Search
Now showing items 1-3 of 3
Dissertation

Power Series Representations of Hypergeometric Type and Non-Holonomic Functions in Computer Algebra
(2020-06-10)
A Laurent-Puiseux series
$$ \sum\limits_{n = n_0}^{\infty }{a_n (z - z_0)^{n/k} (a_n \in K, k \in ℕ, n_0 \in ℤ ) } \quad (1) $$
where $ k $ denotes the corresponding Puiseux number and $ K $ an infinite computable field - mostly $ K= ℚ(α_1,\ldots,α_n) $ : a field of rational functions in several variables, is mainly characterized by the general coefficient. We consider the case where an is a term of an m-fold hypergeometric sequence.
That is $ a_{n+m} = r(n) a_n $ for all sufficiently large integers $ n, r(n) $ ...
Dissertation
Semi-algebraic methods for symbolic analysis of complex reaction networks
(2013-12-17)
The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are ...
Dissertation
Ein Algorithmus zur numerischen Verifikation der äquivarianten Tamagawazahlvermutung für eine Familie von Zahlkörpererweiterungen
(2011-04-07)
Sei $N/K$ eine galoissche Zahlkörpererweiterung mit Galoisgruppe $G$, so dass es in $N$ eine Stelle mit voller
Zerlegungsgruppe gibt. Die vorliegende Arbeit beschäftigt sich mit Algorithmen, die für das gegebene Fallbeispiel $N/K$, die äquivariante Tamagawazahlvermutung
von Burns und Flach für das Paar $(h^0(Spec(N), \mathbb{Z}[G]))$ (numerisch) verifizieren.
Grob gesprochen stellt die äquivariante Tamagawazahlvermutung (im Folgenden ETNC) in diesem Spezialfall einen Zusammenhang her zwischen Werten von
Artinschen ...