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Abstract
The following thesis deals with ordered restarting automata. Restarting au-
tomata are a theoretical model used in linguistics for the analysis by reduc-
tion. The ordered restarting automata were introduced in the context of
two-dimensional picture languages and form the underlying one-dimensional
model. Here we look at different variants of this one-dimensional model and
examine issues related to language classes and descriptional complexity. A
common feature of all these variants is the fixed window size of 3, and that the
middle character is replaced by a smaller character in a rewrite step. First of
all, we examine the models in which the rewriting process is always connected
to a restart. Starting from the deterministic model with states we will soon
consider the stateless variant, as it also characterizes the regular languages.
This gives us a characterization of the regular languages, which is as simple
as that by a DFA. Instead of the states we use tape symbols to measure the
size of such an automaton. In addition, we are able to present many languages
and language operations more concisely. Moreover, starting from a stateless
ordered restarting automaton, which may be deterministic or non-deterministic,
we specify a general construction of an NFA with exponentially many states
that describes the same language and we show that the construction is optimal
except for the constant in the exponent. We then use this construction to show
that many interesting decision problems for our stateless restarting automata
are PSPACE-complete. Finally, we use the idea of this construction to introduce
reversibility for our model.

Another interesting variant is the nondeterministic restarting automaton
with states. Its language class is quite unusual, since it contains languages that
are not even context-sensitive, but on the other hand, it does not even contain
the simple linear language {anbn | n ∈ N}. Additionally, we prove a pumping
lemma that allows us to decide emptiness and finiteness.

Finally, we consider the variants with separate rewrite and restart operations.
While restarting automata with nondeterminism and states can express all
context-free languages, we end up with regular languages, whenever we do not
allow states or nondeterminism. We were able to show that all interesting
decision problems except the word problem are undecidable in this setting.
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Zusammenfassung
In der folgenden Arbeit geht es um geordnete Restartautomaten. Restartau-
tomaten sind ein theoretisches Modell, das in der Linguistik bei der Analyse
durch Reduktion Verwendung findet. Die geordneten Restartautomaten wur-
den im Zusammenhang mit zweidimensionalen Bildsprachen eingeführt und
bilden das zugrundeliegende eindimensionale Modell. Von diesem eindimen-
sionalen Modell betrachten wir verschiedene Varianten und untersuchen und
vergleichen hauptsächlich Sprachklassen und Beschreibungskomplexität. Eine
Gemeinsamkeit all dieser Varianten ist die feste Fenstergröße von 3, und dass
beim Schreiben das mittlere Zeichen durch ein kleineres Zeichen ersetzt wird.
Wir untersuchen zunächst die Modelle, bei der der Schreibvorgang immer mit
einem Restart verbunden ist. Ausgehend vom deterministischen Modell mit
Zuständen betrachten wir recht bald die zustandslose Variante, da diese ebenso
die regulären Sprachen charakterisiert. Damit haben wir eine Charakterisierung
der regulären Sprachen, die ähnlich einfach ist wie die durch DFAs. Statt der Zu-
stände nutzen wir Bandsymbole. Dennoch können wir viele Sprachen und auch
Sprachoperationen deutlich prägnanter darstellen. Zudem geben wir ausgehend
von einem zustandslosen geordneten Restartautomaten, der deterministsch
oder nicht-deterministisch sein darf, eine allgemeine Konstruktion für einen
NFA mit exponentiell vielen Zuständen an, der dieselbe Sprache beschreibt,
und zeigen, dass diese Konstruktion bis auf die Konstante im Exponenten
optimal ist. Diese Konstruktion verwenden wir dann, um zu zeigen, dass viele
interessante Entscheidungsprobleme für unsere zustandslosen Restartautomaten
PSPACE-vollständig sind. Die Idee dieser Konstruktion nutzen wir schließlich,
um Reversibilität für unser Modell einzuführen.

Eine weitere interessante Variante stellen schließlich die nicht-
deterministischen geordneten Restartautomaten mit Zuständen dar. Deren
Sprachklasse ist recht ungewöhnlich, da sie Sprachen enthält, die nicht einmal
wachsend kontext-senstiv sind, aber andererseits enthält sie nicht einmal die
einfache lineare Sprache {anbn | n ∈ N}. Wir leiten ein Pumping-Lemma
her, das es uns erlaubt Leerheit und Endlichkeit für ORWW-Automaten zu
entscheiden.

Schließlich betrachten wir noch Varianten mit getrennter Rewrite- und
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Restartoperation. Während die Automaten mit Nichtdeterminismus und Zu-
ständen alle kontextfreien Sprachen darstellen können, landen wir bei einer
Einschränkung, sei es bei den Zuständen oder dem Determinismus, wieder
bei den regulären Sprachen. Wir zeigen, dass im ersten Fall alle interessanten
Entscheidungsprobleme, außer natürlich dem Wortproblem, unentscheidbar
sind.
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Chapter 1

Introduction

1.1 Motivation and Objectives

In linguistics people use the technique analysis by reduction in order to analyze
languages with free word order.

The restarting automaton models this technique and has been introduced
by Jančar et al in 1995 [17].

Since then many variants have been introduced and examined. One of them
is the deterministic ordered restarting automaton which was introduced in the
setting of two-dimensional picture languages [37].

As not much was known about the underlying one-dimensional model we
decided to investigate it to gather a better overall understanding about this
model. It turns out that the underlying model is interesting in itself, which is
why we investigate it independently of its actual origin.

Remark 1.1.1. The term "ordered" is also used in the context of the finite
state automaton, where the ordering refers to the states [41], but in the context
of restarting automata the ordering refers to the tape alphabet.

1.2 Structure of this Thesis

In the first part we investigate the descriptional complexity of the deterministic
ordered restarting automata concerning the representation of languages and
realization of language operations. As deterministic ordered restarting automata
with states can easily be converted to corresponding automata without states we
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settle for investigating stateless deterministic ordered restarting automata. Since
it does not make sense to use states as a complexity measure for stateless ordered
restarting automata we use the number of tape symbols as a measure. As the
deterministic stateless ordered restarting automata exactly characterize the
regular languages, we compare the complexity of language operations with the
corresponding complexity for deterministic finite state automata (DFA). It turns
out that the complexity of language operations for our restarting automaton
is lower than or the same as the corresponding complexity for a DFA. The
main reason for that is that we can simulate a DFA by a stateless deterministic
ordered restarting automaton (stl-det-ORWW) of the same size. Additionally,
operations like reversal can be realized exponentially more succinctly.

The main result is the simulation of a stl-det-ORWW-automaton that
uses n tape symbols by a nondeterministic finite state automaton (NFA) of
exponential size, that is 2O(n) states. The simulation can also be applied to
its nondeterministic counterpart, the stl-ORWW-automaton. This not only
represents a significant improvement of the known bound, but is also a new
result in the nondeterministic case. It turns out that this bound is sharp. With
the help of this simulation we show that for stl-ORWW-automata decision
problems like emptiness, finiteness and equivalence are all PSPACE-complete.

We conclude the chapter by investigating how reversibility can be introduced
for deterministic ordered restarting automata.

In the following chapter we investigate the ORWW-automata, the nonde-
terministic ordered restarting automata with states. At first we look at some
examples and see that we can express some complicated languages. Using a
similar idea as in the previous chapter we derive a true pumping lemma for these
automata. We then use it to show that the emptiness and finiteness problems
for these automata are decidable. We also show that the simple language
{anbn | n ≥ 1} is not accepted by any ORWW-automaton. Finally, we look at
how we can realize language operations and find out that the ORWW-automata
describe an abstract family of languages, that is not closed under reversal and
complement. It can be arranged between the regular and the context sensitive
languages.

Lastly, motivated by the restrictions of not being able to express the simple
language from above we look at ORRWW-automata that do not have that

2



restriction. As before we look at restricted variants first. The det-ORRWW-
automaton can be simulated by a det-ORWW-automaton. Thus, the det-
ORRWW-automata describe the regular languages.

Now, the stl-ORRWW-automata remain to be considered. We find out
that their computations can be normalized which finally allows us to apply
the Myhill-Nerode-Theorem. Thus, also these automata describe the regular
languages. Finally, we look at the ORRWW-automata. They can describe all
context-free languages and many more interesting languages. However, this
has the consequence that all interesting decision problems are undecidable for
ORRWW-automata.

In the end, we finish our thesis by reviewing the properties of the ORWW and
ORRWW automata. We mention open problems that are worth investigating
further.

For the reader’s convenience, the chapters are designed in such a way that
they are not strongly interdependent. They can be read largely independently
of each other.

1.3 Publications

A part of this thesis has already been published or submitted for publication.
The publications are listed here:

The work "On the Descriptional Complexity of Stateless Deterministic
Ordered Restarting Automata" is published in "Information and Computation"
[36].

[36] F. Otto and K. Kwee. On the descriptional complexity of stateless
deterministic ordered restarting automata. Information and Computation,
https://doi.org/10.1016/j.ic.2017.09.006, 2017

It is based on the conference papers of DCFS 2014 [34], DCFS 2015 [24] and
DLT 2015 [35].

[34] F. Otto. On the descriptional complexity of deterministic ordered restart-
ing automata. In H. Jürgensen, J. Karhumäki, and A. Okhotin, editors,
DCFS 2014, Proc., LNCS 8614, pages 318–329. Springer, Heidelberg,
2014
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[24] K. Kwee and F. Otto. On some decision problems for stateless determin-
istic ordered restarting automata. In J. Shallit and A. Okhotin, editors,
DCFS 2015, Proc., LNCS 9118, pages 165–176. Springer, Heidelberg,
2015

[35] F. Otto and K. Kwee. Deterministic ordered restarting automata that
compute functions. In I. Potapov, editor, DLT 2015, Proc., LNCS 9168,
pages 401–412. Springer, Heidelberg, 2015

The part about reversible ordered restarting automata was presented at the
conference "Reversible Computation 2015" and published in the corresponding
proceedings [38].

[38] F. Otto, M. Wendlandt, and K. Kwee. Reversible ordered restarting
automata. In J. Krevine and J.-B.. Stefani, editors, RC 2015, Proc.,
LNCS 9138, pages 60–75. Springer, Heidelberg, 2015

Additionally, there are some publications about nondeterministic ordered
restarting automata with states.

[26] K. Kwee and F. Otto. On the effects of nondeterminism on ordered
restarting automata. In R.M. et al. Freivalds, editor, SOFSEM 2016,
Proc., LNCS 9587, pages 369–380. Springer, Heidelberg, 2016

[27] K. Kwee and F. Otto. A Pumping Lemma for Ordered Restarting
Automata. In G. Pighizzini and C. Câmpeanu, editors, DCFS 2017,
Proc., LNCS 10316, pages 226 – 237. Springer, Heidelberg, 2017

Finally, there is a publication about ORRWW-automata that was presented
at DLT 2016.

[25] K. Kwee and F. Otto. On Ordered RRWW-Automata. In Srečko Brlek
and Christophe Reutenauer, editors, Developments in Language Theory,
LNCS 9840, pages 268–279, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg
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Chapter 2

Background Theory

2.1 Introduction

In this chapter we give a short overview of basic terms and notation we use in
this thesis. It does not claim to be complete. More detailed information can
be looked up in classical formal language theory books like [16]. Additionally,
we give a very brief introduction for generic restarting automata.

2.2 Basic Formal Language Theory

In computer science formal languages are sets of strings of symbols. That is, a
formal language L is a subset of Σ∗, where the alphabet Σ denotes the set of
symbols. The empty word is denoted by the symbol λ.

There are several ways to describe a formal language L. A common and
essential criterion for the specification is the finite representation of the usually
infinite number of words. One method for the specification of a formal language
would be to specify a set of properties. The set of words obeying these properties
would then be the defined language.

Another way is using formal grammars to describe the syntactic structure
of a language.

A formal grammar is a set of production rules for strings. Formally, it can
be described by a 4-tuple (N,Σ, P, S) where

• N is a finite set of nonterminal symbols,
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• Σ is a finite alphabet,

• P is a set of production rules of the form (Σ∪N)∗N(Σ∪N)∗ → (Σ∪N)∗,
and

• S ∈ N is the start symbol.

Depending on the restrictions on the kind of rules of the grammar the
language is classified according to the famous Chomsky Hierarchy. In addition
to the production rules we specify, we allow the rule S → λ to include the
empty word in the language defined.

• Type 1 grammars have production rules of the form αAβ → αγβ with
α, β ∈ (Σ ∪ N)∗, A ∈ N and γ ∈ (Σ ∪ N r {S})+. They describe
the context-sensitive languages (CSL). The language class CSL is also
often described by monotone grammars. They have production rules
P ⊆ (N ∪T )∗× (N ∪T )∗, such that for (w1 → w2) ∈ P, |w1|≤ |w2|. If w1

is strictly shorter than w2, that is |w1|< |w2|, we have a strictly monotone
grammar. They describe the growing-context-sensitive languages (GCSL).

• Type 2 grammars have production rules of the form N → (Σ∪Nr{S})+.
They describe the context-free languages (CFL). If there is at most one
nonterminal symbol at the right hand side for every production rule, we
have a linear grammar which describe the linear languages (LIN).

• Type 3 grammars have production rules of the form N → (Σ ∪ ΣN).
They describe the regular languages (REG).

An overview can be seen in the following table where we show the grammar
type and the characterization with a type of automaton.

Grammar Name Language Automaton Model

0. Unrestricted Rec. enumerable Turing Machine
1. Context-sensitive Context-sensitive Linear-bounded automaton
2. Context-free Context-free Pushdown automaton
3. Regular Regular Finite state automaton

The corresponding automaton model for the linear languages are one-turn
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pushdown automata. They have the property that they cannot execute push
operations after executing a pop operation (see [13]).

In this work, we mostly use the approach to specify some device or algo-
rithm for recognizing valid words. That is why we will mostly focus on the
characterization of languages through automata.

In this context, we investigate in particular closure properties under language
operations. But first of all, we present the most common language operations.

Language Operations

The most common language operations are enlisted in the following table, where
L1 and L2 are formal languages over Σ∗ and f is a morphism f : Σ∗ → Γ∗ .

Operation Notation and Definition

Union L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2}
Intersection L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 and w ∈ L2}
Concatenation L1 · L2 = {w1 · w2 ∈ Σ∗ | w1 ∈ L1, w2 ∈ L2}
Complement L1 = Lc1 = {w ∈ Σ∗ | w /∈ L1}
Kleene Star L∗1 = {λ} ∪ L1 · L∗1
Reversal LR1 = {wR | w ∈ L1}
Morphism f(L1) = {f(w) | w ∈ L1}
Inverse Morphism f−1(L1) = {w ∈ Σ∗ | f(w) ∈ L1}

In order to present some more language operations we discuss some string
operations.

Let L be a language and Σ be its alphabet. A substitution is a mapping f
that maps each letter a ∈ Σ to a language La ⊆ Γ∗ where Γ is an alphabet.
The mapping f is then extended canonically to a mapping on strings:

f(λ) = {λ}, f(aw) = f(a) · f(w),

where a ∈ Σ, w ∈ Σ∗.

In short, a substitution is a letter-to-language mapping.

A morphism is a special case of a substitution. In that case we match letters
to languages that only consist of a single word. We can then directly match a
letter to this string and we have a letter-to-string mapping.
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Let L be a language and Σ be its alphabet. A morphism is a mapping f
that maps each letter a ∈ Σ to a string wa ∈ Γ∗. The mapping is then extended
canonically to a mapping on strings.

2.3 Restarting Automata

As mentioned before, the restarting automata were introduced by Jančar, Mráz,
Plátek Vogel in 1995 [17] to model the analysis by reduction.

This section is strongly influenced by the thesis of Hartmut Messerschmidt
[30].

While the initial model was very restricted, many variations were introduced
later.

We now give the definition for the most general model that we will work
with, the RRWW-automaton.

Definition 2.3.1. [30] A restarting automaton, RRWW-automaton for short, is
a one-tape machine that is described by an 8-tuple M = (Q,Σ,Γ,�,�, q0, k, δ),
where Q is the finite set of states, Σ is the finite input alphabet, Γ is the finite
tape alphabet containing Σ, the symbols �,� are markers for the left and right
border of the work space, respectively, q0 ∈ Q is the initial state, k ≥ 1 is the
size of the read/write window, and

δ : Q× PC(k) → 2Q×({MVR}∪PC≤(k−1)) ∪ {Restart,Accept},

where PC(k) is the set of possible window contents of length k

PC(k) = ({�} · Γk−1) ∪ Γk ∪ (Γ≤k−1 · {�}) ∪ ({�} · Γk−2 · {�})

and

PC≤(k−1) =
k−1⋃
i=1

PC(i) ∪ {λ}.

The transition relation describes four different types of transition steps:

1. A move-right step is of the form (q′,MVR) ∈ δ(q, u), where q, q′ ∈ Q

and u ∈ PC(k), u 6= �. If M is in state q and sees the string u in
its read/write window, then this move-right step causes M to shift the
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read/write window one position to the right and to enter state q′. However,
if the content u of the read/write window is only the symbol �, then no
shift to the right is possible.

2. A rewrite step is of the form (q′, v) ∈ δ(q, u), where q, q′ ∈ Q, u ∈ PC(k),
u 6= �, and v ∈ PC≤(k−1) such that |v|< |u|. It causes M to replace the
content u of the read/write window by the string v, and to enter state q′.
Further, the read/write window is placed immediately to the right of v.
However, some additional restrictions apply in that the border markers
� and � must not disappear from the tape nor that new occurrences
of these markers are created. Further, the read/write window must not
move across the right border marker �, that is, if the string u ends in �,
then so does the string v, and after performing the rewrite operation, the
read/write window is placed on the �-symbol.

3. A restart step is of the form Restart ∈ δ(q, u), where q ∈ Q and u ∈ PC(k).
It causes M to move its read/write window to the left end of the tape, so
that the first symbol it sees is the left border marker �, and to re-enter
the initial state q0.

4. An accept step is of the form Accept ∈ δ(q, u), where q ∈ Q and u ∈ PC(k).
It causes M to halt and accept.

If no instruction with a left-hand side (q, u) exists, then the automaton halts
and rejects, when it reaches state q while it sees tape content u in its window.
A halting configuration is either an accepting or a rejecting configuration. A
restarting automaton performs exactly one rewrite operation between two
restart steps. In general an automaton M is nondeterministic which means
that for a left-hand side (q, u) there can be more than one instruction. If for
every left-hand side (q, u) there exists at most one instruction, then M is called
deterministic and the prefix det- is used to describe the class of deterministic
restarting automata. A configuration of a restarting automaton is given by a
word αqβ where q ∈ Q is the current state and αβ ∈ Γ∗ is the current tape
content including the border markers, with the read/write window scanning the
first k letters of the word β. A configuration q0 � ω� with ω ∈ Γ∗ is called a
restarting configuration, and if ω ∈ Σ∗ then it is called an initial configuration.

9



� a b c d e f �

q1 finite control

flexible tape

read/write window

Figure 2.1: A schematic representation of a restarting automaton in the config-
uration �aq1bcdef�

αqβ is called an accepting configuration if there exist β1, β2 ∈ Γ∗ such that
β = β1β2 and δ(q, β1) = Accept.

The transition relation transforms a configuration α0q0β0 into a successor
configuration α1q1β1. This is denoted as α0q0β0 ` α1q1β1 and the type of the
transition relation is given as an index. `∗MVR describes a sequence of MVR
steps.

A schematic representation of a restarting automaton is shown in Figure 2.1.

Definition 2.3.2. The language accepted by a restarting automaton M is
called L(M). It consists of all words w ∈ Σ∗ for which there is an accepting
computation of M starting from the initial configuration q0�w�. The complete
language, or characteristic language, of M , LC(M) for short, consists of all
words w ∈ Γ∗ which are accepted by M. That is,

L(M) = {w ∈ Σ∗ | q0 � w� `∗M Accept}

and
LC(M) = {w ∈ Γ∗ | q0 � w� `∗M Accept}.

The class name RRWW indicates which of the many restrictions of the
general restarting automaton we are using. It is an acronym and consists of
two parts. The first part RR refers to the restriction on the movement of the
read/write window. In general the first part can be

RR, which means no restriction, and

R, which means that we have to execute the restart operation directly after
executing a rewrite.
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The second part of the acronym refers to restrictions on the rewrite instructions,
where

WW denotes no restriction,

W means that we cannot use auxiliary symbols, and

λ means that we are only allowed to delete symbols.

To sum it up, a restarting automaton consists of a finite state control, a
flexible tape containing the input word with border markers at the left and
right end of the word, and a read/write window of a fixed size.

Initially, the window is at the left border marker and the automaton is in
its initial state. This is the initial configuration. By using move-right steps the
automaton moves the window over the tape depending on the window content
and its current state. Additionally, it can execute Rewrite, Restart, and Accept
operations. Not considering the move steps the Rewrite- and Restart-operations
have to alternate starting with the rewrite operation.

When executing a rewrite operation the window content u is replaced by
the strictly shorter word v and the window is placed to the right of v. When
executing a restart operation the window is placed to the initial position at the
left border marker.

A computation consists of several phases. A cycle starts in the initial config-
uration, also called restarting configuration, and ends with a rewrite operation.
The accepting tail is the phase that starts in a restarting configuration and
ends with an Accept operation.

With this definition in mind an RWW-automaton is a restarting automaton
that can use auxiliary symbols but has to restart directly after executing a
rewrite.

Otto has shown in [33] that for every RRWW-automaton M there exists
an RRWW-automaton M ′ that only performs restart operations at the right
sentinel which accepts the same language. This allows us to split one cycle into
several parts.

The first part starts in the restarting configuration and contains only MVR
operations. The next part only consists of the rewrite operation. It is followed
by a part with additional MVR steps until the right border marker is reached
which is immediately followed by a restart operation.
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The accepting tail only consists of MVR operations which ends with an
Accept operation.

Surely, the accepting tail could also contain a rewrite operation, but as we
accept anyways, we can simply omit the rewrite operation.

The splitting into several parts allows us the introduction of meta-
instructions.

The MVR phase can be described by a regular expression because the
automaton behaves like a finite state machine. The rewrite phase can be
described by writing down the pair of strings consisting of the string to be
replaced and the string that replaces it. The final MVR phase until the restart
can again be described by a regular expression.

Definition 2.3.3. A meta-instruction for an RRWW-automatonM is either of
the form (E1, u→ v, E2) or (E1,Accept), where E1, E2 are regular expressions,
u, v ∈ Γ∗. We can apply a rule of a form (E1, u→ v, E2) if the word w on the
tape can be written as a factorization w = sut with s, u, t ∈ Γ∗ such that E1

matches �s and E2 matches t�. In that case we can replace the word w = sut

by the word svt. A rule of the form (E1,Accept) describes an accepting tail
in a computation and it can be applied if E1 matches �w�. All rules and the
factorization are chosen nondeterministically. If no rule can be applied the
automaton gets stuck and we reject the input.

Meta-instructions for RWW-automata look a bit different as there are no
MVR operations after the rewrite operations. Thus, we omit the last regular
expression. A meta-instruction for an RWW-automaton M is either of the
form (E, u→ v) or (E,Accept), where E is a regular expressions and u, v ∈ Γ∗.
We can apply a rule of a form (E, u → v) if the word w on the tape can be
written as a factorization w = sut with s, u, t ∈ Γ∗ such that E matches �s. In
that case we can replace the word w = sut by the word svt. A rule of the form
(E,Accept) describes an accepting tail in a computation and it can be applied
if E matches �w�.

In addition to the classical language classes of the Chomsky Hierarchy, we
also look at some typical languages that appear in the context of restarting
automata.

First of all, there are the Church-Rosser languages. Classically, they are
defined by a string rewriting system.
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Definition 2.3.4. Let Σ be a finite alphabet. A string-rewriting system R on
Σ is a subset of Σ∗ × Σ∗. It induces the following reduction relations on Σ∗.

Starting with the single-step reduction relation

→R= {(ulv, urv) | u, v ∈ Σ∗, (l→ r) ∈ R}

we get the reflexive and transitive closure →∗R of →R.

If we have a string u ∈ Σ∗ and there is no string v ∈ Σ∗ such that u→R v

holds, u is called irreducible. IRR(R) denotes the set of all irreducible strings.
The string-rewriting system R is called length-reducing if |l|> |r| holds for
each rule (l→ r) ∈ R. It is called confluent if, for all u, v, w ∈ Σ∗ with u→∗R v
and u→∗R w, v and w have a common descendant, that is, there exists a word
s ∈ Σ∗ such that v →∗R s and w →∗R s.

Now, we can define what a Church-Rosser language is.

Definition 2.3.5. A language L ⊆ Σ∗ is a Church-Rosser language if there exist
a working alphabet Γ ⊃ Σ, a finite length-reducing confluent string rewriting
system R on Γ, two strings t1, t2 ∈ (Γ r Σ)∗ ∩ IRR(R), and a symbol Y ∈
(Γ r Σ)∗ ∩ IRR such that for all w ∈ Σ∗ : t1wt2 →∗R Y if and only if w ∈ L.

The Church-Rosser languages (CRL) are often seen together with the growing
context-sensitive languages, or GCSL for short.

We are going to integrate the language classes described by our ordered
restarting automata and their variations into the hierarchy of common language
classes.

The common acronyms for the different language classes are the following:

REG Regular language

DLIN Deterministic linear language

LIN Linear language

DCFL Deterministic context-free language

CFL Context-free language

CRL Church-Rosser language

13



CSL

GCSL

CRL CFL

DCFL LIN

DLIN

REG

Figure 2.2: The hierarchy of common language classes. The arrow indicates a
proper inclusion.

GCSL Growing context-sensitive language

CSL Context-sensitive language

The hierarchy regarding inclusion is shown in figure 2.2.
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Chapter 3

Ordered Restarting Automata

In this chapter we introduce the ordered restarting automaton and some
variants of it. It differs from the classical restarting automaton we introduced
in the previous chapter in that it cannot shorten the input, as it can only
replace one symbol with a smaller symbol with respect to a given partial
ordering. This means that each of these automata can be simulated by a
linearly bounded automaton and their language class is included in the context-
sensitive languages.

In particular, we examine the language class described by each type of
automaton and investigate how concise its presentation is. First of all, we
start with a generic definition of the ordered restarting automaton, or ORWW-
automaton for short. This model is nondeterministic and has states. After that
we look at certain restrictions of the ordered restarting automaton. Initially, we
have a look at the most restricted variant, the stateless deterministic ordered
restarting automaton. It turns out that we can simulate a deterministic ordering
restarting automaton with states, a det-ORWW-automaton, by a deterministic
ordering restarting automaton without states, a stl-det-ORWW-automaton.
For this reason, we shift our focus to the stateless ordered restarting automaton
in order to investigate the descriptional complexity of language operations in
Section 3.3.

We will show that for a stl-det-ORWW automaton M with a tape alphabet
of size n we can construct an NFA A with 2O(n) states that accepts the same
language. This is the main result of this chapter.

Before we describe the construction and prove its correctness, we briefly
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have a look at the nondeterministic stateless ordered restarting automaton,
that is, the stl-ORWW-automaton.

It turns out that for nondeterministic ordered restarting automata the same
construction can be used as for deterministic ones, which is why we directly
describe the more general case in section 3.5.

As a preparation for the final construction of the NFA we have a closer look
at the properties of valid computations and how they can be manipulated.

We then use this construction to show that many decisions problems for
stl-ORWW-automata are PSPACE-complete.

We supplement the chapter by exploring how stl-det-ORWW-automata can
be extended to be reversible.

3.1 Definition

An ORWW-automaton is a nondeterministic one-tape machine that is described
by an 8-tuple M = (Q,Σ,Γ,�,�, q0, δ, >), where Q is a finite set of states
containing the initial state q0, Σ is a finite input alphabet, Γ is a finite tape
alphabet such that Σ ⊆ Γ, the symbols �,� 6∈ Γ serve as markers for the left
and right border of the work space, respectively,

δ : (Q× ((Γ ∪ {�}) · Γ · (Γ ∪ {�}) ∪ {��}))→ 2(Q×{MVR})∪Γ ∪ {Accept}

is the transition relation, and > is a partial ordering on Γ. The transition
relation describes three different types of transition steps:

(1) A move-right step has the form (q′,MVR) ∈ δ(q, a1a2a3), where q, q′ ∈ Q,
a1 ∈ Γ ∪ {�}, and a2, a3 ∈ Γ. It causes M to shift the window one
position to the right and to change from state q into state q′. Observe
that no move-right step is possible, if the window contains the symbol �.

(2) A rewrite/restart step has the form b ∈ δ(q, a1a2a3), where q ∈ Q,
a1 ∈ Γ ∪ {�}, a2, b ∈ Γ, and a3 ∈ Γ ∪ {�} such that a2 > b holds. It
causes M to replace the symbol a2 in the middle of its window by the
symbol b and to restart, that is, the window is moved back to the left
end of the tape, and M reenters its initial state q0.
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(3) An accept step has the form δ(q, a1a2a3) = Accept, where q ∈ Q, a1 ∈
Γ ∪ {�}, a2 ∈ Γ, and a3 ∈ Γ ∪ {�}. It causes M to halt and accept. In
addition, we allow an accept step of the form δ(q0,��) = Accept.

If δ(q, u) = ∅ for some state q and a word u, then M necessarily halts,
when it is in state q seeing u in its window, and we say that M rejects in this
situation. Further, the letters in Γ r Σ are called auxiliary symbols.

If |δ(q, u)| ≤ 1 for all q and u, then M is a deterministic ORWW-automaton
(det-ORWW-automaton). We use the partial transition function

δ : Q× (((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��}) (Q× {MVR}) ∪ Γ ∪ {Accept}

to emphasize determinism.

If Q = {q0}, that is, if the initial state is the only state of M , then we
call M a stateless ORWW-automaton (stl-ORWW-automaton) or a stateless
deterministic ORWW-automaton (stl-det-ORWW-automaton), as in this case
the state is actually not needed. Accordingly, for stateless ORWW-automata,
we will drop the components that refer to states to simplify the notation. In
that case we formally use the 6-tuple M = (Σ,Γ,�,�, δ, >), and the transition
function

δ : ((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��} {MVR} ∪ Γ ∪ {Accept}

for a stl-det-ORWW-automaton and the transition function

δ : ((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��} → 2{MVR}∪Γ ∪ {Accept}

for a the stl-ORWW-automaton.

We note that in the case of nondeterministic automata, we do not allow
other operations if we can execute the Accept operation. The simple reason for
this is that we would never perform the other operations as it does not make
sense not to accept when we can.

The same terms and notations that exist for restarting automata are naturally
transferred to the ordered restarting automata.

A configuration of an ORWW-automaton M is a word αqβ, where q ∈
Q is the current state, |β| ≥ 3, and either α = λ (the empty word) and
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β ∈ {�} · Γ+ · {�} or α ∈ {�} · Γ∗ and β ∈ Γ · Γ+ · {�}; here αβ is the
current content of the tape, and it is understood that the window contains the
first three symbols of β. In addition, we admit the configuration q0 � �. A
restarting configuration has the form q0 �w�; if w ∈ Σ∗, then q0 �w� is also
called an initial configuration. Further, we use Accept to denote the accepting
configurations, which are those configurations that M reaches by an accept
step. An example for a configuration and its graphical representation can be
seen in Figure 3.1.

For stateless automata this representation is not so practical because we
would have to give the constant state a name. For that reason we introduce an
additional notation for configurations of stateless ordered restarting automata.
A configuration of a stl-det-ORWW-automaton M is a pair of words (α, β),
where |β|≥ 3, and either α = λ (the empty word) and β ∈ {�} · Γ+ · {�} or
α ∈ {�} · Γ∗ and β ∈ Γ · Γ+ · {�}; here αβ is the current content of the tape,
and it is understood that the window contains the first three symbols of β. In
addition, we admit the configuration (λ,��). A restarting configuration has
the form (λ,�w�) (usually simply written as �w�); if w ∈ Σ∗, then (λ,�w�)

is also called an initial configuration.

As an alternative we also allow to simply underline the three characters of
the window content, which roughly corresponds to the graphical representation
of a configuration.

Any computation of an ORWW-automaton M consists of certain phases. A
phase, called a cycle, starts in a restarting configuration, the head is moved
along the tape by MVR steps until a rewrite/restart step is performed and
thus, a new restarting configuration is reached. If no further rewrite operation
is performed, any computation necessarily finishes in a halting configuration –
such a phase is called a tail. By `cM we denote the execution of a complete cycle,
and `c∗M is the reflexive transitive closure of this relation. It can be seen as the
rewrite relation that is realized by M on the set of restarting configurations.

An input word w ∈ Σ∗ is accepted by M if there is a computation of M
which starts with the initial configuration q0 � w� and ends with an accept
step. The language consisting of all words that are accepted by M is denoted
by L(M).

As each cycle ends with a rewrite operation, which replaces a symbol a by a

18



� a b c d e f �

q0

Figure 3.1: An ORWW-automaton in the configuration �aq0bcdef�

symbol b that is strictly smaller than a with respect to the given ordering >,
each computation of M on an input of length n consists of at most (|Γ|−1) · n
cycles. Thus, M can be simulated by a nondeterministic single-tape Turing
machine in time O(n2).

We now illustrate the single-step relation using the above-mentioned
possible operations. Given an ORWW-automaton M in the configuration
�a0qa1a2a3a4a5� there could be three different kinds of operations.

(a) If we execute the MVR operation δ(q, a1a2a3) → (q′,MVR), we would
have the following transition between configurations:

�a0qa1a2a3a4a5� `M �a0a1q
′a2a3a4a5�

which can be represented graphically in the following way:

� a0 a1 a2 a3 a4 a5 �

q

`

� a0 a1 a2 a3 a4 a5 �

q′

(b) Then we could execute the Rewrite operation δ(q, a1a2a3) → b, which
would lead to the following transition between configurations:

�a0qa1a2a3a4a5� `M q0 � a0a1ba3a4a5�

which can be represented graphically as follows:
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� a0 a1 a2 a3 a4 a5 �

q

`

� a0 a1 b a3 a4 a5 �

q0

(c) Finally, we could execute the Accept operation δ(q, a1a2a3) → Accept,
which would look like follows

�a0qa1a2a3a4a5� `M Accept

with the following graphical representation:

� a0 a1 a2 a3 a4 a5 �

q

`

� a0 a1 a2 a3 a4 a5 �

Accept

We will see in the following sections that 3 of the 4 variants presented
characterize the regular languages. Due to the special characteristics of the
most generic variant, that is the ORWW-automaton, we dedicate a separate
chapter to this one.

We will first deal with the most restricted variant, the stateless deterministic
ordered restarting automaton (stl-det-ORWW-automaton).

3.2 Deterministic Ordered Restarting Au-

tomata

In this section we deal with stateless deterministic ordered restarting automata,
the simplest of our variants. As we have already given the definition, we
start with an example to illustrate the way in which a stateless det-ORWW-
automaton works.

Example 3.2.1. Let n ≥ 2 be a fixed integer, and let M = (Σ,Γ,�,�, δ, >)

be defined by taking Σ = {a, b} and Γ = Σ ∪ { ai, bi, xi | 1 ≤ i ≤ n − 1 }, by
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choosing the ordering > such that a > ai > xj and b > bi > xj hold for all
1 ≤ i, j ≤ n− 1, and by defining the transition function δ in such a way that
M proceeds as follows: On input w = w1w2 . . . wm, w1, w2, . . . , wm ∈ Σ, M
numbers the first n− 1 letters of w from left to right, by replacing wi = a (b)
by ai (bi) for i = 1, 2, . . . , n− 1. If wn 6= a, then the computation fails, but if
wn = a, then M continues by replacing the last n− 1 letters of w from right to
left using the letters x1 to xn−1. If the n-th last letter is b or some bi, then M
accepts, otherwise the computation fails again.

Then L(M) = {w ∈ {a, b}m | m > n, wn = a, and wm+1−n = b }. It is
well-known (and easily checked) that a DFA for this language needs O(2n)

states. Observe that M is stateless and that it has an alphabet of size 3n− 1

only.

First we show that the stateless deterministic ordered restarting automaton
can represent all regular languages.

Proposition 3.2.2. [34] For each DFA A = (Q,Σ, q0, F,∆), there exists a
stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >) such that L(M) = L(A) and
|Γ|= |Q|+|Σ|.

Proof. We take Γ = Σ ∪ Q and define a > q for all a ∈ Σ and all q ∈ Q.
On input of a word w = a1a2 . . . an, where n ≥ 1 and a1, a2, . . . , an ∈ Σ,
the stl-det-ORWW-automaton M simply replaces each letter ai by the state
∆(q0, a1a2 . . . ai), proceeding from left to right. It accepts if and when the last
letter an has been replaced by a final state of A. Also, we add the transition
δ(��) = Accept if λ ∈ L(A).

In detail, we treat the words of length one as a special case to get a slightly
simpler transition function. With this in mind the transition function looks as
follows. At first we have the two special cases

δ(��) = Accept if λ ∈ L(A),

and δ(�a�) = Accept if a ∈ L(A).

Then we have the case for words of length ≥ 2, where a, b ∈ Σ and p, q, r ∈ Q:

δ(�ab) = ∆(q0, a),
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δ(�pa) = MVR,

δ(pab) = ∆(p, a),

δ(�pq) = MVR,

δ(pqa) = MVR,

δ(pqr) = MVR,

δ(pa�) = ∆(p, a),

δ(pq�) = Accept if q ∈ F.

This means that for words of length ≥ 2 there is a corresponding cycle in
the ORWW for each transition in the DFA. If a word w = w1w2 . . . wn, n ≥ 2

is accepted by the DFA A by the computation

q0
w1−→ q1

w2−→ . . .
wn−1−−−→ qn−1

wn−→ qn,

the word w is accepted by the ORWW M by the computation

�w1w2 . . . wn � `c �q1w2 . . . wn� `c �q1q2w3 . . . wn� `c
∗
�q1q2 . . . qn−1wn�

`c �q1q2 . . . qn−1qn� `∗ Accept

Note, as we have only used restarting configurations in the last computation,
underlining the content of the read/write window is not necessary.

With this we have seen that

REG ⊆ L(stl-det-ORWW)

holds.

Now the question arises what happens when we add states. Obviously,
L(stl-det-ORWW) ⊆ L(det-ORWW) holds as a stl-det-ORWW-automaton is
just a special det-ORWW-automaton, namely one with exactly one state.

The only question is whether the inclusion is proper.

It turns out that the stateless det-ORWW-automata are as expressive as the
variants with states. This can be deduced as follows.

As the automaton is deterministic we can make the following observation.
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Remark 3.2.3. Let M be a det-ORWW-automaton. As each cycle ends with a
rewrite/restart step, which replaces a letter a by a letter b that is strictly smaller
than a with respect to the given ordering >, we see that each computation of M
on an input of length n consists of at most (|Γ|−1) · n cycles. Assume now that
within a computation, M performs a rewrite/restart step at some tape position
i ≥ 3, that is,

�u1u2 . . . ui−3ui−2qabcv� `M q0�u1u2 . . . ui−3ui−2ab
′cv � .

As M is deterministic, it must next execute MVR steps until the newly written
letter b′ appears in its window. Thus, this computation continues with a sequence
of i− 2 MVR steps, that is,

q0�u1u2 . . . ui−3ui−2ab
′cv� `i−2

M �u1u2 . . . ui−3pui−2ab
′cv�

for some state p. By combining the rewrite/restart step with these subsequent
MVR steps, we obtain an operation that first rewrites the letter in the middle
of the window by a smaller letter with respect to the ordering > and that then
moves the window simply one position to the left. This implies in particular
that a det-ORWW-automaton can be simulated by a deterministic single-tape
Turing machine in linear time.

This observation allows us to simulate a det-ORWW-automaton by a stl-
det-ORWW-automaton. A similar simulation has already been presented in
[34].

Proposition 3.2.4. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be a det-ORWW-automa-
ton. Then there exists a stl-det-ORWW-automaton M ′ = (Σ,Θ,�,�, δ′, >′)

such that L(M ′) = L(M) and |Θ|= |Q|·|Γ|2+|Γ|.

Proof. The idea of the construction is that the stl-det-ORWW-automaton M ′

stores the actual state of M on its tape. To be more specific, whenever we
would execute a move-right step, we first store the state, M would change to,
in our current tape field and execute the MVR operation in the next cycle. In
this way, the current state is always stored in the first symbol of the read/write
window. If the first symbol is the left sentinel �, we are obviously in the initial
state q0. Now, we need a partial ordering for our tape alphabet. As we could
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change to different states from one tape field when the symbol to the right
changes, we also store this symbol together with the state in order to define a
partial ordering. When simulating the automaton, we do not need that symbol
to decide what operation is to be executed. The symbol is only used to ensure
that we replace symbols with smaller symbols. Therefore, we use the following
tape alphabet

Θ = Γ ∪ { [q, a, b] | q ∈ Q, a, b ∈ Γ }

with the partial ordering

a >′ [q, a, x] >′ [p, a, y] >′ b

where a, b, x, y ∈ Γ, p, q ∈ Q, a > b, x > y.

Accordingly, we can construct M ′ from M as follows:

• δ′ is defined as follows, where a, b, c, x, y, z, A ∈ Γ, D ∈ Γ ∪ {�}, and
p, q, r ∈ Q:

First we treat the empty word and single letter words as a special case:

δ′(�u�) = Accept for all u ∈ (Σ ∪ {λ}) ∩ L(M).

Then we have the possible cases for rewrites:

δ′(�ab) = A if δ(q0,�ab) = A,

δ′(�[q, a, x]b) = A if δ(q0,�ab) = A,

δ′([q, a, x]bD) = A if δ(q, abD) = A,

δ′([q, a, x][p, b, y]D) = A if δ(q, abD) = A.

And here are the possible cases for Accept operations:

δ′(�ab) = Accept if δ(q0,�ab) = Accept,

δ′(�[q, a, x]b) = Accept if δ(q0,�ab) = Accept,

δ′([q, a, x]bD) = Accept if δ(q, abD) = Accept,

δ′([q, a, x][p, b, y]D) = Accept if δ(q, abD) = Accept.
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And this is how we update the states on our tape fields. We take into
account the partial ordering for the second and fourth instruction, since
the letter y must have been located in third position before the current
letter c. Therefore, y > c holds.

δ′(�ab) = [q, a, b] if δ(q0,�ab) = (q,MVR),

δ′(�[p, b, y]c) = [r, b, c] if δ(q0,�bc) = (r,MVR) and p 6= r,

δ′([q, a, x]bc) = [p, b, c] if δ(q, abc) = (p,MVR),

δ′([q, a, x][p, b, y]c) = [r, b, c] if δ(q, abc) = (r,MVR) and p 6= r.

If the stored state is correct, we can execute the MVR step:

δ′(�[q, a, x]b) = MVR if δ(q0,�ab) = (q,MVR),

δ′([q, a, x][p, b, y]c) = MVR if δ(q, abc) = (p,MVR),

δ′(�[q, a, x][p, b, y]) = MVR,

δ′([q, a, x][p, b, y][r, c, z]) = MVR.

It remains to be shown that L(M ′) = L(M) holds. Given an input u ∈
Σ ∪ {λ}, M ′ will accept immediately if and when u ∈ L(M) holds. So let us
consider an input w = a1a2 . . . an, where n ≥ 2 and a1, a2, . . . , an ∈ Σ. M will
scan the input from left to right until it detects the first letter, say ai, that is
to be rewritten into b, that is, M executes the following cycle:

q0 � a1a2 . . . an� `i−1
M �a1 . . . ai−2qi−1ai−1aiai+1 . . . an�
`M q0 � a1a2 . . . ai−1bai+1 . . . an � .

Now M ′ will simulate this cycle as follows:

�a1a2 . . . an� `cM ′ �[q1, a1, a2] a2 . . . an�

`cM ′ �[q1, a1, a2][q2, a2, a3]a3 . . . an�

`c∗M ′ �[q1, a1, a2] . . . [qi−1, ai−1, ai]aiai+1 . . . an�

`cM ′ �[q1, a1, a2] . . . [qi−1, ai−1, ai]bai+1 . . . an�

that is, scanning the tape from left to right, M ′ replaces the letter aj (1 ≤ j ≤
i− 1) by the triple [qj, aj, aj+1], where qj is the state in which M reaches the
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window contents ajaj+1aj+2 with an+1 = �. When M reaches the letter ai, it
realizes that it must simulate a rewrite/restart step of M , and accordingly it
replaces the letter ai by the letter b. By induction on the number of cycles that
M executes it follows that L(M ′) = L(M) holds.

This shows that

L(stl-det-ORWW) = L(det-ORWW)

holds.

For this reason, we concentrate on the stl-det-ORWW-automata in what
follows, as the det-ORWW-automata can be easily simulated by stl-det-ORWW-
automata. Through this simulation the results we get for the stl-det-ORWW-
automata can be easily transferred to the det-ORWW-automata.

Up to this point we have shown that we can express all regular languages
with stl-det-ORWW-automata.

Summed up we have

REG ⊆ L(stl-det-ORWW) = L(det-ORWW).

Before we actually present a simulation of a stl-det-ORWW-automaton by
an NFA it is helpful to get a better understanding for valid computations. We
therefore look how we can realize language operations with the stl-det-ORWW-
automaton and examine their descriptional complexity.

3.3 The Descriptional Complexity of Language

Operations

In the literature many results can be found on the descriptional complexity of
language operations in the sense that, given a DFA of size n for a language L,
determine the size of a DFA for the language op(L), where op is an operation like
reversal, complement, Kleene star, and correspondingly for binary operations
like union, intersection, or product (see [7, 11] for surveys). For example, it is
known that the bound for reversal is 2n [31], for the Kleene star, it is 2n−1+2n−2,
for union and intersection, it is m · n, and for product, it is (m− 1) · 2n + 2n−1
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[44] where the two languages used are accepted by DFAs of size m and n,
respectively. We can ask the same question for stl-det-ORWW-automata, using
the size of the tape alphabet as complexity measure. Note, that we could also
use the total number of window contents for which an operation is defined.
Because the number of tape symbols limits this number, we stick with the
number of tape symbols.

As it is easier to make generic constructions when we can make assumptions
about some properties of the automata we show that every stl-det-ORWW-
automaton can be normalized by adding one tape symbol such that the au-
tomaton only accepts at the right sentinel.

Lemma 3.3.1. [24] For each stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >),
there exists a stl-det-ORWW-automaton M ′ = (Σ,∆,�,�, δ′, >) such that
L(M ′) = L(M) and |∆|= |Γ|+1, but M ′ can only accept when its window
contains the right sentinel �.

Proof. Let ∆ = Γ ∪ {3}, where 3 /∈ Γ is a new symbol, and the transition
function δ′ is defined as follows, where a, b, c ∈ Γ∪{�,�}, and d, e ∈ Γ∪{�,3}:

δ′(��) = Accept, if δ(��) = Accept, δ′(d3�) = Accept,

δ′(abc) = δ(abc), if c = � or δ(abc) 6= Accept, δ′(de3) = MVR,

δ′(abc) = 3, if c 6= � and δ(abc) = Accept, δ′(3bc) = 3.

δ′(d3e) = MVR, if e 6= �,

The basic idea is that the diamond symbol is written down if M would
accept and the read/write window does not contain the right sentinel.

It is easily seen that M ′ accepts only with the right sentinel � in its window
and that L(M ′) = L(M) holds. We first show that L(M) ⊆ L(M ′) holds. Let
w be a word that is accepted by M , i.e. w ∈ L(M). If w is the empty word, it
is also accepted by M ′ by construction and w ∈ L(M ′) holds.

Otherwise we have the valid computation of M

�w� `∗M �v1 · · · vk−1vk . . . vn� `M Accept

and we get a valid computation of M ′ that writes the symbol 3 at the position
at which M would accept followed by cycles writing diamond symbols to the
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right of it.

� w� `∗M ′ �v1 · · · vk−1vk . . . vn `M ′ �v1 · · · vk−13 . . . vn� `c
n−k

M ′

� v1 · · · vk−13 . . .3� `M ′ Accept

Thus, we see that w is accepted by M ′ and L(M) ⊆ L(M ′) holds.
To show that the opposite direction L(M ′) ⊆ L(M) is also true is a com-

pletely analogous approach. We just take a valid computation of M ′, look at
the cycle where the symbol 3 is written, and replace the writing of � by the
Accept instruction.

Now let us have a look at some language operations.

Theorem 3.3.2. [34] If a language L is accepted by a stl-det-ORWW-automaton
with n letters, then its reversal LR is accepted by a stl-det-ORWW-automaton
with a tape alphabet of size n2 + 2n.

Proof. Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton such that
L(M) = L and n = |Γ|. From M we construct a stl-det-ORWW-automaton
MR = (Σ,∆,�,�, δ′, >′) for LR that proceeds as follows. Given a word wR

as input, MR scans it from left to right, which corresponds to M scanning the
corresponding input w from right to left. Therefore, MR uses code letters of
the form [a, b] to mark the position in wR to which M advances. Accordingly,
during a computation the tape contents of MR will be of the form �ua[b, c]v�,
where u ∈ Γ∗, a, b ∈ Γ, c ∈ Γ ∪ {�}, and v ∈ (∆ r Γ)∗. This factorization tells
us that M would move right across the prefix corresponding to (bv)R. Now if
δ(cba) = b′, thenM would replace b by b′ in the next cycle, and correspondingly,
MR rewrites �ua[b, c]v� into �uab′v�.

As tape alphabet for MR we take ∆ = Γ ∪ (Γ × (Γ ∪ {�})), which shows
that |∆|= n+ (n · (n+ 1)) = n2 + 2n, and we define the ordering >′ on ∆ as
follows:

∀a, b ∈ Γ : if a > b, then a >′ [a, c] >′ b for all c ∈ Γ ∪ {�},

that is, the new letters of the form [a, c] are inserted right below the letter a
itself. Further, the transition function δ′ is defined as follows, where a, b, c, c′ ∈ Γ

and d ∈ Γ ∪ {�}:
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(1) δ′(�a�) = δ(�a�) for all a ∈ Γ ∪ {λ},

(2) δ′(�ab) = MVR,

(3) δ′(abc) = MVR,

(4) δ′(ab�) = [b,�], if δ(�ba) = MVR,

(5) δ′(ab�) = c, if δ(�ba) = c,

(6) δ′(ab�) = Accept, if δ(�ba) = Accept,

(7) δ′(ab[c, d]) = [b, c], if δ(dcb) = MVR,

(8) δ′(ab[c, d]) = MVR, if δ(dcb) = c′,

(9) δ′(b[c, d]A) = c′, if δ(dcb) = c′, and A ∈ (∆ r Γ) ∪ {�},

(10) δ′(ab[c, d]) = Accept, if δ(dcb) = Accept,

(11) δ′(�b[c, d]) = [b, c], if δ(dcb) = MVR,

(12) δ′(�b[c, d]) = MVR, if δ(dcb) = c′,

(13) δ′(b[c, d]A) = c′, if δ(dcb) = c′, and A ∈ (∆ r Γ) ∪ {�},

(14) δ′(�b[c, d]) = Accept, if δ(dcb) = Accept

To illustrate the way in which MR works, we present a simple example.
Assume that M executes the following computation on input w = aab, where
we underline the factor in each configuration that the window of M contains:

�aab� `M �aab� `M �abb� `M �bbb� `M Accept.

Then MR executes the following computation on input wR = baa:

�baa� `2
MR �baa� `MR �ba[a,�]� `MR �ba[a,�]�

`MR �b[a, a][a,�]� `MR �b[a, a][a,�]� `MR �bb[a,�]�

`MR �bb[a,�]� `MR �bb[a,�]� `MR �bbb�

`MR �bbb� `MR �bbb� `MR Accept.

It can now be shown that indeed L(MR) = LR holds.

In the same way as for DFAs, we obtain the following result.

Proposition 3.3.3. [34] If a language L is accepted by a stl-det-ORWW-
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automaton M with an alphabet of size n, then so is its complement L.

Proof. We want to accept all words for which the automaton M =

(Σ,Γ,�,�, δ, >) halts without accepting and reject the words which the au-
tomaton M accepts. Thus, we construct an automaton M ′ = (Σ,Γ,�,�, δ′, >)

for the language L by removing all Accept instructions and adding Accept
instructions for window contents that were previously undefined. That is,

δ′(��) = Accept if λ /∈ L(M)

δ′(abc) = A if δ(abc) = A

δ′(abc) = MVR if δ(abc) = MVR

δ′(abc) = Accept if δ(abc) /∈ Γ ∪ {MVR,Accept},

where a ∈ Γ ∪ {�}, b ∈ Γ, c ∈ Γ ∪ {�}.

Next, we look how we realize intersections which was already done in [34].

Theorem 3.3.4. If the languages L1 and L2 are accepted by stl-det-ORWW-
automata with tape alphabets of sizem and n, respectively, then their intersection
L1 ∩ L2 is accepted by a stl-det-ORWW-automaton with a tape alphabet of size
m · n+ min(m,n).

Proof. Let M1 = (Σ,Γ1,�,�, δ1, >1) be a stl-det-ORWW-automaton such that
L(M1) = L1, and let M2 = (Σ,Γ2,�,�, δ2, >2) be a stl-det-ORWW-automaton
such that L(M2) = L2, where |Γ1|= m and |Γ2|= n. Assume that m ≥ n. Then
we obtain a stl-det-ORWW-automaton M for L = L1 ∩L2 from M1 and M2 as
follows. As tape alphabet we take

∆ = Σ ∪ ({ [a, b] | a ∈ Γ1, b ∈ Σ }r { [a, a] | a ∈ Σ }) ∪ { b̄ | b ∈ Γ2 },

which is of size m · |Σ|−|Σ|+n+ |Σ|≤ m · n+ n. For the sake of simplicity, we
write [a, a] instead of a for a ∈ Σ.

[a, c] > [b, c] > d, a, b ∈ Γ1, a >1 b, c ∈ Σ, d ∈ Γ2.

Now M works as follows:

1. First M interprets each input letter a ∈ Σ as the pair [a, a].

30



2. Then M simulates M1 using the first component of each letter. When
M1 accepts, then M replaces each pair of the form [a, b] by the letter b̄,
proceeding from right to left. Here we assume without loss of generality
that M1 accepts at the right end of the tape (see Lemma 3.3.1).

3. Finally, M simulates M2 interpreting each letter of the form b̄ just as M2

would interpret the letter b. If and when M2 accepts, then so does M .

Obviously, L(M) = L1 ∩ L2 follows.

The same construction also works for the union operation. We can normalize
the automaton in a way such that the automaton always halts at the right
sentinel, both when accepting or rejecting. Then we just accept whenM1 would
accept and rewrite the symbols from right to left in case M1 rejects. But we
don’t have to provide an independent construction because we can use the
latter two results.

Corollary 3.3.5. [34] If the languages L1 and L2 are accepted by stl-det-
ORWW-automata with tape alphabets of size m and n, respectively, then their
union L1 ∪ L2 is accepted by a stl-det-ORWW-automaton with a tape alphabet
of size m · n+ ·min(m,n).

Proof. The statement follows directly from

L1 ∪ L2 = L1 ∩ L2

because complementing does not change the size of the automaton according
to Proposition 3.3.3. Therefore, the automaton for L1 ∩ L2 is at most of size
m · n+ min(m,n) according to Theorem 3.3.4.

Thus, for realizing the Boolean operations, stl-det-ORWW-automata are
essentially just as efficient as DFAs, while for the operation of reversal, they are
really much more efficient. Unfortunately, no results are known so far on how to
realize the operations of product and Kleene star efficiently by stl-det-ORWW-
automata. Of course, as we will see that we can construct an NFA for any
given stl-ORWW-automaton, given two stl-det-ORWW-automata M1 and M2,
one can first construct NFAs A1 and A2 such that L(Ai) = L(Mi), i = 1, 2,
then one constructs an NFA A for the product L = L(A1) · L(A2), and finally,
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one can convert A into a stl-det-ORWW-automaton M for L. Unfortunately,
this construction is quite inefficient. By Corollary 3.5.11, the NFAs A1 and A2

may be of exponential size 2m and 2n (measured in the size m of the alphabet
of M1 and the size n of the alphabet of M2), and so the size of A may be up
to 2m + 2n, which means that M may need a tape alphabet of size 22m+2n by
Proposition 3.2.2.

Finally, regular languages might also be given through DFAs. Therefore, we
consider the problem of constructing a small stl-det-ORWW-automaton for the
intersection or union of languages that are given through DFAs.

Theorem 3.3.6. [34] If the languages L1 and L2 over an alphabet of size k
are accepted by DFAs of size m and n, respectively, then their intersection
L1 ∩ L2 is accepted by a stl-det-ORWW-automaton with a tape alphabet of size
k · (min(m,n) + 1) + max(m,n).

Proof. Let A1 = (Q1,Σ, q0, F1, δ1) be a DFA such that L(A1) = L1, where
|Q1|= m and |Σ|= k, and let A2 = (Q2,Σ, p0, F2, δ2) be a DFA such that
L(A2) = L2, where |Q2|= n. W.l.o.g. we assume that m ≤ n. From A1

and A2 we construct a stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >) for
L = L1 ∩ L2 as follows:

• Γ = Σ ∪ { [q, a] | q ∈ Q1 and a ∈ Σ } ∪Q2, that is, |Γ|= k + k ·m+ n =

k · (min(m,n) + 1) + max(m,n),

• the ordering > is defined by taking a > [q, b] > p for all a, b ∈ Σ, q ∈ Q1,
and p ∈ Q2,

• and the transition function δ is defined by the following equations, where
a, b, c ∈ Σ, q, q′ ∈ Q1, and p, p′, p1, p2 ∈ Q2:

(1) δ(�a�) = Accept, if a ∈ (Σ ∪ {λ}) ∩ L1 ∩ L2,

(2) δ(�ab) = [q, a], where q = δ1(q0, a),

(3) δ(�[q, a]b) = MVR,

(4) δ([q, a]bc) = [q′, b], where q′ = δ1(q, b),

(5) δ(�[q, a][q′, b]) = p, where p = δ2(p0, a),

(6) δ(�p[q, a]) = MVR,

(7) δ(p[q, a]b) = MVR,
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(8) δ(p[q, a][q′, b]) = p′, where p′ = δ2(p, a),

(9) δ(�pp′) = MVR,

(10) δ(pp1p2) = MVR,

(11) δ(pp1[q, a]) = MVR,

(12) δ([q, a]b�) = [q′, b], where q′ = δ1(q, b),

(13) δ(p[q, a]�) = Accept, if q ∈ F1 and δ2(p, a) ∈ F2.

Thus, M works as follows:

1. First M simulates two steps of A1 by turning the first two input letters
ab into the pairs [q, a][q′, b], where q = δ1(q0, a) and q′ = δ1(q, b).

2. On the prefix [q, a][q′, b] the first step of A2 can already be simulated by
rewriting [q, a] into p, where p = δ2(p0, a).

3. Now, M alternates between simulating a step of A1 and a step of A2.

4. If the last two letters are of the form p[q, c] for some p ∈ Q2 and q ∈ F1,
and if δ2(p, c) ∈ F2, then M accepts.

It is easily seen that L(M) = L(A1) ∩ L(A2).

Observe that by first building the product DFA of A1 and A2 and by then
turning this into an equivalent stl-det-ORWW-automaton, we would obtain a
stl-det-ORWW-automaton for the language L = L(A1) ∩ L(A2) with a tape
alphabet of size k+m ·n. As typically m and n are large, while k is small (e.g.,
often binary languages are considered, that is, k = 2), Theorem 3.3.6 gives a
much better bound. Obviously, the above construction can be adopted to the
operation of union. Also, it can easily be extended to the intersection or union
of t ≥ 3 DFAs.

Corollary 3.3.7. [34] For t ≥ 3, if Ai is a DFA with ni states over an alphabet
of size k for all 1 ≤ i ≤ t, then there exists a stl-det-ORWW-automaton M with
a tape alphabet of size k · (1 +n1 + . . .+nt−1) +nt such that L(M) =

⋂t
i=1 L(Ai)

(or L(M) =
⋃t
i=1 L(Ai)).

In fact, this result can even be extended to an arbitrary Boolean combination
of t DFAs. By turning the left-to-right simulation of a DFA as described in
the proof of Proposition 3.2.2 into a right-to-left simulation, we obtain the
following result.
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Proposition 3.3.8. [34] If a language L over an alphabet of size k is accepted
by a DFA of size n, then the language LR is accepted by a stl-det-ORWW-
automaton with a tape alphabet of size k + n.

Finally, we compare the upper bounds for the mentioned language operations
in the following table where n andm are the sizes of the corresponding automata.

Operation DFA stl-det-ORWW

Reversal ·R 2n n2 + 2n

Complement L1 n n

Union L1 ∪ L2 m · n m · n+ min(m,n)

Intersection L1 ∩ L2 m · n m · n+ min(m,n)

Every DFA with m states and an alphabet of size n can be simulated by a
stl-det-ORWW with a tape alphabet of size m+ n.

Therefore, the stl-det-ORWW-automaton can represent languages at least
as concise as the DFA.

For some operations like reversal the stl-det-ORWW-automaton is much
more efficient. As a result, regarding complexity on standard operations, the
stl-det-ORWW-automaton is beneficial.

Before we explain how we construct a new computation from two computa-
tions we introduce the nondeterministic stateless variant because the simulation
method is nearly the same for both types of ordered restarting automata.

3.4 Nondeterministic Stateless Restarting Au-

tomata

We remember that formally the nondeterministic stateless ordered restarting
automaton is a one-tape Turing machine that is described by a 6-tuple M =

(Σ,Γ,�,�, δ, >), where Σ is a finite input alphabet, Γ a finite tape alphabet
that contains Σ, but not the symbols � and � that serve as markers for the left
and right border of the input word which at the same time mark the working
space. Furthermore,

δ : (((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��})→ 2{MVR}∪Γ ∪ {Accept}
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is a transition function, and > is a partial ordering on Γ.

In this section we will see how this automaton compares to the stl-det-
ORWW-automaton regarding conciseness and descriptional complexity of lan-
guage operations. As far as the language class is concerned, we have already
announced that it also corresponds to the regular languages.

Because of the nondeterminism we can simulate an NFA by a stl-ORWW-
automaton in the same way as we can simulate a DFA by a stl-det-ORWW-
automaton.

Proposition 3.4.1. For each NFA A = (Q,Σ, q0, F,∆), there exists a stl-
ORWW-automaton M = (Σ,Γ,�,�, δ, >) such that L(M) = L(A) and |Γ|=
|Q|+|Σ|.

Proof. We take Γ = Σ ∪ Q and define a > q for all a ∈ Σ and all q ∈ Q.
On input of a word w = a1a2 . . . an, where n ≥ 1 and a1, a2, . . . , an ∈ Σ,
the stl-ORWW-automaton M simply replaces each letter ai by a state from
∆(q0, a1a2 . . . ai), proceeding from left to right. It accepts if and when the last
letter an has been replaced by a final state of A. Also, we add the transition
δ(��) = Accept if λ ∈ L(A).

Since we now have nondeterminism at our disposal, it makes sense to
examine the effect on the descriptional complexity of language operations. For
convenience, we work with normalized automata again and show that we can
assume that the automata only accept at the right sentinel.

We can use the the same construction as for the det-stl-ORWW-automata
in Lemma 3.3.1.

Lemma 3.4.2. For each stl-ORWW-automaton M = (Σ,Γ,�,�, δ, >), there
exists a stl-ORWW-automaton M ′ = (Σ,∆,�,�, δ′, >) such that L(M ′) =

L(M) and |∆|= |Γ|+1, but M ′ can only accept when its window contains the
right sentinel �.

Proof. The construction works exactly as the one for det-stl-ORWW-automata.
If we would accept, we write down a special symbol. From this point on, we
write down the special symbol until we reach the right sentinel and accept.

Formally, this is expressed in the following way.
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Let ∆ = Γ∪ {3}, where 3 /∈ Γ is a new symbol, and the transition function
δ′ is defined as follows, where a, b, c ∈ Γ ∪ {�,�}, and d, e ∈ Γ ∪ {�,3}:

δ′(��) = Accept, if δ(��) = Accept, δ′(d3�) = Accept,

δ′(abc) = δ(abc), if δ(abc) 6= Accept, δ′(de3) = δ′(d3e) = {MVR},
δ′(abc) = {3}, if δ(abc) = Accept, δ′(3bc) = {3}.

In the same way as we can achieve that the automaton accepts at the right
sentinel, we can achieve that it accepts at the left sentinel. This will become
beneficial for simplifying the argumentation for some constructions.

Lemma 3.4.3. For each stl-ORWW-automaton M = (Σ,Γ,�,�, δ, >), there
exists a stl-ORWW-automaton M ′ = (Σ,∆,�,�, δ′, >) such that L(M ′) =

L(M) and |∆|= |Γ|+1, but M ′ can only accept when its window contains the
left sentinel �.

Proof. The construction works exactly as the one for the det-stl-ORWW-
automata. If we would accept we write down a special symbol. From this point
on, we write down the special symbol when we see it in the read/write window.
This continues until we see the special symbol at the left most position where
we accept. Formally this is expressed in the following way.

Let ∆ = Γ∪ {3}, where 3 /∈ Γ is a new symbol, and the transition function
δ′ is defined as follows, where a, b, c ∈ Γ ∪ {�,�}, and d ∈ Γ ∪ {�,3}:

δ′(��) = Accept, if δ(��) = Accept, δ′(�3d) = Accept,

δ′(abc) = δ(abc), if δ(abc) 6= Accept, δ′(ab3) = {3},
δ′(abc) = {3}, if δ(abc) = Accept.

For the operations reversal and intersection we can use the same constructions
as in Theorems 3.3.2 and 3.3.4.

We cannot use the same construction for union because the construction for
complement does not work for nondeterminism. Given a stl-ORWW-automaton
there may not be a stl-ORWW-automaton of the same size for the complement
language. But first, let us see the construction for union.
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Proposition 3.4.4. If the languages L1 and L2 are accepted by stl-ORWW-
automata with tape alphabets of size m and n, respectively, then their union
L1 ∪ L2 is accepted by a stl-ORWW-automaton with a tape alphabet of size
m+ n+ min(m,n).

Proof. We use the tape alphabet

Θ = Σ ∪ (Γ1 × {1}) ∪ (Γ2 × {2}).

Thus, we have a tape alphabet of size |Θ|= |Σ|+|m|+|n| ≤ |m|+|n|+ min(m,n).
The automaton M works as follows. In the first cycle M moves to the right

sentinel. At this position it nondeterministically marks the last letter with 1 or
2. After that every letter is marked with the same number from right to left.
Finally, we simulate M1 or M2 depending on the marking.

Additionally, we have efficient constructions for concatenation and the Kleene
star operator because we can make use of nondeterminism.

Closure under product: Let M1 = (Σ,Γ1,�,�, δ1, >1) and M2 =

(Σ,Γ2,�,�, δ2, >2) be two stl-ORWW-automata. Without loss of general-
ity we may assume that both these automata accept at the right end of their
tapes. We present an ORWW-automaton M for the language L(M1) · L(M2).
It proceeds as follows:

1. Given a word w ∈ Σ∗ as input, M rewrites w from right to left, letter by
letter, such that each letter of a suffix v of w is marked by an index 2, and
then each letter of the corresponding prefix u is marked by an index 1. The
right-most letter is allowed to have an index 1 if L(M2) contains the empty
word. In this way w ∈ Σ∗ is nondeterministically split into w = uv with the
idea that u ∈ L(M1) and v ∈ L(M2) are to be checked.
2. Then M simulates M1 on the prefix u. During this process, the leftmost
occurrence of a letter with index 2 is interpreted as the right delimiter �.
3. When the simulated computation of M1 on u accepts, then M realizes this
with either the right delimeter � or with the leftmost letter with index 2 in its
window. In the former case, it accepts if and only if λ ∈ L(M2), while in the
latter case it executes a MVR step to simulate M2.
4. In all following cycles M will move to this position to allow the simulation
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of M2. Now M accepts if and only if this computation of M2 accepts.
5. If in step 1, all letters are marked with an index 2, that is, v = w and u = λ

are chosen, then M simply simulates M2 on v, provided λ ∈ L(M1); otherwise,
it simply halts without acceptance.

M is described in detail in the proof of the following lemma.

Lemma 3.4.5. Given two stl-ORWW-automata M1 = (Σ,Γ1,�,�, δ1, >1) and
M2 = (Σ,Γ2,�,�, δ2, >2) we can construct a stl-ORWW-automaton M of size
m+ n+ min (m,n) such that L(M) = L(M1) · L(M2).

Proof. The automaton M is obtained as follows. First we assume that both
automata accept only at the right sentinel. To recognize a word w = w1w2, w1 ∈
L(M1), w2 ∈ L(M2), we use two disjoint tape alphabets to distinguish between
w1 and w2.

We use two different sets of symbols to mark the two sections of the word.
For an easier representation we use pairs for the symbols which leads to the
following tape alphabet

Γ = Σ ∪ (Γ1 × {1}) ∪ (Γ2 × {2}).

The transition function δ is described as follows

δ(��) = Accept if λ ∈ L(M1) · L(M2),

δ(�a�) = Accept if a ∈ L(M1) · L(M2),

δ(�ab) = {MVR},

δ(abc) = {MVR},

δ(ab�) 3 [b, 1] if λ ∈ L(M2),

δ(ab�) 3 [b, 2],

δ(ab[c, 1]) 3 [b, 1],

δ(�b[c, 1]) 3 [b, 1]

δ(ab[c, 2]) = {[b, 1], [b, 2]},

δ(�b[c, 2]) 3 [b, 1],

δ(�b[c, 2]) 3 [b, 2] if λ ∈ L(M1),

δ(�[b, 1][c, 2]) 3 MVR if b ∈ L(M2),
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δ(�[a, i][b, i]) = (δi(�ab) ∩ (Γi × {i})) ∪ (δi(�ab) ∩ {MVR}),

δ([a, i][b, i][c, i]) = (δi(abc) ∩ (Γi × {i})) ∪ (δi(abc) ∩ {MVR}),

δ([a, 1][b, 1][c, 2]) = MVR, if δ1(ab�) = Accept,

δ([a, 1][b, 1][c, 2]) ⊇ (δ1(ab�) ∩ Γ1)× {1},

δ([a, 1][b, 2][c, 2]) ⊇ (δ2(�bc) ∩ Γ2)× {2},

δ([a, 1][b, 2]�) = Accept if b ∈ L(M2),

δ([a, 1][b, 1]�) ⊇ (δ1(ab�) ∩ Γ1)× {1},

δ([a, 1][b, 1]�) = Accept if δ1(ab�) = Accept,

δ([a, 2][b, 2]�) ⊇ (δ2(ab�) ∩ Γ2)× {2},

δ([a, 2][b, 2]�) = Accept if δ2(ab�) = Accept.

This gives us an automaton M for the product L(M1) · L(M2).

Closure under Kleene star: Given a stl-ORWW-automaton M =

(Σ,Γ,�,�, δ, >) of size n we can construct a stl-ORWW-automaton M ′ of
size 3n such that L(M ′) = L(M)∗.

Here the idea is essentially the same as for the operation of product. Given
a word w ∈ Σ∗ as input, M ′ rewrites the word from right to left, letter by
letter, attaching indices 1 or 2 to these letters. In this way a factorization
w = u1u2 . . . um is chosen nondeterministically, and it remains to check that
u1, u2, . . . , um ∈ L(M) hold.

The details of the automaton are given in the proof of the following lemma.

Lemma 3.4.6. Given a stl-ORWW-automaton M = (Σ,Γ,�,�, δ, >) of size
n we can construct a stl-ORWW-automaton M ′ = (Σ,Θ,�,�, δ′, >′) of size
3n such that L(M ′) = L(M)∗.

