Zur Kurzanzeige

dc.date.accessioned2020-10-28T07:55:27Z
dc.date.available2020-10-28T07:55:27Z
dc.date.issued2016-03-10
dc.identifierdoi:10.17170/kobra-202010272014
dc.identifier.urihttp://hdl.handle.net/123456789/11900
dc.description.sponsorship"Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFGgeförderten) Allianz- bzw. Nationallizenz frei zugänglich.“
dc.language.isoeng
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectferromagneticseng
dc.subjectmagnetostrictioneng
dc.subjecthysteresis loopseng
dc.subjectnonlinear constitutive modelingeng
dc.subjectBarkhausen jumpseng
dc.subjectdomain wall motioneng
dc.subjectmultiferroic couplingeng
dc.subject.ddc620
dc.titleConstitutive modeling of nonlinear reversible and irreversible ferromagnetic behaviors and application to multiferroic compositeseng
dc.typeAufsatz
dcterms.abstractThe coupling of magnetic and mechanical fields due to the constitutive behavior of a material is commonly denoted as magnetostrictive effect. The latter is only observed with large coupling coefficients in ferromagnetic materials, where coupling is caused by the rotation of the domains as a result of magnetic (Joule effect) or mechanical (Villari effect) loads. However, only a few elements (e.g. Fe, Ni, Co, and Mn) and their compositions exhibit such a behavior. In this article, the constitutive modeling of nonlinear ferromagnetic behavior under combined magnetomechanical loading as well as the finite element implementation is presented. Both physically and phenomenologically motivated constitutive models have been developed for the numerical calculation of principally different nonlinear magnetostrictive behaviors. On this basis, magnetization, strain, and stress are predicted, and the resulting effects are analyzed. The phenomeno-logical approach covers reversible nonlinear behavior as it is observed, for example, in cobalt ferrite. Numerical simulations based on the physically motivated model focus on the calculation of hysteresis loops and the prediction of local domain orientations and residual stress going along with the magnetization process. Finally, a model for ferroelectric materials is applied in connection with the physically based ferromagnetic approach, in order to predict magnetoelectric coupling coefficients in multifunctional composite.eng
dcterms.accessRightsopen access
dcterms.creatorAvakian, Artjom
dcterms.creatorRicoeur, Andreas
dc.relation.doidoi:10.1177/1045389X16634212
dc.subject.swdMagnetfeldger
dc.subject.swdFerromagnetismusger
dc.subject.swdBarkhausen-Effektger
dc.type.versionpublishedVersion
dcterms.source.identifierEISSN 1530-8138
dcterms.source.issueIssue 18
dcterms.source.journalJournal of Intelligent Material Systems and Structureseng
dcterms.source.pageinfo2536 - 2554
dcterms.source.volumeVolume 27
kup.iskupfalse


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige