Show simple item record

dc.date.accessioned2006-04-06T07:41:25Z
dc.date.available2006-04-06T07:41:25Z
dc.date.issued2005
dc.identifier.uriurn:nbn:de:hebis:34-200604069073
dc.identifier.urihttp://hdl.handle.net/123456789/200604069073
dc.format.extent288442 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversität Kassel, FB 17, Mathematik/Informatikger
dc.subjectStokes-Problemger
dc.subjectNavier-Stokes-Gleichungger
dc.subjectRandwertproblemger
dc.subjectStokes Problem in layerseng
dc.subjectNavier-Stokes systemeng
dc.subjectArtificial boundary conditionseng
dc.subjectSteklov-Poincare operatoreng
dc.subject.ddc510
dc.titleArtificial boundary conditions for the Stokes and Navier-Stokes equations in domains that are layer-like at infinityeng
dc.typePreprint
dcterms.abstractArtificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.eng
dcterms.accessRightsopen access
dcterms.creatorNazarov, Serguei A.
dcterms.creatorSpecovius-Neugebauer, Maria
dcterms.isPartOfMathematische Schriften Kasselger
dcterms.isPartOf05, 08ger
dc.subject.msc76M99eng
dc.subject.msc76D05eng
dc.subject.msc35Q30eng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record