Proof. Again we assume that M only accepts at the right sentinel to simplify
the description of the transition function. We use the alphabet

Θ = Σ ∪ Γ× {1, 2}

Thus we have a tape alphabet of size

|Θ|= |Σ|+ |Γ× {1, 2}|≤ n+ 2n = 3n.
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The transition function is defined as follows, where a, b, c ∈ Γ and (i, j) ∈
{(1, 2), (2, 1)}.

δ′(��) = Accept,

δ′(�a�) = Accept if a ∈ L(M),

δ′(�ab) = {MVR},

δ′(abc) = {MVR},

δ′(ab�) = {[b, 1], [b, 2]},

δ′(ab[c, i]) = {[b, 1], [b, 2]},

δ′(�b[c, i]) = {[b, 1]},

δ′(�[a, 1][b, 1]) = (δ(�ab) ∩ {MVR})

∪ ((δ(�ab) ∩ Γ)× {1}),

δ′(�[a, 1][b, 2]) = {MVR} if a ∈ L(M),

δ′([a, i][b, i][c, i]) = (δ(abc) ∩ {MVR})

∪ ((δ(abc) ∩ Γ)× {i}),

δ′([a, j][b, i][c, j]) = {MVR} if b ∈ L(M),

δ′([a, j][b, i][c, i]) = (δ(�bc) ∩ {MVR})

∪ (δ(�bc) ∩ Γ)× {i},

δ′([a, i][b, i][c, j]) = {MVR} if δ(ab�) = Accept,

δ′([a, i][b, i][c, j]) = (δ(ab�) ∩ Γ)× {i} if δ(ab�) 6= Accept,

δ′([a, i][b, i]�) = Accept if δ(ab�) = Accept,

δ′([a, i][b, i]�) = (δ(ab�) ∩ Γ)× {i} if δ(ab�) 6= Accept,

δ′([a, i][b, j]�) = Accept if b ∈ L(M).

In this way, the automaton M accepts the language L(M)∗.

Now that we are a little bit more familiar with stl-ORWW-automata, we
finally present the main construction of this thesis.
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3.5 Constructing an NFA from a stl-ORWWAu-

tomaton

In this section we show that the language class described by deterministic
(det-stl-ORWW) as well as nondeterministic (stl-ORWW) stateless ordered
restarting automata is the class of regular languages. We have already shown
that stl-ORWW-automata can recognize all regular languages. Here we will
finally show that they do not recognize any other languages.

We show this by using the Myhill-Nerode Theorem (see e.g. [16]). One
important aspect of the proof is a technique for constructing a new accepting
computation from two given accepting computations. For this purpose we
introduce the concept of patterns.

Furthermore, we will use the equivalence classes we get from the patterns
to describe a simulation by an NFA. We will also apply this simulation to
the det-stl-ORWW-automaton which will improve the upper bound of the
previously known conversion [36].

Finally, we modify the NFA such that we only need to check local conditions
for the transition function. This drastically reduces the amount of work required
for the NFA computations which is important for the decision algorithms.

In order to simplify our argumentation we normalize our ordered automata.
We demand that the automaton accepts at the left sentinel. Again, this is no
real restriction, as an ORWW-automaton can be easily adapted such that it
only accepts at the left sentinel (see Lemma 3.4.3).

Now, we start with the proof for regularity.

Theorem 3.5.1. Let M = (Σ,Γ,�,�, δM , >) be a stl-ORWW-automaton.
Then L(M) is a regular language.

Proof. We want to show that stl-ORWW-automata can only accept regular
languages. So let M = (Σ,Γ,�,�, δ, >) be a stl-ORWW-automaton accepting
the language L = L(M). By Lemma 3.4.3 we can assume thatM always accepts
at the left end of its tape, that is, immediately after executing a rewrite/restart
operation or right at the beginning.

The transition relation δ of M can be represented by a finite set of four-
tuples of the form (a, b, c, r), where a ∈ Γ ∪ {�}, b ∈ Γ, c ∈ Γ ∪ {�} and
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r ∈ Γ ∪ {MVR,Accept}. We can partially order these four-tuples as follows:

(a, b, c, d) > (a′, b′, c′, e) if a ≥ a′, b ≥ b′, c ≥ c′ and (a, b, c) 6= (a′, b′, c′);

(a, b, c,MVR) > (a, b, c, b′) for all b′ ∈ Γ.

As |Γ|= n, this set consists of K ≤ (n+ 1) ·n · (n+ 1) · (n− 1 + 2) = n · (n+ 1)3

many four-tuples. Hence, we can introduce a new alphabet Ω = {t1, t2, . . . , tK}
the symbols of which are in 1-to-1 correspondence to these four-tuples. The
partial ordering of four-tuples induces a partial ordering on Ω.

Now, let w ∈ L, and let C be an accepting computation of M on input w.
With each integer j, 1 ≤ j ≤ |w|, we can associate a word xj ∈ Ω∗ that corre-
sponds to the sequence of operations that M executes within the computation
C at position j, that is, when the j-th letter is in the middle of its window. Let
xj = ti1ti2 . . . tis , where tir ∈ Ω, 1 ≤ r ≤ s. Then, for each r = 1, 2, . . . , s− 1,
tir = tir+1 or tir > tir+1 , and equality can occur only for move-right operations.
Now by ACj (x) we denote the word that we obtain from xj by ignoring all
repetitions of letters. Then ACj (x) = t̂i1 t̂i2 . . . t̂iŝ such that t̂i1 > t̂i2 > . . . > t̂iŝ .
We call that word a pattern. In addition, we have ŝ ≤ 4n as there are at most
n− 1 rewrites and 3 · (n− 1) + 1 different window contents for MVR operations.
Thus, the number of different patterns for M is finite.

Claim 1. For all x, y, z, u ∈ Σ∗ if there exist a computation Cxz for the word
xz and a computation Cyu for the word yu such that α := ACxz|x| (xz) = A

Cyu
|y| (yu),

then there exists a computation C ′ for the word yz.

Proof. Let c1, c2, . . . , ck1 be the sequence of cycles of the computation Cxz, and
let d1, d2, . . . , dk2 be the sequence of cycles of the computation Cyu. A cycle
ci (di) is called a short cycle if the rewrite/restart operation of this cycle is
executed within the prefix x (y), which means that this cycle does not contribute
to the sequence of operations described by α. All other cycles are called long
cycles. From the cycles of Cxz and Cyu we now construct the sequence of cycles
of the computation C ′ inductively.

Our goal is to execute every rewrite operation that is executed in the y-part
of the Cyu computation and the z-part of the Cxz computation. It is ensured
that when executing all three computations up to a certain pattern letter
ai, that is, the remaining cycles do not have the operations ai at the chosen
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position, the tape contents of common parts coincide then, that is, we have the
tape contents of the form x′z′, y′u′ and y′z′.

We start with the empty sequence, and we consider the cycles d1, d2, . . . , dk2

of Cyu one after the other. If the current cycle di considered is a short cycle,
then we append it to the sequence of cycles of C ′. By doing this we execute
the rewrite operation in the y-part.

If the current cycle di is a long cycle that executes a rewrite/restart operation
at position |y|, which means that this cycle contributes a rewrite/restart
operation to α, then again we simply append it to C ′. The computation stays
valid as the rewrite operation occurs in both computations. Therefore we have
the correct window content.

Finally, if the current cycle di is a long cycle that executes a move-right
operation t at position |y|, then let d(1)

i denote the initial part of this cycle up
to this operation. Now, let cj, cj+1, . . . , cj+s be all those long cycles of Cxz that
contain the operation t at position |x|. Short cycles that might be in between do
not contain that operation and are being ignored. Then the cycle di and all the
cycles cj, cj+1, . . . , cj+s contribute the same letter t to α. Let c(2)

j , c
(2)
j+1, . . . , c

(2)
j+s

be the suffixes of the latter cycles that start after the move-right operation t.
We now combine the prefix d(1)

i with all these suffixes and append the resulting
cycles d(1)

i c
(2)
j , d

(1)
i c

(2)
j+1, . . . , d

(1)
i c

(2)
j+s in this order to C ′. In addition, we skip all

other cycles of Cyu that execute the operation t at position |x|. These cycles
can be executed as we do not change anything in the y-part. This ensures that
we can execute the prefix d(1)

i and the suffixes have the same effect as in the
computation Cxz.

Finally, once all cycles of Cyu have been dealt with, we append the accepting
tail of Cyu to C ′. It is easily seen that C ′ is indeed an accepting computation
of M on input yz, and that AC′|y|(yz) = α.

Now, with a word w ∈ Σ∗, we associate the following set of words of length
at most 4n over Ω:

S(w) = {AC|w|(wz) | z ∈ Σ∗ and C is an accepting computation of M for wz },

that is, x ∈ S(w) if there exist a word z ∈ Σ∗ and an accepting computation
C of M on input wz such that x describes the sequence of operations that
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M executes within C at position |w|. Of course, there are only finitely many
different such subsets of Ω∗.

For proving that the language L = L(M) is regular, we now use the Myhill-
Nerode Theorem (see, e.g., [16]). By ∼L we denote the Myhill-Nerode relation
on Σ∗ that is induced by L: x ∼L y if ∀z ∈ Σ∗ : (xz ∈ L iff yz ∈ L) .

Claim 2. For all x, y ∈ Σ∗, if S(x) = S(y), then x ∼L y.

Proof. Let x, y ∈ Σ∗ such that S(x) = S(y), and let z ∈ Σ∗ such that xz ∈
L. Then M has an accepting computation Cxz on input xz. Hence, α :=

ACxz|x| (xz) ∈ S(x). As S(x) = S(y), α ∈ S(y), that is, there exist a word u ∈ Σ∗

and an accepting computation Cyu of M on input yu such that ACyu|y| (yu) = α.
According to Claim 1M then also has an accepting computation C ′ on input yz.

It follows that, for all z ∈ Σ∗, if xz ∈ L, then also yz ∈ L. Hence, by
symmetry, we obtain that x ∼L y holds.

As there are only finitely many different sets S(x), the index of the relation
∼L is finite, which implies that L = L(M) is a regular language.

Now it is time to illustrate the concept of patterns by an example.

Example 3.5.2. Let M = (Σ,Γ,�,�, δM , >) with Σ = {a, b, c}, Γ = Σ ∪
{a′, b′, c′} . For the sake of completeness, we provide the transition function,
which we will only use indirectly, since we determine the possible operations on
the basis of the valid computations. Let δ be defined by the following equations:

δ(�ab) = δ(�ca) = δ(cab) = δ(abb) = δ(bbb) = {MVR}

δ(bbc) = δ(bb�) = δ(bbb′) = δ(abb′) = {b′}

δ(cab′) = {a′}

δ(�ca′) = δ(�ab′) = Accept

This permits the following valid computation for the word abbb.

C = �abbb� `c �abbb′� `c �abb′b′� `c �ab′b′b′� ` Accept

Thus, we execute these operations in the following order.
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Cycle c1 (�, a, b,MVR) (a, b, b,MVR) (b, b, b,MVR) (b, b,�, b′)

Cycle c2 (�, a, b,MVR) (a, b, b,MVR) (b, b, b′, b′)

Cycle c3 (�, a, b,MVR) (a, b, b′, b′)

Tail (�, a, b′,Accept)
Without using a special alphabet we get

x2 = (a, b, b,MVR)(a, b, b,MVR)(a, b, b′, b′)

by looking at all operations we execute at position 2.

By removing the repetitions we get the pattern

AC2 (abbb) = (a, b, b,MVR)(a, b, b′, b′)

We now specify a second computation C2 for a word with the same pattern
at some position. We use the word cabbc.

C2 = �cabbc� `c �cabb′c� `c �cab′b′c� `c �ca′b′b′c� ` Accept

Thus, we execute these operations in the following order.
Cycle d1 (�, c, a,MVR) (c, a, b,MVR) (a, b, b,MVR) (b, b, c, b′)

Cycle d2 (�, c, a,MVR) (c, a, b,MVR) (a, b, b′, b′)

Cycle d3 (�, c, a,MVR) (c, a, b′, a′)

Tail (�, c, a′,Accept)
So we get

AC2
3 (cabbc) = (a, b, b,MVR)(a, b, b′, b′)

as pattern at position 3 for the word cabbc

As AC2 (abbb) and AC2
3 (cabbc) coincide, Claim 1 of the previous proof tells us

that there is also a valid computation Ccabbb for the word cabbb. To match the
same notation we take x = ab, z = bb, y = cab, and u = bc.

According to the proof we start by considering the cycles d1, d2, d3 one after
another. The first cycle d1 has the MVR operation (a, b, b,MVR) at position 3.
Thus, we have a long cycle and have to use the initial part

d
(1)
1 = (�, c, a,MVR)(c, a, b,MVR)(a, b, b,MVR)

for the cycles of C that have the same MVR operation at position 2 in order
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to reach that specific position. These are the cycles c1 and c2 and we get the
partial cycles

c
(2)
1 = (b, b, b,MVR)(b, b,�, b′)

and
c

(2)
2 = (b, b, b′, b′).

We now get the first two cycles by appending the new cycles d(1)
1 c

(2)
1 and d(1)

1 c
(2)
2

to our currently empty computation Ccabbb.
The next cycle d2 executes a rewrite operation at position 3. Thus, we

simply append it to our new computation. We do the same with cycle d3

because it is a short cycle, as it executes a rewrite at position 2. Finally,
we append the accepting tail to our computation. To sum it up we get
to execute the following operations in the constructed valid computation:
d

(1)
1 c

(2)
1 (�, c, a,MVR) (c, a, b,MVR) (a, b, b,MVR) (b, b, b,MVR) (b, b,�, b′)

d
(1)
1 c

(2)
1 (�, c, a,MVR) (c, a, b,MVR) (a, b, b,MVR) (b, b, b′, b′)

d2 (�, c, a,MVR) (c, a, b,MVR) (a, b, b′, b′)

d3 (�, c, a,MVR) (c, a, b′, a′)

Tail (�, c, a′,Accept)

Written as computation relation we can write

�cabbb� `c �cabbb′� `c �cabb′b′� `c �cab′b′b′� `c �ca′b′b′b′� ` Accept

Claim 2 in the proof of Theorem 3.5.1 allows additionally to construct an
NFA of size 2O(n) for L(M).

Theorem 3.5.3. Let M = (Σ,Γ,�,�, δM , >) be a stl-ORWW-automaton that
only accepts when its window contains the left sentinel �. Then an NFA
A = (Q,Σ,∆, q0, F ) can be constructed from M such that L(A) = L(M) and
|Q|≤ 213·|Γ|.

Proof. Let M = (Σ,Γ,�,�, δM , >) be a stl-ORWW-automaton that only
accepts when its window contains the left sentinel �, and let n = |Γ|. Like
in the previous proof we introduce a new finite alphabet Ω = {t1, t2, . . . , tK},
the symbols of which are in 1-to-1 correspondence to the operations M can
execute. The NFA A = (Q,Σ,∆, q0, F ) works as follows. The states Q consist
of the initial state q0, the final state qF and all possible operation patterns. As
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the length of operation patterns is limited by 4n, the number of states is also
limited: Q ⊆ {q0, qF} ∪ Ω≤4n. Only qF is a final state: F = {qF}.

The transition relation is given through the following rules, where x ∈ Σ

and α, α1, α2 ∈ Ω≤4n are operation patterns.

• ∆(q0, λ) 3 qF if δM(��) = Accept

• ∆(q0, x) 3 α if there exist w = w1w2 . . . wm and an accepting computation
C for w such that w1 = x and AC1 (w) = α.

• ∆(α1, x) 3 α2 if there exist w = w1w2 . . . wm, 1 ≤ i < m, and an
accepting computation C for w such that wi+1 = x , ACi (w) = α1 and
ACi+1(w) = α2.

• ∆(α, λ) 3 qF if there exist w = w1w2 . . . wm and an accepting computation
C for w such that ACm(w) = α.

We will prove that L(A) = L(M) holds. As usual this proof is divided into two
parts.

Claim 1. L(M) ⊆ L(A).
Let w ∈ Σ∗ be a word that belongs to the language L(M). Thus, there is an
accepting computation C that starts with the initial configuration �w�. If
w = λ, then δM(��) = Accept, which implies that qF ∈ ∆(q0, λ). It follows
that w ∈ L(A) holds in this case.

Assume that w = w1w2 . . . wm for some m ≥ 1 and letters w1, w2, . . . , wm ∈
Σ. We now claim that

q0 → AC1 (w)→ AC2 (w)→ . . .→ ACm(w)→ qF

is an accepting path for the word w in the NFA A. This is obviously true,
because we can always take w as the word and C as the accepting computation
which fulfills the transition conditions.

Now, we have to prove the other direction.

Claim 2. L(A) ⊆ L(M).
Let w ∈ Σ∗ be a word that belongs to the language L(A). Thus, there is an
accepting path that accepts w. We will proceed by induction on the length
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of w. If w = λ, then q0 → qF is the only accepting path. Thus, we have
∆(q0, λ) 3 qF , which implies δM(��) 3 Accept.

We claim that for every word v = v1 . . . vm for which A has the execution
sequence

q0 → α1 → α2 → . . .→ αm

there exist a word u ∈ Σ∗ and an accepting computation for the word vu such
that ACm(vu) = αm.

For m = 1 we get the execution sequence q0 → α1 for the word v = v1,
which tells us that ∆(q0, v1) 3 α1 holds. This is only the case if a word
w = w1w2 . . . wm and an accepting computation for w exist such that w1 = v1

and AC1 (w) = α. Therefore, our claim holds for u = w2 . . . wm and the given
computation.

For m > 1 we get the execution sequence q0 → α1 → . . . → αm−1 → αm

for the word v = v1 . . . vm−1vm. We can apply our induction hypothesis to
the execution sequence q0 → α1 → . . . → αm−1 for the word v′ = v1 . . . vm−1,
which tells us that we have some word u′ and a computation C ′ such that
ACm−1(v′u′) = αm−1. From the transition ∆(αm−1, vm) 3 αm we get a word w =

w1 . . . wiwi+1 . . . wk and a computation C ′′ such that wi+1 = vm, AC
′′

i (w) = αm−1

and AC′′i+1(w) = αm. With the help of the construction from the previous proof
we can construct a new computation C for the word v1v2 . . . vm−1wi+1 . . . wk.
Thus, with the word u = wi+2 . . . wk the computation C is a computation for
the word vu with ACm(vu) = αm. Therefore, our claim holds for all m ≥ 1.

Now, if we have the accepting path

q0 → α1 → α2 → . . .→ αm → qF

for the word w = v1 . . . vm, there exists a word u ∈ Σ∗ and a computation
C such that it is a computation for the word vu with ACm(vu) = αm. As αm
directly leads to the accepting state qF , all operations of αm contain the right
sentinel � and u must be the empty word λ.

It remains to verify that |Q|≤ 213·n holds. For doing that, it suffices to show
that 213·n is an upper bound for the number of patterns that can occur within
the NFA A. Since we need precise information about the operations for the
estimation, we no longer abstract with the newly introduced alphabet, but use
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a matrix to represent a pattern. Let

Π =


a1,1 a1,2 a1,3 op1

a2,1 a2,2 a2,3 op2

. . . . . . . . . . . .

am,1 am,2 am,3 opm


be such a pattern. Each row represents an operation which can be written as a
four-tuple. Let us assume that there are v different letters in the first column, r
different letters in the second and s different letters in the third column, where
v, r, s ∈ {1, 2, . . . , α}. As ai+1,j ≤ ai,j for all 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ 3,
each of these columns can be represented by a subset of Γ, which yields

(
n
v

)
,(

n
r

)
, and

(
n
s

)
choices for the first, second, and third column, respectively.

Next, we need to encode the information on the letter aj,3 that is used in the
rewriting of aj,2 into aj+1,2. This we can do by giving a multiset of cardinality
r− 1 with elements from the set of integers {1, 2, . . . , s}, where the j-th integer
kj tells us that aj,3 is the kj-th element from the subset that contains the letters
from the third column. This yields another

(
s+r−1−1
r−1

)
choices, as there are(

s+r−1−1
r−1

)
such multisets. As from one row of Π to the next, at most one of

the letters in column 2 and column 3 can change, it follows that all letters aj,3
that are not chosen in this multiset are only used for move-right operations.
However, some of the letters that are used for rewrite operations may also be
used for move-right operations before the rewrite operation is actually executed.
Let’s say this happens t times, where 0 ≤ t ≤ r − 1. This gives us another(
r−1
t

)
choices. Further, in the last row we either have a move-right operation, if

a1,3 6= �, or we have an accept step, if a1,3 = �.

So far we have described the last three columns of Π which contain up
to r + s + t different triples and for which we have

(
n
r

)
·
(
n
s

)
·
(
s+r−2
r−1

)
·
(
r−1
t

)
choices. It remains to combine these triples with the information on the v
letters in the first column, which can change from any row to the next. Here we
add to each triple (aj,2 aj,3 MVR) the index `j of the last letter from the first
column such that (a`j ,1 aj,2 aj,3 MVR) is a row in Π. This yields

(
v+r+s+t−1
r+s+t

)
choices, as there are this many corresponding multisets. In addition, we add
to each of the triples the information of whether the last letter from the first
column that is used with the previous triple is also used with the current triple,
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that is, whether the entry in the first column stays the same when going from
the previous triple to the new one. This yields another 2r+s+t choices. Thus,
altogether this yields

(
n
r

)
·
(
n
s

)
·
(
s+r−2
r−1

)
·
(
r−1
t

)
·
(
n
v

)
·
(
v+r+s+t−1
r+s+t

)
· 2r+s+t choices.

As v, r, s can range from 1 to n, this yields the following upper bound for
the number of states |Q|:

|Q| ≤ 1 +
∑

r,s,v∈{1,2,...,n}
∑r−1

t=0

(
n
r

)
·
((
n
s

)
·
(
s+r−2
r−1

)
·
(
r−1
t

)
+ 1
)
·((

n
v

)
·
(
v+r+s+t−1
r+s+t

)
· 2r+s+t + 1

)
≤ 1 +

∑
r,s,v∈{1,2,...,α}

∑r−1
t=0

(
n
r

)
·
(
n
s

)
·
(

2n
r−1

)
·
(
n
t

)
·
(
n
v

)
·
(

4n
r+s+t

)
· 2r+s+t

= 2n · 2n · 22n · 2n · 2n · 24n · 23n = 213·n.

If M is a stateless deterministic ORWW-automaton, then we obtain a better
upper bound. Again we have r ≤ α different letters in the second column
and s ≤ α different letters in the third column. However, M is deterministic,
and so, if a row (aj,1 aj,2 aj,3 MVR) contains a move-right step, then the next
rewrite operation in column 2 can occur only after the letter in row 3 has
been rewritten. Thus, a pair (aj,2, aj,3) can only occur in a move-right step
or in a rewrite step. Hence, we need a multiset of r − 1 integers from the set
{1, 2, . . . , s} to indicate the letters from column 3 that are used in the various
rewrite steps, which yields again

(
s+r−2
r−1

)
options. Further, the letter in the first

column can change, that is, it can be rewritten, only after the letter in the
second column has been rewritten, and so we need only a multiset of cardinality
r from Γ that indicates the letter in column 1 that occur together with a given
letter from the second column, which yields another

(
n+r−1

r

)
options. Hence, in

this case we get the following upper bound for the size of the NFA:

|Q| ≤ 1 +
∑n

r=1

∑n
s=1

(
n
r

)
·
((
α
s

)
·
(
s+r−2
r−1

)
+ 1
)
·
((
n+r−1

r

)
+ 1
)

≤ 1 +
∑n

r=1

∑n
s=1

(
n
r

)
·
(
n
s

)
·
(

2n
r−1

)
·
(

2n
r

)
= 2n · 2n · 22n · 22n = 26·n.

Thus, the construction in the proof of Theorem 3.5.3 yields the following result,
which improves the result given in [24].

Corollary 3.5.4. From a stl-det-ORWW-automaton M with a tape alphabet of
size α, an NFA A = (Q,Σ, p0, F, δA) can be constructed such that |Q|≤ 26·(α+1)
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and L(A) = L(M).

Proof. From the automaton M we can construct a stl-det-ORWW-automaton
M for the same language with a tape alphabet of size α + 1 that only accepts
at the left sentinel. From this automaton we construct an NFA like described
in the proof of Theorem 3.5.3.

Thus, stateless ORWW-automata can just accept the same languages as their
deterministic counterparts. However, stateless ORWW-automata can describe
some regular languages much more succinctly than stateless deterministic
ORWW-automata as we will see in Lemma 3.5.14 and Proposition 3.5.15.

As we use existential conditions in the previous NFA construction these
conditions are not easily verified. Now, we use the introduced matrix represen-
tation to describe the NFA in more practical terms by using conditions that
can be verified locally. As it feels more natural we assume that we only accept
at the right sentinel this time. This can also be achieved by adding just one
tape symbol.

Now we can prepare the description of the construction.

Theorem 3.5.5. From a stl-ORWW-automaton that only accepts at the right
sentinel and that has an alphabet of size n we can construct an NFA of size
213n.

In order to prove the theorem we specify how the patterns have to look like
and what patterns can be next to each other. After that we have to verify that
these conditions are sufficient to describe a valid computation.

For technical reasons we divide the patterns into several blocks.

Let Π1 and Π2 be two patterns of the stl-ORWW-automaton M:

Π1 =


a1 b1 c1 op1

a2 b2 c2 op2

. . . . . . . . . . . .

am bm cm opm

 and Π2 =


a′1 b′1 c′1 op′1

a′2 b′2 c′2 op′2

. . . . . . . . . . . .

a′r b′r c′r op′r


A right block (R-block) RB of Π1 is a vertical section of maximal size such
that the second and third elements of each row do not change from row to row.
That is, there exist an index i1 and a number s1 such that
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RB =


ai1 bi1 ci1 opi1
ai1+1 bi1+1 ci1+1 opi1+1

. . . . . . . . . . . .

ai1+s1 bi1+s1 ci1+s1 opi1+s1


where (bi1 , ci1) = (bi1+1, ci1+1) = . . . = (bi1+s1 , ci1+s1) and for all k < i1 or
k > i1 + s1: (bk, ck) 6= (bi1 , ci1).

A left block (L-block) LB of Π2 is a vertical section of maximal size such
that the first two elements of each row do not change from row to row. That is
there exists an index j1 and a number t1 such that

LB =


a′j1 b′j1 c′j1 op′j1
a′j1+1 b′j1+1 c′j1+1 op′j1+1

. . . . . . . . . . . .

a′j1+t1
b′j1+t1

c′j1+t1
op′j1+t1


where (a′j1 , b

′
j1

) = (a′j1+1, b
′
j1+1) = . . . = (a′j1+t1

, b′j1+t1
) and for all k < j1 or

k > j1 + t1: (a′k, b
′
k) 6= (a′j1 , b

′
j1

).

The right block RB is right-compatible to the left block LB if (bi1 , ci1) =

(a′j1 , b
′
j1

).

Π1 is divided into several R-Blocks

Π1 =


a1 b1 c1 op1

a2 b2 c2 op2

. . . . . . . . . . . .

am bm cm opm

 =


RB1

RB2

. . .

RBu


and Π2 is separated into the following L-blocks

Π2 =


a′1 b′1 c′1 op′1

a′2 b′2 c′2 op′2

. . . . . . . . . . . .

a′m b′m c′m op′r

 =


LB1

LB2

. . .

LBv


We say that the pattern Π2 is right-compatible to Π1 if they satisfy the

following conditions.

52



1. The number u of R-blocks of Π1 must be at least as large as the number
v of L-blocks of Π2, that means v ≤ u.

2. We denote the j-th R-block that contains MVR operations with RBij .
There are exactly v of these blocks and the right block RBij fits to the
left block LBj for 1 ≤ j ≤ v.

3. Only one of the matching blocks RBij and LBj can end with a rewrite
operation.

4. There is a total number of u− 1 rewrite operations in both patterns.

5. If one corresponding pair of blocks does not contain a rewrite operation,
they are the blocks RBu and LBv.

Because of our design criteria the following result can be easily checked.

Lemma 3.5.6. Let w = w1w2 . . . wn ∈ LC(M), let C be an accepting compu-
tation of M for w, and let Πi be the pattern of the i-th tape field obtained from
the computation C for 1 ≤ i ≤ n. Then Πi+1 is right-compatible to Πi for
1 ≤ i ≤ n.

The following theorem tells us that our definition of the local right-
compatibility condition is sufficient to extract a valid computation for a word.

Theorem 3.5.7. Let w1, w2, . . . wn ∈ Γ, w0 = �, wn+1 = �, w = w1w2 . . . wn,
and let (Π1,Π2, . . . ,Πn) be a sequence of patterns where

Πi =


ai1 bi1 cii opi1

ai2 bi2 ci2 opi2

. . . . . . . . . . . .

aiki biki ciki opiki

 .

Additionally,

• ai1 = wi−1, b
i
1 = wi, c

i
1 = wi+1 for 1 ≤ i ≤ n,

• Πi+1 is right-compatible to Πi for 1 ≤ i ≤ n− 1.

Then w ∈ LC(M), and an accepting computation of M for w can be extracted
from the sequence of patterns (Π1, . . . ,Πn).
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Proof. Let N be the combined number of rewrite operations that occur in the
patterns Π1,Π2, . . . ,Πn. We claim that there exists an accepting computation
C for the word w that consists of N cycles. We will prove this by induction
over N .

If we have no rewrite at all, that is, N = 0, then the pattern Πi has the
following form for 1 ≤ i ≤ n:

Πi =
[
wi−1 wi wi+1 opi

]
,

where opi = MVR for 1 ≤ i ≤ n− 1 and opn = Accept.

Note, that for n = 1 there is only the operation

(w0, w1, w2,Accept) = (�, w1,�,Accept)

which leads to the computation �w� = �w1� `M Accept. For n > 1 we get the
operations (w0, w1, w2,MVR), (w1, w2, w3,MVR), . . . , (wn−1, wn, wn+1,Accept)

which describes the accepting tail computation �w� = �w1w2 . . . wn� `∗M
Accept.

If there are some rewrites, that is, N > 0, we assume that we can
construct a valid computation from valid pattern sequences that have less
than N rewrites. The patterns are in their most generic form. Now,
let K be the minimal number such that opK1 ∈ Γ. This leads to
opi1 = MVR for all 1 ≤ i ≤ K − 1. The first cycle is therefore de-
scribed by the sequence of operations (�, w1, w2,MVR), (w1, w2, w3,MVR), . . . ,

(wK−2, wK−1, wK ,MVR), (wK−1, wK , wK+1, w
′
K) with w′K = bK2 It can be writ-

ten as �w� = �w1w2 . . . wn� `cM �w1w2 . . . wK−1w
′
KwK+1 . . . wn� = �w′�,

where we take w′=w1w2 . . . wK−1w
′
KwK+1 . . . wn.

We are going to construct a new sequence of patterns (Π′1,Π
′
2, . . . ,Π

′
n) for

the word w′ that contains N − 1 rewrites.

Patterns that are to the right of our rewritten tape field stay the same, that
is, Π′j = Πj for j > K.
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Let ΠK have j rows. Then ΠK looks like

ΠK =


aK1 bK1 cK1 bK2

aK2 bK2 cK2 opK2

. . . . . . . . . . . .

aKj bKj cKj opKj


we simply delete the first row from Πk because we do not execute the operation
(wK−1, wK , wK+1, b

K
2 ) and get

Π′K =


a′K1 b′K1 c′K1 op′K1

. . . . . . . . . . . .

a′Kj′ b′Kj′ c′Kj′ op′Kj′

 =


aK2 bK2 cK2 opK2

. . . . . . . . . . . .

aKj bKj cKj opKj


As a MVR operation in a pattern can represent multiple operations, we have

to have a closer look at the MVR operations of the cycle we want to remove.

The K-th symbol changes from wK to w′K = bK2 and therefore we also get
(aK1 , b

K
1 ) 6= (a′K1 , b

′K
1 ) = (aK2 , b

K
2 ). This means that the topmost operation of

Π′K is not compatible to the topmost operation of ΠK−1 and thus we have to
remove the first line of ΠK−1 to get the new pattern Π′K−1.

We do the same for the remaining pattern Πi for 1 ≤ i ≤ K − 2, where
we treat the rightmost patterns first. If (ai+1

1 , bi+1
1 ) 6= (a′i+1

1 , b′i+1
1 ), that is one

right block is being removed, we have to remove the first row of Πi to get the
new pattern Π′i.

This concludes the proof.

Now we can specify the construction.

Theorem 3.5.8. Given a stl-ORWW-automaton M with an alphabet of size
α, an NFA A = (Q,Σ, S, F, δA) can be constructed such that |Q|≤ 213·α and
L(A) = L(M). In the case of M being deterministic there exists an NFA A

with |Q|≤ 26·α.

Proof. Let M = (Σ,Γ,�,�, δ, >) be a stl-ORWW-automaton. Without loss
of generality we may assume that M only accepts at the right sentinel. Let
α = |Γ| be the size of M ′s tape alphabet.
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The NFA A = (Q,Σ, S, F, δA) is constructed as follows:

• The set of states Q consists of valid patterns as defined in the previous
theorem and an additional state q+.

• The set of initial states S contains all states that correspond to patterns,
which have the left sentinel � at position 1. The state q+ is added if
λ ∈ L(M), that is, L(M) contains the empty word.

• The set of final states only contains the state q+.

• The transition function δ is defined as follows, where a ∈ Σ and Π is a
pattern with a at position 2

δA(Π, a) =

{Π′ | Π′ is comp. to Π}, if Π has b ∈ Σ at pos. 3 in row 1,

{q+}, if Π has � at position 3.

It remains to show that the NFA A really describes the same language as
the stl-ORWW-automaton M .

Let w 6= λ,w = w1w2 . . . wn be a word that is accepted by the NFA A. During
the accepting computation A guesses the sequence of patterns (Π1,Π2, . . . ,Πn)

such that

• Π1 has � at position 1.

• Πn has � at position 3 and an Accept operation in the last row.

• Πi has the letter wi at position 2 in the first row for 1 ≤ i ≤ n.

• Πi is right-compatible to Πi+1 for 1 ≤ i ≤ n− 1.

According to the previous theorem, we conclude that w ∈ L(M) holds.
Now let w ∈ L(M). Then there exists an accepting computation C of M

for input w. Let (Π1,Π2, . . . ,Πn) be the sequence of patterns obtained from
the computation C. Then Π1 → Π2 → . . .→ Πn is an accepting path of the
NFA A for the word w.

Since here again we are talking about possible pattern sequences and only the
conditions were reformulated as local, the proof and the results of the previous
construction can be reused. This gives us the estimate of the theorem.
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Actually, the bound given in Theorem 3.5.8 is sharp with respect to its order
of magnitude. To show this, we consider a sequence of example languages
(Bn)n≥3. Let Σ = {0, 1,#, $} be an input alphabet, let n ≥ 3 be a positive
integer, and let Bn be the following language over Σ:

Bn = { v1#v2# . . .#vm$u |m ≥ 1, v1, v2, . . . , vm,

u ∈ {0, 1}n, ∃ 1 ≤ i ≤ m : vi = u }.

Hence, if w ∈ Bn, then w = v1#v2# . . .#vm$u, where v1, v2, . . . , vm, u are
factors of length n over {0, 1} such that at least one of the first m factors
coincides with the last factor u. It follows that |w|= (m+ 1) · n+m for some
positive integer m, and it is easily seen that Bn is a regular language over Σ.

Proposition 3.5.9. [34] Bn is accepted by a stl-det-ORWW-automaton Mn =

(Σ,Γn,�,�, δn, >) with an alphabet Γn of size 18 · n.

Proof. The stl-det-ORWW-automaton Mn = (Σ,Γn,�,�, δn, >) will work in
n phases. Let w = v1#v2# . . .#vm$u be given as input, where m ≥ 1 and
v1, v2, . . . , vm, u ∈ {0, 1}n, vj = vj,1vj,2 . . . vj,n, 1 ≤ j ≤ m, and u = u1u2 . . . un.
In phase i, 1 ≤ i ≤ n, Mn will shift the information about the letter un+1−i to
the left until this information reaches the first letter of w. While doing so, it
compares this letter to the letter vj,n+1−i of vj for all 1 ≤ j ≤ m, and it stores
the result of this comparison on the tape by replacing the letter vj,n+1−i by
some appropriate auxiliary letter. Finally, after phase n has been completed,
Mn moves across the current tape content and checks whether there is a syllable
all of its letters have been matched successfully. In the affirmative, Mn accepts.

Now, we describe the stl-det-ORWW-automaton Mn in detail. First we
define the tape alphabet Γn. It will contain the input alphabet Σ = {0, 1,#, $},
marked copies [0, i] and [1, i], 1 ≤ i ≤ n, of the letters 0 and 1 that Mn will use
to mark the letters of the syllable u that have been compared already to the
corresponding letters of the other syllables, letters of the form [a, i, b], where
a ∈ {0, 1,+,−,#, $}, 1 ≤ i ≤ n, and b ∈ {0, 1}, that will be used to shift the
information on the letters of u to the left, and letters of the form [c, i, b], where
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c ∈ {+,−}, 2 ≤ i ≤ n, and b ∈ {0, 1}. Thus, we take

Γn = {0, 1,#, $} ∪ { [0, i], [1, i] | 1 ≤ i ≤ n }
∪ { [a, i, b], | a ∈ {0, 1,+,−,#, $}, 1 ≤ i ≤ n, b ∈ {0, 1} }
∪ { [+, i, b], [−, i, b] | 2 ≤ i ≤ n, b ∈ {0, 1} }.

We see that |Γn|= 18 · n as stated above. Next, we define the partial order >
on Γn:

a > [a, i] for all a ∈ {0, 1} and 1 ≤ i ≤ n,

a > [a, n, b] for all a ∈ {0, 1,#, $} and b ∈ {0, 1},
[a, i+ 1, b] > [a, i, b′] for all a ∈ {0, 1,#, $,+,−}, b, b′ ∈ {0, 1},

and 1 ≤ i < n,

a > [c, n, b] > [c, n, b] for all a, b ∈ {0, 1} and c ∈ {+,−},
[a, i+ 1, b] > [c, i, b′] > [c, i, b′] for all a, b, b′ ∈ {0, 1}, c ∈ {+,−},

and 2 ≤ i < n,

[a, 2, b] > [c, 1, b′] for all a, b, b′ ∈ {0, 1} and c ∈ {+,−}.

Finally, we describe the transition function δn, dividing this description into
n phases as indicated above.

1.1. The information on the last letter un of u is to be shifted to the left and
compared to the last letters of the other syllables. Accordingly, Mn moves
its read/write window to the right until it contains the right sentinel �
by using the following transitions, where a1, a2, a3 ∈ {0, 1}:

δn(�a1a2) = MVR, δn(a1a2a3) = MVR, δn(a1a2#) = MVR,

δn(a1#a2) = MVR, δn(#a1a2) = MVR, δn(a1a2$) = MVR,

δn(a1$a2) = MVR, δn($a1a2) = MVR.

1.2. Now the letter un, that is, the letter immediately to the left of the right
sentinel �, is rewritten into the letter [un, n], and then the information
on un is shifted to the left. Additionally, the last letter of each other
syllable, that is, the letter immediately to the left of the letter $ or a
letter #, is compared to un, and a positive result is indicated by the letter
[+, n, un], and a negative result is indicated by the letter [−, n, un]. The
corresponding transitions are the following, where a1, a2, a3, b ∈ {0, 1}
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and c ∈ {+,−}:

δn(a1b�) = [b, n], δn(a1a2[b, n]) = [a2, n, b],

δn(a1a2[a3, n, b]) = [a2, n, b], δn($a1[a2, n, b]) = [a1, n, b],

δn(a1$[a2, n, b]) = [$, n, b], δn(a1a2[$, n, b]) = [−, n, b] for a2 6= b,

δn(a1b[$, n, b]) = [+, n, b], δn(a1a2[c, n, b]) = [a2, n, b],

δn(#a1[a2, n, b]) = [a1, n, b], δn(a1#[a2, n, b]) = [#, n, b],

δn(a1b[#, n, b]) = [+, n, b], δn(a1a2[#, n, b]) = [−, n, b] for a2 6= b,

δn(�a1[a2, n, b]) = [a1, n, b].

Using these transitions Mn executes the following computation given the
word

w = v1,1 . . . v1,n−1v1,n#v2,1 . . . v2,n−1v2,n# . . .

. . .#vm,1 . . . vm,n−1vm,n$u1 . . . un−1un

as input, where we assume that v1,n 6= un and vm = u:

� v1,1 . . . v1,n−1v1,n#v2,1 . . . v2,n−1v2,n# . . .#vm,1 . . . vm,n−1vm,n$u1 . . .

un−1un� `cMn
�v1,1 . . . v1,n−1v1,n#v2,1 . . . v2,n−1v2,n# . . .#vm,1 . . .

vm,n−1vm,n$u1 . . . un−1[un, n]� `cMn
�v1,1 . . . v1,n−1v1,n#v2,1 . . .

v2,n−1v2,n# . . .#vm,1 . . . vm,n−1vm,n$u1 . . . [un−1, n, un][un, n]�

`c∗Mn
�v1,1 . . . v1,n−1v1,n# . . .#vm,1 . . .

vm,n−1vm,n[$, n, un][u1, n, un] . . . [un−1, n, un][un, n]� `cMn
�v1,1 . . .

v1,n−1v1,n# . . .#vm,1 . . . vm,n−1[+, n, un][$, n, un][u1, n, un] . . .

[un−1, n, un][un, n]� `c∗Mn
�[v1,1, n, un] . . .

[v1,n−1, n, un][−, n, un][#, n, un] . . . [#, n, un][vm,1, n, un] . . .

[vm,n−1, n, un][+, n, un][$, n, un] . . . [un−1, n, un][un, n]� =: k1.

1.3. Now that the information on the letter un has been sent to all other
letters, each auxiliary letter of the form [c, n, un] is rewritten into the
letter [c, n, un] proceeding from left to right. In this way the restart
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configuration k1 is transformed into the configuration

k2 := �[v1,1, n, un] . . . [v1,n−1, n, un][−, n, un][#, n, un] . . .

[#, n, un][vm,1, n, un] . . . [vm,n−1, n, un][+, n, un][$, n, un] . . .

[un−3, n, un][un−2, n, un][un−1, n, un][un, n]�,

and the window of Mn is moved to the factor
[un−2, n, un][un−1, n, un][un, n].

2.1. Starting with the above configuration the next phase begins. In this phase
the information on the letter un−1 is shifted to the left and compared
with the corresponding letters of the syllables v1, v2, . . . , vm. This is done
by first rewriting the letter [un−1, n, un] into the letter [un−1, n− 1] and
by then moving the information on the pair (n− 1, un−1) to the left. In
addition, in each syllable the letter immediately to the left of the letter
of the form [c, n, un] is compared to un−1, and the result is encoded in
the same way as above. However, during this phase, a letter of the form
[d, n, b] is replaced by [−, n− 1, d] if its right-hand neighbor is of the form
[−, n− 1, d]. In this way the negative result of the previous test, which is
stored in the latter letter, is also carried over to the present letter, even
if the test for the new letter d would return a positive result.

Using these transitions the configuration k2 is transformed into the restart-
ing configuration

�[v1,1, n− 1, un−1] . . . [−, n− 1, un−1][−, n− 1, un−1][#, n− 1, un−1] . . .

[#, n− 1, un−1][vm,1, n− 1, un−1] . . . [+, n− 1, un−1][+, n− 1, un−1]

[$, n− 1, un−1] . . . [un−2, n− 1, un−1][un−1, n− 1][un, n] � .

2.2. Before the next phase can start, Mn replaces the letters [a, n− 1, d] by
[a, n − 1, d], proceeding from left to right, which yields the following
configuration:

� [v1,1, n− 1, un−1] . . . [−, n− 1, un−1][−, n− 1, un−1][#, n− 1, un−1]

. . . [#, n− 1, un−1][vm,1, n− 1, un−1]
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. . . [+, n− 1, un−1][+, n− 1, un−1][$, n− 1, un−1]

. . . [un−4, n− 1, un−1][un−3, n− 1, un−1][un−2, n− 1, un−1]

[un−1, n− 1][un, n]�,

where the window of Mn contains the factor [un−3, n− 1, un−1][un−2, n−
1, un−1][un−1, n− 1].

3.1. In the following n− 3 phases, the letters un−2, . . . , u2 are moved to the
left using corresponding transitions. These phases yield the following
restarting configuration:

k3 := �[v1,1, 2, u2][−, 2, u2] . . . [−, 2, u2][#, 2, u2] . . . [#, 2, u2]

[vm,1, 2, u2][+, 2, u2] . . .

[+, 2, u2][$, 2, u2][u1, 2, u2][u2, 2][u3, 3] . . . [un, n] � .

3.2 In the final phase, the letter u1 is moved to the left and compared to
the first letter of the other syllables. Accordingly, the letter [u1, 2, u2] is
rewritten into the letter [u1, 1], the information on the pair (1, u1) is sent
to the left, and the first letter of each other syllable is compared to u1.
This is done in such a way that it ensures that the computation of M
will get stuck on reaching a syllable that is not of the required length n.
These transitions are defined as follows, where a1, a2, b, d ∈ {0, 1} and
c, c′, c′′ ∈ {+,−}:

δn([$, 2, b][a1, 2, a2][a2, 2]) = [a1, 1],

δn([c, 2, b][$, 2, b][a1, 1]) = [$, 1, a1],

δn([c, 2, b][c′, 2, b][$, 1, d]) = [c′, 1, d],

δn([c, 2, b][c′, 2, b][c′′, 1, d]) = [c′, 1, d],

δn([a1, 2, b][c, 2, b][c
′, 1, d]) = [c, 1, d],

δn([#, 2, b][d, 2, b][+, 1, d]) = [+, 1, d],

δn([#, 2, b][a1, 2, b][+, 1, d]) = [−, 1, d] for a1 6= d,

δn([#, 2, b][a1, 2, b][−, 1, d]) = [−, 1, d],
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δn([c, 2, b][#, 2, b][c′, 1, d]) = [#, 1, d],

δn([c, 2, b][c′, 2, b][#, 1, d]) = [c′, 1, d],

δn(�[d, 2, b][+, 1, d]) = [+, 1, d],

δn(�[a1, 2, b][+, 1, d]) = [−, 1, d] for a1 6= d,

δn(�[a1, 2, b][−, 1, d]) = [−, 1, d].

Using these transitions the restarting configuration k3 is transformed into
the restarting configuration

�[−, 1, u1][−, 1, u1] . . . [−, 1, u1][#, 1, u1] . . . [#, 1, u1]

[+, 1, u1][+, 1, u1] . . . [+, 1, u1][$, 1, u1][u1, 1][u2, 2][u3, 3] . . . [un, n] � .

3.3. Finally, Mn scans its tape from left to right. The final tape contents
must begin with a letter of the form [c, 1, b] for some c ∈ {+,−}, and Mn

accepts as soon as it detects a factor of the form �[+, 1, b] or #[+, 1, b].

It remains to argue that L(Mn) = Bn. From the construction it is rather
straightforward to see that Mn accepts all words from the language Bn. Hence,
it remains to be shown that Mn does not accept any other words.

So let w ∈ Σ∗ be a given input word that Mn accepts. We must show that
w meets all of the following properties:

(a) w = v1#v2# . . .#vm$u for some m ≥ 1 and some words
v1, v2, . . . , vm, u ∈ {0, 1}∗.

(b) |u|= n.

(c) |v1|= |v2|= . . . = |vm|= n.

(d) There exists an index i ∈ {1, 2, . . . ,m} such that vi = u holds.

Proof of (a) and (b). In each phase i the rewriting process is initiated by
rewriting the (n + 1 − i)-th letter a ∈ {0, 1} from the right into the letter
[a, n+ 1− i]. In phase 1 this is ensured by the corresponding transition, as a
letter of the form [a, n] can only be produced immediately to the left of the right
sentinel �, and for the other phases this is ensured as a letter of the form [a, i]
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can only be produced immediately to the left of a letter of the form [a′, i+ 1].
Finally, a letter of the form [a, 1] can only be produced when additionally its
left neighbor is a letter of the form [$, 2, b]. It follows that w must end with a
suffix of the form $u, where u ∈ {0, 1}n.

Information of the form (1, b) is sent left across the letter $ only if the right
neighbor has the form [a, 1]. Thus, if there are any additional occurrences
of the letter $ in w, then this information does not reach the first letter on
the tape, which means that Mn would not accept. Hence, w is of the form as
described in (a).

Proof of (c). If a syllable vi is of length larger than n, then its n-th letter
from the right cannot be rewritten into a letter of the form [c, 1, b], as its left
neighbor is not the letter #. On the other hand, if |vi|= s < n, then after
phase s, all letters of vi will have been replaced by letters of the form [c, s, b]

for some c ∈ {+,−}, and then, in phase s+ 1, there would be no letter left for
the corresponding check, that is, this phase would get stuck at this syllable.
Thus, (c) follows.

Proof of (d). Each syllable vi is compared to u by proceeding from right to
left. As soon as a mismatch is found, the corresponding letter of vi is replaced
by a letter of the form [−, i, b]. Now in the following phases the letter − is
propagated left through this syllable, which means that its first letter will be
replaced by a letter of this very form. Thus, only if vi = u holds, then the first
letter of vi is eventually rewritten into a letter of the form [+, 1, b]. As Mn

accepts only in this case, we see that (d) holds, too.

Thus, we see that indeed L(Mn) = Bn. This completes the proof of Proposi-
tion 3.5.9.

On the other hand, we have the following lower bound results on Bn.

Lemma 3.5.10. (a) If A = (Q,Σ, q0, F, δ) is a DFA such that L(A) = Bn,
then |Q| ≥ 22n.

(b) If C = (Q,Σ, q0, F, δ) is an NFA such that L(C) = Bn, then |Q|≥ 2n.

Proof. (a) Let V = {v1, v2, . . . , vm} be a non-empty subset of {0, 1}n. Without
loss of generality we can assume that v1 ≤ v2 ≤ . . . ≤ vm holds, where ≤
is the lexicographical ordering on {0, 1}n. With V we associate the word
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wV = v1#v2# . . .#vm$, and further, we take qV = δ(q0, wV ), that is, qV is the
state that A reaches from its initial state q0 after reading the word wV . As the
word wV v1 ∈ Bn, the state qV exists, and obviously, qV 6= q0.

Now, let V1 and V2 be two non-empty subsets of {0, 1}n such that V1 6= V2.
Then there exists a word u ∈ {0, 1}n that belongs to the symmetric difference
of V1 and V2. Without loss of generality, we assume that u ∈ V1, and hence,
u 6∈ V2. Then wV1u ∈ Bn, but wV2u 6∈ Bn. Hence, it follows that the states qV1
and qV2 must not be identical. As there are 22n − 1 different non-empty subsets
of {0, 1}n, we see that the set { qV | ∅ 6= V ⊆ {0, 1}n } ⊆ Q r {q0} contains
22n − 1 many different states. Thus, |Q| ≥ 22n follows.

(b) We can easily prove the lower bound by contradiction. If we had an NFA
with |Q|< 2n states, we could use the powerset construction to get a DFA with
|Q|< 22n states for the language Bn which does not exist as we have shown in
the paragraph above.

The lower bound can also be shown by using the technique of fooling sets
from [4] (or also [14]). Let X = {0, 1}n, and for each x ∈ X, let ux = x$ and
vx = x. Then, for all x ∈ X, we have uxvx = x$x ∈ Bn, but for all x, y ∈ X, if
x 6= y, then uxvy = x$y 6∈ Bn. It follows that |Q|≥ |X|= 2n by the lemma on
p. 188 of [4].

In combination with Theorem 3.5.8, the results on Bn yield the following
consequence.

Corollary 3.5.11. For converting a stl-(det-)ORWW-automaton with n letters
into an equivalent NFA, 2O(n) states are sufficient, and there are cases in which
these many states are also necessary.

For the conversion into DFAs, we obtain the following result.

Corollary 3.5.12. For converting a stl-det-ORWW-automaton with n letters
into an equivalent DFA, 22O(n) states are sufficient, and there are cases in which
these many states are also necessary.

This is a clear improvement over the upper bound of 22O(n2 logn) given in
Corollary 8 (a) of [34]. Actually, the lower bound expressed by Corollary 3.5.11
even holds in the unary case. To see this, we consider the family of languages
(Un)n≥3, where Un = {a2n}. Obviously, an NFA for the language Un needs at
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least 2n + 1 states. However, there exists a stl-det-ORWW-automaton with
only O(n) letters that accepts this language.

Lemma 3.5.13. For each n ≥ 3, the language Un is accepted by a stl-det-
ORWW-automaton that works on an alphabet of size 3n− 1.

Proof. For n ≥ 3, let

Γn = {a, [1,+,−], [1,−,+], [n,−,−], [n,−,+]}

∪ { [i,+,−], [i,−,+], [i,−,−] | i = 2, 3, . . . , n− 1 },

that is, |Γn|= 3n− 1. The stl-det-ORWW-automaton Mn will process a given
input in n phases. In phase i, the letters of the form [i, r, s] are used to rewrite
the current tape content from right to left, letter by letter. The index r indicates
whether the current position corresponds to an input letter that has already
been marked as deleted (r = −) or not (r = +), and the index s indicates
whether the next undeleted letter to the left must be deleted (s = −) or whether
it is to be maintained as undeleted (s = +). These indices are used in such
a way that in each phase, every second undeleted position is kept, and the
other previously undeleted positions are marked as ‘deleted’. Finally, in phase
n, exactly one previously undeleted position is marked as ‘deleted’, and Mn

accepts if the first position is the second previously undeleted position from
the right in phase n. Accordingly, Mn = ({a},Γn,�,�, δn, >) is obtained by
taking the ordering

a > [i, r, s] for all i ≥ 1 and r, s ∈ {+,−},

[i, r, s] > [i+ 1, r′, s′] for all i = 1, 2, . . . , n− 1 and all r, s, r′, s′ ∈ {+,−},

and by defining the transition function as follows, where r, s, r′, s′, r′′, s′′ ∈
{+,−}:

δ(�aa) = MVR,

δ(aaa) = MVR,

δ(aa�) = [1,−,+],

δ(aa[1,−,+]) = [1,+,−],

δ(aa[1,+,−]) = [1,−,+],
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δ(�a[1,−,+]) = [1,+,−],

δ(�[i, r, s][i, r′, s′]) = MVR for all 1 ≤ i ≤ n− 1,

δ([i, r, s][i, r′, s′][i, r′′, s′′]) = MVR for all 1 ≤ i ≤ n− 1,

δ([i, r, s][i,−, s′]�) = [i+ 1,−,−] for all 1 ≤ i ≤ n− 1,

δ([i, r, s][i,−, s′][i+ 1, r′′, s′′]) = [i+ 1,−, s′′] for all 1 ≤ i ≤ n− 1,

δ([i, r, s][i,+, s′][i+ 1, r′′,−]) = [i+ 1,−,+] for all 1 ≤ i ≤ n− 1,

δ([i, r, s][i,+, s′][i+ 1, r′′,+]) = [i+ 1,+,−] for all 1 ≤ i ≤ n− 2,

δ(�[i,+,−][i+ 1, r′′,+]) = [i+ 1,+,−] for all 1 ≤ i ≤ n− 2,

δ(�[n− 1,+,−][n,−,+]) = Accept.

For example, for n = 3, M3 executes the following computation on input
w = a8:

�aaaaaaaa� `c �aaaaaaa[1,−,+]� `c7

�[1,+,−][1,−,+][1,+,−][1,−,+][1,+,−][1,−,+][1,+,−][1,−,+]� `c8

�[2,+,−][2,−,+][2,−,+][2,−,−][2,+,−][2,−,+][2,−,+][2,−,−]� `c7

�[2,+,−][3,−,+][3,−,+][3,−,+][3,−,+][3,−,−][3,−,−][3,−,−]� `

Accept.

It follows that L(Mn) = Un.

Every two-way NFA for Un has at least 2n + 1 states [5]. Thus, also the
trade-off for converting a stl-det-ORWW-automaton into an equivalent two-way
NFA is exponential.

Finally, we show that stateless ORWW-automata can describe some (regular)
languages much more succinctly than stateless det-ORWW-automata.

Let Σ = {a, b,#}, and let, for n ≥ 1, Cn denote the following language
over Σ:

Cn = {u1#u2# . . .#um | m ≥ 2, u1, u2, . . . , um ∈ {a, b}n,∃i < j : ui = uj }.

Lemma 3.5.14. The language Cn is accepted by a stl-ORWW-automaton Mn

with a tape alphabet of size 20n+ 1.
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Proof. In Proposition 3.5.9 a stl-det-ORWW-automaton An with 18n letters is
given that accepts the language

Bn = { v1#v2# . . .#vm$u | m ≥ 1, v1, v2, . . . , vm, u ∈ {a, b}n,∃i : vi = u }.

The stl-ORWW-automatonMn is obtained from An by adding the 2n+1 letters
a′1, a

′
2, . . . , a

′
n, b
′
1, b
′
2, . . . , b

′
n, and #′. It proceeds as follows.

It first marks the letters from right to left. In a syllable v = v(1)v(2) . . . v(n),
the last letter is replaced by v(n)

n

′
, v(n−1) is replaced by v(n−1)

n−1

′
, and so forth

until finally v(1) is replaced by v(1)
1

′
, and then the preceding letter # is replaced

by #′. In this way it is ensured that all {a, b}-syllables have length n. This
continues until Mn nondeterministically chooses to replace a symbol # by the
symbol $. In this way the input of the form u1#u2# . . .#uk#uk+1# . . .#um is
transformed into a word of the form u1#u2# . . .#uk$ûk+1#′ . . .#′ûm, where
ûi (k + 1 ≤ i ≤ m) denotes the word that is obtained from ui ∈ {a, b}n by the
above marking process. Now on the prefix u1#u2# . . .#uk$ûk+1, Mn simulates
the stl-det-ORWW-automaton An, and it accepts if the computation of An
being simulated accepts. It is obvious now that L(Mn) = Cn.

Now we claim that every stl-det-ORWW-automaton for Cn needs at least
2O(n) letters, that is, the above presentation by a stl-ORWW-automaton is expo-
nentially more succinct than any presentation by a stl-det-ORWW-automaton.

Proposition 3.5.15. Let s : N→ N be a function such that, for each n ≥ 1,
there exists a stl-det-ORWW-automaton Dn = (Σ,Γn,�,�, δn, >) such that
L(Dn) = Cn and |Γn|≤ s(n). Then s(n) 6∈ o(2n).

Proof. Let n ≥ 1, and let Dn = (Σ,Γn,�,�, δn, >) be a stl-det-ORWW-
automaton such that L(Dn) = Cn and |Γn|≤ s(n). As Dn is deterministic,
we obtain a stl-det-ORWW-automaton En = (Σ,Γn,�,�, ηn, >) such that
L(En) = Cc

n = Σ∗ rDn simply by interchanging accept steps with undefined
steps (see Proposition 3.3.3). From En we can construct an NFA Fn of size
2r·s(n) for Cc

n, where r ∈ N+ is a constant.

We now present a large fooling set for Cc
n. Let A be a subset of {a, b}n of

size 2n−1. Then also the set Ā = {a, b}n r A has size 2n−1. With these sets we
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associate the following languages:

PA = {u1#u2# . . .#u2n−1 | A = {u1, u2, . . . , u2n−1} } and
QA = {#v1#v2# . . .#v2n−1 | Ā = {v1, v2, . . . , v2n−1} }.

Then uv ∈ Cc
n for all u ∈ PA and all v ∈ QA. On the other hand, if B is a subset

of {a, b}n of size 2n−1 such that A 6= B, then uv ∈ Cn for all u ∈ PA and all
v ∈ QB, because there is a word x ∈ {a, b}n such that x ∈ A and x ∈ B̄. Hence,
by choosing a pair (uA, vA) ∈ PA ×QA for all subsets A of {a, b}n of size 2n−1,
we obtain a fooling set for Fn of size

(
2n

2n−1

)
= (2n)!

(2n−1)!·(2n−1)!
> 22n−1

. This
implies by [4] that the number 2r·s(n) of states of the NFA Fn satisfies the
inequality 2r·s(n) ≥ 22n−1 , that is, r · s(n) ≥ 2n−1. Hence, s(n)

2n
≥ 1

2r
, which

clearly shows that lim infn→∞
s(n)
2n
≥ 1

2r
> 0, that is, s(n) 6∈ o(2n).

From the proof above we can also derive the following complexity result.

Corollary 3.5.16. Let s : N→ N be a function such that, for each n ≥ 1, there
exists a stl-ORWW-automaton En = (Σ,Γn,�,�, δn, >) such that L(En) = Cc

n

and |Γn|≤ s(n). Then s(n) 6∈ o(2n).

Proof. By Theorem 3.5.1 we can construct an NFA Fn of size 2r·s(n) for Cc
n

from En. Now the proof of Proposition 3.5.15 shows that s(n) 6∈ o(2n).

As by Lemma 3.5.14 the language Cn is accepted by a stl-ORWW-automaton
Mn with a tape alphabet of size 20n + 1, Corollary 3.5.16 shows that the
conversion of a stl-ORWW-automaton of size n into a stl-ORWW-automaton for
the complement of L(M) can actually increase the alphabet size exponentially.

Now we use the construction from Theorem 3.5.8 to solve some decision
problems.

3.6 Decision Problems

As the stateless ORWW-automata exactly describe the regular languages and
can be converted into NFAs all decision problems of interest are decidable.
However, we can still ask ourselves how difficult it is to answer these decision
problems. In this section we will show that many decision problems are
PSPACE-complete, that is, they can be answered by using an amount of
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memory that is polynomial in the input length, and that every other problem
that can be solved in polynomial space can be reduced to them in polynomial
time.

The emptiness problem for NFAs is the problem of deciding whether the
language accepted by a given NFA is empty. If A = (Q,Σ, δ, q0, F ) is an NFA of
size |Q|= m, then emptiness of L(A) can be decided nondeterministically using
space O(logm) [18] by checking whether there is a path in the state graph
G(A) of A that leads from the node corresponding to the initial state q0 to a
node corresponding to an accepting state. Below we will use this result to show
that the emptiness problem for stl-ORWW-automata is decidable in polynomial
space. It is the generalization of the theorem for stl-det-ORWW-automata
from [24].

Theorem 3.6.1. The emptiness problem for stl-ORWW-automata is PSPACE-
complete.

Proof. Let M = (Σ,Γ,�,�, δ, >) be a stl-ORWW-automaton such that
|Γ|= n. By Theorem 3.5.8, there exists an NFA A = (Q,Σ,∆, S, {q+}) of size
at most 213·(n+1) such that L(A) = L(M). A nondeterministic Turing machine
T can now check whether L(A) is empty by proceeding as follows. It starts by
checking whether the state q+ is contained in the initial set S. In the affirmative
T halts and accepts, as λ ∈ L(A). In the negative it guesses a state α ∈ S
by guessing a pattern which has the left sentinel � at position 1. This state
is stored as ‘current state’ stc. It then checks whether q+ ∈ ∆(stc, a), where
a is the letter at position 2 of the current pattern stc. In the affirmative T
halts and accepts. Otherwise it guesses some pattern β, which it stores as
‘next state’ stn, and then it checks whether stn ∈ ∆(stc, a). This is done by
using the transition function δ of M and the definition of ∆. In the negative
T halts without accepting, while in the affirmative it replaces stc by stn, in
this way simulating a transitional step of A. This process continues until either
T halts (accepting or not), or until 213·(n+1) many transition steps of A have
been simulated. As the NFA A has |Q|≤ 213·(n+1) many states, it is clear that
a shortest path from its initial state to its final state has at most length |Q|,
and so T halts without accepting after this many steps.

Now, it is rather clear that T accepts given the stl-ORWW-automaton M
as input if and only if L(M) = L(A) is non-empty. For performing the above
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computation, T needs to store two states stc and stn of A and a counter c that
it uses to count the number of steps of A it has been simulating. Thus, we see
that T just needs space 13 · (n+ 1) for the counter and space O(n · log n) for
the two states of A. Hence, the emptiness problem for stl-ORWW-automata
is decidable nondeterministically within polynomial space, and therewith by
Savitch’s Theorem [42], it is decidable deterministically within polynomial
space, that is, stl-ORWW-Emptiness ∈ PSPACE.

Now let A1, A2, . . . , At be DFAs over a common input alphabet Σ of size k
such that Ai has ni states, 1 ≤ i ≤ t. From these DFAs we can construct a stl-
det-ORWW-automatonM with a tape alphabet of size k·(1+n1+. . .+nt−1)+nt

such that L(M) =
⋂t
i1
L(Ai) by Corollary 3.3.7. Hence, M has at most

O((k · (1 + n1 + . . .+ nt−1) + nt)
3) = O((k ·

∑t
i=1 ni)

3) many transitions, and
so it can be computed from A1, A2, . . . , At in polynomial time.

Now L(M) 6= ∅ iff L(A1) ∩ L(A2) ∩ . . . ∩ L(At) 6= ∅, which shows
that the above construction yields a polynomial-time reduction from the
DFA-Intersection-Emptiness Problem to stl-det-ORWW-Emptiness. Since a stl-
det-ORWW-automaton can also be seen as a stl-ORWW-automaton, we also
have a polynomial-time reduction from the DFA-Intersection-Emptiness Problem

to stl-ORWW-Emptiness.
As the former is PSPACE-complete (see, e.g., [12]), we see that the latter

is PSPACE-hard. Together with the membership in PSPACE shown above,
PSPACE-completeness follows.

The following results on decision problems apply to the stateless nonde-
terministic as well as to the deterministic ordered restarting automata, be-
cause the conversion into an NFA is just as complex for both automata and
every deterministic stl-ORWW-automaton can be seen as nondeterministic
stl-ORWW-automaton. For the sake of simplicity, we only formulate our results
for the deterministic model, as this is the more interesting case.

As stl-det-ORWW-automata can easily be modified to accommodate the
Boolean operations (see Proposition 3.3.3, Theorem 3.3.4, and Corollary 3.3.5),
the following completeness results are easily derived from Theorem 3.6.1.

Corollary 3.6.2. [24] For stl-det-ORWW-automata, the universality problem,
the finiteness problem, the inclusion problem, and the equivalence problem are
PSPACE-complete.
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Proof. Universality: Let M be a stl-det-ORWW-automaton with input
alphabet Σ. From M we can construct a stl-det-ORWW-automaton M c that
uses the same tape alphabet as M for the language L(M c) = (L(M))c =

Σ∗ r L(M) by Proposition 3.3.3. The automaton M is universal, that is,
L(M) = Σ∗, iff L(M c) = ∅. PSPACE-completeness of the universality problem
now follows from PSPACE-completeness for the emptiness problem.

Inclusion and equivalence: Let M1 and M2 be stl-det-ORWW-automata
with alphabets of sizes n1 and n2, respectively. From M1 and M2 we can
construct a stl-det-ORWW-automaton M with an alphabet of size O(n1 · n2)

in polynomial time such that L(M) = L(M1) ∩ L(M2)
c (see the proof of

Theorem 3.3.4). Now L(M1) ⊆ L(M2) iff L(M1) ∩ L(M2)
c = ∅ iff L(M) = ∅.

It follows that the inclusion problem is in PSPACE, which in turn implies
immediately that the equivalence problem is in PSPACE, too.

On the other hand, let M ′ be a stl-det-ORWW-automaton that accepts
the empty set. Then L(M) = L(M ′) iff L(M) ⊆ L(M ′) iff L(M) = ∅. Thus,
PSPACE-completeness of the inclusion and the equivalence problems follows
from PSPACE-completeness for the emptiness problem,

Finiteness: Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton. We
take a new symbol 2, that is, 2 6∈ Γ, and define a stl-det-ORWW-automaton
M ′ = (Σ′,Γ′,�,�, δ′, >) as follows:

• Σ′ = Σ ∪ {2} and Γ′ = Γ ∪ {2},

• the transition function δ′ is obtained from δ by simply interpreting an
occurrence of the symbol 2 as an occurrence of the right delimiter �.

Then L(M ′) = L(M) ∪ (L(M) ·2 · Σ′∗), which means that L(M ′) is finite iff
L(M) = ∅. PSPACE-hardness of finiteness now follows from PSPACE-hardness
of the emptiness problem.

On the other hand, from a stl-(det)-ORWW-automaton M with an alpha-
bet of size n we can construct an NFA A of size at most 213·(n+1) such that
L(M) = L(A). Just like emptiness, also infiniteness is decidable for A non-
deterministically in space log(213·(n+1)) ∈ O(n), and hence, it is decidable
deterministically in space O(n2). Thus, finiteness for stl-det-ORWW-automata
is indeed in PSPACE, and so it is PSPACE-complete.
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The finite languages are a proper subclass of the regular languages. Ac-
cordingly, the finiteness problem can be seen as a special case of the following
decision problem, where C denotes a subclass of the regular languages:

Membership problem in C:
INSTANCE: A stl-det-ORWW-automaton M .
QUESTION: Does the language L(M) belong to the class C?

In the literature many subfamilies of the regular languages have been studied
(see, e.g., [6, 10, 40]). Here we only consider some of them, beginning with the
strictly locally testable languages of [29, 45].

For a positive integer k and a word w of length |w|≥ k, let Pk(w) and Sk(w)

be the prefix and the suffix of w of length k, respectively. Further, let Ik(w)

be the set of all factors of w of length k except the prefix and suffix of w of
length k, that is,

Ik(w) = {u | |u|= k and ∃x, y ∈ Σ+ : w = xuy }.

For example, P2(aababab) = aa, S2(aababab) = ab, and I2(aababab) = {ab, ba}.
Obviously, if |w|≤ k + 1, then Ik(w) is empty.

Definition 3.6.3. Let k be a positive integer. A language L ⊆ Σ∗ is strictly
k-testable if there exist finite sets A,B,C ⊆ Σk such that, for all w ∈ Σ∗

satisfying |w|≥ k, we have

w ∈ L if and only if Pk(w) ∈ A, Sk(w) ∈ B, and Ik(w) ⊆ C.

In this case, (A,B,C) is called a triple for L. The language L is called strictly
locally testable if it is strictly k-testable for some k ≥ 1.

Note that the definition of ‘strictly k-testable’ says nothing about the words
of length k − 1 or less. Hence, L is strictly k-testable if and only if

L ∩ Σk · Σ∗ = (A · Σ∗ ∩ Σ∗ ·B) r (Σ+ · (Σk r C) · Σ+) (3.1)

for some finite sets A,B,C ⊆ Σk. For example, the language (a + b)∗

is strictly 1-testable, as (a + b)+ can be expressed in the form (3.1) by
(A,B,C) = ({a, b}, {a, b}, {a, b}), and the language a(baa)+ is strictly 3-
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testable, as it can be expressed in the form (3.1) by the triple (A,B,C) =

({aba}, {baa}, {aba, baa, aab}). On the other hand, the language (aa)∗ is not
strictly locally testable.

We denote the family of strictly k-testable languages by k-SLT and the class
of strictly locally testable languages by SLT. It is known that

k-SLT ( (k + 1)-SLT ( SLT ( REG.

For each k ≥ 1, if a language L is given through a DFA, then it is decidable
in polynomial time whether or not L is strictly locally k-testable. In fact, the
following problem is solvable in polynomial time [9]:

INSTANCE: A DFA A.
QUESTION: Is the language L(A) strictly locally testable?

Here we are interested in the corresponding variant of this problem in which
the language considered is given through a stl-det-ORWW-automaton.

Theorem 3.6.4. [24] The following problem is PSPACE-complete for each
k ≥ 1:

INSTANCE: A stl-det-ORWW-automaton M .
QUESTION: Is the language L(M) strictly locally k-testable?

Proof. Let k ≥ 1, and let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automa-
ton. The language L = L(M) is strictly locally k-testable iff there are subsets
A,B,C ⊆ Σk such that L∩ (Σk ·Σ∗) = (A ·Σ∗ ∩Σ∗ ·B)∩ (Σ+ · (ΣkrC) ·Σ+)c.
From A, B, and C, a DFA can be constructed for the language (A ·Σ∗∩Σ∗ ·B)∩
(Σ+ · (Σk rC) ·Σ+)c, and hence, we can construct a stl-det-ORWW-automaton
M ′(A,B,C) for the language

(L(M) ∩ Σ≤k−1) ∪
(
(A · Σ∗ ∩ Σ∗ ·B) ∩ (Σ+ · (Σk r C) · Σ+)c

)
.

Now L is strictly locally k-testable iff there are A,B,C ⊆ Σk such that the
stl-det-ORWW-automata M and M ′(A,B,C) are equivalent. As the integer k
is fixed, the latter can be decided in polynomial space by Corollary 3.6.2.

It remains to be shown that the above problem is PSPACE-hard. This
will be done by a reduction from the emptiness problem for stl-det-ORWW-
automata. Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton, and let
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Σ′ = {a,2} and Γ′ = Σ′ ∪ {21,22} be new alphabets such that Γ′ and Γ are
disjoint. Without loss of generality we can assume that M does not accept
the empty input, that is, δ(��) 6= Accept, and that M only accepts with its
window scanning the right sentinel �. Obviously, the language L′ = a+ is
strictly locally 1-testable, and therewith it is strictly locally k-testable. We
now construct a stl-det-ORWW-automaton M ′ = (Σ ∪ Σ′,Γ ∪ Γ′,�,�, δ′, >′)

for the language L(M ′) = L′ ∪ L(M) · (22)+ as follows:

• for c, d ∈ Γ ∪ Γ′, c >′ d iff c, d ∈ Γ and c > d, or c = 2 and d ∈ {21,22},

• and the transition function δ′ is defined by

(1) δ′(�a�) = Accept,

(2) δ′(�aa) = MVR,

(3) δ′(aaa) = MVR,

(4) δ′(aa�) = Accept,

(5) δ′(�cd) = δ(�cd) for all c, d ∈ Γ,

(6) δ′(cde) = δ(cde) for all c, d, e ∈ Γ,

(7) δ′(cd2) = δ(cd�), if c ∈ Γ ∪ {�}, d ∈ Γ,

and δ(cd�) 6= Accept,

(8) δ′(cd2) = MVR, if c ∈ Γ ∪ {�}, d ∈ Γ,

and δ(cd�) = Accept,

(9) δ′(d22) = 21 for all d ∈ Γ,

(10) δ′(cd21) = MVR for all c, d ∈ Γ,

(11) δ′(d212) = MVR for all d ∈ Γ,

(12) δ′(2122) = 22,

(13) δ′(212�) = 22,

(14) δ′(d2122) = MVR for all d ∈ Γ,

(15) δ′(21222) = MVR,

(16) δ′(2122�) = Accept,

(17) δ′(2222) = 21,

(18) δ′(212221) = MVR,

(19) δ′(22212) = MVR,

(20) δ′(222122) = MVR.

Using instructions (1) to (4), the stl-det-ORWW-automaton M ′ accepts all
words from the language L′. Using instructions (5) to (8), M ′ simulates M on
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a tape content of the form w2i for w ∈ Γ+ and i ≥ 1. If M accepts the tape
content w, then it does so with its window containing the last two letters of w
and the sentinel �. In the corresponding situation M ′ will scan the last two
letters of w and the first 2-letter. It will then rewrite 2i into 212221 . . . from
left to right, and it will only accept if i is an even positive integer. It follows
that L(M ′) = L′ ∪ L(M) · (22)+. Thus, if L(M) = ∅, then L(M ′) = L′ is
strictly locally k-testable, but if L(M) 6= ∅, then L(M ′) = L′ ∪ L(M) · (22)+

is not strictly locally testable at all. Hence, the above is a reduction from
the emptiness problem for M to the problem of deciding strictly locally k-
testability for M ′. As M ′ is easily obtained from M , this shows our intended
PSPACE-hardness result.

The construction in the proof above shows that the problem of deciding
strictly locally testability is at least PSPACE-hard for stl-det-ORWW-automata,
but it remains open whether this problem is in PSPACE.

Next we consider the property of being nilpotent. A language L ⊆ Σ∗ is
called nilpotent if L is finite or if Lc = Σ∗ r L is finite.

Theorem 3.6.5. The following problem is PSPACE-complete:

INSTANCE: A stl-det-ORWW-automaton M .
QUESTION: Is the language L(M) nilpotent?

Proof. LetM = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton. FromM we
can immediately obtain a stl-det-ORWW-automaton M c = (Σ,Γ,�,�, δc, >)

such that L(M c) = (L(M))c (Proposition 3.3.3). Now L(M) is nilpotent iff
L(M) is finite or L(M c) is finite. These conditions, however, can be checked in
polynomial space by Corollary 3.6.2. Thus, the problem of deciding nilpotency
is in PSPACE.

PSPACE-hardness will now be proved by a reduction from the emptiness
problem. Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton, and
let 2 and # be two new symbols. We define a stl-det-ORWW-automaton
M ′ = (Σ′,Γ′,�,�, δ′, >) as follows:

• Σ′ = Σ ∪ {2,#} and Γ′ = Γ ∪ {2,#},

• the transition function δ′ is obtained from δ by simply interpreting an
occurrence of the symbol 2 as an occurrence of the right sentinel �.
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Then M ′ is easily obtained from M , and L(M ′) = L(M) ∪ (L(M) · 2 · Σ′∗).
Thus, if L(M) is empty, then L(M ′) is empty, and therewith, it is nilpotent, but
if L(M) is non-empty, then L(M ′) is infinite. Further, in this case, (L(M ′)c is
infinite as well, as it contains all words of the form #i (i ≥ 1). Hence, L(M ′) is
nilpotent iff L(M) is empty. It follows that the problem of deciding nilpotency
is PSPACE-complete for stl-det-ORWW-automata.

A regular language L ⊆ Σ∗ is called combinatorial if L = Σ∗ ·H for some
H ⊆ Σ.

Theorem 3.6.6. The following problem is PSPACE-complete:

INSTANCE: A stl-det-ORWW-automaton M .
QUESTION: Is the language L(M) combinatorial?

Proof. Given a stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >), one can
construct a DFA AH for the language Σ∗ ·H, where H is a subset of Σ. Now
L(M) is combinatorial, if and only if L(M) = L(AH) for some subset H of Σ.
It follows that it is decidable in polynomial space whether or not L(M) is
combinatorial.

Now let M be a given stl-det-ORWW-automaton with input alphabet Σ.
We take Σ′ = Σ ∪ {2}, and define a stl-det-ORWW-automaton M ′ =

(Σ′,Γ′,�,�, δ′, >) that proceeds as follows:

1. First M ′ scans its input from left to right. If the input ends with a letter
a of Σ, then it accepts immediately.

2. Otherwise, it rewrites its input from right to left, letter by letter, by
replacing each letter a ∈ Σ′ by a specific copy a′ ∈ Γ′.

3. Then M ′ simulates M , interpreting, for each a ∈ Σ, each occurrence of a′

as M would interpret an occurrence of the letter a, and interpreting an
occurrence of the letter 2′ as M would interpret the right sentinel �.

4. If the simulated computation of M accepts, then M ′ checks that the
current tape content is of the form α(2′2′)r for some α ∈ (Γ′r {2,2′})∗

and some r ≥ 1 by rewriting the suffix (2′2′)r from left to right, letter
by letter, into the word (2122)r (see the proof of Theorem 3.6.4). In the
affirmative, M ′ accepts.
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It follows that L(M ′) = (Σ′∗ · Σ) ∪ (L(M) · (22)+). If L(M) = ∅, then
L(M ′) = Σ′∗ · Σ is a combinatorial language, but if L(M) is nonempty, then
L(M ′) is obviously not combinatorial. Hence, the problem of deciding whether
L(M) is a combinatorial language is PSPACE-complete for stl-det-ORWW-
automata.

A language L ⊆ Σ∗ is called definite if it can be written as L = A ∪ Σ∗ ·B
for some finite sets A,B ⊂ Σ∗. From the above proof we see immediately that
the property of being definite is PSPACE-hard for stl-det-ORWW-automata;
however, it remains currently open whether this property can be checked in
polynomial space.

Now we turn to the property of circularity. For a language L ⊆ Σ∗,

Circ(L) = { z | ∃u, v ∈ Σ∗ : z = uv and vu ∈ L }

is the set of all circular permutations of the words in L. A language L is called
circular if L = Circ(L) holds. As by definition, L ⊆ Circ(L), we see that L is
circular if, for each word w ∈ L, also each circular permutation of w is in L.

The language L′ = a+ considered in the proof of Theorem 3.6.4 is obviously
circular. On the other hand, for any non-empty language L ⊆ Σ+, where Σ

does neither contain a nor the letter 2, the language L′ ∪ L · (22)+ is non-
circular, as no element of this language begins with the letter 2. Thus, if M is
any stl-det-ORWW-automaton on Σ (that does not accept on empty input),
then the stl-det-ORWW-automaton M ′ constructed from M in the proof of
Theorem 3.6.4 has the property that L(M ′) is circular iff L(M) is empty. This
shows that the property of accepting a circular language is PSPACE-hard for
stl-det-ORWW-automata. In fact, we have the following result.

Theorem 3.6.7. The following problem is PSPACE-complete:

INSTANCE: A stl-det-ORWW-automaton M .
QUESTION: Is the language L(M) circular?

Proof. It remains to show that this problem is solvable in polynomial space.
LetM = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton accepting a language
L ⊆ Σ+, and let n = |Γ|. We must check whether or not Circ(L) ⊆ L holds.

From M we can construct an NFA A = (Q,Σ, δA, q0, F ) of size at most
26·(n+1) for L. Now, for each state q ∈ Qr {q0}, we construct an NFA Bq as
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follows:

• Bq consists of two disjoint copies of A, say A1 = (Q(1),Σ, δ
(1)
A , q

(1)
0 , F (1))

and A2 = (Q(2),Σ, δ
(2)
A , q

(2)
0 , F (2)), where Q(1) = { q(1) | q ∈ Q } and

Q(2) = { q(2) | q ∈ Q }.

• The initial state of Bq is the state q(1) in A1.

• Bq has only a single final state, which is the state q(2) in A2.

• For each transition p′ ∈ δA(p, a), where p ∈ Q, a ∈ Σ, and p′ ∈ F ,
we add a transition q(2)

0 ∈ δBq(p(1), a), that is, being in state p(1) of A1,
which corresponds to the state p of A, and reading the letter a, Bq can
either stay within A1 by performing the transition that corresponds to
the appropriate transition of A, or it can enter the state q(2)

0 of A2 that
corresponds to the initial state of A.

It is now easily seen that w is accepted by Bq if and only if w can be factored
as w = uv such that δA(q, u) ∩ F 6= ∅ and q ∈ δA(q0, v), that is, Bq accepts a
certain subset of the language Circ(L). In fact, it can be seen that Circ(L) =⋃
q∈Q L(Bq) holds. Hence, Circ(L) ⊆ L holds if and only if L(Bq) ⊆ L for all

states q of A.

From M we also construct an NFA C of size at most 26·(n+1) for the lan-
guage Lc. Then, for each q ∈ Q, we consider the direct product Bq × C of the
automata Bq and C. As L(Bq × C) = L(Bq) ∩ Lc, it follows that L(Bq) ⊆ L

iff L(Bq × C) = ∅. Thus, we need to check emptiness for all product automata
Bq × C (q ∈ Q). Each of these automata is of size 2O(n), and there are 2O(n)

many such automata. By systematically going through all possible states q ∈ Q,
considering only one NFA Bq × C at a time, this test can be performed in
polynomial space.

A language L ⊆ Σ∗ is called suffix-closed if each suffix v of each element
w ∈ L also belongs to L, and it is called suffix-free if v ∈ L implies that uv 6∈ L
for all u ∈ Σ∗, that is, no proper suffix of any word in L belongs itself to L.
The notions of prefix-closed language and of prefix-free language are defined
symmetrically. Using the same proof ideas as above it can be shown that, for
a given stl-det-ORWW-automaton M , the problem of deciding whether the
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language L(M) is suffix-closed (suffix-free, prefix-closed, prefix-free) is also
PSPACE-complete.

In this way we have seen that many of the decision problems for stateless
deterministic restarting automata are PSPACE-complete.

3.7 Reversible Ordered Restarting Automata

This section deals with another aspect of stateless deterministic ordered restart-
ing automata, namely reversibility. It is based for the most part on the common
work "Reversible ordered restarting automata" [38].

Reversibility is a property that has been investigated for various types of
automata. It means that every configuration has a unique successor configura-
tion and a unique predecessor configuration, that is, the automaton considered
is forward and backward deterministic. The main motivation for studying this
notion is the observation that information is lost in computations that are
not reversible. Each Turing machine can be simulated by a reversible Turing
machine [3], which shows that reversible Turing machines are just as expres-
sive as general Turing machines. On the other hand, reversible deterministic
finite-state acceptors (DFAs) are strictly less expressive than DFAs [39]. The
notion of reversibility has also been studied for other types of automata, e.g.,
for pushdown automata [21] and for queue automata [22].

Here, we introduce a notion of reversibility for a rather restricted class of
restarting automata, the stl-det-ORWW-automata, and we show that each
regular language is accepted by a stl-det-ORWW-automaton that is reversible by
presenting a transformation that turns a given stl-det-ORWW-automaton into
an equivalent stl-det-ORWW-automaton that is reversible. This construction
yields an exponential upper bound for the size increase of this transformation,
but unfortunately we do not yet have a matching lower bound.

Then we investigate the descriptional complexity of a reversible stl-det-
ORWW-automaton in relation to the size of an equivalent DFA or NFA. We
recall a simulation of stl-det-ORWW-automata by NFAs from [24], which also
applies to stl-det-ORWW-automata that are reversible, and by considering a
specific class of example languages we show that the resulting trade-off is indeed
exponential. For DFAs, the corresponding trade-off is even double exponential.
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Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton. A combined
rewrite/restart step of the form δ(abc) = b′ takes M from a configuration of
the form (�u, abcv�) to the restarting configuration �uab′cv�.

Now, it is not at all clear how a reverse transition function could be designed
that would transform the latter configuration back to the former configuration.
Therefore, we consider a different notion of reversibility for our automata, a
notion that is more in the spirit of restarting automata.

Definition 3.7.1. A stl-det-ORWW-automatonM = (Σ,Γ,�,�, δ, >) is called
reversible, if there exists a reverse transition function

δR : ((Γ ∪ {�}) · Γ · (Γ ∪ {�})) {MVR} ∪ Γ

such that, for all restarting configurations �w� and �w′� that can occur within
computations of M , �w� `cM �w′ � iff � w′� `cRM �w � . Here `cRM denotes
a cycle that is realized by using the reverse transition function δR. We describe
the above reversible stl-det-ORWW-automaton as M = (Σ,Γ,�,�, δ, δR, >),
and we use the prefix rev- to denote reversible automata.

Observe that in the definition above, we require that a cycle must be reversible
by δR only for the case that the corresponding restarting configurations occur
in a valid computation of M , that is, there exists an input x ∈ Σ∗ such that
�w� is reached from the initial configuration �x� of M . This corresponds to
the way reversibility is defined for queue automata in [22].

Obviously, rev-stl-det-ORWW-automata can only accept certain regular
languages. However, in contrast to the situation for DFAs, they actually accept
all regular languages, as we have the following result.

Theorem 3.7.2. For each stl-det-ORWW-automaton M working on an alpha-
bet with n letters, there exists a rev-stl-det-ORWW-automaton R with 2O(n)

letters such that L(R) = L(M) holds.

For deriving this result we need the following normal form result for stl-
det-ORWW-automata. Here the right distance of a cycle C : �uabcv� `cM
�uab′cv� of a stl-det-ORWW-automaton M is defined as Dr(C) = |v|+1,
where |v| denotes the length of the word v. Thus, Dr(C) is the distance from
the window to the right end of the tape at the time of rewriting in cycle C.
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Definition 3.7.3. A stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >) is said
to be in normal form if it satisfies the following two conditions:

1. In any computation (C0, C1, C2, . . . , Cm) of M , |Dr(Ci)−Dr(Ci−1)|≤ 1

holds for all i = 1, . . . ,m.

2. M only accepts with the right delimiter � in its window.

Lemma 3.7.4. For each stl-det-ORWW-automaton M working on an alphabet
with n letters, there exists an equivalent stl-det-ORWW-automaton M̂ with an
alphabet of size at most 2(n+ 1) that is in normal form.

Proof. From M we obtain an equivalent stl-det-ORWW-automaton M ′ =

(Σ,Γ,�,�, δ′, >′) that only accepts with the right delimiter in its window by
using one extra symbol, that is, |Γ|= n+ 1 (see Lemma 3.3.1). From M ′ we
construct the stl-det-ORWW-automaton M̂ = (Σ,∆,�,�, δ, >) as follows:

• ∆ = Γ ∪ { a | a ∈ Γ }, which implies that |∆|= 2 · |Γ|= 2(n+ 1);

• a > a for all a ∈ Γ, and a > b for a, b ∈ Γ, if a >′ b holds;

• the transition function δ is defined as follows, where a, b, c, d ∈ Γ:

δ(�a�) = δ′(�a�) for a ∈ Γ ∪ {λ},
δ(ab�) = δ′(ab�),

δ(�ab) =

 c, if δ′(�ab) = c,

a, if δ′(�ab) = MVR,

δ(abc) =

 d, if δ′(abc) = d,

b, if δ′(abc) = MVR,

δ(�ab) =

 c, if δ′(�ab) = c,

MVR, if δ′(�ab) = MVR,

δ(a bc) =

 d, if δ′(abc) = d,

MVR, if δ′(abc) = MVR,

δ(�a b) = MVR,

δ(a b c) = MVR.
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The automaton M̂ simulates a computation of M ′ by proceeding as follows.
Assume that on input x = x1 . . . xm, M ′ will perform the cycle

�x� = �x1x2x3 . . . xi−1xixi+1 . . . xm `cM �x1 . . . xi−1axi+1 . . . xm � .

Then M̂ will first rewrite xj, j = 1, . . . , i− 1, into xj, and then it will rewrite
xi into a, producing the restarting configuration �x1 . . . xi−1axi+1 . . . xm�. For
the next cycle of M ′, there are three possibilities:

1. M ′ may rewrite xi−1 into a symbol b. Then M̂ will rewrite xi−1 into b.

2. M ′ may rewrite a into a symbol b. Then so will M̂ .

3. Finally, M ′ may rewrite a symbol xj for some j ≥ i+ 1 into a symbol b.
Then M̂ will replace the symbols a, xi+1, . . . , xj−1 from left to right by
the symbols a, xi+1, . . . , xj−1, and then it will rewrite xj into b.

Thus, in each cycle M̂ either rewrites the first symbol from Γ from the left, or
it rewrites the last symbol from ∆ r Γ from the left. It now follows easily that
M̂ is in normal form, and that L(M̂) = L(M ′) = L(M) holds.

Now we can give the proof of Theorem 3.7.2.

Proof. Let M = (Σ,Γ,�,�, δM , >) be a stl-det-ORWW-automaton with n =

|Γ|. Without loss of generality we can assume that M only accepts with the
right marker � in its window. By Lemma 3.7.4 we can construct a stl-det-
ORWW-automaton M̂ = (Σ,Γ,�,�, δ̂, >) that is equivalent to M and in
normal form. Here Γ = Γ ∪ Γ, where Γ = { a | a ∈ Γ }, and hence, M̂ has 2n

letters.

From M̂ we construct a rev-stl-det-ORWW-automaton R = (Σ,∆,�,�,

δ, δR, >) such that L(R) = L(M̂) = L(M) as follows:

• The tape alphabet ∆ contains the input alphabet Σ and all triples of the
form (L,W,R), where

– W is a sequence of letters W = (w1, . . . , wk) from Γ of length
1 ≤ k ≤ 2n such that w1 > w2 > · · · > wk,
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– L is a sequence of positive integers L = (l1, . . . , lk−1) of length k − 1

such that l1 ≤ l2 ≤ . . . ≤ lk−1 ≤ 2n, and

– R is a sequence of positive integers R = (r1, . . . , rk−1) of length k−1

such that r1 ≤ r2 ≤ . . . ≤ rk−1 ≤ 2n.

As in [36] the idea is that W encodes the sequence of letters that are
produced by M̂ in an accepting computation for a particular field, and L
and R encode the information on the neighboring letters to the left and to
the right that are used to perform the corresponding rewrite operations.
For example, the triple (l1, w1, r1) ∈ (L,W,R) means that w1 is rewritten
into w2, while the left neighboring field contains the l1-th letter of its
sequence W ′, and the right neighboring field contains the r1-th letter of
its sequence W ′′. To simplify the discussion below, we simply interpret
a symbol a ∈ Σ ∪ {�,�} as the triple (L,W,R) = (∅, (a), ∅). We could
have used the same encoding as in Section 3.5, but we chose to use this
more basic representation.

Further, in order to ensure that triples in neighboring fields are consistent
with each other, the following notion has been introduced in [36]. For
two finite non-decreasing sequences of integers R′ = (r′1, . . . , r

′
k) and

L = (`1, . . . , `s), where k, s ≥ 0, we define a multiset order(R′, L) as
follows:

order(R′, L) = { r′i + i− 1 | i = 1, . . . , k } ∪ { `j + j − 1 | j = 1, . . . , s }.

Now a pair of triples ((L′,W ′, R′), (L,W,R)) is called consistent, if
order(R′, L) = {1, 2, . . . , k+ s}, that is, it is the integer interval [1, k+ s].
This notion of consistency will be of importance in the definition of the
transition functions below. It ensures that a correct ordering of operations
can be determined.

• The ordering > on ∆ is defined by taking (L,W,R) > (L′,W ′, R′), if
there exist b ∈ Γ and l, r ∈ N such that L′ = (L, l), W ′ = (W, b), and
R′ = (R, r).
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• For a triple (L,W,R) = ((l1, . . . , lk−1), (w1, . . . , wk), (r1, . . . , rk−1)), we
take π((L,W,R)) = wk and ||(L,W,R)||= k. The transition function δ is
defined as follows, where A,B,C ∈ ∆∪ {�,�} satisfy the condition that
the pair (A,B) and the pair (B,C) are both consistent (see above):

δ(ABC) =



MVR, if δ̂(π(A)π(B)π(C)) = MVR,

Accept, if δ̂(π(A)π(B)π(C)) = Accept,

((L, ||A||), (W, b), (R, ||C||)), if B = (L,W,R) and
δ̂(π(A)π(B)π(C)) = b.

Thus, instead of replacing the symbol π(B) by the symbol b, as M̂ does,
the automaton R appends the symbol b to the sequence of symbols
W at the corresponding position. In addition, it appends the integers
||A|| and ||C|| to the lists L and R at this position, as these numbers
point to the symbols (within the corresponding lists) that are at this
moment contained in the neighboring positions. Observe that δ(ABC) is
undefined, if any of the pairs (A,B) or (B,C) is not consistent.

• Finally, the reverse transition function δR is defined as follows, where it
is again required that the pairs (A,B) and (B,C) are consistent:

δR(ABC) =



(L,W,R), if B = ((L, l), (W, b), (R, r)), l = ||A||, r = ||C||,
and δ̂(π(A)π((L,W,R))π(C)) = b,

MVR, if C 6= � and the above conditions are not met,

undefined, if C = � and the above conditions are not met.

It remains to verify that R accepts the same language as M , and that R is
indeed reversible.

Claim 1. L(R) = L(M).

Proof. Let w ∈ Σ∗ such that w ∈ L(M) = L(M̂) holds. Assume that |w|=
m ≥ 1. As w ∈ L(M̂), the computation of M̂ on input w is accepting, that is,
it consists of a sequence of s ≥ 0 cycles and an accepting tail. If s = 0, then
M̂ simply scans w from left to right, and it accepts on reaching the symbol �.
From the definition of δ it follows that R does exactly the same on input w,
that is, w ∈ L(R) holds in this case. If s ≥ 1, then the accepting computation
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of M̂ on input w looks as follows:

(λ,�w�) `c
M̂

(λ,�w1 �) `c
M̂
. . . `c

M̂
(λ,�ws�) `∗

M̂
(�w′s, bc�) `M̂ Accept,

where w1, . . . , ws ∈ Γ
m and ws = w′sbc for some letters b, c ∈ Γ.

Let us look at the first cycle (λ,�w�) `c
M̂

(λ,�w1 �). It consists of t1 ≥ 0

move-right steps and a rewrite/restart step that replaces the symbol at position
t1 + 1 of w by a smaller symbol from Γ, that is, w = w′aw′′ for some w′ ∈ Σt1 ,
a ∈ Σ, and w′′ ∈ Σm−t1−1, and w1 = w′bw′′ for some b ∈ Γ such that a > b

holds. From the definition of δ we see that, starting from the configuration
(λ,�w�), the automaton R will execute the following cycle:

(λ,�w�) = (λ,�w′aw′′�) `cR (λ,�w′Bw′′�),

where B = ((1), (a, b), (1)). Thus, after simulating the first cycle the tape of
R contains all the information on the tape content of M̂ plus the information
on the rewrite step that was executed during the first cycle. Observe that
for all factors AB occurring on the tape of R during this computation, the
corresponding pair (A,B) is trivially consistent.

Inductively it can be shown that R simulates the above computation of M̂
cycle by cycle, in each rewrite/restart step not only simulating the corresponding
rewrite/restart step of M̂ , but also encoding information on this very step.
Hence, R accepts on input w, too, which shows that L(M) is contained in L(R).

Now assume conversely that w ∈ Σ∗ is accepted by R. As w ∈ L(R), the
computation of R on input w is accepting, that is, it consists of a sequence of
s ≥ 0 cycles and an accepting tail. If s = 0, then it follows from the definition
of δ that R simply scans w from left to right and accepts on reaching the
right delimiter �. However, this means that on input w, M̂ does exactly the
same, that is, w ∈ L(M) also holds in this case. Finally, if s ≥ 1, then the
computation of R on input w looks as follows:

(λ,�w�) `cR (λ,�W1 �) `cR . . . `cR (λ,�Ws�) `∗R (�W ′
s, BC �) `R Accept,

where W1, . . . ,Ws ∈ ∆m and Ws = W ′
sBC for some letters B,C ∈ ∆. Inter-
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preting π as a morphism from ∆∗ to Γ
∗, it follows that the computation of M̂

on input w looks as follows:

(λ,�w�) `c
M̂

(λ,� π(W1)�) `c
M̂
. . .

`c
M̂

(λ,� π(Ws)�) `∗
M̂

(�π(W ′
s), π(B)π(C)�) `M̂ Accept,

which means that w ∈ L(M). Here the consistency of each pair (A,B) that
corresponds to a factor AB of the tape contents of R implies that the cor-
responding steps of M̂ are indeed possible. It follows that L(R) = L(M)

holds.

We now complete the proof of Theorem 3.7.2 by establishing the following
claim.

Claim 2. The stl-det-ORWW-automaton R is reversible.

Proof. Let w, z ∈ ∆m such that (λ,�w�) `cR (λ,� z�) holds. Then w =

uAv and z = uBv for some u ∈ ∆r, A,B ∈ ∆, and v ∈ ∆m−r−1, that is,
u = U1 . . . Ur, V = V1 . . . Vm−r−1 for some U1, . . . , Ur, V1, . . . , Vm−r−1 ∈ ∆, and

(λ,�w�) `rR (�U1 . . . Ur−1, UrAV1 . . . Vm−r−1 �)

`R (λ,�U1 . . . UrBV1 . . . Vm−r−1 �).

From the definition of δ we can conclude the following properties:

1. The pairs (�, U1), (U1, U2), . . . , (Ur−1, Ur), (Ur, A), (A, V1) are all consis-
tent, as the factors �U1, U1U2, . . . , Ur−1Ur, UrA, and AV1 are all scanned
by R during this cycle.

2. δ(�U1U2) = δ(U1U2U3) = · · · = δ(Ur−1UrA) = MVR, and so MVR =

δ̂(�π(U1)π(U2)) = δ̂(π(U1)π(U2)π(U3)) = · · · = δ̂(π(Ur−1)π(Ur)π(A)).

3. δ(UrAV1) = B, and so δ̂(π(Ur)π(A)π(V1)) = π(B), where A = (L,W,R)

and B = ((L, ||Ur||), (W, b), (R, ||V1||)).

It follows immediately that also the pairs (Ur, B) and (B, V1) are consistent.
Now we apply the reverse transition function δR starting with the configuration
(λ,� z�) = (λ,�U1 . . . UrBV1 . . . Vm−r−1 �). It looks for the first position
from the left where a rewrite can be ‘undone.’ Obviously, if the factor UrBV1 is
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reached, then B = ((L, ||Ur||), (W, b), (R, ||V1||)) is rewritten into A = (L,W,R),
which yields the cycle

(λ,� z�) `cRR (�U1 . . . Ur−1, UrAV1 . . . Vm−r−1 �) = (λ,�w�).

So we must argue that there is no factor Ui−1UiUi+1, 1 ≤ i ≤ r, such that δR

would rewrite the letter Ui. Assume to the contrary that such an index exists,
that is, Ui = ((L′, l′), (W ′, b′), (R′, r′)) such that ||Ui−1||= l′, ||Ui+1||= r′, and
δ̂(π(Ui−1)π((L′,W ′, R′))π(Ui+1)) = b′ for some i ≤ r. Hence, starting from the
configuration (λ,� π(U1) . . . π(Ui−1)π((L′,W ′, R′))π(Ui+1) . . . π(Vm−r−1 �), M̂
would rewrite the letter π((L′,W ′, R′)) into the letter b′. As M̂ is in normal
form, its next rewrite would occur at position i− 1, i, or i+ 1, which means
that R, which simulates M̂ step by step, would also perform a rewrite at one
of these positions when starting from the configuration (λ,�w�). Thus, it
follows that i = r, that is, we have Ur = (((L′, l′), (W ′, b′), (R′, r′)), ||Ur−1||= l′,
and ||B||= r′. However, as the right sequence (R′, r′) of Ur ends with r′ = ||B||,
while the left sequence (L, ||Ur||) of B ends with the number ||Ur||, we see that
the pair ((R′, r′), (L, ||Ur||)) is not consistent, which contradicts our observation
above. Thus, when using the reverse transition function δR, the above cycle is
indeed inverted.

This completes the proof of Theorem 3.7.2.

Hence, we obtain the following characterization.

Corollary 3.7.5. REG = L(rev-stl-det-ORWW).

3.8 Conclusion

In this chapter we have seen that both the deterministic and the nondeter-
ministic stl-ORWW-automata exactly classify the regular languages. We have
seen that with the deterministic stl-ORWW-automata we can present some
languages in a much more concise way than with a DFA. Conversely, this
does not apply: For every DFA there is a det-stl-ORWW-automaton, which
represents the same language equally concisely. This also applies to language
operations, the mirror operation, e.g. has only a linear blowup. Finally, we have
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seen that patterns are well suited to describe calculations, which we ultimately
used for the NFA construction. At the end, we also looked at how reversibility
can be realized for deterministic stateless ordered restarting automata.
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Chapter 4

Nondeterministic Ordered

Restarting Automata

The nondeterministic ordered restarting automata are the most general ordered
restarting automata we have looked at so far because we use states as well
as nondeterminism. Unlike the restricted variants the ORWW-automata are
more expressive and can describe languages that are not regular. We will see
that even some languages are recognized that are not growing context sensitive.
Nevertheless, there are some simple languages, like the deterministic linear
language {anbn | n ∈ N} that cannot be described by these automata. However
this limitation allows us to derive a true pumping lemma for this language class
which ultimately enables us to decide emptiness and finiteness.

As we have already given the definition in Section 3.1 we start with an
example which shows that we can describe more than just regular languages.

4.1 Examples

In this section we present different languages that can be represented by ORWW-
automata. For a simpler and clearer representation we use meta-instructions
for RWW-automata in the following examples. A meta-instruction (E, u→ v)

is applicable to a restarting configuration q0 � w�, if w can be factored as
w = w1uw2 such that �w1 ∈ E, which gives the cycle q0�w� `cM q0�w1vw2�,
and a meta-instruction (E,Accept) allows M to accept from any restarting
configuration q0 � w� such that �w� ∈ E (see Definition 2.3.3).
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First of all we start with the linear language L≥ = { bman | m ≥ n ≥ 1 }.

Example 4.1.1. Let Σ = {a, b}, and let L≥ = { bman | m ≥ n ≥ 1 }. We
present an ORWW-automaton M for this linear language.

Let M≥ be the ORWW-automaton on Σ = {a, b} and Γ = {a, a1, a2, b, b1, b2}
that is given by the following meta-instructions using the partial ordering
a > a1 > a2 and b > b1 > b2:

(1) (� · ba ·�,Accept), (11) (� · b1 · b∗, ba�→ ba1�),

(2) (λ,�bb→ �b1b), (12) (� · b2 · b+ · a∗, aa1�→ aa2�),

(3) (λ,�b1b→ �b2b), (13) (� · b2 · b∗, ba1�→ ba2�),

(4) (� · b∗2, b2bb→ b2b1b), (14) (� · b+
2 · b1 · b∗ · a∗, aaa2 → aa1a2),

(5) (� · b∗2, b2b1b→ b2b2b), (15) (� · b∗2 · b1 · b∗, baa2 → ba1a2),

(6) (� · b∗2, b2ba→ b2b1a), (16) (� · b+
2 · b2 · b∗ · a∗, aa1a2 → aa2a2),

(7) (� · b∗2, b2b1a1 → b2b2a1), (17) (� · b∗2 · b2 · b∗, ba1a2 → ba2a2),

(8) (� · b∗2, b2ba2 → b2b1a2), (18) (� · b∗2 · b2, b1aa2 → b1a1a2),

(9) (� · b∗2, b2b1a2 → b2b2a2), (19) (� · b∗2 · b2, b2a1a2 → b2a2a2),

(10) (� · b1 · b+ · a∗, aa�→ aa1�), (20) (� · b+
2 · a+

2 ·�,Accept).

Given an input of the form bman, M≥ accepts immediately if m = 1 and n ≤ 1

by (1). Otherwise, we see from the rules of M≥ that m ≥ 2. By rules (2) to (9),
the prefix bm is rewritten from left to right, where each letter b is first rewritten
into b1 and then into b2. On the other hand, the suffix an is rewritten from
right to left by rules (10) to (19), where each letter a is first rewritten into a1

and then into a2. However, the first occurrence of a from the right can only be
rewritten into a1, if at that moment the rightmost already rewritten b happens
to be b1, and analogously, a1 can further be rewritten into a2 only if at that
moment the rightmost already rewritten b happens to be the letter b2. Thus, it
follows that n ≤ m, that is, L(M≥) = L≥. 2

Next, we look at the language L′copy that is not growing context-sensitive.
The construction is based on the same idea as the previous one.

L′copy = {w$u | w, u ∈ {a, b}∗, |w|, |u| ≥ 2, u is a scattered subsequence of w }.
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Lemma 4.1.2. The language L′copy is not growing context-sensitive, but there
exists an ORWW-automaton M such that L(M) = L′copy.

Proof. Let M be the ORWW-automaton on Σ = {a, b, $} and Γ = {a, a1, a2,

b, b1, b2, $} that is given by the following meta-instructions using the ordering
$ > a > b > a1 > b1 > a2 > b2, where c, d, e ∈ {a, b}:

(1) (λ,�cd→ �c1d),

(2) (λ,�c1d→ �c2d),

(3) (� · {a2, b2}∗, c2de→ c2d1e),

(4) (� · {a2, b2}∗, c2d1e→ c2d2e),

(5) (� · {a2, b2}∗, c2d$→ c2d1$),

(6) (� · {a2, b2}∗, c2d1$→ c2d2$),

(7) (� · {a2, b2}∗ · c1 · {a, b}+, $cd→ $c1d),

(8) (� · {a2, b2}∗ · c2 · {a, b}+, $c1d→ $c2d),

(9) (� · {a2, b2}∗ · c1 · {a, b}+ · $ · {a2, b2}∗, d2ce→ d2c1e),

(10) (� · {a2, b2}∗ · c2 · {a, b}+ · $ · {a2, b2}∗, d2c1e→ d2c2e),

(11) (� · {a2, b2}∗ · c1 · {a, b}+ · $ · {a2, b2}∗, d2c�→ d2c1�),

(12) (� · {a2, b2}∗ · c2 · {a, b}+ · $ · {a2, b2}∗, d2c1�→ d2c2�),

(13) (� · {a2, b2}+ · c1 · $ · {a2, b2}∗, d2c�→ d2c1�),

(14) (� · {a2, b2}+ · c2 · $ · {a2, b2}∗, d2c1�→ d2c2�),

(15) (� · {a2, b2}+ · $ · {a2, b2}+ ·�,Accept).

Given an input of the form w$u, where w, u ∈ {a, b}∗, it is easily seen from
rules (15), (1), and (7) that |w|, |u| ≥ 2. By rules (1) to (6), the prefix w is
rewritten from left to right, where each symbol is first replaced by its copy
with index 1, and then this is replaced by the corresponding letter with index 2.
Also the suffix u is rewritten in this way by rules (7) to (14); however, here the
first letter from {a, b} from the left, say c, can only be rewritten to c1 if at that
moment the rightmost already rewritten letter in w happens to be the letter c1,
and analogously, c1 can further be rewritten to c2 only if at that moment the
rightmost already rewritten letter in w happens to be the letter c2. Thus, it
follows that u is a scattered subsequence of w, that is, L(M) = L′copy.

In [8] it is shown that each growing context-sensitive language is accepted
by a one-way auxiliary pushdown automaton with a logarithmic space bound,
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that is, the class GCSL of growing context-sensitive languages is contained
in L(OW-auxPDA(log)), that is, each growing context-sensitive language is
accepted by a nondeterministic Turing machine M with a one-way read-only
input-tape, a pushdown tape, and an auxiliary work tape limited by endmarkers
to length log(n), when M is started on an input of length n (see Definition 6.1
in [8]). On the other hand, Lautemann has shown in [28] that the language
Lcopy = {ww | w ∈ {a, b}∗ } is not accepted by any OW-auxPDA with a
logarithmic space bound, and his argument immediately extends to the language
L$

copy = {w$w | w ∈ {a, b}∗ }.
Now, assume that the language L′copy is growing context-sensitive. Then

there is an OW-auxPDA A that accepts this language with a logarithmic space
bound. By using an extra track of the auxiliary tape to implement a binary
counter that ensures that w and u have the same length, we can extend A

into a OW-auxPDA B for the language L$
copy, which contradicts the statement

above.

{w$u | w, u ∈ {a, b}∗, |w|, |u| ≥ 2, u is a scattered subsequence of w, |w|= |u| }

={w$u | w, u ∈ {a, b}∗, w = u } = L$
copy

Hence, L′copy is not growing context-sensitive.

As each cycle of a computation of an ORWW-automaton M ends with a
rewrite operation, which replaces a symbol a by a symbol b that is strictly smaller
than a with respect to the given ordering >, we see that each computation
of M on an input of length n consists of at most (|Γ|−1) · n many cycles.
Thus, M can be simulated by a nondeterministic single-tape Turing machine
in time O(n2). On the other hand, we have the following lower bound.

Theorem 4.1.3. There exists an ORWW-automaton M such that the language
L(M) is NP-complete with respect to log-space reductions.

Proof. Let Σ0 = {∧,∨}, V = { vn | n ∈ N+ }, V = { v̄n | n ∈ N+ }, and let
3SAT be the set of satisfiable propositional formulas in conjunctive normal
form of degree 3 over V ∪ V ∪ Σ0, that is, each α ∈ 3SAT is of the form

α = v
µ1,1
1,1 ∨ v

µ1,2
1,2 ∨ v

µ1,3
1,3 ∧ v

µ2,1
2,1 ∨ v

µ2,2
2,2 ∨ v

µ2,3
2,3 ∧ · · · ∧ v

µm,1
m,1 ∨ v

µm,2
m,2 ∨ v

µm,3
m,3
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for some m ≥ 1, where vi,j ∈ V and µi,j ∈ {1,−1}. Here v1
i,j = vi,j and

v−1
i,j = v̄i,j . In addition, there exists an assignment ϕ : V → {0, 1} such that, for
each j ∈ {1, 2, . . . ,m}, there is an index sj ∈ {1, 2, 3} such that ϕ(v

µj,sj
j,sj

) = 1. It
is well-known that the language 3SAT is NP-complete with respect to log-space
reductions (see, e.g., [12]). By renaming the variables if necessary, we can
assume that α is normalized, that is, it contains the variables v1, v2, . . . , vk for
some k ≥ 1.

For our proof we need a particular encoding of the formulas from 3SAT. Let
Σ = {x,#, ◦,+,¬,∧,∨}. For k ≥ 1, we define an encoding ck : (V ∪V ∪Σ0)∗ →
Σ∗ as follows:

ck(y) =



◦i−1+◦k−i, if y = vi ∈ V and 1 ≤ i ≤ k,

◦i−1¬◦k−i, if y = v̄i ∈ V and 1 ≤ i ≤ k,

λ, if y = vi or y = v̄i for some i > k,

y, if y ∈ Σ0,

and we define a function Ψ :
(
V ∪ V ∪ Σ0

)∗ → Σ∗ by taking Ψ(α) :=

xk#ck(α)#, where k is the number of different variables occurring in α. Using
Ψ we obtain the language L3SAT = {Ψ(α) | α ∈ 3SAT } from 3SAT.

Next we present an ORWW-automaton M = (Q,Σ,Γ,�,�, q0, δ, >) for a
language L(M) that contains L3SAT. In addition, for a normalized propositional
formula α in conjunctive normal form of degree 3, it will be the case that α is
satisfiable, that is, α ∈ 3SAT, if and only if Ψ(α) ∈ L(M). This shows that
Ψ is a log-space reduction from 3SAT to L(M), thus proving that L(M) is
NP-complete with respect to log-space reductions.

The ORWW-automaton M has tape alphabet Γ = Σ ∪ {0A, 1A, 0B, 1B},
and it is described by the meta-instructions (1) to (10) below. Within these
meta-instructions, we use the abbreviations

DA = {0A, 1A}, DB = {0B, 1B}, D = DA ∪DB,

and the functions fA : {◦,+,¬}×{0, 1} → DA and fB : {◦,+,¬}×{0, 1} → DB
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that are defined as follows:

fA(l, t) =

0A, if ((l = ◦ or l = +) and t = 0) or (l = ¬ and t = 1),

1A, if (l = + and t = 1) or (l = ¬ and t = 0),

fB(l, t) =

0B, if ((l = ◦ or l = +) and t = 0) or (l = ¬ and t = 1),

1B, if (l = + and t = 1) or (l = ¬ and t = 0).

The ORWW-automaton M will proceed as follows given a formula Ψ(α) =

xk#ck(α)# as input. The occurrences of the letter x are rewritten from left
to right into letters from D, alternating between DA and DB. By choosing
0A (or 1A) for the first occurrence of x, the value 0 (or 1) is chosen for the
variable v1, and analogously for the other variables vi, i = 2, 3, . . . , k. When
the i-th occurrence of x has been replaced, say by tA (or tB) for some t ∈ {0, 1},
then the i-th letter aj,i of each variable encoding ck(v

µj,r
j,r ) within ck(α) is

rewritten into the letter that is determined by fA(aj,i, t) (or fB(aj,i, t)). From
the definition of these auxiliary functions we see that aj,i is rewritten into the
letter 1A (or 1B) only if j = i and either aj,i = + and t = 1 or aj,i = ¬ and
t = 0, that is, this happens if and only if vµj,rj,r = vi and t = 1 or if vµj,rj,r = v̄i

and t = 0. Thus, when all rewrites have been completed, then the rewritten
form of each clause of α contains an occurrence of the letter 1A or 1B if and
only if the assignment chosen through the rewrites of the occurrences of the
letter x is a satisfying assignment for α.

The meta-instructions (1) to (10) below are defined in such a way that it is
ensured that each time a letter x is rewritten, all of the corresponding letters
in ck(α) are rewritten correctly, and that M satisfies the above acceptance
condition. In these meta-instructions, s, t ∈ {0, 1}, sA, tA ∈ DA, sB, tB ∈ DB,
z ∈ {x,#}, l ∈ {◦,+,¬}, z′ ∈ Σ, and z1 ∈ {∧,∨}:

(1) (λ,�xz → �tAz),

(2) (�(DADB)∗, tAxz → tAsBz),

(3) (�(DADB)∗DA, tBxz → tBsAz),

(4) (�tAx
∗,#lz′ → #fA(l, t)z′),

(5) (�tAx
∗#Γ∗, z1lz

′ → z1fA(l, t)z′),
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(6) (�(DADB)+tAx
∗#(DADB)∗DA, sBlz

′ → sBfA(l, t)z′),

(7) (�(DADB)+tAx
∗#Γ∗Σ0(DADB)∗DA, sBlz

′ → sBfA(l, t)z′),

(8) (�(DADB)∗DAtBx
∗#(DADB)∗, sAlz

′ → sAfB(l, t)z′),

(9) (�(DADB)∗DAtBx
∗#Γ∗Σ0(DADB)∗, sAlz

′ → sAfB(l, t)z′),

(10) (�D+#((∨|D)∗(1A|1B)(∨|D)∗(#|∧))+�,Accept).

Let α be a propositional formula in conjunctive normal form of degree 3 that
contains the variables v1, v2, . . . , vk. Given w = Ψ(α) = xk#ck(α)# as input,
M proceeds as follows. From instruction (10) we see that all occurrences of the
letters x, ◦,+, and ¬ must be replaced by symbols from D. Using instructions
(1) to (3), the prefix xk can be rewritten into a word from Dk, where the i-th
occurrence of x is replaced by 0A or 1A for i odd, and it is replaced by 0B or
1B for i even. In this way an assignment of the variables v1, v2, . . . , vk is chosen
nondeterministically. Instructions (4) to (9) show that each syllable of the form
◦j−1s◦k−j, s ∈ {+,¬}, can also be rewritten into a word from Dk, where each
symbol is replaced by either 0A (or 0B) with the exception that the symbol
+ is replaced by 1A (or 1B), if the last occurrence of the symbol x that was
rewritten prior to the current rewrite operation was replaced by 1A (or 1B), and
the symbol ¬ is replaced by 1A (or 1B), if the last occurrence of the symbol x
that was rewritten prior to the current rewrite operation was replaced by 0A (or
0B). As all these syllables have length k, we see that, each time an occurrence
of x is rewritten, a symbol must be rewritten in each of the syllables of the
form ◦j−1s◦k−j. Finally, instruction (10) shows that in order for M to accept,
there must be at least one occurrence of the symbol 1A or 1B in each factor
that is limited by # and ∧ symbols, that is, in each factor that is the encoding
of a clause of α. However, this means that M can accept on input w = Ψ(α) if
and only if there is an assignment for the variables occurring in α such that α
yields the value 1, that is, if and only if the formula α is satisfiable.

As we have now seen which languages we can express, we will now look at
some closure properties.

4.2 Closure Properties

In this section we derive some closure properties for ORWW-automata.
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We start with a technical lemma.

Lemma 4.2.1. For each ORWW-automaton M , there exists an ORWW-
automaton M ′ such that L(M ′) = L(M), but M ′ only halts (accepting or
non-accepting) with the left sentinel � in its window.

Proof. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton. Each com-
putation of M consists of a finite sequence of cycles that is followed by a tail
computation, which either ends with an accept instruction or by reaching a
configuration in which M gets stuck. We now modify M into an ORWW-
automaton M ′ = (Q,Σ,Γ′,�,�, q0, δ

′, >′) by taking Γ′ = Γ ∪ {@,r}, by
extending the partial ordering > to >′ by taking x >′ @ and x >′ r for all
x ∈ Γ, and by defining the transition relation δ′ based on δ with the following
modifications:

(1) We replace each accept instruction δ(q, abc) = Accept by the
rewrite/restart instruction δ′(q, abc) = {@}.

(2) For each q ∈ Q, a ∈ Γ ∪ {�}, b ∈ Γ, and c ∈ Γ ∪ {�}, if δ(q, abc) = ∅,
then we take δ′(q, abc) = {r}.

(3) We introduce the transitions δ′(q, ab@) = {@} and δ′(q, abr) = {r} for
all q ∈ Q, all a ∈ Γ ∪ {�}, and all b ∈ Γ.

(4) Finally, we take δ′(q0,�@b) = Accept for all b ∈ Γ ∪ {@,�}.

Given an input w ∈ Σ+, each computation of M ends by either an accept
step or by reaching a configuration in which M has no applicable transition.
In the former case, M ′ will produce an occurrence of the symbol @ by (1), in
the latter, it will produce an occurrence of the symbol r by (2). Observe that
in the next cycle, M ′ can move its window all the way to the right until it
detects the symbol @ or r, and then it can rewrite all the letters to the left of
this newly written symbol into the same symbol, proceeding from right to left
by (3). Finally, if and when the first symbol to the right of the left sentinel has
been rewritten into the symbol @, then M ′ halts and accepts by (4). Hence, it
is immediate that L(M) ⊆ L(M ′) and that M ′ only halts with the left sentinel
in its window.
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Notice that even after producing a letter @ or r on the tape, M ′ may still
apply a rewrite operation of M within the prefix of the tape content that ends
with the letter @ or r. This, however, means that also M could have executed
this rewrite step instead of performing the tail computation that was simulated
by M ′. Hence, if this additional rewrite step leads to an accepting computation,
then this corresponds to an accepting computation of M . Thus, it follows that
L(M ′) = L(M).

Whenever the marker @ or r appears as the first symbol to the right of the
left sentinel �, then, proceeding from left to right, M could copy this symbol
to all other tape cells and then halt at the right sentinel �. Thus, instead of
requiring that M always halts at the left sentinel, we can also require that M
always halts at the right sentinel, if that fits our purpose.

Now we first show that L(ORWW) is an AFL, that is, an abstract family of
languages [16]. In fact, we have a slightly stronger result.

Theorem 4.2.2. L(ORWW) is closed under union, intersection, product,
Kleene star, inverse morphisms, and non-erasing morphisms.

Proof. In Theorem 3.3.4 and its Corollary it is shown that L(stl-det-ORWW) is
closed under union and intersection. Here we can use the same proof idea. Let
Mi = (Qi,Σ,Γi,�,�, q

(i)
0 , δi, >i), i = 1, 2, be an ORWW-automaton such that

L(Mi) = Li. By Lemma 4.2.1 we can assume that Mi only halts (accepting
or non-accepting) with the left sentinel � in its window. From M1 and M2

we now obtain an ORWW-automaton M for L = L1 ∩ L2 on the alphabet
∆ = Σ ∪ { [a, b] | a ∈ Γ1, b ∈ Γ2 } that works as follows:

(1) From right to left, M rewrites each input letter a into the pair [a, a].

(2) Then M simulates M1 using the first component of each letter.

(3) WhenM1 accepts, which happens at the left sentinel �, thenM simulates
M2 using the second component of each letter. If and when M2 accepts,
then so does M .

In order to obtain an ORWW-automaton M ′ such that L(M ′) = L1 ∪ L2,
we modify the above construction of M in that, in step (3), M ′ halts and
accepts, if M1 accepts. On the other hand, if the computation of M1 that is

97



simulated by M ′ is non-accepting, then it still ends at the left sentinel, and
then M ′ can continue in the same way as M .

Closure under product: Here we present an ORWW-automaton M =

(Q,Σ,Γ,�,�, q0, δ, >) for the language L1 · L2, which works as follows:

1. Given a word w ∈ Σ∗ as input, M rewrites w from right to left, letter by
letter, such that each letter of a suffix v of w is marked by an index 2, and
then each letter of the corresponding prefix u is marked by an index 1.
In this way w ∈ Σ∗ is (nondeterministically) split into w = uv with the
idea that u ∈ L1 = L(M1) and v ∈ L2 = L(M2) are to be checked.

2. After the first letter of w has been marked by an index 1, M simulates
the automaton M1 on the prefix u. During this process, the leftmost
occurrence of a letter with index 2 is interpreted as the right delimiter �.

3. When the simulated computation of M1 on u accepts, then M realizes
this with the left sentinel � in its window. It then moves right until it
detects the first letter with index 2 or the right sentinel �. In the latter
case, it accepts if λ ∈ L2, while in the former case it rewrites all the
letters from the prefix u, from right to left, by the special symbol 2.

4. When the first letter of w has been rewritten by the letter 2, then M
simulates M2. During this process it simply ignores the prefix of 2-
symbols on the tape, simulating M2 on the suffix v. Now M accepts if
this computation of M2 accepts.

5. If in step 1, all letters are marked with an index 2, that is, v = w and
u = λ are chosen, then M simply simulates M2 on v, provided λ ∈ L1;
otherwise, it simply halts without accepting.

Closure under Kleene star: Here the idea is essentially the same as for the
operation of product. Given a word w ∈ Σ∗ as input, M rewrites the word
from right to left, letter by letter, attaching indices 1 or 2 to these letters. In
this way a factorization w = u1u2 · · ·um is chosen nondeterministically, and
it remains to check that u1, u2, . . . , um ∈ L(M1). This can be done as above,
using two copies of the automaton M1, where the one works on an alphabet
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in which all letters have index 1, and the other one works on an alphabet in
which all letters have index 2.

Closure under inverse morphisms: Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an
ORWW-automaton, and let f : Σ′∗ → Σ∗ be a morphism. We present
an ORWW-automaton M ′ = (Q′,Σ′,Γ′,�,�, q′0, δ

′, >′) such that L(M ′) =

f−1(L(M)) = {w ∈ Σ′∗ | f(w) ∈ L(M) }. Here we assume that the automaton
M always halts at the right sentinel (see the remark following Lemma 4.2.1).

Basically the automaton M ′ proceeds as follows. Given an input w =

a1a2 · · · an ∈ Σ′∗, it rewrites each letter ai ∈ Σ′, proceeding from right to
left, by its image f(ai) ∈ Σ∗, and then it simulates a computation of M on
input f(w). However, there are two problems that we need to overcome. First,
the length of a word f(ai) may be larger than one. Accordingly, Γ′ will contain
block symbols of the form [u] that represent a word u ∈ Σ+ of length up
to µ = max{ |f(a)| | a ∈ Σ′ }. Secondly, it may happen that f(a) = λ for
some letters a ∈ Σ. In this situation, a will be rewritten into a symbol of
the form [u]c ∈ Γ′ that represents a copy of its right-hand neighbor [u]. Of
course, there can be several of these copy symbols in a row. In the course of
a computation they will always be updated from right to left. As these copy
symbols may separate the block symbols on the tape from each other, M ′ must
carry information on the last block symbol it has seen when moving to the
right. Accordingly, we define the set of states Q′ and the tape alphabet Γ′

through

Q′ = {q′0} ∪ { [q, x] | q ∈ Q, x ∈ Γ ∪ {�} }, and

Γ′ = Σ′ ∪ { [u], [u]c, [u]x, [u]cx | x ∈ Γ ∪ {�}, u ∈ Γ∗, 1 ≤ |u|≤ µ, or u = � },

and we define the partial ordering >′ from the partial ordering > through

a >′ [w]ε >′ [w]εx and [v1 · · · vi · · · vn]εx >
′ [v1 · · · v̂i · · · vn]εy if vi > v̂i,

where a ∈ Σ′, ε ∈ {c, λ}, w ∈ Σ+, and v1, . . . , vi, . . . , vn, v̂i, x, y ∈ Γ ∪ {�}.
The transition function δ′ is defined in such a way that M ′ proceeds as

follows:

1. First we consider all words of length at most one, that is, a ∈ Σ′ ∪ {λ},
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defining δ′(q′0,�a�) = Accept, if f(a) ∈ L(M).

2. For w ∈ Σ′∗, |w|≥ 2, we first replace each letter b by the block letter
[f(b)], proceeding from right to left. During this process each image
f(b) = λ is replaced by a marked copy [u]c of its right-hand neighbor [u]ε,
where [u]ε is used to represent [u] or [u]c, and analogously for [u]εx.

3. Then, again proceeding from right to left, each symbol [u]ε is replaced
by the indexed symbol [u]εx, where x ∈ Γ ∪ {�} is the next symbol of
�f(w)� to the left of the current block u.

4. Next M ′ simulates M , where in each rewrite step, it puts the information
on the last letter x of the first proper block symbol [ux] to the left of the
current position, which is stored in its state, into the index of the newly
written block symbol. Thus, a block symbol [v1 · · · vi−1vivi+1 · · · vk]z
is rewritten into the symbol [v1 · · · vi−1v̂ivi+1 · · · vk]x, if in the current
situation, M would rewrite vi into v̂i. Here x is the next symbol to the
left of v1 in the current word on the tape when ignoring copy symbols.

5. Whenever M ′ encounters a copy symbol, it simply skips it unless this
symbol must be updated. In this process M ′ also checks that no outdated
copy has been used in a rewrite step by comparing the neighboring letter
stored in the current state with the letter stored in the index of the current
block. Thus, if it encounters a factor [u]cy[v]cz[w]εr such that v 6= w, then
[v]cz is replaced by [w]cr, and if it encounters a factor [u1 · · ·uk−1x]y[v]cz[w]εx

such that v 6= w, then [v]cz is replaced by [w]cx. Observe that in this
situation it is required that the index x of the block symbol [w]εx coincides
with the last letter in the previous proper block symbol [u1 · · ·uk−1x]y.
In this way it is ensured that the last symbol x within the block symbol
[u1 · · ·uk−1x]y has not been rewritten since it was used as the left neighbor
for a rewrite within the next proper block symbol [w]x.

6. Finally, M ′ accepts with the right sentinel � in its window, if M does,
and if the various block symbols currently on the tape are consistent,
which M ′ can check while scanning its tape from left to right.

It can now be shown that M ′ accepts a word w′ ∈ Σ′∗ if and only if M accepts
the word f(w′), that is, L(M ′) = f−1(L(M)).
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A more detailed descriptions follows below.
The automatonM ′ basically replaces the letters by their images and simulates

the automaton M on the blocks of letters. Empty words are replaced by a copy
of their right neighbor which are updated from right to left.

The set of states Q′ consists of an initial state q0 and pairs [q, x] where q ∈ Q
and x ∈ Γ. x contains the letter that would be to the left of the left-most letter
in the current block. q represents the state in which the automaton M would
be at the left-most letter in the current block.

The working alphabet Γ′ consists of the input alphabet Σ′ and blocks of
letters that form words that are images of single letters in Γ′. These blocks can
be supplemented with an indicator for being a copy and the neighboring letter
that would be to the left of the left-most letter in the current block.

We always add the neighboring letter from the state whenever we rewrite a
block. By doing this we verify that the automaton doesn’t use outdated copies
of blocks when the block has already been rewritten as we only allow an update
of the copies if the neighboring letters in the state and block coincide.

The transition function ∆ is defined as follows, where a block with a star
[x1 . . . xk]

∗ represents [x1 . . . xk] or [x1 . . . xk]
c. All these blocks can implicitly

be complemented with a neighboring letter.
At first we treat all words w with |w|≤ 1

∆(q0,��) = Accept, if λ ∈ f(L)
∆(q0,�b�) = Accept, if f(b) ∈ f(L)

For all other cases we replace all letters by their images from right to left.
Empty images are replaced by marked copies of their right neighbor:

∆(q0,�bc) = {(q0,MVR)}
∆(q0, abc) = {(q0,MVR)}

∆(q0, ab�) = {[f(b)]}, if f(b) 6= λ
∆(q0, ab�) = {[�]c}, if f(b) = λ

∆(q0, ab[w]∗) = {[f(b)]}, if f(b) 6= λ

∆(q0, ab[w]∗) = {[w]c}, if f(b) = λ
∆(q0,�b[w]∗) = {[f(b)]}, if f(b) 6= λ
∆(q0,�b[w]∗) = {[w]c}, if f(b) = λ

Now the automaton M is simulated on the blocks of letters and in every
rewrite we write down the neighboring letter which is stored in the state at
that moment.
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∆(q0,�[v1 . . . vk][vk+1 . . . vk+l]
∗) 3 [v1 . . . v̂i . . . vk]�,

if ∃z1, . . . , zi−1 ∈ Q : δ(zi−1, vi−1vivi+1) 3 v̂i,
and ∀0 ≤ j ≤ i− 2 : δ(zj, vjvj+1vj+2) 3 (zj+1,MVR) , z0 := q0, v0 := �

∆(q0,�[v1 . . . vk][vk+1 . . . vk+l]
∗) 3 ([zk, vk],MVR),

if ∃z1, . . . , zk ∈ Q : ∀0 ≤ j ≤ k − 1 :
δ(zj, vjvj+1vj+2) 3 (zj+1,MVR) , z0 := q0, v0 := �

∆([q, x], [u]∗[v1 . . . vk][vk+1 . . . vk+l]
∗) 3 [v1 . . . v̂i . . . vk]

c
x,

if ∃z1, . . . , zi−1 ∈ Q : δ(zi−1, vi−1vivi+1) 3 v̂i,
and ∀0 ≤ j ≤ i− 2 : δ(zj, vjvj+1vj+2) 3 (zj+1,MVR) , z0 := q, v0 := x

∆([q, x], [u]∗[v1 . . . vk][vk+1 . . . vk+l]
∗) 3 ([zk, vk],MVR),

if ∃z1, . . . , zk ∈ Q : ∀0 ≤ j ≤ k − 1 :
δ(zj, vjvj+1vj+2) 3 (zj+1,MVR) , z0 := q, v0 := x

Whenever we encounter copies we skip them unless they need to be updated.
In the same process we verify that no outdated copy has been used by comparing
the neighboring letters from state and block.

∆(q0,�[v]c[v]∗) 3 ([q0,�],MVR)

∆([q, x], [u]∗[v]c[v]∗) 3 ([q, x],MVR)

∆(q0,�[v]c[w]∗�) 3 [w]c�
∆([q, x], [u]∗[v]c[w]∗x) 3 [w]cx

Finally we handle the right sentinel case.

∆([q, x], [u]∗[v1 . . . vk]�) 3 [v1 . . . v̂i . . . vk]x,
if ∃z1, . . . , zi−1 ∈ Q : δ(zi−1, vi−1vivi+1) 3 v̂i
and ∀0 ≤ j ≤ i− 2 : δ(zj, vjvj+1vj+2) 3 (zj+1,MVR) , z0 := q, v0 :=x, vk+1 :=�

∆([q, x], [u]∗[v1 . . . vk]�) 3 Accept,
if ∃z1, . . . , zi−1 ∈ Q : δ(zk−1, vkvi�) 3 Accept
and ∀0 ≤ j ≤ k − 2 : δ(zj, vjvj+1vj+2) 3 (zj+1,MVR), z0 := q, v0 := x

The partial ordering >′ is simply deduced from the partial ordering >:
a > [w]∗ and [w1 . . . wk . . . wn]∗ > [w1 . . . wk

′ . . . wn]∗ if wk > wk
′.

The alphabet we use is finite because Σ and therefore f(Σ) is finite.

Now we have to verify that L(M ′) = f−1(L(M)) holds.

Let w′ ∈ f−1(L(M)). Then there exists a word w ∈ Σ∗ such that f(w′) =

w ∈ L(M). It follows that there exists a computation �w� `∗M Accept.

We can now conclude that �w′� `∗M ′ �f ′(w′)� `∗M ′ Accept where
f(w′1 . . . w

′
n) = [f(w′1)] . . . [f(w′n)] if no images are empty. Copies are used

if some images are empty. The computation can be continued in the following
way: If there are no empty images the computation can be deduced straight
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away. For every letter that is rewritten in M we rewrite the corresponding
letter in the blocks and can finally accept at the right sentinel. If we use copies
we can do the same, but if we rewrite a block that possesses at least one copy
we add some rewrites directly after rewriting the block to update the copies
from right to left.

Now let us verify the other direction. Let w ∈ L(M ′). Then there exists a
computation �w� `∗M ′ �f(w)� `∗M ′ Accept. We claim that f(w) ∈ L(M), i.e.
there is an accepting computation �f(w)� `∗M Accept. If no image is empty
we can use the same argumentation as for the other direction: We just do the
corresponding rewrites. If some images of the morphism f are the empty word
we do all corresponding rewrites except the ones for the copies. We can just
skip the copies because our constructed automaton makes sure that copies are
only used for rewrites if they match their original letter.

Closure under non-erasing morphisms: Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an
ORWW-automaton, and let f : Σ∗ → Ω∗ be a non-erasing morphism. We
describe an ORWW-automaton M ′ = (Q′,Ω,Γ′,�,�, q′0,∆, >

′) for f(L(M)).

Given a word w ∈ Ω∗ as input, M ′ first guesses a factorization u1u2 · · ·um
of w such that, for each i = 1, 2, . . . ,m, |ui| ≤ µ = max{ |f(a)| | a ∈ Σ }. This
is done by marking the letters of w, one by one, from right to left, by indices 1
and 2 (see the proof for the closure under Kleene star above). Each factor ui is
a candidate for an image of a letter under the morphism f . Then, processing
the factors ui from right to left, M ′ checks whether ui = f(a) for some letter
a ∈ Σ. In the negative, it halts immediately without accepting, while in the
affirmative it nondeterministically chooses a letter ai ∈ Σ satisfying f(ai) = ui

and rewrites ui into the word [ai]
c · · · [ai]c[ai], that is, the last letter of ui is

rewritten into a block symbol that encodes the letter ai ∈ Σ, and all the other
letters of ui (if any) are rewritten into corresponding copy symbols. Thereafter,
M ′ simulates a computation of M on the input a1a2 · · · am using the technique
from the proof of closure under inverse morphisms above. It follows that M ′

accepts on input w ∈ Ω∗ if and only if there exists a word u ∈ Σ∗ such that
f(u) = w and u ∈ L(M), that is, if and only if w ∈ f(L(M)).

A more detailed description including the transition function follows.

As the morphism is non-erasing, the automaton guesses the blocks of the
initial letter’s images. This is done by marking the letters alternatingly with
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1 and 2 like we did with the Kleene Star construction. In the next phase it
goes to the right border and memorizes the actual block of letters in the state.
The automaton writes one of the words in the inverse image of the current
position into the field unless we choose the empty word. In that case it creates
a marked copy of the right content. After that the automaton M is simulated
on the blocks of letters in the same way as we did for the inverse morphisms.

Let lmax be the constant that contains the maximal length of the words in
the morphism’s image of single letters:

lmax := max
w∈Σ
|f(w)|.

The set of states Q′ consists of an initial state q0, possible prefixes of words
from the morphism’s image and pairs [q, x] where q ∈ Q and x ∈ Γ. x contains
the letter that would be to the left of the current letter in the block. q represents
the state in which the automaton M would be at the current letter.

Q′ = {q0} ∪
{
w ∈ Σ+ | |w|≤ lmax

}
∪ {[q, x] |q ∈ Q, x ∈ Γ}

The working alphabet Γ′ consists of the input alphabet Σ and single letters
in a block.

These blocks can be supplemented with an indicator for being a copy and
the neighboring letter that would be to the left of the letter in the current
block:

Γ′ = Σ ∪ {[w], [w]c, [w]x, [w]cx | w ∈ Γ, x ∈ Γ ∪ {�}}.

The transition function ∆ can be defined as follows. First, we treat the
special case |w|= 0, 1

∆(q∗,��) = Accept, λ ∈ f(L)

∆(q∗,�a�) = Accept, a ∈ f(L).

For all longer words we mark the different areas:

∆(q0,�ab) = {(q0,MVR)}
∆(q0, abc) = {(q0,MVR)}

∆(q0, ab�) = {b1, b2}
∆(q0, abci) = {b1, b2}
∆(q0,�bci) = {b1, b2}
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Now we replace the right-most content of every separate area by a letter
that could have that image and fill the rest with the corresponding copies. a?

represents a1 or a2. s is a helper function that maps 1 7→ 2 and 2 7→ 1.

∆(q0,�bici) = {((bc, i),MVR)}, |bc|≤ lmax
∆(q0,�bics(i)) = {(c,MVR)}
∆(u, a?bics(i)) = {(c,MVR)}

∆(u, a?bici) = {(uc,MVR)}, |uc|≤ lmax
∆(u, a?bi�) = {[w]i | w ∈ f−1(u) ∩ Σ}

∆(u, a?bi[v]i) = {[v]ci}
∆(u, a?bi[v]s(i)) = {[w]i | w ∈ f−1(u) ∩ Σ}

∆(q0,�bi[v]i) = {[v]ci}
∆(q0,�bi[v]s(i)) = {[w]i | w ∈ f−1(b) ∩ Σ}

Finally we are in the same situation as we were when we were handling inverse
morphisms. We just do not have to treat blocks of letters. The alternating
numbering isn’t needed anymore and is ignored from now on.

∆(q0,�[v1][v2]
∗) 3 [v̂1]�, if δ(q0,�v1v2) 3 v̂1

∆(q0,�[v1][v2]
∗) 3 ([z1, v1],MVR), if δ(q0,�v1v2) 3 (z1,MVR)

If we encounter copies we skip them if they don’t need to be updated.

∆(q0,�[v]c[v]∗) 3 ([q0,�],MVR)
∆([q, x], [u]∗[v]c[v]∗) 3 ([q, x],MVR)

∆([q, x], [u]∗[v1][v2]
∗) 3 [v̂1]x, if δ(q, xv1v2) 3 v̂1

∆([q, x], [u]∗[v1][v2]
∗) 3 ([z1, x],MVR), if ∃z1 ∈ Q : δ(q, xv1v2) 3 (z1,MVR)

We update the copies when we need to and verify that we have not used a
copied letter when the original letter has already been rewritten.

∆(q0,�[v]c[w]∗�) 3 [w]c�
∆([q, x], [u]∗[v]c[w]∗x) 3 [w]cx

Finally we treat the right sentinel.

∆([q, x], [u]∗[v]�) 3 [v̂]x, if δ(q, xv�) 3 v̂
∆([q, x], [u]∗[v]�) 3 Accept, if δ(q, xv�) 3 Accept

The ordering >′ is defined as follows

∀a ∈ Σ′∀u, v, w ∈ Γ : a >′ [w]∗ and [u]∗ >′ [v]∗ iff u > v
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Now it follows with the same argumentation that L(M ′) = f(L) holds. For
every valid computation �w� `∗M Accept there is a computation �f(w)� `∗M ′
�[w]� `∗M ′ Accept, and for every computation �w′� `∗M ′ �[w̃]� `∗M ′ Accept,
there is a computation �w̃� `∗M Accept with f(w̃) = w′. That concludes the
proof.

It remains open whether L(ORWW) is a full AFL, that is, whether it is
closed under arbitrary morphisms.

In order to deduce a few non-closure properties, we present a pumping lemma
for ordered restarting automata.

4.3 A Pumping Lemma

In this section we derive a pumping lemma for ordered restarting automata.
It is actually separated into a Cut-and-Paste-Lemma and a Pumping-Lemma.
For a given ORWW-automaton M a part from the end of a sufficiently long
accepted word can be omitted such that the resulting word is recognized by
M . This fact is covered by the Cut-and-Paste Lemma. The Pumping-Lemma
covers the fact that a part from the beginning of a sufficient long word can be
repeated arbitrarily many times.

Although we can derive the Cut-and-Paste Lemma with the tools we use
to derive the Pumping-Lemma we prove it on its own with a slightly simpler
technique in order to get more familiar with manipulating computation cycles.

Theorem 4.3.1. (Cut-and-Paste Lemma)
For each ORWW-automaton M , there exists a constant N(M) > 0 such that
each word w ∈ L(M), |w| ≥ N(M), has a factorization w = xyz satisfying all
of the following conditions:

(a) |yz| ≤ N(M), (b) |y|> 0, and (c) xz ∈ L(M).

Proof. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton, where Q =

{q0, q1, . . . , qk} and Γ = {s1, s2, . . . , sn}. Without loss of generality we may
assume that M accepts at the left end of its tape, that is, it accepts in state q0

with its window containing the left sentinel � and the first two symbols of the
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proper tape inscription. The transition relation δ of M can be represented by
a finite set of five-tuples of the form (q, a, b, c, r), where q ∈ Q, a ∈ Γ ∪ {�},
b ∈ Γ, c ∈ Γ ∪ {�}, and r ∈ Q ∪ Γ ∪ {Accept}. Here a five-tuple (q, a, b, c, q′)

with q′ ∈ Q represents the move-right operation (q′,MVR) ∈ δ(q, abc), and
a five-tuple (q, a, b, c, d) with d ∈ Γ represents the rewrite/restart operation
d ∈ δ(q, abc), and analogously, for (q, a, b, c,Accept). As |Q|= k+ 1 and |Γ|= n,
we see that this set consists of K ≤ (k+ 1) · n · (n+ 1)2 · (k+ n+ 2) five-tuples.
We introduce a new alphabet Ω = {t1, t2, . . . , tK} the symbols of which are in
1-to-1 correspondence to these five-tuples.

We now consider a shortest accepting computation C of M on an input
wm ∈ Σm, where m is sufficiently large. To each number j = 1, 2, . . . ,m− 1,
we associate a word xj ∈ Ω∗ such that xj describes the sequence of operations
that are performed within the computation C at position m+ 1− j. Thus, we
obtain a sequence of words XC = (x1, x2, . . . , xm−1) over Ω.

Claim. |x1|≤ n− 1, and for all j = 2, . . . ,m− 1, |xj−1|≤ |xj|≤ j · (n− 1).

Proof. We proceed by induction on j. For j = 1, xj is the sequence of operations
that are performed within C at the right-most position. Hence, x1 only consists
of rewrite/restart operations, and as |Γ|= n, it follows that |x1|≤ (n− 1).

Now, assume that |xj−1|≤ (j − 1) · (n − 1) has been established for some
j ≥ 2. We consider the sequence of operations that is described by the
word xj. This word describes all the rewrite/restart operations and all the
move-right operations that are performed within C at position m+ 1− j. Each
move-right operation executed at this position leads to an operation that is
performed at its right neighbor, that is, at position m + 2 − j. Hence, the
number of these move-right operations is exactly |xj−1|, which implies that
|xj−1|≤ |xj|≤ |xj−1|+(n− 1) ≤ j · (n− 1).

Finally, we extend each word xj into ajxjsj, where aj is the input letter at
position m + 1 − j and sj is the letter from Γ into which the input symbol
aj is being rewritten by the sequence of operations xj. Now we consider the
sequence (a1x1s1, a2x2s2, . . . , am−1xm−1sm−1) over Ω ∪ Γ.

To determine the constant N(M) we use Higman’s theorem [15] and the
corresponding Length function H from [20] (see also [43]). Higman’s Lemma
states that an infinite sequence w0, w1, . . . of finite words over a finite alphabet

107



contains a pair of words wi v wj with i < j where the words are partially
ordered by the subsequence relation. The Length function takes a growth
function as an argument and calculates the length of a longest bad sequence,
that is, a sequence where we do not find an increasing pair of words. Let
H(2, n+ 1,Ω ∪ Γ) be the maximal positive integer N such that there exists a
sequence σ1, σ2, . . . , σN of words over Ω∪Γ such that |σj|≤ j ·(n+1) for all j ≥ 1

and σj1 is not a scattered subsequence of σj2 for any indices 1 ≤ j1 < j2 ≤ N .
It is shown in [20] that H is a total recursive function.

Now, we choose N(M) = H(2, n+ 1,Ω ∪ Γ) + 2. We see from Claim 1 that
|ajxjsj|= |xj|+2 ≤ j · (n− 1) + 2 ≤ j · (n+ 1) for all j ≥ 1. If m ≥ N(M), then
we see from the definition of the function H that there are indices 1 ≤ j1 < j2 ≤
m−1 such that aj1xj1sj1 is a scattered subsequence of aj2xj2sj2 . Thus, aj1 = aj2 ,
sj1 = sj2 , and if xj1 = t1t2 . . . tr for some r ≥ 1 and t1, t2, . . . , tr ∈ Ω, then xj2
can be written as xj2 = y0t1y1t2y2 . . . yr−1tryr for some y0, y1, y2, . . . , yr ∈ Ω∗.

The subsequence of rewrite operations of xj1 rewrites the input letter aj1 into
the letter sj1 , and the subsequence of rewrite operations of xj2 rewrites the input
letter aj2 = aj1 into the letter sj2 = sj1 . Hence, as the former is a scattered
subsequence of the latter, it follows that actually the same rewrite operations
occur in xj2 and in xj1 , and they occur in the same order. In particular, this
means that the factors y0, y1, y2, . . . , yr only consist of move-right operations.

Finally we take x to be the prefix of wm up to position m + 1 − j2, y to
be the factor of wm from positions m+ 2− j2 to m+ 1− j1, and z to be the
remaining suffix of wm. Then wm = xyz, |yz| ≤ N(M) and |y|= j2 − j1 > 0.
Finally, let w′ = xz. We will show that M has an accepting computation C ′

for input w′. This computation is obtained from the computation C as follows.

Let (C1, C2, . . . , Cµ) be the sequence of cycles of the computation C. For
j = 1, 2, . . . , µ, let Cj be the cycle currently considered.

1. If the rewrite step in Cj is performed on the prefix of length m+ 1− j2

of the current tape, then we append Cj to C ′. This includes in particular
all those cycles that include a rewrite operation at position m+ 1− j2,
that is, the rewrite operations encoded within the word xj2 .

2. If Cj includes a move-right step at position m+ 1− j2 that contributes a
letter to one of the factors y0, y1, . . . , yr of xj2 , then Cj is not appended
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to C ′.

3. Finally, if Cj includes a move-right operation at position m+ 1− j2 that
corresponds to a letter tl of the word xj2 for some 1 ≤ l ≤ r, then we
combine the initial part of this cycle, up to the point where the operation
tl is executed at position m+ 1− j2, with the final part of the cycle which
starts with this very operation at position m+ 1− j1. The resulting cycle
C ′j is appended to C ′. As xj1 = t1t2 . . . tr is a subsequence of xj2 , C ′j is
indeed a valid cycle of M .

The computation C ′ is completed by appending the accepting tail of C to it.
Then it is easily checked that C ′ is indeed an accepting computation of M on
input w′. This completes the proof of the Cut-and-Paste Lemma.

A corollary of the Cut-and-Paste Lemma is that the deterministic linear
language

L = {anbn | n ≥ 1}

cannot be accepted by an ORWW-automaton.

Proposition 4.3.2. Let M be an ORWW-automaton and let

L = {anbn | n ≥ 1}.

Then L(M) 6= L.

Proof. We prove this proposition by contradiction. Let us assume that M is
an ORWW-automaton that accepts the language L. Now, let NC(M) =: K be
the constant from the Cut-and-Paste Lemma for M . If we look at the word
w = aKbK , we see that it satisfies the condition |w| ≥ NC(M). Hence, there
must exist a factorization w = xyz such that y = bj with 1 ≤ j ≤ NC(M).
According to the Cut-and-Paste Lemma the word anbn−j must be accepted by
M . Therefore, there cannot be an automaton M that accepts L.

In order to establish some non-closure properties we consider the example
language L≤ = { ambn | 1 ≤ m ≤ n }. Clearly, L≤ is a linear language [16].

Proposition 4.3.3. L≤ 6∈ L(ORWW).
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Proof. Assume to the contrary that there exists an ORWW-automaton M =

(Q,Σ,Γ,�,�, q0, δ, >) such that L(M) = L≤, and let N(M) be the correspond-
ing constant from the Cut-and-Paste Lemma (Theorem 4.3.1). We consider the
word w = aN(M)bN(M) ∈ L≤. Then w = xyz such that |yz|≤ N(M), |y|> 0,
and w′ = xz ∈ L≤. From the two factorizations of w we see that y = bi for
some i > 0, which implies that w′ = aN(M)bN(M)−i 6∈ L≤, a contradiction. Thus,
it follows that the language L≤ is not accepted by any ORWW-automaton.

As L(ORWW) contains a language that is not growing-context-senstive (see
Lemma 4.1.2), but does not contain a language that is linear (see Proposi-
tion 4.3.2) we obtain the following result.

Corollary 4.3.4. The language class L(ORWW) is incomparable to the lan-
guage classes LIN, CFL, and GCSL with respect to inclusion.

Finally, Proposition 4.3.3 allows us to derive the following non-closure
properties.

Theorem 4.3.5. The language class L(ORWW) is neither closed under the
operation of reversal nor under complementation.

Proof. In Example 4.1.1 it has been shown that L≥ = { bman | m ≥ n ≥ 1 } is
accepted by some ORWW-automaton. As L≤ = LR≥, Proposition 4.3.3 implies
that L(ORWW) is not closed under the operation of reversal.

Obviously, also the language L′≥ = { ambn | m ≥ n ≥ 1 } is accepted by
some ORWW-automaton. Assume that its complement (L′≥)c is accepted
by some ORWW-automaton. Then also the language (L′≥)c ∩ (a+ · b+) is
accepted by some ORWW-automaton, since all regular languages are accepted
by these automata and L(ORWW) is closed under intersection. However,
(L′≥)c ∩ (a+ · b+) = { ambn | 1 ≤ m < n }, and in analogy to the proof of
Proposition 4.3.3 it can be shown that this language is not accepted by any
ORWW-automaton, either. Thus, it follows that L(ORWW) is not closed under
complementation.

Although L(ORWW) is an abstract family of languages that is incomparable
to LIN, CFL, and GCSL, we have the following decidability result.

Theorem 4.3.6. The emptiness problem for ORWW-automata is decidable.
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Proof. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton, and let
N(M) be the corresponding constant from the Cut-and-Paste Lemma (Theo-
rem 4.3.1). As shown in the proof of that lemma, N(M) = H (2, n+ 1,Ω ∪ Γ)+

2, where H is the Length function corresponding to Higman’s theorem, which
is a recursive function [20]. It now follows that L(M) 6= ∅ iff L(M) contains a
word of length at most N(M).

Before we finally derive the Pumping-Lemma we need some more notation
for ORWW-automata.

Definition 4.3.7. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton,
w ∈ L(M), and C be an accepting computation of M on input w. With each
integer, 1 ≤ i ≤ |w|, we associate the sequence of operations σCi like we did in
the proof of Theorem 4.3.1.

Now the pattern τCi ∈ Ω∗ is the word that is obtained from σCi by squeezing
consecutive identical letters into a single letter.

Observe that it is only MVR operations that may be squeezed when forming
a pattern as a rewrite operation changes the tape content which makes it
impossible to execute the same rewrite operation at this position again.

Example 4.3.8. LetM be an ORWW-automaton that can execute the following
accepting computation:

q0�aaa� `M q0�a1aa� `M �q0a1aa� `M �a1q0aa�

`M q0�a1aa1� `M �q0a1aa1� `M �a1q0aa1� `M Accept.

The computation C consists of two cycles and an accepting tail that are described
by the following sequences of operations:

c1 = (q0,�, a, a, a1),

c2 = (q0,�, a1, a, q0), (q0, a1, a, a, q0), (q0, a, a,�, a1),

c3 = (q0,�, a1, a, q0), (q0, a1, a, a1, q0), (q0, a, a1,�,Accept).

For the first position, we therefore get the sequence of operations

σC1 = (q0,�, a, a, a1)(q0,�, a1, a, q0)(q0,�, a1, a, q0),
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which yields the pattern τC1 = (q0,�, a, a, a1)(q0,�, a1, a, q0), while for the
second position we get the sequence of operations

σC2 = (q0, a1, a, a, q0)(q0, a1, a, a1, q0) = τC2 .

For the third position we have σC3 = (q0, a, a,�, a1)(q0, a, a1,�,Accept) = τC3 .

For two pattern τC1 and τC2 , we write τC1 v τC2 if τC1 is a scattered subword
of τC2 , that is, if τC1 = ω1ω2 . . . ωm for some ω1, ω2, . . . , ωm ∈ Ω, then there
are words y0, y1, . . . , ym ∈ Ω∗ such that τC2 = y0ω1y1ω2y2 . . . ym−1ωmym. The
following technical lemma is the main step towards the proof of the Pumping
Lemma.

Lemma 4.3.9. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton that
accepts at the left sentinel, let Cxz be an accepting computation of M for the
input xz, and let Cuv be an accepting computation of M for the input uv. If
the pattern τCuv|u| of the computation Cuv at position |u| is a scattered subword
of the pattern τCxz|x| of the computation Cxz at position |x|, that is, τCuv|u| v τCxz|x| ,
and if these two patterns contain the same rewrite operations, then xv ∈ L(M).

Proof. We construct an accepting computation C ′ for the input xv from the
given computations Cxz and Cuv. The sequences of cycles (C1, C2, . . . , Cm)

of Cxz and (D1, D2, . . . , Dn) of Cuv are considered as working lists that are
used for constructing the cycles of C ′ that have their rewrite operations in
the prefix x or in the suffix v of the input xv, respectively. As τCuv|u| v τCxz|x| ,
these patterns can be written as τCuv|u| = t1t2 . . . tr with t1, t2, . . . , tr ∈ Ω and
τCxz|x| = y0t1y1 . . . yr−1tryr for some y0, y1, . . . , yr ∈ Ω∗ (see Fig. 4.1). As both
patterns contain the same rewrite operations, the factors y0, y1, . . . yr only
consist of MVR operations.

For constructing the computation C ′ on input xv, we start by taking C ′ to
be the empty sequence of cycles. Now we consider the cycles of Cxz one after
another (see Fig. 4.2).

Let Ci be the cycle currently considered.

• If Ci is a short cycle, that is, a cycle that executes a rewrite step within
a proper prefix of x, then we just append it to C ′ (see the cycle c2 in
Fig. 4.2).
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� x1 . . . xm−1 xm z1 . . . �

y0

t1
y1

t2
...

� u1 . . . un−1 un v1 . . . �

t1
t2
t3
t4
...

Figure 4.1: The inputs xz and uv with the patterns τCxz|x| (left) and τCuv|u| (right)

� x1 . . . xm−1 xm z1 . . . zl �

y0

t1

t1

y1

y1

t2

t3

c0

c1

c2

c3

c4

� u1 . . . un−1 un v1 . . . vl �

t1

t1

t1

t2

t3

t3

d1

d2

d3

d4

d5

Figure 4.2: The cycles of the computations Cxz (top) and Cuv (bottom). Each
arrow represents a (partial) cycle.
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• If Ci contains a rewrite operation at position |x|, then this operation
corresponds to the letter tl for some 1 ≤ l ≤ r. Again we append this
cycle to C ′ (see the cycle c3). As both patterns contain the same rewrite
operations, which must occur in the same relative order in both patterns,
we see that the rewrite operation tl can also be executed at this point in
the computation C ′.

• If Ci is a cycle that executes a rewrite step within the suffix z of xz, then
this cycle contains a MVR operation at position |x|. If this operation
does not correspond to one of the letters t1, t2, . . . , tr in the pattern τCxz|x| ,
we skip this cycle without appending it to C ′.

• Finally, let Ci be a cycle that executes a rewrite step within the suffix
z of xz, but the MVR operation executed at position |x| corresponds
to the letter tl for some 1 ≤ l ≤ r. By c0 we denote the prefix of the
cycle Ci up to position |x|−1. Further, let Di1 , Di2 , . . . , Diν be all those
cycles of Cuv that contain the MVR operation tl at position |u|, and for
all 1 ≤ j ≤ ν, let dj be the suffix of the cycle Dij that starts with the
operation tl at position |u|. We now combine the prefix c0 of Ci with the
suffix dj of Dij for all 1 ≤ j ≤ ν (see c0 and d1, d2, d3 in Fig. 4.2). As
the same operation tl is applied in the cycle Ci at position |x| as in the
cycles Di1 , Di2 , . . . , Diν at position |u|, we see that c0d1, c0d2, . . . , c0dν is
a sequence of possible cycles of M . We can append this sequence of cycles
to C ′.

• Any further cycle Ci+s, s ≥ 1, that also executes a MVR operation at
position |x| which corresponds to the letter tl of the pattern τCxz|x| , is
skipped (see c1 in Fig. 4.2).

Fig. 4.3 illustrates the above construction. Finally, the computation C ′ is
completed by attaching the accepting tail computation from Cxz to it. Recall
that M accepts with the left sentinel in its window. It is now easily seen that
C ′ is an accepting computation of M for the input xv.

Next, we consider a special case of the above lemma.

Lemma 4.3.10. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton
that accepts at the left sentinel, let w ∈ L(M), let C be an accepting computation
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� x1 . . . xm−1 xm v1 . . . �

t1

t1

t1

t2

t3

t3

c0 d1

c0 d2

c0 d3

c2

c3

c4 d4

c4 d5

Figure 4.3: The computation C ′ for input xv

of M for the input w, and let 1 ≤ i < j ≤ |w| be indices such that τCi (w) v
τCj (w) and these two patterns contain the same rewrite operations. Then w

can be factored as w = xyz, where |x|= i and |y|= j − i, such that xyyz ∈
L(M). In fact, there exists an accepting computation C ′ for xyyz satisfying
τC
′

i (xyyz) = τC
′

j (xyyz).

Proof. If we choose x1 = xy, y1 = z, u1 = x, and v1 = yz, we can apply
Lemma 4.3.9 to the factorizations w = xyz = x1y1 and w = xyz = u1v1. Thus,
we obtain an accepting computation C ′ of M for the input x1v1 = xyyz. From
the construction of C ′ in the proof of the above lemma we see that the patterns
τC
′

i (xyyz) and τC′j (xyyz) coincide.

Finally, we need the following notion that has already been considered in [32]
under the name of det-MVR1-form for general restarting automata.

Definition 4.3.11. An ORWW-automaton M = (Q,Σ,Γ,�,�, q0, δ, >) is
said to have deterministic MVR operations if, for all q ∈ Q and all a, b, c ∈
Γ ∪ {�,�}, δ(q, abc) contains at most a single MVR operation.

Lemma 4.3.12. For each ORWW-automaton M = (Q,Σ,Γ,�,�, q0, δ, >),
there exists an ORWW automaton M ′ with deterministic MVR operations that
accepts the same language as M . If M accepts at the left sentinel, then so
does M ′.

Proof. Using a variant of the well-known powerset construction, the ORWW-
automaton M ′ can be defined as M ′ = (2Q,Σ,Γ,�,�, {q0}, δ′, >), where, for

115



all ∅ 6= S ⊆ Q and all a, b, c ∈ Γ ∪ {�,�},

T(S,abc) = { (q,MVR) | q ∈ Q,∃s ∈ S : (q,MVR) ∈ δ(s, abc) },

and

δ′(S, abc) =

Accept if ∃s ∈ S : δ(s, abc) = Accept,(⋃
s∈S δ(s, abc) ∩ Γ

)
∪ T(S,abc) otherwise.

The next lemma is the second technical main result.

Lemma 4.3.13. Let M be an ORWW-automaton with deterministic MVR
operations that accepts at the left sentinel. From M a constant N(M) > 0

can be computed such that, for each w ∈ L(M) satisfying |w|≥ N(M) and
each accepting computation C of M on input w, there are indices 1 ≤ i <

j ≤ |w| such that τCi (w) v τCj (w) and these patterns contain the same rewrite
operations.

Proof. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton with deter-
ministic MVR operations that accepts at the left sentinel, and let n = |Γ|.
Further, let w ∈ L(M) and let C be an accepting computation ofM on input w.
The MVR operations executed at a position 1 ≤ k ≤ |w|−1 only depend on
the prefix of length k + 1 of w. As M has deterministic MVR operations, the
MVR operation that can be executed at position k is uniquely determined
by that prefix, if it exists at all. For this reason a different MVR operation
can become applicable at position k only if that prefix has been modified
by a rewrite operation. This, however, can happen at most (k + 1) · (n − 1)

times. Therefore, the pattern τCk (w) contains at most (k + 1) · (n − 1) + 1

MVR operations. Additionally, it contains at most n− 1 rewrite operations.
Therefore, τCk (w) has length at most (k + 1) · (n− 1) + n+ 1 = k · (n− 1) + 2n.
Finally, we extend each pattern τCk (w) into the word ηCk (w) = akτ

C
k (w)sk where

ak is the input letter at position k and sk is the final letter produced by C at
position k. Higman’s theorem [15] (see, also [20] and [43]) implies that there
exists a computable constant N(M) such that, if |w|≥ N(M), then there are
indices 1 ≤ i < j ≤ N(M) such that ηCi (w) is a scattered subsequence of
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ηCj (w). This means that ai = aj and si = sj, and that τCi (w) is a scattered
subsequence of τCj (w). As in both positions the letter ai = aj is rewritten into
the letter si = sj, and as each rewrite operation at position i occurs in τCi (w)

and therewith also in τCj (w), we see that τCi (w) and τCj (w) contain exactly the
same rewrite operations.

Now we can state and prove the announced Pumping Lemma.

Theorem 4.3.14 (Pumping Lemma). For each ORWW-automaton M there
exists a computable constant Np(M) > 0 such that each word w ∈ L(M),
|w|≥ Np(M), has a factorization w = xyz satisfying all of the following

(a) |xy| ≤ Np(M), (b) |y|> 0, and (c) xymz ∈ L(M) for all m ≥ 1.

Proof. Let M be an ORWW automaton. By Lemma 3.4.3 we may assume that
M only accepts at the left sentinel. Further, by Lemma 4.3.12, we can convert
M into an equivalent ORWW-automaton M1 that is MVR-deterministic and
that only accepts at the left sentinel. Then Lemma 4.3.13 implies that a constant
Np(M) can be computed such that, for each w ∈ L(M1) = L(M) satisfying
|w| ≥ Np(M), and each accepting computation C of M1 on input w, there
are indices 1 ≤ i < j ≤ Np(M) such that τCi (w) v τCj (w) and these patterns
contain the same rewrite operations. Hence, by Lemma 4.3.10, w can be
factored as w = xyz such that |xy| ≤ Np(M), |y|> 0, xyyz ∈ L(M1) = L(M),
and τC′|x| (xyyz) = τC

′

|xy|(xyyz), where C ′ is the accepting computation of M1 for
input xyyz that is obtained from the computation C. Using Lemma 4.3.10
repeatedly we obtain that xymz ∈ L(M1) = L(M) holds for all m ≥ 1.

4.4 Applications of the Pumping Lemma

In Theorem 4.3.6 we have used the Cut-and-Paste Lemma to prove that
emptiness is decidable for ORWW-automata. Here we show that also finiteness
is decidable for ORWW-automata using both, the Cut-and-Paste Lemma and
the Pumping Lemma.

Theorem 4.4.1. The following finiteness problem is decidable:
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INSTANCE: An ORWW-automaton M.

QUESTION: Is the language L(M) finite?

Proof. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton, let Nc(M)

be the corresponding constant from the Cut-and-Paste Lemma for M , and let
Np(M) be the corresponding constant from the Pumping Lemma for M . We
claim that L(M) is finite if and only if it does not contain any word w such
that Np(M) ≤ |w|≤ Np(M) +Nc(M).

Indeed, if L(M) contains a word w such thatNp(M) ≤ |w|≤ Np(M)+Nc(M),
then the Pumping Lemma tells us that L(M) is infinite. Conversely, if L(M)

is infinite, then it contains a word w of length at least Np(M). Assume that
w is the shortest word with these properties. If |w|≤ Np(M) + Nc(M), then
there is nothing to prove. On the other hand, if |w|> Np(M) +Nc(M), then
we can apply the Cut-and-Paste Lemma to w, which yields a factorization
w = xyz such that |yz|≤ Nc(M), |y|> 0, and xz ∈ L(M). Thus, |w|> |xz|=
|w|−|y|≥ |w|−Nc(M) > Np(M), which contradicts our choice of w. Hence, we
see that L(M) is infinite iff it contains a word w such that Np(M) ≤ |w|≤
Np(M) +Nc(M).

Unfortunately, it is still an open question whether universality is decidable
for ORWW-automata in general, but for the case of ORWW-automata with a
unary input alphabet we have a decision algorithm.

Theorem 4.4.2. The following problem is decidable:
INSTANCE: An ORWW-automaton M with a unary alphabet Σ = {a}.
QUESTION: Is L(M) = Σ∗?

Proof. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORWW-automaton, let Np(M)

be the corresponding constant from the Pumping Lemma for M . We claim
that L(M) is universal if and only if an ∈ L(M) for all n < Np(M) +Np(M)!.

If L(M) = Σ∗, M obviously satisfies our universality condition. If L(M) 6=
Σ∗, then there exists a number k ∈ N such that ak /∈ L(M). Assume that k is
minimal. If we have the case that k < Np(M)+Np(M)!, M does not satisfy our
universality condition. Now, let us assume that k ≥ Np(M) +Np(M)!. Then
ak−Np(M)! ∈ L(M) as k is minimal. As |ak−Np(M)!|= k − Np(M)!≥ Np(M) +

Np(M)!−Np(M)!≥ Np(M), we can apply the pumping lemma. Thus, there
exists a constant 1 ≤ c ≤ Np(M) such that ak−Nc(M)!+c·i ∈ L(M) for all i ∈ N.
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Choose i = Np(M)!

c
. Then ak−Np(M)!+c·Np(M)!

c = ak−Np(M)!+Np(M)! = ak ∈ L(M)

which is obviously a contradiction.

Theorem 4.4.3. The following problem is decidable:
INSTANCE: An ORWW-automaton M with input alphabet Σ, and

three word u, v, x ∈ Σ∗.
QUESTION: Is the language L = {uxiv | i ≥ 1} contained in L(M)?

Proof. We use some closure properties to reduce this problem to the known
unary universality problem.

Let ϕ : {a, b, c} → Σ∗ with ϕ(a) = u, ϕ(b) = x and ϕ(c) = v. Then let
L1 = {abic | i ≥ 1}, which is a regular language, ψ : {a, b, c} → {a} with
ψ(a) = a, ψ(b) = a and ψ(c) = a be another morphism, and let L2 = {λ, a, aa}
be another regular language. Then we can determine an ORWW-automaton
M ′ for the unary language L′ = ψ(ϕ−1(L(M)) ∩ L1) ∪ L2. Now, we claim that
L is contained in L(M) if and only if L′ is universal. If L is contained in L(M),
then L′ = {an | n ∈ N} by construction.

Now if L′ is universal, then ψ(ϕ−1(L(M)) ∩ L1) ⊇ {ai | i ≥ 3}. Thus
{abic | i ≥ 1} ⊆ ϕ−1(L(M), which implies that L = {uxiv | i ≥ 1} ⊆ L(M).

Therefore, this decision problem is decidable, as it can be reduced to the
unary universality problem.

The next result, which is also derived from the Pumping Lemma, shows that
ORWW-automata only accept unary languages that are regular.

Theorem 4.4.4. For each ORWW-automaton M , if the language L(M) is
unary, then it is already regular.

Proof. Let M be an ORWW-automaton with input alphabet Σ = {a}, and let
α = Np(M) be the constant from the Pumping Lemma for M . For all integers
d satisfying 0 ≤ d < α!, we let Sd ⊆ N be defined as follows:

Sd := {n ≥ α | n ≡ d mod α! , an ∈ L(M) }.

By definition { an | n ∈ Sd } ⊆ L(M) for all 0 ≤ d < α!. On the other hand, if
an ∈ L(M) for some n ≥ α, then there exists an integer d, 0 ≤ d < α!, such
that n ≡ d mod α!. By the Pumping Lemma there also exists an integer c,
0 < c ≤ α, such that an+c·i ∈ L(M) for all i ∈ N. It follows that an+α!·i ∈ L(M)
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for all i ∈ N, as c is a proper divisor of α!. Hence, it follows that n ∈ Sd.
Moreover, it follows that n+ i · α!∈ Sd for all i ∈ N.

If Sd 6= ∅, it can be represented as the linear set Sd = {min (Sd) + i · α! | i ∈
N }. Therefore, if ψ : Σ∗ → N denotes the Parikh mapping defined by an 7→ n

(n ≥ 0), then

ψ(L(M)) = {n < α | an ∈ L(M) } ∪
α!−1⋃
d=0

Sd,

which shows that ψ(L(M)) is a semi-linear subset of N. Thus, it follows that
L(M) is indeed a regular language.

Remark 4.4.5. Actually, it can be shown that a regular expression can be
determined for the language L(M) of an ORWW-automaton M that has a
unary input alphabet.

Proof. The reason why we cannot easily determine the regular language with
the help of the proof above is that we do not know whether Sd is empty or
not. We can decide this by constructing the ORWW-automaton Md for the
language L(M) ∩ Td, where Td is the regular language

Td = {an | n > α, n ≡ d mod α! }.

We can then check L(Md) for emptiness and Sd is empty if and only if L(Md)

is empty. We know from the Cut-and-Paste Lemma that min (Sd) is smaller
than Nc(Md) if Sd is not empty. This can be easily checked. Thereby, a regular
expression for L(M) can be determined.

As unary ORWW languages are regular and we cannot imagine an ORWW
language that is not semi-linear, we may conjecture that all ORWW languages
are semi-linear.

One promising idea seems to use the definition of letter-equivalence to a
regular language. If we assume that every tape field content is changed at most
once, we could rearrange the letters in their rewrite order which would lead to
a regular language. Unfortunately, this idea was unrewarding so far as we were
not able to formalize and generalize it.
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4.5 Conclusion

The nondeterministic ordered restarting automata form a very interesting
model with an unusual language class, which still forms an abstract family of
languages. We can decide emptiness and finiteness by means of our special
pumping lemma. Unfortunately, it is not yet known whether universality is
decidable or not. In order to prove the decidability of the universality problem
it is unlikely that using the Pumping Lemma or the Cut-and-Paste Lemma will
be sufficient as also the context-free languages satisfy some kind of pumping
lemma. Their universality problem is known to be undecidable. One possible
approach would be to work directly with the patterns and perhaps argue with
antichains. But perhaps universality is not at all decidable. The question of
semi-linearity is also still open and we still have not even touched the topic of
transducers. Thus, there are still enough interesting unsolved problems.
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Chapter 5

Ordered RRWW-Automata

As we have seen ORWW-automata have very nice properties especially regarding
decidability. They can recognize all regular languages and even accept some
languages that are not growing context-sensitive. Nevertheless, these automata
do not accept some languages we would like them to accept, e.g. the very
simple deterministic linear language L = {anbn | n ∈ N}. One reason for this
restriction is the strong emphasis on the left sentinel.

After exploring different variations that accept this language, we opted for
the classic variation, the ORRWW-automaton. As the name suggests, this is
an ORWW-automaton with separate rewrite and restart operations instead of
the combined rewrite/restart operation. This means that we do not have to
execute a restart operation immediately after a rewrite, but we can execute
additional MVR operations in between a rewrite and the subsequent restart.

Like before, we start with the definition of the generic automaton, the
nondeterministic automaton with states. Then we look at how we realize
limitations and how this affects the language class.

5.1 Definition

An ordered RRWW-automaton (ORRWW-automaton) is a one-tape machine
that is described by an 8-tuple M = (Q,Σ,Γ,�,�, q0, δ, >), where Q is a finite
set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet such that
Σ ⊆ Γ, the letters �,� 6∈ Γ serve as markers for the left and right border of
the work space, respectively, q0 ∈ Q is the initial state, > is a strict partial
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ordering on Γ, and

δ : (Q× ((Γ ∪ {�})≤1 · Γ · (Γ ∪ {�}))) ∪ {(q0,��)}
→ 2(Q×({MVR}∪Γ))∪{Restart} ∪ {Accept}

is the transition relation, which describes four different types of transition steps:

(1) A move-right step has the form (q′,MVR) ∈ δ(q, a1a2a3), where q, q′ ∈ Q,
a1 ∈ Γ∪{�} and a2, a3 ∈ Γ. It causesM to shift the window one position
to the right and to change to state q′. Observe that no move-right step is
possible, if the window contains the right delimiter �.

(2) A rewrite step has the form (q′, b) ∈ δ(q, a1a2a3), where q, q′ ∈ Q, a1 ∈
Γ ∪ {�}, a2, b ∈ Γ, and a3 ∈ Γ ∪ {�} such that a2 > b holds. It causes
M to replace the letter a2 in the middle of its window by the letter b, to
move the window one position to the right, and to change to state q′.

(3) A restart step has the form Restart ∈ δ(q, a1a2a3), where q ∈ Q, a1, a2 ∈ Γ,
and a3 ∈ Γ ∪ {�}, or a1 ∈ Γ, a2 = �, and a3 = λ (the empty word). It
causes M to restart, that is, the window is moved back to the left end of
the tape, and M is reset to the initial state q0.

(4) An accept step has the form δ(q, a1a2a3) = Accept, where a1 ∈ Γ ∪ {�},
a2 ∈ Γ, and a3 ∈ Γ ∪ {�}, or a1 ∈ Γ, a2 = �, and a3 = λ. It causes
M to halt and accept. In addition, we allow an accept step of the form
δ(q0,��) = Accept.

If δ(q, u) = ∅ for some pair (q, u), then M halts, when it is in state q with
u in its window, and we say that M rejects in this situation. The letters in
ΓrΣ are called auxiliary letters. If |δ(q, u)|≤ 1 for all pairs (q, u), then M is a
deterministic ORRWW-automaton (det-ORRWW-automaton). In that case
we also use the partial transition function

δ : (Q× ((Γ ∪ {�})≤1 · Γ · (Γ ∪ {�}))) ∪ {(q0,��)}
 (Q× ({MVR} ∪ Γ)) ∪ {Restart,Accept}

Observe that for general RRWW-automata, a rewrite operation (q′, v) ∈
δ(q, u) replaces the factor u by the word v, changes the state to q′, and moves
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the window immediately to the right of v. In our case this would mean that
a rewrite operation (q′, b) ∈ δ(q, abc) should move the window three steps to
the right, as it rewrites the factor abc into the word ab′c. However, for the
stateless variant (that is, q0 is the only state) this would mean that after a
rewrite no information on the new letter would be available to the automaton,
and therefore we have chosen the above interpretation for the rewrite step.

A configuration of an ORRWW-automaton M is a word of the form αqβ,
where q ∈ Q is a state, and αβ ∈ {�} · Γ∗ · {�} such that |β|≥ 2, and either
α = λ and β ∈ {�} · Γ+ · {�} or α ∈ {�} · Γ∗ and β ∈ Γ+ · {�}; here αβ is
the current content of the tape, and it is understood that the window contains
the first three letters of β or all of β, if |β|< 3. In addition, we admit the
configuration q0 � �. A restarting configuration has the form q0 � w�; if
w ∈ Σ∗, then q0 � w� is also called an initial configuration. Further, we use
Accept to denote the accepting configurations, which are those configurations
that M reaches by an accept step. A configuration of the form αqβ such that
δ(q, β1) = ∅, where β1 is the current content of the window, is a rejecting
configuration. A halting configuration is either an accepting or a rejecting
configuration. By `M we denote the single-step computation relation that M
induces on the set of configurations, and the computation relation `∗M of M is
the reflexive and transitive closure of `M .

Any computation of an ORRWW-automaton M consists of certain phases.
A phase, called a cycle, starts in a restarting configuration, the head is moved
along the tape by MVR steps until a rewrite step is performed, which replaces a
letter by a smaller one. After that further MVR steps may follow until, finally,
a restart step is executed and thus, a new restarting configuration is reached. If
no further restart operation is performed, any computation necessarily finishes
in a halting configuration – such a phase is called a tail. It is required that each
cycle contains exactly one rewrite step, and a tail may contain at most a single
rewrite step. By `cM we denote the execution of a complete cycle, and `c∗M is
the reflexive transitive closure of this relation. It can be seen as the rewrite
relation that is realized by M on the set of restarting configurations.

