Electromagnetic Modeling of Nanooptical 2-D Photonic Crystal Structures in Resonant Micro-Opto-Electro-Mechanical Systems: Polarization Selectivity and Tunability

dc.contributor.corporatenameKassel, Universität Kassel, Fachbereich Elektrotechnik / Informatik, Fachgebiet Theorie der Elektrotechnik und Photonik (CEP: Computational Electronics and Photonics)
dc.contributor.refereeWitzigmann, Bernd (Prof. Dr. sc. techn.)
dc.contributor.refereeHillmer, Hartmut (Prof. Dr. rer. nat. )
dc.date.accessioned2018-08-27T12:56:51Z
dc.date.available2018-08-27T12:56:51Z
dc.date.examination2018-03-09
dc.date.issued2018-08-27
dc.description.sponsorshipProf. Dr. sc. techn. Bernd Witzigmann, Prof. Dr. rer. nat. Hartmut Hillmerger
dc.identifier.uriurn:nbn:de:hebis:34-2018082756348
dc.identifier.urihttp://hdl.handle.net/123456789/2018082756348
dc.language.isoeng
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectGuided Resonanceeng
dc.subjectPhotonic Crystalseng
dc.subjectMicro-Opto-Electro-Mechanical Systemseng
dc.subjectFabry-Pérot-Filtereng
dc.subjectPolarization Selectivityeng
dc.subjectPhotonic Crystal Cavityeng
dc.subject.ddc620
dc.subject.swdPhotonischer Kristallger
dc.subject.swdFabry-Pérot-Resonatorger
dc.subject.swdOptische Eigenschaftger
dc.subject.swdNIRger
dc.subject.swdFinite-Elemente-Methodeger
dc.titleElectromagnetic Modeling of Nanooptical 2-D Photonic Crystal Structures in Resonant Micro-Opto-Electro-Mechanical Systems: Polarization Selectivity and Tunabilityeng
dc.typeDissertation
dcterms.abstractIn this thesis, optical filters and cavities consisting of 2-D Photonic Crystals (PCs) are studied in the Near-Infrared (NIR) range with regard to their optical properties using the frequency domain 3-D Finite Element Method (FEM). The filter structures are Photonic Crystal Membranes (PCMs) and micromechanically tunable Fabry-Pérot-Filters (FPFs) with periodically arranged Indium Phosphide (InP)/air elements, which support Guided Resonances (GRs). The focus here is primarily on the polarization selectivity. In the case of the FPFs, the tunability is investigated additionally. The filter structures form the main part of the present thesis. Here, approaches are introduced which allow for the identification of polarization-selective spectral ranges. In addition, design rules are derived, procedures for the optimizing of the optical properties are presented, and the origin of the GRs is clarified. The aim here is to improve and extend the conventional optical characteristics of the filter structures. The last part of this thesis deals with a Photonic Crystal Cavity (PCC) consisting of Gallium Arsenide (GaAs)/air features. Emphasis is placed on eigenmodes, which are suitable for use in surface-emitting laser devices. Such a mode is investigated and characterized.eng
dcterms.accessRightsopen access
dcterms.creatorAkcakoca, Ugur

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
DissertationUgurAkcakoca.pdf
Size:
93.01 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.23 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections