost
one or two atomic layers of a metallic surface. However, in low-dimensional systems,
where the surface to volume ratio is large, the charge density rearrangements caused
by an EF are expected to cause strong modifications of the electronic properties of
the system [23,148–150]. In particular, the field-induced redistribution of spin polar-
ized d-electrons at the Fermi energy can significantly affect the magnetic behavior of
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transition metal (TM) nanostructures. It is the goal of this chapter to explore this
challenging physical problem from a theoretical perspective.

Surface magnetic nanostructures are particularly interesting for future techno-
logical applications in atomic scaled devices [24]. Still, only few works have been so
far devoted to investigate the effect of an applied EFs on the electronic properties of
TM supported nanoparticles [23, 146]. Most of the recent studies have been devoted
to the investigation of properties such as structure, adsorption energy and,to a small
extent, to the modification of the intrinsic magnetic properties [23, 148–150]. In this
context, it has been shown that applied EFs can induce switching between differ-
ent magnetic states in multistable low-dimensional nanostructures [23, 134, 167–169].
One of these systems are polar magnetic molecules, where the Stark effect competes
with the super-exchange interaction [167]. Electrically induced magnetic switching
has been demonstrated experimentally by Loth et al. By means of a spin-polarized
tunneling current they achieved the switching between the two Néel states of anti-
ferromagnetic Fe nanochains deposited on Cu2N/Cu(100) [134]. From a theoretical
perspective, Negulyaev et al. investigated how EFs can induce a switching between
the different magnetic states of an isolated Mn dimer on Ag(001) and Ni(001) [23]. In
this case, the small energy difference between the FM and AF states of Mn2 renders
the substrate density distribution crucial for determining the ground-state magnetic
order [23,170,171]. This work also shows that the EF effects are at least twofold. On
the one hand, the EF modifies the electronic structure of the dimer and, on the other
hand, it affects the electronic coupling between the cluster and the substrate. These
studies highlight the importance of the substrate on the properties of the adsorbates
and its influence on the response of the systems to an applied EF.

The previous studies have provided a useful insight on the consequences of ap-
plying external EFs on the magnetic properties of isolated particles [148–150]. How-
ever, very little is still known about the possibility of tuning the exchange interac-
tions between magnetic clusters on surfaces. Since the EF induces changes in the
spin polarized electronic density of the magnetic cluster and the metal surface, it
should also provide a means of controlling the magnetic coupling between two or
more supported nanoparticles. This effect is to be expected at the close-packed
surfaces of noble metals, where changes in the dispersion of the electronic surface
states have been reported [138, 139]. The surface-state electrons are responsible for
the long-ranged RKKY interaction between nanostructures deposited on metal sur-
faces [33, 155, 156, 172–175]. In the case of magnetic particles, the RKKY interaction
gives rise to a magnetic exchange coupling between neighboring particles, which con-
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trols the relative magnetic orientation between them [25, 32, 47, 48, 176]. We have
shown in Chap. 5, that the displacement of electronic density at metal surfaces has
the potential to modify and eventually reverse the substrate-mediated interactions
between magnetic impurities at relatively large distances [146]. Therefore, applied
EFs can offer an interesting possibility to manipulate the magnetic exchange coupling
within between supported TM nanostructures. It is the purpose of this Chapter to
investigate and quantify the possibility of manipulating the magnetic couplings of
surface nanostructures by means of applied external EFs.

In the context of electrically controlled magnetic coupling, the case of Mn dimers
on Cu(111) is particularly interesting. On the one side, the magnetic multistability of
Mn2 has already been observed on other surfaces [23,179]. This suggests the use of EFs
to reverse the internal magnetic order. On the other side, the substrate-mediated ex-
change coupling between particles is expected to depend on their magnetic state (i.e.,
FM or AF). Thus, the manipulation of the coupling between the dimers can be pre-
sumably achieved either by inducing a switching of the magnetic state of the dimers
or by directly affecting the surface electrons responsible of the substrate-mediated
interaction [168]. The remainder of the chapter is devoted to understanding the mag-
netic exchange coupling within and between Mn dimers supported on Cu(111) as a
function of applied external EFs.

6.1 Computational details

Self-consistent density-functional calculations of the magnetic couplings of Mn dimers
on Cu(111) as a function of applied EF have been performed using the GF-KKR
method described in Sec. 3.2. For metallic systems, the effect of applied external
EFs can be treated within the KKR perturbation approach to crystal surfaces [138].
The surface is modeled by replacing a slab of bulk crystal with vacuum spheres.
The resulting configuration is conformed by two half-infinite crystals and a vacuum
region bounded by the metallic surfaces. An homogeneous external EF is simulated
by introducing a two-dimensional layer of fixed point charges q inside the vacuum slab
placed above the considered surface [138]. In such an arrangement, the resulting EF
generated by the external charges is effectively screened at both metal surfaces and is,
therefore, confined to a finite perturbation region. Positive (negative) values of charge
q correspond to an inwards (outwards) direction of the EF with respect to the crystal
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Figure 6.1: Effective EF strength as a function of the generating point charges q. Triangles
correspond to a five-layer-thick vacuum slab with charges q located in the third layer above
the crystal surface. The dashed line shows the field of a uniformly charged plane (Figure
taken from Ref. [138]).

surface. Notice that the largest possible value of q > 0 (or inwards field strength) is
limited by the work function of the metal surface. Excessively large values can lead
to the transfer of electrons into the vacuum and its accumulation around the external
charges generate the EF.

In the present study, the Cu(111) surface has been modeled by replacing a six-
layer-thick slab of Cu-bulk potentials with vacuum spheres. The experimental Cu
lattice constant a = 3.615 Å is used and the corresponding atomic positions of the
substrate are kept fixed for all considered configurations of the adclusters. The layer
of point charges q generating the EF is located inside the vacuum slab at the atomic
positions corresponding to the third layer above the surface. The vertical distance of
the charges respect to the crystal surface is then about 6.3Å. Values of q in the range
|q/e| < 0.08 have been considered [138]. For the corresponding strength of EF as a
function of q see Fig. 6.1 [138].

The Mn dimers are located on top of the surface at perfect Cu lattice positions.
The magnetic exchange interactions have been studied performing self-consistent cal-
culations for different magnetic arrangements of two deposited dimers in the FM and
AF states. The exchange energy Ex = EFM − EAF accounts for the energy difference
between the FM and AF order within the dimer. For each magnetic state of the dimers
(FM or AF) the dimer-dimer exchange interaction energy is given by ∆E = EP−EAP

where the total energies EP and EAP correspond to the parallel (P) and antiparal-
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Figure 6.2: Illustration of the magnetic arrangements of a pair of dimers at second NN
positions along the [11̄0] direction of the (111) fcc surface. Dark (light) colored circles
indicate atoms having up (down) magnetic moments. The subfigures (a) and (b) illustrate
the parallel and antiparallel coupling between FM dimers, while (c) and (d) correspond to
the parallel and antiparallel coupling between AF dimers.

lel (AP) alignment of the magnetic moments of the two dimers with respect to each
other (see Fig. 6.2). The values of ∆E have been calculated for interdimer separa-
tions corresponding to up to eighth nearest neighbors (NNs) along the [11̄0] and [1̄1̄2]
directions of the Cu(111) surface.

6.2 Results

6.2.1 The clean Cu(111) surface

It is useful to begin the discussion by considering the effect of external EFs on the clean
Cu(111) surface. Fig. 6.3 shows the local electronic density of s (p) states calculated
for various strengths of the EF at the topmost Cu layer and at the vacuum spheres
right above the surface. Black curves correspond to the local DOS in the absence of
EF. At about 0.7 eV below εF the bottom of the surface band appears as a step-like
feature. The external EF modifies the position and intensity of the band. Indeed,
the density of surface states at the interface is higher than that of bulk electrons.
Thus, the EF-induced changes in the LDOS of the topmost Cu layer concern mainly
to modifications of the surface band. Negative EFs enhance the vacuum potential
barrier and, consequently, shift the band towards higher energies [see Fig. 6.3(b)].
At the same time, the EF hinders the spill-out of surface-state electronic density.
Therefore, the LDOS is reduced in the vacuum region above the surface [Fig. 6.3(c)
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Figure 6.3: Local electronic density of s- (p-) states at the topmost Cu(111) crystal layer
[(a)-(b)] and first vacuum layer above the surface [(c)-(d)]. Curves are shown for different
strengths of external EF corresponding to the values of q given in the inset.

and (d)]. On the contrary, positive EFs shift the surface band towards lower energies
slightly reducing its density at the topmost Cu layer and enhancing it at the vacuum
above the surface. These changes in the electronic structure and density distribution
are expected to affect the Fermi wavelength of the surface states, since they modify
the energy of the bottom of the surface-state band and the effective mass of the surface
electrons [138]. Consequently, the EF should affect the RKKY interactions responsible
of the long-ranged magnetic exchange coupling between the magnetic clusters. In
addition, the EF-induced modifications of the surface electronic structure could also
affect the adsorption energy of the clusters.

6.2.2 Isolated Mn2 on Cu(111)

As a next step, before discussing the interaction between deposited clusters, it is
important to consider the case of an isolated Mn dimer and the effect of an external
EF on its ground-state magnetic order. In the absence of EF, the AF configuration
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is found as the most stable magnetic order. The FM state has a 30 meV higher
energy. This result contrasts with the FM ground-state found by Negulyaev et al.
for Mn2 on Ag(001) [23]. The difference is remarkable but not quite surprising, since
the behavior of magnetic impurities in metallic environments is known to depend
critically on the properties of the host, particularly on the density of states at the
Fermi energy and the strength of the 3d-metal hybridizations [166]. Additionally, the
bond length plays an important role in the stability of the magnetic order of Mn2. In
the present calculations, the Mn atoms are located at perfect Cu-lattice positions (see
Sec. 6.2.5). The bond length of the dimer corresponds therefore to the Cu NN distance
d = 2.55 Å, which has been found to favor the stability of the AF state in other local
environments [23,170,171,177,178,180]. Considering the well known sensitivity of the
internal magnetic order of Mn2, it is important to take into account both FM and AF
dimer configurations in order to assess how the magnetic interactions between dimers
depend on their internal magnetic state.

Mn dimers deposited on Cu(111) show saturated local spin moments of about
4.1 µB, irrespectively of their internal magnetic configuration (FM or AF). Under the
considered values of external EF (|E| < 1.5 V/Å) only slight enhancements of these
local spin moments are induced (|δµ| < 0.1 µB). Interestingly, the local moments
increase monotonously with an increasing EF for both inwards and outwards directions
of the field. This enhancement is similar in both FM and AF states of the dimer [181].

In contrast, the effect of the external EF on the magnetic exchange energy is quite
remarkable. Our results for Ex are shown in Fig. 6.4(a) as a function of q [181]. For the
sake of comparison, note that |q| = 0.05 corresponds to an EF of about 1.0 V/Å(see
Fig. 6.1) [138]. The energy difference Ex = EFM−EAF between the magnetic states of
the dimer is strongly enhanced for positive q (i.e., inwards EF), while it decreases and
eventually changes sign for a sufficiently strong negative q (i.e., outwards EF). For an
inwards EF (q > 0), Ex grows up to 70 meV for q = 0.05. For outwards EF (q < 0), Ex

decreases and changes sign for q = −0.05. This implies that the FM state becomes
the ground-state configuration of the dimer. The relative stability with respect to
the AF configuration remains at first rather weak: Ex = −0.35 meV for q = −0.05.
However, stronger outwards EFs enhance the stability of the FM configuration up
to Ex = −13 meV for q = −0.1 [see Fig. 6.4(a)] [181]. This trend is in agreement
with the behavior found for Mn2 on Ag(001) [23]. One concludes that external EFs
are able to reverse magnetic exchange energy barriers of the order of 50 meV in TM
nanoparticles.
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Figure 6.4: (a) Exchange energy difference Ex = EFM−EAF between the FM and AF state
of a Mn dimer as a function of the EF source charge q. Positive (negative) values of Ex
correspond to an AF (FM) ground-state. (b) Local density of the majority-spin d-states
at a Mn atom in FM (blue) and AF (red) Mn2. Full, dashed and dotted curves correspond
to q = +0.05,−0.05 and 0.0 respectively [181].

For −0.05 < q < 0.1 an approximately linear behavior of Ex as a function of
q is observed. However, after a rapid decrease in this range, Ex tends to level off
for stronger negative q. The contrasting behavior for outwards and inwards field is
probably a consequence of the different type of charge redistribution occurring at the
metal surface and the deposited dimer. For outwards EFs the electronic density is
shifted into the bulk tending to positively charge the deposited Mn2 and eventually
reducing to some extent the Mn d-orbital occupation. It is interesting to note that
the enhancement of stability of FM order in Mn2 with reduced electronic density is
consistent with previous results obtained for Mn+

2 in the gas phase, which was found
to be FM [177]. In contrast, inward fields enhance the density of surface electrons
around the dimer, which favors an AF order. In general, the precise asymmetric
behavior of the EF response of the system arises from the electronic coupling with
the surface and is therefore expected to be substrate dependent.

The effect of the EF on the magnetic state of the dimers can be understood from
a local point of view by analyzing the changes in the electronic density of states. The
saturated values of the local magnetic moments indicate that the minority-spin states
of Mn atoms lie mostly above the Fermi energy εF . Therefore, their contribution to
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the EF response is not expected to be significant. Fig. 6.4(b) shows the local density
of majority-spin d-states (LDOS) at a Mn atom in the FM and AF configuration of the
dimer [181]. One observes that the bandwidth of the FM state are broader than in the
AF case, indicating that electrons in a FM state are less localized and extend farther
into the vacuum [23]. Thus, one expects that the FM dimer to be more sensitive to
the EF. An outgoing EF (q < 0) shifts the curves of both states to slightly lower
energies. A somewhat larger shift is observed in the peak located at about −2.2 eV
for the FM state of the dimer. The stabilization of the FM ground-state could be
related to this small difference in the shifting [23].

6.2.3 Magnetic state and coupling between dimers at short
distances

In order to quantify the magnetic interaction between a pair of dimers, we consider the
magnetic arrangements shown in Fig. 6.2. For each magnetic state of the dimer (FM
or AF), the parallel (P) or an antiparallel (AP) alignment of the magnetic moments
of one dimer respect to the other is investigated. The energy difference between these
two configurations ∆E = EP − EAP gives a measure of the dimer-dimer exchange
coupling.

Fig. 6.5 shows the magnetic exchange energy ∆E between two FM (AF) Mn
dimers on Cu(111) as a function of the interdimer distance r [181]. Notice that dif-
ferent scales are used for first NN dimer separation (left scale), and for second, third
and fourth NN dimers separation (right scale). Positive (negative) values of ∆E cor-
respond to an energetically favorable antiparallel (parallel) alignment between the
magnetic moments of the two dimers. First of all, one observes that ∆E strongly
depends on the internal magnetic state of the dimers. In fact, at several distances
the sign of ∆E is different for FM and AF dimers, which implies a different relative
alignment between the Mn2. See, for example, the case of dimers along the [112] direc-
tion for distances beyond NNs [Fig. 6.5 (right)]. For a pair of AF dimers (triangles),
the positive values of ∆E correspond to a favorable antiparallel alignment, while the
parallel alignment (∆E < 0) is preferred between FM dimers (circles). As it will be
shown later, this result can be understood as a consequence of the different scattering
of majority-spin and minority-spin electrons, which entails the magnetic nature of the
interaction. In a similar way, the interference between scattered surface electrons is
at the origin of the dependence of ∆E on the geometry and relative orientation of
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Figure 6.5: Exchange coupling energy ∆E = EP − EAP between two Mn dimers as a
function of the interdimer distance r [181]. Both FM (circles) and AF (triangles) states of
the dimers are considered [See Fig. 6.2]. Full symbols indicate the ground-state magnetic
order within Mn2. Results are given for q = 0, q = −0.05 and q = 0.05. The left and right
figures correspond to dimers along the [11̄0] and [1̄1̄2] directions of Cu(111).

the dimers [46, 48, 155]. These effects are revealed in Fig. 6.5, where the difference
between the results for dimers along the [1̄1̄2] and [11̄0] directions are shown. The
dependence of ∆E on the magnetic state and relative orientation between the dimers
remains significant even at larger distances (r > 10Å). It should be noted that these
properties are specific to interacting clusters, in contrast to the case of single adatoms.
They become essential for the analysis of the interparticle magnetic coupling and its
response to an external EF.

Let us now analyze how the interparticle coupling and the EF affect the internal
ground state magnetic order of Mn2. In the absence of external field (q = 0), the
AF state remains the ground-state within Mn2 for all interparticle distances r (full
triangles in Fig. 6.5). In fact, for the first NN distance between the dimers —this cor-



6.2 Results 101

responds to a diamond-shaped tetramer— the AF-AP configuration [see Fig. 6.2(d)]
is nearly 0.2 eV more stable than the FM-P state [see Fig. 6.2(a)]. At such a short
distance, both the interparticle exchange energy ∆E and the intra-particle exchange
energy Ex are dominated by the direct electronic hybridization between Mn atoms.
Therefore, a tendency to AP coupling is not surprising. The AF dimers with AP
alignment show the largest number of antiparallel NN moments and are therefore
energetically favored. In addition, the direct hybridization causes slight changes in
the local magnetic moments µi of Mn. In the AF-AP configuration, the calculated
local spin moments are µi = 4.0µB and −3.6µB, while in the FM-P case one finds
µi = 3.9µB and 3.7µB. In both configurations the largest moments correspond to the
less coordinated atoms.

In the presence of an outgoing EF (q = −0.05), the FM order found to be the
ground-state within an isolated dimer, does not hold for a pair of dimers at the shortest
separation distances (see full symbols in Fig. 6.5). In contrast, the AF order within
Mn2 is the ground-state of a pair of dimers at first and second NNs distance. This
holds for both considered directions on the Cu(111) surface. In order to discuss this
result in further detail, we show in Fig. 6.6 the results for ∆E as a function of q for
a pair Mn dimers along the [11̄0] direction of Cu(111) [181]. Here one observes that
the EF induced changes in ∆E also depend on the magnetic state of the dimers. In
general, the EF effects are stronger for pairs of FM dimers. For dimers at NN positions
[Fig. 6.6(a)] the changes in ∆E as a function of q are of the order of 0.1 eV. Positive
values of ∆E correspond to an antiparallel alignment between the dimers. An inwards
(outwards) EF causes an increase (decrease) of ∆E for both FM and AF pairs. The
AF order within Mn2 is found to be the ground-state magnetic order (full diamonds).
This is true even for values of q < 0 for which the FM state yields the ground state of
an isolated dimer. At this minimal distance ∆E involves an interplay between various
NNs interactions, which are dominated by the direct electronic hybridizations. Thus,
the strength of the interaction is about one order of magnitude larger than at any
other interparticle distance r.

For dimers at the second NNs distance [Fig. 6.6(b)] the relative alignment between
the dimers is in general parallel (∆E < 0). Here, the energy differences between the
configurations considered in Fig. 6.2 can be regarded as the result of two NN and two
second-NN interactions. For the largest considered negative value of q/e = −0.075

the overall ground-state configuration corresponds to a pair of FM dimers. This result
is in agreement with the FM order found for the isolated dimer. However, notice that
a different behavior is found for q/e = −0.05. Only for larger r the FM ground state
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Figure 6.6: Interparticle exchange coupling energy ∆E between two FM (circles) and AF
(diamonds) Mn dimers as a function of the EF source charge q [181]. Full symbols indicate
the ground-state magnetic order within Mn2. Results are shown for dimers at the (a) first-,
(b) second-, (c) third- and (d) fourth-NN distances along the [11̄0] direction of the Cu(111)
surface. Both FM (circles) and AF (diamonds) states of the dimers are considered.

within Mn2 is recovered for both q/e = −0.05 and −0.075 [Fig. 6.6(c) and (d)]. A
similar behavior is observed for a pair of dimers along the [1̄1̄2] direction. However,
in this case the FM order within Mn2 is recovered only for r beyond second NN
interdimer distances also for q/e = −0.05. These differences are a consequence of
the different orientations of the dimers, as observed in the context of Fig. 6.5. The
separation distance between clusters at second-NN positions is shorter along the [1̄1̄2]
direction than in the case of the [11̄0] direction. Thus, a stronger difference in ∆E

for FM and AF dimers is found along the former. Moreover, these results reveal a
competition between the interdimer interactions and the EF effects, suggesting that
at very short distances the dimer-dimer interactions are large enough to dominate
over the charge redistributions induced by the EF. Beyond second NN distances, the



6.2 Results 103

importance of the dimer-dimer interactions decreases and the FM state, which is the
ground-state of the isolated Mn2, yields the ground-state of the ensemble.

6.2.4 Long range substrate-mediated magnetic interactions

Figure 6.7: Interparticle exchange coupling energy ∆E = EP − EAP between two Mn
dimers in the ground-state as a function of the interdimer distance r [181]. Results are
given for the ground-state magnetic order within Mn2 and for EF source charges q/e = 0.0

and q/e = ± 0.05.

At relatively large distances (r & 7 Å), the magnetic ground-state of the dimers
is the same as for an single dimer (i.e., AF for q/e > −0.05 and FM for q/e ≤ −0.05).
The interaction between pairs of dimers is mediated by the surface electrons. Fig. 6.7
shows ∆E = EP − EAP for two Mn dimers in their ground state as a function of
the interdimer distance r along the [11̄0] direction of the Cu(111) surface [181]. Pos-
itive (negative) values of ∆E correspond thus to a favorable antiparallel (parallel)
alignment between the magnetic moments of the two dimers. In the absence of ex-
ternal EF and for inward fields the dimers are AF. In these cases ∆E shows similar
RKKY-like oscillations as a function of r (see Fig. 6.7 for q = 0 and q = 0.05). A
similar oscillatory behavior is observed between dimer pairs along the [1̄1̄2] direction
of the surface. The oscillations differ from the typical substrate-mediated interaction
between single adatoms due to the specific dimer geometry and orientation [48, 155].
Under outwards applied EF (q/e = −0.05) remarkable changes in the values and sign
of ∆E are observed (see Fig. 6.7). This is a consequence of the change in the ground-
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Figure 6.8: Spin-polarized local density of states ρσ(εF ) at the Fermi energy εF in the
vicinity of a FM Mn2 (solid curves) and an AF Mn2 (dashed curves) on Cu(111). Results
are given for points located at 2.1Å above the surface as a function of the distance r to
the Mn dimer. Subfigure (a) corresponds to majority-spin states and (b) to minority-spin
states [181].

state magnetic order within Mn2, from AF for q = 0.0 to FM for q = −0.05, which
directly affects the scattering of the spin-polarized electrons at the Cu surface and the
resulting magnetic component of the RKKY interaction.

Furthermore, one finds that the effect of the EF is stronger for pairs of FM Mn2.
For these dimers, the outwards EFs shift the curves of ∆E towards negative values
for r < 14 Å, thus, stabilizing further the parallel alignment between them. On the
contrary, inwards applied EF shifts ∆E towards the antiparallel configuration. At
large distances (r > 14 Å), the dimer-dimer coupling is predominantly antiferromag-
netic and the strength of ∆E is enhanced (decreased) for outwards (inwards) fields.
In the case of AF dimers the interparticle interaction energy ∆E is much less affected
by the EF. The curves obtained for other values of q follow the same trends. The
stronger effect of the EF on the FM Mn2 can be related with the higher degree of
delocalization of electronic density in this configuration, which extends farther into
the vacuum, as observed from the broader bandwidth in Fig. 6.4(b). Moreover, if
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the EF points outside the surface, the spill-off of electronic density is reduced and a
parallel alignment of the magnetic moments of the two Mn2 is favored. In contrast,
inwards EFs favor an antiparallel alignment. This demonstrates again the remark-
able possibilities of using applied external EFs as a tool for the tuning of long-range
exchange interactions between magnetic clusters on metal surfaces.

Further insight on the microscopic origin of the exchange couplings is obtained
by analyzing the electronic structure from a local perspective. Fig. 6.8 shows the
spin-polarized electronic density of states at the Fermi energy at the vacuum region
2.1 Å above the surface as a function of the distance to a single Mn dimer. Results
corresponding to both FM and AF orders within the dimer are shown [181]. The
curves display oscillations with a period λF/2 ≈ 15Å caused by the quantum inter-
ference of scattered surface electrons [33]. Moreover, one observes that for majority-
(minority-) spin electrons the pattern of standing waves arising from the AF dimer is
shifted towards shorter (larger) distances as compared to the FM case. This shift is
responsible for the dependence of ∆E on the internal magnetic order of the dimers.
The spin dependence of the surface-electron scattering is responsible for the magnetic
coupling and for the dependence of ∆E on the magnetic state of the interacting dimers.

6.2.5 Structural relaxation effects

The substrate-mediated interaction is caused by the scattering of delocalized surface
electrons. Thus, structural relaxations within and nearby the dimers are not expected
to have a strong influence on the long-ranged coupling between them [182,183]. How-
ever, local relaxations can be important at very short separation distances, in particu-
lar for the internal ground-state magnetic order of the Mn dimers, which are known to
present magnetic bistability [23, 177, 182]. The effects of structural relaxation on the
magnetic properties of Mn2 on Cu(111) have been studied using VASP (see Sec. 3.1).
Self-consistent ab-initio calculations have been performed using a five-layer thick crys-
tal slab defined in a supercell of dimension 6× 4 surface atoms to model the Cu(111)
surface. A cutoff energy of 450 eV has been used for the plane-wave expansion of
the wavefuctions. A set of 3 × 3 × 1 k-points was employed for the computation of
all integrals in the BZ. This setup constitutes a good compromise between numerical
accuracy and computational effort. The Mn dimers have been located symmetrically
on both sides of the slab (see Fig. 6.9). Such an arrangement avoids spurious dipolar
contributions to the energy resulting from the adcluster induced surface polarization
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Figure 6.9: Illustration of the unit supercell used to model a pair of Mn2 on Cu(111). Mn
atoms (dark spheres) are located on both sides of a five-layer thick Cu(111) slab (light
spheres) containing 6× 4 atoms.

and the periodic boundary conditions. The calculations have been performed for the
collinear magnetic states considered in Sec. 6.2.3 for a single Mn dimer and a pair of
dimers at second NN positions along the [1̄1̄2] direction (see Fig. 6.9). The atomic
positions of the Mn atoms and the two topmost layers of the Cu surface have been
relaxed self-consistently by using the conjugate-gradient algorithm until the forces
exerted on each atom are smaller than 0.01 eV/Å. Values for EX and ∆E for the un-
relaxed and optimized structures have been obtained. For the sake of comparison and
in order to assess the role of exchange and correlation effects, the calculations have
been performed within the LDA and the GGA approximations to density functional
theory.

The results obtained within the GGA approach are summarized in Table. 6.I.
For an ideal [i.e., non-relaxed (NR)] geometry, the AF ground-state of a single Mn
dimer is found at an energy about 90 meV below the FM state. This is very good
agreement with the 95 meV found within LDA approach. Moreover, both results
are in qualitative agreement with the KKR result predicting an AF ground state,
although the value of EKKR

X = 30 meV is significantly smaller. The local magnetic
moments µFMMn = 4.08µB and µAFMn = 4.13µB are in good agreement with the KKR
result µMn = 4.1µB found in both configurations. After optimization of the atomic
positions, the bond length in the FM dimer increases by approximately 0.2 Å, while
for the AF dimer the expansion is smaller (0.1 Å). In addition, the distance between
the dimer and the substrate is reduced by less than 0.1 Å for both configurations. As
a consequence of these relaxations, the exchange energy EX between the FM and AF
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Table 6.I: Calculated local magnetic moments µMn, dimer bond length db, and magnetic
exchange energies EX = EFM − EAF and ∆E = EP − EAP. Results are shown for an
isolated Mn2 and pairs of Mn2 along the [1̄1̄2] direction of the Cu(111) surface occupying
ideal and optimized positions.

Single Mn2 FM (NR/R) AF (NR/R) Ex (meV)

µMn [µB ] 4.08 / 4.13 4.13 / 4.14 93.5 / 52.0
db [Å] 2.55 / 2.77 2.55 / 2.67

FM Mn2 P AP ∆E (meV)

µMn [µB ] 4.08 / 4.14 4.08 / 4.13 11.2 / 13.8
db [Å] 2.55 / 2.77 2.55 / 2.75

AF Mn2 P AP ∆E (meV)

µMn [µB ] 4.13 / 4.13 4.13 / 4.13 11.0 / 9.3
db [Å] 2.55 / 2.65 2.55 / 2.65

states decreases to nearly half of its value, namely to EX ≃ 52 meV. The local magnetic
moments are not significantly modified by the structural changes. Similar results are
obtained within the LDA approximation. However, in this case, shorter bond distances
db = 2.69Å (db = 2.50Å) are found for the FM (AF) dimer, accompanied by a smaller
change of the exchange coupling: EX ≃ 95 meV for the unrelaxed and EX ≃ 83 meV
for the relaxed geometries.

For a pair of FM dimers at unrelaxed positions, the calculated magnetic ex-
change energy ∆E ≃ −11 meV favors their antiparallel alignment. A value of
∆E ≃ −7 meV is obtained within the LDA. These values are larger than the KKR
result ∆E ≃ −3 meV. However, the discrepancy is acceptable considering the differ-
ences expected from the narrow slab thickness (5-layers) used to model the surface
and the possible interactions between the dimers and their images. Taking this into
account, we expect that the present calculations provide a most valuable insight on
the effects of structural relaxation on the value of ∆E at this very short distances.
Indeed, the results show that the presence of a neighboring dimer does not affect the
optimized bond length dGGAb ≃ 2.76 Å. Furthermore, the structural relaxation modi-
fies the exchange interaction only slightly (∆E ≃ −13 meV). In contrast to this last
result, the LDA predicts a significant change of ∆E after structural relaxation. In fact,
the antiparallel alignment favored for dimers at unrelaxed positions (∆E ≃ −7 meV)
becomes unstable for an optimized structure (∆E ≃ 2 meV). The dimer bond length
is, as in the case of an isolated dimer, shorter than the one predicted by the GGA.
Another important difference concerns the optimal position of the Mn atoms with
respect to the Cu surface, which is calculated to be about 0.1 Å shorter by the LDA
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approximation. Additionally, the distance between the surface layers is also reduced.
These two factors may contribute to the discrepancy between LDA and GGA results.

For a pair of AF dimers the differences in ∆E between the GGA and the LDA
results are expected to be larger, since the dimer bond lengths predicted by these
approximations differ to a large extent (dGGAb ≃ 2.67Å and dLDAb ≃ 2.5Å ). For an
unrelaxed geometry, the calculated magnetic exchange ∆E ≃ 11 meV predicts a par-
allel coupling between the two dimers, which is in agreement with the result obtained
using the KKR method (∆E ≃ 4 meV). This configuration is also found to be the
ground-state of the ensemble. For the optimized structure db ≃ 2.65 Å is slightly
shorter than for isolated dimers. The magnetic exchange energy ∆E ≃ 9.3 meV is
very close to the the result found for unrelaxed structure.

From the later results, one concludes that structural optimizations within the
dimer are important for the internal magnetic exchange energy EX. In particular, the
relaxed dimer bond length is shorter for an AF than for a FM alignment between
Mn moments. As a consequence of this structural optimization the exchange energy
EX = EFM − EAF is reduced. The AF configuration remains being the ground-state.
Furthermore, structural relaxations have little effect on the magnetic coupling between
a pair of dimers at second nearest neighbor positions. Thus, important modifications
of the RKKY interaction at larger distances are not expected. Moreover, LDA and
GGA approximations give quantitatively similar results of the magnetic exchange
energies of systems having ideal structure. In this case, the results are comparable
with those obtained by the KKR method. However, LDA predicts overall shorter
interatomic distances which lead to meaningful differences in EX and ∆E with respect
to the GGA.

6.3 Conclusions

The magnetic exchange within and between Mn dimers on top of Cu(111) under the
effect of an external electric field has been studied by a first-principles technique. The
results show that EF can modify the exchange energy EX within a single Mn2 and
eventually cause the reversal of the ground-state internal magnetic order from AF to
FM state. Furthermore, the exchange interaction ∆E between pair of dimers shows
RKKY-like oscillations as a function of r which differ from the single-atom behavior.
In particular, the exchange magnetic coupling differs for pairs of dimers deposited
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along the [11̄0] and [1̄1̄2] directions. This result implies a dependence of the exchange
magnetic coupling on the position and orientation of the dimers on the surface.

Moreover, ∆E has been also found to depend on the magnetic order within the
dimers. This behavior is a result of the difference in the scattering of majority-spin
and minority-spin surface electrons which mediate the effective interaction between
the clusters. Due to a higher delocalization of the dimer orbitals, the effect of an
applied EF is in general stronger for FM than for AF dimers. EFs pointing out of the
surface induce a decrease of spilled surface electronic density which favors a parallel
alignment of the magnetic moments of the two Mn2. EFs pointing inwards favor their
parallel alignment. However, an interplay between the magnetic exchange coupling
and the effect of the external field is observed at short interdimer distances. In par-
ticular, an AF state within dimers at NN and second NN distances is preserved in the
presence of outgoing EFs. This result suggests that for such distances the dimer-dimer
interaction is stronger than the magnetic exchange coupling within the Mn2. Still, the
substrate mediated magnetic exchange interaction is sensitive to the magnetic order
within the clusters.
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CHAPTER 7

Summary and outlook

The study of low-dimensional systems composed by magnetic atoms, nanoparticles
and wires, and the research of methods to control their magnetic properties are of
primary importance from a theoretical perspective, as well as for future technologi-
cal applications. The fundamental understanding of magnetic interactions and their
interplay with other properties is of particular relevance in this context. This work
intends to address two particular problems concerning magnetic interactions between
3d-TM impurities and clusters in low-dimensional nonmagnetic hosts. For this pur-
pose, ab-initio electronic calculations have been performed using two particularly suit-
able computational implementations of the DFT.

In the first part of this thesis, the problem of temperature induced superparamag-
netic behavior is addressed from the perspective of an enhanced magnetic anisotropy
energy of the particles. Chapter 4 studies the interrelation between magnetic cou-
pling and magnetic anisotropy in 3d-5d low-dimensional systems. In particular, the
case of 3d-Pt nanowires is investigated focusing on the dependence of the magnetic
order and MAE on the composition. Our results show a complex interrelation be-
tween composition, magnetic order and MAE. Oscillations of the MAE and easy-axis
of magnetization are found by varying the 3d element. In addition, a switching of the
relative alignment between the induced Pt moments and those of the 3d element is

111
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observed. The behavior of the MAE is explained qualitatively in terms of the local
SO couplings. It is shown that the largest MAEs are developed when the SO contri-
butions of the Pt atoms and the 3d element have the same sign and favor a particular
axis. The easy axis corresponds generally to the direction yielding the largest spin and
orbital polarizations of the 5d-host. Furthermore, FePtn wires have been analyzed in
terms of the interplay between Fe concentration and magnetic order. A strong ten-
dency to AF configurations is observed at all studied Fe concentrations (FePtn with
n = 1− 4). Important spin and orbital moments are induced at the Pt sites showing
relative alignments that change periodically as a function of their distance to the Fe
atom. Such oscillations of the magnetic order result in corresponding changes of the
total magnetization and MAE of the wires as a function of the composition. Finally, a
violation of the 3rd Hund’s rule at the Fe atomic sites is found for an in-line orientation
of the magnetization, which suggests complex hybridization effects and a competition
between inter-atomic and intra-atomic SO interactions.

The second part of this manuscript consists of two complementary studies on
the effect of external electric fields on the magnetic exchange coupling between TM
impurities and small clusters at Cu surfaces. The modification of the interactions as a
result of the metallic screening and charge rearrangements have been determined self-
consistently. In Chapter 5, the magnetic interactions between pairs of substitutional
Co and Fe impurities at the Cu(111) surface have been determined in the presence
of an external accumulation of electric charge above the surface as a function of
the inter-impurity distance r. It is shown that the EF generated by an overlayer of
charges at the surface modifies the local magnetic properties and interactions of the
impurities in a significant way. These effects depend strongly on the polarity of the
overlayer charge. Indeed, the repulsive potential resulting from an accumulation of
negative charge causes a displacement of electronic density, which concerns mainly
to minority-spin electrons at the impurity site. As a result of this rearrangement,
the local magnetic moment of the impurities is modified. In particular, the reduction
of minority-spin electronic charge leads to a monotonous enhancement of the local
magnetic moment as the external charge per surface atom |q| increases (q < 0). In
contrast, the spill-off of the surface electronic density caused by an accumulation of
positive charge screens to a large extent the external EF. In this case, the amount
of electronic density at the topmost metal layer remains essentially independent of q
(q > 0).

Our study also shows that surface charging affects the magnetic exchange energy
∆E between atomic impurities through three different microscopic mechanism: For
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nearest-neighbor (NN) impurities, the charge-induced reduction of electronic density
modifies the direct electronic hybridization, which determines the relative magnetic
coupling. For impurities at second and third NN positions, the modification of this
coupling is rather driven by the changes in the local electronic density at the Cu
atoms located between them. At these short distances, large variations of ∆E, in-
cluding switching between a FM and an AF alignment, can be induced by external
surface charging. For larger inter-impurity distances, the changes in ∆E are caused
by modifications of the delocalized electronic density of the Cu surface. The tuning of
∆E is achieved by the modification of the substrate-mediated RKKY-type exchange
interaction, which controls the coupling between impurities.

The results obtained in Chapter 5 motivate the further study of the the effect
of electric fields on the magnetic exchange within and between clusters at surfaces.
The case of Mn dimers on top of a Cu(111) surface is addressed in Chapter 6. It is
shown that the internal magnetic state of a Mn dimer can be controlled by means of
an external EF. The exchange magnetic coupling ∆E between a pair of dimers shows
RKKY-like oscillations as a function of the inter-particle distance r, which differ
from the typical adatom-adatom behavior. A dependence of ∆E on the position and
orientation of the dimers on the surface is observed from dimer pairs deposited along
different orientations on the surface. Moreover, ∆E is found to depend sensitively on
the magnetic order within the dimers. This is explained in terms of the difference in
the scattering of majority-spin and minority-spin surface electrons, which mediate the
effective interaction between the dimers. Furthermore, the EF-induced modifications
of ∆E are different for inward and outward directions of the applied field with respect
to the surface, particularly for pairs of FM dimers. Finally, a competition between
the effect of the external EF and the magnetic exchange coupling within and between
the dimers is observed at short interdimer distances.

In conclusion, the last two studies show that the use of applied EFs is an in-
novative and promising possibility for tuning the magnetic interactions within and
between clusters on metal surfaces. The possibility of controlling the interactions
among surface supported TM nanoparticles and their coupling with the environment
would represent a significant progress in the design of nanostructured materials. Fur-
thermore, new perspectives appear in the context of this approach for the external
manipulation of other important properties. For instance, we have shown that EFs
induce changes in the binding energies of the surface impurities. This result has ap-
pealing perspectives of application in the growth of surface nanostructures and in
controlling self-assembly processes, surface growth and alloying. Another interesting
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potential use of EFs is the tuning of the internal magnetic state on a variety of sup-
ported nanoparticles. The present study shows that EF-induced changes in the local
electronic density can have a strong impact on the magnetic properties of nanostruc-
tures. Moreover, it is expected that external EFs will allow the manipulation of other
electronic properties, which are strongly dependent on the electronic occupation at
the Fermi level. In this context, the effect of EFs on the magnetic anisotropy energy
is of considerable interest for future applications. Finally, it would be interesting to
investigate magnetic clusters on highly polarizable substrates (e.g., Pd or Pt) where
the magnetic interactions have a different nature, since the EF is expected to strongly
affect the magnetic behavior of the substrate.
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Poulopoulos, K. Özdoǧan, M. Angelakeris, F. Wilhelm, and A. Rogalev, Viola-
tion of Hund’s third rule in structurally disordered ferromagnets, Phys. Rev. B 84,
(2011).

[124] F. Meier, K. von Bergmann, P. Ferriani, J. Wiebe, M. Bode, K. Hashimoto,
S. Heinze, and R. Wiesendanger, Spin-dependent electronic and magnetic proper-
ties of Co nanostructures on Pt(111) studied by spin-resolved scanning tunneling
spectroscopy, Phys. Rev. B 74, 195411 (2006).

[125] C. Etz, J. Zabloudil, P. Weinberger, and E. Y. Vedmedenko, Magnetic properties
of single atoms of Fe and Co on Ir(111) and Pt(111), Phys. Rev. B 77, 184425
(2008).

[126] J. Minár, S. Bornemann, O. Šipr, S. Polesya and H. Ebert, Magnetic properties
of Co clusters deposited on Pt(111), Appl. Phys. A 82, 139 (2006).

[127] J. Wiebe, F. Meier, K. Hashimoto, G. Bihlmayer, S. Blügel, P. Ferriani, S.
Heinze and R. Wiesendanger, Unoccupied surface state on Pt(111) revealed by scan-
ning tunneling spectroscopy, Phys. Rev. B 72, 193406 (2005).

[128] A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov and V. A. Gubanov,
Local Spin Density Functional approach ti the theory of exchange interactions in
ferromagnetic metals and alloys, J. Mag. Magn. Mat. 67, 65 (1987).

[129] H. Ohno, A window on the future of spintronics, Nature Materials 9, 952 (2010).

[130] E. Y. Tsymbal, Spintronics: Electric toggling of magnets, Nature Materials 11,
12 (2012).



BIBLIOGRAPHY 133

[131] D. Chiba, M. Sawiki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno,
Magnetization vector manipulation by electric fields, Nature 455 515 (2008).

[132] S. J. Gamble, M. H. Burkhardt, A. Kashuba, R. Allenspach, S. S. P. Parkin,
H. C. Siegmann, and J. Stöhr, Electric Field Induced Magnetic Anisotropy in a
Ferromagnet, Phys. Rev. Lett. 102, 217201 (2009).

[133] H. Ohno, D. Chiba, F. Matsukura, T. Omlya, E. Abe, T. Dietl, T. Ohno, and
K. Ohtanl, Electric-field control of ferromagnetism, Nature 408 944 (2000).

[134] S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Bistability
in Atomic-Scale Antiferromagnets, Science 335, 196 (2012).

[135] T. Maruyama, Y. Shiota, T. Nozaki, K. Ohnta, N. Toda, M. Mizuguchi, A. A.
Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Large
voltage-induced magnetic anisotropy change in a few atomic layers of iron, Nature
Nanotechnology 4, 158 (2009).

[136] M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord,
Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets, Sci-
ence 315, 349 (2007).

[137] K. Shimamura, D. Chiba, S. Ono, S. Fukami, N. Ishiwata, M. Kawaguchi, K.
Kobayashi, and T. Ono, Electrical control of Curie temperature in cobalt using an
ionic liquid film, Appl. Phys. Lett. 100, 122402 (2012).

[138] P. A. Ignatiev and V. S. Stepanyuk, Effect of the external electric field on surface
states: An ab initio study, Phys. Rev. B 84, 075421 (2011).

[139] K. Berland, T. L. Einstein, and P. Hyldgaard, Response of the Shockley surface
state to an external electrical field: A density-functional theory study of Cu(111),
Phys. Rev. B 85, 035427 (2012).

[140] P. A. Ignatiev, O. O. Brovko, and V. S. Stepanyuk, Local tunneling magne-
toresistance control with surface-state confinement and external electric field, Phys.
Rev. B 86, 045409 (2012).

[141] S. Zahng, Spin-Dependent Surface Screening in Ferromagnets and Magnetic
Tunnel Junctions, Phys. Rev. Lett. 83, 640 (1999).



134 BIBLIOGRAPHY

[142] K. Nakamura, R. Shimabukuro, Y. Fujiwara, T. Akiyama, T. Ito, and A. J.
Freeman, Giant Modification of the Magnetocrystalline Anisotropy in Transition-
Metal Monolayers by an External Electric Field, Phys. Rev. Lett. 102, 187201
(2009).

[143] C. Duan, J. P. Velev, R. F. Sabirianov, Z. Zhu, J. Chu, S. S. Jaswal, and E. .Y
Tsymbal, Surface Magnetoelectric Effect in Ferromagnetic Metal Films, Phys. Rev.
Lett. 101, 137201 (2008).

[144] M. Tsujikawa and T. Oda, Finite Electric Field Effects in the Large Perpendic-
ular Magnetic Anisotropy Surface Pt/Fe/Pt(001): A First-Principles Study, Phys.
Rev. Lett. 102, 247203 (2009).

[145] P. Ruiz-Díaz, T. R. Dasa, and V. S. Stepanyuk, Tuning Magnetic Anisotropy
in Metallic Multilayers by Surface Charging: An Ab-Initio Study, Phys. Rev. Lett.
110, 267203 (2013).

[146] L. Juárez-Reyes, G. M. Pastor, and V. S. Stepanyuk, Tuning substrate-mediated
magnetic interactions by external surface charging: Co and Fe impurities on
Cu(111), Phys. Rev. B 86, 235436 (2012).

[147] S. L. Gong, C. Duan, Z. Zhu, and J. Chu, Manipulation of magnetic anisotropy
of Fe/graphene by charge injection, Appl. Phys. Lett. 100 122410 (2012).

[148] J. Hu and R. Wu, Control of the Magnetism and Magnetic Anisotropy of a
Single-Molecule Magnet with an Electric Field, Phys. Rev. Lett. 110, 097202 (2013).

[149] Yun-Hao Lu, Lei Shi, Chun Zhang, and Yuan-Ping Feng, Electric-field control
of magnetic states, charge transfer, and patterning of adatoms on graphene: First-
principles density functional theory calculations, Phys. Rev. B 80, 233410 (2009).

[150] B. Yoon and U. Landman, Electric Field Control of Structure, Dimensionality,
and Reactivity of Gold Nanoclusters on Metal-Supported MgO Films, Phys. Rev.
Lett. 100, 056102 (2008).

[151] M. Fechner, P. Zahn, S. Ostanin, M. Bibes, and I. Mertig, Switching Magneti-
zation by 180 with an Electric Field, Phys. Rev. Lett. 108 197206 (2012).