An input w ∈ Σ∗ is accepted by M , if there is a computation of M which
starts with the initial configuration q0 �w� and ends with an accept step. By
L(M) we denote the language L(M) = {w ∈ Σ∗ | q0 �w� `∗M Accept }.
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As each cycle contains a rewrite operation, which replaces a letter a by a
letter b that is strictly smaller than a with respect to the given ordering >, we
see that each computation of M on an input of length n consists of at most
(|Γ|−1) · n many cycles. Thus, M can be simulated by a nondeterministic
single-tape Turing machine in time O(n2). The following example illustrates
the way in which a deterministic ORRWW-automaton works.

Example 5.1.1. For m ≥ 1, let Lch,m be the following language:

Lch,m = {w1w2 . . . wn ∈ {a, b}n | n ≥ 2m and wm = wn+1−m = wn },

that is, a word w of length n ≥ 2m belongs to this language iff the m-th
letter and the m-th last letter both coincide with the last letter of w. We
define a det-ORRWW-automaton M = (Q,Σ,Γ,�,�, q0, δ, >) by taking Q =

{q0, q1, . . . , qm−1, qa, qb, qr}, Σ = {a, b} and Γ = Σ ∪ {a1, b1, x2, x3, . . . , xm−1},
by defining the partial ordering > through a > a1 > xi and b > b1 > xi for
all i = 2, 3, . . . ,m − 1, and by specifying the transition function through the
following table, where c, d, e, f ∈ Σ:

δ(q0,�cd) = (q1,MVR),

δ(qi, cde) = (qi+1,MVR) for all i = 1, 2, . . . ,m− 2,

δ(qm−1, dce) = (qc,MVR),

δ(qc, def) = (qc,MVR),

δ(qc, de�) = (qr, e1),

δ(qc, def1) = (qr, x2),

δ(qc, dexi) = (qr, xi+1) for all i = 2, 3, . . . ,m− 2,

δ(qc, dcxm−1) = (qc,MVR),

δ(qc, cxm−1xm−2) = (qc,MVR),

δ(qc, xi+2xi+1xi) = (qc,MVR) for all i = 2, 3, . . . ,m− 3,

δ(qc, x3x2c1) = (qc,MVR),

δ(qc, x2c1�) = Accept,

δ(qr, xi+2xi+1xi) = (qr,MVR) for all i = 2, 3, . . . ,m− 3,

δ(qr, x3x2c1) = (qr,MVR),

δ(qr, x2c1�) = Restart,

δ(qr, c1�) = Restart.
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Using its states M counts from left to right until it sees the m-th letter, say c,
which it then remembers in its state. Then it rewrites the last m − 1 letters
from right to left, rewriting the last letter, say wn = d, into d1, and the letters
wn−1, wn−2, . . . , wn+2−m into x2, x3, . . . , xm−1. This is possible because the m-th
last letter of w is not to the left of the m-th letter. Finally, it checks whether
wn+1−m, which is the letter immediately before xm−1, coincides with wm = c.
In the affirmative, M moves to the right, where it compare wm = wn+1−m = c

to the last letter d (or rather its encoding d1). If a positive result is returned,
then M accepts. It is easily seen that L(M) = Lch,m holds.

The ORWW-automaton studied in the previous chapters differs from the
ORRWW-automaton in that the rewrite and restart operations are combined
into a joint operation, that is, such an automaton restarts immediately after
executing a rewrite step. Obviously, (deterministic) ORWW-automata can
be simulated by (deterministic) ORRWW-automata. Thus, it follows that all
regular languages are accepted by det-ORRWW-automata. However, in the
deterministic case also the converse holds and deterministic ORRWW-automata
can be simulated by deterministic ORWW-automata.

Lemma 5.1.2. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be an ORRWW-automaton.
Then there exists an ORRWW-automaton M ′ that accepts at the right sentinel.

Proof. The construction and proof is the same as for the ORWW-automaton
(see the remark after Lemma 4.2.1).

Theorem 5.1.3. L(det-ORRWW) = REG.

Proof. Let M = (Q,Σ,Γ,�,�, q0, δ, >) be a det-ORRWW-automaton, and
let L = L(M). Without loss of generality we can assume that M performs
restart and accept operations only at the right delimiter �. We present a det-
ORWW-automaton M ′ = (Q′,Σ,Γ′,�,�, q0, δ

′, >′) that simulates M . Then
L(M ′) = L(M) = L, which implies that L is a regular language. Each cycle of
a computation of M is of the following form, where u, v ∈ Γ∗, a, b, b′, c, d, e ∈ Γ,
and q1, q2, q3 ∈ Q:

q0 � uabcvde� `1+|u|
MVR �uq1abcvde� `Rewrite �uaq2b

′cvde�

`|v|+2
MVR �uab′cvq3de� `Restart q0 � uab′cvde�,
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and in the next cycle M moves its window at least until it contains the newly
written letter b′ before the next rewrite step can be executed. In order for the
det-ORWW-automaton M ′ to be able to correctly simulate the above cycle,
M ′ must ensure (or verify) in some way that after the above rewrite operation
M will eventually perform a restart. For this we let M ′ perform some kind
of preprocessing during which it encodes certain additional information on its
tape.

For each word w ∈ Γ+, |w| ≥ 2, and each letter a ∈ Γ, we define two sets
Q

(a)
rs (w) and Q(a)

+ (w) as follows, where w = w1bc for b, c ∈ Γ:

Q
(a)
rs (w) = { p ∈ Q | �paw� `|w|−1

MVR �aw1p
′bc� `Restart q0 � aw� } and

Q
(a)
+ (w) = { p ∈ Q | �paw� `|w|−1

MVR �aw1p
′bc� `Accept Accept }.

Now if the det-ORWW-automaton M ′ is to simulate the above cycle of M ,
then from the fact that q2 ∈ Q(b′)

rs (cvde) it sees that M will actually restart at
the right end of the tape, and hence, it can safely perform the same rewrite
operation and restart. Accordingly, we define a precomputation for M ′ that
assigns, from right to left, the collection of sets (Q

(a)
rs (z), Q

(a)
+ (z))a∈Γ to the first

letter z1 of each suffix z of the given input w. Thus, we define

Γ′ = Σ ∪ { (A, (Q
(a)
1 , Q

(a)
2 )a∈Γ) | A ∈ Γ, Q

(a)
1 , Q

(a)
2 ⊆ Q },

take Q′ = Q ∪ {qC}, define >′ by taking A >′ (A, (Q
(a)
1 , Q

(a)
2 )a∈Γ) for all A ∈ Γ

and all Q(a)
1 , Q

(a)
2 ⊆ Q and (A, (Q

(a)
1 , Q

(a)
2 )a∈Γ) >′ (B, (P

(a)
1 , P

(a)
2 )a∈Γ) if A > B.

The transition function can now be defined in such a way that M ′ first
encodes the information on the sets (Qrs, Q+)a∈Γ proceeding from right to left
until it detects the position, say i, at which the next rewrite operation ofM is to
be simulated. Based on the information from the encoded sets of states, it then
simulates this rewrite step, updating also the information on the stored sets of
states of M at the current position. For this, it can extract the information
on the corresponding sets from the symbol stored at position i+ 1. Observe
that in the next cycle, M cannot execute a rewrite step until it has the newly
written symbol in its window, that is, not to the left of position i− 1.

It can be shown that in this way M ′ can simulate M correctly, implying
that L(M ′) = L(M). Thus, L(det-ORRWW) = L(det-ORWW), which implies
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that L(det-ORRWW) coincides with the class REG of regular languages.

5.2 Stateless ORRWW-Automata

For restarting automata in general, each RR-variant is at least as powerful as
the corresponding R-variant, but for stateless automata the situation is not
that obvious. The feature of continuing to read the tape after a rewrite step has
been executed is problematic for these automata, as they cannot distinguish
between the phase of a cycle before the rewrite step and the phase after the
rewrite step on their own. Clearly, this distinction is important, since no rewrite
steps may appear in the latter phase. For general restarting automata, this
is avoided by using states, but how to deal with this situation for stateless
RR-automata?

In [23] this problem has been addressed for various types of deterministic
restarting automata, and two options for dealing with it have been proposed.
First, one can interpret any additional rewrite step within a cycle as a reject.
Also a cycle without a rewrite step is regarded as a rejecting computation.
However, this approach amounts to an external supervisor that aborts the
computation in these unwanted situations. Here we rather follow the second
option presented in [23] in which two phases of each cycle are distinguished: the
first phase, which ends with the execution of a rewrite operation, and the second
phase, which starts after the execution of a rewrite operation and ends with
either a restart or an accept step. These two phases are realized by providing
two separate transition functions. In [23] the corresponding stateless restarting
automata are called two-phase restarting automata, but as we will only deal
with this type of stateless ORRWW-automata, we just call them stateless
ORRWW-automata (stl-ORRWW-automata). Formally these automata are
defined as follows.

Definition 5.2.1. A stl-ORRWW-automaton is described by a 7-tuple M =

(Σ,Γ,�,�, δ1, δ2, >), where Σ, Γ, �, �, and > are defined as for ORRWW-
automata, and

δ1 : ((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��} → 2Γ∪{MVR} ∪ {Accept}
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and
δ2 : (Γ≤2 · (Γ ∪ {�}))→ 2{MVR}∪{Restart} ∪ {Accept}

are the transition relations. Here it is required that b > b′ holds for each rewrite
instruction b′ ∈ δ1(abc).

Based on our previous definitions we do not allow any other operations if
we can execute an Accept operation.

A configuration of M is written as a pair (α, β), where αβ is the current
content of the tape and the window contains the prefix of β. On input a word
w ∈ Σ+, the computation starts with the initial configuration (λ,�w�). First
the transition relation δ1 is used until either an accept instruction is reached, a
rewrite instruction b′ ∈ Γ is reached, or the window contains a word for which
δ1 is undefined. In the first case, M accepts, in the second case the letter in the
middle of the window is replaced by the letter b′, the window is moved one step
to the right, and the computation is continued using the transition relation δ2.
Finally, in the third case M simply halts without accepting. The transition
relation δ2, which is used in the second phase of a cycle after the execution of
a rewrite step, shifts the window to the right until either an accept instruction
is executed, and then M accepts, until a restart instruction is executed, which
resets the window to the left end of the tape and starts the next cycle, or until
a window content is reached for which δ2 is undefined. In the latter case M
halts without accepting. For w = λ, there either is no applicable operation for
the configuration (λ,��), or δ1(��) = Accept. By L(M) we denote again the
language consisting of all input words that M accepts.

Theorem 5.2.2. L(stl-det-ORRWW) = L(stl-ORRWW) = REG.

Proof. If L is a regular language, then there exists a stl-det-ORWW-automaton
M = (Σ,Γ,�,�, δ, >) for L. FromM we obtain an equivalent stl-det-ORRWW-
automaton M ′ = (Σ,Γ,�,�, δ1, δ2, >) by defining δ1 = δ and δ2(abc) = MVR

and δ2(de�) = {Restart} for all a, b, c ∈ Γ and de ∈ Γ≤2. Hence, REG ⊆
L(stl-det-ORRWW) ⊆ L(stl-ORRWW) follows.

Conversely, let M = (Σ,Γ,�,�, δ1, δ2, >) be a stl-ORRWW-automaton. We
will prove that L(M) is a regular language. Let w ∈ L(M), let m be an
integer such that 1 ≤ m ≤ |w|, and let C be an accepting computation of
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M on input w. During this computation M executes certain operations at
position m, that is, when position m is in the middle of the window of M .
These operations may include rewrite steps b′ ∈ δ1(abc), move-right steps
MVR ∈ δ1(abc) or MVR ∈ δ2(abc), restart steps Restart ∈ δ2(abc), and accept
steps δ1(abc) = Accept or δ2(abc) = Accept. As by a rewrite step, the letter in
the middle of the window is replaced by a smaller letter with respect to >, the
rewrite steps that occur at position m are obviously ordered. Before the first
rewrite step, and between two successive rewrite steps, a sequence of move-right
steps may occur at position m. Here again, an ordering is induced by >, if one
of the letters at position m− 1 or m + 1 is rewritten during this part of the
computation. What remains is the case that a sequence of move-right steps
occurs at position m that all have the same left-hand side, that is, they are all
applied to the same window content abc. Some of them may be δ1-steps, while
others may be δ2-steps. By associating the number 1 with a positive number of
δ1-steps and the number 2 with a positive number of δ2-steps, we can assign a
type t ∈ (1 · (2 · 1)∗ · {2, λ}) ∪ (2 · (1 · 2)∗ · {1, λ}) to this sequence.

We claim that by rearranging the corresponding cycles of the computation
C, this computation can be transformed into a computation C ′ for which the
type of any sequence of move-right steps with the same window content at
position m is of length at most three, that is, only the six types from the set
T = {1, 2, 1 · 2, 2 · 1, 1 · 2 · 1, 2 · 1 · 2} occur. Additionally, we demand that all
cycles associated to a single number 1 appear back to back in the computation.
We call this computation normalized.

But let us first look at the proof of the claim. Let o1, o2, . . . , ok be a sequence
of move-right operations that occur within an accepting computation C of
M on input xz at the position |x|, where all these operations are applied to
the same window content abc. Some of these operations may be δ1-operations,
which then belong to cycles of C that perform their rewrite steps within the
suffix z, and others may be δ2-operations, which belong to cycles of C that
perform their rewrite steps within the prefix x. By assigning the letter 1 to
each maximal subsequence that only consists of δ1-steps, and by assigning the
letter 2 to each maximal subsequence that only consists of δ2-steps, we obtain
the type t = t(o1, o2, . . . , ok) ∈ (1 · (2 · 1)∗ · {2, λ}) ∪ (2 · (1 · 2)∗ · {1, λ}) of this
sequence. We claim that by rearranging the corresponding cycles of C, we
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obtain an equivalent computation C ′ such that the corresponding sequence of
move-right operations is of a type t′ ∈ T .

This can be proven as follows. Assume that t 6∈ T . Then t = 1 · 2 · 1 · 2 · t̂
or t = 2 · 1 · 2 · 1 · t̂ for some type t̂. Let us first assume the former. Then the
sequence of cycles of C that correspond to the prefix of type 1 · 2 · 1 · 2 of the
sequence o1, o2, . . . , ok of move-right operations performs the following actions
on x1z1, where x1 and z1 are the successors of x and z that are produced by the
cycles proceeding the ones containing these move-right operations, and where
we overline the part that is being rewritten by the corresponding cycles:

x1z1 →+
MVRδ1

x1z2 →+
MVRδ2

x2z2 →+
MVRδ1

x2z3 →+
MVRδ2

x3z3.

During the first group of cycles containing the move-right steps of δ1, M reads
across the prefix x1 and rewrites z1 into z2, while in the second group of cycles
containing the move-right steps of δ1, M reads across the prefix x2 and rewrites
z2 into z3. Obviously, these cycles can be combined such thatM reads across x1

and rewrites z1 all the way into z3. During the first group of cycles containing
the move-right steps of δ2, M rewrites x1 into x2, and it moves across the
suffix z2, while in the second group of cycles containing the move-right steps of
δ2, M rewrites x2 into x3, and it moves across the suffix z3. Again these cycles
can be combined such that M rewrites x1 all the way to x3, while moving right
across the suffix z3, that is, we obtain the following partial computation:

x1z1 →+
MVRδ1

x1z2 →+
MVRδ1

x1z3 →+
MVRδ2

x2z3 →+
MVRδ2

x3z3.

The sequence of move-right steps at position |x| of this computation has type
1 · 2 only, that is, we can replace C by an equivalent computation C ′ such that
the corresponding sequence of move-right steps has the type 1 · 2 · t̂.

For the case t = 2 · 1 · 2 · 1 · t̂, it can be shown analogously that there exists
an equivalent computation such that the corresponding sequence of move-right
steps has the type 2 · 1 · t̂. Iteratively it follows that there exists an equivalent
computation for which the corresponding sequence of cycles has a type t′ ∈ T .

Now let Ω be the following extended set of operations of M , where a ∈
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Γ ∪ {�}, b, b′ ∈ Γ and c ∈ Γ ∪ {�}:

Ω = { (a, b, c, b′) | b′ ∈ δ1(abc) } ∪ { (a, b, c, t) | t ∈ T } ∪
{ (a, b, c,−) | δ2(abc) 3 Restart } ∪ { (a, b, c,+i) | i = 1, 2, δi(abc) = Accept }.

Then the sequence of operations that are executed byM during the computation
C ′ at position m can be described by a word AC′m (w) ∈ Ω∗. In fact, as at most
|Γ|−1 rewrite steps can occur in this sequence, AC′m (w) is of length O(|Γ|).

With each word w ∈ Σ+, we now associate the sets

S1(w) =
{
AC|w|(wz) | z ∈ Σ∗, C a valid comp. for wz accepting at a pos. ≤ |w|

}
and

S2(w) =
{
AC|w|(wz) | z ∈ Σ∗, C a valid comp. for wz accepting at a pos. > |w|

}
.

For proving the regularity of L(M), we use the Myhill-Nerode Theorem. We will
show that there are no distinguishing extensions for x, y ∈ Σ+ if Si(x) = Si(y)

for i = 1, 2. Accordingly, let z ∈ Σ∗ such that xz ∈ L(M). Then there exists
a number i ∈ {1, 2} and a normalized accepting computation Cxz of M such
that ACxz|x| (xz) = A ∈ Si(x). As Si(y) = Si(x), there exists a word u ∈ Σ∗ and
a normalized accepting computation Cyu of M such that ACyu|y| (yu) = A. We
claim that there is also an accepting computation C ′ of M for the word yz. We
consider the sequences of cycles of Cyu and Cxz which serve as working lists for
constructing the cycles of C ′ that have their rewrite operations in the y-part
and the z-part, respectively. We construct the computation C ′ for the word yz
as follows. We divide the cycles into groups according to the different types of
MVR-patterns. All consecutive cycles that contribute to the same number 1
in one pattern form a group of type 1. All consecutive cycles from the first to
the last cycle that contribute to a single number 2 belong to a group of type 2.
Note that such a group may include short cycles that do not have a δ2-MVR
operation at the border. Additionally, each cycle that does a rewrite at the
border forms a rewrite group. We see that we have the same groups in Cyu and
Cxz. There may be some short cycles that do not belong to a group.

We consider the group of cycles or ungrouped short cycles of Cyu one after
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another. If we have a short cycle, we just append it to C ′ as the u-part is
not involved. If we have a cycle of the rewrite group, we take the cycle up to
position |y| and complement it with the second part of the corresponding cycle
of Cxz. If we have a group of type 1, we take the part up to position |y|−1 of
the first cycle and call it c0. Then, we take all last parts starting at position
|x| of the cycles of the corresponding group of Cxz and call them c1, . . . , ck.
Finally, we append the cycles c0c1, . . . , c0ck to C ′. The computation C ′ stays
valid, as these new cycles do not make any changes in the y-part. Therefore, it
is possible to execute c0c1, . . . , c0ck in that order. If we have a group of type
2, we take the last part of the first cycle of the corresponding group of Cxz
starting at position |x| and call it ct. Then, we replace the last part of each
cycle of the current group of Cyu starting at position |y| by ct if the cycle has a
length > |y|. Finally, we append all these cycles to C ′. The computation C ′

stays valid, as there are no changes in the |z|-part.
This construction ends as soon as an accepting tail is encountered, which

happens eventually as the computations Cxz and Cyz either both accept in the
z-part or they both accept to the left of this part.

As there are only finitely many words AC′m (w) ∈ Ω∗ that can occur as
descriptions of sequences of operations of M , there are only finitely many
different sets S1(x) and S2(x). Hence, the Myhill Nerode relation of L(M) is
of finite index, which means that L(M) is indeed a regular language.

We have seen that the stateless ORRWW automata again characterize the
regular languages. This may come as a surprise at first, since there is no obvious
direct simulation of a valid computation using stateless ORWW automata or
NFA. This is only possible by normalizing the computation cycles.

Now, however, we turn our attention to a variant that can obviously represent
more than the regular languages, namely the non-deterministic ORRWW
automata with states.

5.3 Nondeterministic ORRWW-Automata

In Section 4.2 it was shown that the class L(ORWW) of languages that are
accepted by ORWW-automata is an abstract family of languages that is
in addition closed under intersection, but that is not closed under reversal
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and complementation. In addition, this class contains a language that is
not even growing context-sensitive, while at the same time it does not even
contain the deterministic linear language { anbn | n ≥ 1 }. Thus, this class
is incomparable to the (deterministic) linear languages, the (deterministic)
context-free languages, and the growing context-sensitive languages. However,
the following inclusion obviously holds.

Lemma 5.3.1. L(ORWW) ⊆ L(ORRWW).

Actually, this inclusion is proper. While the context-free language L =

{ anbn | n ≥ 1 } is not accepted by any ORWW-automaton, all context-free
languages are accepted by ORRWW-automata.

Theorem 5.3.2. CFL ( L(ORRWW).

Proof. Let L ⊆ Σ+ be a context-free language that does not contain the empty
word. Then there exists a grammar G = (N,Σ, P, S) in quadratic Greibach
normal form that generates L (see, e.g., [2]), that is, each production of P is of
the form A→ a, A→ aB, or A→ aBC, where a ∈ Σ and A,B,C ∈ N .

The language L is accepted by the ORRWW-automaton M =

(Q,Σ,Γ,�,�, q0, δ, >) that works as follows. Given an input w ∈ Σ+, M
guesses a leftmost derivation of w in G. In each step of this derivation the
next symbol a of w must be produced by applying a corresponding production.
Thus, the symbol a must be marked as having been read, and the nonterminals
produced by that step are written in reverse order on the tape, where the
rightmost of these nonterminals is marked as being ‘active.’ Now in each
phase a production A → aT is chosen that has the active nonterminal A as
its left-hand side and that produces the next symbol a of w on its right-hand
side. Then the symbol a is replaced by an encoding of TR, which is tagged.
After that the marked nonterminal is deleted, the tag is being removed, and
the rightmost of the remaining nonterminals is again marked as ‘active.’

Formally the automaton M is defined as follows. We take the tape alphabet

Γ = Σ ∪ {[λ], [B], [BC], [B], [BC], [̃λ], [̃B], [̃BC] |B,C ∈ N}

with the partial ordering

a > [̃CB] > [̃C] > [̃λ] > [CB] > [CB] > [C] > [C] > [λ].
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The set of states Q and the transition relation δ are defined in such a way
that, in each cycle, M scans its tape from left to right and executes one of
the following steps depending on the form of the word on the tape. In the
following we have a ∈ Σ, B,C,D,E ∈ N , and we use R to denote the set
R = { [λ], [A], [AB] | A,B ∈ N }:

1. If the word on the tape is of the form {a} · Σ∗, then M can replace a
by [λ], if there is a production S → a, by [B], if there is a production
S → aB, or by [CB], if there is a production S → aBC.

2. If the word on the tape is of the form R∗ · {[B], [CB]} · {[λ]}∗ · Σ∗, then
M replaces [B] (or [CB]) by [B] (or [CB]).

3. If the word on the tape is of the form R∗ · {[B], [CB]} · {[λ]}∗ · {a} · Σ∗,
thenM can replace a by [̃λ], if there is a production B → a, by D̃, if there
is a production B → aD, or by ẼD, if there is a production B → aDE.

4. If the word on the tape is of the form

R∗ · {[B], [CB]} · {[λ]}∗ · {[̃λ], [̃D], [̃ED]} · Σ∗,

then M replaces [B] (or [CB]) by [λ] (or [C]).

5. If the word on the tape is of the form R∗ · {[λ]}∗ · {[̃λ], [̃D], [̃ED]} · Σ∗,
then M removes the tilde from [̃λ], [̃D], or [̃ED].

6. Finally, M halts and accepts, if the tape contains a word from {[λ]}∗.

It can easily be seen that L(M) = L, as the transitions of M are in close
correspondence to the productions of G.

First, we show that L(G) ⊆ L(M). We claim that, for each derivation
S →i αβ, where α ∈ Σ+ and β ∈ N∗, and every word v ∈ Σ∗, there is a valid
computation q0 �αv� `c

∗
M q0 �γv� of M , where γ ∈ R∗ and β = f(γ)R. Here

f : R∗ → V ∗ denotes the morphism that is defined as follows:

f(x) =


B, if x = [B],

BC, if x = [BC],

λ, otherwise.
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We proceed by induction on the length i of the derivation. For i = 1, we have
the derivation S → a, S → aB or S → aBC, which leads to the computation
q0 �av� `cM q0 �[λ]v�, q0 �av� `cM q0 �[B]v�, or q0 �av� `cM q0 �[CB]v�.

For i > 1, the derivation is of the form S →i−1 αAβ → αaTβ, where
T ∈ {λ,B,BC}. By the induction hypothesis, we get the computation

q0 �αav� `c
∗

M q0 �γ
′av�,

where f(γ′)R = Aβ. From the definition of the transitions of M , we see that

q0 �γ
′av� `cM q0 �γ′av� `cM q0 �γ′ [̃TR]v� `cM q0 �γ [̃TR]v� `cM q0 �γ[TR]v�,

where γ′ is the word that is created from γ′ by overlining the last letter that
is not [λ], and γ is created from γ′ by deleting the overlined letter, where
f(γ)R = β holds. This gives our result, as f(γ[TR])R = (f(γ) · f([TR]))R = Tβ.
For each w ∈ L(G), we have S →∗ w, and therefore, we have a valid computation
q0�w� `c

∗
M q0�γ� such that f(γ)R = λ. This can only be the case if γ ∈ {[λ]}∗,

which leads to the accepting computation

q0 �w� = q0 �w1 . . . wn� `c
∗

M q0 �[λ]n� `cM Accept.

Next, we show that L(M) ⊆ L(G), which can be shown similarly. By
induction on k, we show that, for every computation

q0 �w1 . . . wn� `c
∗

M q0 �γwn−k+1 . . . wn�,

where γ ∈ R∗, there is a leftmost derivation S →∗ w1 . . . wkβ such that
f(γ) = βR. The case k = 1 follows directly from the definition of the automaton.
For k > 1, we have the valid computation

q0 �w1 . . . wn� `c
∗

M q0 �γ
′wn−k . . . wn� `c

∗

M q0 �γwn−k+1 . . . wn�,

where f(γ′) = n1 . . . nlA and f(γ) = n1 . . . nlW for a production A → wkW .
This leads to the derivation S →∗ w1 . . . wk−1β

′ → w1 . . . wkβ, where β′R =

f(γ′) = n1 . . . nlA. We conclude that βR = n1 . . . nlW , which proves our claim.
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For each w ∈ L(M), we have

q0 �w� = q0 �w1 . . . wn� `c
∗

M q0 �[λ]n� `cM Accept.

Therefore, there exists a derivation S →∗ w1 . . . wn = w, which shows that
w ∈ L(G).

If the language L contains the empty word, we apply the above construction
to the language Lr {λ} and then add the transition δ(q0,��) = Accept.

Since Lcopy = {ww | w ∈ {a, b}∗} is contained in L(ORRWW), but it is
neither contained in L(ORWW) nor in CFL, we get the following corollary.

Corollary 5.3.3. L(ORWW) ∪ CFL ( L(ORRWW).

In Section 4.2 it is shown that L(ORWW) is an abstract family of languages
that is closed under intersection. The same proof can be used to show the
following.

Theorem 5.3.4. L(ORRWW) is closed under union, intersection, product,
Kleene star, inverse morphisms, and non-erasing morphisms.

In contrast to the situation for ORWW-automata, we know that the lan-
guage class described by the ORRWW-automata is not closed under deleting
morphisms. Since for every Turing machine the language of valid computations
is included in L(ORRWW), all recursively enumerable languages would also be
contained if we had closure under deleting morphisms.

Additionally, in contrast to the situation for ORWW-automata, the class
L(ORRWW) is closed under the operation of reversal.

Proposition 5.3.5. For each ORRWW-automaton M , there exists an
ORRWW-automaton M ′ such that L(M ′) = L(M)R.

Proof. Let M be an ORRWW-automaton. As for general RRWW-automata,
the behavior ofM can be described by finitely many rewriting meta instructions
of the form (E1, abc → adc, E2) and accepting meta-instructions of the form
(E,Accept), where E,E1, E2 are regular expressions (see Definition 2.3.3). By
replacing the former by (ER

2 , cba → cda, ER
1 ) and the latter by (ER,Accept),

we obtain an ORRWW-automaton M ′ for the language L(M)R.
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Finally, the following result shows that ORRWW-automata can even accept
some unary languages that are not context-free.

Proposition 5.3.6. The unary language L = { an | ∃p, q > 1 : n = p · q } is
accepted by an ORRWW-automaton.

Proof. The languages L1 = { anbn | n > 1 }, L2 = { bnan | n > 1 }, L3 =

{ an | n ≥ 1 }, and L4 = { bn | n ≥ 1 } are all context-free and, therefore, they
are accepted by ORRWW-automata. Now let ϕ : {a, b}∗ → {a}∗ denote the
morphism that is defined by ϕ(a) = ϕ(b) = a. It is easily seen that

L = ϕ
((
L+

1 ∪ L+
1 · L3

)
∩ (L3 · L∗2 ∪ L3 · L∗2 · L4)

)
.

Hence, by Theorem 5.3.4, L is accepted by an ORRWW-automaton.

Proposition 5.3.7. The unary language Lexpo = { ak | ∃i ∈ N : k = 2i } is
accepted by an ORRWW-automaton.

Proof. The automaton works as follows. In the first phase, it marks every
second letter for deletion, and in the second phase all those letters are marked
as deleted. By using this method we ensure that we really halve the number of
letters each time. The corresponding transition function can be realized with
the following modified meta instructions.

(�ac∗�,Accept)

(�a(c∗bc∗a)∗c∗, a→ b, (a|c)∗�)

(�(a|c)∗, b→ c, a(c∗bc∗a)∗c∗�)

The automaton M accepts the word a8 with the following rewrites: In the first
cycle the word aaaaaaaa is rewritten into abaaaaaa which becomes abababab
after another three cycles which end the first phase of marking every second
letter for deletion. In the second phase each letter b is replaced by the letter c
from left to right. It is important that we have alternating letters a and b right
to the rewrite position. This leads to the word acacacac. In the next phase we
get acbcacbc which changes into acccaccc which becomes acccbccc and finally
accccccc. This word is finally accepted.
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Although the automaton is nondeterministic there is only one unique com-
putation. Even more, there is only one valid choice of a rewrite position for
each step. Therefore, we have a unique sequence of tape contents.

This allows us the construction of an ORRWW-automaton for the comple-
mentary language.

Proposition 5.3.8. The unary language Lexpo = { ak | @i ∈ N : k = 2i } is
accepted by an ORRWW-automaton.

Proof. As our ORRWW-automaton has a unique sequence of tape contents
for each word, we can interchange Accept and Reject conditions in order to
construct the automaton for the complement. We obviously reject if we get an
odd number of letters a after a phase of halving the number of letters.

(�a(c∗ac∗a)+�,Accept)

(�a(c∗bc∗a)∗c∗, a→ b, (a|c)∗�)

(�(a|c)∗, b→ c, a(c∗bc∗a)∗c∗�)

We conjecture that we can only construct a complementary ORRWW-
automaton if there is an ORRWW automaton with an unique sequence of tape
contents.

We complete this section by shortly looking at some decision problems for
ORRWW-automata. It has been shown in Section 4.3 that the emptiness
and finiteness problems are decidable for ORWW-automata. However, as
each context-free language is accepted by an ORRWW-automaton, and as the
language class L(ORRWW) is closed under intersection, we obtain the following
undecidability result from the undecidability of the intersection-emptiness
problem for context-free languages.

Corollary 5.3.9. The emptiness problem for ORRWW-automata is undecid-
able.

From an ORRWW-automaton M , we can construct an ORRWW-automaton
M ′ for the language L(M) · Σ+, as the proof of Theorem 5.3.4 is actually

140



constructive. Now, L(M ′) is finite, iff L(M) is empty. Thus, from the undecid-
ability of the emptiness problem, we immediately get the following.

Corollary 5.3.10. The finiteness problem for ORRWW-automata is undecid-
able.

Finally, from the corresponding results for context-free languages, it follows
that also for ORRWW-automata, universality, regularity, inclusion and equiva-
lence are all undecidable as every context-free languages can be represented by
an ORRWW-automaton.

5.4 Concluding Remarks about ORRWW-

automata

ORRWW automata clearly have more expressive power than ORWW-automata
and we can represent many languages with them. The downside of the greater
power is the undecidability of all decision problems of interest.

The ORRWW-automaton can recognize all context free languages. Like the
ORWW-automaton it can recognize some languages that are not even in GCSL,
but also some infinite languages that do not contain an infinite semi-linear
subset like the unary language {a2n | n ≥ 0}.

It is still an open problem whether the language class is a proper subset of
the context-sensitive languages.

A next obvious point of research would be to look at other extensions of
the context-free languages and see if they can be represented by our automata.
Positive range concatenation (see, e.g. [19]) and indexed languages (see, e.g.
[1]) would be suitable candidates.

141





Chapter 6

Conclusion and Closing Remarks

We have seen that ordered restarting automata are interesting for their own
sake. Only the most general variant, that is the nondeterministic automaton
with states, can express non-regular languages. But that does not mean the
restricted variants are not interesting. Especially the simplest variant, the
deterministic stateless ORWW-automaton, can be used to present regular
languages concisely and in a simple way, which can also be used in teaching as
a supplement to the DFA. As a size measurement we simply use the number
of symbols instead of states. With this measurement in mind some language
operations can be realized at least as efficient as with DFAs and some languages
and language operations can be realized exponentially more succinctly. The
general ORWW- and ORRWW-automata are interesting in a different way,
although the former are probably the more interesting ones. The ORRWW
automata are very powerful. They can accept all context-free languages and
many more interesting languages, but all decision problems of interest are
undecidable for them. Unfortunately, we still do not know whether they are
properly included in the class of context sensitive languages which would be an
interesting point to investigate further.

Nevertheless, it seems to be of greater interest to focus on the ORWW-
automata. Especially since even a small extension of the ORWW-automata
makes emptiness and finiteness undecidable, as we can see from the ORRWW-
automaton, it is interesting to investigate this borderline case in more detail.
We thus have a language class that properly contains the regular languages and
forms an abstract family of languages. In addition, emptiness and finiteness
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can be decided, but we cannot represent the linear language {anbn | n ∈ N}
although we can represent even some languages that are not growing context
sensitive.

Finally, here is a small inclusion diagram of the different language classes
we have studied. You can see that it is still unknown whether L(ORRWW) is
properly included in CSL. Furthermore we do not know whether the language
classes GCSL or even CRL are included in L(ORRWW).

CSL

GCSL ORRWW

CRL CFL ORWW

DCFL LIN

DLIN det-ORWW det-ORRWW

ORWW ∩ 2{a}
∗ REG stl-ORWW stl-ORRWW

?

?

?

Figure 6.1: The Hierarchy of Language Class Inclusions. Solid lines indicate
proper inclusions, dotted lines indicate inclusions. Question marks indicate
unknown inclusions.

Some of the many open problems are the following. First of all there are still
some open problems regarding the descriptional complexity of some language
operations for languages given by stl-det-ORWW-automaton. Are there any
efficient constructions for product and Kleene Star? What is the complexity
of these operations? The current constructions involve converting the stl-
det-ORWW-automaton into a NFA with an exponential blowup, using the
constructions for the NFA, then using the powerset construction to get a DFA.
This DFA is then converted into a stl-det-ORWW-automaton. Obviously, this
construction leads to a huge blowup in size.

As our restricted variants all describe regular languages, we have asked
how they can be converted into each other efficiently and how succinct their
representations are. We still do not know how we can efficiently simulate a stl-
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ORWW-automaton by a stl-det-ORWW-automaton, a stl-ORRWW-automaton
by a stl-ORWW-automaton, or a stl-det-ORRWW-automaton by a stl-det-
ORWW-automaton. How succinctly can we represent regular languages by
stl-ORRWW-automata? Can we use the additional MVR steps for more
succinctness?

Finally, there are still some open problems regarding ORWW-automata. Is
universality or containment of a regular set decidable? Lastly, we have still
the conjecture that the language class L(ORWW) only consists of semi-linear
languages.
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