View/ Open
Date
2021-04-20Subject
580 Plants; biology 600 Technology IndienMonsunErnteBlattflächenindexChlorophyllkonzentrationWassergehaltFernerkundungMultispektraltechnikHyperspektraler SensorMetadata
Show full item record
Aufsatz
Comparison of Spaceborne and UAV-Borne Remote Sensing Spectral Data for Estimating Monsoon Crop Vegetation Parameters
Abstract
Various remote sensing data have been successfully applied to monitor crop vegetation parameters for different crop types. Those successful applications mostly focused on one sensor system or a single crop type. This study compares how two different sensor data (spaceborne multispectral vs unmanned aerial vehicle borne hyperspectral) can estimate crop vegetation parameters from three monsoon crops in tropical regions: finger millet, maize, and lablab. The study was conducted in two experimental field layouts (irrigated and rainfed) in Bengaluru, India, over the primary agricultural season in 2018. Each experiment contained n = 4 replicates of three crops with three different nitrogen fertiliser treatments. Two regression algorithms were employed to estimate three crop vegetation parameters: leaf area index, leaf chlorophyll concentration, and canopy water content. Overall, no clear pattern emerged of whether multispectral or hyperspectral data is superior for crop vegetation parameter estimation: hyperspectral data showed better estimation accuracy for finger millet vegetation parameters, while multispectral data indicated better results for maize and lablab vegetation parameter estimation. This study’s outcome revealed the potential of two remote sensing platforms and spectral data for monitoring monsoon crops also provide insight for future studies in selecting the optimal remote sensing spectral data for monsoon crop parameter estimation.
Citation
In: Senors Volume 21 / Issue 8 (2021-04-20) EISSN 1424-8220Sponsorship
Gefördert durch den Publikationsfonds der Universität KasselCitation
@article{doi:10.17170/kobra-202104293776,
author={Wijesingha, Jayan and Dayananda, Supriya and Wachendorf, Michael and Astor, Thomas},
title={Comparison of Spaceborne and UAV-Borne Remote Sensing Spectral Data for Estimating Monsoon Crop Vegetation Parameters},
journal={Senors},
year={2021}
}
0500 Oax 0501 Text $btxt$2rdacontent 0502 Computermedien $bc$2rdacarrier 1100 2021$n2021 1500 1/eng 2050 ##0##http://hdl.handle.net/123456789/12775 3000 Wijesingha, Jayan 3010 Dayananda, Supriya 3010 Wachendorf, Michael 3010 Astor, Thomas 4000 Comparison of Spaceborne and UAV-Borne Remote Sensing Spectral Data for Estimating Monsoon Crop Vegetation Parameters / Wijesingha, Jayan 4030 4060 Online-Ressource 4085 ##0##=u http://nbn-resolving.de/http://hdl.handle.net/123456789/12775=x R 4204 \$dAufsatz 4170 5550 {{Indien}} 5550 {{Monsun}} 5550 {{Ernte}} 5550 {{Blattflächenindex}} 5550 {{Chlorophyllkonzentration}} 5550 {{Wassergehalt}} 5550 {{Fernerkundung}} 5550 {{Multispektraltechnik}} 5550 {{Hyperspektraler Sensor}} 7136 ##0##http://hdl.handle.net/123456789/12775
2021-05-03T08:31:18Z 2021-05-03T08:31:18Z 2021-04-20 doi:10.17170/kobra-202104293776 http://hdl.handle.net/123456789/12775 Gefördert durch den Publikationsfonds der Universität Kassel eng Namensnennung 4.0 International http://creativecommons.org/licenses/by/4.0/ monsoon crops leaf area index leaf chlorophyll concentration crop water content multispectral hyperspectral 580 600 Comparison of Spaceborne and UAV-Borne Remote Sensing Spectral Data for Estimating Monsoon Crop Vegetation Parameters Aufsatz Various remote sensing data have been successfully applied to monitor crop vegetation parameters for different crop types. Those successful applications mostly focused on one sensor system or a single crop type. This study compares how two different sensor data (spaceborne multispectral vs unmanned aerial vehicle borne hyperspectral) can estimate crop vegetation parameters from three monsoon crops in tropical regions: finger millet, maize, and lablab. The study was conducted in two experimental field layouts (irrigated and rainfed) in Bengaluru, India, over the primary agricultural season in 2018. Each experiment contained n = 4 replicates of three crops with three different nitrogen fertiliser treatments. Two regression algorithms were employed to estimate three crop vegetation parameters: leaf area index, leaf chlorophyll concentration, and canopy water content. Overall, no clear pattern emerged of whether multispectral or hyperspectral data is superior for crop vegetation parameter estimation: hyperspectral data showed better estimation accuracy for finger millet vegetation parameters, while multispectral data indicated better results for maize and lablab vegetation parameter estimation. This study’s outcome revealed the potential of two remote sensing platforms and spectral data for monitoring monsoon crops also provide insight for future studies in selecting the optimal remote sensing spectral data for monsoon crop parameter estimation. open access Wijesingha, Jayan Dayananda, Supriya Wachendorf, Michael Astor, Thomas doi:10.3390/s21082886 Indien Monsun Ernte Blattflächenindex Chlorophyllkonzentration Wassergehalt Fernerkundung Multispektraltechnik Hyperspektraler Sensor publishedVersion EISSN 1424-8220 Issue 8 Senors Volume 21 false 2886
The following license files are associated with this item: