Organic Computing
dc.contributor.editor | Krupitzer, Christian | |
dc.contributor.editor | Tomforde, Sven | |
dc.date.accessioned | 2023-06-28T13:24:14Z | |
dc.date.available | 2023-06-28T13:24:14Z | |
dc.date.issued | 2023 | |
dc.identifier | doi:10.17170/kobra-202302107484 | |
dc.identifier.uri | http://hdl.handle.net/123456789/14854 | |
dc.language.iso | eng | |
dc.publisher | kassel university press | |
dc.publisher.place | Kassel | |
dc.relation.isbn | 978-3-7376-1100-8 | |
dc.rights | Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | * |
dc.subject | Automatic Computing | eng |
dc.subject | ProActive Computing | eng |
dc.subject | Complex Adaptive Systems | eng |
dc.subject | Self-Organisation | eng |
dc.subject.ddc | 004 | |
dc.subject.ddc | 600 | |
dc.subject.swd | Proaktives Computing | ger |
dc.subject.swd | Adaptives System | ger |
dc.subject.swd | Selbstorganisation | ger |
dc.title | Organic Computing | eng |
dc.title.subtitle | Doctoral Dissertation Colloquium 2022 | eng |
dc.type | Buch | |
dc.type.version | publishedVersion | |
dcterms.abstract | Electromobility plays an increasingly important role in the energy transition. Electric vehicle charging poses challenges to the electricity grid due to high peak demand situations. Therefore, it is crucial to leverage the vehicle’s flexibility when charging can be delayed. Conventional charging management systems cannot adapt to frequently changing conditions such as fluctuating renewable energy output, electricity prices and user behavior. In this article, we investigate the application of reinforcement learning approaches for self-adaptive charging management. In particular, we identify challenges regarding realistic environments and adaption to varying topologies and connections among charging stations. We describe related approaches and propose ideas and planned experiments to overcome these problems by utilizing generative models and graph neural networks. | eng |
dcterms.accessRights | open access | |
dcterms.creator | Hassouna, Mohamed | |
dcterms.creator | Hetzel, Manuel | |
dcterms.creator | Smirnov, Nikita | |
dcterms.creator | Pilchau, Wenzel Pilar von | |
dcterms.creator | Cui, Henning | |
dcterms.creator | Feyrer, Georg | |
dcterms.creator | Hussaini, Mortesa | |
dcterms.creator | Boysen, Jonas | |
dcterms.creator | Kisselbach, Timo | |
dcterms.creator | Al-Falouji, Ghassan | |
dcterms.creator | Wazed Ali, Mohammad | |
dcterms.creator | Meitz, Lukas | |
dcterms.creator | Henrichs, Elia | |
dcterms.creator | Shmelkin, Ilja | |
dcterms.extent | XVI, 199 Seiten | |
dcterms.source.series | Intelligent Embedded Systems | eng |
dcterms.source.volume | Band 24 | |
kup.binding | Softcover | |
kup.institution | FB 16 Elektrotechnik / Informatik | |
kup.iskup | true | |
kup.price | 39,00 | |
kup.series | Intelligent Embedded Systems | eng |
kup.size | DIN A5 | |
kup.subject | Naturwissenschaft, Technik, Informatik, Medizin | |
kup.typ | Sammelband | |
ubks.epflicht | true |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.03 KB
- Format:
- Item-specific license agreed upon to submission
- Description: