Search
Now showing items 1-10 of 30
Dissertation

Power Series Representations of Hypergeometric Type and Non-Holonomic Functions in Computer Algebra
(2020-06-10)
A Laurent-Puiseux series
$$ \sum\limits_{n = n_0}^{\infty }{a_n (z - z_0)^{n/k} (a_n \in K, k \in ℕ, n_0 \in ℤ ) } \quad (1) $$
where $ k $ denotes the corresponding Puiseux number and $ K $ an infinite computable field - mostly $ K= ℚ(α_1,\ldots,α_n) $ : a field of rational functions in several variables, is mainly characterized by the general coefficient. We consider the case where an is a term of an m-fold hypergeometric sequence.
That is $ a_{n+m} = r(n) a_n $ for all sufficiently large integers $ n, r(n) $ ...
Dissertation
Lösungen linearer Polynomgleichungen in Funktionenkörpern und Uniformisierbarkeit von t-Moduln
(2018)
Bei abelschen t-Moduln über Funktionenkörpern, denen der Ring F_q[t] zugrunde liegt, spielt die Frage der Uniformisierbarkeit eine wichtige Rolle. In dieser Arbeit werden t-Moduln betrachtet, die durch
t = τ^2 + A τ+ θ
gegeben sind, wobei τ den q-Frobenius-Endomorphismus bezeichnet, A eine (d x d)-Matrix mit d = 2 ist und θ eine Unbestimmte über F_q ist, die als Skalar (der t entspricht) im Funktionenkörper F_q(( 1/θ )) aufgefasst wird.
Nach einem Satz von Anderson aus der grundlegenden Arbeit “t-motives” (1986) ...
Dissertation
Root parametrized differential equations
(2012-10-17)
The present thesis is about the inverse problem in differential Galois Theory. Given a differential field, the inverse problem asks which linear algebraic groups can be realized as differential Galois groups of Picard-Vessiot extensions of this field.
In this thesis we will concentrate on the realization of the classical groups as differential Galois groups. We introduce a method for a very general realization of these groups. This means that we present for the classical groups of Lie rank $l$ explicit linear ...
Dissertation
Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen
(2009-07-21)
Die q-Analysis ist eine spezielle Diskretisierung der Analysis auf einem Gitter, welches eine geometrische Folge darstellt, und findet insbesondere in der Quantenphysik eine breite Anwendung, ist aber auch in der Theorie der q-orthogonalen Polynome und speziellen Funktionen von großer Bedeutung. Die betrachteten mathematischen Objekte aus der q-Welt weisen meist eine recht komplizierte Struktur auf und es liegt daher nahe, sie mit Computeralgebrasystemen zu behandeln. In der vorliegenden Dissertation werden Algorithmen ...
Dissertation
On the solutions of holonomic third-order linear irreducible differential equations in terms of hypergeometric functions
(2018-06-06)
Sei k ein algebraisch abgeschlossener Erweiterungskörper von Q der Charakteristik 0 und k(x)[∂] der Ring der Differentialoperatoren mit Koeffizienten in k(x). Sei L ∈ k(x)[∂] ein irreduzibler Differentialoperator dritter Ordung ohne Liouvillesche Lösungen. Sei E = B_^2, 1F_1^2, 0F_2, 1F_2, 2F_2}, wobei B_v eine Besselfunktion ist und pF_q mit p ∈ {0,1,2},q ∈{1,2}, die verallgemeinerte hypergeometrische Funktion. Das Ziel dieser Dissertation ist es, Lösungen von L zu finden, die durch Elemente S ∈ E ausgedrückt werden ...
Dissertation
Semi-algebraic methods for symbolic analysis of complex reaction networks
(2013-12-17)
The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are ...
Dissertation
Moments of classical orthogonal polynomials
(2013-10-22)
The aim of this work is to find simple formulas for the moments mu_n for all families of classical orthogonal polynomials listed in the book by Koekoek, Lesky and Swarttouw. The generating functions or exponential generating functions for those moments are given.
Dissertation
Some New Classes of Orthogonal Polynomials and Special Functions
(2006-11-01)
In dieser Dissertation präsentieren wir zunächst eine Verallgemeinerung der üblichen Sturm-Liouville-Probleme mit symmetrischen Lösungen und erklären eine umfassendere Klasse. Dann führen wir einige neue Klassen orthogonaler Polynome und spezieller Funktionen ein, welche sich aus dieser symmetrischen Verallgemeinerung ableiten lassen. Als eine spezielle Konsequenz dieser Verallgemeinerung führen wir ein Polynomsystem mit vier freien Parametern ein und zeigen, dass in diesem System fast alle klassischen symmetrischen ...
Dissertation
Gröbnerbasen in Ore-Algebren
(2006-06-19)
In dieser Arbeit werden grundlegende Algorithmen für Ore-Algebren in
Mathematica realisiert.
Dabei entsteht eine Plattform um die speziellen Beschränkungen und
Möglichkeiten dieser Algebren insbesondere im Zusammenhang mit
Gröbnerbasen an praktischen Beispielen auszuloten.
Im Gegensatz zu den existierenden Paketen wird dabei explizit die
Struktur der Ore-Algebra benutzt.
Kandri-Rody und Weispfenning untersuchten 1990 Verallgemeinerungen von
Gröbnerbasen auf Algebren ordnungserhaltender Art (``algebras ...
Dissertation
Elimination in Operator Algebras
(2014-08-08)
A large class of special functions are solutions of systems of linear difference and differential equations with polynomial coefficients. For a given function, these equations considered as operator polynomials generate a left ideal in a noncommutative algebra called Ore algebra. This ideal with finitely many conditions characterizes the function uniquely so that Gröbner basis techniques can be applied.
Many problems related to special functions which can be described by such ideals can be solved by performing ...