[152] O. O. Brovko, V. S. Stepanyuk, and P. Bruno, Effect of exchange interaction
on the spin-polarized bound states on metal surfaces: Ab initio study, Phys. Rev. B
78, 165413 (2008).



BIBLIOGRAPHY 135

[153] O. O. Brovko and V. S. Stepanyuk, Probing the magnetism of nanostructures
buried in metallic surfaces and their possible utilization, Phys. Status Solidi B 247,
1161 (2010).

[154] E. Simon, B. Ujfalussy, A. Szilva, and L. Szunyogh, Anisotropy of exchange
interactions between impurities on Cu(110) surface, J. Phys.: Conf. Ser. 200 032067
(2010).

[155] P. N. Patrone, and T. L. Einstein, Anisotropic surface-state-mediated RKKY
interaction between adatoms, Phys. Rev. B 85, 045429 (2012).

[156] N. Knorr, H. Brune, M. Epple, A. Hirstein, M. A. Schneider, and K. Kern, Long-
range adsorbate interactions mediated by a two-dimensional electron gas, Phys. Rev.
B 65 115420 (2002).

[157] V. S. Stepanyuk, L. Niebergall, A. N. Baranov, W. Hegert, and P. Bruno, Long-
range electronic interactions between adatoms on transition metal surfaces, Comp.
Mat. Sci. 35, 272 (2006).

[158] S. Schnur and A. Gross, Challenges in the first-principles description of reactions
in electrocatalysis, Catalysis Today 165, 129 (2011).

[159] K. P. Bohnen and D. M. Kolb, Charge- versus adsorbate-induced lifting of the
Au(100)-(hex) reconstruction in an electrochemical environment, Surf. Sci. 407,
L629 (1998).

[160] Y. J. Feng, K. P. Bohnen, and C. T. Chan, First-principles studies of Au(100)-
hex reconstruction in an electrochemical environment, Phys. Rev. B 72, 125401
(2005).

[161] C. L. Fu and K. M. Ho, External-charge-induced surface reconstruction on
Ag(110), Phys. Rev. Lett. 63, 1617 (1989).

[162] A. Y. Lozovoi and A. Alavi, Reconstruction of charged surfaces: General trends
and a case study of Pt(110) and Au(110), Phys. Rev. B 68, 245416 (2003).

[163] O. O. Brovko, P. Ruiz-Díaz, T. R. Dasa, and V. S. Stepanyuk, Controlling
magnetism on metal surfaces with non-magnetic means: electric fields and surface
charging, J. Phys.: Condens. Matter 26, 093001 (2014).



136 BIBLIOGRAPHY

[164] P. Wahl, A. P. Seitsonen, L. Diekhöner, M. A. Schneider, and K. Kern, Kondo-
effect of substitutional cobalt impurities at copper surfaces, New. J. Phys. 11, 113015
(2009).

[165] K. Wildberger, V. S. Stepanyuk, P. Lang, R. Zeller, and P. H. Dederichs, Mag-
netic Nanostructures: 4 d Clusters on Ag(001), Phys. Rev. Lett. 75, 509 (1995).

[166] S. Alexander and P. W. Anderson, Interaction Between Localized States in Met-
als, Phys. Rev. 133, A1594 (1964).

[167] N. Baadji, M. Piacenza, T. Tugsuz, F. Della Sala, G. Maruccio, and S. Sanvito,
Electrostatic spin crossover effect in polar magnetic molecules, Nature Materials 8,
813 (2009).

[168] C. F. Hirjibehedin, C. P. Lutz, and A. J. Heinrich, Spin Coupling in Engineered
Atomic Structures, Science 312, 1021 (2006).

[169] M. C. Troparevsky, K. Zhao, D. Xiao, Z. Zhang, and A. G. Eguiluz, Tuning the
Electronic Coupling and Magnetic Moment of a Metal Nanoparticle Dimer in the
Nonlinear Dielectric-Response Regime, Nano Lett., 9, 4452 (2009).

[170] V. S. Stepanyuk, A. N. Baranov, W. Hergert, and P. Bruno, Ab initio study of
interaction between magnetic adatoms on metal surfaces, Phys. Rev. B 68, 205422
(2003).

[171] F. Muñoz, A. H. Romero, J. Mejía-López, and J. L. Morán-López, First-
principles theoretical investigation of monoatomic and dimer Mn adsorption on
noble metal (111) surfaces, Phys. Rev. B 85, 115417 (2012).

[172] J. Friedel, Metallic alloys, Nuovo Cimento, Suppl. 7, 287 (1958).

[173] N. D. Lang and W. Kohn, Theory of Metal Surfaces: Charge Density and Surface
Energy, Phys. Rev. B 1, 4555 (1970).

[174] K. H. Lau and W. Kohn, Indirect long-range oscillatory interaction between
adsorbed atoms, Surf. Sci. 75, 69 (1978).

[175] T. L. Einstein and J. R. Schrieffer, Indirect Interaction between Adatoms on a
Tight-Binding Solid, Phys. Rev. B 7, 3629 (1973).

[176] Chiung-Yuan Lin, Jheng-Lian Li, Yao-Hsien Hsieh, Keng-Liang Ou, and
B. A. Jones, Magnetic Interaction between Surface-Engineered Rare-Earth Atomic
Spins, Phys. Rev. X 2, 021012 (2012).



BIBLIOGRAPHY 137

[177] S. K. Nayak and P. Jena, Anomalous magnetism in small Mn clusters, Chem.
Phys. Lett. 289, 473 (1998).

[178] M. R. Pederson, F. Reuse, and S. N. Khanna, Magnetic transition in Mnn (n=2-
8) clusters, Phys. Rev. B. 58, 5632 (1998).

[179] V. A. Rigo, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, Mn dimers on graphene
nanoribbons: An ab initio study, J. Appl. Phys. 109, 053715 (2011).

[180] B. Wang and Z. Chen, Magnetic coupling interaction under different spin mul-
tiplets in neutralmanganese dimer: CASPT2 theoretical investigation, Chem. Phys.
Lett. 387, 395 (2004).

[181] L. Juárez-Reyes, V. S. Stepanyuk and G. M. Pastor, Electric-field-modulated
exchange coupling within and between magnetic clusters on metal surfaces: Mn
dimers on Cu(111), J. Phys.: Condens. Matter 26, 176003 (2014).

[182] N. N. Negulyaev, V. S. Stepanyuk, L. Niebergall, P. Bruno, W. Auwärter, Y.
Pennec, G. Jahnz, and J. V. Barth, Effect of strain relaxations on heteroepitaxial
metal-on-metal island nucleation and superlattice formation: Fe on Cu(111), Phys.
Rev. B 79, 195411 (2009).
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