Search
Now showing items 1-10 of 45
Lehrmaterial

Skriptum zur Linearen Algebra und Analytischen Geometrie
(2020-07)
Vorlesungsskript zur Vorlesung „Lineare Algebra und Analytische Geometrie“ an der Universität Kassel im Sommersemester 2020. Es handelt sich um die Druckversion.
Dissertation

Power Series Representations of Hypergeometric Type and Non-Holonomic Functions in Computer Algebra
(2020-06-10)
A Laurent-Puiseux series
$$ \sum\limits_{n = n_0}^{\infty }{a_n (z - z_0)^{n/k} (a_n \in K, k \in ℕ, n_0 \in ℤ ) } \quad (1) $$
where $ k $ denotes the corresponding Puiseux number and $ K $ an infinite computable field - mostly $ K= ℚ(α_1,\ldots,α_n) $ : a field of rational functions in several variables, is mainly characterized by the general coefficient. We consider the case where an is a term of an m-fold hypergeometric sequence.
That is $ a_{n+m} = r(n) a_n $ for all sufficiently large integers $ n, r(n) $ ...
Dissertation
Lösungen linearer Polynomgleichungen in Funktionenkörpern und Uniformisierbarkeit von t-Moduln
(2018)
Bei abelschen t-Moduln über Funktionenkörpern, denen der Ring F_q[t] zugrunde liegt, spielt die Frage der Uniformisierbarkeit eine wichtige Rolle. In dieser Arbeit werden t-Moduln betrachtet, die durch
t = τ^2 + A τ+ θ
gegeben sind, wobei τ den q-Frobenius-Endomorphismus bezeichnet, A eine (d x d)-Matrix mit d = 2 ist und θ eine Unbestimmte über F_q ist, die als Skalar (der t entspricht) im Funktionenkörper F_q(( 1/θ )) aufgefasst wird.
Nach einem Satz von Anderson aus der grundlegenden Arbeit “t-motives” (1986) ...
Habilitation
Algorithmic Methods for Mixed Recurrence Equations, Zeros of Classical Orthogonal Polynomials and Classical Orthogonal Polynomial Solutions of Three-Term Recurrence Equations
(2019-07)
Using an algorithmic approach, we derive classes of mixed recurrence equations satisfied by classical orthogonal polynomials. Starting from certain structure relations satisfied by classical orthogonal polynomials or their connection formulae, we show that our mixed recurrence equations are structurally valid. However, they couldn't be easily obtained with classical methods and for this reason, our algorithmic approach is important. The main algorithmic tool used here is an extended version of Zeilberger's ...
Dissertation
Explicit Description Of Isogeny And Isomorphism Classes Of Drinfeld Modules Of Higher Rank Over Finite Fields
(2020)
When jumping from the number fields theory to the function fields theory, one cannot miss the deep analogy between rank 1 Drinfeld modules and the group of root of unity and the analogy between rank 2 Drinfeld modules and elliptic curves. But so far, there is no known structure in number fields theory that is analogous to the Drinfeld modules of higher rank r ≥ 3. In this thesis we investigate the classes of those Drinfeld modules of higher rank r ≥ 3 defined over a finite field L. We describe explicitly the Weil ...
Dissertation
Root parametrized differential equations
(2012-10-17)
The present thesis is about the inverse problem in differential Galois Theory. Given a differential field, the inverse problem asks which linear algebraic groups can be realized as differential Galois groups of Picard-Vessiot extensions of this field.
In this thesis we will concentrate on the realization of the classical groups as differential Galois groups. We introduce a method for a very general realization of these groups. This means that we present for the classical groups of Lie rank $l$ explicit linear ...
Dissertation
Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen
(2009-07-21)
Die q-Analysis ist eine spezielle Diskretisierung der Analysis auf einem Gitter, welches eine geometrische Folge darstellt, und findet insbesondere in der Quantenphysik eine breite Anwendung, ist aber auch in der Theorie der q-orthogonalen Polynome und speziellen Funktionen von großer Bedeutung. Die betrachteten mathematischen Objekte aus der q-Welt weisen meist eine recht komplizierte Struktur auf und es liegt daher nahe, sie mit Computeralgebrasystemen zu behandeln. In der vorliegenden Dissertation werden Algorithmen ...
Dissertation
On the solutions of holonomic third-order linear irreducible differential equations in terms of hypergeometric functions
(2018-06-06)
Sei k ein algebraisch abgeschlossener Erweiterungskörper von Q der Charakteristik 0 und k(x)[∂] der Ring der Differentialoperatoren mit Koeffizienten in k(x). Sei L ∈ k(x)[∂] ein irreduzibler Differentialoperator dritter Ordung ohne Liouvillesche Lösungen. Sei E = B_^2, 1F_1^2, 0F_2, 1F_2, 2F_2}, wobei B_v eine Besselfunktion ist und pF_q mit p ∈ {0,1,2},q ∈{1,2}, die verallgemeinerte hypergeometrische Funktion. Das Ziel dieser Dissertation ist es, Lösungen von L zu finden, die durch Elemente S ∈ E ausgedrückt werden ...
Dissertation
Computing Quot Schemes
(2017-02-27)
The main goal of this thesis is to develop computational methods which
allow effective computations on Hilbert and Quot schemes.
At first we introduce marked bases over modules. They may be considered as a
form of Gröbner basis which do not depend on a term order. Instead, one
chooses for each generator some term as head module term such that the head
module terms generate a prescribed monomial module. We show that the
involutive normal form algorithm with respect to Pommaret division will
terminate if the ...