## Search

Now showing items 21-30 of 42

####
Preprint
Construction of recurrent fractal interpolation surfaces(RFISs) on rectangular grids

(2008)

A recurrent iterated function system (RIFS) is a genaralization of an IFS and provides
nonself-affine fractal sets which are closer to natural objects. In general, it's attractor
is not a continuous surface in R3. A recurrent fractal interpolation surface (RFIS) is an
attractor of RIFS which is a graph of bivariate continuous interpolation function. We
introduce a general method of generating recurrent interpolation surface which are at-
tractors of RIFSs about any data set on a grid.

####
Preprint
Construction of fractal interpolation surfaces on rectangular grids

(2008)

We present a general method of generating continuous fractal interpolation surfaces
by iterated function systems on an arbitrary data set over rectangular grids and estimate
their Box-counting dimension.

####
Preprint
Computations in Relative Algebraic K-Groups

(2007)

Let G be finite group and K a number field or a p-adic field with ring of integers O_K. In the first part of the manuscript we present an algorithm that computes the relative algebraic K-group K_0(O_K[G],K) as an abstract abelian group. We solve the discrete logarithm problem, both in K_0(O_K[G],K) and the locally free class group cl(O_K[G]). All algorithms have been implemented in MAGMA for the case K = \IQ. In the second part of the manuscript we prove formulae for the torsion subgroup of K_0(\IZ[G],\IQ) for large ...

####
Preprint
Computing Generators of Free Modules over Orders in Group Algebras

(2007)

Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines ...

####
Preprint
Approximate approximations for the Poisson and the Stokes equations

(2006)

The method of approximate approximations is based on generating functions representing an approximate partition of the unity, only. In the present paper this method is used for the numerical solution of the Poisson equation and the Stokes system in R^n (n = 2, 3). The corresponding approximate volume potentials will be computed explicitly in these cases, containing a one-dimensional integral, only. Numerical simulations show the efficiency of the method and confirm the expected convergence of essentially second order, ...

####
Preprint
The Navier-Stokes Equations with Time Delay

(2007)

In the present paper we use a time delay epsilon > 0 for an energy conserving approximation of the nonlinear term of the non-stationary Navier-Stokes equations. We prove that the corresponding initial value problem (N_epsilon)in smoothly bounded domains G \subseteq R^3 is well-posed. Passing to the limit epsilon \rightarrow 0 we show that the sequence of stabilized solutions has an accumulation point such that it solves the Navier-Stokes problem (N_0) in a weak sense (Hopf).

####
Preprint
Approximate Approximations and a Boundary Point Method for the Linearized Stokes System

(2007)

The method of approximate approximations, introduced by Maz'ya [1], can also be used for the numerical solution of boundary integral equations. In this case, the matrix
of the resulting algebraic system to compute an approximate source density depends only on the position of a finite number of boundary points and on the direction of the normal vector in these points (Boundary Point Method). We investigate this approach for the Stokes problem in the whole space and for the Stokes boundary value problem in a bounded ...

####
Preprint
Parity of the Number of Irreducible Factors for Composite Polynomials

(2008)

Various results on parity of the number of irreducible factors of given polynomials over finite fields have been obtained in the recent literature. Those are mainly based on Swan’s theorem in which discriminants of polynomials over a finite field or the integral ring Z play an important role. In this paper we consider discriminants of the composition of some polynomials over finite fields. The relation between the discriminants of composed polynomial and the original ones will be established. We apply this to obtain ...

####
Preprint
Exact algorithms for p-adic fields and epsilon constant conjectures

(2006)

We develop several algorithms for computations in Galois extensions of p-adic fields. Our algorithms are based on existing algorithms for number fields and are exact in the sense that we do not need to consider approximations to p-adic numbers. As an application we describe an algorithmic approach to prove or disprove various conjectures for local and global epsilon constants.

####
Preprint
Computation of locally free class groups

(2006)

We show that the locally free class group of an order in a semisimple algebra over a number field is isomorphic to a certain ray class group. This description is then used to present an algorithm that computes the
locally free class group. The algorithm is implemented in MAGMA for the case where the algebra is a group ring over the rational numbers.