
Managing Quality Properties of Web
Service Compositions

Dissertation for the acquisition of the academic degree

Doktorin der Naturwissenschaften (Dr. rer. nat.)

Submitted to the
Faculty of Electrical Engineering and Computer Science

of the University of Kassel

By M.Sc. Diana-Elena Reichle

Kassel, September 2014

Advisors:
Prof. Dr. Kurt Geihs
Prof. Dr. Birgitta König-Ries

Additional Doctoral Committee Members:
Prof. Dr. Albert Zündorf
Prof. Dr. Arno Wacker

Date of Defense: 9 February 2015

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

1 Introduction 1
1.1 Topic Overview . 1
1.2 Motivation and Problem Statement . 2
1.3 Contribution . 4
1.4 Structure of the Thesis . 6

2 Foundations 9
2.1 Service-Oriented Architecture . 9

2.1.1 SOA Roles . 10
2.1.2 SOA Layers . 12
2.1.3 Web Services . 13

2.2 Business Processes and Workflows . 17
2.3 Web Service Compositions . 19

2.3.1 The Business Process Execution Language (BPEL) 20
2.3.2 Semantic Web Services and Compositions 23

2.4 Terminology . 24
2.5 Quality Properties . 25

2.5.1 Quality of Service . 25
2.5.2 Quality Property Types . 28
2.5.3 Quality of Experience . 29
2.5.4 Service Level Agreements . 31

2.6 Context-awareness . 31

3 Solution Overview 35
3.1 The BPR Approach . 35

4 Related Work 39
4.1 QoS Management . 39

4.1.1 WS-Re2Policy . 39
4.1.2 QoSL4BP . 40
4.1.3 WS-Policy4MASC . 41
4.1.4 WSCoL . 42
4.1.5 AO4BPEL . 42
4.1.6 Other Related Approaches . 43

3

4.2 Service Selection . 43
4.2.1 Integer Programming . 43
4.2.2 Linear Programming Relaxation and Backtracking 44
4.2.3 Genetic Approach . 44
4.2.4 Tabu Search and Hybrid Genetic Algorithms 45
4.2.5 Heuristic Approaches . 45

4.3 Context-aware Property Prediction . 46
4.3.1 Collaborative Filtering . 46
4.3.2 Predictive Algorithms for Collaborative Filtering 46
4.3.3 WSRec . 47
4.3.4 Location Based Regularization . 48
4.3.5 Location-aware Memory-based Collaborative Filtering Approaches 48

5 The BPRules Language 51
5.1 Requirements . 51
5.2 The BPRules Language . 52

5.2.1 The BPR Rules . 52
5.2.2 Evaluation of Rules . 53
5.2.3 The BPR Document . 53
5.2.4 Design Rationales . 55

5.3 BPRules Features . 56
5.4 Summary and Discussion . 65

6 QoS Monitoring and Aggregation 67
6.1 Requirements . 67
6.2 Service Composition Representation . 68
6.3 QoS Aggregation . 68
6.4 The QoS Measurement Algorithm . 69

6.4.1 Example . 72
6.4.2 QoS of the Service Composition . 73

6.5 The QoS Estimation Algorithm . 74
6.6 Measurement Algorithm vs. Estimation Algorithm 75
6.7 Automated Deployment . 76
6.8 Discussion . 77

7 Web Service Selection 79
7.1 Requirements . 79
7.2 Service Selection . 79

7.2.1 Tree Representing the BPEL Process 80
7.2.2 QoS Aggregation and Constraints Checking 82

7.3 Selection Algorithms . 82
7.3.1 OPTIM_S Algorithm . 82
7.3.2 OPTIM_HWeight Algorithm . 85
7.3.3 OPTIM_PRO Algorithm . 88

7.4 Summary . 89

8 CoFee - The Feedback Collector and Predictor 91
8.1 Requirements . 91

8.2 CoFee - an Overview . 92
8.3 Context-aware Service Composition . 93

8.3.1 Collecting Feedbacks . 93
8.3.2 Requesting Predictions . 95
8.3.3 Context-aware Service Composition Example 96
8.3.4 Service Provisioning . 99
8.3.5 User Request Delegation . 100

8.4 Prediction Approach . 101
8.4.1 Significant Variables . 101
8.4.2 Prediction of Response Time and Throughput 103
8.4.3 Discussion about QoE Prediction . 109

8.5 Summary and Discussion . 111

9 The BPR Framework 113
9.1 Architecture . 113
9.2 Implementation . 115

9.2.1 The Service Registry . 115
9.2.2 Service Replacement . 115

10 Evaluation 119
10.1 Service Selection Algorithms . 119

10.1.1 Comparison with the GA_CAN Algorithm 119
10.1.2 Evaluation Methodology and Setup 120
10.1.3 Experiments . 120

10.2 Prediction Algorithms . 122
10.2.1 Evaluation Methodology and Setup 123
10.2.2 Experiments . 124

11 Conclusions 135
11.1 Requirements and Solution Summary . 135
11.2 Contributions . 137
11.3 Outlook and Future Work . 138

List of Figures 141

List of Tables 143

A Appendix 145
A.1 BPRules XSD Schema . 145

B Publications as (co-)author 161

Bibliography 163

Abstract

Web services from different partners can be combined to applications that realize a
more complex business goal. Such applications built as Web service compositions define
how interactions between Web services take place in order to implement the business
logic. Web service compositions not only have to provide the desired functionality
but also have to comply with certain Quality of Service (QoS) levels. Maximizing the
users’ satisfaction, also reflected as Quality of Experience (QoE), is a primary goal to
be achieved in a Service-Oriented Architecture (SOA). Unfortunately, in a dynamic
environment like SOA unforeseen situations might appear like services not being
available or not responding in the desired time frame. In such situations, appropriate
actions need to be triggered in order to avoid the violation of QoS and QoE constraints.

In this thesis, proper solutions are developed to manage Web services and Web service
compositions with regard to QoS and QoE requirements. The Business Process Rules
Language (BPRules) was developed to manage Web service compositions when un-
desired QoS or QoE values are detected. BPRules provides a rich set of management
actions that may be triggered for controlling the service composition and for improving
its quality behavior. Regarding the quality properties, BPRules allows to distinguish
between the QoS values as they are promised by the service providers, QoE values
that were assigned by end-users, the monitored QoS as measured by our BPR frame-
work, and the predicted QoS and QoE values. BPRules facilitates the specification of
certain user groups characterized by different context properties and allows triggering
a personalized, context-aware service selection tailored for the specified user groups.
In a service market where a multitude of services with the same functionality and
different quality values are available, the right services need to be selected for realizing
the service composition. We developed new and efficient heuristic algorithms that
are applied to choose high quality services for the composition. BPRules offers the
possibility to integrate multiple service selection algorithms. The selection algorithms
are applicable also for non-linear objective functions and constraints. The BPR frame-
work includes new approaches for context-aware service selection and quality property
predictions. We consider the location information of users and services as context
dimension for the prediction of response time and throughput. The BPR framework
combines all new features and contributions to a comprehensive management solution.
Furthermore, it facilitates flexible monitoring of QoS properties without having to
modify the description of the service composition. We show how the different modules
of the BPR framework work together in order to execute the management rules. We
evaluate how our selection algorithms outperform a genetic algorithm from related
research. The evaluation reveals how context data can be used for a personalized
prediction of response time and throughput.

i

ii Abstract

Zusammenfassung

Web-Services von verschiedenen Partnern können über das Internet zu Applikatio-
nen kombiniert werden, um ein komplexeres Geschäftsziel zu realisieren. Solche
Applikationen, die als Web-Service-Kompositionen gestaltet sind, definieren, wie die
Interaktionen zwischen Web-Services erfolgen, um eine Geschäftslogik zu implemen-
tieren. Web-Service-Kompositionen müssen nicht nur die gewünschte Funktionalität
bereitstellen, sondern auch bestimmte Quality-of-Service-Level (QoS-Level) erfüllen.
Ein primäres Ziel in einer Service-orientierten Architektur (SOA) ist die Maximierung
der Benutzerzufriedenheit, welche durch die Quality-of-Experience (QoE) widerge-
spiegelt wird. In einer dynamischen Umgebung wie SOA können unvorhersehbare
Situationen auftreten, wie beispielsweise Services, die nicht erreichbar sind oder die
nicht in der gewünschten Zeit antworten. In solchen Situationen müssen Aktionen
ausgeführt werden, um die Verletzung von QoS- und QoE-Nebenbedingungen zu
verhindern.

In dieser Arbeit werden Lösungen vorgestellt, um Web-Services und Web-Service-
Kompositionen bezüglich QoS- und QoE-Anforderungen zu verwalten. Die Business-
Process-Rules-Sprache (BPRules) wurde entwickelt, um Web-Service-Kompositionen zu
managen, wenn unerwünschte QoS- und QoE-Werte festgestellt werden. BPRules liefert
eine umfangreiche Menge an Aktionen, welche aufgerufen werden können, um die
Service-Komposition zu steuern und um ihr Qualitätsverhalten zu verbessern. BPRules
kann zwischen folgenden Qualitätseigenschaften unterscheiden: QoS-Werte, die vom
Anbieter versprochen wurden, QoE-Werte, die von End-Benutzern angegeben wurden,
QoS-Werte, welche vom BPR-Framework gemessen wurden, und prädizierte QoS- und
QoE-Werte. BPRules ermöglicht die Spezifikation von Benutzergruppen, die durch
bestimmte Kontexteigenschaften charakterisiert sind, und es unterstützt eine personali-
sierte, kontextbewusste Service-Selektion, die auf die spezifizierten Benutzergruppen
angepasst ist. In einem Service-Markt werden eine Vielzahl von Services mit derselben
Funktionalität und unterschiedlichen Qualitätseigenschaften angeboten, und die rich-
tigen Services müssen selektiert werden, um die Service-Komposition zu realisieren.
Wir haben neue und effiziente heuristische Algorithmen entwickelt, um Services mit
guten Qualitätseigenschaften für die Komposition auszuwählen. BPRules ermöglicht
die Integration mehrerer Service-Selektions-Algorithmen. Die Selektions-Algorithmen
sind auch für nicht-lineare Zielfunktionen und Nebenbedingungen anwendbar. Das
BPR-Framework enthält neue Ansätze für eine kontextbewusste Service-Selektion
und Prädiktion von Qualitätseigenschaften. Wir berücksichtigen die Kontextdimension
Ort, sowohl des Benutzers als auch des Services, bei der Prädiktion von Antwortzeit
und Durchsatz. Das BPR-Framework kombiniert alle neuen Merkmale und Beiträge
zu einer umfassenden Managementlösung. Es ermöglicht eine flexible Überwachung
von QoS-Eigenschaften, ohne dass die Beschreibung der Service-Komposition manuell
geändert werden muss. Wir beschreiben, wie die verschiedenen Module des BPR-

iii

Frameworks interagieren, um die Managementregeln auszuführen. Wir evaluieren, wie
unsere Selektions-Algorithmen einen genetischen Algorithmus aus einer verwandten
Arbeit übertreffen. In der Evaluierung wird zudem gezeigt, wie Kontextdaten bei einer
personalisierten Prädiktion von Antwortzeit und Durchsatz berücksichtigt werden
können.

iv Zusammenfassung

Acknowledgements

During my work at the University of Kassel, I had the chance to write this dissertation
and I enjoyed working in interesting projects like ADDOaction and VENUS. It was
a nice experience to be confronted with many interesting topics, but also to meet
nice people and to get to know beautiful places while traveling to conferences and
workshops. I would like to thank several people who supported me in writing this
dissertation and were accompanying my research work.

First, I would like to thank my doctoral advisor Prof. Kurt Geihs for giving me the chance
to work in his research group. Without offering me this opportunity, my life would be
different now. I am very grateful to Kurt for guiding me in writing this dissertation,
but also for his support in writing research articles and working in research projects. I
further like to thank Prof. Birgitta König-Ries for reviewing my thesis.

Special thanks go to Harun Baraki and Steffen Bleul, who discussed with me my
research topic and gave valuable inputs for my dissertation. Harun was an excellent
student and further became my colleague and a friend. It was nice working with Harun
and Steffen.

From Thomas Weise I learnt what dedication and devotement to work means. Michael
Zapf contributed with explaining rules of English grammar but also by maintaining
a good atmosphere in our group and keeping us always up to date with information
from Wikipedia.

Together with my colleagues Christoph Evers, Andreas Witsch and Stefan Niemczyk,
we were responsible for the Adaptation project in VENUS. We adapted to the new
requirements of VENUS and researched in an interdisciplinary team. I would like to
thank all the VENUS colleagues for their collaboration and also for providing useful
insights from their disciplines. I especially enjoyed working with Olga Kieselmann.
With the knowledge from VENUS, I will definitely design only social applications in
future.

From the very beginning, I could observe at the boys from our group a deep passion
for soccer and robots. My colleagues Philipp Baer, Hendrik Skubch, Michael Wagner,
Daniel Saur, Dominik Kirchner, Tareq Razaul Haque and Stephan Opfer introduced me
to interesting robotic topics. I also want to mention ’Titu’ Khan, Thang Nguyen, Thomas
Kleppe, Heidemarie Bleckwenn and Iris Roßbach who contributed to a nice atmosphere
in our group.

Last but not least, I especially want to thank my husband Roland and my father Tiberiu
for supporting and encouraging me in writing this thesis. Of course, I want to thank
my little daughter Sandra for distracting me from this dissertation, since with her I
spend the most beautiful time.

v

vi Acknowledgements

1 Introduction

1.1 Topic Overview

Applications from different enterprises need to collaborate in order to accomplish
business goals. It is required that applications running on different platforms are able
to communicate and exchange their data. The Internet may be used as the underly-
ing infrastructure for these applications. Therefore, distributed and heterogeneous
applications have to overcome interoperability challenges and deal with a dynamic
environment as the Internet. The Web service technology has emerged for overcoming
these challenges. A Web service is a software application that is available in a network
and can be accessed via its public interface [79]. Web services gained much of interest
through their reliance on XML-based standards (e.g. SOAP, WSDL) and their access-
ibility over the Internet. The service provider offers the Web service and publishes
its interface in a service registry. The service consumer looks up for a service in the
registry, invokes it and uses its functionality [52].

Web services from different partners may cooperate and form a business process that
delivers a higher business value to its clients. To implement a more complex business
logic, several Web services may be necessary. In service-oriented computing, business
processes are commonly realized as Web service compositions. A business process
implies performing a set of activities that together achieve a business objective and
produce a business value for the customers or partners [80]. Examples of business
processes are: processing customer orders, delivering goods to the customer, or offering
services (e.g. renting a car, booking a room at a hotel, approving a credit at a bank).
The Web Services Business Process Execution Language, shortly WS-BPEL [16], has
emerged as the standard technology for executing such a process. WS-BPEL permits
specifying Web service compositions by defining their control structure and service
interactions.

Services need to offer and maintain adequate quality, also known as Quality of Service
(QoS) (e.g. response time, availability, reliability), to accomplish clients’ expectations.
Services are supposed to be reliable and to respond to client requests in reasonable
time. Solely Web services that ensure the fulfillment of convenient QoS levels may
be integrated into applications or business processes in a reliable way. In a dynamic
environment as the Internet, guaranteeing of adequate QoS levels is quite a challenge.
Therefore, QoS becomes a major concern for the success of business processes and
received much attention from the research community.

While service providers measure and advertise their Web services at certain QoS levels,
service users have different perceptions on the Web services and they are not necessarily
thinking of services in terms of technical parameters. A human user notices whether
the service is responding in a reasonable time frame, but he is also interested whether

1

the service corresponds to his personal requirements regarding, for example, usability
and functionality [38, 91]. The degree reflecting the user satisfaction with the service
is also known as Quality of Experience (QoE). The QoE of a Web service can be assigned
as a mean opinion score (MOS) directly by human users or it can be computed by an
algorithm on behalf of the user [54]. QoE is a complex dimension which is depending
on several factors such as user expectations and user psychology, context, social and
economic factors, etc. [38].

Throughout the thesis, we will refer to QoS and QoE also as Quality Properties (QP). We
will use the terms of service process, business process, process and service composition
interchangeably and refer to a Web service composition.

1.2 Motivation and Problem Statement

As long as Web services accomplish their tasks and fulfill the promised QoS, these
can be used for building more complex business processes. Unfortunately, undesired
situations, like a network failure, a service becoming unavailable or not responding
in the desired time frame, may happen in a dynamic environment like SOA. Services
may become deprecated and newer services with a better QoS performance may take
their place. The malfunction of one single service may cause the failure of the entire
process and cause clients’ dissatisfaction. Therefore, a service composition should be
adaptable when service performance is decreasing and customer requirements change.
Binding to new services should not alter the process description. Services are invoked
by many users, which may have different experiences with a service. Thus, new service
users may profit from experiences of other service clients that invoked the service in
the past.

In order to avoid undesirable situations, a business process needs to be continuously
monitored and managed regarding its QoS and QoE. In case of undesired situations,
immediate management actions need to be undertaken to improve the behavior of the
business process. Flexible QoS and QoE management remains an important and open
issue in service management.

The goal of this thesis is to offer a comprehensive solution for QoS and QoE man-
agement of Web service compositions. A unified solution is needed that traces the
QoS of the business process on the one side, and takes into consideration the users
experiences on the other side, whether users are satisfied when interacting with the
services and the process.

In order to provide a successful management support, we identified five research areas
that have to be explored thoroughly:

• monitoring the QoS dimensions of service compositions

• specification of QP requirements and of appropriate management actions

• selection of services

• prediction of quality properties

• providing a quality management solution

2 Introduction

Nevertheless, the aspects from the four research areas have to be combined into a
unified solution with adequate tool support. Usually, a person, also referred as the
business analyst, is responsible for the development and management of the business
processes [80]. Another goal of this work is to provide the business analyst with
adequate tool support for QoS and QoE management.

In the following, we discuss the challenges posed by QP management related to the
mentioned topics:

• Flexible Monitoring

Inadequate quality levels of services and service compositions need to be detected
at the right moment, before unacceptable quality values are reached. In a
continuously changing environment like SOA, new quality dimensions may be
introduced that have to be monitored. These new quality dimensions have
to be easily added into the monitoring process, without many efforts of the
business analyst. The quality values of a service composition rely on the quality
values of the services and of the other activities that are part of the composition.
A flexible monitoring at runtime is required which indicates the parts of the
service process that cause problems.

• QoS and QoE Management

A service composition has to fulfill certain QoS and QoE requirements in order
to be trusted by its clients. While the service provider is supposed to provide its
services at the promised QoS levels, the service users demand that the services
behave as they expect and achieve their tasks properly. These quality require-
ments need to be specified by the business analyst in order to be able to react
upon undesired services behavior. The analyst is not necessarily a software
developer and may not have any programming skills. His specifications need to
be interpreted dynamically at runtime. It is necessary that the business analyst
may choose from a set of predefined actions that may be applied on the service
process. When the QoS requirements are violated, immediate actions should be
triggered automatically to improve the process behavior.

• Service Selection

We assume that in future service markets there are multiple services offered
by different service providers having the same functionality but with different
service levels. Thus, quality properties make the difference between services, and
choosing the right service is an important issue for the success of the business
process. To ensure that a service composition fulfills certain quality requirements,
appropriate services need to be selected for the composition so that the desired
QoS and QoE requirements of the composition are met. Choosing an optimal
collection of services for the composition is known to be an NP-hard problem [22].
Thus, algorithms for the selection of services with a reasonable computation
effort need to be developed.

• QoS and QoE Predictions

The selection of services may be improved by considering predicted values of
QoS and QoE for services. Considering past experiences of clients which have

1.2 Motivation and Problem Statement 3

already invoked the services may contribute in selecting future high quality
services for the composition. It is desirable to analyze whether the consideration
of context data would improve the prediction quality. Users with similar context
data can be regarded as a user group. Another challenge is to build a customized
service process that is suited to a specific user group.

• A Quality Management Solution

The mentioned aspects have to be combined into a unified solution that supports
quality management including QoS monitoring, service selection, the collection
of QP feedbacks, and QP predictions. The solution needs to be sustained by
adequate tools that assist the business analyst in his work to manage the service
composition properly.

1.3 Contribution

In this thesis, we propose the BPRules language and the BPR framework that offer
comprehensive support for QoS and QoE management for Web service compositions
(see Figure 1.1). The contribution of this thesis resides in providing support for the four
research challenges monitoring, QoS and QoE management, Web service selection and
QP predictions. We contribute with novel algorithms, new features and tool support
which build a comprehensive solution for QoS and QoE management. We developed
the BPR framework which facilitates management actions on the service composition
by means of executing rules.

• Flexible Monitoring

Within the BPR framework, BPEL processes are continuously monitored during
runtime. The quality values of the service composition or of composition parts
are computed out of the quality values of the building blocks, represented by
atomic services or by other BPEL activities. For the monitoring task, we focused
on the flexibility aspect. Thus, we keep the monitoring artefacts apart from the
process description file, and the necessary sensors for monitoring are deployed
automatically [47]. The aggregation is performed by our measurement algorithm
which can be triggered in an online or offline mode. The online mode refers
to aggregation of running process instances, and the offline mode targets the
process instances that already finished their execution. We also implemented the
estimation algorithm similar to how it was proposed by [39]. The estimation
algorithm is used to make an estimation of QoS and QoE of the process necessary
for the selection of services.

• QoS and QoE Management

For a successful QoS and QoE management of Web services and Web service
compositions, we designed and developed a novel language, namely the BPRules
(Business Process Rules) language [50] [48]. As its name suggests, BPRules is
a rule-based language with special features that we envision as mandatory for the
QoS and QoE management of services. The business analyst may specify rules
with BPRules and can state what should happen if certain QoS requirements are

4 Introduction

BPR
framework

Web Service Compositions

Atomic Web Services

Manage QoS and QoE

solutionpiramid

CoFee
Predictor

Service
Selection

QoS
Monitor

BPRules

Figure 1.1: Architecture Overview

violated. He is not required to have any programming skills as BPRules relies on
XML and it is simple to use. BPRules goes beyond the state of the art by offering
novel features like instance set handling and a dynamic rule set change, but also
by improving the flexibility of already established features, as e.g. the selection of
services, QP data retreival for different periods of time and section control. With
regard to these features BPRules provides more sophisticated means to specify
management rules compared to already existing approaches. With BPRules we
may distinguish between monitored QoS and assigned QoE, QP as advertised
by the service provider and QP predictions. BPRules has its focus on the service
selection action, and the business analyst may specify more detailed requirements
for the selection. He may choose among multiple service selection algorithms
and may specify the QP constraints to be fulfilled and an objective function to be
optimized. The service selection may be triggered to create personalized service
processes for specified user groups which are characterized by certain context
properties.

• Service Selection

Selecting adequate services to realize the desired functionality is a crucial task
for the success of the service or process. We propose novel and very efficient
selection algorithms [49], OPT I M_S, OPT I M_PRO, and OPT I M_HWeight,
that receive as input the quality requirements for the service composition and

1.3 Contribution 5

return the services to be selected for the composition. Being heuristic algorithms,
the OT PI M_PRO and OPT I M_HWeight algorithms offer near-optimal solu-
tions in affordable computation time. Applying the OPT I M_S algorithm, we can
even choose between computation time and the quality of the solution by only
changing its parameters. The OPT I M_HWeight algorithm is based on gradient
ascent and the OPT I M_PRO algorithm uses priority factors to process the BPEL
nodes.

• QoS and QoE Predictions

We developed CoFee (the Feedback Collector and Predictor), a module that col-
lects feedbacks from service users and uses the feedbacks to make QP predictions
[24]. We show exemplarily by response time and throughput how context data
of users and services can be used in making predictions. We discuss how the
QoE may be influenced by context dimensions (e.g. age, profession) of the users.
With BPRules, we may create customized processes for a certain user group
consisting of users with similar context data.

• A Unified QoS and QoE Management Solution

We developed the BPR framework which provides support for the QP manage-
ment of Web services and Web services compositions. The rules specified with
BPRules are deployed and interpreted by the BPR framework. The BPR frame-
work is built of several modules which offer support for monitoring, execution of
rules, service selection and the prediction of QPs. Thus, the BPR framework com-
bines all the artefacts necessary for a successful QP management and represents
a unified solution.

1.4 Structure of the Thesis

This thesis is composed of eleven chapters starting with the presentation of the founda-
tions in Chapter 2 followed by an overview of the solution in Chapter 3. A comparison
with related work studies is presented in Chapter 4, and a detailed description of
the solution can be found from Chapter 5 to Chapter 9. We evaluate our approach
in Chapter 10 and summarize the main results of this work in Chapter 11. In the
following, we give a short overview of each of the chapters:

• Chapter 2 introduces some foundations that represent the basis for this thesis.
We give some insights about Web services and Web service compositions, the
Service-Oriented Architecture, QoS and QoE properties, workflows, and business
processes.

• Chapter 3 gives a short overview of the solution including the main modules of
the BPR framework and their functionalities.

• Chapter 4 contains other related studies that we compare with this work. We
regard the four mentioned research domains: monitoring, quality property
management, service selection and quality property prediction.

• Chapter 5 presents the BPRules language, our solution to QoS and QoE man-
agement for Web service compositions. We show how rules specified with the
BPRules language can be applied in order to manage a service composition.

6 Introduction

• Chapter 6 shows how the QoS properties of the services are monitored and how
the quality values of the composition can be aggregated with the measurement
algorithm and the estimation algorithm.

• Chapter 7 presents the three algorithms OPT I M_S, OPT I M_HWeight and
OPT I M_PRO that we propose to apply for the selection of services for the
composition.

• Chapter 8 describes how the response time and throughput values of the atomic
services are predicted using multiple linear regression. We also discuss how QoE
can be predicted. It is shown how these predictions are further used within the
selection of services. The context data of services and users may be used to
create context-aware processes.

• Chapter 9 presents the BPR framework. We give some implementation details
about the BPR framework and show how the modules of the BPR framework
work together in order to achieve the quality management.

• Chapter 10 shows how we evaluated our approach. It includes a comparison
of our selection algorithms with a genetic algorithm from related work [39].
For the prediction of response time and throughput we use a real dataset from
[112] [17] and compare the prediction quality and computation time of multiple
regression functions.

• Chapter 11 summarizes the main results of this work and discusses future work.

1.4 Structure of the Thesis 7

8 Introduction

2 Foundations

In this chapter, we describe selected foundations that represent the basics for this thesis.
We give some insights about the Service-Oriented Architecture and the Web service
technology. Concepts such as workflows, business processes and the definitions of QoS
and QoE are introduced. We present the BPEL language that we used for building
service compositions.

2.1 Service-Oriented Architecture

Nowadays, enterprises, as part of a global marketplace, have to be competitive and
adaptable to new business requirements. Applications of different enterprises need
to cooperate independently of their locations and platforms. When systems become
more complex, flexibility is an important goal to be reached. Complex and distributed
systems and applications need to be developed and maintained, while it is desirable to
minimize the development and administrative costs. SOA is the emerging paradigm
that addresses these challenges.

Services [87, 74, 62] are at the core of a Service-Oriented Architecture (SOA). A service
is a software component or program that may solve a computational problem or a
specific business task and is available in a network. Services are loosely coupled, they
offer support for overcoming interoperability issues and distributivity challenges that
come with an increased collaboration demand between organizations. They provide
solutions for business integration, where partners may cooperate by using the Internet
as the underlying infrastructure. A service has a service description that is accessible
for the service consumers. This service description contains all the necessary artefacts
(like service methods, bindings, communication protocols) that the consumer needs
to know in order to be able to call the service. The service description has to be
independent from the platform of the service.

The Service-Oriented Architecture (SOA) [87, 79, 74, 62, 114] is a paradigm where
services represent the basic components of the software architecture. A SOA is an
architectural style that integrates services that may be distributed on different servers.
Respecting the SOA guidelines and principles, flexible and cost effective business
processes can be created by employing services [79, 87]. Functionalities of applica-
tions can be encapsulated into services and may be offered to the interested parties.
Therefore, the complexity of integrating applications is reduced and heterogeneity is
overcome. SOA is defined in [87] as follows:

9

Definition 1 "SOA is an architectural style for building enterprise solutions based on
services. More specifically, SOA is concerned with the independent construction of business-
aligned services that can be combined into meaningful, higher-level business processes and
solutions within the context of the enterprise."

The OASIS reference model [15] describes SOA as "a paradigm for organizing and
utilizing distributed capabilities that may be under the control of different ownership
domains." Thus, the services may be implemented by different organizations. Business
solutions are created more flexible by building new applications or by recomposing
applications by reusing existing services. SOA is a new way of building distributed
applications, independent of the specific technologies. A SOA is commonly implemen-
ted using Web services, but also other technologies may be employed such as J2EE
or CORBA. Web services are preferred as they conform to the SOA principles of loose
coupling, platform independence, interoperability and distributivity.

Common functionalities within an enterprise can be encapsulated into services. In
this way, SOA crosses boundaries and easily integrates applications from different
departments of an enterprise. SOA also offers support for the collaboration between
an enterprise and its partners. Suppliers or trading partners of an enterprise also
participate within a business process and need to be included in the process as well.
External services provided by other organizations or partners, which are external to
the enterprise, allow new functionalities outside the enterprise to be easily integrated
into the own business processes [87, 79]. Services can be composed as needed to
accomplish a business task. The integration of external services into a business process
is one of our goals in this thesis.

2.1.1 SOA Roles

SOA defines the roles that occur in the communication with the Web services. The
main participant roles in a SOA are: the service provider, the service consumer, the
service registry [79, 74] and the business analyst [80]. The service provider offers its
services to potential clients, who may call the services and use their functionalities.
The roles are associated with some operations like publishing the services, searching
for them and binding to the services.

• Service Provider
The service provider is an organization that offers the service and makes it
available in a network. The provider owns the service and is responsible for
the platform where the service is deployed. Other tasks of the provider are the
specification of the service description and their maintenance so that the service
is available and keeps certain QoS levels. The service description contains three
types of information about the business, including the provider of the service or its
implementer, information about the service and technical information regarding
the methods and other technical details. The provider registers the service in the
service registry and publishes its service description so that potential clients may
find it.

• Service Registry
The service registry is a directory that is used by service consumers to search for

10 Foundations

Service
Consumer

Service
Provider

Service
Registry

find

bind

publish

SOAroles

Figure 2.1: SOA Roles [80]

services. A service registry is similar to the yellow pages but for Web services.
The registry offers the service provider the possibility to register services and to
publish service descriptions. The service consumer uses the registry to search
for services. There may be multiple service registries that can be searched
for services. The service registry may contain services that provide the same
functionality, owned by the same or by different service providers. The service
registry contributes to low coupling between the services. A well-known service
registry is the Universal Description, Discovery and Integration (UDDI) [1].

• Service Consumer
A service consumer may be an application, such as a Web portal, or it may be a
business process that needs to integrate the service to use its functionality. The
service consumer searches for services in the service registry by submitting a
query that contains the criteria for the searched service. A set of services that are
discovered and correspond to the requesting query are returned to the customer.
The appropriate service is chosen (selected) from the set of discovered services.
The consumer uses the service description to bind to the service and call its
operations. In our case, the service selection is mediated by our BPR framework.
Further details about our selection approach is provided in Chapter 7.

• Business Analyst
The business analyst is responsible to "develop, manage and monitor business
processes"[80]. The business analyst facilitates the communication between the
business side and the IT department of an enterprise. Thus, he may be seen as
"the person in the middle" [90]. Typically, the business analyst is not required to
have any technical skills. He has to ensure that the business requirements are
met. One of our goals in this thesis is to offer the business analyst adequate tool
support for managing the business process properly.

The communication between the service provider, the service consumer and the service
registry is known as the publish-find-bind process and is represented in Figure 2.1.

2.1 Service-Oriented Architecture 11

2.1.2 SOA Layers

Operational systems

DatenbankDatenbank
SAP /
ERPCRM

Legacy
Applications Mainframe

Component-based service realizations

Business Processes

Presentation Layer

1

2

3

Service Layer

4

5

Q
oS, Security, M

anagem
ent &

 M
onitoring

Integration Architecture
6 7

User Interface User Interface

Figure 2.2: SOA Layers [13]

In the literature, several slightly different descriptions of the SOA architecture [13, 79]
exist. In this work, we rely on the IBM description and terminology. SOA consists
of different layers as represented in Figure 2.2. One layer relies on the layer below
and uses its functionalities. The bottom layer, the operational systems layer, consists
of existing enterprise applications and systems such as Enterprise Resource Planning
(ERP) or Customer Relationship Management (CRM) systems, legacy applications or
databases. The components from the components layer are responsible for ensuring
appropriate QoS levels of the services and for providing enterprise functionalities. The
systems from the operational layer can be integrated and used by the components
from the components layer to build the desired functionalities. These functionalities are
used to implement the services from the service layer. A service represents a business
task that can be automated and reused by several business processes. The service
description can be exposed so that the service can be discovered or statically bound
and called via its interface. A service can be used as an atomic or as a composite
service. Even business processes may be created from the interaction of multiple
services which are triggered in a more complex flow. Business processes are realized
as service compositions through orchestration or choreography at the business process

12 Foundations

layer of a SOA. Since human users interact with business processes or directly with
services, they are provided with a user interface. SOA separates the user interface into
the presentation layer.

The integration layer is commonly represented by the Enterprise Service Bus (ESB)
which assures the infrastructure for the integration of services. The ESB includes
capabilities for data transformations, intelligent routing, protocol mediation, service
logging, etc. The QoS layer of a SOA, includes capabilities for maintaining appropriate
QoS and security.

2.1.3 Web Services

The Web services technology is commonly used to implement services in a SOA. A Web
service is a software component that is accessible in a network via its well defined
interface. Commonly, Web services are accessed by their clients in the Internet via
HTTP. It is also possible that services are available in the intranet. The clients are not
aware of the service’s implementation but only have to know its interface in order
to use the service. An application may easily call a Web service from another server
and use its functionality. A Web service is defined by [79] in the following way, which
corresponds to our understanding as well.

Definition 2 A Web service is a platform-independent, loosely coupled, self-contained,
programmable Web-enabled application that can be described, published, discovered,
coordinated, and configured using XML artifacts (open standards) for the purpose of
developing distributed, interoperable applications.

Some examples of real Web services which can be accessed through the Internet, are:
a service for the weather forecast provided by the National Weather Service, the Google
Maps Web services that provide geographic data for maps, the Terra Service from
Microsoft which may provide photos or a topographic image for a certain location, the
IP2Geo Web service from CDYNE for mapping an IP Address to the geographic location
(e.g. latitude, longitude, country, etc.), and the Trading Web services for accessing the
eBay marketplace by eBay. Among the service providers that offer Web services through
the Internet are Google, Amazon, eBay and PayPal. There are also websites, where
different Web services are advertised, as e.g. webservices.seekda.com, xmethods.net,
webservicex.net and cdyne.com.

The Web services may be implemented with different technologies. Currently, there
are two widely spread specifications for Web services: SOAP and REST. The SOAP Web
services use SOAP as communication protocol, which is based on XML messages. REST
stands for REpresentational State Transfer and it is an architectural style for enabling
communication with Web services. For more information about REST Web services
please refer to [60]. REST supporters argue that it is simpler and more efficient than
SOAP. However, these advantages come together with other drawbacks including lack of
standardization, lack of support regarding transactions, asynchronous communication
and stateful operations. REST uses solely HTTP or HTTPS as communication protocol,
while SOAP may employ other protocols as well. Thus, the SOAP overhead brings also

2.1 Service-Oriented Architecture 13

advantages. In addition, for services over SOAP there exist a series of WS* extensions
(e.g. WS-Transactions, WS-Coordination, textitWS-Security, WS-Reliable Messaging)
that offer additional support for transactions, security, reliability, etc. Both, SOAP and
REST Web services are nowadays employed, and the choice between one technology
and the other depends on the particular case when it is applied.

In this thesis, we deal with SOAP Web services, which we discuss in more detail in
the following paragraphs of this section. However, even if our current implementation
targets SOAP Web services, our approach is not limited to services over SOAP and may
be easily extended to other service technologies as well.

The previously described Web service examples are also implemented with different
technologies. The Terra Service, the Weather Service, the IP2Geo Service and the Trading
Services are SOAP Web services and use the XML format, SOAP communication and
WSDL interfaces. The Terra Service was developed with the .NET framework. The
Google Maps Services have REST interfaces and they exchange JSON objects.

Web services have the following properties [79]:

• Interoperable: The interoperability problem is overcome by the service concept,
since a service may be implemented in any programming language and the
service consumer only deals with its interface. Thus, different applications may
be integrated with each other, independently of their implementation platform.
The Web services rely on the XML standard which can be interpreted by many
applications.

• Loosely coupled: Multiple concepts of a SOA and Web services, such as the
service registry, service descriptions which are independent of the service im-
plementation and platforms, and the standard protocols, contribute to a loosely
coupled communication between services. Web services also support asynchron-
ous communication.

• Programmatically accessible: Web services can be called by remote applica-
tions which use the services’ functionalities.

• Service description: As mentioned before, the client calls the Web service via
its interface. The service operations are defined in the interface, which is based
on XML standards and the WSDL language.

• Dynamically discoverable: The Web service consumers can search automat-
ically for a service in the service registry. Thus, they can find out the service
description and can invoke it.

• Distributivity: Web services may be distributed on different servers and are
usually accessed via Internet. Using HTTP as communication protocol, the
services are also accessible behind firewalls.

• Stateful or stateless: Services may be developed as stateful or stateless Web
services. Stateful Web services may keep the state between multiple operation
invocations. This means that the local variables and object values that were set
during an operation invocation are kept and available for the next operation
invocation. For a stateless Web service this is not the case. Therefore, the local
variable values are lost after the client invoked the service operation. The client

14 Foundations

requests are independent of each other. In this thesis, solely stateless services
are bound into the service composition.

• Synchronous or asynchronous: The communication with the Web service may
be synchronous or asynchronous. With synchronous communication, the client
waits for the service until it receives the response. These services are RPC-style
services. With asynchronous communication, the client doesn’t wait for the
service response and it continues to process other tasks. The response is not
received immediately. Asynchronous services are document-style or message-
driven services. In this thesis, we deal with synchronous Web services.

We employ JAX-RPC Web services which expose a WSDL interface and communicate
over SOAP. Therefore, we provide some foundations about SOAP and WSDL.

2.1.3.1 SOAP Protocol

SOAP [9, 74, 79, 60] is the standard communication protocol for Web services and it
is based on XML-messaging. SOAP may be employed not solely for Web services, but
also for other applications, such as COM objects or Java Servlets. Initially, SOAP was
the acronym for Simple Object Access Protocol but now it is used as a name. SOAP
specifications [9] are developed by the W3C and OASIS organizations. The requests
between service client and the service are transmitted as XML messages in SOAP format.
SOAP comes to support the Web service ideas regarding interoperability between
heterogeneous distributed applications and loose coupling between applications. Still
it has a drawback regarding efficiency since requests to and responses from the Web
services need to be encoded in XML, which costs extra time. SOAP defines the structure
of the messages which are transmitted over the network to the Web services with
WSDL interfaces. SOAP is usually used together with HTTP as transport protocol, but
also other protocols may be employed such as SMTP, FTP or RMI. SOAP is a stateless
protocol. The SOAP message is contained into an HTTP request or response.

A SOAP message is built mainly of the following elements:

• SOAP Envelope: The envelope represents the root element and contains op-
tionally the SOAP header element and mandatory the SOAP body element. It
contains the URI to the SOAP schema that is used for the SOAP message and the
encoding rules.

• SOAP Header: The header element is optional and contains the specification
of extra information such as the message sender or receiver, QoS properties,
information about transactions, object references, security with information
about authentication, authorization or digital signatures, etc.

• SOAP Body: The body contains the application-specific data of the message
that is transmitted between the service and the client. The data has to be
in XML format and it represents the payload of the message. The request
message contains also the name of the called service operation, and the response
message contains the operation name suffixed by the Response char-sequence to
distinguish it from their request. If a fault occurred, then the body will contain
the fault message.

2.1 Service-Oriented Architecture 15

SOAP defines two communication styles, the RPC and the document (message) style.
With the RPC style, the Web service is viewed as a remote object by the client. The
client passes the parameters to the service and the service sends the result back to
the client. While the RPC style can be used only for synchronous communication, the
document style is also applied for asynchronous communication. With the document
style, an entire document in XML format may be sent to the Web service.

2.1.3.2 Service Description with WSDL

In order to be accessible for the clients, a Web service needs to expose a service
description (interface) which provides all the necessary artefacts. The Web Service
Description Language (WSDL) [10] from the W3C organization emerged for specifying
such an interface. WSDL [79, 74] is an XML-based language and is independent
of the service implementation. A WSDL description file is mainly divided into two
parts, the abstract description and the concrete description. The abstract description
contains information about what functionalities the service is offering, and the concrete
description targets the technical details how the consumer may bind to the service. The
service description contains the service location and the provided operations which
are similar to method signatures of a Java interface. The operations are described
together with the corresponding XML-request and response messages that an operation
may receive or may return. The WSDL description also contains the binding data, the
supported protocols, the URL with the service location, the used messaging style (RPC
or document style) and the encoding style. The latest version of WSDL (2.0) can be
also used for RESTful Services.

With appropriate WSDL tool support (e.g. JDeveloper, Eclipse with plug-ins for Web
services) the WSDL file is usually generated from the Web service implementation
(e.g. a Java Class) and can be accessed at the URL of the Web service followed by the
char sequence "?wsdl". The generated file can be manually modified according to the
requirements. The tools offer support for the service consumer to create automatically
proxy classes for invoking the service, on the basis of the WSDL description.

The WSDL file contains the following elements:

• Description: This element represents the root element of the WSDL XML file.

• Documentation: The service provider may write in this section information
about the service and its functionality.

• Types: This element specification contains the types of the XML elements which
are part of the messages exchanged by the service. The XML element types may
be primitive (e.g. int, float, etc.) or complex types, which are built of other
elements. Usually, the XML element types are defined in an XML schema which
is included in the WSDL file itself or is imported from another location.

• Interface: This element definition describes the functionalities provided by
the service and contains the list of the offered operations and the exchanged
messages. Here, it is also possible to define faults that could be thrown by
the service. Therefore, the interface element contains the operation and fault
elements.

16 Foundations

• Operation: The service operations are described inside the operation element,
which contains the input and output messages that are exchanged with the
service client. The interface element is part of the newer WSDL version 2.0,
whereas in the older WSDL version 1.1 it was called portType.

• Binding: This definition contains one or multiple transport protocols (like SOAP)
that are supported by the service for the message exchange. The most used
transport protocol is SOAP over HTTP, which we also use for our Web services.
Each transport protocol is specified in an extra binding. The binding also contains
some encoding details about the operations.

• Service: This element defines one or more endpoints where the service operations
can be accessed. The endpoint element contains the physical address of the Web
service operation and the protocol information.

2.2 Business Processes and Workflows

Web services can be aggregated to accomplish a business objective such as delivering
goods or producing services for a customer. The set of activities necessary for reaching
a business objective build a business process.

A business process is defined in [87] as follows: "A business process is a group of logically
related (and typically sequenced) activities that use the resources of the organization to
provide defined results. Business processes deliver value in the form of products or services,
often to an external party such as a customer or partner."

A similar definition was given by Hammer and Champy [59], where a business process
is described as "a set of activities that, taken together produces a result of value to the
customer." A business process [80, 74] consists of a set of activities that are executed
in a defined order having a beginning and an end. A business process may involve
humans, resources and materials.

Commonly, an enterprise executes a set of activities which are repeated and can be
automated. Business process activities can be performed manually by employees or
automatically supported by an information system. For example, a business process for
booking a room at a hotel can be performed fully automatically, when the customer
books a room on a web site. It is also possible that a process is a combination of
manual and automatic business activities. An example for such a process is renting
a car, where an employee submits the customer’s ordering request to the system and
another employee is in charge of delivering the car to the customer or making the
protocol of the car damages.

A business process may describe the tasks accomplished inside an organization but also
tasks that exceed the boundaries of an organization and sustain the collaboration of
multiple organizations [106, 80, 62]. A business process can be triggered by receiving
a request from the customer but also by an event (e.g. an event based on time).
A process may involve resources, materials or products which are used or may be
changed along the execution of the process. Business processes may be graphically
represented using business process models [106]. Business process models represent
the structure and flow of the process; they show how the involved parties interact.

2.2 Business Processes and Workflows 17

Process models are useful for stakeholders to better communicate about the process
and help to detect possible deficiencies in the process behavior. In this thesis, business
processes are built by the interaction of multiple Web services that together achieve a
business task.

A workflow represents the automation of a business process. Thus, a workflow also
consists of a set of activities. The Workflow Management Coalition (WfMC) defines
the terms of workflow and workflow management system [46] as follows.

Definition 3 Workflow is the automation of a business process, in whole or in part,
during which documents, information, or tasks are passed from one participant to another
for action, according to a set of procedural rules.

Definition 4 A workflow management system is a software system that defines, creates,
and manages the execution of workflows through the use of software, running on one or
more workflow engines, which is able to interpret the process definition, interacts with
workflow participants, and, where required, invokes the use of IT tools and applications.

Workflows may be described using workflow languages, such as Petri-nets, languages
based on graphs, event-driven process chains or activity diagrams [41, 106, 61]. With
Petri-nets business processes may be described in an abstract way, independent of the
execution environment. Petri-nets are employed for modeling dynamic systems and
these are represented graphically using places, transitions and directed arcs. Tokens
are used for modeling the dynamicity of the system [106]. A workflow language called
Yet Another Workflow Language (YAWL) was proposed by van der Aalst [102] in order
to cover even more workflow patterns that were not supported by Petri-nets. Van der
Aalst et al. provided in their work [102] a thorough analysis about workflow patterns.
The graph-based languages use nodes and edges to represent process models. The
nodes correspond to activities and the edges show the control or data flow [106, 41].
UML activity diagrams may also be used for describing workflows. In [51], the authors
highlight strengths and weaknesses of using activity diagrams for specifying workflows
and show what workflow patterns are supported by the activity diagrams.

An Event-driven process chain (EPC) may be used for modeling business processes
and workflows [106, 3]. EPC was proposed by A.W. Scheer et al. and is part of the
ARIS framework (Architecture of Integrated Information Systems). The EPCs were
adopted in the industry (e.g. by SAP) for describing processes. The core constructs
of event-driven process chains are functions, events, connectors (e.g. OR, AND, XOR)
and control flow edges. An event-driven process chain starts and ends with an EPC
event. Functions are units of work that receive an input and create an output (e.g. a
physical product). Functions are triggered by events.

The Business Process Model and Notation (BPMN) [6] was proposed by the Object
Management Group (OMG) as a graphical notation for visualizing business processes.
A BPMN process describes how the process participants collaborate and how the
business activities build the process flow. BPMN is addressed to business analysts but
also to technical developers. The authors of [6] argue that business people prefer to
visualize a business process in a flow chart format, while a language such as WS-BPEL
can be understood only by programmers and computer systems. BPMN promises to

18 Foundations

bridge the gap between the visualization of a business process and its execution format.
Therefore, BPMN provides mapping mechanisms from the business process notation to
a process execution language such as BPEL. The core constructs of a BPMN process are
events, activities and gateways. An event signalizes the occurrence of a happening, for
example, sending or receiving a message. The BPMN process is triggered by an event
and ends with another event. A gateway represents flow decisions such as forking,
merging or joining paths. The events, activities and gateways are connected by the so
called flow objects which build the structure of the business process.

2.3 Web Service Compositions

In order to achieve a business goal or to solve a complex task, binding one Web service is
not always sufficient and the interaction of several Web services is required. This results
in the combination of the functionalities of multiple Web services which put together
build a composite service [41, 52]. The process of creating a composite service is called
service composition. The composite service may be exposed in turn as a Web service.
The most common way to build a service composition is by specifying its structure
using a composition language. The service composition model describes the data flow
and how the interaction between the parties takes place. The composition involves
several parties (e.g. suppliers, trading partners) which need to exchange messages
in a synchronous or asynchronous way. A service composition middleware provides an
adequate environment for modeling and executing such a service composition.

Depending on the time when it is built, a service composition may be static or dynamic
[52]. The static service composition is created at design time when the composition is
designed and all its components are compiled and deployed. This is a rather restrictive
composition since it assumes that services and partners do not change over time.
By its nature, SOA is a dynamic environment where services may change over time
or new services appear. Therefore, a dynamic service composition is more suited in
a SOA. It is necessary to bind new services into the composition without having to
redesign the entire system. A dynamic service composition permits the configuration
of the composition at runtime. With our BPR framework we target a dynamic service
composition where services may be replaced at runtime without having to redeploy
the composition.

A service composition may be created manually or automatically [52]. In this work, ser-
vice compositions are created manually by a software architect or software developer
who specifies the process description with BPEL. Only services are selected automatic-
ally, whereas the structure of the composition remains the same. An alternative is that
the user himself is involved in composing the services, as it is described in [93, 89]. A
tool is proposed by [93, 89] where the end users may compose services by themselves.
Since the user does not have any programming skills, the challenge is to keep the
composition process as simple as possible.

Another possibility is to create the service composition automatically. Usually, this
kind of composition assumes the existence of an ontology and semantic annotations
of services. More details about the automatic composition of services are provided in
Section 2.3.2.

2.3 Web Service Compositions 19

A Web service composition may correspond to an orchestration or a choreography
model. The two models differ mostly with regard to the point of view on the interaction
between the participants [82, 41].

• Orchestration describes the business process flow from the point of view of one
single party that participates at the process. The orchestration specifies the flow
of interactions between this party and the other participants of the process. The
one party controls the entire business logic and how messages are exchanged. A
service orchestration may be modelled with different languages, as e.g. BPEL,
UML activity diagrams, Petri-nets, state-charts, rule-based orchestrations, Pi-
calculus, etc. [52].

• Choreography shows the global perspective of the parties that are involved in
the conversation. It describes "peer-to-peer collaborations" including the common
and complementary behavior of the parties which achieve a business goal [14].
Choreography describes the exchange of messages of the collaborating parties
and rules for interaction. A choreography is used for a general understanding
between the parties and for generating code skeletons for implementing the
Web services [21]. Languages such as the Web Service Choreography Description
Language (WS-CDL) [14] or the Web Service Choreography Interface (WSCI) [11]
support the description of choreographies.

2.3.1 The Business Process Execution Language (BPEL)

The Business Process Execution Language (shortly BPEL) [16, 63] is an XML-based
language for specifying Web service compositions. A BPEL process description specifies
how several Web services collaborate in order to solve a more complex task. In
this thesis, BPEL was employed for describing service compositions. The Web Services
Business Process Execution Language (WS-BPEL) is an OASIS standard and a successor of
the previous language version, BPEL for Web services (BPEL4WS). Service compositions
described with BPEL are deployed and executed on a BPEL engine, such as the Oracle
BPEL Process Manager [8], the Apache ODE (Orchestration Director Engine) [2], the
IBM Business Process Manager [7] or the Microsoft BizTalk Server [5].

A BPEL process itself is exposed as a Web service, thus providing a WSDL interface for
its clients. The partner Web services integrated into the BPEL process are called via their
WSDL descriptions. The messages exchanged by the BPEL process with its partners are
usually kept in variables. Commonly, a process is stateful and its state is kept in the
variables. The < par tnerl ink > elements defined in the process description indicate
the partners that the BPEL process interacts with, like other partner Web services or
the clients that invoke the BPEL process. Inside the < par tnerl ink > construct, the
roles of the partners are defined.

The BPEL specification distinguishes between basic and structured activities [16,
63]. Basic activities may have different purposes like calling a Web service (with
< invoke >), exchanging messages with partners (e.g. < receive >, < repl y >), sig-
nalizing faults (e.g. < throw >, < rethrow >), updating variables (with < assi gn>)
or terminating the process (using < ex i t >). The < wait > activity is used for includ-
ing delays in the process execution for a period of time or until a deadline is reached.

20 Foundations

Basic Activities Description

invoke calls a Web service operation.

receive specifies the partnerlink from which the
process expects to receive a message.

reply sends the response to a message received by the
activities receive or pick.

assign copies data between variables.

wait specifies a period of time or a deadline for a delay
of the process execution.

Structured Activities Description

sequence contains activities that are executed in sequential
order, in the order of their specification.

flow contains activities that are executed in parallel.

while repeats the execution of the activities inside it as
long as an expression evaluates to true.

pick waits until the expected message is received and
executes the activity associated to that message.

Figure 2.3: BPEL Activities

When calling a Web service operation using the < invoke > activity, this contains the
targeted partner (in the par tnerl ink attribute) and operation. In a synchronous call,
the < invoke > activity contains input and output variables, for the input message
that is delivered to the partner operation and for the message returned by the partner.

In a common scenario, a BPEL instance is started with the arrival of a message from
the client by the < receive > or the < pick > activity. After processing the request,
the response is sent back to the client by the < repl y > activity. A synchronous com-
munication with the client is denoted by a combination of the activities < receive >
and < repl y > corresponding to a request/response operation. In an asynchronous
communication the < repl y > activity is missing and if needed an < invoke > activity
may be called to send a response back to the client.

The structured activities are applied for defining loops (e.g. < while >, < f orEach>,
< repeatUntil >), for specifying conditional behavior (< i f >) or for defining the
processing order (< sequence >, < f low >). Some activities (e.g. < while >,
< i f >) have similar meanings as their corresponding constructs from programming
languages like C or Java. Activities may be called sequentially by nesting them inside a
< sequence > activity. This means that the activities are triggered in the order they
appear in the < sequence > activity. In case the activities are required to be executed

2.3 Web Service Compositions 21

in parallel, these are nested inside a < f low > activity.

BPEL provides mechanisms for compensation, fault and event handling. Faults may
occur during the interaction with a partner or internally triggered by the < throw >
activity. Different kinds of faults are handled using the < f aul tHandlers > element.
In case that activities need to be reverted, a compensation handler (specified with the
< compensationHandler > element) may be used. The BPEL process is able to listen
to events and handle them when they occur. This is possible by using event handlers
defined with the < eventHandlers > element [63].

Figure 2.3 provides examples of BPEL activities. For a complete list of the BPEL
activities we refer to [16].

Within a process description, we also consider sub-orchestrations which we call sections
of a business process. By section we refer to a part of a BPEL process which begins with
one activity and ends with another activity. The second activity is triggered after the
first one. Also, a structured activity like a while loop may represent a section, where
the section contains all the activities nested inside that structured activity.

2.3.1.1 BPEL Process Example

Client

Stock Service Distributor
Service

Bookshop
Service

Bank Service

Get book
min price

createBill(bill)

books, clientdata

While
books

if
count(books[i])=0

Assign
books[i] to bill

if
buyBook(articleNr)

= OK

Assign book to bill

yes

yes

no

buyBook (articleNr)checkBooksInStock(books) getBook(title, author)

transfer(amount,
accountdata)

Figure 2.4: Bookshop BPEL Process

As an example, we consider a bookshop process for buying books in an online shop,
which we implemented using WS-BPEL. A rough structure of the bookshop process is
represented in Figure 2.4. Four atomic services are involved in the process: a stock
service, a distributor service, a bookshop service and a bank service. The bookshop process
starts with the arrival of a request from the client, which contains the list of books the
client wants to purchase at the online bookshop. The stock service verifies whether all
of the books from the list are in stock. If this is not the case, the distributor service
is invoked to purchase the missing books from a book wholesaler. If the distributor

22 Foundations

service returns several books with different prices, the books with the lowest prices are
selected to be bought. These books are assigned to the client’s bill and the bookshop
service is invoked for creating the bill. Finally, a bank service is invoked to make the
withdrawal from the clients’ credit card to the online shop account.

2.3.2 Semantic Web Services and Compositions

With WSDL, service descriptions are specified syntactically, but for automatic service
discovery and matching, the syntactic description is not sufficient and also a semantic
description is needed. With semantic descriptions, the service interface is annotated
with semantic concepts so that services may be searched and discovered by their
semantic meaning.

When a service from an application or a BPEL process has to be replaced with a newer
version of the service or a service from another service provider, a common situation is
that the newer service has a slightly different interface and its description does not
entirely match with the old interface. This situation may trigger the interruption of the
BPEL process execution, causing it to fail. Therefore, a semantic matching process is
supposed to find out whether the required service interface and the provided interface
can be mediated. The differences between the interfaces can be overcome through
mediation, and the old service may be replaced with a semantic equivalent service.

Semantic service discovery and description matching is a widely studied research
topic. Küster et al. propose in [67] a service description language and matchmaking
algorithms for automatic service discovery and composition. In [68], the authors
discuss the evaluation of semantic service discovery approaches.

In the ADDOaction project [57, 18], our research group also addressed the subject of
semantic service discovery. Since this topic was addressed in the ADDOaction project
and proper solutions were developed, the semantic service discovery is out of the
scope of this thesis. However, we will give some insights about the solutions from the
ADDOaction project. Bleul et al. present in [35, 34, 36] an approach for semantic
interface mediation that relies on XSLT transformations. The service operations para-
meters are annotated with semantic concepts from taxonomies using the Web Ontology
Language (OWL) [107]. A mediation is solely possible if the elements of the messages,
exchanged by the service operations, of the offered and the requested interfaces are
semantically equivalent. The WSDL of a service is extended with semantic annotations.
This semantic extension is called Mediation Contract Extension (MECE) and with MECE
the service description remains compliant with the WSDL specification. More details
about MECE can be found in [35, 34, 36]. A matching algorithm is employed that
encompasses a functional and a QoS matching. Functional matching targets message
transformations where XSLT documents are generated on the fly. Message transforma-
tions include matching of the inputs and outputs of service operations by comparing
their semantic representations. The relationship (e.g. specialization) between the
semantic representations is considered. The matching algorithm supports data type
transformations and also unit transformations for message parameter values that have
a quantity (e.g. for a price parameter, a currency transformation between Euro and
Yen). These transformations are supported by plug-ins which are software components
(e.g. Java Classes) and provide adequate methods for conversion. QoS levels may also

2.3 Web Service Compositions 23

be matched and they are semantically annotated by using a Service Level Ontology
[33]. The QoS requirement matching includes a transformation between QoS metrics
(e.g. seconds, milliseconds), a transformation between predicates (e.g. greater, greater
equals) and QoS dimensions. For a successful matching, it is necessary that all the
requested operations are found. The success of the matching process is reflected
by a ranking score. The score is computed based on the semantic distance between
the concepts and the number of plug-ins used within the transformation. If multiple
matching results are found, these are sorted by their ranking score. If a matching is
not possible, adequate reports provide information about what caused the matching
process to fail.

Another topic that was addressed by the ADDOaction project was the automatic
composition of semantic services [105, 29], and three algorithms [104] have been
developed to solve this problem: the IDDFS, a Greedy- and a genetic algorithm.
These algorithms have proven their performance at the Web Service Challenge [29], an
international competition that gives researchers the opportunity to meet and compare
their research results.

2.4 Terminology

In this section, we introduce the main concepts and terms used in this thesis and
describe our interpretation.

• Abstract service: An abstract service represents the functionality of a service.
The term abstract is correlated to the time when the service composition is
designed, when it is known what functionality is desired but it is unclear which
concrete service will be bound to implement that functionality. An example of an
abstract service is a Shipment Service which offers the functionality of shipping
goods to the customers.

• Concrete service: A concrete service represents the realization of an abstract
service. We assume that there are several concrete services (candidates) that
provide the same functionality but have different QoS properties. For example,
the Shipment Service may have multiple realizations such as the DHL-Shipment
Service, Hermes-Shipment Service or DPD (Deutscher Paket Dienst)-Shipment
Service. All these concrete services offer the same functionality of shipping
goods. In this example, the three services are offered by different companies.
It is also possible that the same provider offers multiple concrete services with
different service levels and prices.

• Business process: Definitions for a business process were introduced in Sec-
tion 2.2. In this thesis, we refer to business processes that are realized as service
compositions. For example, Car-Rental is a business process for renting cars. It is
realized as a service composition where a Car-Insurance service and a Financial
service are involved. We use the terms of business process, process, service
process, service composition and BPEL process interchangeably.

• Process instance: A process instance refers to a single execution of a business
process. It represents a concrete execution path of the process. For example,

24 Foundations

John Dales wants to rent a car for his trip on Mallorca. Therefore, he enters
his request into the Web site and specifies the type of car he wants to rent, the
dates and his credit card data. The request order of John Dales is received by the
Car-Rental business process and a new instance of the process is created which
processes the order of John. If the processing was successful, John Dales receives
a confirmation message that the car was reserved for him. This corresponds to
the last step of the process and thereafter the process instance is terminated.

2.5 Quality Properties

Choosing the services with appropriate Quality Properties (QP) is an important task
that contributes to the success of the business process. By Quality Properties we refer
to both, QoS and QoE dimensions, which we further introduce in this section. While
the QoS are technical parameters that mainly show the performance of the services,
the QoE is a reflection of the users’ perception about the service. Nevertheless, the
QoE is as important as the QoS when it comes to choosing the right service. However,
Quality Properties are not part of the BPEL specification and these need to be treated
separately.

2.5.1 Quality of Service

QoS are non-functional properties that reflect how well a service is able to perform
as expected by the service provider and by the service consumer [79]. A service has
to be reliable, to respond in a reasonable time and to fulfill other agreed policies
such as security or privacy. QoS for Web services include quality characteristics such
as availability, reliability, response time, throughput, regulatory, scalability, integrity,
flexibility, security, etc. Usually, a service provider advertises his services at different
service levels which are agreed with the consumer in a contract, the so called Service
Level Agreement (SLA). Services with better performance and quality are usually
advertised at higher prices. Not performing at the right service levels as stated in the
SLAs may cause penalties for the service providers [75]. QoS of Web services are very
important since it can make the difference between multiple services that have the
same functionality. Therefore, QoS is a strong argument for choosing between one
service or another in a competitive market like the Internet [79].

Different kinds of QoS parameters are defined in the literature [83, 72, 79, 12, 110,
40, 73, 109]. Sometimes QoS are interpreted differently depending on the applications
or domain. In our framework, we consider QoS parameters like availability, reliability,
response time, throughput and cost. This list of QoS is not exhaustive. However, the
framework is not limited to these dimensions, as it can easily be extended to other
QoS properties as well. We distinguish between QoS values that are measured for
the atomic services and the QoS computed for the entire service composition. In
this section, we present some QoS definitions to clarify how we interpret the QoS
in this thesis. In the BPR framework, each service that is part of the composition is
automatically monitored by proxies. We consider QoS measurements for one service
invocation (called the instance QoS) but also for multiple service invocations. In

2.5 Quality Properties 25

Chapter 6, we describe how the QoS are computed for the entire service composition
by employing our QoS aggregation algorithms.

2.5.1.1 Definitions

We interpret the QoS of a Web service similar as it is described by Zeng et al. [110],
Yu et al. [109], and Jäger et al. [61].

• Response Time
Response time (r) (see [110], [109]) of an operation (op) and invocation (i)
of service (s) is computed as the duration of the time when the operation was
requested and the time when the result is received by the requestor. It is the
sum of the processing time Tprocess,i and the transmission time Tt rans,i over the
network:

ri(s, op) = Tprocess,i(s, op) + Tt rans,i(s, op) (2.1)

We also call the response time computed in this way as the instance response
time being the response time for one service invocation.

The response time of a Web service operation for a given time interval I (e.g. the
last n seconds) is computed as the average value of the response time values
that were measured for multiple service invocations that completed successfully
within the interval I. If the service was not accessible or it failed, this response
time value is ignored and will not be considered in the average computation of
response time.

• Reliability
The reliability (rel) (see [110], [40], [109]) represents the probability that the
request is responded correctly within the maximum expected time frame specified
in the Web service description. The reliability is computed as the proportion
between the number of service invocations that completed successfully (Ns) and
the total number of invocations (N) that were monitored during a given time
interval I.

rel(s, op) =
Ns(s, op)
N(s, op)

(2.2)

We define the instance reliability as being the reliability of one service operation
invocation, which may receive either the values 1 or 0. The value 1 is assigned if
the service operation completed successfully within the maximum expected time
frame. Otherwise, the reliability is assigned with the value of 0 if the service
operation was not accessible, if it returned with a failure or if it exceeded the
maximum time frame. The instance reliability is defined in the same way for a
section and for the whole process.

• Availability
The availability (a) (see [110], [109]) is the probability that the service is
accessible. It is computed as the ratio of the sum of the lengths of the time

26 Foundations

intervals Ta(s, op), when the service operation was available, to the length θ
of the monitoring interval. The time duration θ is set by the administrator of
the service community and depends on the application, on how frequently the
service is accessed.

a(s, op) =

∑

Ta(s, op)
θ

(2.3)

We define the instance availability as being the availability for one service
invocation. The value for the instance availability may be either 1 if the service
operation was accessible, or 0 if the service operation was not accessible. The
same definition is applicable for the process as well.

• Throughput
Throughput (t) is defined in [61] as "the amount of processable data per time unit.
Usually, the throughput is given in Bytes/sec and is interpreted as an increasing
dimension." We also adopt this definition.

In our framework, we compute the instance throughput for a service invocation
with the following formula, representing the amount of bytes measured during
one second:

t(s, op) =
b(s, op)
r(s, op)

(2.4)

whereas b represents the number of transferred bytes and r the response time
that was measured for the service invocation.

• Cost
The cost of the service is the price of invoking an operation of the service. The
cost for a time interval I represents the average of all the cost values for the
service invocations during that interval.

The Web service performance can be affected by the messaging protocols (e.g. SOAP)
that Web services rely on [72]. The SOAP protocol consumes extra time for the
XML parsing of the messages. The other disadvantage of SOAP is caused by the way
XML data is represented, resulting in a large size of data in comparison to a binary
representation. Performance problems of Web services can be caused by other factors
as well, e.g. the response time of the Web server hosting the Web service or by the
performance of database or legacy systems used by the Web service.

Other quality aspects mentioned by [72] are integrity, regulatory or security aspects. A
list of QoS for Web services was also discussed by Ran [83] who refers additionally
to scalability, robustness/flexibility, exception handling, stability and completeness. The
requirements for quality aspects are agreed in the SLA.

• Integrity refers to keeping the integrity of data when several transactions operate
on this data. It assumes proper mechanisms for Web service transactions where
a set of activities has to be treated as a single unit. Transactional processing
is quite challenging when it targets long-running and distributed Web services
flows.

2.5 Quality Properties 27

• Regulatory represents the compliance of the Web service with standards (e.g.
WSDL, SOAP), rules, law, but also with the SLA.

• Security involves the support for different mechanisms such as authentication,
authorization, confidentiality, the encryption of messages, accountability, trace-
ability, non-repudiation, etc.

• Scalability is related to throughput and represents the ability of the system to
increase its computation capacity for handling more requests in a given time
period.

• Robustness/flexibility refers to the capacity of the service to function correctly
even when invalid or incomplete requests are received.

• Stability represents the frequency of change regarding the service interface or
implementation.

• Completeness is the difference between the set of features that are specified
and those which are actually implemented.

2.5.2 Quality Property Types

Since the quality properties can be viewed from different perspectives, we will give
an overview of the different types of quality properties as they are interpreted in this
thesis.

• QoS promised (QoSp) - represents the QoS value that was promised by the
service provider. The service provider advertises the service at certain QoS levels
for the service clients and these QoS values are stored in the service registry.

• QoS monitored (QoSm) - this value constitutes the QoS measurement that was
monitored by the BPR framework. The monitoring is performed automatically
by service proxies.

• QoS experienced (QoSe) - this quality property represents the QoS experienced
by the service consumer. While the previous QoSm is monitored on the BPR
server, where the service composition is executed, the QoSe is measured at client
side.

• QoS predicted (QoSr) - indicates the QoS value that is predicted by the BPR
framework for a certain client or for clients with certain context data. The QoS
prediction relies on QoS information of past service invocations.

• Quality of Experience (QoE) - the QoE is expressed by a rating score and
represents the satisfaction of the human user regarding a service that he used.
We view QoE as a subjective value since it is assigned by a human user to the
service. In our framework, the QoE can be assigned for the entire process but also
for an atomic service. It is a measure for the overall degree of user satisfaction
concerning, for example, the GUI, the offered functionality and the performance
of the service.

28 Foundations

2.5.3 Quality of Experience

QoS properties are technical dimensions which are very important for a good perform-
ance of the services. These are measured automatically by service proxies. Thinking
from the perspective of the human user, he is expecting that the service behaves well,
but this is not the only criteria that he is asking for. Furthermore, the human user is
interested whether the service has the expected functionality and fulfills his require-
ments. Service providers are interested in how users perceive their services in terms of
quality, usability and price [54]. Since user satisfaction has a major role for the success
of the business, we particularly want to stress that it should be considered for the
selection of Web services. The same idea is suggested by other authors [44] who argue
that: "users as consumers of services need to be able to assess whether a (web) service
matches their needs in an aesthetic, functional, timely and financial manner". The term
Quality of Experience is defined by ITU-T Rec. P.10/G.100 as "the overall acceptability
of an application or service, as perceived subjectively by the end user". Another definition
was given by Brunnström et al. at the Dagstuhl Seminar [38] and this definition
corresponds also to our interpretation of QoE:

Definition 5 Quality of Experience (QoE) is the degree of delight or annoyance of the
user of an application or service. It results from the fulfillment of his or her expectations
with respect to the utility and or enjoyment of the application or service in the light of
the user’s personality and current state. In the context of communication services, it is
influenced by content, network, device, application, user expectations and goals, and
context of use.

The QoE is influenced by several factors which were divided by [38] into three
categories: human, system and context factors. The factors may have relations between
each other.

• Human factors involve characteristics of human users such as psychological,
sociological factors, the experience of the user with similar services, the own
user expectation or the emotional state of the user [94, 38].

• System factors refer to technical quality properties of an application or service.
Some examples are properties of the provided content, capabilities of devices
involved in the communication and characteristics of the data transmission
between the application and the user over a network [38]. Thus, QoS parameters
as service properties can be regarded as system factors and may influence the
QoE of the users.

• Context factors are properties that characterize the "user’s environment in terms
of physical, temporal, social, economic, task, and technical characteristics"[38].
Some examples are the user’s location, the date and time, the brand of the
service, the costs, etc. In this thesis, we also discuss the influence of the users’
context data (e.g. location, age) on the QoE and QoS. These are represented in
Figure 2.5.

There are two possibilities for assessing QoE, namely a subjective and an objective
testing [54, 45]. In the subjective testing real users are involved for expressing their

2.5 Quality Properties 29

Context data

Examples:

‐ Location of WS

‐ Location of client

‐ User age

factorsQoE

QoE

QoSe

Other
Influence
Factors

Figure 2.5: Influence Factors on QoE

opinions regarding the service or application. For this type of testing, many users have
to participate in order to obtain statistically relevant results [54]. With objective testing,
an algorithm is used to make predictions of user perceptions on behalf of real users.

While QoS refers to the performance of a service or a network, QoE is a more complex
dimension which in addition depends on human psychology, social factors and eco-
nomic factors. Several studies [54, 91] analyze the relationships between QoS and
QoE. In [54], the authors analyze this relationship for a voice over IP (VoIP) service
and for Web browsing. The authors show an exponential relation between QoE and net-
work QoS disturbance. In the analyzed scenarios, while the QoS disturbance increased,
exceeding a certain threshold value, an exponentially decrease of the QoE value was
detected. For the VoIP service, the QoS disturbance was analyzed in terms of jitter and
packet loss ratio and reordering. In case of Web browsing the QoS disturbance was
simulated by increased response and download times of a Web session.

The work of [91] also tries to infer relationships between network QoS and QoE
by analyzing the network traffic. The authors discuss the relationships between
throughput, loss ratio, download times of a Web page and the user satisfaction. Thus,
it is to be expected that a bad service or network performance would contribute to the
decrease of user satisfaction. A bad network performance would even lead to the fact
that a user gives up, not using the service anymore [91].

Especially for audio and video streaming it is common practice to measure the QoE
based on the Mean Opinion Score (MOS). We consider that this type of score is suited
for Web services as well and adopt it in this work. Figure 2.6 represents the possible
values of the QoE parameters starting from 1 meaning bad to 5 meaning excellent. In
our framework we assume that users submit ratings for the invoked Web services in
the interval 1 to 5.

30 Foundations

Rates Quality

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

tabelRates

Quality Excellent Good Fair Poor Bad

Rates 5 4 3 2 1

Figure 2.6: QoE Values

2.5.4 Service Level Agreements

A service level agreement (SLA) (see [101], [71], [66], [115]) for Web services
represents a contract between the service consumer and the service provider regarding
the QoS levels of the Web service. Usually, a SLA contains the following information:

• the signatory parties which are involved in the service agreement,

• validity containing the period of time when the contract applies,

• the QoS parameters to be monitored,

• the Service level objectives (SLO) with the QoS constraints that are to be
fulfilled,

• penalties in case of breaking the SLA,

• financial agreements with the price of using the service.

The violation of SLAs usually leads to monetary penalties for the service provider. The
service provider may also offer different package levels like Gold (e.g. with very good
QoS levels), Silver and Bronze (e.g. with less good QoS levels) for different classes of
customers [115].

For the specification of service contracts several languages have been proposed, like
the Web Service Level Agreement (WSLA) Language ([71], [66]) proposed by IBM,
the Web Service Offerings Language (WSOL) [97] or WS-Agreement [20]. All three
languages have XML syntax.

It is also possible to perform a negotiation for the establishment of an SLA. Approaches
like [78] [115] propose an automatic negotiation process by exchanging offers between
the service provider and consumer. However, the negotiation of SLAs is out of the
scope of this thesis. We consider the advertised service levels of the service providers
(the promised QoS) which are retrieved from the service registry.

Unfortunately, not always SLAs are fulfilled, thus causing inconveniences for the
service consumers. For these reasons, the QoS are permanently monitored in our BPR
framework. Specifying the BPR rules appropriately and triggering them at the right
moment of time may prevent SLA violations.

2.6 Context-awareness

In this thesis, our target is to select those Web services that are trustworthy, hold their
promised QoS and receive a high QoE from the service consumers. Since we assume

2.6 Context-awareness 31

that there is a large number of Web services with different QoS we employ prediction
techniques to select the ‘best’ Web services for the users with regard to their contexts.
Several approaches are known for predictions, such as neural networks, regression
analysis or collaborative filtering.

Prediction techniques are also used in recommender systems in order to recommend
certain items or objects to the users from a large set of possibilities. Several recommend-
ation methods have been developed to deliver personalized recommendations to the
users so that the user receives the most ’interesting items’ for him, e.g. recommending
movies in an online shop. This has been adopted successfully also in commercial sites
such as Amazon and eBay. Our approach is similar to a recommendation system in the
sense that is selects one service from a large number of services by using the predicted
values of QoS and QoE. However, there is also a difference between our approach
and the recommendation techniques. Recommendation approaches [113] target, in
general, one or more items that are recommended for one user, called the active user.
In comparison, our goal is to predict the QoS and QoE values for all available services
for an abstract service. The prediction is performed not for one active user but for
an entire user group. A user group contains many users which can be similar with
regard to their context data or not. The selection of one service from the service set is
performed by the service selection module using an objective function.

In this thesis, one of our goals is to make personalized predictions for the QoS and QoE
values of the atomic services which are used for creating the service composition. The
personalized predictions are targeted for a group of users with certain similarities based
on their context data. The user’s context data are used for building context-aware
service compositions.

The relevance of context as information for improving the behavior of systems and
applications was addressed by many research works [56, 58, 100, 65]. Context is
defined in [19] as follows.

Definition 6 Context is any information that can be used to characterize the situation of
an entity, where an entity can be a person, place, or physical or computational object.

With regard to Web services context information is interpreted by [100] as "any
additional information that can be used to improve the behavior of a service in a situation."
Without considering additional information the service is also able to work, but
with additional information the service performs even more appropriately [100].
The authors from [52, 65] have a similar interpretation of context and regard it as
"information utilized by the Web service to adjust execution and output to provide the
client with a customized and personalized behavior".

Context-awareness has been widely studied in correlation with mobile and ubiquitous
computing [58, 65]. However, in this thesis we do not target mobile Web services or
mobile users. We focus on services and service compositions which are executed on
servers, where the service provisioning is done on the basis of the available context
data of services and users. In comparison to the common understanding of context-
awareness of mobile applications, where the user is supported in every situation to
accomplish his tasks, our goal is to offer personalized solutions for users characterized
by certain context data.

32 Foundations

The consideration of context data in the prediction brings two important advantages.
On one side, taking into account the context data, it improves the prediction quality.
On the other side, with context data we may build context-aware service compositions.
This composition is created by provisioning services for a specific user group charac-
terized by certain context values. In this thesis, we consider the context data of users
and services (e.g. the location) in the prediction of QoS and discuss the prediction of
QoE. More details about our context-aware service compositions and the prediction
approach are presented in Chapter 8.

2.6 Context-awareness 33

34 Foundations

3 Solution Overview

This chapter aims to provide an overview of the solution with a focus on the BPR
framework, showing how the different parts of the framework work together to achieve
an appropriate QP management. A more detailed description of the BPR framework
and its implementation can be found in Chapter 9.

3.1 The BPR Approach

In this thesis, we propose a novel solution approach which encompasses the BPR
framework, the BPRules language, flexible monitoring techniques, service selection
algorithms and QP predictions for services. The BPR framework offers comprehensive
support for the QoS and QoE management of service compositions. The mechanisms
for monitoring, service selection and QoS and QoE predictions were developed in
different modules of the BPR framework: the QoS Monitor and Aggregator module, the
Service Selection module and the CoFee module.

The BPRules language is applied to exploit the features of the BPR framework. Rules
specified with the BPRules language are called BPR rules and are interpreted and
executed by the BPR framework. One may query the QoS monitored by the QoS
Monitor and Aggregator module or the quality values predicted by CoFee. BPRules
makes the features of the BPR framework accessible without having to know the
internals of the framework. In reaction to undesired QoS and QoE values detected for
services, process sections or the composition, management actions may be undertaken.
One important action is to trigger the selection of new services for the composition. The
selection is done by the Service Selection module using one of our selection algorithms
(see Chapter 7). If services with better QoS and QoE levels are found, which fulfill the
desired QoS and QoE constraints specified in the BPR rules, then the old services are
replaced with the new ones.

QoS and QoE values are predicted by the CoFee module (see Chapter 8) based on
context information of services and users and based on QoS and QoE values that were
collected from past service invocations. Context data of users and services (e.g. the
distance between the service and the user) may be used for creating context-aware
processes, which are personalized for their users.

Several people with different roles are involved in the interaction with the BPEL process
and the BPR framework:

• Software developer: In the design phase, the software developer designs and
implements the BPEL process. Finally, he deploys the BPEL process on a BPEL
engine.

35

• User: The user is a human that interacts either with the BPEL process or directly
with atomic services. In our scenarios, a user of the BPEL process sends a request
for processing. Users may either call directly the atomic services or they may
interact with the services as part of the BPEL process. After interacting with the
services, the users are asked to submit the QoE, according to their experience
with the services.

• Business analyst: The business analyst is responsible for the well-functioning
of the business processes and the requirements specifications for Web service
provisioning. In some cases, the tasks of the business analyst may be undertaken
also by a software architect or developer. In the BPR framework, the business
analyst is in charge of specifying the BPR rules. The BPR framework offers
the possibility to the business analyst to be informed of every important event
concerning QoS and QoE. Thus, the BPR framework provides several reports
(which are described in the next section) about the behavior of the business
process for different time periods. The business analyst is able to act upon
possible QoS or QoE violations by specifying adequate BPR rules. He has also
knowledge about the business strategy of the company, like the target user
groups of a business process and the context data that characterize the users.
This context information is necessary when the business analyst provisions
services for a personalized service composition which is addressed to users
with a specific context. The roles of service provider and service consumer are
interpreted as described in Section 2.1.1.

Design,
Implement,

Deploy

Execute &
Monitor Apply actions

3

• Execute BPEL
process

• Monitor QoS,
collect QoE

• Query
monitored or
predicted QP

• Evaluate
BPR rule
conditions

• Apply actions
from the BPR
management
actions set

• Examples:
stop instances,
select
services,
create reports

• Design,
implement,
deploy BPEL
process

• Specify BPR
rules

• Deploy BPR
rules

• Add
monitoring
artefacts (e.g.
proxies)

Design time Runtime

bprflow
Figure 3.1: Managing a BPEL Process

Figure 3.1 represents the phases that the BPEL process traverses during design time
and runtime and how the process is managed by the BPR framework. The business

36 Solution Overview

analyst specifies the BPR rules in the BPR document associated to the BPEL process.
The BPR document is stored in the BPR repository (as represented in Figure 3.2) and
it is interpreted by the BPR framework. During process execution, the QoS of the
services are monitored automatically by proxies and the QoE values are collected from
the users that invoked the services. The BPRules Manager, as the core module of the
BPR framework, retrieves the monitored, predicted or estimated QoS and QoE values.
With these values the conditions of the BPR rules are evaluated upon compliance. In
case the conditions evaluate to true, the corresponding actions (e.g. service selection,
message notifications) are triggered and the BPEL process is managed.

BPR Framework

BPR Repository

BPR
doc

CoFee DB

BPEL Engine

BPEL processes

Rules Engine

Rules

QoS
monitored

CoFee Predictor

QoE and QoS
predictions

BPR Components

CoFee
Components

Process Management

QoS Monitor & Aggregator

BPRules Manager

Figure 3.2: Architecture Overview

We give a short overview of the modules and components that build the BPR framework.
These are represented in Figure 3.2.

• BPR modules: The BPRules Manager is responsible for coordinating the commu-
nication with the other BPR modules in order to execute the BPR rules. CoFee is
a module that may also work independently of the BPR framework. Its role is
to predict the QoS and QoE for atomic services. These values are used for the
selection of services. More details about the modules of the BPR framework and

3.1 The BPR Approach 37

how they interact with each other can be found in Chapter 9.

• BPEL engine: The BPEL processes are deployed and executed on the BPEL
engine. We employed the Oracle BPEL Process Manager to run the processes.
The BPR components communicate with the BPEL engine by using the API
provided by Oracle.

• BPR repository: The BPR repository stores the BPR documents. The BPRules
Manager loads the BPR documents from the BPR repository.

• Rules engine: The Drools rules engine is used to evaluate the BPR rules. The
BPR documents are transformed automatically into the Drools format in order to
be interpretable by the rules engine.

38 Solution Overview

4 Related Work

In this chapter, we discuss related works that target topics such as QoS Management
and Monitoring of Workflows, Service Selection and Service Recommendations. We
compare the related works with our approach and highlight our contributions to the
state of the art.

4.1 QoS Management

By addressing QoS requirements for services, our BPRules language has similar goals as
the two languages Quality of Service Language for Business Processes (QoSL4BP) [22, 23]
and the Web Service Requirements and Reactions Policy (WS-Re2Policy) [85] language.
All three languages have a similar structure by means of specifying actions to be
undertaken upon QoS violations. Even though, BPRules, QoSL4BP and WS-Re2Policy
differ in the provided features and syntax.

BPRules offers various additional features like instance-set handling, dynamic rule set
change and the specification of rule sets applied on instances from different time periods,
which are not supported by the other languages. Also BPRules provides increased
flexibility for the QoS data retrieval by monitoring of past and/or running process
executions and allows to estimate QoS values for other potential service candidates.
Similar to the section control feature from BPRules, the authors from [22] are able to
query structured activities for QoS. However, they cannot relate QoS parameters from
different sections like in BPRules (e.g. the response time from the distributor section
is less than 1/2 of the response time of the bookshop process). A crucial action for
managing QoS is the service selection action. The service selection is supported by all
of the three languages but the used selection algorithms are different. In [23], it is
mentioned that a constraint programming and a backtracking algorithm are used, but
no further details are provided. BPRules may employ our OPT I M_S, OPT I M_PRO
or OPT I M_HWeight algorithms. We can use OPT I M_S for a local, a global or a
heuristic search, thus having the possibility of choosing between the solution quality
and the execution time.

In the following paragraphs, we provide more details on WS-Re2Policy and QoSL4BP,
and also discuss further languages and approaches for QoS management of Web service
compositions.

4.1.1 WS-Re2Policy

Nicolas Repp et al. propose in [85, 84] WS-Re2Policy. The language is based on XML,
it is compliant to WS-Policy and is intended to allow specifications of QoS require-
ments for business processes. From these specifications monitoring and management

39

needs are derived. The corresponding architecture named Automated Monitoring and
Alignment Services (AMAS.KOM) [85, 84] is used to perform the automatic monit-
oring and deviation handling. The approach of Nicolas Repp also includes reasoning
mechanisms to determine the distribution of the monitoring and control units in the
service eco-system.

Just as BPRules, WS-Re2Policy allows to specify actions to be performed in case of QoS
deviations or SLA violations based on a simple Event-Condition-Action scheme, with
a predefined set of actions like restarting services or triggering service selection for
a single service or the whole business process. Although WS-Re2Policy facilitates the
specification of QoS requirements for business processes, it remains unclear how these
specifications interact with a concrete service selection approach. In [85], just some
hints are available that WS-Re2Policy can be incorporated with the service selection
of the WSQoSX system proposed by Berbner et al. [31, 30]. Here, BPRules goes
beyond WS-Re2Policy as it enables specification not only of QoS constraints, but also
of objective functions to be used for service selection. BPRules also allows to clearly
distinguish between promised/negotiated, monitored and predicted QoS values for
services within its rule definitions, which we consider as indispensable for a flexible
approach for QoS management of business processes. WS-Re2Policy is also missing a
number of other features of BPRules, as e.g. context-aware service selection, dynamic
rule-set change at runtime and specification means to determine the instances, the
QoS values of which determine the need of management actions.

4.1.2 QoSL4BP

In [22, 23], Baligand et al. propose QoSL4BP and the ORQOS platform. QoSL4BP
is a domain-specific language which facilitates specification of QoS requirements for
business processes and corresponding management policies in a declarative way. It is
distinguished between static requirements, which can be used for the initial planning
steps and do not change during runtime, and dynamic rules, which take into account
the runtime behavior of the business process and the involved services. The resulting
QoSL4BP models are executed on the QRQOS platform which provides support for
monitoring and execution of the defined management actions.

Although QoSL4BP is not based on XML and the definition of QoS constraints and
management actions is quite different from BPRules, QoSL4BP and ORQOS inspired
many design rationales of BPRules and the BPR framework. One example is separation
of concerns with regard to service composition logic and QoS management logic,
and both languages are non-intrusive with regard to existing orchestration languages
and engines. Thus, with QoSL4BP and BPRules, QoS requirements and management
policies are specified separately from the service composition, and existing and well-
established orchestration languages and engines, like BPEL and the Oracle BPEL engine,
can be used without modifications. Baligand et al. also allow specification of QoS
requirements and management actions not only for the whole business process but also
for single basic and structured activities. This concept is very similar to the concept of
sections in BPRules.

Nevertheless, BPRules goes clearly beyond QoSL4BP. BPRules offers much more flexibil-
ity in defining QoS constraints for the business process and the conditions that can act

40 Related Work

as trigger for management actions. Whereas the rules of QoSL4BP in most cases just
refer to the current or last instance of the business process, BPRules provides elaborate
means to select a set of instances as basis for the evaluation of the trigger condition.
Furthermore, QoSL4BP lacks a number of other features of BPRules, e.g. definition of
objective functions and support of context-aware service selection.

4.1.3 WS-Policy4MASC

The authors of [70] propose a language called WS-Policy4MASC and a framework
for adaptation of Web-Service compositions which is able to select the appropriate
adaptation strategies for different classes of instances. The strategy selection is not
only considering QoS dimensions but also business metrics. With BPRules and the
BPR framework we intend to improve the long-term QoS behavior by selecting and
replacing services. Thus, in comparison to [70] our focus is much more on service
selection algorithms and on specifying rules that define when and how to replace
services.

In [98], Tosic et al. describe how WS-Policy4MASC allows the specification of monit-
oring and control policies for the Manageable and Adaptable Services compositions
(MASC) middleware [53]. WS-Policy4MASC extends WS-Policy with new types of
policy assertions: goal policy assertions, action policy assertions, utility policy assertions,
and meta-policy assertions. Goal policy assertions facilitate specification of requirements
and/or guarantees that have to be fulfilled by the service composition, whereas action
policy assertions define the management actions to be performed if a requirement or
guarantee is not met. Whereas goal policies impact the monitoring performed on the
service composition, actions policies drive the adaptation of the service composition.
In this respect, a rule in BPRules combines goal policy assertions and action policy
assertions of WS-Policy4MASC. Utility policy assertions allow to define monetary values
for specific situations. Meta-policies can be used to define a set of alternative action
policy assertions applicable in a situation and corresponding selection strategies.

In contrast to WS-Policy4MASC, BPRules does not allow to assign monetary values to
certain situations, instead it facilitates the specification of objective functions to guide
service selection. BPRules also does not support definition of alternative actions and
selection strategies. In general, WS-Policy4MASC provides a quite general framework
for monitoring and control with a rich set of monitoring and management capabilities,
which is not only focused on QoS management. This expressivity also causes WS-
Policy4MASC specifications to become really verbose, which Tosic et al. tried to
mitigate by defining an according UML profile [99].

BPRules clearly concentrates on QoS monitoring and management of service com-
positions with service selection and replacement as the most important management
action. Thus, in comparison to WS-Policy4MASC, BPRules covers many aspects in more
detail, as e.g. elaborate support for selecting instances as base for the monitoring,
distinction between monitored, promised and predicted QoS values, which is neglected
in WS-Policy4MASC. BPRules also offers unique features like context-aware service
selection. In WS-Policy4MASC this aspect is not considered at all.

4.1 QoS Management 41

4.1.4 WSCoL

Baresi et al. [27] propose the Web Service Constraint Language (WSCoL) for defining
functional as well as non-functional constraints for service interactions within the
workflow of a BPEL process. WSCoL is an XML-aware language, which uses WS-Policy
as baseline and extends it with domain-independent support for monitoring assertions.
The original WSCoL proposal focuses on defining pre- and post-conditions for basic
activities in a BPEL process, like invoke, receive and pick, leading to local constraints for
basic service interactions. Although WSCoL introduces only a few language concepts,
the approach has to be considered quite powerful as it provides specification means
for data collection as well as data analysis. For example, in WSCoL three different
kinds of data collection can be specified. It allows to state if internal variables, external
variables provided by invocation of other services, or historical data obtained by the
monitoring framework should be taken into account when evaluating the constraints.
Similar to BPRules, constraints in WSCoL can make use of universal and existential
quantifiers and of aggregate functions on collected historical data, as e.g. minimum,
maximum, average or sum.

In [28], Baresi et al. extend WSCoL to Timed WSCoL by introducing the concepts
of scope and temporal operators. In contrast to WSCoL, where the scope of the
constraints is limited to basic activities, Timed WSCoL allows elaborate specification
of temporal constraints over several basic or complex activities. For this purpose,
Timed WSCoL makes use of concepts from temporal logics. WSCoL as well as Timed
WSCoL concentrate on monitoring constraints, whereas management actions in case
of constraint violation are not in their focus. BPRules with its elaborate support for
management actions like service selection goes clearly beyond monitoring. Thus, the
scope of BPRules and WSCoL is quite different. Still, with the authors of [28] we share
the insight that different data sources have to be considered in the evaluation of QoS
conditions and also elaborate specification means with regard to collected historical
data are needed. BPRules allows to distinguish between monitored, promised and
predicted QoS values and provides elaborate support for instance handling.

4.1.5 AO4BPEL

AO4BPEL, proposed by Charfi and Mezini [42], is not designed with particular focus on
QoS monitoring and management of service compositions. However, Charfi and Mezini
recognize the shortcomings of BPEL with regard to a well-modularized and flexible
specification of crosscutting concerns such as security, logging, and QoS monitoring,
and identify aspect-oriented techniques as most suitable means to compensate these
shortcomings. Consequently, AO4BPEL is an aspect-oriented extension for BPEL
providing specification means for the main concepts of aspect-oriented programming,
which are join points, point cuts and advices. Join points correspond to activities of
the BPEL process and thus, point cuts refer to a set of activities which may span over
one or several BPEL processes. Advices are commonly specified as sequences of BPEL
activities realizing a kind of sub-workflow and can be executed by the underlying BPEL
engine.

AO4BPEL does not provide support for expressing QoS requirements and constraints

42 Related Work

and corresponding management actions at all. Still it is an interesting approach
because most of the other languages in the area of QoS monitoring and management,
as e.g. WS-Re2Policy [85, 84], QoSL4BP [22, 23] , WS-Policy4MASC [98] and also
BPRules, just support to define which QoS parameters have to be evaluated in the
conditions but not how the corresponding monitoring is done. Only WSCoL [28], [27]
provides some specification means to refer to Web services for data collection. BPRules
relies on the BPR framework to collect and monitor all the needed parameters. For
this purpose, the BPEL process is instrumented with appropriate sensors which fire at
the start and the end of activities. It could be beneficial to combine BPRules with the
ideas of AO4BPEL, however this has to be investigated in future work.

4.1.6 Other Related Approaches

In [69], the authors describe an approach for preventing SLA violations by a dynamic
substitution of fragments (equivalent to our sections) at runtime. Thereby the candid-
ate fragments have to be modeled at design time. This approach can be considered
as an improvement for a more dynamic substitution of a section, which we plan to
adopt in our future work. However, the authors have addressed only this particular
substitution aspect in [69]. With our framework, we aim to provide a comprehensive
support for managing QoS of service compositions that includes monitoring but also a
rich set of management actions as well as efficient service selection strategies.

The WSLA [71] language can be used to specify a contract (SLA) between the service
provider and the service consumer. However, WSLA does not address the specifics
of service compositions and the monitoring of certain activities or sections from the
composition is not possible. The language does not offer support for controlling a
service composition or for improving the QoS behavior, like it is possible with BPRules.

The WS-Policy framework provides a more general approach for specifying require-
ments for different entities like WSDL elements, services, message parts, operations.
In comparison to WS-Policy, our BPRules language and the BPR rules are tailored to
monitoring and managing QoS in service compositions.

4.2 Service Selection

4.2.1 Integer Programming

Zeng et al. describe in [113] a QoS-aware Middleware for Web Services Composition.
For the service selection the authors describe two approaches for local and global
optimization. In their global planning approach, the authors propose an Integer
Programming (IP) solution, assuming that the objective function, the constraints, and
the aggregation functions are linear. The multiplicative aggregation functions for
availability and success rate are linearized by applying the logarithm. In this way, the
service selection problem is mapped to an IP problem and standard IP solvers can be
employed to find the optimal solution. However, optimization is performed for each
execution path of the workflow separately. Thus, the optimal selections for the single
execution paths have to be merged, in order to determine the optimized selection for

4.2 Service Selection 43

the whole workflow. For this purpose, Zeng et al. identify the most frequent path for
each of the tasks in the workflow, which they call hot path, and use the selected service
of the hot path also for the overall solution.

Another problem of the approach of Zeng et al. is the need to unfold loops to sequences.
If a loop contains n cycles, each abstract service appears n times in the corresponding
unfolded sequence. Thus, loops can increase the required computation time for
optimization significantly. Acceptable runtime performance can only be expected for
workflows with a limited number of execution paths, loops and concrete services. The
approach quickly becomes unfeasible with an increasing number of tasks and concrete
services.

In contrast to Zeng et al., our algorithms OPT I M_HWeight and OPT I M_PRO can
also work on non-linear objective functions, do not need to consider different execution
paths separately, and do not require unfolding of loops. Still, they are also applicable
to problems with a larger number of abstract services and concrete services per abstract
service, as shown in Section 10.1.

4.2.2 Linear Programming Relaxation and Backtracking

In [31], Berbner et al. propose an improvement of the IP approach of Zeng et al.
[110]. First, they solve a linear programming (LP) relaxation of the IP problem, which
results in an indication how likely a concrete service is part of the optimal solution.
Afterwards a backtracking algorithm is employed to calculate the concrete services to
be selected. Here, the indications of the first step are used to sort the service candidates
for an abstract service and therefore to guide the backtracking algorithm. Furthermore,
the number of likely service candidates for an abstract service also determines the
order in which the abstract services are considered in the backtracking algorithm.

Berbner et al. also investigated to which extend the found selections can be improved
by utilizing further heuristics. The first heuristic randomly replaces services and
checks if an improvement of QoS was achieved. If an improvement was achieved the
new service is used. They also tested simulated annealing as improvement strategy.
However, the test results have shown that only a marginal improvement over the
original solution can be expected.

Although the approach constitutes an improvement of the original IP approach of Zeng,
it has the same restrictions and addresses only sequential Web service compositions
and linear objective functions. With our algorithms, we are able to consider sequential
and also parallel execution of activities and non-linear objective functions.

4.2.3 Genetic Approach

Canfora et al. [39] propose a genetic approach for the selection problem. Genetic
algorithms are inspired by biology and use meta-heuristics in optimization problems.
The genome represents the service variants that realize the service orchestration. The
length of the genome is equal to the number of abstract services and each element
within the corresponding array contains a reference to the list of the concrete candidate

44 Related Work

services that may realize the abstract service. The initial population is built with
random individuals. The fitness of the individuals represents their utility as a solution.
It is computed based on the objective function as well as a penalty term for violated
constraints. This means that those individuals not fulfilling the QoS constraints are
penalized with regard to their fitness.

Multiple generations over the population are built in an iterative way by applying muta-
tion and crossover operators. Through the mutation operator, the candidate services
are varied randomly and an arbitrary concrete service is selected to realize the abstract
service. The crossover operator combines service variants of different individuals. The
algorithm stops when during multiple generations there is no improvement to the
fitness function value.

Since the authors consider also non-linear objective functions, we implemented their
approach to compare it with our heuristic algorithms (see Section 10.1). We used
the same aggregation functions as Canfora did. Although Canfora et al. select the
genome with a fitness function containing a penalty factor, this penalty factor does not
guarantee that the individuals will fulfill the QoS constraints for all possible execution
paths. By checking the QoS constraints considering the worst case of QoS values
throughout multiple branches, our algorithms ensure that the QoS constraints are met
for all of the execution paths. In addition, our OPT I M_HWeight and OPT I M_PRO
need significantly less time than the genetic algorithm, to find the same result or even
a better one.

4.2.4 Tabu Search and Hybrid Genetic Algorithms

Parejo et al. [81] investigated approaches to the service selection problem based
on tabu search and hybrid genetic algorithms. Their proposal of a hybrid genetic
algorithm can be considered as an amendment of the genetic approach of Canfora
et al. described in the previous section. The improvement is achieved by iteratively
exploring the neighborhood of each individual of the genetic algorithm and replacing
the actual individual with the best or the almost best neighbor. In their original
algorithm, the authors explore the complete neighborhood of an individual. However,
the computational cost of this exploration reduces the diversification of the population
or the number of generations if the computation time shall not be increased. Thus,
the authors propose only to explore a certain percentage of the neighborhood of
individuals.

In their experiments, the authors revealed that compared to its basic version the hybrid
genetic algorithms perform better only with regard to small and medium size problems
and that tabu search achieves improvements only for small problem instances and
short run times. Our algorithms not only show good performance with small and
medium size problems but are also able to outperform the genetic algorithm for large
problems.

4.2.5 Heuristic Approaches

As the service selection problem addressed in this thesis is NP-hard [22], approaches
which provide the global optimal solution in a deterministic manner are deemed to

4.2 Service Selection 45

become unfeasible with an increasing number of abstract services and concrete services.
On the other hand, heuristic approaches, as our OPT I M_HWeight and OPT I M_PRO
algorithms, can deliver results close to the optimal solution with acceptable computa-
tional costs.

In [76], Jaeger et al. evaluated different heuristic approaches including greedy
selection, bottom-up approximation, discarding subsets and pattern-wise selection. In
particular, pattern-wise selection obtains almost optimal QoS values. However, the
runtime performance makes pattern-wise selection and discarding subsets unsuitable
for a growing number of tasks. Other heuristics like greedy selection or the bottom-up
approximation result in a loss of QoS up to 5% but lead to an acceptable runtime
performance.

In this respect, our OPT I M_HWeight and OPT I M_PRO algorithms provide an im-
provement with regard to shorter runtimes than pattern-wise selection and discarding
subsets, and deliver better QoS than greedy selection and bottom-up approximation.
In general, the results of Jaeger et al. confirm the expectation that there is a tradeoff
between obtained QoS and computational costs. The OPT I M_HWeight algorithm
constitutes an instance of the OPT I M_S algorithm, which allows to fine tune this
tradeoff by adjusting the parameter for the number of solution candidates propagated
from one node to the next level in the workflow tree.

4.3 Context-aware Property Prediction

4.3.1 Collaborative Filtering

Already in 1994, Resnick et al. [86] applied collaborative filtering approaches in their
GroupLens system to recommend net news for users. Since then collaborative filtering
has been widely adopted in recommender systems [92] [64]. Here it is distinguished
between user-based and item-based collaborative filtering. User-based collaborative
filtering is based on the idea that a user’s experience or rating with regard to a certain
item is likely to be similar to the experiences/ratings of users who have made similar
experiences or provided similar ratings on a number of other items in the past. Item-
based collaborative filtering is based on the same assumption, but with items instead
of users. This means, items which have been rated similar in the past for a number of
users, are likely to receive a similar rating for the user under consideration.

4.3.2 Predictive Algorithms for Collaborative Filtering

In [37], Breese et al. analyze different approaches of user-based collaborative filtering
to predict user ratings. They distinguish between memory-based methods and model-
based methods. Whereas memory-based methods directly work on the collected data
for user votes, the model-based methods first try to build a model of the collected data,
which is then used to make predictions.

Memory-based methods typically predict the user rating as weighted sum of the ratings
of other users, where the weights correspond to the similarity of the users. Thus, the

46 Related Work

selection of the similarity measure is crucial for the performance of the algorithm.
Simple vector similarity or similarity based on Pearson Correlation Coefficient are
widely used measures in this context. Breese et al. have also analyzed extensions
of these similarity measures with default voting, case amplification or inverse user
frequency.

As candidates for model-based algorithms, Breese et al. evaluated probabilistic cluster
models and Bayesian network models. For the cluster models they assume membership
in an unobserved class variable, which abstracts certain user groups with similar
preferences and tastes. This cluster model is built using Expectation Maximization. For
the Bayesian network models, a whole Bayesian network with a node for each item in
the domain is learned. The votes correspond to the states of the different nodes.

Breese et al. conclude that Bayesian network models and correlation methods outper-
form the probabilistic cluster models and methods based on simple vector similarity in
most cases. Between Bayesian network models and correlation methods there is no
clear winner, as the performance of the algorithms depends on the analyzed dataset.
Apart from prediction accuracy, there are significant differences between memory-
based and model-based approaches. The model-based approaches require less memory,
need less time to make predictions and are likely to show better scalability. However,
the analyzed probabilistic model-based approaches require a complex learning step,
which is not needed for memory-based approaches at all.

In this thesis, we present a new model-based approach based on linear regression.
While only relying on a very simple model-building approach, it shows good prediction
accuracy. Furthermore, we show how context information can be incorporated into the
prediction. However, context information is not considered at all in the approaches
analyzed by Breese et al.

4.3.3 WSRec

Z. Zheng et al. describe in [113] an approach based on collaborative filtering for
making QoS-aware Web service recommendations. The QoS values of the Web services
are predicted for the active user based on the QoS values that were measured in the
past. The presented approach relies on the combination of user-based and item-based
collaborative filtering techniques using the Pearson Corellation Coefficient.

The authors bring a significant contribution to the research community by making
publicly available a dataset of monitored QoS data for real world Web services [17]
[112]. We also used this dataset for evaluating our CoFee module. For the collection
of QoS data [113] the authors use one hundred and fifty computers in 24 countries
and perform about 1.5 millions Web service invocations for 100 real world services.
This is a considerable amount of monitoring work. This gives great opportunities to
other researchers (like us) that do not afford evaluations at this scale because most of
the real Web services perceive taxes for invocations and are not intended for research
and test purposes. Therefore, we highly appreciate the work of the authors also for
sharing their QoS monitored data.

With the WSRec approach, the final prediction result is calculated as a weighted sum
of the user-based prediction result and the item-based prediction result, where the

4.3 Context-aware Property Prediction 47

weights take into account the respective prediction confidence and a manual tuning-
factor λ. Prediction confidence is estimated from the similarity values found in the
user-item matrix. As similarity measure the Pearson Correlation Coefficient is used.
However, not all users or all items of the user-item matrix are taken into account.
Only the top k users/item with highest similarity and only users/item with positive
correlation are considered.

Furthermore, in their WSRec method, Zheng et al. propose a two-step approach. In the
first step, a part of the missing values of the user-item matrix are predicted in order to
enhance the matrix density. This enhanced user-item matrix is then used in the second
step to perform the predictions for the actual users under consideration.

The WSRec method improves indeed the predictive accuracy of the pure user-based or
item-based approach. Nevertheless, there are still lasting problems owing to scalability
and practical suitability. These are mainly related to prediction time and scalability:
the greater the matrix and the lower the matrix density, the lower the predictive
accuracy and the higher the prediction times. The cause is mainly based on the lack
of generalization. Our approach based on linear-regression is able to provide such a
generalization. Furthermore, just as most other approaches based on collaborative
filtering, the WSRec method does not exploit context information in order to improve
prediction quality, as we do in this thesis.

4.3.4 Location Based Regularization

In [103], Lo et al. argue that prediction of QoS properties can benefit from the
incorporation of context information. They particularly refer to the usage of location
information with regard to prediction of response time and state that users which live
near to each other are likely to face similar physical network conditions.

The core concept of their prediction approach is matrix factorization: the user-service
matrix is factorized to a user feature space matrix and a service feature space matrix. In
this respect, the method of Lo et al. can be considered as model-based collaborative fil-
tering approach. Geographical information is incorporated as additional regularization
term.

By applying matrix factorization and their location-based regularization the prediction
accuracy concerning the dimension response time is improved compared to user or
item-based collaborative filtering. But their approach requires manual fine tuning and
is heavily affected by the density of the user-item matrix. Besides, so far only QoS
dimensions have been considered which depend on the user location. The methods
proposed in this thesis are not limited to geographical information. Actually, relevant
context dimensions are identified by using statistical approaches as e.g. ANOVA, or are
derived as part of the learning step.

4.3.5 Location-aware Memory-based Collaborative Filtering Approaches

Unfortunately, there is only limited work actually concentrating on QoS or QoE pre-
dictions for Web services incorporating context data. Still, there are some other

48 Related Work

memory-based collaborative filtering approaches which incorporate location informa-
tion.

In [95], Tang et al. present a location-aware hybrid collaborative filtering method for
QoS predictions. Just like WSRec, their approach builds upon user- and item-based
collaborative filtering. The main difference to WSRec is that similar neighbors are first
identified via location-related information such as country and IP address. Afterwards
these neighbors are searched for candidates which are also similar with respect to
the Pearson Correlation Coefficient. However, this approach has a major drawback:
compared to WSRec even a higher matrix density is required to find similar users
or services in the location-based neighborhood. Thus, the predictive accuracy may
increase for those QoS dimensions which correlate with the location, but the approach
is likely to suffer from scalability issues and is highly affected by matrix sparsity.

Chen et al. [43] propose an approach which is quite similar to that of Tang et al.,
but they consider only the user location. Consequently, they face the same problem
like Tang and his group. Both did not evaluate their algorithms with regard to the
impact of matrix densities less than 10%. Considering a service registry with 1000
Web services, 10% means that each user made use from 100 Web services in average.

Also Xie et al. [108] incorporate location of the users and service providers into a
memory-based collaborative filtering method. Their method is only compared to a
pure user-based or item-based collaborative filtering approach and they do not specify
the density of their matrices. Still, significant improvement in prediction accuracy or
prediction time cannot be recognized.

In summary, all these approaches share the drawbacks of pure memory-based col-
laborative filtering with regard to scalability and prediction time due to the lack of
generalization. Furthermore, only performance related QoS dimensions are considered
which depend on location information. In this thesis, we present a simple model-based
linear regression approach which shows good prediction accuracy and avoids the
scalability issues. We also consider the incorporation of other context dimensions and
discuss context-aware prediction of QoE.

4.3 Context-aware Property Prediction 49

50 Related Work

5 The BPRules Language

In this chapter, we describe the BPRules language that was designed to manage QoS
and QoE for service compositions. With BPRules, rules are defined for handling possible
quality deviations. The business analyst specifies rules for the service process by stating
what actions should be undertaken if specific QoS or QoE requirements are not met.
Appropriately chosen rules enable a proper execution of the business process even
when unforeseen problems occur (e.g. a service is not accessible). We present the
main features of BPRules which we consider essential for a successful QP management
of a BPEL process. We show how BPR documents and BPR rules are specified and how
they are executed. First insights about the BPRules language were published in [50]
and the extended BPRules language and the BPR framework were presented in [48].

5.1 Requirements

QP-management: Appropriate QoS and QoE management is responsible for the
success of the business process execution. The violation of SLAs and services that
perform at inadequate service levels may lead to unsatisfied customers or even to their
loss. Thus, the maintenance of the services’ performance at appropriate service levels,
have become a major concern in the service community. A BPEL process, being a
composition of other services, implies that each service from the composition performs
well. When QoS or QoE problems appear, immediate actions should deal with that
situation. Appropriate actions for handling the situation have to be specified by the
business analyst. These actions need to be undertaken at runtime so that, if possible,
undesired situations are avoided even before happening.

A set of management actions is necessary for controlling the process. From the actions
set, the action for selecting and replacing new services for the service composition is
essential. Replacing a service that causes performance problems with another service
with good QP would improve the QP of the entire service composition.

Querying Quality Properties: Detecting quality deviations in time, assumes a per-
manent monitoring of the process. It is necessary to query the monitored QoS and
the assigned QoE in order to trigger appropriate deviation handling. It should be pos-
sible to query QP for atomic services but also for sections and the entire composition.
Querying the QP behavior of sections may give indications on possible malfunctioning
parts of the process.

The business analyst, being responsible for the well-functioning of the process, needs
to be informed about the quality behavior of the process but also of other services
(not part of the current set of selected services) that could potentially be used for the
process.

51

Service Provisioning: The business analyst has to specify which services should be
provisioned for the service composition and what quality requirements they should
fulfill. The QP values which are promised by the service providers do not always
correspond to the values actually perceived by the clients. Therefore, if QP values are
predicted, these values can be used so that inappropriate services would not even be
selected at all. It is required to specify how service selection should be performed,
based on which quality parameters (promised or predicted) and for which users group.

Specifications: The business analyst has to be able to specify the mentioned artefacts
(monitoring, service provisioning, etc.) in an easy way and also separately from the
BPEL description file.

5.2 The BPRules Language

The BPRules language addresses exactly these challenges and offers appropriate sup-
port for the QoS and QoE management. BPRules is a rule-based language and offers
management capabilities with regard to the quality behavior of single Web services
and Web service compositions. We call a BPR rule a rule that is specified with BPRules
and is conform to the BPRules format. BPRules is intended for humans which are
responsible for the QP management and it offers them comprehensive support to easily
use all the features of the BPR framework without having to know its implementation
details.

5.2.1 The BPR Rules

Typically, a BPR rule contains a QP condition and the corresponding action to be
triggered. While the condition contains the QP constraints check, the action states
what happens when undesired QP are measured. Management actions might rank from
just notifying the interested parties about certain events, over starting or stopping the
process to actions like selecting and replacing some services with others that provide
better QP. The rules are specified in XML and the syntax is validated against the BPRules
XSD schema which can be found in Chapter A.

BPR rules are grouped together into rule sets. Listing 5.1 represents the typical form
of a rule set and a rule specified with BPRules.

1<ruleset id="rs−green">
2 <evaluate trigger="periodic" unit="minutes">1</evaluate>
3 <rule id="rulename1">
4 <condition>
5 <!−−QoS and QoE constraints −−>
6 </condition>
7 <action>
8 <!−−management actions from the BPR actions set−−>
9 </action>

10 </rule>
11 <!−− rule specifications−−>
12</ruleset>

Listing 5.1: Rule Set Example

52 The BPRules Language

A BPR rule usually contains a QP condition which may enclose several QP constraints
that need to be monitored. QP constraints are described using expressions. The
condition part of a rule might be missing in some cases (e.g. for report generation),
but the rule contains exactly one < act ion > element. The action part in turn may
enclose several BPR management actions available in the actions set of BPRules. Listing
5.1 states that the rule set is evaluated every minute (in the < evaluate > element),
which is also the default setting.

5.2.2 Evaluation of Rules

The rule sets may be evaluated at different times, dependent on the kind of actions
which need to be performed. The time when a rule set is evaluated is specified within
the element < evaluate > using the attribute t r i g ger (e.g. < evaluate t ri g ger =
”periodic” >). In BPRules, we distinguish between two ways of triggering rule
evaluation:

• Evaluating rules once: One possibility is to evaluate the rule set only a single
time (attribute t r i g ger = ”once”). This is usually the case, when an initialization
needs to be performed in the beginning. For example, the services are selected,
the process is deployed and then started.

• Evaluating rules periodic: The rules from the rule set are evaluated at a specific
interval of time (attribute t r i g ger = ”periodic”). This type of evaluation is
appropriate for actions that need to be evaluated periodically. The attribute unit
and the value of the element are used to specify the period of time when the
rule set is re-evaluated (every 1 minute, every 1 hour, etc.). For example, in a
common case, the quality requirements have to be checked more often in order
to detect unusual behavior (like every minute) while the reports are needed at
the end of the month.

5.2.3 The BPR Document

The BPR rules are specified in BPR documents. The BPR framework is able to load
and execute the rules from the BPR documents. More details about the execution of
rules are presented in Chapter 9. We associate a BPR document to each of the BPEL
processes that run within the BPR framework. Mainly, a valid BPR document defines
the following information:

• Sections: for the specification of the monitored sub-orchestrations.

• Constants: for defining global constants that may be used throughout the BPR
document (e.g. as threshold values for the quality parameters).

• Rule sets: containing the collection of rules sets that state how to handle QP
deviations.

Figure 5.1 represents the general structure of a BPR document which is attached to a
process.

5.2 The BPRules Language 53

BPEL process
attach

BPR document

Rule 1

action:
<select-services>

rule 2

quality
requirements

QP constraints

objective
function

rule set red

section 1

section 2

sections

constants

<evaluate>
<period>

condition:
QP undesired

rule set green

rule sets

rule 1

Figure 5.1: The BPR Document

5.2.3.1 Elements Overview

Figure 5.2 represents an overview of the elements from a BPR document together with
their cardinalities. The < bprules > element is the root element of the BPR document
and it contains the processid attribute that uniquely identifies the BPEL process in
the BPR repository. The processid corresponds also to the name of the BPEL process
(which is also unique) as it was specified in the BPEL description file.

The < bprules > element contains sub-elements such as < sec t ions > for defining
sub-orchestrations, < constants > for specifying constants, and the < rulesets >
element which contains one or more rule sets with the BPR rules. Checks for
QP constraint violations (e.g. responset ime < 5) are specified as part of the <
condi t ion > element using expressions, which can be linked by logical operators
AN D, OR and NOT . The < service− selec t ion > action contains the requirements
(< quali t y−requirements >) that need to be fulfilled when new services are searched.
These < quali t y − requirements > are interpreted by the service selection module
which searches for appropriate services that fulfill the requirements.

By default, the QoS and QoE constraints and requirements are applied to the entire
service composition unless it is specified differently. Another possibility is to apply the
constraints and requirements for a single section or a single service. For these cases
the attributes appl ysect ion and appl yservice are used inside the < ex pression >,
< selec t − services > or < selec t − services− contex t > elements.

54 The BPRules Language

rule

condition action

select-services

expression

select-
instances

instances-
subset

rulesets

select-serv.-context

replace-ws

report

Logic
operator

constraints

Logic
operator

A B Element A has n sub-elements B

Legend

1..n

0..1

1

1

0..1

0..1

1..n

1..n

1

n

1

0..1

0..1

sections

bprules

update

. . .

section activity
1..n 1..2

0..1 1

report-usercat

period

constants constant

ruleset

0..1

1..n

0..1 constants

setactive-ruleset

evaluate
0..1

report-feedbacks

1..n

constant1..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

Figure 5.2: BPR Elements Overview

The exact structure of a BPR document and the descriptions of the elements are
presented in Chapter A. The BPRules features and actions are explained in more detail
in Section 5.3.

5.2.4 Design Rationales

We developed BPRules with the following design rationales in mind: simplicity, ex-
pressivity, reusability and separation of concerns.

5.2 The BPRules Language 55

• Simplicity

The business analyst, who specifies the rules, is not required to have any pro-
gramming skills. The BPR documents are human-readable and BPRules is simply
structured using XML. Also the syntax for specifying expressions and functions is
similar to the syntax of WSLA [71].

• Expressivity

BPRules is expressive because it provides various features for monitoring QoS,
querying QP and a comprehensive set of actions for the QoS and QoE man-
agement. BPRules offers the possibility to combine actions into more complex
actions, thus giving the opportunity to build more powerful constructs. BPRules
gives the possibility to specify own custom actions to extend the language.

• Reusability

Reusability is supported by the possibility of reusing elements specified inside
the BPR document. Several elements (for example < sec t ion >, < rulesets >,
< service− regist r ies >) are identified by ids and can be reused throughout
the BPR document by simply referencing the id.

• Separation of Concerns

We achieve separation of concerns by specifying rules in BPR documents which
are stored separately from the business logic. Our goal was to make as few
as possible modifications to the BPEL description file and not to interweave
monitoring artifacts into the process logic. Thus, the only change we perform
to the BPEL file is updating the URLs of the services with those of the proxies.
The proxies are supposed to measure the QoS of the services and to facilitate the
service replacement.

5.3 BPRules Features

We designed BPRules with several features that we envision as mandatory for the
management of QoS and QoE. In the following, we present the features of BPRules:

1. Flexible QP Data Retrieval

BPRules offers the possibility to query the monitored QoS, the assigned QoE
and the predicted QP values of services, sections and the entire process. QP are
checked for compliance inside the < condi t ion> part and they may be queried
for the entire process, its sections or single services. In case of the process or a
section, the QP are computed for each process instance (respectively its section)
by applying the measurement algorithm (see Section 6.4) which aggregates the
QP of the process instance (respectively the section) from the QP values of the
atomic services.

Interpreting and processing the QoS and QoE data may be dependent on the
period of time when the execution of the process took place. For example, past
quality behavior may be retrieved for a report or analysis while current quality
behavior has to be monitored to remediate malfunctions by updating the process

56 The BPRules Language

at runtime. With BPRules, we can specify rule sets that consider process instances
from a specific period of time. For instance, the period may be a time interval
in the past or might range from a moment in the past till the actual moment. It
can be specified as an absolute time interval (with a begin and end date/time)
or as a relative period in the form: last x time-unit (e.g.: last 10 hours, last 2
months). Usually, during a period of time there are multiple instances to be
considered. In the default case, when QP values are queried, the average QP
values of the instances are considered. It is also possible to query the minimal or
maximal QP values of the instances. The attribute appl y f unct ion (belonging
to the < quali t yParam> element) may be used for this purpose.

2. Section Control

For a better control and detection of QoS or QoE deviations, we can divide the
process into several parts, which we call sections. This provides the possibility
to group multiple activities (e.g. all activities inside a flow, or a sequence) into
a single manageable part. We define a section by referring to a structured
activity with its nested sub-activities. Another way for specifying a section is by
considering all activities between a start and an end activity inside a sequence.

As an example, in our bookshop process (described in Section 2.3.1.1) we define
a section along with its QP requirements. The section consists of several activities,
involving the invocation of the Distributor Service for checking if the book is
available, then choosing the book with the minimal price and buying it. In
this section, a low response time and cost is required. Listing 5.2 shows the
QoS requirements for the distributor section. The example listings presented in
the thesis contain commentaries because of the lengthy XML. However, when
BPR documents are specified, these have to contain elements conforming to
the BPRules format. When the QoS of the section reaches some risky values
(response time > 3 or cost > 0.25) then the distributor service will be replaced
with another one that provides better QoS and whose WSDL description is
available at the specified URL. The < replace−ws > action performs a manual
service replacement. The expression element contains the QoS constraints which
can be linked by the logical operators AND, OR and NOT to form more complex
conditions. We can specify different QP requirements for different sections.

With BPRules it is also possible to establish relations between the QP of different
sections and the entire process. For example, a query like this is possible: the
response time from the distributor section is less than 1/2 of the response time
of the bookshop process. Thus the business analyst may be informed if the
distributor section consumes too much time in comparison to the entire response
time of the process, which can be a good indication for a malfunction in the
distributor section. Furthermore, this kind of QP conditions may ensure keeping
an appropriate proportion between the QP parameters between process sections
and the process.

5.3 BPRules Features 57

1 <ruleset id="distributor-normal">
2 <period> <!-- time interval --> </period>
3 <rule>
4 <condition>
5 <constraints>
6 <instances-subset applyfunction="MIN">10%</instances-subset>
7 <expression applysection="distributorsection">
8 <or>
9 <!-- response time > 3 or cost > 0.25 -->

10 </or>
11 </expression>
12 </constraints>
13 </condition>
14 <action> <!--from the BPR management actions set -->
15 <replace-ws>
16 <service name="bookshop/DistributorService">
17 <wsdl-url>
18 <!--url to the WSDL of the new service -->
19 </wsdl-url>
20 </service>
21 </replace-ws>
22 </action>
23 </rule>
24 </ruleset>

Listing 5.2: A BPR Rule Example for a Section

3. Instance-set Handling

With BPRules, we can specify a certain set of instances to which the QP constraints
apply. This is an important task since, for example, situations when 2% of the
instances failed or over 20% of the instances failed need to be treated differently.
While the first case could be tolerable, the second case needs to be addressed
adequately. In Listing 5.3 it is stated that if minimum 20% of the instances failed
then a select services action should be undertaken to replace the services with
others that are predicted to have better QP. The select services action performs
an automatic service replacement of all the services in the process with services
found by the service selection module.

As described in Listing 5.3, the state of the instances can be queried with the
< proper t y− check > element. We distinguish between states like FAULTED for
instances with activities that have thrown an exception, RUNNING for instances
with activities that are still executed, and COMPLETED for instances where all
of the activities are successfully completed. For querying the size of the set
of instances that fulfill or violate the QP constraints, BPRules offers a set of
functions: FORALL targeting all the instances in the set, EXISTS for at least one
instance, MIN nr(%), MAX nr(%), EQUALS nr(%) to refer to a percentage of the
total number of instances. With these functions, BPRules makes it possible to
trigger appropriate actions according to the runtime behavior of the instances.

58 The BPRules Language

1 <rule id="selectAll">
2 <condition>
3 <constraints>
4 <instances-subset function="MIN">20%</instances-subset>
5 <expression>
6 <property-check select="state">FAULTED</property-check>
7 </expression>
8 </constraints>
9 </condition>

10 <action>
11 <select-services methodClass="ALG.OptPRO" qualityValues="Pred">
12 <service-registries>
13 <wsdl-url>http://atlantis:8081/sregistry?wsdl</wsdl-url>
14 <!-- other registry URLs to be searched -->
15 </service-registries>
16 <quality-requirements>
17 <expression>
18 <and>
19 <expression>
20 <predicate type="Less">
21 <qualityParam>responsetime</qualityParam>
22 <Value>3</Value>
23 </predicate>
24 </expression>
25 <expression>
26 <predicate type="Greater">
27 <qualityParam>availability</qualityParam>
28 <Value>0.95</Value>
29 </predicate>
30 </expression>
31 <!-- similar expression for cost < 0.3 -->
32 </and>
33 </expression>
34 <objective-function type="MAX">
35 <operation type="DIV">
36 <qualityParam>availability</qualityParam>
37 <operation type="ADD">
38 <qualityParam>responsetime</qualityParam>
39 <operation type="MUL">
40 <Value>2</Value>
41 <qualityParam>cost</qualityParam>
42 </operation>
43 </operation>
44 </operation>
45 </objective-function>
46 </quality-requirements>
47 </select-services>
48 </action>
49 </rule>

Listing 5.3: A Service Selection Example

5.3 BPRules Features 59

4. Flexible Service Selection

BPRules provides extra flexibility for the selection of services. The select-services
action from BPRules may be employed for the entire process or only for some of
its sections. It triggers a selection algorithm to search for services in specified
service registries and to replace the old services in the process with new ones
that provide better QP. The selection algorithms receive as input the quality
requirements of the process or the section. The quality requirements consist of
the QP constraints and an objective function to be optimized.

The selection algorithms compute estimations of the QP values for the process
(or section) and choose services that may realize the process (or section). The
estimated QP are computed by using the QP estimation algorithm described in
Chapter 6 considering either the promised or the predicted QP values. Therefore,
we distinguish between two kinds of estimated QP values:

• The estimated-promised QP (Prom): a QP estimation of the process (or
section) by considering the QP values promised by the service provider for
the atomic services

• The estimated-predicted QP (Pred): a QP estimation of the process (or
section) by considering the QP values predicted by the CoFee Predictor for
the atomic services

The estimated promised or predicted QP values may be retrieved for single
services as well. The estimated QP values are queried using the quali t yValues
attribute (of the < selec t − services > or < selec t − services − contex t >
element) which is set to ”Prom” for the estimated-promised QP and to ”Pred”
for the estimated-predicted QP, respectively.

Listing 5.3 represents an example of a select-services action defined with BPRules.
We consider the QoS dimensions availability (avail), response time (resp), and
cost. A set of services is searched for the entire composition and the solution has
to fulfill the following QoS constraints and maximize the objective function:

fob j(Q) =
avail

resp+ 2 · cost
,maximize fob j(Q) (5.1)

resp < 3, avail > 0.95, cost < 0.3 (5.2)

In contrast to other works [110], our selection strategies are also able to deal
with non-linear objective functions and aggregation functions. Our selection
action is customizable with regard to the selection method (selection algorithm).
For example, when searching a few services, like within a section, a trivial brute-
force search is sufficient, while in a search at runtime that involves many services
(e.g. for the entire process), a more advanced and rapid search is needed.
For this purpose, the BPR framework provides three algorithms, OPT I M_S,
OPT I M_PRO and OPT I M_HWeight, that can be employed for the selection of
services. OPT I M_PRO and OPT I M_HWeight are iterative algorithms that try
to improve the found solution with each iteration step. The selection algorithms
are described in Chapter 7.

60 The BPRules Language

We assume that a service registry is exposed as a Web service and accessible
via a URL (Listing 5.3: line 13). The methodClass attribute (line 11) is used to
specify which of the selection algorithms is employed. In the listing example, the
OPT I M_PRO algorithm is called.

There may be situations when certain services are preferred and it is not desired
to replace them during service selection. In this case, we may declare these
services in BPRules as fix, which means that they will not be searched nor
replaced during the selection procedure.

5. Context-aware Service Selection

BPRules offers another type of service selection, by making a personalized
service selection for clients that have certain context data. Since QoE and QoS
parameters might be in correlation with the context data of the users, a context-
aware service selection would offer the possibility to create a service composition
personalized for its clients. This kind of context-aware service selection is
supported by the < selec t − services − contex t > action. A more detailed
description of this action and how it is handled is presented in Section 8.3.4.

For example, the business analyst desires to create a personalized bookshop pro-
cess for users that live in Germany and work in the medical sector. Therefore, he
needs to define the user category which is characterized by certain context para-
meters (defined as < contex t param = ”name” > value < /contex t >) spe-
cified inside the < categor y > element. He modifies the < selec t − services >
action (from Listing 5.3) into a < selec t−services−contex t > action described
in Listing 5.4. We assume that the context parameters location and profession of
the users are correlated to the assigned ratings. The business analyst specifies
also a constraint for QoE (QoE > 4) and introduces this dimension in the object-
ive function to be maximized. Therefore, the service selection module creates a
context-aware composition for this user category where as Distributor Service a
more specialized service (the MedDistributor Service) is integrated, which offers
a large collection of medical books written in German.

1 <select-services-context methodClass="ALG.OptPRO">
2 <quality-requirements>
3 <!-- qoe > 4, resp < 3; avail > 0.95 ; cost < 0.3 -->
4 <!-- fobj = (qoe + avail) / (resp + 2 * cost) -->
5 </quality-requirements>
6 <list-categories>
7 <category name="usercat">
8 <context param="user-location">Germany</context>
9 <context param="user-profession">medical</context>

10 </category>
11 </list-categories>
12 </select-services-context>

Listing 5.4: Context-aware Service Selection

6. The BPR Management Actions Set

BPRules offers several management actions which we divided into four categor-
ies: actions for controlling the BPEL process, actions that are meant to improve

5.3 BPRules Features 61

the quality of the process behavior, actions which offer information about the
quality behavior, actions for retrieving information from CoFee. Table 5.1 lists the
management actions from the four categories offered by BPRules.

a) Actions for Controlling the BPEL Process

The actions from this category offer support for controlling the process and its
instances. With the < deplo y > action, the process is installed from the BPR
repository on the BPEL engine, being ready to receive requests for processing.
The inverse action is the < undeplo y > action. It uninstalls the process
from the BPEL engine. However, the process description remains in the BPR
repository.

Actions like < star t >, < stop >, < deplo y >, < selec t − services >, etc.
trigger a change in the process state and the process goes into the managed
state. When the process is in the managed state, other actions that cause
state changes may be triggered only sequentially in order to avoid process
inconsistencies.

Several actions are provided to control process instances, offering the possib-
ility to stop instances (with < stop− instances >), to resume the stopped
instances (with < resume − instances >) and to cancel instances (with
< cancel − instances >).

b) Actions for Improving the Quality of the Process Behavior

The actions from this category are meant to improve the quality of the process
behavior by replacing one or more services with other services that provide
better quality properties. The < replace − ws > action allows a manual
service replacement where the current service is replaced with the desired
one, which WSDL is available at a certain url. This action assumes that the
business analyst exactly knows which concrete service he wants to integrate
into the BPEL process. While the < replace − ws > action is intended
for a manual service replacement controlled by the business analyst, the
actions < selec t− services > and < selec t− services− contex t > target an
automatic service replacement controlled by the BPR framework.

If significant deviations from the desired quality behavior of the process are
measured or if several services within a section become unavailable, it may
be required to modify the structure of the affected section or of the entire
process. For example, it could be useful to fall back to a simplified version of
the BPEL process only providing the essential parts of the intended workflow.
This kind of structural adaptation is supported by the < update > action,
which overwrites the process description file with another file from a given
path.

We may activate or deactivate rule sets at runtime. Active rule sets are those
rule sets which are executed, while inactive rule sets are temporarily ignored.
We may use the various rule sets for different alarm states analogously to a
traffic light system. For example, if the process behaves well, then the active
rules may only inform the interested parties about the behavior. In contrast,
if the QP of the process gets worse another rule set could be activated with

62 The BPRules Language

rules that have more impact on the process, e.g. replacing one or several
services. In this way we may adapt the rule sets dynamically at runtime,
according to the behavior of the process.

Actions for controlling the BPEL process
deploy/undeploy Deploys/undeploys the process identified by a certain process id or

given by the specified path. The process is installed/uninstalled on
the BPEL engine.

stop Stops the process identified by the process id and changes its state. All
the process instances of this process are stopped. All the requests that
are received while the process is stopped are stored into a request-
queue.

start Starts the process identified by the process id. It changes the state of
the process into ’ready’, meaning that the process is able to receive
requests. New process instances are started for the requests from the
request-queue if the waiting time in the queue didn’t exceed the given
threshold (timeout).

stop-instances Stops a set of process instances that started within a given time
interval.

resume-
instances

Resumes a set of process instances that were previously stopped.

cancel-
instances

Cancels a set of process instances that are currently running. It
removes the requests from the request-queue. The clients receive an
exception after cancelling the instances.

Actions for improving the quality of the process behavior
update Updates the BPEL process description (or section) from the specified

path.
replace-ws Replaces the Web service that realizes a given abstract service with a

new concrete service (or replaces an entire list of services). The URL of
the WSDL of the new concrete service has to be specified.

select-services Selects services with better quality properties from the specified ser-
vice registries and replaces the Web services for the specified section
or abstract service, or for the entire process.

select-services-
context

Creates context-aware service compositions by selecting appropriate
services for the specified user categories.

setactive-
ruleset

Activates or deactivates the rule set identified by an ID.

Actions for retrieving information about the process behavior
report Makes a report about all the monitored artifacts: the configurations of

the BPEL process, the average QoS and QoE values measured for the
configurations, the list of exceptions and events encountered during a
given time period.

report-rules Makes a report with the rules that were triggered for a process during
a given time period. The report can be done for all rule sets or only
for the specified rule sets.

report-error Makes a report with the exceptions and errors that were encountered
during process execution for a given time period.

5.3 BPRules Features 63

throw-event Generates an event and informs the subscribers. Different kinds of
events may be triggered, e.g. when a rule is executed, when a rule
set is activated or a custom event.

throw-
exception

Generates an exception and informs the subscribers (e.g. further
propagation of a BPEL exception).

custom action An interested party may implement a customized action for its own
specific needs. Therefore the path to the class file that implements the
corresponding interface from the BPR framework has to be provided.

Actions for retrieving information from CoFee
report-usercat Makes a report that contains a list of the context-aware processes

that were created for a process. It contains the number of requests
delegated to each of the context-aware processes.

report-
feedbacks

Makes a report with the feedbacks (including QoS and QoE values)
that were collected by CoFee for the entire BPEL process and for all
contained Web services during a given time period.

Table 5.1: Management Actions Set

c) Actions for Retrieving Information about the Process Behavior

With BPRules, interested parties may be informed about the process behavior
during its execution, using the< throw−event > or< throw−exception>
actions. BPRules offers different reports for analyzing the process behavior
during a longer period of time. Several types of reports are supported
by BPRules: a regular report (< repor t >), a report about the rules (<
repor t − rules >), a report about malfunctions (< repor t − er ror >), a
report about the feedbacks (< repor t − f eed backs >) and a report about
the personalized processes created for different user categories (< repor t −
usercat >). The regular report contains the configurations (the pairs of
abstract/ concrete services) with the average QoS and QoE values and all
the monitored artifacts (events and exceptions). The rules report includes an
overview of the triggered rules, and the error report contains everything that
went wrong (e.g. exceptions, errors). The reports contain information about
the process or the rules executed during a specific period of time (specified
as < period > inside the < repor t > element). All these reports deliver a
good picture of the happenings to the business analyst. In the rules report the
business analyst may see which rules were executed and this helps him for
future rule specifications.

d) Actions for Retrieving Information from CoFee

CoFee, as a module of the BPR framework, provides valuable information
about how users perceived the services and what has to be expected for the
future. Therefore, BPRules provides the two actions < repor t − usercat >
and < repor t − f eed back > for retrieving information from CoFee. These
actions may be used by the business analyst or other interested persons that
desire to be informed of the feedbacks that the services received. By creating
a report with the < repor t − usercat > action for a process, the business

64 The BPRules Language

analyst receives a list with the number of requests that were delegated to
each of the context-aware processes that were created for that process. This
information helps to find out if the context-aware processes are specified
appropriately. For example, if a context-aware process receives only few
requests, this process could be removed from the BPR repository.

The < repor t− f eed backs > action lists all the feedbacks (the QoS and QoE
values) that were retrieved by CoFee for a process or service during a period
of time. If the feedbacks are queried for a process then the feedbacks are
listed for each service of the process and for all the process configurations
in the specified period of time. The average QoE is also listed and it reflects
whether the users are satisfied or not with the process.

The actions described in Table 5.1 are atomic actions. Usually, for managing
the process properly, several actions need to be triggered. For this purpose,
the atomic actions can be composed to so-called complex actions.

7. Advanced Control and Decision Support for the Business Analyst

In the BPR framework, the business analyst is responsible for supervising the
process behavior and ensuring its proper execution. The BPRules language was
created for the business analyst and other persons with similar intentions to
support them in accomplishing their goals. The business analyst is in charge
of specifying the BPR rules. It is required that the analyst holds a fully control
over the process and that he is always able to intervene in the process execution
whenever it is necessary. For this purpose, the BPR framework offers adequate
support for monitoring and managing the QoS and QoE of the business process.
BPRules offers a fine balance between automatic and manual control.

The different kind of reports supported by BPRules provide valuable information
for the business analyst about how the process behaved (e.g. with < repor t >,
< repor t − er ror >) and also show how users have perceived the process
and the integrated services (with < repor t − f eed backs >). The rules report
(with < repor t − rules >) gives an overview of the triggered rules and shows
whether there are rules that were not triggered at all and which may be removed
from the BPR document. The business analyst may find out whether he has
properly chosen the user categories by looking at the report generated with the
< repor t − usercat > action.

The business analyst is able to specify his own complex actions which may
be reused. The possibilities of composing actions, defining custom actions, or
applying manual actions (see the < replace − ws >, < f i x > declarations)
deliver an advanced control and decision support for the business analyst.

5.4 Summary and Discussion

QoS and QoE concerns are an important topic for service compositions because the
malfunction of one single service inside the composition may spoil the entire behavior
of the process. The business analyst is supposed to ensure the well-functioning of the

5.4 Summary and Discussion 65

service composition by specifying proper BPR rules. The main part of a BPR rule is the
QP condition upon which the actions are triggered. Thus, specifying adequate reactions
to possible quality deviations is an important task for a proper process execution. In
order to specify rules (conditions and actions) in the right way, it is helpful to analyze
past process executions. These executions provide good indications about measured
QoS and QoE values and possible deviations. The BPRules language offers a number
of reports (e.g. < repor t >,< repor t − rules >, < repor t − f eed backs >) that may
be used by the business analyst to analyze the behavior of the process. Furthermore,
BPRules provides several features which are essential for an advanced QP monitoring
and management of service compositions, as e.g. section control for monitoring
the process within sections, instance-set-handling for querying the QP for a set of
process instances, service selection for selecting appropriate services for the process
with different algorithms, context-aware service selection for creating personalized
processes for different user categories characterized by certain context properties.

In the BPR framework, the business analyst has to ensure that the specified rules are
not contradictory. One possibility to deal with contradictory rules is to automatically
resolve the conflicts. The authors of [96] propose in their architecture a Policy Conflict
Resolution module based on business metrics.

66 The BPRules Language

6 QoS Monitoring and Aggregation

In this chapter, we describe the challenges that QoS monitoring implies and show
our solutions to these challenges. We propose the QoS measurement algorithm for
computing the QoS of a process instance. It can be applied for running and for
completed instances. Further, we show how the QoS can be estimated for a process
with the QoS estimation algorithm that is based on the approach of Canfora et al. [39].
We compare the measurement algorithm and the estimation algorithm, highlight the
differences and discuss their usage. The proposed monitoring approach was published
in [47].

6.1 Requirements

A Service-Oriented Architecture is a dynamic environment where services and respect-
ively partners are continuously changing. We can describe the interaction between
these services with BPEL, but BPEL does not include extensions allowing us to monitor
or to ensure the performance of the services or the process. A SOA promotes the
ability for flexibility and change, but this is not possible for the assessment of QoS
related issues. At any time, new QoS dimensions like cost and throughput have to
be introduced, measured and aggregated in order to allow a suitable evaluation for
performance. We designed a flexible approach, where QoS parameters can easily be
considered and aggregated with minimum effort on manual administration and no
effort spent by the business analyst. In this chapter, we tackle the following challenges:

Automated Deployment: A business process includes a set of activities in order to
invoke Web services, and each activity performs at a certain QoS. In several research
studies (e.g. [26], [25]), the BPEL process description is interweaved with comments
and extra activities are inserted into the BPEL process. These artifacts are used to
define the required QoS parameters, its monitoring sources and their aggregation
functions. Thus, every time the process description changes its behavior or partner
services, the process architect has to adjust the whole QoS assessment artifacts. Our
goal is not to alter the process description with artifacts for process monitoring.

Aggregation Functions and QoS Parameters: The measurement of QoS for single
Web services is different from the QoS computation of business processes, since
processes additionally consist of different activities such as if-conditions, loops and
parallel invocations of Web services. This is why the measurement of QoS in business
processes needs to be treated differently as for Web services. The QoS value of a
business process is computed out of the QoS values of the building blocks inside the
process.

Usually, the QoS requirements and implicitly the corresponding QoS measurements
for business processes vary over time. Thus, the QoS monitoring and measurement

67

needs to be done as flexible as possible. For example, the business analyst must ensure
a certain response time for his business process. If, for some reason, the response time
of the process is not the expected one, the business analyst is in charge of analyzing
the bad performance of the process. As the response time may be compromised by the
throughput, the analyst may also want to introduce the new QoS dimension throughput
in the monitoring. In our approach, we introduce a generic QoS assessment algorithm
where we must only provide a set of aggregation functions in order to make it work
with newly introduced QoS parameters.

Process and Section Measurement: The business analyst should be informed about
what sections of the business process may cause problems in the behavior of the entire
process. Therefore, performing measurements and monitoring in a section is important
and we need to specify QoS requirements and manage the process within sections.

6.2 Service Composition Representation

In our framework, the service compositions are represented as trees. Before the
monitoring phase, the BPEL description files are translated into BPEL trees. The BPEL
tree structure is necessary for the QoS monitoring and also for the service selection.

The BPEL activities are represented as tree nodes and the tree structure is built from
the BPEL XML file structure. The BPEL trees contain the types of elements which
are relevant for the execution of the BPEL process, but do not contain nodes for
partnerLinks, for instance.

In our model, we divide all BPEL elements relevant in the context of QoS computation
into two classes:

1. the set of simple element types S = {receive , reply, invoke, assign, throw,
wait, . . .} and

2. the set of complex element types C which are used for structuring the control
flow, as e.g. sequence, flow, if, while, and foreach.

Thus, the BPEL activity types are members of the joint set T = S∪C . The instances of a
simple element contribute directly to the quality of service of the overall process. They
do not contain any child elements from T . Complex elements, on the other hand, may
contain arbitrary other complex or simple elements. They specify how these elements
are to be executed and their QoS values can be computed by aggregating the QoS of
their children.

6.3 QoS Aggregation

In our framework, we measure the QoS for the atomic services and also for the service
composition. The QoS values of the service composition (or section) are computed out
of the QoS values of the services and activities that are part of the composition. In
the BPR framework, we use two kinds of aggregation algorithms: our measurement
algorithm for the QoS assessment of the process and the estimation algorithm as

68 QoS Monitoring and Aggregation

proposed by [39] for the QoS estimation. Our measurement algorithm aggregates the
QoS for each process instance, considering the instance QoS for the atomic services.
In comparison, the estimation algorithm considers the average QoS behavior of the
atomic services that was monitored during a longer period of time.

The two aggregation algorithms are applied for different purposes. The measurement
algorithm aggregates the measured QoS properties of past executions or currently
running process executions. It calculates the QoS of the process / or section that was
measured during runtime.

In comparison, the estimation algorithm gives an estimation of future QoS behavior of
the process, if potential service candidates are chosen. The algorithm is based on the
probabilities for the different execution paths of the process. Here, the probabilities
are provided by the process designer or derived by monitoring of past executions.
Naturally, for the service selection problem the estimation algorithm has to be used.

6.4 The QoS Measurement Algorithm

The QoS measurement algorithm computes the QoS of a process instance and uses
a BPEL tree as described in Section 6.2. Each node qnode of the tree has the same
structure and contains:

1. the type qnode.elem ∈ T of the element representing the node,

2. a unique identifier qnode.id1 ∈ I1 of the element in the tree,

3. the list with m quality dimensions qnode.qDimensions ⊆Q which are monitored
or aggregated for this node,

4. the map qnode.Value holding a value qnode.Value
�

q
�

for each of the quality
dimensions q ∈ qnode.qDimensions monitored for the element itself,

5. a map qnode.ChildrenValues ∈ D∗×n which can hold the corresponding QoS
values of the n children of the node; we need this map due to the propagation
nature of our algorithm, and

6. a reference qnode.parent to the parent node of qnode (or null if qnode is the
root node of the tree).

Both qnode.ChildrenValues and qnode.Value are initially empty and remain empty
in the BPEL tree. For each instance of the business process, our monitoring system
creates a new copy of the BPEL tree. In these copies, qnode.ChildrenValues and
qnode.Value are filled in by the system. The result of the quality measurement of
a process instance is then a tree which contains the QoS values for each element
of the business process in the field qnode.Value of the corresponding node qnode.
We furthermore define the function getQNode (t ree, id1) which returns the node
qnode ∈ t ree with qnode.id1= id1 (or null if such a node does not exist in t ree).

We will call a node qnode a simple node if the element of the node has a simple
element type, i.e. qnode.elem ∈ S. Analogously, we call a node qnode a complex node
if the element of the node has a complex element type, i.e. qnode.elem ∈ C (see the

6.4 The QoS Measurement Algorithm 69

definitions of simple and complex element types in Section 6.2). Since simple elements
cannot contain other elements, simple nodes are the leaves of the process trees.

For each element elem in a BPEL process specification, a unique identifier elem.id1 ∈
I1, I1 ⊂ N will be assigned in the initialization phase of our system. The identifiers
id1 are selected so that they enumerate the nodes in the BPEL tree in the order as
they would be visited in a depth-first search. We furthermore assume that each single
execution of elem has an identifier id2 ∈ I2, I2 ⊂ N unique in the current process
instance. At begin of the execution of a process instance id2 is set to 1. Each time a
node is reached in the execution of a process instance, the tuple (id1, id2) is stored for
that process instance and id2 is increased by one. Please note that at this point the
QoS value for the node is not known; it is available when the execution of the node
has been finished.

The quality dimensions q which can be measured in our system, are subsumed in
the set Q. One example for such a set Q could be

�

responsetime , availability,
cost, throughput

	

. For each quality dimension q, there exists a domain dq which
defines the set of possible values of this QoS feature. For q = cost ∈Q, dcost would
be
�

x |x ∈ R+
	

, for instance. We define the domain D as the union of all the domains
dq. The computation of the actual QoS values in our model is based on two functions:

1. fvalue : Q × I2 7→ D which determines the QoS value of a single invocation
of a simple element. It represents the instance QoS (previously defined in
Section 2.5.1). When measuring, for example, availability, the QoS value is
either 0 or 1, depending if the activity was detected as available or not.

2. fagg : Q × C × D∗ 7→ D aggregating all QoS values of the elements nested
inside a complex element (where D∗ is the set of spaces of vectors of arbitrary
dimensionalities over the quality domains).

Whereas fvalue(cost, 9) returns the single value from dcost which resulted from the in-
vocation of a simple element with id2= 9 ∈ I2, we could define fagg

�

cost,sequence, X
�

as
∑n

i=1 ~x i, where X =
�

x1, x2, . . . , xn
�

is a vector in d∗cost and n would be the num-
ber of elements in this vector. For X = (0.01, 0.03,0.08), fagg

�

cost,sequence, X
�

evaluates to 0.12, for instance.

In Table 6.1, a set of such aggregation functions is listed for representative quality
dimensions. We adapted the aggregation formulas from [39] to our approach. Since
[39] considers a stochastic model and we perform aggregations on running or com-
pleted instances, we take into account only the actually executed path of a switch and
have available the quality values of each of the iterations of a loop. As can be seen
in the table, the aggregation functions for the dimensions response time and cost are
additive while for reliability and availability, the functions are multiplicative.

In the following, we present the generic algorithm for the QoS computation of the
business process and its sections. We therefore assume that the values of the fvalue-
function for the simple elements within the process are known. The generic algorithm
computes the QoS value of the entire business process and/or its sections. The QoS
aggregation of the BPEL process is done in several steps and there are two possible
ways for QoS aggregation: A) aggregation on stored monitored data and B) live
aggregation. Our algorithm is applicable in both scenarios, QoS aggregation during
runtime and also post-processing after the processes have finished their execution.

70 QoS Monitoring and Aggregation

QoS Dimension sequence flow loop switch

response time(r)
n
∑

i=1
ri max

i∈1..n

�

ri
	

n
∑

i=1
ri ri

cost (c)
n
∑

i=1
ci

n
∑

i=1
ci

n
∑

i=1
ci ci

availability (a)
n
∏

i=1
ai

n
∏

i=1
ai

n
∏

i=1
ai ai

reliability (l)
n
∏

i=1
li

n
∏

i=1
li

n
∏

i=1
li li

Table 6.1: Aggregation Functions for the QoS Measurement

Monitoring a Running BPEL Process

While the business process is running, our monitoring system records a list execution
of records execElem, each holding

1. the unique identifier execElem.id1 ∈ I1 of the element which was invoked. This
identifier is equal to the identifier of the sensor that was attached to this activity.

2. the unique identifier execElem.id2 ∈ I2 of the invocation itself.

3. the measured quality of service values execElem.Value which provide the results
of the fvalue-function.
�

execElem.Value
�

q
�

= fvalue
�

q, execElem.id2
�

∀q ∈Q
�

for a single invocation of an element in the BPEL tree. While the process is running,
whenever an activity corresponding to a node in the process tree is finished, a new
execElem record is added to the execution list. Whereas the identifier id2 corresponds
to the order, in which the nodes of the BPEL tree have been visited while executing the
process instance, the index of the execution list indicates the order in which processing
of the nodes of the BPEL tree has been completed.

The generic algorithm provides as a result the aggregated values for m QoS dimensions
of an execution path of a BPEL tree or its sections. As input, the algorithm expects
the execution list execution and a copy t ree of the BPEL tree. The generic algorithm
listed below can be applied for any type of QoS dimension if suitable aggregation
functions are provided.

The QoS values of the simple elements are determined considering the data obtained
by monitoring from the service proxies or the sensors. These QoS values of the simple
elements are updated with every execution of the activity.

The QoS values qnode.Value of a complex node qnode are computed from the values
of its direct children in the tree. By applying the aggregation functions fagg on the
QoS values of the children nodes, we obtain the QoS values of qnode. The values of
simple nodes are known from the execElem-records and given by the value of the
fvalue-function. The algorithm (see Figure 6.1) starts with traversing the list execution
of executed activities. Each record execElem ∈ execution stands for a completed
activity. Since the QoS values of an activity can be computed in the moment the
activity is finished, each record allows us to derive a set of QoS values. In the case of an

6.4 The QoS Measurement Algorithm 71

1: Procedure aggregateQoS(execution, tree)
2: //computes the QoS of a process instance from the QoS of the simple
//elements

3: begin
4: // analyze the complete execution list
6: for i ←1 to execution.length do
7: node = getQNode(tree, execution[i].id1)
8: foreach q in node.qDimensions do
9: if node.elem in C then
10: // the node is a complex node
11: node.Value(q) ← fagg(q, node.elem, node.ChildrenValues(q))
12: else
13: // the node is a simple node and fvalue is

//equivalent to execElem.Value
14: node.Value(q) ← fvalue(q, execution[i].id2)
15: endif
16: //propagate this QoS value of this node to the parent node
17: addQToChildrenValuesOfParent(node.parent,q,node.Value(q))
18: endforeach
19: endfor
20: end

Algorithm

Figure 6.1: QoS Measurement Algorithm

execElem which denotes completion of an activity belonging to a simple node, the QoS
values are the data directly stored in execElem corresponding to the fvalue function. If
execElem belongs to a complex node, its occurrence means that the QoS of this node
can be aggregated from its child nodes since an activity can only terminate after all
of its children have terminated. In both cases, the new QoS values are propagated to
the parent node. In the final step, the root element is the last one that is processed.
Its QoS values represent also the QoS values of the entire process computed for an
instance.

Because of the propagation nature, the steps 3 to 9 of the algorithm can also be
executed online while the process is running. In other words, the quality of service of
the process tree can be built on the fly. If this is done, the algorithm is particularly useful
for components which supervise or enforce policies such as Service Level Agreements
(SLA) or for management components like our BPR framework for business process
management.

6.4.1 Example

Figure 6.2 represents an example of a BPEL process execution. It is an example of QoS
aggregation for response time. On the left side of the figure, the monitored values are
represented. These are the ids of the executed activities, in the order of execution, and
the monitored value of response time (which represent fvalue) for the simple elements
(e.g.: receive, reply, assign, invoke). These represent the input data for the QoS
aggregation algorithm.

The while element (id1=3) performs two iterations. The activities inside the while
have two values except for the if element (id1=5). In the first iteration, the first

72 QoS Monitoring and Aggregation

sequence 1

receive 2 while 3 reply 11

if 5

invoke 6 invoke 7

flow 8

sequence 4

2X

2, 1 1, 33 5

execution

id1 id2 f
2 2 2
6 6 3
5 5
9 8 2

10 9 1
8 7
4 4
7 12 5
5 11
9 14 1

10 15 3
8 13
4 10
3 3

11 16 3
1 1

invoke 9 invoke 10

1. max(2,1) =2

sum(2,13,3) = 18

sum(5,8) = 13

1. sum(3,2) = 5

1. sum(3) = 3
2. sum(5) = 5

2. sum(5,3) = 8

2. max(1,3) =3

Legend

id1: identifier of the element
id2: execution identifier

element id1
1. f (x1,x2) first while-iteration
2. f (x3,x4) second while-iteration

32

value

agg

agg

fvalue

Figure 6.2: Response Time Aggregation

branch of the if-element is executed. The computation starts with the receive
element, id1=2, fvalue(responsetime,2)=2, which is the first element that is completed.
Then this value is added to the ChildrenValues map of the parent node (sequence, id1
= 1). The process is continued with every completed element in the execution list.
Finally, the last completed element is sequence with id1 = 1, which is also the root
of the tree. By applying the aggregation function on the values of the children (the
ChildrenValues map) of the root node (fag g(responsetime, sequence, X) = 2+13+3=18),
we determine the aggregation value of the response time for the entire tree.

6.4.2 QoS of the Service Composition

While the process instance QoS represents the measured QoS for a single process
instance, it is also desirable to measure the process QoS for a longer period of time I.
In this case, the process QoS is computed as the average value of all process instances
that were completed in the time interval I. Analogously, we compute the section QoS.

In case a process instance (or activity) terminated with an error, this instance is
considered only in the computation of availability and reliability. For the computation of
response time and throughput of an instance (respectively section) only the successful
instances (respectively sections), where no errors occurred, are considered.

6.4 The QoS Measurement Algorithm 73

6.5 The QoS Estimation Algorithm

The estimation algorithm returns the estimated QoS values for the process based on
the probability that certain execution paths are executed. We developed the estimation
algorithm based on the approach proposed by Canfora [39]. In their work, Canfora
et al. describe some aggregation functions for the computation of QoS for service
compositions.

In our framework, the estimation algorithm can be triggered with different QoS values
for the atomic services. The following values are possible:

• the QoS values promised by the service provider, which are retrieved from the
service registry

• the QoS values monitored in the BPR framework

• the QoS values predicted by the CoFee Predictor

If the estimation is computed with the promised QoS values for the atomic services, the
accuracy of the estimated QoS relies on the preciseness of the QoS values advertised by
the service provider. This means, that if the service provider advertises QoS values that
are close to the runtime behavior, the algorithm makes a reliable estimation. There is
still the risk that the service provider promises QoS values which he can not hold but
only for attracting clients. However, if the monitored or predicted QoS values from
CoFee are used in the estimation, this means that also the experience of other service
clients is taken into account. This has the advantage that the BPEL process provider
will profit from the experience of other service clients. The disadvantage is that only
services may be considered which are registered with our CoFee Predictor.

The estimation algorithm uses the BPEL tree described in Section 6.2. After being
created, the BPEL tree has to be initialized with certain probabilities p for conditional
structures and the estimated iterations k for the loops. These probabilities and iteration
numbers are further used in the aggregation functions for computing the QoS of
complex activities. The QoS values (q) of a complex activity (e.g. sequence, flow, etc.)
are computed from the QoS values qi of the activities which are nested inside it. For
the simple activities we may consider the promised, monitored or predicted QoS. The
estimation algorithm traverses the tree from the bottom to the top, loads the QoS of
the simple nodes and computes the QoS for every complex node in the tree. In the
final step, the QoS values of the root node are computed which represent the estimated
QoS values of the entire process.

The QoS value for a complex node (with children) is computed using the aggregation
functions shown in Table 6.2 (taken from [39]). The table is not complete but it
provides examples for the structured activities sequence, switch, flow and loop. The
probability pi appears for conditional activities like switch and corresponds to the

probability for executing the branch i of the activity and
n
∑

i=1
pi = 1. For example,

when computing the response time of a switch activity, this is the sum of all the
response times of the switch branches multiplied with the probability of executing the
corresponding branch. Nodes representing a loop (e.g. repeatUntil, while) receive an
iteration number k that represents the average number of iterations monitored for that

74 QoS Monitoring and Aggregation

loop. For deriving the execution probabilities of branches and the average iteration
numbers for loops, the estimation algorithm considers instances executed in a certain
period of time.

QoS Dimension sequence flow loop switch

response time(r)
n
∑

i=1
ri max

i∈1..n

�

ri
	

k · r
n
∑

i=1
pi · ri

cost (c)
n
∑

i=1
ci

n
∑

i=1
ci k · c

n
∑

i=1
pi · ci

availability (a)
n
∏

i=1
ai

n
∏

i=1
ai ak

n
∑

i=1
pi · ai

reliability (l)
n
∏

i=1
li

n
∏

i=1
li lk

n
∑

i=1
pi · li

Table 6.2: Aggregation Functions from [39]

6.6 Measurement Algorithm vs. Estimation Algorithm

In this section, we compare the measurement algorithm and the estimation algorithm
with each other and highlight the differences and similarities between them. Since
the two aggregation algorithms have different goals, one for QoS assessment and the
other for QoS estimation, we used them for different purposes in our framework. The
measurement algorithm is used for the QoS assessment for the current service bindings
of the process. In contrast, the estimation algorithm can be used to estimate the QoS
of the process if other potential services would be selected. Therefore, particularly the
estimation algorithm is also used by our service selection algorithms.

For the QoS values of the atomic services and simple nodes the two algorithms consider
different values. The measurement algorithm uses the instance QoS for the simple
nodes and the current service bindings and computes the QoS on each of the process
instances. The estimation algorithm can be triggered with different values for the
atomic services: the monitored, the promised or the predicted QoS. With the measure-
ment algorithm, the QoS values of the atomic services and simple nodes may receive
for availability and reliability either the values 0 or 1, for a single execution. Using the
estimation algorithm, this QoS value would be a value in the interval between 0 and 1.

While the measurement algorithm determines the QoS behavior of each concrete
process instance, the estimation algorithm considers the "average" QoS behavior of the
process. Thus, the measurement algorithm computes the QoS value for a single execu-
tion path of the process, and the estimation algorithm computes the QoS considering
several execution paths with certain probabilities. The measurement algorithm uses
the execution list containing the order of execution for the activities. In contrast, the
estimation algorithm considers the probabilities of executing certain branches within a
conditional structure and the average value of the number of iterations for loops. The
assessed QoS values of the process instances computed by the measurement algorithm
are further used to compute the average QoS of the process or section for the required
time interval. In comparison, the estimation algorithm considers the average QoS

6.6 Measurement Algorithm vs. Estimation Algorithm 75

values on the simple nodes (atomic services), monitored during a time interval. The
measurement algorithm may be applied for running and terminated instances. Thus, it
may compute the QoS of a section while the process is still running.

6.7 Automated Deployment

One important task of our framework is the automated monitoring of BPEL processes.
For the monitoring purpose, sensors need to be associated to the BPEL process previous
to the deployment. The monitoring task is supported by the utilization of sensors
which is a feature offered by the Oracle BPEL Process Manager engine, where our
business processes are deployed. A sensor is associated to a BPEL activity and is fired
at the beginning and end of an activity and on the occurrence of certain events.

Before process deployment, we dynamically associate sensors to each activity in the
process. The sensors are declared apart from the BPEL process description inside
separate XML files. We automatically generate these sensor files from the BPEL
description. They are then interpreted by the Oracle BPEL engine for firing the sensors.
The sensors provide valuable information, such as the timestamp when the associated
activity was activated, completed or faulted. The BPEL process and its Web services
may be monitored by different parties and the monitored data is stored into different
databases.

Even if our generic algorithm takes advantage of the sensors offered by the Oracle
BPEL Process Manager, it could also run with another BPEL engine as well. If the
BPEL engine used does not support sensors similar to those the Oracle engine provides,
these software components should be additionally implemented. The premise that
our algorithm runs on another BPEL engine is that its input data is delivered properly.
The direct impact of sensors is on the creation of the execution list, which contains the
identifiers of the activities in the order that they were triggered.

The main component of our assessment framework is the QoS Aggregator which
performs the aggregation of the business process and its sections. Figure 6.3 illustrates
the QoS aggregator component as well as its input and output data.

The flexibility of our monitoring framework is sustained by the use of plug-ins, which
are software components. The advantage of using plug-ins is that they may be easily
added. As the aggregation and value functions (fag g and fvalue) are subject to modi-
fications, we will use for each aggregation and value functions plug-ins. Plug-ins are
reusable components. The fag g function plug-ins can be reused over several instances
since they only depend on the type of BPEL activities. The advantage of the fvalue
function plug-ins is that they can retrieve monitoring data from other sources as well,
regardless where the monitoring actually takes place. An example for this is a situ-
ation where Web services inside the BPEL process are monitored by the Web service
providers themselves and the monitored data are stored into a database different from
the database where the data from the monitored BPEL process are stored.

76 QoS Monitoring and Aggregation

faggregation
Plugins

BPEL Tree

QoS Aggregator QoS Result

Monitored Data

Section

fvalue
Plugins

Execution path

Sensor Data External
Source

Figure 6.3: The QoS Aggregator Component

6.8 Discussion

The measurement algorithm and the estimation algorithm are applicable for numeric
QoS dimensions. The QoS of the service composition is obtained through aggregation,
by applying aggregation functions. If new QoS dimensions need to be monitored,
then the corresponding aggregation functions have to be provided. Most of the BPEL
activities can be mapped to the control structures provided in Table 6.2. If some other
activities need to be considered, these need to be checked whether they should be
treated as simple or as complex elements. The simple elements should be monitored
by proxies or sensors and the QoS should be computed. Depending on the desired
purpose, the QoS of the complex elements can be computed as a QoS assessment
using the QoS measurement algorithm or as a QoS estimation using the estimation
algorithm.

An improvement to our monitoring would be to increase or decrease the monitoring
at runtime as it was proposed by [25]. Our monitoring approach is flexible when
new QoS dimensions need to be considered. However, we perform the monitoring
continuously, for every activity and section of the composition, independently whether
the process behaves well or not. It would also be possible to perform a detailed
monitoring only when the process behavior gets worse. This would have the advantage
of reducing the overhead that is produced by monitoring. In our framework, we could
increase the monitoring when the rule set changes, for example, when a red rule set is
activated.

6.8 Discussion 77

78 QoS Monitoring and Aggregation

7 Web Service Selection

In this chapter, we present three heuristic algorithms, OPTIM_S, OPTIM_HWeight and
OPTIM_PRO, for the selection of services in service orchestrations. The OPTIM_HWeight
algorithm is an extension of OPTIM_S and uses a special heuristic function. The
OPTIM_PRO algorithm considers priority factors for performing the service search. In
Chapter 10, we evaluate and compare the algorithms OPTIM_HWeight and OPTIM_PRO
with each other and also with the genetic algorithm proposed by [39], which we call
GA_CAN. Our experiments revealed that our OPTIM_PRO and OPTIM_HWeight al-
gorithms need less computation time than the genetic algorithm GA_CAN and reach
optimization values at least as good as GA_CAN. Our selection algorithms were pub-
lished in [49].

7.1 Requirements

The QoS of the entire process is dependent on the QoS of the services that build
up the service composition. Finding the optimal solution for a service composition
means selecting those services that satisfy the QoS requirements, including the QoS
constraints, and optimizing an objective function for the entire orchestration. Selecting
the right concrete services for the composition is known as the service selection problem
and is a crucial issue for the successful execution of the process. Assuming that we have
n abstract services and each abstract service may have m concrete service realizations,
we get a total of mn possible combinations. The selection problem is known to be
NP-hard [22], but the selection task needs to be performed in reasonable time. This
problem has received much attention from the research community [110, 39, 31].

7.2 Service Selection

The goal of the service selection algorithms is to select exactly one concrete service
for an abstract service. Each abstract service from the composition will be bound to
the concrete service that was selected by the service selection algorithms. As shown in
Section 5.3, the request for service selection can be specified in the BPR rules. Since
several types of service selection may be requested, these are all supported by the
service selection module. The selection algorithms may be triggered on the promised
QoS values or on monitored or predicted QoS and QoE values. When the promised QoS
values are requested, they are obtained from the service registry. The predicted QoS
and QoE values are retrieved from the CoFee module, which we present in more detail
in Chapter 8. These QoS and QoE values of the concrete services are the inputs for the

79

selection algorithms. The selection algorithms perform in the same way independently
of the QoS types.

We define the set Sa that contains the abstract services, the set Sc containing the
concrete services, and the set QD of QoS dimensions. The set V represents the set of
service variants, meaning the possible combinations of service candidates. The vector
Q = (a, l, r, c) ∈ R4 contains the QoS values of the QoS dimensions availability (a),
reliability (l), response time (r), and cost (c) computed for the service variants v ⊆ V .
As an example, we consider the following QoS requirements for the orchestration:

fob j(Q) =
k1 · a+ k2 · l

k3 · r + k4 · c
(7.1)

maximize fob j(Q) (7.2)

a > b1, l > b2, r < b3, c < b4, where bi ∈ R (7.3)

The factors ki , i = 1 . . . 4, represent the weights for the q ∈QD variables depending on
the user’s preferences, and the bi represent the bounds for the q variables. This example
shows that within our approach we address also non-linear objective functions.

7.2.1 Tree Representing the BPEL Process

As input for our service selection algorithms we create a tree out of the BPEL description
file. The example in Figure 7.1 only serves to illustrate how our algorithms find a
selection for a composition with four abstract services SA, SB, SC , and SD which can be
realized by different concrete services. It does not show a realistic BPEL tree as this
would be too complex here. The nodes of the BPEL tree contain the activities from
the BPEL description file which are relevant for the execution of the BPEL process.
It does not contain nodes for partnerLinks, for instance. We define S as the set
of simple element types that contains simple BPEL activities like invoke and assign.
These activities are represented as leaves in the tree. The set C of complex element
types contains structured BPEL activities like sequence, while, and switch, which we
represent as inner nodes.

Each node of the tree has the same structure and contains:

• the type node.elem ∈ S ∪ C of the node, the reference node.parent to the parent
node, and the references node.children to the child nodes,

• the set of variants node.V containing combinations of the service candidates (e.g.
V = {[v1 = (S2, S4)], [v2 = (S2, S5)]}),

• the set of QoS dimensions node.QD (e.g. node.QD = {a, l, c, r}),

• the set of QoS values node.vQ of variant v, where v ∈ node.V ,

• the set node.VQ for all the variants v ∈ node.V (e.g. VQ = {[v1(c = 7, r =
3)], [v2(c = 9, r = 4)]}), the objective values node.V Fob j computed for all
the variants v ∈ node.V having the QoS values node.VQ (The objective value
of variant v is vFob j and is equivalent to fob j(vQ), analogously we define the
heuristic value fHeu(vQ)).

80 Web Service Selection

SA

SB SC

SC.V= { S4,S5 }
S4 : a4= 0.92 , r4= 2
S5: a5= 0.95 , r5= 3

Legend

SA,SB,SC,SD Abstract services;
Sj Concrete service for realizing the abstract service
ai availability for service Si ; r response time;
pi probability to execute branch i;
k – iterations for the while;
X.V variants of the activity X;
X.VQ QoS values for the variants in V of activity X

Execution Example

Sequence
E

SWITCH
I

1) Global search OPTIM_S_GLOBAL

v = (S1,S2,S5,S6) Fobj= 0.01979
2) Heuristic search

OPTIM_HWEIGHT
v= (S1,S2,S5,S6) Fobj= 0.01979
OPTIM_PRO
v= (S1,S2,S5,S6) Fobj= 0.01979
3) Local search OPTIM_S_LOCAL

v= (S1,S3,S4,S6) Fobj= 0.01945

SA.V= { S1 }
a1= 0.98
r1= 4

SB.V= { S2,S3 }
S2 : a2= 0.97 , r2= 17
S3: a3= 0.91 , r3= 15

Total variants number |E.V| = 8
E.V= {[v1246 =(S1,S2,S4,S6)],
[v1247 =(S1,S2,S4,S7)],
[v1256 =(S1,S2,S5,S6)],
[v1257 =(S1,S2,S5,S7)],...}

E.VQ={ [v1246 (a=0.7041,r=36)],
[v1247(a=0.7116,r=41)],
[(v1256(a=0.76,r=38.4)],
[(v1257(a=0.768,r=43.4), ... }

E.VFobj= { [v1246(Fobj= 0.01956)],
[v1247(Fobj=0.01736)],
[v1256 (Fobj=0.01979)], ...}

While
W SD

SD.V= { S6,S7 }
S6 : a6= 0.93 , r6= 9
S7: a7= 0.94 , r7= 14

k = 3 iterations

if true
p1 = 0.2

if false
p2 = 0.8

BPEL tree

priority=3 OP_PRO

Sequence
N

Selection algorithms’ results:

QoS Requirements:
fobj = max(a / r)
a > 0.5
r < 75

Figure 7.1: BPEL Tree Example

7.2 Service Selection 81

7.2.2 QoS Aggregation and Constraints Checking

The QoS of the service composition depends on the QoS values of the services that build
up the composition. The QoS value for a complex node (with children) is computed by
the aggregation functions, which are also used with our QoS estimation algorithm (see
Section 6.5) and which have been shown in Table 6.2. These aggregation functions
take into account the execution probabilities of the different branches to calculate the
expected value for the quality dimensions.

Still, the QoS constraints need to be fulfilled for every execution path. Thus, for the
switch activity we have to consider the worst case of the QoS values over all branches of
the switch. Therefore, for constraint checking we use modified aggregation formulas for
the switch activity. Table 7.1 contrasts the original formulas used in our QoS estimation
algorithm (column switch) with the modified formulas for constraint checking (column
switch worst). For all other complex activities the formulas for QoS aggregation are
used for constraint checking unmodified.

Table 7.1: Constraints Checking

QoS Dimension switch switch worst

response time(r)
n
∑

i=1
pi · ri max

i∈1..n

�

ri
	

cost (c)
n
∑

i=1
pi · ci max

i∈1..n

�

ci
	

availability (a)
n
∑

i=1
pi · ai min

i∈1..n

�

ai
	

reliability (l)
n
∑

i=1
pi · li min

i∈1..n

�

li
	

The QoS values of the candidate services are normalized to map the values to the [0, 1]
interval. This is done with the formula adopted from [110]:

q′ =

(

q−qmin

qmax−qmin if qmax − qmin 6= 0;

1 if qmax − qmin = 0.
(7.4)

7.3 Selection Algorithms

7.3.1 OPTIM_S Algorithm

In this section, we introduce the OPTIM_S algorithm which can perform a heuristic
search, a local search, and a global (brute-force) search by only modifying its paramet-
ers. Since our OPTIM_HWeight algorithm is an extension of our OPTIM_S algorithm
we will first describe the OPTIM_S algorithm. We developed the OPTIM_S algorithm
with the intention to allow for easy adaptation to different situations, depending on
the number of services that are available at runtime.

The OPTIM_S algorithm permits different types of search (local, global, and heuristic
search) for the service selection by only changing its parameters. Thus, the algorithm

82 Web Service Selection

Input:
tree- the BPEL tree,
qosConstraints – the QoS constraints,
fobj -objective function,
fHeu heuristic function,
nr_v the maximal number of variants selected for a node

Output:
the selected services

1: Begin
2: //initialize the tree nodes with probabilities (p) and iterations (k)
3: initializeTree(tree)
4: //initialize the set C with complex nodes and Sa with the abstract services
5: init(C,Sa)
6: //traverse the tree from bottom to top
7: repeat
8: node ← treeTraverseBottomToTop(tree)
9: if node.elem in Sa // Sa- is an abstract service, a call to a service
10: node.V ← node.getConcreteServices()
11: else
12: //if node is a complex element with children
13: if node.elem in C
14: children ← node.children
15: childrenV ← { }
16: foreach child in children
17: child.VQ ← aggregateQoS(child.V)
18: //sort the variants with fHeu and cut those that are too many
19: child.V ← sortAndCut(child.V, child.VQ, fHeu, nr_v)
20: childrenV ← childrenV U child.V
21: endforeach
22: node.V ← combine(childrenV)
23: //compute QoS for each variant and
24: //eliminate those that don’t meet QoS
25: foreach v in node.V
26: //aggregate with formulas for constraints check
27: node.vQCons ←aggregateQoSCons(v)
28: if not (checkQoSConstraints(node.v, node.vQCons, qosConstraints))
29: node.V ←node.V \ v
30: endif
31: endforeach
32: endif
33: endif
34: until node.parent = null
35: node.VQ ← aggregateQoS(node.V)
36: node.VFobj ← computeFobj(node.V, node.VQ, fobj)
37: //sort the variants by the value of fobj
38: node.V ← sort(node.V, node.VFobj)
39: return node.V[1]
40: End

Algorithm 1: OPTIM_S(tree, qosConstraints, fobj, nr_v, optional fHeu)

Figure 7.2: OPTIM_S Algorithm

7.3 Selection Algorithms 83

allows for choosing between shorter computation time of the algorithm and better
solution quality. The choice of the search strategy should depend on the number of
abstract services, for which the search has to be performed, and the number of services
available for the abstract services. For example, when the selection targets only few
abstract services (like in a sub-orchestration) a brute-force search is sufficient. In
contrast, when the search is performed for the entire process which contains many
abstract services, a suitable optimization algorithm is needed. The choice of the
selection algorithm may differ between set-up time and runtime. At runtime, a quick
and effective solution is usually preferred to an optimal but slow strategy. All these
requirements have been considered in the development of our selection algorithms.

As inputs, the algorithm receives the BPEL tree, the QoS constraints, the objective
function fob j to be minimized or maximized, the maximum number of selected variants
(nr_v) for a node, and optionally a heuristic function fHeu used within the selection
process. The output of the algorithm will be the service selection fulfilling the QoS
constraints and having the best value found for the objective function.

The basic idea of the algorithm is that, starting with the leafs, for each of the nodes in
the tree (node.V) we select only a subset of the variants of the children of this node
so that the size |node.V | of the set of variants is at most nr_v. For each variant the
QoS is computed by using the aggregation functions in Table 6.2. With this QoS value
(vQ) the heuristic value is computed by applying the heuristic function fHeu(vQ). The
variants are sorted according to this heuristic value and those variants with better
values are selected and propagated to the parent node. An example for a heuristic
function is the objective function itself.

The different search types heuristic, local, and global search can be switched by modi-
fying the parameters of the OPTIM_S algorithm nr_v and fHeu. The global search is
a simple brute force search without any heuristic function. The algorithm is invoked
by calling it with nr_v =∞ (in Java we take Integer.MAX_VALUE). After sorting the
variants on the root node with fob j , the variant node.V [1] will be the global optimum.
This kind of search is suited when the search is performed on a small number of
services. The heuristic search is triggered by calling the algorithm with∞> nr_v ≥ 2
and a given heuristic function. The discovered solution is not necessarily the optimal
solution, but a good heuristic could provide a near-optimal or even an optimal solution.
The local search is triggered by calling the algorithm with nr_v = 1 so that only one
variant is selected at each node. While this is the fastest way, the solution quality is
expected to be worse than from the heuristic search.

We describe the algorithm on the basis of the pseudocode (see Figure 7.2). The service
selection starts with traversing the tree from the bottom to its root node (line 8). We
distinguish between nodes that represent a service call and complex nodes. If the node
represents a call to a service, the variants of the node node.V are initialized with the
concrete services (lines 9-10). The number nr_v represents the maximum number of
variants that are selected for each node. This allows us to restrict the size of the search
space considerably. For each of the non-leaf nodes in the tree, the variants are selected
from the variants of the child nodes (lines 13-21) so that the number of combinations
of the child variants is at most nr_v. The heuristic function helps us to select those
candidates which are likely to perform better in the process (line 19). At selection
time, the child variants are already sorted by their heuristic values computed with

84 Web Service Selection

fHeu. Furthermore, the selected child variants are combined with their siblings (see the
combine method in line 22) on their parent node. The QoS values of the variants are
computed (line 27) using the formulas in Table 6.2. The variants are checked against
the QoS constraints and those which do not fulfill the constraints are eliminated (lines
28-29). In the final step, the variants of the root node are sorted with regard to the
objective function and the variant on top of the sorted list (node.V[1]) represents the
service selection that has won the evaluation.

7.3.2 OPTIM_HWeight Algorithm

The OPTIM_HWeight algorithm makes use of the OPTIM_S algorithm, providing
a specific heuristic function fHWeight which is used to rank and sort the candidate
services/variants. OPTIM_HWeight is a probabilistic iterative algorithm with the
heuristic function fHWeight at its heart. By virtue of this function, the candidate
variants are sorted at each node, ascending from the leaves to the root, and only the
best rated variants are kept. The heuristic function fHWeight is defined for an arbitrary
node N as follows:

fHWeight(~WN , qc
N , qs

N) = ~WN · (~qc
N − ~q

s
N) =∇ fob j · (~qc

N − ~q
s
N)

=

�

∂ fob j

∂ qN
1

,
∂ fob j

∂ qN
2

, . . . ,
∂ fob j

∂ qN
n

�T

· (~qc
N − ~q

s
N) (7.5)

with · being the scalar product, ~qs
N the QoS vector of the current variant selection,

∇ fob j the gradient of the objective function at the current variant selection, ~qc
N the QoS

vector of the candidate variant, and the qN
i being the QoS value of the node (aggregated

value for complex nodes) of the i th QoS dimension. We denote the difference vector
~qdi f = ~qc

N − ~q
s
N . Figure 7.3 illustrates these vectors in a three-dimensional QoS space

consisting of the dimensions availability, response time and reliability.

response time

availability

reliability

qs qcqc - qs

∆

fobj(qs)

N

N

N N

N

Figure 7.3: Gradient at Point ~qs
N

We take the gradient ∇ fob j computed at node N as the weight vector ~WN considering
the QoS values of the current selection. The result of the fHWeight function is used to
deliver a score for the candidate service selection versus the current service selection; a
higher value is ranked higher. The idea of this approach is essentially a gradient ascent.

7.3 Selection Algorithms 85

Given the current point represented by ~qs
N , i.e. the QoS vector of the current selection,

we calculate the gradient at that location. We try to find another variant which
has "moved" from the point ~qs

N in the direction of the gradient. As we have only
discrete locations in our search space (the service selection variants) we can only
choose another point with a minimal error. For this purpose, we compute the heuristic
fHWeight as the scalar product between ~WN and ~qdi f . For the iteration we use the newly
found point in the search space and retry (for n_steps).

In order to compute the derivatives for the gradient, we have to consider that the
objective function is a chain of aggregations, so we need to use the chain rule for
partial differentiation. This can be explained by the fact that the QoS of a node in the
tree is an aggregation of the QoS of its child nodes, and the QoS of each child node is
again an aggregation of its child nodes, etc. For instance, in Figure 7.1 the tree has a
root node E which has a child node W, and node W has a child node N which has a
child SA (abstract service) being a leaf. For the first quality dimension q1 we may have
the weight factor wSA

computed at node SA:

wSA
=

∂ fob j

∂ qSA
1

=
∂ fob j(ag gq1

E (ag gq1
W (ag gq1

N (q
SA
1))))

∂ qSA
1

=
∂ fob j

∂ ag gq1
E

∂ ag gq1
E (ag gq1

W (ag gq1
N (q

SA
1)))

∂ qSA
1

= . . .=
∂ fob j

∂ ag gq1
E

∂ ag gq1
E

∂ ag gq1
W

∂ ag gq1
W

∂ ag gq1
N

∂ ag gq1
N (q

SA
1)

∂ qSA
1

(7.6)

where ag gq1
X denotes the aggregation function for node X with regard to the QoS

dimension q1. The partial derivatives can be efficiently computed when traversing the
tree top-down because we only need to reuse the last computed value at the parent
node and multiply the inner derivative for the current node.

In the following, we explain the pseudocode of the algorithm (see Figure 7.5). The
weight factors of fHWeight differ depending on the nodes in the tree where the heuristic
is evaluated. At each node in the tree we need the partial derivatives for each
QoS dimension. The weight vector ~WN is computed (procedure computeWeight) by
aggregating the QoS values of variant v from the bottom of the tree to the top. Through
backpropagation of the influence of the QoS dimensions from top to the bottom of the
tree, we compute the weight factors ~WN for fHWeight . This is done by calculating the
partial derivatives, which requires the aggregated QoS values of the current selection
as input.

OPT I M_HWeight performs two iterative processes, the external loop (lines 6-24,
with n_i ter iterations) and the internal loop (lines 13-19, with n_steps iterations).
The internal loop can be interpreted in two different ways: (1) it implicitly performs a
gradient ascent with regard to the objective function (2) it iteratively adjusts the weight
factors ~WN of the heuristic function. Starting from an initial random variant v_0, the
~WN vector is computed (procedure computeWeight) through bottom-up aggregation of

the QoS of v_0 in the tree and backpropagation of the influence of the QoS dimensions

86 Web Service Selection

1: Procedure computeWeight(tree, variant)
2: //computes the weights vector w for the heuristic fHWeight
3: begin
4: tree.InitToLastLeaf();
5: //Aggregate QoS for the variant from the bottom to the top of the tree
6: repeat
7: node = treeTraverseBottomToTop(tree)
8: //get the sub-variant v of the node that coresponds to variant
9: node.v = node.getSubVariant(variant)
10: node.vQ = aggregateQoS(node.v) //aggregate QoS values for v
11: until (node.parent == null)
12: //propagate the QoS values from the top to the bottom of the tree and
13: //compute the weights
14: repeat
15: node = treeTraverseTopToBottom(tree)
16: foreach q in QD
17: if(node == tree.Root)
18: node.Weight(q) = partialDerivative(fobj, q, node.vq);
19: else
20: node.Weight(q) = node.parent.Weight(q) * partialDerivative(Agg(node.parent, q),
21: node.siblings.vq, node.vq));
22: endif
23: endforeach;
24: until (node == tree.LastLeaf)
25: return tree.Weight;
26: end;

Algorithm : procedure computeWeight

Figure 7.4: OPTIM_HWeight Algorithm, Procedure computeWeight

1: Procedure OPTIM_HWeight (tree, qosConstraints, fobj, nr_v, n_iter, n_steps)
2: begin
3: //initialize multiple random variants, optimize with OPTIM_S,
4: //and select the best one
5: init(v_best)
6: for i = 1 to n_iter do
7: v_0 = randomVariants(tree,SC)
8: //select a random variant from the set of concrete services
9: tree.Weight = computeWeight(tree, v_0)
10: v_prev = v_0;
11: //iterative improvement of weights, iterative steps of the gradient
12: //ascent
13: for j=1 to n_steps do
14: //create the heuristic function fHWeight
15: fHWeight = createFHWeight(tree.Weight, v_prev)
16: v_s = OPTIM_S(tree, qosConstraints, fobj, nr_v, fHWeight)
17: tree.Weight = computeWeight(tree,v_s)
18: v_prev =v_s
19: endfor
20: //from the found Variants select the one that optimizes fobj
21: if v_sFobj > v_bestFobj
22: v_best = v_s
23: endif
24: endfor
25: return v_best
26: end

Algorithm procedure OPTIM_HWeight

Figure 7.5: OPTIM_HWeight Algorithm, Procedure OPTIM_HWeight

7.3 Selection Algorithms 87

from top to the leafs of the tree. Knowing the weight factors ~WN and the QoS of
v_0, the heuristic function fHWeight can be created (line 15). The function fHWeight
is used inside the OPT I M_S algorithm (in the sortAndCut procedure, see OPT I M_S,
line 19) and calculates the scalar product between ~WN and the difference vector ~qdi f

= ~qc
N −

~qv_0
N , i.e. the difference of the QoS vector of the candidate variant at the

actual node and the QoS vector of the current selection v_0. Now the OPTIM_S
algorithm is called to find the (desired optimal) variant v_s (line 16) that optimizes
the objective function. This selected variant v_s is considered in the next iteration
step as starting variant to make a further adjustment of the weights ~WN and perform a
further step of the gradient ascent. The computation of ~WN and of the selection variant
v_s starts again and the iterations continue until the n_steps iteration steps have been
performed.

In the external loop (line 6 - the for loop) all the steps described above are repeated
n_i ter times with different random variants as starting points for the inner loop.
From the found variants during multiple iterations (i) the one with the best value for
optimizing the objective function (lines 21-22) is finally selected.

7.3.3 OPTIM_PRO Algorithm

Our OPTIM_PRO algorithm is the fastest of the presented algorithms. The OPTIM_PRO
heuristic algorithm calculates priority factors and uses the objective function to sort
the variants. It is described in pseudocode in Figure 7.6.

During monitoring of the execution, the nodes in the tree receive an iteration number
k and a probability p as explained previously. Each of the nodes that represents an
abstract service (Sa, lines 5-8) receives a priority as a product of k and p, and the node
is added to the set of abstract services SaSet. The priority factors state that those nodes
which are executed more often should receive a higher priority.

The algorithm proceeds with sorting the nodes from the SaSet (line 9) in descendent
order of the computed priorities so that the nodes with higher priorities are processed
first. OPTIM_PRO is an iterative algorithm which improves the found variant (the
objective value) of the root node with each iteration (lines 11-41) step. After selecting
a variant for the root node in the first iteration, this variant is going to be improved
during the next iterations. A copy of the root is created (roottmp, line 14) in order to
check if the currently selected service candidate (sc) is an improvement to the objective
function. In the root copy variant, the currently selected service candidate replaces
the old service candidate. With this new service candidate value, the QoS value of the
root copy variant is aggregated (root tmp.vQ), checked against the constraints, and
the objective function is computed (root tmp.vFob j). If the objective function yields
a better value, the root receives the value of its copy (root tmp), otherwise it remains
the same. The variants that no longer can be improved are saved into the list vl ist.
When this is the case, the root variant receives new random candidate services and
the improvement process starts again. After reaching the maximal iteration number
(n_i ter), the iterative process stops. The list vl ist that contains the found variants is
sorted due to their objective values. The first element in the list is returned as being
the best variant that was found for optimizing the objective function.

88 Web Service Selection

1:Begin
2: // initialize the tree nodes with probabilities (p) and iterations(k)
3: initializeTree(tree, p, k)
4: init(root.v, C, Sa, vList)
5: foreach node.elem in Sa // node is an abstract service
6: node.priority ← computePriority(tree) //compute priority = k * p
7: SaSet ← SaSet U node
8: endforeach
9: SaSet ← sortByPriority(SaSet , ’descendent’)
10: i ← 0
11: NEXT while (i < n_iter)
12: i ← i + 1;
13: foreach sa in SaSet
14: c ← 0; roottmp ← root
15: foreach sc in sa.V
16: //sc is a concrete service that realizes the abstract service sa
15: c ← c + 1
17: //sc replaces the old candidate service of sa, in the root copy
18: //variant
19: roottmp.v(sa) ← sc
20: if (checkQoSConstraintsAggregate2 (roottmp.vQ, qosConstraints))
21: roottmp.vQ ← aggregateQoS1 (roottmp.v)
22: roottmp.vFobj ← computeFobj (roottmp.vQ)
23: if ((i==1) AND(c==1)) OR (roottmp.vFobj > root.vFobj)
24: //optimizing obj function OR first iteration,
25: //first candidate service
26: root ← roottmp
27: endif
28: endif
29: //else select the variant with the minimal distance to fulfill
30: //constraints
31: endforeach
32: if (root.v in vList)
33: //root.v receives random service candidates
34: root.v ← chooseForAllRandomServices()
35: continue NEXT
36: else
37: //save the root variant in the root variants list, vlist
38: vList ← vList U root.v
39: endif
40: endforeach
41: endwhile
42: sortByFobj(vList) //sort the variants list by their objective values
43: return vList[1] //return the best variant
44: End

Algorithm (tree, qosConstraints, fobj, n_iter)

Figure 7.6: OPTIM_PRO Algorithm

7.4 Summary

We presented two heuristic algorithms as solutions to the service selection problem
in Web service orchestrations: the OPTIM_HWeight algorithm based on weighting
factors inspired by gradient ascent approaches, and the OPTIM_PRO algorithm utilizing
priority factors. Both algorithms are iteratively improving the found solution by every
iteration step. OPTIM_S provides an easy way to trade computation time against the
quality of the solution by merely changing its parameters. As our target was to optimize

7.4 Summary 89

non-linear objective functions, we compared OPTIM_HWeight and OPTIM_PRO with
the genetic algorithm GA_CAN proposed by Canfora [39] (see Chapter 10). Our
experiments revealed that our OPTIM_PRO and OPTIM_HWeight are faster than
GA_CAN (in average they needed about 22% and 30%, respectively, of the time of
GA_CAN) and even achieve better values for the objective function (in our experiments
up to 7% better) than GA_CAN in cases with a high number of combinations. The
OPTIM_PRO algorithm turned out to be the fastest algorithm. In our future work,
we will also consider a combination of both algorithms, like having the solution of
OPTIM_PRO as starting point for OPTIM_HWeight.

90 Web Service Selection

8 CoFee - The Feedback Collector and
Predictor

This chapter describes how response time, throughput and QoE are predicted by the
Feedback Collector and Predictor (CoFee) module. The selection of services in the
BPR framework is improved by considering the predicted quality values retrieved from
CoFee. In turn, prediction quality benefits from taking into account the context data of
users and services, as we show in Chapter 10. We present the QPred algorithm that
incorporates context data in the prediction. Results of the prediction approach were
published in [24]. Furthermore, the creation of context-aware processes that offer new
opportunities to build personalized processes for certain client categories is discussed.

8.1 Requirements

Service Selection with CoFee: The previous chapter treats the problem of service
selection. In reality, the advertised QoS and QoE values are different from the actually
monitored or perceived values. Therefore, when selecting services, it is desirable to
consider the actually experienced QoS and QoE values. The BPR framework monitors
only the Web services which are integrated into the BPEL processes. However, the
users of the BPEL processes managed by the BPR framework should profit from the
experiences of other service users outside the BPR framework as well. For the selection
of services it is desirable to consider the experienced QoS and QoE values of all Web
services which are potential candidates to be integrated into the business processes
managed by the BPR framework.

Feedback collection: A new system component (CoFee) is required to collect all
feedbacks (including QoS and QoE) of the users that invoked the services. It has to be
analyzed how a feedback is created, which data it contains and how the feedback data
is retrieved.

Quality property prediction: Based on the clients’ experiences from past service
invocations, the QoS and QoE values should be predicted. For this purpose, an appro-
priate prediction algorithm is needed. It should be analyzed whether the consideration
of certain context variables in the prediction improves the prediction quality.

Integration with the Service Selection module: The predicted QoS and QoE values
have to be considered in the selection of services. For this purpose, the service selection
module of the BPR framework has to retrieve the predicted values from the CoFee
module.

Context-aware Process: It is desirable to offer personalized BPEL processes to differ-
ent user categories that have similar context data. Therefore, the service provisioning

91

should consider the targeted user categories for the service composition. It has to be
possible to specify for which user categories the service selection should be performed.
Having multiple context-aware processes for different contexts, the user requests have
to be forwarded to the corresponding process.

8.2 CoFee - an Overview

Our solution to all these challenges is the Feedback Collector and Predictor (CoFee), a
module that is part of the BPR framework. CoFee is responsible for the collection of
feedbacks and the prediction of QoS and QoE values for atomic services. The CoFee
module communicates with the Service Selection module from the BPR framework
and offers the possibility to include predicted quality values in the service selection.
Although CoFee is part of the BPR framework, it is not tightly coupled to the framework
and it could also work independently of the framework. CoFee offers a Java interface
for all clients that want to receive QoS and QoE predictions. If multiple instances of
CoFee are installed on different servers, these are able to cooperate and exchange
their feedbacks. The goal of CoFee is to collect as many feedbacks as possible to make
accurate predictions.

As its name suggests, CoFee collects feedbacks regarding QoS and QoE from different
service users, both from users of BPEL processes, which run within the BPR framework,
and also from users that use Web services outside the BPR framework. All these
feedbacks are gathered by CoFee and are used to make predictions for future Web
service consumptions. In order to make predictions, CoFee relies on quality values
retrieved from past service invocations. CoFee retrieves feedbacks that contain QoS
values measured by proxies, QoE values assessed by service users and context data of
the services and their users.

Context information, QoS measurements and QoE values of previous service invoca-
tions are used in the prediction of quality properties for future services invocations.
For example, the distances between the locations of the Web services and the locations
of the service clients, and the average response time values of the services and users
are correlated to the response time values. Such relations between variables have to
be detected in order to differentiate whether a context variable is relevant or not in
the prediction.

Context data is not only used for improving the prediction quality but also for creat-
ing personalized service compositions for certain user categories. If context data is
correlated with the QoE of users, consequently the creation of context-aware service
compositions would additionally contribute to higher service quality. Therefore, the
business analyst may create context-aware business processes for certain users categories
that have certain context data. For example, there is an OldiesMusic Web service
that plays music from the fifties for the elderly people, and another ChartsMusic Web
service playing the current charts for the young people. The business analyst may
create a context-aware MusicEntertainment process that integrates the OldiesMusic Web
service for the user category of older people and the ChartsMusic Web service for the
young people. In this case, the context dimension age would be used to build the user

92 CoFee - The Feedback Collector and Predictor

categories of older and younger people in order to offer personalized solutions to the
costumers.

8.3 Context-aware Service Composition

In this section, we describe all the necessary steps to build context-aware service
compositions. We present how CoFee collects feedbacks, how the business analyst
specifies requests for CoFee, how services are provisioned and how the user requests
are processed.

In our framework, we consider different types of Web services, which are rated by the
users. There are some services that offer products to the users, for example, a Car
Rental service offers cars for renting to its users. A Flight service allows to select the
airline company for transporting the users to the desired destination. Regarding this
type of Web services, the user interacts directly with the products offered by the Web
services. Therefore, if the user is not satisfied with the products, he will probably be
not satisfied with the Web service as well. Our goal is to integrate services that deliver
quality products to its users, because a user that is not satisfied with the delivered
products will probably not use the BPEL process a second time. Users with different
age and profession commonly have different expectations about the service products
regarding their quality and price. Therefore, selecting services that correspond to the
users’ expectations is an important issue that needs to be addressed. In this thesis,
we consider as examples for context data the age and professions of users and the
locations of users and services.

8.3.1 Collecting Feedbacks

We interpret QoE as the degree of satisfaction of the user with the service regarding
the offered functionality, the offered products, the accuracy of the service results, and
the promptitude of the service response. Thus, the rating implicitly encompasses also
the response time of the service. The user assesses a rating to the service in the interval
[1,5], with 5 meaning excellent and 1 meaning bad. The service rating is similar to
the rating that users give to a product in an online shop. The rating can be understood
by a user in a personal way, it may encompass several criteria that the user considers
as important when using a service. The feedbacks collected by CoFee are further used
to make predictions.

The feedback data collected by CoFee to make predictions encompasses:

• the context values of the Web service, client and/or user [optional],

• the QP values with the measured QoS values and the assessed QoE rating.

A Web service may be integrated as an atomic service into an application or into
a service composition. In this case, the BPEL process or the application represents
the client of the atomic services. This is depicted in Figure 8.1. The feedback for a
user consuming the BPEL process contains the QoS monitored by the BPR framework,
measured on the server where the BPEL process is executed.

8.3 Context-aware Service Composition 93

Atomic
services

BPEL process ‐
Client of atomic
services

Application ‐
Client of atomic
services UserUser

s1

s2

invoke

invoke

invokerequest
request

Feedback
S1 , S2

Feedback
S1

CoFee

collectFeedback

BPR‐framework

QoE
S1 , S2

QoS
S1 , S2

QoE
S1

QoS
S1

Another
CoFee
System

exchange
data

Figure 8.1: Collecting Feedbacks in CoFee

Both the application and the composition can be offered, for example, in an online
shop, in a social network or on a Web site. We assume that the user being a customer
of an online shop has previously registered to the site and entered his personal profile,
like his profession and age. The context data of the user is added automatically to the
feedback and this is submitted to CoFee every time the process is invoked. The QoS
values measured by the QoS Monitor from the BPR framework are also included in
the feedback. After using the composition, the user is asked by the BPR framework
to submit his feedback, the QoE rating. He assigns his rating for all the Web services
he personally interacted with. There may also be a Web service used in the internal
logic of the Web service composition so that the user doesn’t interact with it directly.
In this case, the user is not able to rate it. However, these services are monitored
automatically and the QoS values are included in the feedback. If the context data of
the user is unknown, then the feedback contains only the QP values.

In Figure 8.2, two types of feedbacks are represented. One feedback is for a single
Web service, if the application or composition uses only one Web service. The other
feedback is for a service composition and contains the QoS for all the services that are
part of the composition and the ratings for all the services with which the user had a
direct interaction.

The user is asked to submit his rating for the service via an e-mail that contains the
link to the web site with the rating form. The form lists the used services and the
products that were delivered to the customer. After the user has entered the rating,
the feedback is submitted to CoFee. The time when the user is requested to submit

94 CoFee - The Feedback Collector and Predictor

WS feedback

WS
QP feedback

QoS
QoE

Context data
Examples:
Location WS client
User age, profession

Context data

BP feedback

WS1

QP feedback
QoS
QoE

WS2

QP feedback

…

Other
Feedbacks

…
WSn

QP feedback

CoFee
Predictor

Figure 8.2: Process and WS Feedbacks

his rating depends on the type of the Web service that he consumed. For the Web
services that deliver products to their users, the rating request is sent one week after
the user received the products. In this way, the user experience with the products can
be included in the rating. For the services without products, the user is asked directly
after service consumption to rate the services.

8.3.2 Requesting Predictions

To offer personalized solutions to certain user categories of the service composition, the
business analyst may specify corresponding requirements in the BPR rules. These re-
quirements are interpreted by the service selection module which extracts the relevant
information, creates a request and sends it to CoFee for processing.

Any CoFee client may request QoS and QoE predictions from CoFee. We will call a
request to CoFee for service QP predictions a CoFee-request. In this thesis, we consider
the requests of the business analyst specified in the BPR rules. Other CoFee clients
would directly use the CoFee interface.

8.3 Context-aware Service Composition 95

A CoFee request contains the following data:

• abstract services,

• categories [optional] containing the context values that characterize the user
categories.

A CoFee request is created by the service selction module, as a consequence to a
BPR condition (e.g. < const raints quali t yValues = ”Pred” >) or a BPR action as
< selec t−services > or< selec t−services−contex t >where the predicted QP values
are required (the quali t yValues attribute is set to ”Pred”). The < selec t− services >
action is triggered either for a single service, for a process section or for the entire
process. Therefore, the service selection module detects from the BPEL description
file which abstract services are contained inside the section or the process. The list of
abstract services and the targeted user categories are added by the service selection
module to the CoFee request. Finally, the CoFee request is sent to CoFee for processing.
As response, CoFee sends the predicted QoS and QoE values of all the concrete services
that realize the abstract services and for all specified user categories back to the service
selection module.

We assume that the business analyst has knowledge about the users of the service
composition, since the available data about the users is stored automatically by the
BPR framework and can be viewed any time by authorized persons, such as the
business analyst. The business analyst is also conscious of the business strategy of
the process, knowing the target customer groups. We assume that a user category
is characterized by certain context values. The business analyst identifies the user
categories that the service composition is intended for. When the analyst desires to
perform a context-aware service selection for the composition, he specifies one or
more target user categories inside the < selec t − services − contex t > action. For
each user category he declares the context values. If it is not required to perform a
context-aware service selection then the context values may be missing and a simple
< selec t − services > action may be triggered instead.

8.3.3 Context-aware Service Composition Example

We consider the EventPlanner process as an example for creating context-aware service
compositions. The EventPlanner process is intended for planning an event where several
persons want to participate. For the event, a location is required, the participants have
to be provided with food, and music should make the atmosphere at the event more
pleasant. Therefore, the EventPlanner service composition is created by integrating
three Web services: the EventLocation Web service, the Music service and the Catering
service. The location for the event can be reserved with the EventLocation service,
a list of songs to be played are booked with the Music service and food is ordered
with the Catering service. For these abstract services, multiple concrete realizations
are available. The EventLocation_LowCost service offers locations at low prices to be
rented, e.g. a karaoke bar. Another EventLocation_HighStandard service offers fancy
locations that are more expensive and have a higher standard. Similarly, cheaper food
can be ordered with the Catering_LowCost service and respectively more expensive
and tasty food can be delivered with the Catering_HighStandard service. As concrete

96 CoFee - The Feedback Collector and Predictor

Business analyst
Abstract Services:
Catering Service
Music Service
EventLocation Service

category students
age = 18‐25
profession = students

category academics
age = 40‐55
profession = academics

Service
Selection

category
students

category
academics

Create personalized processes and
a default process

process
<students>

processReplication
pdf name

process
<academics>

default
process

Figure 8.3: Process Replication

realizations for the Music service there is the Music_Pop service which offers play lists
of pop/rock songs, which are currently in the charts, and a Music_Oldies service with
songs from the fifties to the eighties.

The business analyst wants to create service compositions for two user categories. One
category involves students with the age between 18 and 25, and the other category
targets academics with the age between 40 and 55. The business analyst entitles the
first user category "students" and the second category "academics". On one side the
profession of the users provides information about the special domain where the users
work, and on the other side it may be an indicator of the budget that the users have.
Services may be intended to customers of certain age, like it is the case for the Music
service.

We assume that the users’ age is in correlation with the ratings of the Music services
and the professions correlate to the ratings of the EventLocation and Catering services.
We hypothesize that younger people assign a better rating to the Music_Pop service
and a lower rating to the Music_Oldies service. In opposition, the Music_Oldies service
is preffered by elderly people. A similar assumption is made regarding the users’
profession, where the students submit a good rating to the Catering_LowCost service
and the EventLocation_LowCost service, while there are quite few students that provide
high ratings for the corresponding HighStandard services. The academics are expected
to assign good ratings to the EventLocation_HighStandard and Catering_HighStandard
services and bad ratings to the equivalent low cost services. We also assume that the
ratings depend on the average ratings of the users and the services.

The business analyst specifies his request in a BPR rule, which is represented in listing
8.1. He desires to create service compositions for the user categories students and
academics and therefore, he triggers a < selec t − services− contex t > action. The
rule has only an action part (the condition is always true) and it is triggered only once,

8.3 Context-aware Service Composition 97

for the initial creation of the service compositions.

user Alice
age = 23
profession = student

user John
age = 48
profession = academics

Music_Oldies service

Catering_LowCost service Catering_HighStandard service

Music_Pop service

EventPlanner process
students_18‐25

EventPlanner process
academics_40‐55

Delegator

EventLocation_HighStandard service

user request1

delegationExample

user request2

EventLocation_LowCost service

Figure 8.4: EventPlanner Service Composition

1 <rule id="eventPlanner">
2 <condition/> <!−−condition is always true−−>
3 <action>
4 <select−services−context qualityValues="Pred">
5 <quality−requirements>
6 <!−− response time < 4, availability > 0.9
7 Max qoe −−>
8 </quality−requirements>
9 <list−categories>

10 <category name="students">
11 <context param="user−age">18−25</context>
12 <context param="user−profession">students</context>
13 </category>
14 <category name= "academics">
15 <context param="user−age">40−55</context>
16 <context param="user−profession">academics</context>
17 </category>
18 </list−categories>
19 </select−services−context>
20 </action>
21 </rule>

Listing 8.1: Context-aware Service Selection

98 CoFee - The Feedback Collector and Predictor

When the rule is interpreted, the BPR framework creates three service compositions
by replicating the composition. The BPEL process structure is copied and different
concrete services are selected for the abstract services of the replicated processes. The
first composition created for the category students integrates the low cost services
EventLocation_LowCost and Catering_LowCost, and the Music_Pop service. The second
composition intended for the category academics calls the equivalent high standard
services and the Music_Oldies service. A default service composition is created for users
that are not included in any of the two previous user categories. In Figure 8.3, we
show how the EventPlanner process is replicated for the two user categories.

Figure 8.4 represents how the user request is delegated to the appropriate service com-
position. A delegator component is automatically created for the EventPlanner process.
It intercepts the user requests sent to the EventPlanner process and delegates the user
request to the service composition of the corresponding category. The delegation of
requests is described in more detail in Section 8.3.5.

8.3.4 Service Provisioning

As we saw in the example, the creation of context-aware service compositions delivers
personalized solutions for different categories of users. As context data may influence
the values of QoS and QoE, the creation of personalized processes targeting a particular
user category can improve the process quality perceived by that category.

(2) Returns:
List of the concrete
services with the
predicted QoS and
QoE for all the
requested user
categories

CoFee
Predictor

(1) Request QoS and
QoE predictions for all
concrete services that
realize the abstract
services [Optional: for
all the requested user
categories]

Service
Selection

(3) Apply fobj

(4) List with pairs
1 abstract service –
1 concrete service
for all requested
user categories

selectorCofee

(5) Create process
replications for
all requested user
categories and
create a default
process

(2)

(6) Change
service bindings in
BPEL processes
for all requested
user categories

(1) (5),(6)

Figure 8.5: Service Selection and Cofee

A context-aware service composition is created by selecting for each of the abstract ser-
vices in the composition a concrete service that has specifically good quality values for a

8.3 Context-aware Service Composition 99

particular user category. In Figure 8.5, we represent the steps necessary for process cre-
ation and service provisioning, starting with the request to CoFee towards the creation
of the context-aware service compositions. In the first step, CoFee receives a request,
like the one described in the previous section, containing the list of abstract services
and one or multiple user categories. CoFee returns the QoS and QoE predictions (the
second step) for all the concrete services that realize the requested abstract services for
all the requested user categories. From these services, it is necessary to choose only one
concrete service per abstract service for a certain user category. Therefore, in step three,
the service selection algorithm is triggered for each user category in order to select
a service for each abstract service. The objective function is applied to choose only
the best service from the multitude of services. The objective function is interpreted
by the Service Selection module and it is applied on the predicted values returned by
CoFee. After all the concrete services are found with the selection algorithms, they
are stored into a list, which we call serviceList[cat] for the user category cat (see
step 4). The BPR framework is able to create service compositions for all the user
categories provisioning the services from the service list serviceList[cat]. This is done
by replicating the initial service composition to multiple copies for each of the user
categories. The replication of the service composition is done automatically by copying
the process in the registry, changing its name and replacing the service bindings with
those of the services from serviceList[cat]. When a request of a user is received, this
is redirected to the service composition with the context that is most similar to the
context of the user. A default process is created for all the users that do not belong to
any of the specified user categories. This is the case when the similarity of the user
and the user categories falls below a certain threshold value.

8.3.5 User Request Delegation

Having multiple personalized service compositions managed by the BPR framework,
we desire that the user is served by the composition that is most suitable for him. The
users of the service composition start the process by sending a request. Typically, the
user request contains some entries for the process that have to be processed. Since
multiple service compositions are available for different user categories, the question
arises which of the service compositions is going to receive the user request. For this
purpose, we built the delegator, a component responsible for the redirection of the
user request to the right service composition. The delegator’s task is to compute the
similarity between the user context and the contexts of the available processes. Then
the process with the highest similarity to the user is chosen and the user request is
delegated to this process. In case all the calculated similarities fall below a certain
threshold or the user’s context data is not available, the request of the user is redirected
to the default process for processing. The delegation process is depicted in Figure 8.6.

The similarity between the user context cu of user u and the process context cp of
process p is computed with Equation 8.1. The distance distdi

represents the distance
between the user context and process context regarding the context dimension di . The
parameter wi represents the significance of context variable di. If there are two or
more processes that have the same similarity to the user, the first of these processes is
chosen.

100 CoFee - The Feedback Collector and Predictor

User request
<req_context>

BPEL process for
<bp_context 1>

BPEL process for
<bp_context 2>

Sc1

default
BPEL process

Sc2 Sc3

sim(req_context, bp_context1) ? Delegator

request

request

Figure 8.6: Request Delegation

simc t x(cu, cp) =

s

n
∑

i=1

wi(1− distdi
(cu, cp))2 (8.1)

8.4 Prediction Approach

This section presents how predictions are made for response time, throughput and QoE
of Web services. The QPred algorithm is based on multiple linear regression [32],[88],
[77] and it is proposed for the prediction of response time and throughput.

8.4.1 Significant Variables

Before executing the prediction algorithm, a preliminary analysis has to find out
which of the available context dimensions and which of the monitored or derived QPs
are significant in the prediction. This analysis is done automatically and detects the
correlations between the variables.

As basis for our analysis with regard to response time and throughput prediction, we
used the values from a real dataset of Zheng [112, 111, 17]. The dataset contains also
context values such as the locations of the Web services and the users. We represent
the locations as geographical coordinates (latitude and longitude) and compute the
distance between the locations of users and services. For detecting which variables
from the set of context dimensions, QoS dimensions and derived QoS values (e.g.
average response time of a service) influence the dependent variables to be predicted

8.4 Prediction Approach 101

(response time and throughput), we employed the Analysis of Variance (ANOVA) [55].
With ANOVA, the independent variables are partitioned into several levels and it is
checked whether the means of the values of the dependent variables differ significantly
between the levels. The ANOVA method revealed that the geographic coordinates, the
distance d between users and services, the average response times r̄s of the services,
and the average response times r̄u of the users are in relationship with the response
time. The relevance of the average response time of the users may be explained by
the connection quality to the Internet that differs from user to user. The different
connection quality in several regions and the number of hops between regions may
explain the correlation of the distance between users and services and the response
time value. The server latency would be an explanation for the influence of the average
response time r̄s of a service.

rs,u

ts,u

 QoEs,u

distance
average ru

average rs

average tu
average ts

average QoEu

average QoEs

profession
age

Legend
average QoSu / QoEu - the average QoS / QoE of a user u
average QoSs / QoEs - the average QoS / QoE of a service s

Figure 8.7: Significant Variables

The throughput of a service depends on the average throughput t̄u of the users, the
average throughput t̄s of the services, the average response times r̄u of the users, and
the average response times r̄s of the services. The relationship between throughput
and response time can be explained by the definition of throughput which reflects that
throughput is influenced by response time.

Regarding the QoE dimension, we assume it is dependent on the average QoE ratings
of the services and the users, and on context variables such as the user age and
profession. If more context data for real Web services would be available for research,
this hypothesis could be verified with ANOVA. We expect that the users’ profession is
in relationship with the assessed QoE value. This is a realistic assumption as we can
observe in the following example. For instance, the user is looking for a book that he
wants to acquire for his job. We consider a Bookshop process that offers books with
different subjects for all readers. Another MedicalBooks Web service offers medical
books. Thus, a physician or a medical assistant probably rates the MedicalBooks Service
much better than someone that is looking for a novel book.

102 CoFee - The Feedback Collector and Predictor

8.4.2 Prediction of Response Time and Throughput

We developed the QPred algorithm for prediction of the response time and throughput
of the services. It is not the main focus of this thesis to propose elaborate prediction
algorithms for all the different QP dimensions, but to show how the prediction module
can be integrated into the BPR framework in order to build context-aware service
compositions. Even though, the QPred algorithm is very efficient and provides good
prediction accuracy.

The QPred algorithm uses the results from the ANOVA analysis and considers the
influencing variables to improve the prediction quality. In the evaluation, a real dataset
from Zheng [113] containing response time and throughput was used to evaluate
the prediction accuracy. The dependent variables response time and throughput are
predicted using the independent variables distance, average response time and average
throughput of the services and users. In our approach, predictions are calculated for an
entire user category (with similar context values) of a Web service or business process
and not only for a particular user. Related approaches [113] make predictions only for
a single user.

The QPred algorithm is based on multiple linear regression. As ANOVA revealed, the
response time variable depends on the distance between the services and the users,
on the average response time r̄u of the users and the average response time r̄s of
the services. For the response time prediction we defined two regression functions,
which we call the service function and the user function. Analogously, we created two
regression functions for throughput.

The service function f r
sz

, used for predicting the response time of user ux for invoking
service sz , is dependent on the average response time r̄ux

of all the service invocations
of user ux and the distance dux sz

between the user ux and the service sz. The service
function is defined as follows:

f r
sz
(r̄ux

, dux sz
) = cr

0 r̄ux
+ cr

1dux sz
+ cr

2 (8.2)

The coefficients of the regression function cr
0, cr

1, cr
2 are calculated by applying the

following equation [88]:

C = (X T X)−1X T Y (8.3)

where Y represents the vector of the predicted response time values and X the matrix
containing the observations of the regressor variables, being the average response time
values of the users r̄u and the distances between users and services. A further column
with all elments being 1 is added to the matrix X to consider the coefficient cr

2 for the
constant offset.

Similarly, the user function, used for predicting the response time of user ux for invoking
service sz , depends on the average response time r̄sz

of the service sz called by different
users and the distance dux sz

:

f r
ux
(r̄sz

, dux sz
) = br

0 r̄sz
+ br

1dux sz
+ br

2 (8.4)

8.4 Prediction Approach 103

The coefficients of the user function br
0, br

1, br
2 are computed analogously to the service

function with the difference that matrix X contains the values of the average response
times of the services r̄s and the distances.

Similarly to response time, we define two regression functions for throughput. ANOVA
showed that the throughput variable depends on the average throughput of the users
t̄u, the average throughput of the services t̄s, the average response time of the users r̄u
and the average response time of the services r̄s.

The service function for predicting the throughput for service sz invoked by user ux is
defined in the following way:

f t
sz
(t̄ux

, r̄ux
) = cr

0 t̄ux
+ cr

1 r̄ux
+ c t

2 (8.5)

The user function is computed as follows:

f t
ux
(t̄sz

, r̄sz
) = bt

0 t̄sz
+ bt

1 r̄sz
+ bt

2 (8.6)

Both response time and throughput are finally predicted by combining the predictions
of the service and the user function. We define the combi function fc as an aggregated
weighted value between the user function and the service function. The predictions
made by the user and service function are weighted with the coefficients of determin-
ation of these functions and combined to the final prediction value. The coefficient
of determination reflects the suitability of the regression model, thus using it as a
weighting factor is a reasonable choice. The combi function is defined as:

fcux sz
=

fux
R2

x + fsz
R2

z

R2
x + R2

z
(8.7)

where R2
x represents the coefficient of determination of the user function fux

and R2
z of

the service function fsz
. The coefficient of determination is calculated as follows [88]:

R2 = 1−

∑n
i=1(yi − ŷi)2

∑n
i=1(yi − ȳ)2

(8.8)

where ŷi is the predicted QoS value with the regression model and yi is the measured
QoS value.

The evaluation (see Chapter 10) showed that in average the service function has the
greatest prediction accuracy, followed by the combi function. In the evaluation, the
prediction accuracy is reflected by the MAE computed between the predicted response
time (resp. throughput) value and the actual response time (resp. throughput) value
of multiple service invocations.

104 CoFee - The Feedback Collector and Predictor

8.4.2.1 Outlier Detection

Linear regression is sensitive to outliers. Few points may significantly impact the calcu-
lation of the regression coefficients and consequently affect the prediction. Outliers
can be detected by using Cook’s distance [77]. A large value of the Cook’s distance
calculated for a point indicates that the point is influential. The Cook’s distance Di for
the i th point of the set of known points is calculated as follows:

Di =
r2

i

p

hii

(1− hii)
(8.9)

where ri represents the studentized residual that shows how well the model fits the
i th observation yi. If there are n observations (x i1, x i2, .., x ik, yi) and k regressor
variables, then the distance hii/(1− hii) reflects how far the i th point is away from the
remaining n− 1 points [77]. The i th point is considered influential if a value of Di > 1
is calculated.

In the following, we explain in detail how the Cook’s distance is computed. The value
hii represents the i th element from the diagonal of the matrix H, also called the hat
matrix. Matrix H is computed with the following formula [77]:

H = X (X T X)−1X T (8.10)

Matrix X contains the values of the observations of the k regressor variables. The fitted
values ŷ and the measured values y are linked by the equation ŷ = H y .

The studentized residual is computed as [77]:

ri =
ei

p

σ2(1− hii))
(8.11)

The parameter σ (the variance of the error term ε) is estimated by [77]:

σ̂2 =

∑n
i=1 e2

i

n− p
(8.12)

with ei = yi − ŷi being the residual, i.e. the difference between the observation yi and
the fitted value ŷi , and p the number of regression coefficients.

After computing the studentized residual and the hat matrix, the Cook’s distance can
easily be computed and the influential points can be detected. However, not all points
that are influential should be considered as outliers to be filtered when calculating the
regression coefficients. An influential point that is far away from the remaining points,
indicated by a large value of hii/(1− hii), can still be important as it may stabilize
prediction in areas where only a few observations are available. Therefore, we applied
the following criteria to filter point i when calculating the regression coefficients: hi <
0.65 for response time and for throughput; Di > 0.3 for response time and Di > 0.2
for throughput. These thresholds have been determined experimentally.

8.4 Prediction Approach 105

8.4.2.2 Prediction Example

In the following, we present an example with 10 users and 10 services and show how
response time is predicted. Each user ux calls a service sz and the measured response
time for each of these invocations is represented in Figure 8.8. We assume that 50% of
the values are known and the other 50% values from the table have to be predicted.
The known response time values are represented in a blue cell and the ones that need
to be predicted are in a gray cell. Some response time values are not available (like
some values for the user u9) and these receive the value of -1. These values are not
included in the computation. On the margins of the table, the average response time
values for each user and each service are computed. The averages are computed only
considering the known quality values.

As an example, we consider the response time prediction for user u7 and service s6 and
show how the user, service and combi functions are computed to make the prediction.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 ru

u1 0.206 0.798 1.607 0.761 1.008 0.201 0.841 0.135 5.294 4.84 1.619

u2 0.244 0.59 1.215 0.617 0.425 0.068 0.394 0.251 0.905 0.731 0.47

u3 0.283 0.698 1.305 0.47 1.169 0.089 0.478 0.3 0.946 0.507 0.821

u4 0.322 0.5 0.906 0.513 0.528 0.112 0.336 0.337 0.249 0.26 0.471

u5 0.333 0.549 1.507 0.486 0.352 0.109 0.273 0.309 0.298 0.415 0.507

u6 0.465 6.046 0.602 5.696 5.842 0.169 5.147 0.425 5.504 5.252 3.692

u7 3.208 5.741 0.603 1.594 4.238 0.802 0.687 0.353 0.929 0.177 2.961

u8 0.285 0.974 1.707 0.877 1.1 0.18 0.579 0.29 0.629 0.635 0.794

u9 0.25 0.453 1.107 0.608 ‐1 0.052 0.659 ‐1 ‐1 ‐1 0.303

u10 0.407 5.69 0.91 5.681 5.543 0.217 5.117 0.418 5.252 5.211 3.435

rs 0.784 4.162 1.165 1.654 2.44 0.125 1.512 0.266 2.388 0.507

userservice
Figure 8.8: Users-Services Response Time Values

Function service is computed as follows:

f r
s6
(r̄u7

, du7s6
) = cr

0 r̄u7
+ cr

1du7s6
+ cr

2 (8.13)

The distance between user u7 and service s6 is 5907.1, and the average response time
value for user u7 is 2.961. The regression coefficients of the service function fs6

are
−0.016,0.039 and 0.000016, and the coefficient of determination is 0.99. Thus, the
response time is predicted as:

f r
s6
(r̄u7

, du7s6
) =−0.016+ 0.039 · 2.961+ 0.000016 · 5907.1= 0.192 (8.14)

For the user function fu7
we compute the regression coefficients being −0.62, 0.756

and 0.0002. The coefficient of determination is 0.91 . The average response time value

106 CoFee - The Feedback Collector and Predictor

for service s6 is 0.125. The response time is predicted with the user function fu7
as

follows:

f r
u7
(r̄s6

, du7s6
) = br

0 r̄s6
+ br

1du7s6
+ br

2 (8.15)

f r
u7
(r̄u7

, du7s6
) =−0.62+ 0.756 · 0.125+ 0.0002 · 5907.1= 0.718 (8.16)

The combi function f cu7s6
represents a weighting of fs6

and fu7
with the coefficients of

determination:

f cu7s6
=

fu7
R2

u7
+ fs6

R2
s6

R2
u7
+ R2

s6

= 0.442 (8.17)

8.4.2.3 The QPred Algorithm

The QPred algorithm computes the predictions for response time and throughput
based on the regression functions that were previously presented. For calculating the
regression coefficients, the algorithm relies on a set of historical data containing QoS
measurements of past service invocations as well as context data for the services and
the users. Assuming that QoS measurements for k service invocations are available,
these k known points are used to compute the average response time and throughput
(r̄u, t̄u, r̄s, t̄s) of the users and services. Afterwards, the regression coefficients for the
user, service and combi functions are calculated from the set of known points. Next,
the Cook’s distance is used to eliminate outliers, and the coefficients of the service,
user and combi function are recomputed. Finally, the three functions are used for
computing the predictions.

8.4.2.4 Sparsity Problem

The sparsity problem is encountered when the user-service matrix has not enough
entries. In this case, the regression coefficients of the prediction functions can not be
computed. Since the prediction is performed using the three functions service, user and
combi function, we discuss three cases of matrix sparsity, one for each of the prediction
functions. The cases of matrix sparsity are represented in Figure 8.9.

In the first case of matrix sparsity (see Figure 8.9 function service) the quality value
q̂ux sz

of service sz and user ux has to be predicted using a "substitute" for the service
function fsz

since the regression coefficients for the service function could not be
computed. It is the case when less than three quality values are available for service
sz. In case the average quality value q̄ux

of user ux and the distance dux sz
are known

(condition(cs1)), the service function will get as coefficients the average of all the
coefficients belonging to the other service functions (fsy

, sy ∈ S, sy 6= sz). This assumes
that at least one other service function could be computed. In case the condition (cs1)

8.4 Prediction Approach 107

Function Sparsity Problem

Function
service

Sparsity Condition |	 	3,		 :		 |	 3	

1.	If , d are	known and		 |	 	1		 cs 	then
– predicted with the average coefficients of the
service functions of the services in	SC

2. Else if is known cs 	then
is predicted as

3.	Else
will	not	be predicted

Function
user

Sparsity Condition |	 	3,		 :		 |	 3	

1.		If ,		d are	known and |	 	1		 cu 		then
– is predicted with the average coefficients of all		user functions
of the users in	UC

2. Else if is	known cu 		then
is predicted as

3.	 Else
will	not	be predicted

Function
combi

Sparsity Condition |	 	3		or |	 3	

1.	 If |	 3		and is known and |	 3		 c 		then
– is predicted with the service function

2.		Else if |	 3	and		 is known and |	 	3		 c 	then
– is predicted with the user function

3. Else if is known then
is predicted as

4.	Else
will	not	be predicted

Figure 8.9: Sparsity Prediction

was not fulfilled and the average quality value q̄sz
of service sz is known (condition

(cs2)) then q̂ux sz
is predicted as the average quality value q̄sz

of service sz. If none of
the conditions (cs1) nor (cs2) holds, then the value q̂ux sz

will not be predicted. The
second case of sparsity, when a substitute for the user function is searched, is handled
in a similar way (see Figure 8.9 function user).

In the third case of matrix sparsity, a substitute for the combi function is searched
for predicting the quality value q̂ux sz

. The combi function is tried to be substituted by
either the service function fsz

or by the user function fux
, depending on which one

is available. In the first case (condition c1), it is tested whether the average quality
value q̄ux

is known and the service function fsz
is available. If this condition is true

then the value q̂ux sz
is predicted with the service function fsz

. In case the condition

108 CoFee - The Feedback Collector and Predictor

(c1) is not fulfilled but q̄sz
is known and the user function fux

is available (condition
(c2)) then q̂ux sz

is predicted using the user function fux
. If neither the condition c1 nor

the condition c2 are fulfilled but the average quality value q̄sz
is known then the value

q̂ux sz
is predicted as q̄sz

.

8.4.3 Discussion about QoE Prediction

The QoE may be influenced by several factors, like human, system and context factors
[38], and this has to be considered in the predictions of the CoFee module. The
approach for QoE prediction presented in this section has not been evaluated with
a real-world dataset. Thus, it can only be considered as discussion how the QoE
prediction can be handled within CoFee.

We denote with c1,... ,cn a set of context dimensions that we assume to influence the
QoE of user ux with regard to service sy , denoted as qux ,sy

. The prediction q̂ux ,sy
of the

current user ux for the service sy is based on the ratings of other users that previously
invoked the service sy . The prediction q̂ux ,sy

relies on:

• ratings of users that assigned similar ratings as user ux to services that were
coinvoked in the past

• ratings of users that have a similar context as user ux

Based on these assumptions, our QoE prediction approach constitutes a user-based
collaborative filtering [86] [113] [92] [64] using two different similarity measures,
and the prediction q̂ux ,sy

is computed as follows:

q̂ux ,sy
= λ

sy

1 qsy

+ λ
sy

2

qux
+

∑

ui∈U ,simPCC (u j ,ux)≥tPCC
(qui ,sy

− qui
)simPCC(ui , ux)

∑

u j∈U ,simPCC (u j ,ux)≥tPCC
simPCC(u j , ux)

+ λ
sy

3

qux
+

∑

ui∈U ,simc t x (u j ,ux ,sy)≥tc t x
(qui ,sy

− qui
)simc t x(ui , ux , sy)

∑

u j∈U ,simc t x (u j ,ux ,sy)≥tc t x
simc t x(u j , ux , sy)

where U represents the set of all users of service sy for which ratings and context
information are available; q̄sy

represents the average rating of service sy with regard
to all users that rated sy ; q̄ux

is the average rating of user ux provided for all services
he used.

The simPCC(ui , ux) function computes the similarity of users ux and ui by means of
the Pearson Correlation Coefficient considering the assigned ratings to coinvoked
services. A second similarity of the users ui and ux regarding their context dimensions
is computed with the simc t x(ui , ux , sy) function. The thresholds tPCC and tc t x ensure
that only users exceeding a certain similarity are taken into account.

The parameters λ
sy

1 ,λ
sy

2 and λ
sy

3 are specific to service sy and are used for weighting
the ratings.

8.4 Prediction Approach 109

With the simc t x(ui , ux , sy) function, the similarity between user ui and user ux based
on their context dimensions with regard to service sy is calculated as follows:

simc t x(ui , ux , sy) =

s

n
∑

i=1

w
sy

i (1− distci
(ui , ux))2 (8.18)

The value of w
sy

i hints at the importance/significance of the context dimension ci
for service sy . The formula contains the term (1− dist) to make the transition from
distance to similarity. The distance distci

(ui , ux) represents the normalized distance
(mapped to the [0,1] range) between the user ui and the user ux regarding the context
dimension ci .

For example, the distance between two users regarding the context dimension age

would be distci
(ui , ux) =

|ageui
−ageux |

|agemax−agemin|
.

As the different services may exhibit different characteristics with regard to the influ-
ence of context dimensions and QoE assignments in general, the values of λi and wi
are selected specific to the service under consideration. Thus, the problem becomes
the detection of an appropriate set of λi and wi for each service based on the collected
ratings from the users who invoked that service.

The parameters w
sy

i can be derived with the help of ANOVA, testing the influence of
context dimension i on the QoE values assigned by the users of service sy . Having

available the parameters w
sy

i the parameters λ
sy

i can be obtained by linear regression.

Dealing with missing data

There might be cases when certain context variables for the users are missing and these
cases need to be treated adequately. If only context dimensions with small w

sy

i are miss-
ing, these context dimensions are simply ignored when calculating simc t x(ux , ui , sy).
If context dimensions with high w

sy

i are missing, but we have information for still
enough context dimensions with high w

sy

i , the missing context dimensions are simply
ignored as well. If all context dimensions with high w

sy

i are missing or no users with
simc t x ≥ tc t x are found, the prediction is done just with the average rating of service
sy and the PCC similarity part (the factor of λ3 is set to 0). If there is not enough data
for computing the PCC similarity part, only the average rating of the service sy is used.
If even the average cannot be determined, then the prediction cannot be calculated.

We have also to consider the case when the QoE prediction has to be performed for a
whole user group of a BPEL process. QoE ratings from the user group are only available
for the services that are used or have been used in the BPEL process. However, the
similarity based on the Pearson Correlation Coefficient makes use of the assumption
that there exist several coninvoked services, invoked by the members of the user group
and other users. It has to be expected that in many cases only a few of such coninvoked
services exist, if any at all. In such cases, prediction is only done with the average
QoE rating of the service under consideration and the context similarity part from the
prediction equation, i.e. λ2 is set to 0. If we have not available the context values for
the important context dimensions of the service, only the average QoE rating of the
service can be used.

110 CoFee - The Feedback Collector and Predictor

The QoE prediction approach presented in this section utilizes user-based collaborative
filtering with two different similarity measures at its core. Thus, it inherits all the
advantages and disadvantages of user-based collaborative filtering approaches as
discussed in Section 4.3: its applicability and performance has been proven in many
applications, but it requires quite an amount of historical data and predictions can
be expensive with regard to computation time. Still, we propse this approach, as we
are confident that collaborative filtering provides robust QoE predictions and that
prediction accuracy benefits from combining the two similarity measures based on
Pearson Correlation Coefficient and based on the context dimensions. The QoE of users
with regard to services is most likely influenced by context factors, and, as stated in
[113], the Pearson Correlation Coefficient provides accurate similarity computation,
but it sometimes overestimates the similarities of service users who happen to have
similar QoS experience on a few coinvoked Web services.

The prediction approach can be applied for a single service but in the same way for
the entire BPEL process. The determination of the factors wi for the BPEL process
corresponds to the identification of the context dimensions that impact the QoE ratings
of users. Here too, high values of wi indicate significant context dimensions. These
values provide hints to the business analyst how to define the user categories helping
to set up personalized copies of the BPEL process to deliver a personalized service.

8.5 Summary and Discussion

This chapter presents CoFee, a module that predicts response time, throughput and
QoE for services. CoFee collects feedbacks from service users regarding their experience
with the services and uses the feedbacks to make predictions. The service selection
module from the BPR framework retrieves the predicted values from CoFee and uses
them to select services with higher quality. Thus, the service selection is able to
consider QoS and QoE values that were monitored and assigned by users outside the
BPR framework. We showed exemplarily how response time and throughput can be
predicted with the QPred algorithm and discussed an approach to predict QoE. The
prediction accuracy can be improved by considering influence factors such as derived
QoS values (e.g. average response time) and context data.

The context variables that are identified to impact the prediction of the QP values
may also be considered for creating personalized service compositions for certain
user categories characterized by those context variables. The business analyst may
specify in the BPR rules for which user category he wants to provision services. When
a request is received from a user with context variables for which a personalized
service composition exists, the user request is delegated to the appropriate composition
for being processed. We showed in an example how a context-aware process can
be personalized for certain user categories, where the customers receive a service
composition according to their budget and age.

We presented two approaches for context-aware QoS and QoE prediction, but our
intention was not to provide algorithms that necessarily outperform other related
approaches. Rather, our aim was to provide basic methods that are expected to show
good prediction performance and to show how the corresponding predictions can be

8.5 Summary and Discussion 111

used in the BPR framework to create business processes tailored to user categories
characterized by certain context properties. It remains for future work to investigate
for which QoS dimensions these approaches show reasonable prediction performance
and for which dimensions improvements of these approaches or even completely other
algorithms are needed.

112 CoFee - The Feedback Collector and Predictor

9 The BPR Framework

In this chapter, we present the architecture of the BPR framework and show how a
BPEL process is monitored and how BPR rules are interpreted. We also provide some
implementation details of the framework.

9.1 Architecture

We have designed and implemented the BPR framework for testing and evaluating
how BPR rules specified for BPEL processes impact their quality behavior. The BPEL
processes are executed on the Oracle BPEL Process Manager engine [8]. We chose this
platform as BPEL engine because it provides suitable tools for the development of BPEL
processes as well as good online tutorials and documentation. Another advantage is
that Oracle provides APIs for controlling BPEL instances and for attaching and querying
sensors of the BPEL process, which is important for the monitoring.

The Web services are installed on the Apache Axis2 [4] engine for Web services. We
have implemented a service registry using a MySQL database where services can be
searched and published.

The BPR framework is implemented in Java and it contains several modules which
interact in order to ensure the QoS and QoE management of the process. The archi-
tecture of the BPR framework is represented in Figure 9.1 and it mainly contains four
modules: the BPRules Manager, which represents the core module, the QoS Monitor
& Aggregator module for QoS monitoring and aggregation, the Process Management
module for performing the management actions, and CoFee for collecting feedbacks
and predicting QP. The business analyst specifies BPR documents which are stored into
the BPR repository. We distinguish between two execution phases: the initial phase,
when all the necessary monitoring artifacts are deployed, and the monitoring phase,
when the actual QP management takes place.

In the initial phase, the BPRules Manager module loads the BPR documents (see Fig.
Figure 9.1, step Ini 1) from the BPR repository. The BPRules Manager reads from
the BPR documents which BPEL processes (identified by the specified process ID),
which sections of the process, and which QoS parameters are going to be monitored
in the next phase. Before deploying the BPEL process, some preparations for the
monitoring need to be done. Therefore, the BPRules Manager reads from the BPEL
description file which services are required. Then, it triggers the service selection
algorithm to select appropriate concrete services for all the services inside the BPEL
process. The BPRules Manager creates a proxy for each of the abstract services. The
proxy is implemented with Java servlets and it contains a reference to the URL of
the concrete service. The proxy intercepts the messages and delegates them to the

113

concrete service that is bound. The information from the proxy (timestamps, number
of transferred bytes, number of invocations, errors) is used for the QoS computation
of the concrete service. The BPRules Manager updates the endpoint references from
the BPEL description file with the URL of the proxy (e.g. for the Stock Service the URL
of the proxy is http://atlantis:543/buecherservices/StockService). In this way, when a
service replacement is performed, the BPEL process doesn’t have to be redeployed, but
only the proxy is updated to reference to another concrete service URL.

BPRules
Manager

(Opt 3.5)
Service

selection

(2.2) Aggregated
QoS, QoE

(1) Event:

Sensor m
essage

Business
Processes

Process
Management BPEL Engine

Oracle PM

(3.3) action

Client API

Sensor API

(Ini 3) Deploy Rules

(4) action

BPEL Engine

Rules

Rules Engine
Drools

(Ini1) Load BPR doc

Predicted QoS, QoE

(3.2) Trigger

action

(Opt 3.4)

Request W
S Predictions

Service
Selection

(Ini 4) Register
Services(2.1) Req. QoS, QoE

for Section/ Process

(3.1) Update QoS, QoE

(Ini 2) Deploy Process

Service Registry
WSDL files
QoS
promised

Service
Registry

BPR
doc

BPR
doc

QoS Monitor &
Aggregator

CoFee
Feedback Collector

BPR Repository

BPR
doc

Figure 9.1: The BPR Framework

For the monitoring we use a feature of the Oracle BPEL engine which offers the
possibility to attach sensors to the BPEL activities. Such a sensor may inform when
a BPEL activity is started/ended or when a failure occurred. The BPRules Manager
dynamically attaches sensors to all the activities of the BPEL process. By this, all the
monitoring artifacts were created and the BPEL process can be deployed (step Ini 2).
In the next step (Ini 3) the BPR rules need to be deployed on the rules engine.

We employed the Drools rules engine from JBoss for executing the rules. Before deploy-
ment, the rules are dynamically extracted from the BPR documents and transformed
into Drools files. Since BPRules and Drools use similar rule constructions (e.g. con-
dition/action, logic operators), the transformations between the two syntaxes can
be done automatically. We also used the possibility offered by Drools to implement
customized functions for percentage, minimum and maximum that are applied to the
QP objects. After the transformation step, the Drools files are deployed to the Drools
engine and the initial phase is terminated.

During process execution, the sensor messages (from each activity) are delivered to
the BPRules Manager (see step 1). A sensor message contains the instance ID of the
process, the sensor ID, the timestamp, the evaluation time (activation or completion

114 The BPR Framework

of the activity) and whether an error occurred. If the sensor represents the end of a
section or of the process, the BPRules Manager calls the QoS Monitor and Aggregator
to perform the QoS computation of the section or the process instance (steps 2.1, 2.2).
The QoS of the section or process are computed out of the QoS of the atomic services
within the section or process. With these new QoS values the BPRules Manager updates
the QoS objects from the Drools memory (step 3). The Drools engine permanently
evaluates the QoS conditions and in case they are met, it delegates the actions to
the Process Management (PM) module. Finally, the PM module is able to execute the
actions on the process. The Oracle BPEL PM engine offers a client API for querying
and controlling the BPEL instances (e.g. stopping instances, deploying, undeploying
the process) at runtime. Our PM module makes use of this Oracle API and additionally
adds other necessary actions (e.g. select-services, replace-ws, etc.).

9.2 Implementation

In this section, we provide some implementation details regarding the service registry
and service replacement.

9.2.1 The Service Registry

The service registry is used by the service providers to publish their services. The
registry is further queried by the Service Selection module to choose appropriate
services for the BPEL process.

The Service Registry is implemented using a MySQL database and it has an interface for
accessing it. In the database, we store relevant information from the WSDL interface
of the Web services, such as the URL of the service, the namespace of the service and
the abstract service name. We also store the QoS and QoE values promised by the
service providers in the registry. The registry interface offers the possibility to publish
and search for Web services.

9.2.2 Service Replacement

During runtime, the services from the BPEL process may be automatically replaced by
other services. We assume that an abstract service that is invoked by the BPEL process
can be realized by multiple concrete services that implement the same interface as the
abstract service and have the same functionalities.

The automatic service replacement is performed with the help of a proxy, which we
call the ServiceProxy. The role of the ServiceProxy is to forward the messages of the
BPEL process to the right concrete services. The communication between the BPEL
process, the ServiceProxy and the concrete service is represented in Figure 9.2. Our
proxy can be used when there is a match between the WSDL interface of the abstract
service and that of the concrete service, which means that the service operations have
the same signatures. The only differences that may be overcome by our proxy reside
in different service names, service URLs and namespaces. Semantic matching is out of

9.2 Implementation 115

the scope of this thesis, but if this would be desired, then the ServiceProxy could be
extended to perform a mediation between semantically annotated interfaces.

request

BPEL process

abstract service:
with URL to
ServiceProxy

concrete
service

modify
request
to match the
concrete service:
namespace,
method name
service URL

modify
response
to match the
abstract service:
namespace

SOAP message 1 SOAP message 2

response
SOAP message 3

response
SOAP message 4

ServiceProxy

BPR server

server of the
concrete service

proxy
Figure 9.2: Service Replacement

Before the BPEL process is deployed, the service endpoints of the Web services, inside
the process, are modified so that they reference the address of the ServiceProxy. Thus,
whenever a Web service is invoked, the request is sent to the ServiceProxy. The
ServiceProxy is implemented using a ServerSocket and it is running on the BPR server.

For example, we have a BPEL process that is calling a Bank service. The BPEL process
contains a reference to the URL of the ServiceProxy having the path of the abstract
service Bank, for example: ht tp : //192.168.105.4 : 54321/Services−WServices−
contex t − root/Abst ractBankServiceSoapHt tpPor t. All the requests for the Bank
Service are received by the ServiceProxy which delegates them to the concrete Bank
Service. The request, in form of a SOAP message, is modified by the ServiceProxy
before being forwarded to the concrete service. The proxy changes the header and
the body of the request so that the namespace and the service URL match the WSDL
interface of the concrete service. The concrete service receives the request, processes it
and sends the response message back to the ServiceProxy. This response is modified
again (the namespace) so that it matches the interface of the abstract service, and then
it is delivered back to the BPEL process.

116 The BPR Framework

A list stores the mappings holding the correspondence between the abstract service
name and the binding data of the concrete service. Thus, the ServiceProxy knows to
which concrete service the request has to be delivered. These mappings are updated by
the BPRules Manager, whenever it is desired to replace a service with another one, for
example, when a new service selection is triggered. Thus, when a service replacement
is performed, only the mappings have to be updated and the BPEL process does not
have to be redeployed.

9.2 Implementation 117

118 The BPR Framework

10 Evaluation

In this chapter, we present the results of the evaluation of our service selection
algorithms and of our context-aware QoS prediction algorithm. We compare our
selection algorithms OPTIM_HWeight and OPTIM_PRO with the GA_CAN algorithm
proposed in [39], and analyze the computation time and the optimality of the solution.
For the QoS prediction algorithm QPred, we evaluate prediction quality and stability
and compare it with IMEAN (the average QoS values of the Web services). Besides, we
measure and discuss the computation time for calculating the regression functions and
for performing the actual prediction.

10.1 Service Selection Algorithms

10.1.1 Comparison with the GA_CAN Algorithm

In order to evaluate our heuristic algorithms we implemented a genetic algorithm
as proposed by Canfora et al. [39] for comparison. Genetic algorithms are inspired
by biology and use meta-heuristics to solve optimization problems. The reason why
we chose this algorithm is because it can also be applied to non-linear functions and
constraints, which is also our target. For more details we refer to [39].

S1 S2 Sn

Service
candidates S12

S11

S1m1

S22

S21

Sn1

Sn2

Snmn

S2m2

Figure 10.1: Genome

The genome represents the service variants that realize the service orchestration and
is encoded as an array. The length of the genome is equal to the number of abstract
services. Each element within the array contains a reference to the list of the concrete

119

candidate services that may realize the abstract service. The initial population is
built with random individuals. The fitness of the individuals represents their utility
as a solution and is computed using the fitness function defined in Equation 10.2.
It corresponds to the sum of the objective function calculated on the genome and
the weighted distance D(g) (multiplied with the penalty factor k5) resulting from
constraint satisfaction checking. This means that those individuals that do not fulfill
the constraints are penalized with distance D(g). Assuming that there are h missed
constraints, the distance D(g) is defined as the sum of all the deviations from each of
the missed constraints.

D(g) =
h
∑

i=1

devi (10.1)

The fitness function is computed for the individuals as follows:

f f i t(g) = fob j(g) + k5 · D(g) (10.2)

We build multiple generations over the population in an iterative way by applying
the mutation and crossover operators. Through the mutation operator, the candidate
services are varied randomly and an arbitrary concrete service is selected to realize the
abstract service. The crossover operator combines service variants of different individu-
als. The algorithm stops when during multiple generations there is no improvement to
the fitness function value.

10.1.2 Evaluation Methodology and Setup

We have evaluated the three algorithms with regard to the required computation time
and the optimization of the objective function.

As baseline for our experiments, we have randomly generated 10 different BPEL trees
for each test case with different structures and dimensions. The tree structures have
been created in such a way that they contain the relevant BPEL activities, like while, if,
invoke, sequence and flow, with adjustable probabilities.

10.1.3 Experiments

The tests have been performed on a Lenovo R60, 1.83 GHz, 2 GB RAM with Windows
XP SP3 and JSDK 1.6. For the GA_CAN algorithm we set the mutation probability
to 0.01 and the crossover probability to 0.7. The OPTIM_HWeight algorithm was
triggered with nr_v = 12 and n_i ter = 12. Since all the algorithms are probabilistic,
we executed the algorithms 10 times (for each of the 10 BPEL trees, having 100 test
runs in total) and took the average value.

Our experiments A and B are depicted in Figure 10.2, Figure 10.3 and Figure 10.4.
We compared the computation time of OPTIM_HWeight and OPTIM_PRO with the
computation time of the GA_CAN algorithm (with a population of 100) for reaching
approximately the same value (difference less than 0.01 %) for the objective function.

120 Evaluation

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35

0

500

1000

1500

2000

2500

3000
GA_CAN

OPTIM_HWeight

OPTIM_PRO

GA_CAN

OPTIM_HWeight

OPTIM_PRO

Average time in ms Average time in ms

A B

Number of concrete services Number of abstract services

Figure 10.2: Computation Time OPTIM_HWeight, OPTIM_PRO and GA_CAN

In experiment A (see Figure 10.2 left side, Figure 10.3) we used a fixed number of
abstract services (15) and measured how an increasing number of concrete services
(from 10 to 70 per abstract service) influences the computation time. The results show
that OPTIM_PRO is the fastest algorithm, requiring on average about 19% of the time
of GA_CAN for reaching approximately the same optimization of fob j. We observed
that in average, our OPTIM_HWeight algorithm requires only about 28% of the time of
GA_CAN.

Table A

Nr. Con.Serv

GA_CAN(G)
Avg. timeG
P100 [ms]

HWeight (H)
Avg. timeH

[ms]
Avg. timeH/
Avg. timeG

O_PRO (P)
Avg. timeP

[ms]
Avg. timeP/
Avg. timeG

10 443.10 205.10 46.29% 140.80 31.78%
20 736.10 210.10 28.54% 148.50 20.17%
30 942.20 225.80 23.97% 167.80 17.81%
40 1046.50 234.80 22.44% 186.90 17.86%
50 1244.00 280.10 22.52% 198.10 15.92%
60 1274.10 327.30 25.69% 206.50 16.21%
70 1269.00 331.30 26.11% 208.20 16.41%

Figure 10.3: Computation Time of the Algorithms. Varying the Number of Concrete Services

Experiment B is similar to experiment A, but this time we increased the abstract
services from 0 to 35 while keeping the number of concrete services constantly at 40.
Experiment B (see Figure 10.2 right side, Figure 10.4) shows again that OPTIM_PRO
is the fastest algorithm and needed in average about 24% of the time required by
GA_CAN, while OPTIM_HWeight needed about 32% of the time of GA_CAN.

In experiment C (see Figure 10.5) we evaluated how well the objective function was
optimized by the different algorithms. We computed the value of fob j reached by

10.1 Service Selection Algorithms 121

Table B

Nr. Abs.Serv

GA_CAN(G)
Avg. timeG

[ms]

HWeight (H)
Avg. timeH

[ms]
Avg. timeH/
Avg. timeG

O_PRO (P)
Avg. timeP

[ms]
Avg. timeP/
Avg. timeG

5 192.10 142.60 74.23% 136.80 71.21%
10 459.30 206.30 44.92% 176.10 38.34%
15 1046.50 234.80 22.44% 203.60 19.46%
20 1532.80 261.20 17.04% 210.40 13.73%
25 2404.70 621.80 25.86% 226.00 9.40%
30 2539.25 561.42 22.11% 238.30 9.38%
35 2909.92 606.25 20.83% 257.20 8.84%

Figure 10.4: Computation Time of the Algorithms. Varying the Number of Abstract Services

OPTIM_HWeight, OPTIM_PRO and GA_CAN, where the computation time limit for all
of them was set to 4 seconds. The population size of GA_CAN during the evaluation
was varied between 100 and 600 and the best result was chosen. The evaluation
shows that our OPTIM_HWeight and OPTIM_PRO provides an optimization value at
least as good as GA_CAN. With an increasing number of abstract services (the number
of concrete services/possible realizations per abstract service is constantly 100) our
algorithms provide even better optimization results than GA_CAN (e.g. above 25
abstract services, fob j is about 7% better). Thus, according to our evaluation, the more
possible combinations exist, the better are the optimization results of OPTIM_HWeight
and OPTIM_PRO in comparison to GA_CAN.

Table C

Nr. Abs.
Serv

Fobj_H/
Fobj_G

Fobj_P/
Fobj_G

5 100.00% 100.00%
10 101.22% 101.22%
15 100.01% 100.01%
20 103.29% 103.36%
25 110.78% 110.94%
30 107.31% 107.31%
35 107.10% 107.31%

Figure 10.5: Optimization of the Objective Function

10.2 Prediction Algorithms

In this section, we evaluate our context-aware prediction algorithm with regard to
prediction quality and computation time. For this purpose, we conducted several
experiments based on a dataset provided by Zheng [112, 111, 17] with measurements
for response time and throughput for real Web services located in different countries
from all over the world. The dataset consists of measurements for 5825 real-world
services, which were discovered from the Internet from UDDI or from several Web
service portals (e.g. webservicelist.com, webservicex.net, seekda.com). The WSDL files

122 Evaluation

were downloaded and client-side Java code was generated with Axis2 [112] in order
to invoke the services. In the dataset, invocations from 339 users were recorded.

10.2.1 Evaluation Methodology and Setup

In order to evaluate the performance of our prediction algorithm with regard to
prediction quality, we first had to pre-process the dataset of Zheng to enrich it with
additional information regarding the distances between the locations of the services
and the users. In the dataset of Zheng, the user locations are indicated as both countries
and GPS coordinates, and the service locations are indicated solely as countries. Thus,
the service locations are not specified that precise as the user locations, and this issue
may bring some distortion into our predictions. For the locations of the services, we
simply used the GPS coordinates of the capitals of the corresponding countries. The
GPS coordinates are then used to calculate the distances between services and users.

It has also to be considered that the dataset of Zheng contains a number of data points
where for response time or throughput there were assigned values of -1, which we
interpret as missing values so that they can not be considered in the prediction. To
minimize such entries, we selected in our dataset only services that have less than 30
entries per service assigned with values of -1 for response time or throughput. The
dataset for our experiments contains 339 users from 31 countries and 1101 services
from 42 countries.

For our experiments we used sub-sets of the enriched dataset from Zheng. Each sub-set
is divided into two parts: data for training, i.e. calculation of the regression coefficients,
and test data, i.e. to compare predicted values with measured values. We measured
the prediction quality by computing the Mean Absolute Error (MAE):

MAE =

∑

i, j

�

�yi, j − ŷi, j

�

�

n
(10.3)

where yi, j is the predicted value and ŷi, j the recorded value.

We compared the MAE for response time and throughput of our prediction algorithm
with a very simple approach, i.e. taking the average values over the users for a service,
which we call in the following paragraphs IMEAN. Our intention is not to propose an
algorithm that outperforms all other known prediction algorithms, but to show that
even with a very simple and efficient algorithm significant improvements with regard
to prediction quality over IMEAN can be achieved and that predictions can benefit
from considering context information.

It has to be expected that prediction quality is highly impacted by the availability of
training data, i.e. number of services and users and the portion of measurements
recorded for them. Therefore, we vary these factors and assess their influence on the
prediction quality. We choose a number n, indicating the number of services and users,
and a number p for the percentage of the recorded measurements. With the help of
these two numbers, a matrix of n services and n users is randomly chosen from the
dataset, and only p percent of the data are used for training. The remaining 100− p
percent of the data are predicted. As the dataset for training is selected randomly, we
repeat each experiment 20 times.

10.2 Prediction Algorithms 123

We also evaluate our prediction algorithm with regard to computation time in order
to show its applicability in real world scenarios. Computation time was measured
for calculation of the regression coefficients and for the actual predictions. In the
same way as for assessing the prediction quality, we created sub-sets of the dataset
of Zheng. This time, however, we keep p constant at 20% and only vary the number
of services and users. All measurements have been performed with our Java-based
prototype implementation on a Lenovo T510 notebook with an Intel Core i7 processor
with 2.67GHz and 4GB RAM. Each experiment has been repeated 10 times.

10.2.2 Experiments

In the following paragraphs, we describe the three experiments that we conducted:
experiment 1 and 2 for evaluating the prediction quality and stability, and experiment
3 where we show the measured computation time for the calculation of regression
coefficients and the predictions.

10.2.2.1 Experiment 1- Increasing Matrix Density

In the first experiment, we evaluated the impact of the matrix density, i.e. the per-
centage of values of the matrix available for the training, on the prediction quality
of response time and throughput. We compare the MAE of the predictions computed
with the function service, function user, the combi function and IMEAN. We kept the
number of services and users constant at 150 and increased the matrix density from
10% to 50%. Figure 10.6 shows the average MAE for response time and Figure 10.7 the
average MAE for throughput for the 20 runs and the different prediction approaches.

M
AE

 R
es

po
ns

e
Ti

m
e

in
 s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

IMean

f_user

f_combi

f_service

Matrix density in %

Figure 10.6: Experiment 1 - MAE Response Time

From Figure 10.6 we can observe that the algorithm based on the service function
achieves the best prediction results for response time. It achieves an improvement of

124 Evaluation

prediction quality in terms of MAE of up to 35% compared to IMEAN. It even performs
better than the combined function for matrix densities from 20% to 50%. The trend of
the prediction quality almost remains the same for matrix densities from 20% to 50%
for all prediction algorithms. Only for a small matrix density of 10% the prediction
results are slightly worse. The best prediction quality was reached at a matrix density
of 40% and the lowest MAE value was reached with the f _service function. The
prediction quality of IMEAN is not affected by the matrix density in the evaluated
range.

M
AE

 T
hr

ou
gh

pu
t i

n
kb

/s

0

5

10

15

20

25

0 10 20 30 40 50 60

IMean

f_user

f_combi

f_service

Matrix density in %

Figure 10.7: Experiment 1 - MAE Throughput

Figure 10.7 shows the average MAE for the different prediction functions and increasing
matrix densities for throughput. They look very similar to the results for response time.
Here too, the algorithm based on the service function outperforms the other algorithms.
Compared to IMEAN it again achieves an improvement of the average MAE of about
35% at matrix density 50%. In contrast to the results for response time, prediction
quality improves for throughput with increasing matrix density for all regression-based
prediction algorithms.

The matrix density may not only impact the prediction quality with respect to the
average MAE over the 20 runs, but also the stability of the predictions. In order to
assess this aspect, Figure 10.8 and Figure 10.9 provide some more detailed information
on the statistics of the results using box plots. The blue bars indicate the median of
the MAE over the 20 runs. The boundaries of the boxes highlight the range from the
25th percentile to the 75th percentile, and therefore correspond to the middle 50% of
values. The vertical line shows the range from the minimum to the maximum value.

Figure 10.8 shows that stability of the prediction quality for response time slightly im-
proves for the regression based prediction algorithms with increasing matrix densities.
For example, for function service the box for the middle 50% of the MAE values covers
a range of length 0.09s for matrix density 10%, whereas for matrix density 50% it only
covers a range of length 0.055s.

10.2 Prediction Algorithms 125

Matrix density

MAE Response Time for f_service in s MAE Response Time for f_combi in s

Matrix density

MAE Response Time for f_user in s MAE Response Time for IMean in s

Matrix density Matrix density

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

10% 20% 30% 40% 50%
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

10% 20% 30% 40% 50%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

10% 20% 30% 40% 50%
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

10% 20% 30% 40% 50%

Figure 10.8: Experiment 1 - Boxplots MAE Response Time

Matrix density Matrix density

Matrix density

MAE Throughput for f_service in kb/s MAE Throughput for f_combi in kb/s

MAE Throughput for f_user in kb/s MAE Throughput for IMean in kb/s

0

5

10

15

20

25

30

10% 20% 30% 40% 50%
0

5

10

15

20

25

30

10% 20% 30% 40% 50%

0

5

10

15

20

25

30

10% 20% 30% 40% 50%
0

5

10

15

20

25

30

10% 20% 30% 40% 50%

Matrix density

Figure 10.9: Experiment 1 - Boxplots MAE Throughput

126 Evaluation

From Figure 10.9 it can be observed that also for throughput stability of the regression-
based prediction algorithms improves with increasing matrix density. Whereas for
matrix density 10% and function service the box covers a range of length 6.1kb/s, it
only covers a range of 2.0kb/s for matrix density 50%.

10.2.2.2 Experiment 2 - Increasing Matrix Size

In experiment 2, we analyze the prediction quality and its stability for response time
and throughput when increasing the size of the matrix. Similarly to experiment 1, we
randomly select entries from the dataset as training data and vary the size of the matrix.
For each of the matrix dimensions we make predictions for 20 runs and compute the
average MAEs. The matrix density is kept constant at 20% and the matrix size is varied
from 70 users and 70 services to 339 users and 350 services.

Grafik ok

Number of services and users

M
AE

 R
es

po
ns

e
Ti

m
e

in
 s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400

IMean

f_user

f_combi

f_service

Figure 10.10: Experiment 2 - MAE Response Time

Figure 10.10 and Figure 10.11 present the average MAE values for the 20 runs for
response time and throughput for the different regression functions and IMEAN. It
can be observed that both for response time and throughput the prediction quality
with the regression functions increases (MAE getting lower) with increasing matrix
size from 70 to 200 users and services. This is to be expected as with a greater matrix
dimension there are more users and services available and more entries are considered
for computing the coefficients of the regression functions. Beyond the matrix size
of 200 the prediction quality remains quite the same, which means that more data
points do not result in a further improvement of the regression functions. Similarly to
experiment 1, the MAE for IMEAN is not affected by the size of the matrix and changes
for response time only slightly in the interval between 0.63s and 0.69s.

Observing Figure 10.10, the predictions of response time with the service functions are
the best among the tested regression functions and improve from a MAE of 0.56s for

10.2 Prediction Algorithms 127

matrix size 70 to a MAE of 0.42s for matrix size 300, thus achieving up to 34% better
predictions (at matrix size 300). For matrices with a size varying from 70 to 150, the
predictions with f _service and f _combi reach a similar good MAE both for response
time and throughput (see Figure 10.10, Figure 10.11).

M
AE

 T
hr

ou
gh

pu
t i

n
kb

/s

Number of services and users

0

5

10

15

20

25

0 100 200 300 400

IMean

f_user

f_combi

f_service

Figure 10.11: Experiment 2 - MAE Throughput

For matrix dimensions greater than 150, the response time and throughput predictions
with f _service are the best from all the regression functions, having slightly lower MAE
values than the predictions with f _combi. Regarding throughput, the lowest MAE
value of 13.18kb/s was reached with the f _service function for a matrix consisting of
339 users and 350 services and the value represents an improvement of 33% compared
to the MAE value of IMEAN.

Similarly to experiment 1, we observe that the stability of the prediction with the
regression functions improves with increasing the matrix size. This trend for response
time and throughput is shown in Figure 10.12 and Figure 10.13.

For example, with f _service the box for the middle 50% of the MAE values for
response time covers a range of length 0.10s for 70 services and users, whereas it only
covers a range of length 0.031s for 300 services and users. Similarly, the box for the
MAE values for throughput with f _service covers a range of length 4.64kb/s for 70
services and users, whereas it covers only a range of 1.4kb/s for 339 users and 350
services. For both response time and throughput, also the range between the minimum
and maximum MAE values gets smaller with increasing matrix size for all regression
functions.

128 Evaluation

MAE Response Time for f_user in s

0

0.2

0.4

0.6

0.8

1

70 100 150 200 250 300 350

MAE Response Time for f_service in s

Number of services and users

0

0.2

0.4

0.6

0.8

1

70 100 150 200 250 300 350

MAE Response Time for f_combi in s

Number of services and users

0

0.2

0.4

0.6

0.8

1

70 100 150 200 250 300 350

Number of services and users

0

0.2

0.4

0.6

0.8

1

70 100 150 200 250 300 350

MAE Response Time for IMean in s

Number of services and users

Figure 10.12: Experiment 2 - Boxplots MAE Response Time

Number of services and users Number of services and users

Number of services and users Number of services and users

0

5

10

15

20

25

30

35

70 100 150 200 250 300 350

MAE throughput for f_service in kb/s

0

5

10

15

20

25

30

35

70 100 150 200 250 300 350

MAE throughput for f_combi in kb/s

0

5

10

15

20

25

30

35

70 100 150 200 250 300 350

MAE throughput for f_user in kb/s

0

5

10

15

20

25

30

35

70 100 150 200 250 300 350

MAE throughput for IMean in kb/s

Figure 10.13: Experiment 2 - Boxplots MAE Throughput

10.2 Prediction Algorithms 129

10.2.2.3 Experiment 3 - Computation Time

In experiment 3, we measure the computation time for calculating the regression coef-
ficients for response time prediction and measure the time needed for the predictions.
We vary the matrix size from 70 services and users to 350 services and 339 users. The
matrix density is kept constant at 20%. This means that 20% of the matrix are used
for calculation of the regression coefficients and the remaining 80% of the matrix are
predicted.

For coefficient calculation, the following steps have to be performed and are included
in the measurement of the computation time:

• multiple linear regression with all observations

• calculation of the Cook’s distance and filtering outliers

• multiple linear regression without filtered outliers

• calculation of the coefficient of determination

For prediction, only the regression coefficients have to be fetched from the repository,
and the service, user or combi function has to be applied depending on the used pre-
diction method. When using the service function, also the coefficients of determination
of the user and the service function have to be fetched.

We perform 10 runs for each matrix dimension and build the average computation
time of the 10 runs. The measured time values for coefficient calculation are listed in
Figure 10.14.

Matrix Size f_user f_service f_combi f_user f_service f_combi
70x70 0.0705 0.0680 0.1091 4.93 4.76 7.63

100x100 0.0925 0.0896 0.1526 9.24 8.96 15.26
150x150 0.1237 0.1277 0.2455 18.56 19.15 36.82
200x200 0.1669 0.1639 0.2901 33.38 32.75 57.92
250x250 0.1923 0.1908 0.3604 48.07 47.69 90.02
300x300 0.2291 0.2261 0.4228 68.71 67.83 126.66
339x350 0.2779 0.2621 0.4475 94.20 91.75 153.53

Computation Time for Coefficient Calculation in ms
Average Sum for matrix

Figure 10.14: Experiment 3 - Computation Time for Coefficient Calculation

The left side of Figure 10.14 shows the average time required for the coefficient
calculations for the different functions with respect to different matrix sizes, whereas
the right side lists the times required for calculating the coefficients for the whole
matrix. The matrix size (in conjunction with the selected matrix density of 20%)
impacts the number of points available for the multiple linear regression. It can be
observed that calculating the regression coefficients for function user and function
service approximately needs the same time, whereas the calculation of the coefficients
for the combi function almost needs twice as much time. This is quite obvious, as
the combi function internally consists of a combination of the function user and the
function service, and therefore the coefficients for both functions have to be calculated.

130 Evaluation

We also observe that the average time needed for coefficient calculations linearly
increases with the matrix size, i.e. with the number of observations available for
performing the multiple linear regression. This is also illustrated in Figure 10.15.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

70x70 100x100 150x150 200x200 250x250 300x300 339x350

Av
er

ag
e

tim
e

in
 m

s

Matrix Size

f_user

f_service

f_combi

Figure 10.15: Experiment 3 - Average Computation Time for Coefficient Calculation

In the following paragraphs, we review the different steps included in the time meas-
urement for coefficient calculation and show that this observation conforms to the
complexity of the different involved steps.

• Multiple Linear Regression with All Observations

This step mainly consists of creating the matrices X and Y containing the ob-
servations and performing the matrix calculation (X T X)−1X T Y . Here X is a
(n, 3)-matrix, with n being the number of observations, and Y is a (n, 1)-matrix.
Consequently, (X T X) is a (3,3)-matrix and for each of the nine entries a sum
of n products has to be calculated. Therefore, the complexity of calculating
(X T X) is linear in the number of observations. Inverting a (3,3)-matrix shows
constant complexity. The calculation of (X T X)−1X T consists of a multiplication
of a (3, 3)-matrix and a (3, n)-matrix which results in a (3, n)-matrix. This means
that 3n entries have to be calculated, each being a sum of three products. Thus,
also this step is linear in the number of observations. Finally, a multiplication
of a (3, n)-matrix with a (n, 1)-matrix is required to get the three regression
coefficients. For each of the coefficients, a sum of n products has to be calculated.
In summary, we can conclude that calculating the regression coefficients shows a
complexity linear in the number of observations.

• Calculation of the Cook’s Distance and Filtering Outliers

The calculation of the Cook’s distance involves the calculation of the student-
ized residual r for each of the points and the computation of the hat matrix
H = X (X T X)−1X T . Examining the formula for the studentized residual (see
Equation 8.11) and assuming the availability of the of the hat matrix and of σ̂2,
calculation of the studentized residual for a point has constant complexity. From
the formula for σ̂2 (see Equation 8.12), it can easily be verified that its complex-
ity is linear in the number of available observations. Determining the hat matrix

10.2 Prediction Algorithms 131

H = X (X T X)−1X T consists of a multiplication of X , which is a (n, 3)-matrix,
with (X T X)−1X , which is a (3, n)-matrix. Using the insights from the previous
bullet point, the complexity of calculating (X T X)−1X is linear with respect to
the number of observations, but the calculation of the final matrix multiplication
results in a (n, n)-matrix with n2 entries. However, only the n elements on the
diagonal of the hat matrix are required. Thus, also the complexity of calculating
the Cook’s distance is linear with regard to the number of observations.

• Multiple Linear Regression without Filtered Outliers

From a complexity point of view, this step equals the step from the first bullet
point but with fewer observations if outliers have been filtered.

• Calculation of the Coefficient of Determination

From Equation 8.8 it can easily be seen, that also the complexity of this step is
linear with regard to the number of observations.

In total, we can conclude that the calculation of the regression coefficients can be
achieved with a complexity linear in the number of observations, which is inline with
the results of our experiments.

Matrix Size f_user f_service f_combi f_user f_service f_combi
70x70 0.0016 0.0015 0.0026 6.30 5.68 10.31

100x100 0.0017 0.0018 0.0027 13.22 13.91 21.58
150x150 0.0018 0.0019 0.0029 32.37 33.38 52.26
200x200 0.0018 0.0019 0.0030 55.56 60.24 94.24
250x250 0.0019 0.0018 0.0049 91.75 90.65 237.40
300x300 0.0018 0.0018 0.0043 125.51 125.18 302.57
339x350 0.0018 0.0017 0.0036 166.04 162.20 335.17

Computation Time for Prediction in ms
Average Sum for matrix

Figure 10.16: Experiment 3 - Computation Time for Prediction

Figure 10.16 lists the results of our experiments with regard to the computation time
needed for the actual predictions. The left side of Figure 10.16 shows the average
computation times required for the predictions, whereas the right side lists the times
required for performing the predictions for the whole matrix. The numbers reveal that
predictions with our approach can be performed very fast, i.e. in a few microseconds.
Just as for the calculation of the regression coefficients, the average times for function
service and function user are almost the same, whereas predictions with the combi
function require twice as much time as the predictions with only the function user
or only the function service. It is also obvious that the average prediction times are
independent from the matrix size, whereas the prediction times for the whole matrix
grow quadratically with the number of users and the number of services (assuming a
quadratic user-service matrix). This is due to the fact that the number of entries to be
predicted also grows quadratically.

132 Evaluation

In summary, our experiments reveal that calculating the regression coefficients and
making the actual predictions can be performed very fast. Also the complexity of
our approach is linear with regard to the available observations. Thus, our context-
aware prediction approach based on linear regression is well-suited for real-world
applications.

10.2 Prediction Algorithms 133

134 Evaluation

11 Conclusions

Distributed business applications are often realized as service compositions where Web
services from different partners cooperate to accomplish a more complex business goal.
In order to fulfill clients’ requirements, the Web service compositions need to perform
at adequate QoS levels. Another important aspect to be considered is the fulfillment
of the users’ expectations so that the users are satisfied with both performance and
functionalities of the composition.

The degree of users’ satisfaction is reflected by the Quality of Experience (QoE). Even
when undesired situations occur, such as a network failure or services becoming
unavailable, the service composition has to maintain adequate QoS and QoE levels.
The malfunction of one single service inside the service composition may spoil the
behavior of the entire service process.

Thus, the composition has to be properly managed so that its clients do not become
aware of such problems. Monitoring and managing QoS and QoE are crucial tasks to
ensure the success of the service process. In this thesis, we considered QoS dimensions
such as response time, availability, reliability and throughput, and also the QoE.
We presented a comprehensive solution which contains adequate mechanisms for
managing QoS and QoE of Web service compositions at runtime. In the following, we
review the identified requirements and the corresponding solutions.

11.1 Requirements and Solution Summary

1. Flexible Monitoring

In order to be able to react to undesired service levels, the service composition
needs to be monitored regarding its quality behavior. It has to be possible to easily
add new QoS dimensions to the monitoring. When monitoring a service process,
the process description should not have to be altered to include monitoring
artefacts.

Our solution for a flexible monitoring of the service composition was described
in Chapter 6. We presented the QoS measurement algorithm that aggregates
the QoS of the service composition out of the QoS of the building blocks. New
QoS dimensions may be added by the use of plug-ins. Monitoring is performed
with the help of sensors that signal the begin and end of an activity. These
monitoring artefacts are defined in separate files, and thus the BPEL description
file has not to be altered for this purpose. We also compared the measurement
algorithm with the estimation algorithm and showed for which situation each of
the algorithms is suited.

135

2. Managing QoS and QoE

In case the QP requirements for the Web services or the Web service composition
are not met, adequate reactions need to be specified and the deviations have to
be handled properly.

We designed and developed the BPRules language for managing QoS and QoE of
Web services and Web service compositions. The BPR rules are specified by the
business analyst and define what actions should be undertaken when certain QoS
or QoE values are detected. BPR rules are defined in extra files separately from
the process description and are deployed and executed by our BPR framework.
Among the management actions supported by BPRules there are: starting or
stopping the process, selecting new services to improve the QoS behavior of the
process, and selecting services for user groups characterized by certain context
data. BPRules also facilitates the generation of different kinds of reports which
help the business analyst to get a more detailed view on the process behavior.

3. Service Selection

In current service markets, multiple services are available that have the same
functionality but perform at different service levels. Therefore, an abstract
service of the composition can be realized by multiple concrete services. Thus,
services with adequate QoS and QoE levels need to be selected so that the
service composition fulfills the desired QoS and QoE constraints and optimizes
an objective function.

In Chapter 7 we presented three selection algorithms: OPT I M_S, OPT I M_PRO
and OPT I M_HWeight. The OPT I M_S algorithm allows different types of
search, a local, a global (brute-force) and a heuristic search. This is possible
by calling the algorithm with different parameters and it gives the possibil-
ity to trade computation time off against the optimality of the solution. The
OPT I M_HWeight algorithm is based on the OPT I M_S algorithm and uses a
special heuristic function which realizes a gradient ascent. The OPT I M_PRO
algorithm uses priority factors to find a near-optimal solution.

4. QoS and QoE Predictions

The advertised QP values may differ from the values experienced by the users.
Context dimensions of users and services may also influence the QP values. Thus,
considering context dimensions in the prediction of QP would bring additional
benefits to the selection of services.

In Chapter 8, we presented CoFee, a module of the BPR framework, which
collects QP feedbacks and is able to make predictions for unknown user-service
constellations based on the collected feedbacks. It is also able to incorporate
context information in its predictions. We exemplarily showed how response time
and throughput is predicted. The predictions are based on linear regression and
the corresponding functions also consider the distances between the locations
of users and services and the average values of response time and throughput.
We showed how the CoFee module is integrated in the BPR framework and
how it interacts with the Service Selection module in order to select appropriate
services.

136 Conclusions

5. A QP Management Solution

The solutions to the previously mentioned requirements have to be combined
into a comprehensive QP management framework. The business analyst has to
be supported in his work with adequate tools for managing the service processes.

For this purpose, we designed and developed the BPR framework. Our framework
consists of several modules and integrates the presented monitoring approach,
the specification and execution of BPR rules, the selection of services, and CoFee
into a QP management solution. In Chapter 9, we described the architecture
of the BPR framework and showed how the modules work together in order to
achieve the QP management.

11.2 Contributions

The main contribution of this work resides in providing a comprehensive solution for
QoS and QoE management for Web service compositions. Our solution includes a
flexible monitoring approach, the BPRules language that provides novel features, new
algorithms for the selection of services, and algorithms for QP predictions on the basis
of context data. The BPR framework combines all the new features and contributions
to a comprehensive management solution.

Our monitoring approach has its focus on flexibility. New QoS dimensions may easily
be added to the monitoring. This is possible by the use of plug-ins for the aggregation
functions and the value retrieval functions. We showed how automated deployment
is done, by automatically generating sensors for the process in extra files. Thus, the
monitoring artefacts are kept separate from the BPEL description file. We presented
the measurement algorithm which is applied for the QoS computation of running or
completed process instances.

We designed and developed the BPRules language, that includes novel features to
become aware of and to overcome possible QP deviations. BPRules offers the possibility
to query different types of QP: the monitored QoS and the assigned QoE, the estimated
QP and the predicted QP. These values may be queried for a single Web service, for
sections or for the entire composition. We are able to consider the QP behavior of
running instances (instance-set handling, state querying) but also of instances which
are already terminated. For managing the service process, BPRules provides a set of
actions which are indispensable for a successful execution of a service process. Among
the offered actions are: a flexible service selection, the dynamic rule set change and
the generation of different kind of reports which provide the business analyst a good
picture of the process behavior. BPRules has its focus on the service selection and
replacement. Therefore, this action covers many detail aspects. The service selection
action permits to seamlessly integrate multiple service selection algorithms depending
on the number of abstract services and the number of available service candidates.
The business analyst may specify the QP requirements and the objective function to be
optimized for the service selection. BPRules offers the possibility to specify user groups
with certain context properties. Further, these properties are used for a context-aware
service selection tailored for the user groups.

11.2 Contributions 137

Our QP management solution includes novel and efficient algorithms for the selection of
services. The proposed algorithms, OPT I M_S, OPT I M_PRO and OPT I M_HWeight
are applicable also for non-linear objective functions. The evaluation showed that
OPT I M_PRO and OPT I M_HWeight outperform a genetic algorithm from related
work [39]. OPT I M_PRO was the fastest algorithm and needed in average about 22%
of the time of the genetic algorithm. The OPT I M_HWeight algorithm needed in
average about 30% of the time of the genetic algorithm. Both our algorithms even
achieved better values for the objective function (up to 7% better) for cases with high
number of combinations.

We presented new approaches for context-aware QP predictions. In contrast to other
related works, we consider not only the location information of users and services but
also discuss other context dimensions which may influence the QoE. Relevant context
dimensions are identified by statistical approaches. The predictions are used to make
a context-aware service selection for specified user categories with certain context
properties.

11.3 Outlook and Future Work

Currently, the BPR framework assumes stateless Web services which are bound into
the service compositions. The integration of stateful Web services poses some further
challenges since also the states of the services need to be considered. Rollback mechan-
isms for the services may be required in order to appropriately handle sessions when
performing management actions. Stateful Web services would also have an impact on
the service selection algorithms as several activities related to the same Web service
may spread over the business process. Currently, the activities are considered to be
independent and thus, also the services realizing the different abstract services are
selected independently of each other.

The BPR framework could be extended with the monitoring and negotiation of SLAs.
Also it could be investigated whether parts from BPR rules (e.g. the condition part)
may be generated automatically from an SLA.

In the BPR framework, we currently monitor each activity of the process. The mon-
itoring artefacts produce extra overhead. One possibility to reduce the monitoring
overhead would be to specify different rule sets with different monitoring levels. Thus,
if the process behaves well, a monitoring of the root activity would be sufficient. If
the process behavior gets worse and the rule set changes, then the monitoring gets
more detailed and also single sections are explicitly monitored. Web services can also
be integrated into mobile applications. In this case, reducing the monitoring overhead
would also be useful since the resources on mobile devices are often limited.

In our approach, the business analyst is responsible for specifying the BPR rules. In
particular, he has to ensure that he does not define contradictory rules. Extra tool
support should be offered to the business analyst that exhibits warnings when he
specifies contradictory rules or even proposes solutions to resolve the conflicts.

The main role addressed by the BPR framework is that of the business analyst. However,
besides the business analyst more participants are involved, like the developers of the

138 Conclusions

service composition or the providers of the Web services. The service providers are
also interested in the behavior of their Web services. Thus, e.g. the report functionality
of the BPR framework may be extended for other roles as well.

In future work, BPRules could be extended with other adaptation mechanisms not only
considering the replacement of services but also supporting more complex adaptations,
like the dynamic adaptation of sections of the process. This assumes to change the
structure of the BPEL process and would also affect the selection of services.

The business analyst is supposed to know for which user categories he desires to
build context-aware service compositions. He declares the context dimensions that
characterize the user categories. However, more elaborate tool support can be provided
to automatically detect the user categories based on the monitored QoS, the assessed
QoE values and the available context data. The development of such algorithms
requires the existence of real datasets to verify their viability.

We discussed the prediction of QoE that may be influenced by context dimensions
characterizing the users. However, this approach has to be verified with a real dataset.
Currently the approach is based on memory-based collaborative filtering. It should
also be analyzed whether a model-based approach or an approach utilizing matrix
factorization can be used for the prediction of QoE.

11.3 Outlook and Future Work 139

140 Conclusions

List of Figures

1.1 Architecture Overview . 5

2.1 SOA Roles [80] . 11
2.2 SOA Layers [13] . 12
2.3 BPEL Activities . 21
2.4 Bookshop BPEL Process . 22
2.5 Influence Factors on QoE . 30
2.6 QoE Values . 31

3.1 Managing a BPEL Process . 36
3.2 Architecture Overview . 37

5.1 The BPR Document . 54
5.2 BPR Elements Overview . 55

6.1 QoS Measurement Algorithm . 72
6.2 Response Time Aggregation . 73
6.3 The QoS Aggregator Component . 77

7.1 BPEL Tree Example . 81
7.2 OPTIM_S Algorithm . 83
7.3 Gradient at Point ~qs

N . 85
7.4 OPTIM_HWeight Algorithm, Procedure computeWeight 87
7.5 OPTIM_HWeight Algorithm, Procedure OPTIM_HWeight 87
7.6 OPTIM_PRO Algorithm . 89

8.1 Collecting Feedbacks in CoFee . 94
8.2 Process and WS Feedbacks . 95
8.3 Process Replication . 97
8.4 EventPlanner Service Composition . 98
8.5 Service Selection and Cofee . 99
8.6 Request Delegation . 101
8.7 Significant Variables . 102
8.8 Users-Services Response Time Values . 106
8.9 Sparsity Prediction . 108

9.1 The BPR Framework . 114
9.2 Service Replacement . 116

10.1 Genome . 119
10.2 Computation Time OPTIM_HWeight, OPTIM_PRO and GA_CAN 121

141

10.3 Computation Time of the Algorithms. Varying the Number of Concrete
Services . 121

10.4 Computation Time of the Algorithms. Varying the Number of Abstract
Services . 122

10.5 Optimization of the Objective Function . 122
10.6 Experiment 1 - MAE Response Time . 124
10.7 Experiment 1 - MAE Throughput . 125
10.8 Experiment 1 - Boxplots MAE Response Time 126
10.9 Experiment 1 - Boxplots MAE Throughput . 126
10.10 Experiment 2 - MAE Response Time . 127
10.11 Experiment 2 - MAE Throughput . 128
10.12 Experiment 2 - Boxplots MAE Response Time 129
10.13 Experiment 2 - Boxplots MAE Throughput . 129
10.14 Experiment 3 - Computation Time for Coefficient Calculation 130
10.15 Experiment 3 - Average Computation Time for Coefficient Calculation . . . 131
10.16 Experiment 3 - Computation Time for Prediction 132

142 List of Figures

List of Tables

5.1 Management Actions Set . 64

6.1 Aggregation Functions for the QoS Measurement 71
6.2 Aggregation Functions from [39] . 75

7.1 Constraints Checking . 82

143

144 List of Tables

A Appendix

A.1 BPRules XSD Schema

1 <?xml version="1.0" encoding="UTF−8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
3 <!−−
4 define the root element bprules for the BPR−document
5 −−>
6 <xs:element name="bprules" type="bprulesType"/>
7 <!−−
8 elements in the BPR−document
9 −−>

10 <xs:complexType name="bprulesType">
11 <xs:sequence>
12 <xs:element name="include−bprDocs" type="includebprdocsType" minOccurs="0"/>
13 <xs:element name="constants" type="constantsType" minOccurs="0"
14 maxOccurs="unbounded"/>
15 <xs:element name="sections" type="sectionsType" minOccurs="0"/>
16 <xs:element name="rulesets" type="rulesetsType" maxOccurs="unbounded"/>
17 </xs:sequence>
18 <xs:attribute name="id" type="xs:ID"/>
19 <xs:attribute name="processid" type="xs:string" use="required"/>
20 </xs:complexType>
21 <!−−
22 Attributes that may be used for multiple elements
23 − id − uniquely identifies an element
24 − select − may reference the element identified by the id
25 − applysection − the quality parameters are computed for the section
26 − applyservice − the quality parameters are computed for a service
27 − applysection and applysection are used for the elements condition , expression ,
28 qualityparam, select −services , select −services−context
29 − default value − in absence of applysection and applyservice − the quality parameters
30 are computed for the process
31 − applyfunction − is only applicable for the monitored quality values of a set
32 of instances (e.g. average qp of the instances)
33 −−>
34 <!−−
35 define sections
36 −−>
37 <xs:complexType name="sectionsType">
38 <xs:sequence>
39 <xs:element name="section" type="sectionType" maxOccurs="unbounded"/>
40 </xs:sequence>
41 </xs:complexType>
42 <!−−
43 define section: A section is defined by one structured activity or is bounded by two activities
44 − the activities are referenced by their names as specified in the BPEL process
45 − attribute id is required for a section . It enables to refer to the section

145

46 (e.g. by the applysection attribute within the select −services action)
47 −−>
48 <xs:complexType name="sectionType">
49 <xs:sequence>
50 <xs:element name="activity" type="xs:string" maxOccurs="2"/>
51 </xs:sequence>
52 <xs:attribute name="id" type="xs:ID" use="required"/>
53 </xs:complexType>
54 <!−−
55 include other bpr−documents
56 doc − contains the location and name of the bpr−document to be included
57 −−>
58 <xs:complexType name="includebprdocsType">
59 <xs:sequence>
60 <xs:element name="doc" type="xs:string" maxOccurs="unbounded"/>
61 </xs:sequence>
62 </xs:complexType>
63 <!−−
64 define constants
65 −−>
66 <xs:complexType name="constantsType">
67 <xs:sequence>
68 <xs:element name="constant" type="constantType" maxOccurs="unbounded"/>
69 </xs:sequence>
70 </xs:complexType>
71 <!−−
72 define rulesets
73 −−>
74 <xs:complexType name="rulesetsType">
75 <xs:sequence>
76 <xs:element name="ruleset" type="rulesetType" maxOccurs="unbounded"/>
77 </xs:sequence>
78 </xs:complexType>
79 <!−−
80 define ruleset
81 − period − the period of time for selecting the instances to be evaluated.
82 It targets only the monitored quality parameters.
83 − active − the ruleset is currently active or inactive (temporarily ignored)
84 − the constants which are defined in the ruleset can be queried only within the ruleset
85 (as local constants)
86 −−>
87 <xs:complexType name="rulesetType">
88 <xs:sequence>
89 <xs:element name="evaluate" type="evaluateType" minOccurs="0"/>
90 <xs:element name="constants" type="constantType" minOccurs="0"
91 maxOccurs="unbounded"/>
92 <xs:element name="period" type="periodType" minOccurs="0" maxOccurs="1"/>
93 <xs:element name="rule" type="ruleType" maxOccurs="unbounded"/>
94 </xs:sequence>
95 <xs:attribute name="id" type="xs:ID"/>
96 <xs:attribute name="active" type="xs:boolean" use="optional"/>
97 </xs:complexType>
98 <!−−
99 define evaluate

100 − defines when the ruleset is evaluated. There are two possibilities:
101 1. Attribute trigger="periodic"
102 Rules are triggered periodically (e.g. every 1 minute, every two hours)
103 Example: every three minutes

146 Appendix

104 <evaluate trigger="periodic" unit="minutes">3</evaluate>
105 2. Attribute trigger="once"
106 The rules are triggered only once, after the BPR−document was loaded or at a
107 specified date and time.
108 Example: <evaluate trigger="once">12−08−13T12:00:00</evaluate>
109 If <evaluate> is missing, the default value for evaluation is ' every minute'.
110 −−>
111 <xs:complexType name="evaluateType">
112 <xs:simpleContent>
113 <xs:extension base="xs:string">
114 <xs:attribute name="trigger" type="triggerAttType"/>
115 <xs:attribute name="unit" type="unitTimeType"/>
116 </xs:extension>
117 </xs:simpleContent>
118 </xs:complexType>
119 <xs:simpleType name="triggerAttType">
120 < xs:restriction base="xs:string">
121 <xs:enumeration value="periodic"/>
122 <xs:enumeration value="once"/>
123 </xs:restriction>
124 </xs:simpleType>
125 <!−−
126 define rule
127 − there are two possibilities:
128 1. define new rule with an id . The condition can be omitted. In this case it
129 is assumed to evaluate to true . The rule contains one action element.
130 2. reference an existing rule by using the select attribute , in this case condition ,
131 action and id are omitted.
132 −−>
133 <xs:complexType name="ruleType">
134 <xs:sequence minOccurs="0">
135 <xs:element name="condition" type="conditionType" minOccurs="0" maxOccurs="1"/>
136 <xs:element name="action" type="actionType"/>
137 </xs:sequence>
138 <xs:attribute name="id" type="xs:ID" use="optional"/>
139 <xs:attribute name="select" type="xs:string" use="optional"/>
140 </xs:complexType>
141 <!−−
142 define condition
143 − the condition can be applied for the entire BPEL process (default), for a section
144 (with attribute applysection) or a single service (with attribute applyservice).
145 −−>
146 <xs:complexType name="conditionType">
147 <xs:sequence minOccurs="0">
148 <xs:element name="constraints" type="constraintsType"/>
149 </xs:sequence>
150 <xs:attribute name="applysection" type="xs:string" use="optional"/>
151 <xs:attribute name="applyservice" type="xs:string" use="optional"/>
152 </xs:complexType>
153 <!−−
154 define constraints
155 − select−instances − select instances with a certain state (e.g. CLOSED_COMPLETED,
156 FAULTED, etc.)
157 − instances−subset − defines how many instances from the set should fulfill the constraints .
158 − constraints can be linked by logical operators OR, AND, NOT.
159 −−>
160 <xs:complexType name="constraintsType">
161 <xs:sequence minOccurs="0">

A.1 BPRules XSD Schema 147

162 <xs:element name="select−instances" type="processpropertiesType" minOccurs="0"/>
163 <xs:element name="instances−subset" type="instancessubsetType" minOccurs="0"/>
164 <xs:choice>
165 <xs:element name="expression" type="expressionType"/>
166 <xs:element name="and" type="BinaryConstraintsLogicOperatorType"/>
167 <xs:element name="or" type="BinaryConstraintsLogicOperatorType"/>
168 <xs:element name="not" type="UnaryConstraintsLogicOperatorType"/>
169 </xs:choice>
170 </xs:sequence>
171 <xs:attribute name="id" type="xs:ID" use="optional"/>
172 <xs:attribute name="select" type="xs:string" use="optional"/>
173 </xs:complexType>
174 <!−−
175 define period of time
176 − period of time − for selecting the instances to be evaluated.
177 − applies for the monitored quality parameters
178 − there are two possibilities:
179 1. AbsoluteTime − e.g. ' 23−09−12T10:50', to specify an absolute date
180 two special strings can be used:
181 ' Current' − for the current time
182 ' ProcessStart ' − for the date when the process was started
183 2. RelativeTime with a specified unit , e .g. '−4 days' means from current time 4 days
184 in the past
185 −−>
186 <xs:complexType name="periodType">
187 <xs:sequence>
188 <xs:element name="interval" type="intervalType" minOccurs="1" maxOccurs="1"/>
189 </xs:sequence>
190 </xs:complexType>
191 <!−−
192 define interval type
193 −−>
194 <xs:complexType name="intervalType">
195 <xs:sequence>
196 <xs:element name="begin" type="intervalBoundaryType"/>
197 <xs:element name="end" type="intervalBoundaryType"/>
198 </xs:sequence>
199 <xs:attribute name="type" type="timeType"/>
200 </xs:complexType>
201 <!−−
202 define time type − distinguish between absolute and relative time period
203 −−>
204 <xs:simpleType name="timeType">
205 < xs:restriction base="xs:string">
206 <xs:enumeration value="AbsoluteTime"/>
207 <xs:enumeration value="RelativeTime"/>
208 </xs:restriction>
209 </xs:simpleType>
210 <!−−
211 define interval boundary
212 −−>
213 <xs:complexType name="intervalBoundaryType">
214 <xs:simpleContent>
215 <xs:extension base="xs:string">
216 <xs:attribute name="unit" type="unitTimeType"/>
217 </xs:extension>
218 </xs:simpleContent>
219 </xs:complexType>

148 Appendix

220 <!−−
221 define time unit
222 −−>
223 <xs:simpleType name="unitTimeType">
224 < xs:restriction base="xs:string">
225 <xs:enumeration value="minutes"/>
226 <xs:enumeration value="hours"/>
227 <xs:enumeration value="days"/>
228 <xs:enumeration value="months"/>
229 <xs:enumeration value="years"/>
230 </xs:restriction>
231 </xs:simpleType>
232 <!−−
233 define a constant
234 − a constant can be used for example as a threshold value for the quality parameters
235 −−>
236 <xs:complexType name="constantType">
237 <xs:simpleContent>
238 <xs:extension base="xs:string">
239 <xs:attribute name="name" type="xs:string" use="required"/>
240 <xs:attribute name="type" type="Types"/>
241 </xs:extension>
242 </xs:simpleContent>
243 </xs:complexType>
244 <!−−
245 define select −instances
246 − allows selection of instances with a certain state or having a certain instance id
247 − if more than one property is defined , then all the instances are selected which
248 fulfill at least one of the specified properties
249 −−>
250 <xs:complexType name="processpropertiesType">
251 <xs:sequence minOccurs="0">
252 <xs:element name="property" type="propertyType" maxOccurs="unbounded"/>
253 </xs:sequence>
254 <xs:attribute name="id" type="xs:ID"/>
255 <xs:attribute name="select" type="xs:string"/>
256 </xs:complexType>
257 <!−−
258 define instance property
259 − for the selection of instances with a certain state
260 or having a certain instance id
261 − possible process states are:
262 − CLOSED
263 − FAULTED
264 − CLOSED_COMPLETED
265 − CLOSED_FAULTED
266 − CLOSED_CANCELLED
267 − OPEN_FAULTED
268 − OPEN_RUNNING
269 −−>
270 <xs:complexType name="propertyType">
271 <xs:simpleContent>
272 <xs:extension base="xs:string">
273 <xs:attribute name="select" type="selectProcessPropertiesAttType"/>
274 </xs:extension>
275 </xs:simpleContent>
276 </xs:complexType>
277 <xs:complexType name="propertyCheckType">

A.1 BPRules XSD Schema 149

278 <xs:simpleContent>
279 <xs:extension base="xs:string">
280 <xs:attribute name="select" type="selectProcessPropertiesCheckAttType"/>
281 </xs:extension>
282 </xs:simpleContent>
283 </xs:complexType>
284 <!−−
285 selection of instances with a certain state or having a certain instance id
286 −−>
287 <xs:simpleType name="selectProcessPropertiesAttType">
288 < xs:restriction base="xs:string">
289 <xs:enumeration value="state"/>
290 <xs:enumeration value="instanceid"/>
291 </xs:restriction>
292 </xs:simpleType>
293 <!−−
294 refer to the state of instances within an expression
295 −−>
296 <xs:simpleType name="selectProcessPropertiesCheckAttType">
297 < xs:restriction base="xs:string">
298 <xs:enumeration value="state"/>
299 </xs:restriction>
300 </xs:simpleType>
301 <!−−
302 define instances−subset
303 − how many of the instances should fulfill the constraints . (e.g. MIN 30%, FORALL)
304 − applies only to the monitored quality values
305 −−>
306 <xs:complexType name="instancessubsetType">
307 <xs:simpleContent>
308 <xs:extension base="instancessubsetFunctionValType">
309 <xs:attribute name="function" type="instancessubsetFunctionType"/>
310 </xs:extension>
311 </xs:simpleContent>
312 </xs:complexType>
313 <!−−
314 define functions for specifying the subset of instances
315 −−>
316 <xs:simpleType name="instancessubsetFunctionType">
317 < xs:restriction base="xs:string">
318 <xs:enumeration value="EXISTS"/>
319 <xs:enumeration value="MIN"/>
320 <xs:enumeration value="MAX"/>
321 <xs:enumeration value="EQUALS"/>
322 <xs:enumeration value="FORALL"/>
323 </xs:restriction>
324 </xs:simpleType>
325 <!−−
326 value for the instances−subset functions
327 −−>
328 <xs:simpleType name="instancessubsetFunctionValType">
329 < xs:restriction base="xs:string">
330 <xs:pattern value="\d%?"/>
331 </xs:restriction>
332 </xs:simpleType>
333 <!−−
334 define expressions
335 − expressions may contain quality parameters, constants , values or functions of them,

150 Appendix

336 which may be evaluated using a predicate (e.g. qualityparam < value)
337 − expressions may be linked with logical operators: and, or, not
338 −−>
339 <xs:complexType name="expressionType">
340 <xs:sequence minOccurs="0">
341 <xs:choice>
342 <xs:element name="property−check" type="propertyCheckType"/>
343 <xs:element name="predicate" type="predicateType"/>
344 <xs:element name="and" type="BinaryExpressionLogicOperatorType"/>
345 <xs:element name="or" type="BinaryExpressionLogicOperatorType"/>
346 <xs:element name="not" type="UnaryExpressionLogicOperatorType"/>
347 </xs:choice>
348 </xs:sequence>
349 <xs:attribute name="id" type="xs:ID"/>
350 <xs:attribute name="select" type="xs:string"/>
351 <xs:attribute name="applysection" type="xs:string" use="optional"/>
352 <xs:attribute name="applyservice" type="xs:string" use="optional"/>
353 </xs:complexType>
354 <!−−
355 predicate to evaluate a qualityParam, constant, value or a function of them
356 −−>
357 <xs:complexType name="predicateType">
358 <xs:sequence minOccurs="1">
359 <xs:choice>
360 <xs:element name="qualityParam" type="qualityParamType"/>
361 <xs:element name="Function" type="functionType"/>
362 </xs:choice>
363 <xs:choice>
364 <xs:element name="qualityParam" type="qualityParamType"/>
365 <xs:element name="Function" type="functionType"/>
366 <xs:element name="constant" type="constantType"/>
367 <xs:element name="Value" type="xs:string"/>
368 </xs:choice>
369 </xs:sequence>
370 <xs:attribute name="type" type="predicateAttType" use="required"/>
371 <xs:attribute name="id" type="xs:ID"/>
372 </xs:complexType>
373 <!−−
374 type of the predicate for comparing quality parameters, functions , constants , and values
375 −−>
376 <xs:simpleType name="predicateAttType">
377 < xs:restriction base="xs:string">
378 <xs:enumeration value="Greater"/>
379 <xs:enumeration value="Less"/>
380 <xs:enumeration value="Equal"/>
381 <xs:enumeration value="GreaterEqual"/>
382 <xs:enumeration value="LessEqual"/>
383 </xs:restriction>
384 </xs:simpleType>
385 <!−−
386 define quality parameter
387 − qualityParam − the quality parameter may be computed for the entire process (default
388 value), for a section or a service
389 − applyfunction − applicable only for the monitored quality parameters for a set of instances
390 (e.g. average, min, max ..)
391 −−>
392 <xs:complexType name="qualityParamType">
393 <xs:simpleContent>

A.1 BPRules XSD Schema 151

394 <xs:extension base="xs:string">
395 <xs:attribute name="applysection" type="xs:string" use="optional"/>
396 <xs:attribute name="applyservice" type="xs:string" use="optional"/>
397 <xs:attribute name="applyfunction" type="applyfunctionsetType" use="optional"/>
398 </xs:extension>
399 </xs:simpleContent>
400 </xs:complexType>
401 <!−−
402 define attribute applyfunction for monitored instances
403 − there are three possibilities:
404 1. applyfunction="Average" the average quality values of the instances
405 2. applyfunction="MIN" the minimial monitored quality value of the instances
406 3. applyfunction="MAX" the maximal monitored quality value of the instances
407 If applyfunction attribute is missing, the default value is "Average".
408 −−>
409 <xs:simpleType name="applyfunctionsetType">
410 < xs:restriction base="xs:string">
411 <xs:enumeration value="Average"/>
412 <xs:enumeration value="MIN"/>
413 <xs:enumeration value="MAX"/>
414 </xs:restriction>
415 </xs:simpleType>
416 <!−−
417 type quality values to be considered in select −services and select−services−context
418 − there are two possibilities
419 1. "Prom" − consider the quality values promised by the provider
420 2. "Pred" − consider the quality values as predicted by CoFee
421 −−>
422 <xs:simpleType name="qualityValuesSelectAttType">
423 < xs:restriction base="xs:string">
424 <xs:enumeration value="Prom"/>
425 <xs:enumeration value="Pred"/>
426 </xs:restriction>
427 </xs:simpleType>
428 <!−−
429 define allowed types for constants and values
430 −−>
431 <xs:simpleType name="Types">
432 < xs:restriction base="xs:string">
433 <xs:enumeration value="int"/>
434 <xs:enumeration value="float"/>
435 <xs:enumeration value="double"/>
436 <xs:enumeration value="long"/>
437 <xs:enumeration value="byte"/>
438 <xs:enumeration value="boolean"/>
439 <xs:enumeration value="string"/>
440 </xs:restriction>
441 </xs:simpleType>
442 <!−−
443 logical linking of expressions with binary operator
444 −−>
445 <xs:complexType name="BinaryExpressionLogicOperatorType">
446 <xs:sequence>
447 <xs:element name="expression" type="expressionType" minOccurs="2"
448 maxOccurs="unbounded"/>
449 </xs:sequence>
450 </xs:complexType>
451 <!−−

152 Appendix

452 logical expression with unary operator
453 −−>
454 <xs:complexType name="UnaryExpressionLogicOperatorType">
455 <xs:sequence>
456 <xs:element name="expression" type="expressionType"/>
457 </xs:sequence>
458 </xs:complexType>
459 <!−−
460 logical linking of constraints with binary operator
461 −−>
462 <xs:complexType name="BinaryConstraintsLogicOperatorType">
463 <xs:sequence>
464 <xs:element name="constraints" type="constraintsType" minOccurs="2"
465 maxOccurs="unbounded"/>
466 </xs:sequence>
467 </xs:complexType>
468 <!−−
469 logical expression of constraints with unary operator
470 −−>
471 <xs:complexType name="UnaryConstraintsLogicOperatorType">
472 <xs:sequence>
473 <xs:element name="constraints" type="constraintsType"/>
474 </xs:sequence>
475 </xs:complexType>
476 <!−−
477 define actions
478 −−>
479 <xs:complexType name="actionType">
480 <xs:choice minOccurs="0" maxOccurs="unbounded">
481 <xs:element name="deploy" type="deployType"/>
482 <xs:element name="undeploy" type="undeployType"/>
483 <xs:element name="start" type="startType"/>
484 <xs:element name="stop" type="stopType"/>
485 <xs:element name="stop−instances" type="stopinstancesType"/>
486 <xs:element name="resume−instances" type="resumeinstancesType"/>
487 <xs:element name="cancel−instances" type="cancelinstancesType"/>
488 <xs:element name="update" type="updateType"/>
489 <xs:element name="replace−ws" type="replacewsType"/>
490 <xs:element name="select−services" type="selectservicesType"/>
491 <xs:element name="select−services−context" type="selectservicesContextType"/>
492 <xs:element name="throw−event" type="throweventType"/>
493 <xs:element name="throw−exception" type="throwexceptionType"/>
494 <xs:element name="setactive−ruleset" type="setactiverulesetType"/>
495 <xs:element name="report" type="reportType"/>
496 <xs:element name="report−rules" type="reportrulesType"/>
497 <xs:element name="report−error" type="reporterrorType"/>
498 <xs:element name="report−usercat" type="reportusercatType"/>
499 <xs:element name="report−feedbacks" type="reportfeedbacksType"/>
500 </xs:choice>
501 <xs:attribute name="id" type="xs:ID"/>
502 <xs:attribute name="select" type="xs:string"/>
503 </xs:complexType>
504 <!−−
505 define deploy action
506 − deploys a BPEL process from the BPR−repository to the BPEL engine
507 1. deploy the process with the id "processid"
508 2. deploy the process from "path"
509 −−>

A.1 BPRules XSD Schema 153

510 <xs:complexType name="deployType">
511 <xs:simpleContent>
512 <xs:extension base="xs:string">
513 <xs:attribute name="type" type="deployOptionsType"/>
514 </xs:extension>
515 </xs:simpleContent>
516 </xs:complexType>
517 <xs:simpleType name="deployOptionsType">
518 < xs:restriction base="xs:string">
519 <xs:enumeration value="processid"/>
520 <xs:enumeration value="path"/>
521 </xs:restriction>
522 </xs:simpleType>
523 <!−−
524 define undeploy
525 − undeploys the BPEL process with id "processid" from the BPEL engine
526 −−>
527 <xs:complexType name="undeployType">
528 <xs:attribute name="processid" type="xs:string"/>
529 </xs:complexType>
530 <!−−
531 define start
532 − starts the process identified with the id "processid" . The process is then ready to
533 receive requests .
534 − if the process id is missing, the process id is the one defined in the BPR−document
535 −−>
536 <xs:complexType name="startType">
537 <xs:attribute name="processid" type="xs:string" use="optional"/>
538 </xs:complexType>
539 <!−−
540 define stop
541 − stops the process identified with the id "processid" .
542 − all the process instances are stopped.
543 − if the process id is missing, the process id is the one defined in the BPR−document
544 −−>
545 <xs:complexType name="stopType">
546 <xs:attribute name="processid" type="xs:string" use="optional"/>
547 </xs:complexType>
548 <!−−
549 define stop−instances
550 − stops a set of process instances that started within a given time interval .
551 −−>
552 <xs:complexType name="stopinstancesType">
553 <xs:sequence>
554 <xs:element name="period" type="periodType"/>
555 </xs:sequence>
556 <xs:attribute name="processid" type="xs:string" use="optional"/>
557 </xs:complexType>
558 <!−−
559 define resume−instances
560 − resumes a set of process instances that were previously stopped
561 −−>
562 <xs:complexType name="resumeinstancesType">
563 <xs:attribute name="processid" type="xs:string" use="optional"/>
564 </xs:complexType>
565 <!−−
566 define cancel−instances
567 − cancels a set of process instances that are currently running.

154 Appendix

568 −−>
569 <xs:complexType name="cancelinstancesType">
570 <xs:attribute name="processid" type="xs:string" use="optional"/>
571 </xs:complexType>
572 <!−−
573 define replace−ws
574 − replaces a web service with that from the specified url to its wsdl
575 −−>
576 <xs:complexType name="replacewsType">
577 <xs:sequence>
578 <xs:element name="service" type="serviceType" maxOccurs="unbounded"/>
579 </xs:sequence>
580 </xs:complexType>
581 <xs:complexType name="serviceType">
582 <xs:sequence>
583 <xs:element name="wsdl−url" type="xs:string"/>
584 </xs:sequence>
585 <xs:attribute name="name" type="xs:string"/>
586 </xs:complexType>
587 <!−−
588 define throw−event
589 − throw−event generates an event and informs the subscribers
590 − the business analyst may see the events while they are happening in the GUI
591 of the BPR−framework.
592 − The event may be of different types:
593 1. execute−rule − to inform that a rule is executed. It lists the id of the ruleset ,
594 the id of the rule and the timestamp when it was triggered .
595 2. setactive −ruleset − to inform that a ruleset was activated .
596 3. info − to provide information
597 −−>
598 <xs:complexType name="throweventType">
599 <xs:simpleContent>
600 <xs:extension base="xs:string">
601 <xs:attribute name="type" type="EventAttType" use="optional"/>
602 </xs:extension>
603 </xs:simpleContent>
604 </xs:complexType>
605 <!−−
606 define valueEventAttType that specifies the type of an event
607 −−>
608 <xs:simpleType name="EventAttType">
609 < xs:restriction base="xs:string">
610 <xs:enumeration value="execute−rule"/>
611 <xs:enumeration value="setactive−ruleset"/>
612 <xs:enumeration value="info"/>
613 <xs:enumeration value="custom"/>
614 </xs:restriction>
615 </xs:simpleType>
616 <!−−
617 define throw−exception
618 −−>
619 <xs:complexType name="throwexceptionType">
620 <xs:sequence>
621 <xs:element name="value" type="valueExceptionType" maxOccurs="4"/>
622 </xs:sequence>
623 <xs:attribute name="type" type="exceptionType"/>
624 </xs:complexType>
625 <xs:simpleType name="exceptionType">

A.1 BPRules XSD Schema 155

626 < xs:restriction base="xs:string">
627 <xs:enumeration value="custom"/>
628 </xs:restriction>
629 </xs:simpleType>
630 <xs:complexType name="valueExceptionType">
631 <xs:simpleContent>
632 <xs:extension base="xs:string">
633 <xs:attribute name="type" type="valueExceptionAttType"/>
634 </xs:extension>
635 </xs:simpleContent>
636 </xs:complexType>
637 <xs:simpleType name="valueExceptionAttType">
638 < xs:restriction base="xs:string">
639 <xs:enumeration value="message"/>
640 </xs:restriction>
641 </xs:simpleType>
642 <!−−
643 define update
644 − updates the BPEL process description (or section) from the specified path
645 −−>
646 <xs:complexType name="updateType">
647 <xs:attribute name="frompath" type="xs:string" use="optional"/>
648 </xs:complexType>
649 <!−−
650 define select −services
651 − services are searched for the process or section or service that fulfill the
652 quality requirements
653 − attribute method − specifies which selection algorithm is applied
654 (ALG.OPTIM_S, ALG.OPTIM_PRO, ALG.OPTIM_HW)
655 − attribute methodclass − the implementing java class of the selection algorithm
656 − attribute qualityValues:
657 Prom − using an estimation for the process/ section/atomic service considering the
658 quality values as promised by the service provider
659 Pred − using an estimation for the process/ section/atomic service considering predicted
660 quality values
661 −−>
662 <xs:complexType name="selectservicesType">
663 <xs:sequence>
664 <xs:element name="service−registries" type="serviceRegistriesType" minOccurs="0"/>
665 <xs:element name="quality−requirements" type="qualityRequirementsType"
666 maxOccurs="unbounded"/>
667 </xs:sequence>
668 <xs:attribute name="method" type="xs:string"/>
669 <xs:attribute name="methodClass" type="xs:string"/>
670 <xs:attribute name="qualityValues" type="qualityValuesSelectAttType"/>
671 <xs:attribute name="applysection" type="xs:string" use="optional"/>
672 <xs:attribute name="applyservice" type="xs:string" use="optional"/>
673 </xs:complexType>
674 <!−−
675 define select −services−context
676 − extends the select −services action by specifying a list of user categories
677 to perform a context−aware service selection
678 −−>
679 <xs:complexType name="selectservicesContextType">
680 <xs:complexContent>
681 <xs:extension base="selectservicesType">
682 <xs:sequence>
683 <xs:element name="list−categories" type="listcategoriesType"/>

156 Appendix

684 </xs:sequence>
685 </xs:extension>
686 </xs:complexContent>
687 </xs:complexType>
688 <!−−
689 define the service registries to be searched for services
690 − the service registry provides a wsdl interface accessible at the wsdl−url.
691 − the service registry interface is used to search services
692 −−>
693 <xs:complexType name="serviceRegistriesType">
694 <xs:sequence>
695 <xs:element name="wsdl−url" type="xs:string" maxOccurs="unbounded"/>
696 </xs:sequence>
697 <xs:attribute name="id" type="xs:ID"/>
698 <xs:attribute name="select" type="xs:string"/>
699 </xs:complexType>
700 <!−−
701 define the list of user categories
702 − it is used for the context−aware service selection in the
703 select −services−context action
704 −−>
705 <xs:complexType name="listcategoriesType">
706 <xs:sequence>
707 <xs:element name="category" type="categoryType" maxOccurs="unbounded"/>
708 </xs:sequence>
709 </xs:complexType>
710 <xs:complexType name="categoryType">
711 <xs:sequence>
712 <xs:element name="context" type="contextType" maxOccurs="unbounded"/>
713 </xs:sequence>
714 <xs:attribute name="name" type="xs:string"/>
715 <xs:attribute name="id" type="xs:ID"/>
716 <xs:attribute name="select" type="xs:string"/>
717 </xs:complexType>
718 <!−−
719 context parameters of the user categories
720 −−>
721 <xs:complexType name="contextType">
722 <xs:simpleContent>
723 <xs:extension base="xs:string">
724 <xs:attribute name="param" type="attusercatparamVal"/>
725 </xs:extension>
726 </xs:simpleContent>
727 </xs:complexType>
728
729 <xs:simpleType name="attusercatparamVal">
730 < xs:restriction base="xs:string">
731 <xs:enumeration value="user−location"/>
732 <xs:enumeration value="user−age"/>
733 <xs:enumeration value="user−profession"/>
734 </xs:restriction>
735 </xs:simpleType>
736 <!−−
737 quality requirements for the service selection
738 −−>
739 <xs:complexType name="qualityRequirementsType">
740 <xs:sequence minOccurs="0">
741 <xs:element name="expression" type="expressionType" minOccurs="0"

A.1 BPRules XSD Schema 157

742 maxOccurs="unbounded"/>
743 <xs:element name="objective−function" type="objfunctionType" minOccurs="0"/>
744 <xs:element name="fix" type="fixType" minOccurs="0" maxOccurs="1"/>
745 </xs:sequence>
746 <xs:attribute name="id" type="xs:ID"/>
747 <xs:attribute name="select" type="xs:string"/>
748 </xs:complexType>
749 <!−−
750 define fix
751 − the services in the list will not be replaced during the service−selection
752 −−>
753 <xs:complexType name="fixType">
754 <xs:sequence minOccurs="0">
755 <xs:element name="service" type="serviceType" minOccurs="0" maxOccurs="unbounded"/>
756 </xs:sequence>
757 </xs:complexType>
758 <!−−
759 define function
760 − a function may be used inside expressions
761 −−>
762 <xs:complexType name="functionType">
763 <xs:choice>
764 <xs:element name="operation" type="operationType"/>
765 <xs:element name="qualityParam" type="qualityParamType"/>
766 <xs:element name="Value" type="xs:double"/>
767 </xs:choice>
768 </xs:complexType>
769 <!−−
770 define objective function for service selection
771 −−>
772 <xs:complexType name="objfunctionType">
773 <xs:complexContent>
774 <xs:extension base="functionType">
775 <xs:attribute name="type" type="typeObjFunctionAttType"/>
776 </xs:extension>
777 </xs:complexContent>
778 </xs:complexType>
779 <!−−
780 define operation used inside functions
781 −−>
782 <xs:complexType name="operationType">
783 <xs:choice maxOccurs="2">
784 <xs:element name="operation" type="operationType"/>
785 <xs:element name="qualityParam" type="qualityParamType"/>
786 <xs:element name="Value" type="xs:double"/>
787 </xs:choice>
788 <xs:attribute name="type" type="operationAttType"/>
789 </xs:complexType>
790 <!−−
791 define type of operations used for specifying the objective function or a function
792 ADD − Plus
793 SUB − Minus
794 DIV − Divide
795 MUL − Multiply
796 −−>
797 <xs:simpleType name="operationAttType">
798 < xs:restriction base="xs:string">
799 <xs:enumeration value="ADD"/>

158 Appendix

800 <xs:enumeration value="SUB"/>
801 <xs:enumeration value="DIV"/>
802 <xs:enumeration value="MUL"/>
803 </xs:restriction>
804 </xs:simpleType>
805 <!−−
806 define if the objective function has to be minimized or maximized
807 −−>
808 <xs:simpleType name="typeObjFunctionAttType">
809 < xs:restriction base="xs:string">
810 <xs:enumeration value="MIN"/>
811 <xs:enumeration value="MAX"/>
812 </xs:restriction>
813 </xs:simpleType>
814 <!−−
815 define setactive −ruleset
816 − sets the active flag of a ruleset , i .e . the ruleset is activated or deactivated
817 −−>
818 <xs:complexType name="setactiverulesetType">
819 <xs:simpleContent>
820 <xs:extension base="xs:boolean">
821 <xs:attribute name="id" type="xs:string"/>
822 </xs:extension>
823 </xs:simpleContent>
824 </xs:complexType>
825 <!−−
826 define report action
827 − makes a report about all the monitored artifacts: the configurations
828 of the BPEL process, the measured QoS values, including exceptions
829 and events of a process during a given time period.
830 −−>
831 <xs:complexType name="reportType">
832 <xs:sequence>
833 <xs:element name="period" type="periodType"/>
834 </xs:sequence>
835 <xs:attribute name="processid" type="xs:string" use="optional"/>
836 </xs:complexType>
837 <!−−
838 define report−rules
839 − makes a report with the rules that were triggered for a process during
840 a given time period.
841 −−>
842 <xs:complexType name="reportrulesType">
843 <xs:sequence>
844 <xs:element name="period" type="periodType"/>
845 <xs:element name="rulesetid" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
846 </xs:sequence>
847 <xs:attribute name="processid" type="xs:string" use="optional"/>
848 </xs:complexType>
849 <!−−
850 define report−error
851 − makes a report with the exceptions and errors that were encountered
852 during process execution for a given time period.
853 −−>
854 <xs:complexType name="reporterrorType">
855 <xs:sequence>
856 <xs:element name="period" type="periodType"/>
857 </xs:sequence>

A.1 BPRules XSD Schema 159

858 <xs:attribute name="processid" type="xs:string" use="optional"/>
859 </xs:complexType>
860 <!−−
861 define report−usercat
862 − makes a report that contains a list of the context−aware processes
863 that were created for a process . It contains the number of requests
864 delegated to each of the context−aware processes and the average
865 feedbacks .
866 −−>
867 <xs:complexType name="reportusercatType">
868 <xs:sequence>
869 <xs:element name="period" type="periodType"/>
870 </xs:sequence>
871 <xs:attribute name="processid" type="xs:string" use="optional"/>
872 </xs:complexType>
873 <!−−
874 define report−feedbacks
875 − makes a report with the feedbacks that were collected for the entire BPEL
876 process and for all contained Web services during a given time period.
877 −−>
878 <xs:complexType name="reportfeedbacksType">
879 <xs:sequence>
880 <xs:element name="period" type="periodType"/>
881 </xs:sequence>
882 <xs:attribute name="processid" type="xs:string" use="optional"/>
883 </xs:complexType>
884 </xs:schema>

Listing A.1: BPRules XSD Schema

160 Appendix

B Publications as (co-)author

[BCG13] Harun Baraki, Diana Comes, and Kurt Geihs
Context-aware Prediction of QoS and QoE Properties for Web Services
Conference on Networked Systems (NetSys), IEEE Xplore, pages 102-109, Sut-
tgart, 2013.

[CBR12] Diana Comes, Harun Baraki, Roland Reichle, and Kurt Geihs
BPRules and the BPR-Framework: Comprehensive Support for Managing QoS
in Web Service Compositions.
In Proceedings of the 12th IFIP International Conference on Distributed Applica-
tions and Interoperable Systems (DAIS ’12), Lecture Notes in Computer Science,
Volume 7272, pages 222-235, Springer, Stockholm, 2012.

[CEG12] Diana Comes, Christoph Evers, Kurt Geihs, Axel Hoffmann, Romy Kniewel,
Jan-Marco Leimeister, Stefan Niemczyk, Alexander Rossnagel, Ludger Schmidt,
Thomas Schulz, Matthias Söllner, and Andreas Witsch
Designing Socio-Technical Applications for Ubiquitous Computing - Results
from a multidisciplinary Case Study.
In Proceedings of the 12th IFIP International Conference on Distributed Applica-
tions and Interoperable Systems (DAIS ’12), Lecture Notes in Computer Science,
Volume 7272, pages 194-201, Springer, Stockholm, 2012.

[CEG11] Diana Comes, Christoph Evers, Kurt Geihs, Daniel Saur, Andreas Witsch, and
Michael Zapf
Adaptive Applications are Smart Applications.
International Workshop on Smart Mobile Applications, San Francisco, 2011.

[SSJ11] Thomas Schulz, Hendrik Skistims, Julia Zirfas, Diana Comes, Christoph Evers
Vorschläge zur rechtskonformen Gestaltung selbst-adaptiver Anwendungen.
In Proceedings des Workshops Sozio-technisches Systemdesign im Zeitalter des
Ubiquitous Computing (SUBICO), INFORMATIK, Berlin, 2011.

[GBC10] Kurt Geihs, Steffen Bleul, and Diana Comes
Automatische Dienstvermittlung in dienstorientierten Architekturen in Aktion.
Technical Report, University of Kassel, 2010.

[CBR10] Diana Comes, Harun Baraki, Roland Reichle, Michael Zapf, and Kurt Geihs
Heuristic Approaches for QoS-based Service Selection.
In Proceedings of the 8th International Conference on Service Oriented Computing
(ICSOC), Lecture Notes in Computer Science, Volume 6470, pages 441-455,
Springer, San Francisco, 2010.

161

[CZG10] Diana Comes, Michael Zapf, and Kurt Geihs
QoS-based Self-Management for Business Processes.
In Proceedings of the SAKS 2010 Workshop, Electronic Communications of the
EASST, Volume 27, ISSN 1863-2122, 2010.

[CBW09] Diana Comes, Steffen Bleul, Thomas Weise, and Kurt Geihs
A Flexible Approach for Business Processes Monitoring.
In 9th IFIP International Conference on Distributed Applications and Interoper-
able Systems (DAIS), Lecture Notes in Computer Science, Volume 5523, pages
116-128, Lissabon, 2009.

[BGC09] Steffen Bleul, Kurt Geihs, Diana Comes, and Marc Kirchhoff
Automated Integration of Web Services in BPEL4WS Processes.
16. GI/ITG Fachtagung Kommunikation in Verteilten Systemen (KiVS) , Inform-
atik aktuell, pages 105-116, Springer, Kassel, 2009.

[CBZ09] Diana Comes, Steffen Bleul, and Michael Zapf
Management of Business Processes with the BPRules Language in Service
Oriented Computing.
In Workshops der Wissenschaftlichen Konferenz Kommunikation in Verteilten
Systemen (WowKiVS), VDE, Kassel, 2009.

[BGC08] Steffen Bleul, Kurt Geihs, Diana Comes, and Marc Kirchhoff
Automated Management of Dynamic Web Service Integration.
In 15th Annual Workshop of HP Software University Association (HP-SUA),
Infonomics-Consulting, Marrakech, Maroc, 2008 .

[WBC08] Thomas Weise, Steffen Bleul, Diana Comes, and Kurt Geihs
Different Approaches to Semantic Web Service Composition.
In Third International Conference on Internet and Web Applications and Services
(ICIW), pages 90-96, IEEE, Athens, 2008.

[BCG08] Steffen Bleul, Diana Comes, Marc Kirchhoff, and Michael Zapf
Self-Integration of Web Services in BPEL Processes.
In Workshop on Self-Organising, Adaptive, Context-Sensitive Distributed Systems
(SAKS), Wiesbaden, 2008.

162 Publications as (co-)author

Bibliography

[1] OASIS UDDI Specifications.
https://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.

htm#uddiv3 (accessed 2012-11-12).

[2] Apache ODE.
http://ode.apache.org/ (accessed 2014-08-07).

[3] Event-driven Process Chain (EPC).
http://www.ariscommunity.com/event-driven-process-chain

(accessed 2013-06-21).

[4] Apache Axis2.
http://axis.apache.org/axis2/java/core/ (accessed 2014-08-07).

[5] BizTalk Server.
http://www.microsoft.com/en-us/biztalk/default.aspx

(accessed 2013-06-19).

[6] Business Process Model and Notation.
http://www.bpmn.org/ (accessed 2013-06-29).

[7] IBM Business Process Manager.
http://www-03.ibm.com/software/products/us/en/business-

process-manager-family/ (accessed 2013-06-19).

[8] Oracle BPEL Process Manager.
http://www.oracle.com/technetwork/middleware/bpel/overview/

index.html (accessed 2013-06-04).

[9] SOAP Version 1.2: Messaging Framework (Second Edition).
http://www.w3.org/TR/soap12-part1/ (accessed 2012-11-12).

[10] Web Services Description Language (WSDL).
http://www.w3.org/TR/wsdl20/#component-ElementDeclaration

(accessed 2012-05-29).

[11] Web Service Choreography Interface (WSCI) 1.0.
http://www.w3.org/TR/ws-cdl-10/ (accessed 2014-07-10), 2002.

[12] QoS for Web Services: Requirements and Possible Approaches.
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

(accessed 2012-06-26), 2003.

[13] Service-oriented Modeling and Architecture.
http://www.ibm.com/developerworks/library/ws-soa-design1/

(accessed 2012-08-24), 2004.

163

https://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
https://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://ode.apache.org/
http://www.ariscommunity.com/event-driven-process-chain
http://axis.apache.org/axis2/java/core/
http://www.microsoft.com/en-us/biztalk/default.aspx
http://www.bpmn.org/
http://www-03.ibm.com/software/products/us/en/business-process-manager-family/
http://www-03.ibm.com/software/products/us/en/business-process-manager-family/
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl20/#component-ElementDeclaration
http://www.w3.org/TR/ws-cdl-10/
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/
http://www.ibm.com/developerworks/library/ws-soa-design1/

[14] Web Services Choreography Description Language Version 1.0.
http://www.w3.org/TR/ws-cdl-10/ (accessed 2014-07-10), 2005.

[15] OASIS: Reference Model for Service Oriented Architecture.
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

(accessed 2012-08-11), 2006.

[16] Web Services Business Process Execution Language Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

(accessed 2013-06-19), 2007.

[17] Web Service QoS Dataset of Zibin Zheng.
http://www.wsdream.net (accessed 2013-02-08), 2012.

[18] Automatic Service Brokering in Service Oriented Architectures.
http://www.vs.uni-kassel.de/ADDO/index.html (accessed 2012-11-20),

2013.

[19] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith,
and Pete Steggles.

Towards a Better Understanding of Context and Context-Awareness.
In Proceedings of the 1st International Symposium on Handheld and Ubiquitous

Computing, Karlsruhe, Germany, pages 304–307. Springer-Verlag, 1999.

[20] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiy-
uki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu.

Web Services Agreement Specification (WS-Agreement).
http://www.ogf.org/documents/GFD.107.pdf

(accessed 2012-06-29), 2007.

[21] Daniel Austin, Abbie Barbir, Ed Peters, and Steve Ross-Talbo.
Web Services Choreography Requirements.
http://www.w3.org/TR/ws-chor-reqs/ (accessed 2013-05-16).

[22] Fabien Baligand, Nicolas Rivierre, and Thomas Ledoux.
A Declarative Approach for QoS-Aware Web Service Compositions.
In Proceedings of the 5th International Conference on Service-Oriented Computing,

Vienna, Austria, ICSOC ’07, pages 422–428. Springer, 2007.

[23] Fabien Baligand, Nicolas Rivierre, and Thomas Ledoux.
QoS Policies for Business Processes in Service Oriented Architectures.
In Service-Oriented Computing - ICSOC 2008, 6th International Conference,

Sydney, Australia, pages 483–497, 2008.

[24] Harun Baraki, Diana Comes, and Kurt Geihs.
Context-Aware Prediction of QoS and QoE Properties for Web Services.
In Conference on Networked Systems (NetSys), 2013, pages 102–109. IEEE Xplore,

Stuttgart, Germany, 2013.

[25] Luciano Baresi and Sam Guinea.
Towards Dynamic Monitoring of WS-BPEL Processes.
In ICSOC 2005, Third International Conference of Service-Oriented Computing,

Amsterdam, Netherlands, pages 269–282. Springer, 2005.

164 Bibliography

http://www.w3.org/TR/ws-cdl-10/
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.wsdream.net
http://www.vs.uni-kassel.de/ADDO/index.html
http://www.ogf.org/documents/GFD.107.pdf
http://www.w3.org/TR/ws-chor-reqs/

[26] Luciano Baresi, Carlo Ghezzi, and Sam Guinea.
Smart Monitors for Composed Services.
In ICSOC ’04: Proceedings of the 2nd International Conference on Service Oriented

Computing, pages 193–202, New York, NY, USA, 2004. ACM Press.

[27] Luciano Baresi, Sam Guinea, and Pierluigi Plebani.
WS-Policy for Service Monitoring.
In 6th VLDB International Workshop on Technologies for E-Services, Trondheim,

Norway, pages 72–83. Springer, 2005.

[28] Luciano Baresi, Domenico Bianculli, Carlo Ghezzi, Sam Guinea, and Paola
Spoletini.

A Timed Extension of WSCoL.
In IEEE International Conference on Web Services, ICWS 2007, Salt Lake City, UT,

USA, pages 663–670. IEEE Computer Society, 2007.

[29] Anjay Basal, M. Brian Blake, Srividya Kona, Steffen Bleul, Thomas Weise, and
Michael C. Jaeger, editors.

WSC-08: Continuing the Web Services Challenge, IEEE Joint Conference
(CEC/EEE 2008) on E-Commerce Technology (Tenth CEC’07) and Enterprise
Computing, E-Commerce and E-Services (Fifth EEE’08), Washington D.C.,
USA, 2008. IEEE.

[30] Rainer Berbner, Tobias Grollius, Nicolas Repp, Oliver Heckmann, Erich Ortner,
and Ralf Steinmetz.

An approach for the Management of Service-oriented Architecture (SOA) based
Application Systems.

In Workshop Enterprise Modelling and Information Systems Architectures (EMISA
2005), Klagenfurt, Austria, pages 208–221, 2005.

[31] Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, and Ralf
Steinmetz.

Heuristics for QoS-aware Web Service Composition.
In Proceedings of the IEEE International Conference on Web Services, ICWS ’06,

pages 72–82, Washington, DC, USA, 2006. IEEE Computer Society.
ISBN 0-7695-2669-1.

[32] John Bird.
Higher Engineering Mathematics.
Sixth Edition, Elsevier, Newnes, 2010.

[33] Steffen Bleul, Michael Zapf, and Kurt Geihs.
Flexible Automatic Service Brokering for SOAs.
In 10 th IFIP / IEEE Symposium on Integrated Management (IM 2007), pages

410–419, Munich, Germany, 2007.

[34] Steffen Bleul, Diana Comes, Marc Kirchhoff, and Michael Zapf.
Self-Integration of Web Services in BPEL Processes.
Workshop on Self-Organising, Adaptive, Context-Sensitive Distributed Systems

(SAKS), Wiesbaden, 2008.

[35] Steffen Bleul, Kurt Geihs, Diana Comes, and Marc Kirchhoff.
Automated Management of Dynamic Web Service Integration.

Bibliography 165

In 15th Annual Workshop of HP Software University Association (HP-SUA), Mar-
rakech, Maroc, 2008. Infonomics-Consulting, Stuttgart, Germany.

[36] Steffen Bleul, Kurt Geihs, Diana Comes, and Marc Kirchhoff.
Automated Integration of Web Services in BPEL4WS Processes.
In 16. GI/ITG Fachtagung Kommunikation in Verteilten Systemen (KiVS), pages

105–116, Kassel, Germany, 2009. Springer.

[37] John S. Breese, David Heckerman, and Carl Kadie.
Empirical Analysis of Predictive Algorithm for Collaborative Filtering.
In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,

Madison, WI, USA, pages 43–52, 1998.

[38] Kjell Brunnström, Sergio Beker, Katrien De Moor, Ann Dooms, Sebastian Egger,
Marie-Neige Garcia, and et al.

Qualinet White Paper on Definitions of Quality of Experience.
In Dagstuhl seminar 12181, 2012.

[39] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa
Villani.

An Approach for QoS-aware Service Composition based on Genetic Algorithms.
In Proceedings of the 2005 conference on Genetic and evolutionary computation,

GECCO ’05, pages 1069–1075, New York, NY, USA, 2005. ACM.

[40] Antonio Jorge Silva Cardoso.
Quality of Service and Semantic Composition of Workflows.
PHD thesis, University of Georgia, USA, 2002.

[41] Anis Charfi.
Aspect-Oriented Workflow Languages: AO4BPEL and Applications.
PHD thesis, Technical University of Darmstadt, Germany, 2007.

[42] Anis Charfi and Mira Mezini.
AO4BPEL: An Aspect-oriented Extension to BPEL.
World Wide Web, 10(3):309–344, September 2007.

[43] Xi Chen, Xudong Liu, Zicheng Huang, and Hailong Sun.
RegionKNN: A Scalable Hybrid Collaborative Filtering Algorithm for Personal-

ized Web Service Recommendation.
In The IEEE International Conference on Web Services - ICWS 2010, pages 9–16.

IEEE Computer Society, 2010.
ISBN 978-0-7695-4128-0.

[44] Tomasz Ciszkowski, Wojciech Mazurczyk, Zbigniew Kotulski, Tobias Hossfeld,
Markus Fiedler, and Denis Collange.

Towards Quality of Experience-based Reputation Models for Future Web Service
Provisioning.

In Future Internet Architectures: New Trends in Service Architectures (2nd Euro-NF
Workshop), Santander, Spain, 2009.

[45] Tomasz Ciszkowski, Wojciech Mazurczyk, Zbigniew Kotulski, Tobias Hossfeld,
Markus Fiedler, and Denis Collange.

Towards Quality of Experience-based Reputation Models for Future Web Service
Provisioning.

166 Bibliography

Telecommunication Systems, 51(4):283–295, 2012.
ISSN 1018-4864.

[46] Workflow Management Coalition.
Terminology and Glossary.
Document Number WFMC-TC-1011, 1999.

[47] Diana Comes, Steffen Bleul, Thomas Weise, and Kurt Geihs.
A Flexible Approach for Business Processes Monitoring.
In 9th IFIP International Conference on Distributed Applications and Interoperable

Systems (DAIS), Lecture Notes in Computer Science, Volume 5523, pages
116–128, Lissabon, Portugal, 2009.

[48] Diana Comes, Steffen Bleul, and Michael Zapf.
Management of Business Processes with the BPRules Language in Service

Oriented Computing.
In Workshops der Wissenschaftlichen Konferenz Kommunikation in Verteilten

Systemen (WowKiVS) 2009, Kassel, Kassel, Germany, 2009. University of
Kassel, VDE.

[49] Diana Comes, Harun Baraki, Roland Reichle, Michael Zapf, and Kurt Geihs.
Heuristic Approaches for QoS-based Service Selection.
In 8th International Conference on Service Oriented Computing (ICSOC), Lecture

Notes in Computer Science, Volume 6470, pages 441–455, San Francisco,
USA, 2010. Springer.

[50] Diana Elena Comes, Harun Baraki, Roland Reichle, and Kurt Geihs.
BPRules and the BPR-Framework: Comprehensive Support for Managing QoS

in Web Service Compositions.
In Distributed Applications and Interoperable Systems (DAIS), Stockholm, Sweden,

Lecture Notes in Computer Science, Volume 7272, pages 222–235. Springer,
Heidelberg, 2012.

ISBN 978-3-642-30822-2.

[51] Marlon Dumas and Arthur H. M. ter Hofstede.
UML Activity Diagrams as a Workflow Specification Language.
In Proceedings of the 4th International Conference on The Unified Modeling

Language, Modeling Languages, Concepts, and Tools, pages 76–90, London,
UK, 2001. Springer-Verlag.

ISBN 3-540-42667-1.

[52] Schahram Dustdar and Wolfgang Schreiner.
A Survey on Web Services Composition.
International Journal of Web and Grid Services, 1(1):1–30, August 2005.
ISSN 1741-1106.

[53] Abdelkarim Erradi, Vladimir Tosic, and Piyush Maheshwari.
MASC - .NET-Based Middleware for Adaptive Composite Web Services.
In IEEE International Conference on Web Services, ICWS 2007, Salt Lake City, UT,

USA, pages 727–734. IEEE Computer Society, 2007.

[54] Markus Fiedler, Tobias Hossfeld, and Phuoc Tran-Gia.

Bibliography 167

A Generic Quantitative Relationship between Quality of Experience and Quality
of Service.

Network, IEEE, 24(2):36–41, 2010.

[55] Andy P. Field.
Analysis of Variance (ANOVA).
In Neil J. Salkind, editor, Encyclopedia of Measurement and Statistics, pages

33–36. SAGE Publications, Inc., 2007.

[56] Kurt Geihs, Roland Reichle, Michael Wagner, and Mohammad Ullah Khan.
Modeling of Context-Aware Self-Adaptive Applications in Ubiquitous and

Service-Oriented Environments.
In BettyH.C. Cheng, Rogerio Lemos, Holger Giese, Paola Inverardi, and Jeff

Magee, editors, Software Engineering for Self-Adaptive Systems, volume 5525
of Lecture Notes in Computer Science, pages 146–163. Springer, Heidelberg,
2009.

ISBN 978-3-642-02160-2.

[57] Kurt Geihs, Steffen Bleul, and Diana Comes.
Automatische Dienstvermittlung in dienstorientierten Architekturen in Aktion

(ADDOaction).
Technical report, University of Kassel, Distributed Systems Group, 2010.

[58] Kurt Geihs, Christoph Evers, Roland Reichle, Michael Wagner, and Mo-
hammad Ullah Khan.

Development Support for QoS-Aware Service-Adaptation in Ubiquitous Com-
puting Applications.

In SAC ’11 Proceedings of the 2011 ACM Symposium on Applied Computing,
Taichung, Taiwan, pages 197–202, 2011.

[59] Michael Hammer and James Champy.
A Manifesto for business revolution.
Harper Business, 1997.

[60] Mark Hansen.
SOA Using Java Web Services.
Prentince Hall, United States, 2007.

[61] Michael Jaeger, Gregor Rojec-Goldmann, and Gero Mühl.
QoS Aggregation for Web Service Composition using Workflow Patterns.
In Eighth IEEE International Enterprise Distributed Object Computing Conference -

EDOC 2004, Monterey, California, USA, pages 149–159, sept. 2004.

[62] Nicolai Josuttis.
SOA in der Praxis.
dpunkt.verlag, Heidelberg, 2008.

[63] Matjaz B. Juric.
A Hands-on Introduction to BPEL, Part 2: Advanced BPEL.
http://www.oracle.com/technetwork/articles/matjaz-bpel2-

082861.html (accessed 2013-06-17).

[64] Kenneth Karta.

168 Bibliography

http://www.oracle.com/technetwork/articles/matjaz-bpel2-082861.html
http://www.oracle.com/technetwork/articles/matjaz-bpel2-082861.html

An Investigation on Personalized Collaborative Filtering for Web Service Selec-
tion.

Honours Programme thesis, University of Western Australia, Brisbane, 2005.

[65] Markus Keidl and Alfons Kemper.
A Framework for Context-Aware Adaptable Web Services.
In EDBT, volume 2992 of Lecture Notes in Computer Science, pages 826–829.

Springer, 2004.

[66] Alexander Keller and Heiko Ludwig.
The WSLA Framework: Specifying and Monitoring Service Level Agreements

for Web Services.
Journal of Network and Systems Management, 11(1):57–81, 2003.

[67] Ulrich Küster, Birgitta König-Ries, Michael Klein, and Mirco Stern.
DIANE - A Matchmaking-Centered Framework for Automated Service Discovery,

Composition, Binding, and Invocation on the Web.
International Journal of Electronic Commerce (IJEC), 12 - Special Issue: Semantic

Matchmaking and Resource Retrieval on the Web(2):41–68, 2007.

[68] Ulrich Küster, Birgitta König-Ries, and Matthias Klusch.
Evaluating Semantic Web Service Technologies: Criteria, Approaches and Chal-

lenges.
In Progressive Concepts for Semantic Web Evolution: Application and Develop-

ments, pages 1–24. IGI Global, 2010.

[69] Philipp Leitner, Branimir Wetzstein, Dimka Karastoyanova, Waldemar Hummer,
Schahram Dustdar, and Frank Leymann.

Preventing SLA Violations in Service Compositions Using Aspect-Based Frag-
ment Substitution.

In Service-Oriented Computing - 8th International Conference, ICSOC 2010, San
Francisco, CA, USA, December 7-10, pages 365–380, 2010.

[70] Qinghua Lu and Vladimir Tosic.
Support for Concurrent Adaptation of Multiple Web Service Compositions to

Maximize Business Metrics.
In Nazim Agoulmine, Claudio Bartolini, Tom Pfeifer, and Declan O’Sullivan,

editors, Integrated Network Management, pages 241–248. IEEE, 2011.

[71] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, and Richard Franck.
Web Service Level Agreement (WSLA) Language Specification.
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

(accessed 2012-06-26), 2003.

[72] Anbazhagan Mani and Arun Nagarajan.
Understanding Quality of Service for Web Services.
http://www.ibm.com/developerworks/webservices/library/ws-

quality/index.html (accessed 2013-11-12).

[73] Michael Maximilien and Munindar P. Singh.
A Framework and Ontology for Dynamic Web Services Selection.
IEEE Internet Computing, 8:84–93, 2004.

Bibliography 169

http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.ibm.com/developerworks/webservices/library/ws-quality/index.html
http://www.ibm.com/developerworks/webservices/library/ws-quality/index.html

[74] Ingo Melzer.
Service-orientierte Architekturen mit Web Services: Konzepte-Standards-Praxis.
Spektrum, Heidelberg, 2010.

[75] Daniel A. Menasce.
Composing Web Services: A QoS View.
IEEE Internet Computing, 8(6):88–90, November 2004.

[76] Jaeger Michael, Gero Mühl, and Sebastian Golze.
In On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE.

[77] Douglas C. Montgomery and George C. Runger.
Applied Statistics and Probability for Engineers .
Fifth Edition, John Wiley, 2011.

[78] Elisabetta Nitto, Massimiliano Penta, Alessio Gambi, Gianluca Ripa, and
Maria Luisa Villani.

Negotiation of Service Level Agreements: An Architecture and a Search-Based
Approach.

In Proceedings of the 5th international conference on Service-Oriented Comput-
ing, ICSOC ’07, Vienna, Austria, pages 295–306, Berlin, Heidelberg, 2007.
Springer-Verlag.

ISBN 978-3-540-74973-8.

[79] Michael Papazoglou.
Web Services: Principles and Technology.
Pearson Prentince Hall, England, 2008.

[80] Michael Papazoglou.
Web Services and SOA, Principles and Technology.
Pearson, England, 2012.

[81] Jose A. Parejo, Pablo Fernandez, and Antonio R. Cortes.
QoS-Aware Services composition using Tabu Search and Hybrid Genetic Al-

gorithms.
In Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos,

Vol. 2, No. 1, pages 55–66, 2008.

[82] Chris Peltz.
Web Services Orchestration and Choreography.
Computer, 36(10):46–52, October 2003.
ISSN 0018-9162.

[83] Shuping Ran.
A Model for Web Services Discovery with QoS.
SIGecom Exch., 4(1):1–10, March 2003.
ISSN 1551-9031.

[84] Nicolas Repp.
Überwachung und Steuerung dienstbasierter Architekturen - Ver-

teilungsstrategien und deren Umsetzung.
PHD thesis, Technical University of Darmstadt, Germany, 2002.

170 Bibliography

[85] Nicolas Repp, Julian Eckert, Stefan Schulte, Michael Niemann, Rainer Berbner,
and Ralf Steinmetz.

Towards Automated Monitoring and Alignment of Service-based Workflows.
In IEEE International Conference on Digital Ecosystems and Technologies 2008

(IEEE DEST 2008), Phitsanulok, Thailand, pages 235 – 240, 2008.

[86] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl.

GroupLens: An Open Architecture for Collaborative Filtering of Netnews.
In Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work,

Chapel Hill, pages 175–186, 1994.

[87] Michael Rosen, Boris Lublinsky, Kevin T. Smith, and Marc J. Balcer.
Applied SOA- Service Oriented Architecture and Design Strategies.
Wiley, England, 2008.

[88] Sheldon M. Ross.
Statistik für Ingenieure und Naturwissenschaftler.
3. Auflage, Spektrum, Muenchen, 2006.

[89] Rune Saetre, Mohammad Ullah Khan, and Peter Herrmann.
End-user Composition of Web-based Services: The Plus Alpha Approach.
In India-Norway Workshop on Web Concepts and Technologies, Trondheim, Nor-

way, pages 51 –61, 2011.

[90] Rich Seeley.
Business analyst role key in SOA software development projects.
http://searchsoa.techtarget.com/news/1325388/Business-analyst-

role-key-in-SOA-software-development-projects
(accessed 2013-06-17), 2008.

[91] Junaid Shaikh, Markus Fiedler, and Denis Collange.
Quality of Experience from user and network perspectives.
Annales des Télécommunications, 65(1-2):47–57, 2010.

[92] Lingshuang Shao, Jing Zhang, Yong Wei, Junfeng Zhao, Bing Xie, and Hong
Mei.

Personalized QoS Prediction for Web Services via Collaborative Filtering.
In IEEE International Conference on Web Services - ICWS 2007, Salt Lake City, UT,

USA, pages 439–446. IEEE, 2007.

[93] Mazen M. Shiaa, Jens E. Vaskinn, and Richard T. Sanders.
Service Composition for End-users: A Tool for Telephony Services.
In Intelligence in Next Generation Networks (ICIN), 2010 14th International

Conference, Berlin, Germany, pages 1 –2, 2010.

[94] Rafal Stankiewicz, Piotr Cholda, and Andrzej Jajszczyk.
QoX: What is it really?
IEEE Communications Magazine, 49(4):148–158, 2011.

[95] Mingdong Tang, Yechun Jiang, Jianxun Liu, and Xiaoqing (Frank) Liu.
Location-Aware Collaborative Filtering for QoS-Based Service Recommendation.

Bibliography 171

http://searchsoa.techtarget.com/news/1325388/Business-analyst-role-key-in-SOA-software-development-projects
http://searchsoa.techtarget.com/news/1325388/Business-analyst-role-key-in-SOA-software-development-projects

In Carole A. Goble, Peter P. Chen, and Jia Zhang, editors, 19th International
Conference on Web Services, Honolulu, Hawaii, USA, pages 202–209. IEEE,
2012.

ISBN 978-1-4673-2131-0.

[96] Vladimir Tosic.
Autonomic Business-Driven Dynamic Adaptation of Service-Oriented Systems

and the WSPolicy4MASC Support for Such Adaptation.
International Journal of Systems and Service-Oriented Engineering, 1(1):79–95,

2010.

[97] Vladimir Tosic, Kruti Patel, and Bernard Pagurek.
WSOL - Web Service Offerings Language.
In Revised Papers from the International Workshop on Web Services, E-Business,

and the Semantic Web, CAiSE ’02/WES ’02, pages 57–67, London, UK, 2002.
Springer-Verlag.

ISBN 3-540-00198-0.

[98] Vladimir Tosic, Abdelkarim Erradi, and Piyush Maheshwari.
WS-Policy4MASC - A WS-Policy Extension Used in the MASC Middleware.
In IEEE International Conference on Service Computing (SCC), Salt Lake City, UT,

USA, pages 458–465. IEEE Computer Society, 2007.

[99] Vladimir Tosic, Basem Suleiman, and Hanan Lutfiyya.
UML Profiles for WS-Policy4MASC as Support for Business Value Driven Engin-

eering and Management of Web Services and their Compositions.
In 11th IEEE International Enterprise Distributed Object Computing Conference

(EDOC 2007) - Annapolis, Maryland, USA, pages 157–168. IEEE Computer
Society, 2007.

[100] Hong-Linh Truong and Schahram Dustdar.
A Survey on Context-aware Web Service Systems.
http://www.infosys.tuwien.ac.at/staff/sd/papers/

surveycontextws-submittedversion.pdf (accessed 2014-07-20),
2009.

[101] Tobias Unger, Frank Leymann, Stephanie Mauchart, and Thorsten Scheibler.
Aggregation of Service Level Agreements in the Context of Business Processes.
In 12th International IEEE Enterprise Distributed Object Computing Conference,

ECOC 2008, Munich, Germany, pages 43–52. IEEE Computer Society, 2008.

[102] Wil M.P. van der Aalst and Arthur H. M. Ter Hofstede.
YAWL: Yet Another Workflow Language.
Information Systems, 30:245–275, 2003.

[103] Lo Wei, Yin Jianwei, Deng ShuiGuang, Li Ying, and Wu Zhaohui.
Collaborative Web Service QoS Prediction with Location-Based Regularization.
In 19th International Conference on Web Services, Honolulu, Hawaii, USA, pages

464–471. IEEE, 2012.

[104] Thomas Weise, Steffen Bleul, Diana Comes, and Kurt Geihs.
Different Approaches to Semantic Web Service Composition.

172 Bibliography

http://www.infosys.tuwien.ac.at/staff/sd/papers/surveycontextws-submittedversion.pdf
http://www.infosys.tuwien.ac.at/staff/sd/papers/surveycontextws-submittedversion.pdf

Third International Conference on Internet and Web Applications and Services
(ICIW), IEEE, Athens, Greece, pages 90–96, 2008.

[105] Thomas Weise, Steffen Bleul, Marc Kirchhoff, and Kurt Geihs, editors.
Semantic Web Service Composition for Service-Oriented Architectures, 2008 IEEE

Joint Conference on E-Commerce Technology (CEC’08) and Enterprise
Computing, E-Commerce and E-Services (EEE’08), Washington D.C., USA,
July 2008. IEEE.

[106] Mathias Weske.
Business Process Management: Concepts, Languages, Architectures.
Springer, Germany, 2007.

[107] Web Ontology Language (OWL), 2009. World Wide Web Consortium (W3C).
URL http://www.w3.org/TR/owl2-overview/.

[108] Qi Xie, Kaigui Wu, Jie Xu, Pan He, and Min Chen.
Personalized Context-Aware QoS Prediction for Web Services Based on Collab-

orative Filtering.
In Longbing Cao, Jiang Zhong, and Yong Feng, editors, Advanced Data Mining

and Applications (2), volume 6441 of Lecture Notes in Computer Science,
pages 368–375. Springer, 2010.

ISBN 978-3-642-17312-7.

[109] Tao Yu and Kwei-Jay Lin.
A Broker-Based Framework for QoS-Aware Web Service Composition.
In The 2005 IEEE International Conference on e-Technology, e-Commerce and

e-Service, EEE ’05, Hong Kong, China, pages 22–29. IEEE Computer Society,
2005.

ISBN 0-7695-2073-1.

[110] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang.

QoS-Aware Middleware for Web Services Composition.
IEEE Transactions on Software Engineering, 30(5):311–327, May 2004.

[111] Yilei Zhang, Zibin Zheng, and Michael R. Lyu.
Exploring Latent Features for Memory-Based QoS Prediction in Cloud Comput-

ing.
In 30th IEEE Symposium on Reliable Distributed Systems (SRDS 2011), Madrid,

Spain, October 4-7, 2011, pages 1–10. IEEE, 2011.

[112] Zibin Zheng, Yilei Zhang, and Michael R. Lyu.
Distributed QoS Evaluation for Real-World Web Services.
In IEEE International Conference on Web Services, ICWS 2010, Miami, Florida,

USA, July 5-10, 2010, pages 83–90. IEEE Computer Society, 2010.

[113] Zibin Zheng, Hao Ma, Michael R. Lyu, and Irwin King.
QoS-Aware Web Service Recommendation by Collaborative Filtering.
IEEE Transactions on Services Computing, 4:140–152, April 2011.

[114] Olaf Zimmermann, Mark Tomlinson, and Stefan Peuser.
Perspectives on Web Services- Applying SOAP, WSDL and UDDI to Real-World

Projects.

Bibliography 173

http://www.w3.org/TR/owl2-overview/

Springer, Heidelberg, 2003.

[115] Farhana Zulkernine, Patrick Martin, Chris Craddock, and Kirk Wilson.
A Policy-based Middleware for Web Services SLA Negotiation.
In 7th IEEE International Conference on Web Services - ICWS 2009, Los Angeles,

CA, USA, pages 1043 –1050, 2009.

174 Bibliography

Erklärung

Hiermit versichere ich, dass ich die vorliegende Dissertation selbstständig, ohne un-
erlaubte Hilfe Dritter angefertigt und andere als die in der Dissertation angegebenen
Hilfsmittel nicht benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffent-
lichten oder unveröffentlichten Schriften entnommen sind, habe ich als solche kenntlich
gemacht. Dritte waren an der inhaltlich-materiellen Erstellung der Dissertation nicht
beteiligt; insbesondere habe ich hierfür nicht die Hilfe eines Promotionsberaters in
Anspruch genommen. Kein Teil dieser Arbeit ist in einem anderen Promotions- oder
Habilitationsverfahren verwendet worden.

Kassel, im September 2014

M.Sc. Diana- Elena Reichle

175

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Topic Overview
	Motivation and Problem Statement
	Contribution
	Structure of the Thesis

	Foundations
	Service-Oriented Architecture
	SOA Roles
	SOA Layers
	Web Services

	Business Processes and Workflows
	Web Service Compositions
	The Business Process Execution Language (BPEL)
	Semantic Web Services and Compositions

	Terminology
	Quality Properties
	Quality of Service
	Quality Property Types
	Quality of Experience
	Service Level Agreements

	Context-awareness

	Solution Overview
	The BPR Approach

	Related Work
	QoS Management
	WS-Re2Policy
	QoSL4BP
	WS-Policy4MASC
	WSCoL
	AO4BPEL
	Other Related Approaches

	Service Selection
	Integer Programming
	Linear Programming Relaxation and Backtracking
	Genetic Approach
	Tabu Search and Hybrid Genetic Algorithms
	Heuristic Approaches

	Context-aware Property Prediction
	Collaborative Filtering
	Predictive Algorithms for Collaborative Filtering
	WSRec
	Location Based Regularization
	Location-aware Memory-based Collaborative Filtering Approaches

	The BPRules Language
	Requirements
	The BPRules Language
	The BPR Rules
	Evaluation of Rules
	The BPR Document
	Design Rationales

	BPRules Features
	Summary and Discussion

	QoS Monitoring and Aggregation
	Requirements
	 Service Composition Representation
	QoS Aggregation
	The QoS Measurement Algorithm
	Example
	QoS of the Service Composition

	 The QoS Estimation Algorithm
	Measurement Algorithm vs. Estimation Algorithm
	Automated Deployment
	Discussion

	Web Service Selection
	Requirements
	Service Selection
	Tree Representing the BPEL Process
	QoS Aggregation and Constraints Checking

	Selection Algorithms
	OPTIM_S Algorithm
	OPTIM_HWeight Algorithm
	OPTIM_PRO Algorithm

	Summary

	CoFee - The Feedback Collector and Predictor
	Requirements
	CoFee - an Overview
	Context-aware Service Composition
	Collecting Feedbacks
	Requesting Predictions
	Context-aware Service Composition Example
	Service Provisioning
	User Request Delegation

	Prediction Approach
	Significant Variables
	Prediction of Response Time and Throughput
	Discussion about QoE Prediction

	Summary and Discussion

	The BPR Framework
	Architecture
	Implementation
	The Service Registry
	Service Replacement

	Evaluation
	Service Selection Algorithms
	Comparison with the GA_CAN Algorithm
	Evaluation Methodology and Setup
	Experiments

	Prediction Algorithms
	Evaluation Methodology and Setup
	Experiments

	Conclusions
	Requirements and Solution Summary
	Contributions
	Outlook and Future Work

	List of Figures
	List of Tables
	Appendix
	BPRules XSD Schema

	Publications as (co-)author
	Bibliography

